
Journal of Artificial Intelligence Research 75 (2022) 1293-1322 Submitted 08/2022; published 12/2022

Towards Evidence Retrieval Cost Reduction in Abstract
Argumentation Frameworks with Fallible Evidence

Andrea Cohen ac@cs.uns.edu.ar

Sebastian Gottifredi sg@cs.uns.edu.ar

Alejandro J. Garćıa ajg@cs.uns.edu.ar

Guillermo R. Simari grs@cs.uns.edu.ar

Institute for Computer Science and Engineering (CONICET-UNS) &

Department of Computer Science and Engineering, Universidad Nacional del Sur

San Andrés 800 - Campus Palihue, Bah́ıa Blanca, Buenos Aires, Argentina

Abstract

Arguments in argumentation systems cannot always be considered as standalone en-
tities, requiring the consideration of the pieces of evidence they rely on. This evidence
might have to be retrieved from external sources such as databases or the web, and each
attempt to retrieve a piece of evidence comes with an associated cost. Moreover, a piece
of evidence may be available in a given scenario but not in others, and this is not known
beforehand. As a result, the collection of active arguments (whose entire set of evidence is
available) that can be used by the argumentation machinery of the system may vary from
one scenario to another. In this work, we consider an Abstract Argumentation Framework
with Fallible Evidence that accounts for these issues, and propose a heuristic measure used
as part of the acceptability calculus (specifically, for building pruned dialectical trees) with
the aim of minimizing the evidence retrieval cost of the arguments involved in the reasoning
process. We provide an algorithmic solution that is empirically tested against two baselines
and formally show the correctness of our approach.

1. Introduction

Computational Argumentation is a form of considering and making effective the task of
reasoning that has proved to be valuable in different domains, such as logic-based envi-
ronments (Besnard & Hunter, 2001; Garćıa & Simari, 2004), decision-making and nego-
tiation (Black & Hunter, 2009; Ferretti et al., 2017), Artificial Intelligence & Law (Al-
Abdulkarim et al., 2014; Prakken & Sartor, 2015), and has led to the development of
argumentation-based recommender and decision support systems (Briguez et al., 2014; Bedi
& Vashisth, 2014; Gómez et al., 2016). Briefly, it is a form of reasoning where a piece of
information (claim) is accepted or rejected after considering the reasons (arguments) for
and against that acceptance, providing a reasoning mechanism able to handle contradic-
tory, incomplete, and often uncertain information. There exists a variety of approaches to
argumentation-based reasoning, among which we can distinguish abstract (with the work
initiated by Dung (1995) being the most prominent) and structured ones; we refer the reader
to (Besnard et al., 2014) for an overview.

Given its query-answering nature, a structured argumentation system like DeLP (Garćıa
& Simari, 2004) can be effectively used to implement decision-support or recommender
systems (Briguez et al., 2014). In such systems, the knowledge used for building arguments

c©2022 AI Access Foundation. All rights reserved.

Cohen, Gottifredi, Garćıa, & Simari

is usually encoded through rules of the form premises-conclusion. However, the rules used
for building the arguments involved in the system’s reasoning process may not be applicable
in every scenario. Instead, the system will only be able to use a particular rule when it
is capable of retrieving every piece of information (from hereon referred to as evidence)
corresponding to this rule’s premises. Taking this situation into consideration, it could be
the case that a piece of evidence required for building an argument is available from one
source at a given time, but not from others, or not even from the same source at a different
time. As a result, it is possible that one argument could be built at one moment (because all
its associated evidence is available, in which case we will say it is active) but not at others
(since some associated evidence is not available making the argument inactive); thus, there
is an inherently dynamic component in the argumentative process.

As argued in (Skiba et al., 2020), many real-life application scenarios for argumentation
systems require the consideration of arguments not as standalone entities, but as relying
on pieces of evidence that provide the basis for their construction (in other words, for their
activation). As an example, they consider an online forum discussion addressing the spread
of the COVID-19 virus. Many arguments being exposed in online discussions or debates
are based on premises or facts, which need to be backed by some evidence. For instance,
for the COVID-19 discussion case, the evidence could correspond to articles by the World
Health Organization (WHO) or other resources of authority used for backing the claims
being made.

Regarding the pieces of evidence associated with arguments, they could correspond to
information mined from an external source such as a database (Deagustini et al., 2013,
2017) or, more generally, the web (Lippi & Torroni, 2016). Then, the process of building
an argument comes with an additional associated cost, which may be the financial cost of
accessing a particular database, the time for resolving a query, et cetera. Going back to
the COVID-19 online forum discussion example, to assess the validity of the arguments,
the participants could visit the linked pieces of evidence to verify the claims. However,
this verification step involves time and effort (i.e., each piece of evidence associated with
the argument has a cost), and the retrieval of pieces of evidence may fail, because a web
server may be down or the article is no longer available. As a result, if we account for the
cost of building an argument, as well as the dynamic nature mentioned above, a reasonable
approach for determining the acceptance status of an argument would try to minimize the
associated cost (in particular, the cost of the evidence retrieval), while accounting for the
fact that arguments may not be active.

In this work, we propose an approach for determining the acceptance status of arguments
that have an associated set of evidence, based on the construction and pruning of dialectical
trees (Besnard & Hunter, 2001; Garćıa & Simari, 2004). Moreover, our approach will aim
at reducing the evidence retrieval cost paid for building the arguments in the tree, trying to
avoid fetching unnecessary evidence or building arguments that do not affect the acceptance
status of the queried argument.

Given a queried argument A whose acceptance status has to be determined in a scenario
where the set of available evidence is E (though, as stated before, not known beforehand),
the problem of identifying the “cheapest” set of evidence that would have to be retrieved
in order to be able to determine whether A is accepted or rejected (while not leaving active
arguments aside) can be considered as an optimization problem. As discussed in (Skiba

1294

Towards Evidence Retrieval Cost Reduction in AFFEs

et al., 2020), this problem is equivalent to the problem of determining the cheapest set of
evidence such that for every argument B that is not active but would change the acceptance
status of the queried argument A, we ensure that B cannot be constructed at all by trying to
retrieve at least one piece of evidence of B that is not available in that scenario. Moreover, as
shown in (Skiba et al., 2020), the complexity results of decision variants of this optimization
problem mirror classical complexity results for abstract argumentation semantics (Dvorák
& Dunne, 2018), but most problems are lifted one level up in the polynomial hierarchy.
In particular, for the grounded semantics, whose similarity with semantics based on the
construction of dialectical trees is discussed in (Garćıa et al., 2020), finding the optimal
solution for this optimization problem is NP-complete. Consequently, heuristics become
handy for tackling these kind of problems and thus, our proposed approach will make use
of a heuristic measure based on the evidence retrieval cost.

Specifically, we will work with an Abstract Argumentation Framework with Fallible
Evidence (AFFE), inspired on the Dynamic Argumentation Framework (DAF) proposed
in (Rotstein et al., 2010). Briefly, the AFFE extends Dung’s framework (Dung, 1995) so
that each argument is associated with a set of evidence, which sets the argument to be active
or inactive. In particular, each piece of evidence comes with an associated cost (that has
to be paid in order to attempt to retrieve it) and can be available or unavailable at a given
time. The semantics we will consider for determining the acceptance status of arguments in
an AFFE is based on the construction of dialectical trees, similarly to (Rotstein et al., 2010).
Then, by accounting for the arguments in an AFFE (regardless of their activation status),
we will consider the construction of potential dialectical trees. Based on those trees, we
will characterize a heuristic measure to guide the construction of the active dialectical trees
(i.e., the dialectical trees that include only active arguments) while trying to minimize the
cost of retrieving the evidence associated with the arguments in those trees. Furthermore,
as will be shown later, this measure will be helpful to select branches to prune in the active
trees that do not affect the acceptance status of the argument in the tree’s root.

The rest of this paper is organized as follows. Section 2 introduces the theoretical basis
for our approach, including the formalization of the Abstract Argumentation Framework
with Fallible Evidence (AFFE) and a characterization of potential, active, and pruned active
dialectical trees. In Section 3, we introduce the notion of related evidence for arguments
in an AFFE and propose a heuristic measure to be used for guiding the construction of
pruned dialectical trees in active scenarios. Section 4 presents and describes the algorithms
implementing the construction of pruned active dialectical trees, showing how the heuristic
measure is effectively used for that purpose. It also illustrates our algorithmic solution
through examples and finishes by formally showing the correctness of our approach. Then,
Section 5 introduces the experiments we performed for testing our approach against two
baselines, discussing and illustrating the main results. Finally, in Section 6 we comment
on related works, highlight the differences between this paper and the preliminary work
reported in (Cohen et al., 2019), discuss possible directions for future work, and provide
some concluding remarks.

1295

Cohen, Gottifredi, Garćıa, & Simari

2. Acceptability Calculus in AFFEs through Dialectical Trees

Dung’s abstract argumentation framework (Dung, 1995) has become the current standard
to explore, analyze, and apply new ideas to any argumentation-based setting that does
not consider the arguments’ structure. In this paper, we adopt a less abstract framework
that allows for the representation of active (respectively, inactive) arguments in a dynamic
scenario. The developement of our approach is based on the consideration of a Abstract
Argumentation Framework with Fallible Evidence (AFFE), inspired on the Dynamic Argu-
mentation Framework proposed in (Rotstein et al., 2010). In particular, the AFFE considers
a universal set of potential arguments, which holds every conceivable argument, along with
the attack relation defined over that set. Each potential argument is also associated with a
set of evidence, which has to be retrieved for the argument to be active at a given scenario.
The different scenarios will be represented through sessions, and they will be identified with
natural numbers (N); furthermore, every session may go through different states, represent-
ing the evolution in the search for the necessary evidence during that session.

Active arguments in an AFFE are the only ones that can be used by the argumentation
machinery to make inferences and compute the acceptance status of arguments in a given
session. Therefore, in each scenario, arguments from the universal set that are inactive rep-
resent reasons that, although structurally valid, cannot be taken into consideration because
the necessary evidence that is required for their activation is not available in the context
corresponding to the current session.

Notwithstanding this, active arguments in one session could become inactive and un-
available to reason in later sessions, e.g., when some of their associated evidence is not
present; analogously, inactive arguments may also become active later. Having this in
mind, the AFFE will also account for a function aiming at retrieving the pieces of evidence
that are available in a given session, consequently allowing us to determine the active argu-
ments in that session. Specifically, since the set of available evidence in each session is not
known beforehand, this function will fail in case the piece of evidence that was attempted
to be retrieved is not available in that session. Moreover, since attempting to retrieve a
piece of evidence comes with an associated cost, and this cost may vary from one piece of
evidence to another, we will also equip the AFFE with a function to determine the evidence
retrieval cost (expressed in natural numbers) in a given session. Finally, note that, while
retrieving a piece of evidence, its associated cost has to be paid regardless of whether the
requested evidence is available or not in the given session.

Definition 1 (Abstract Argumentation Framework with Fallible Evidence). An Abstract
Argumentation Framework with Fallible Evidence (AFFE) is a tuple 〈U, ↪→,E,Θ,Γ, ev〉,
where U is the universal set of arguments, ↪→ ⊆ U × U is an attack relation, E is the
universal set of evidence, Θ : E×N 7→ {>,⊥} is the evidence retrieval function, Γ : E 7→ N
is the evidence cost function, and ev : U 7→ 2E is a function determining the evidence
required by each argument.

Definition 2 (Active Arguments). Let 〈U, ↪→,E,Θ,Γ, ev〉 be an AFFE, A ∈ U and s a
session. We say that A is active in s iff ∀ε ∈ ev(A) : Θ(ε, s) = >. The set of active
arguments in a session s is denoted As ⊆ U.

1296

Towards Evidence Retrieval Cost Reduction in AFFEs

In order to determine whether an argument of an AFFE is active in a given session, we
need to try to retrieve its evidence in that session. As mentioned before, given an argument
A, some pieces of evidence ε, ε′ ∈ ev(A), and a session s, it might be the case that ε is
available in s but ε′ is not (i.e., Θ(ε, s) = > and Θ(ε′, s) = ⊥). As a result, since every
attempt of retrieving a piece of evidence through the function Θ comes with an associated
cost (as determined by the function Γ), we want to minimize the use of Θ. Hence, to be
able to keep track of the evidence that has been attempted to be retrieved so far in a session
(both successfully and unsuccessfully), we define the notion of session state as follows.

Definition 3 (Session State). Let 〈U, ↪→,E,Θ,Γ, ev〉 be an AFFE and s a session. A
session state is a tuple σ = (s,CE,ME), where CE,ME ⊆ E, ∀ε ∈ CE : Θ(ε, s) = >, and
∀ε′ ∈ ME : Θ(ε′, s) = ⊥.

As Definition 3 shows, a session state has an associated session number and two sets
of evidence representing, respectively, the evidence that has already been collected in the
session (current evidence, CE), and the evidence that has been attempted to be retrieved but
found missing in that session (missing evidence, ME). Therefore, when using the function
Θ to try to retrieve a piece of evidence ε in a session state σ = (s,CE,ME), a new session
state will be obtained depending on the function’s outcome. That is, if Θ(ε, s) = >, then
the new session state will be σ′ = (s,CE ∪ {ε},ME); otherwise, the new session state will
be σ′′ = (s,CE,ME ∪ {ε}).

As it is the case for Dung’s framework (Dung, 1995), the AFFE yields a graph of ar-
guments connected by the attack relation. Given a session, an active subgraph could be
considered, containing only active arguments. In argumentation-based reasoning, the chal-
lenge consists in finding out which arguments prevail after all things considered (i.e., iden-
tifying the arguments that are accepted under some criterion). To this end, the notion
of argumentation semantics has been extensively studied in the literature (Baroni et al.,
2018). However, it should be noted that, in order to use the existing family of argumen-
tation semantics, we have to consider the entire set of active arguments and the attacks
between them. That is, to determine the acceptance status of an argument A, every active
argument would have to be built, including those arguments that may have no effect in
A’s acceptance or rejection. Hence, it can be argued that the use such semantics may lead
to incurring unnecessary costs (the cost of attempting to build arguments like those men-
tioned above). Therefore, in this paper we will adopt an alternative approach that consists
on building tree structures for determining the acceptance status of a queried argument,
by considering only the arguments that are directly or indirectly related to it through the
attack relation (Garćıa & Simari, 2004; Besnard & Hunter, 2001; Rotstein et al., 2010).

We define a potential dialectical tree as a tree structure where every node is associated
with an argument, and the children of each node correspond to attackers of the associated
argument. Also, the tree is such that no argument can be considered more than once
within the same branch. Furthermore, the tree has the characteristic of being exhaustive,
in the sense that if an argument (node) satisfies the above mentioned requirements, then it
should be added to the tree structure; in other words, the tree should be exhaustive in the
consideration of attackers for each argument.

Definition 4 (Potential Dialectical Tree). Let τ = 〈U, ↪→,E,Θ,Γ, ev〉 be an AFFE and
A ∈ U. The potential dialectical tree TP(A) for A is a tree structure where:

1297

Cohen, Gottifredi, Garćıa, & Simari

(i) The root of TP(A) is labeled with argument A.

(ii) Given a node N labeled with B in TP(A), ∀C ∈ U such that (C,B) ∈ ↪→, if there is no
ancestor of N in TP(A) labeled with C, then there exists a node N ′ in TP(A) such
that N ′ is labeled with C and N ′ is a child of N .

Note that there will be a single potential tree for each argument in U. We refer to the
tree as potential since it accounts for every argument in the universal set and thus, for
every attack in the attack relation. Also, it should be noted that there might be different
nodes in a potential dialectical tree labeled with the same argument. This is because the
same argument may attack various arguments, which are associated with nodes in different
branches of the tree. Thus, the attacking argument will be the label of different child nodes
in those branches.

As stated before, a potential dialectical tree for an argument A is a structure accounting
for every attacker of A, every attacker of those attackers, and so on (i.e., it considers every
argument and attack in an AFFE). Notwithstanding this, since arguments (also, the attacks
involving them) may be active or not depending on the session, we need to account for
the active scenario (hence, the active arguments in the session) in order to determine the
acceptance status of A. For this purpose, the notion of active dialectical tree is introduced.
Briefly, the active dialectical tree for an argument A in a session s contains a subset of the
nodes of the potential dialectical tree for A, which are labeled with active arguments in s.

Definition 5 (Active Dialectical Tree). Let τ = 〈U, ↪→,E,Θ,Γ, ev〉 be an AFFE, s a session,
As the set of active arguments in s, and A ∈ As. The active dialectical tree Ts(A) for A
in s is a tree structure where:

(i) The root of TP(A) is labeled with argument A.

(ii) Given a node N labeled with B in TP(A), ∀C ∈ As such that (C,B) ∈ ↪→, if there is
no ancestor of N in Ts(A) labeled with C, then there exists a node N ′ in Ts(A) such
that N ′ is labeled with C and N ′ is a child of N .

Similarly to the potential dialectical trees, given an active argument A ∈ As, there will
be a unique active dialectical tree Ts(A). Then, to determine the acceptance status of
argument A in session s, a marking criterion is applied over Ts(A) as defined next.

Definition 6 (Marking Criterion). Let τ = 〈U, ↪→,E,Θ,Γ, ev〉 be an AFFE, s a session,
As the set of active arguments in s, A ∈ As and Ts(A) the active dialectical tree for A in
s. We define the marking criterion on Ts(A) as follows:

(i) All leaves in Ts(A) are marked as U (undefeated).

(ii) Let N be a non-leaf node of Ts(A). The node N is marked as U iff every child of
N is marked as D (defeated); otherwise, N is marked as D (iff at least one of its
children is marked as U).

Finally, a query for an argument A in a session s is resolved by applying the marking
criterion on its active dialectical tree, and then looking at the marking of the root in the
marked tree: if the root of Ts(A) is marked as U, argument A is accepted in session s;
otherwise, it is rejected in that session.

1298

Towards Evidence Retrieval Cost Reduction in AFFEs

Definition 7 (Query and Answer). Let τ = 〈U, ↪→,E,Θ,Γ, ev〉 be an AFFE, s a session,
As the set of active arguments in s, and A ∈ U. Also, if A ∈ As, let Ts(A) be the active
dialectical tree for A in s, to which we apply the marking criterion of Definition 6. The
answer for a query about argument A in session s is accepted iff the root of Ts(A) is
marked as U, or rejected iff A /∈ As or the root of Ts(A) is marked as D.

To illustrate these notions, let us consider the following example.

Example 1. Let us consider an AFFE τ = 〈U, ↪→,E,Θ,Γ, ev〉 and TP(A), the potential
dialectical tree for an argument A ∈ U in the context of τ , as illustrated in Figure 1(a).
Each node in the tree is depicted as a triangle; the argument labeling the node is inside
the triangle, and the pieces of evidence associated with the argument are depicted below the
triangle. Let us now suppose that Θ is such that the every piece of evidence, except from e4,
can be retrieved in a session S1. Similarly, let us assume that the only pieces of evidence
that cannot be retrieved in a session S2 are e6 and e9. Then, Figures 1(b1) and 1(b2),
respectively, illustrate the active dialectical tree for A in sessions S1 and S2.

In the case of TS1(A), we can note that argument B is not active because the piece
of evidence e4 is missing. Thus, the node for B is discarded in TS1(A). As a result, the
marking of the root in TS1(A) is U, meaning that the answer for a query about A in session
S1 is accepted.

On the other hand, if we consider TS2(A), we note that arguments D and E are not
active (thus, not included in the active tree) since they both have pieces of evidence that
are not available in session S2. Notwithstanding this, the example illustrates a difference
between the status of the pieces of evidence e6 and e7 required by argument D. When trying
to build the node for D (thus, when attempting to retrieve the evidence associated with it),
suppose we first fetch e5 and then find out that e6 is missing since it cannot be retrieved in
session S2. Hence, the node corresponding to argument D is discarded at that point, and no
attempt to retrieve the piece of evidence e7 is made. Finally, given that the root of TS2(A)
is marked as D, we can conclude that the answer to the query about argument A in session
S2 is rejected.

As specified by the marking criterion introduced in Definition 6, whenever a node is
marked as U, its parent node can be marked as D. Hence, the marking criterion can be
optimized, so that the children of a node N are considered only up to the point where we
find a child N ′ of N that is marked as U. In order to capture this behavior, we introduce the
notion of pruned active dialectical tree, following the and-or pruning technique of (Chesñevar
et al., 2000).

Definition 8 (Pruned Active Dialectical Tree). Let τ = 〈U, ↪→,E,Θ,Γ, ev〉 be an AFFE, s
a session, As the set of active arguments in s, A ∈ As and Ts(A) the active dialectical tree
for A in s. Also, let N be the set of nodes in Ts(A), and E be the set of edges in Ts(A). A
pruned active dialectical tree Ps(A) for A in session s is a tree whose root is labelled with
A, and has a set of nodes Np ⊆ N and a set of edges Ep ⊆ E such that ∀N ∈ Np: if N has
a child N ′ marked as U in Ts(A), then N has exactly one child marked as U in Ps(A).

We should remark that, given an active dialectical tree, different pruned versions of it can
be obtained. The construction of such pruned trees depends on discovering opportunities

1299

Cohen, Gottifredi, Garćıa, & Simari

e1 e2 e3

A

e8 e4

B
e3

C

e5 e6 e7

D
e8 e9

E

e1 e2 e3

A
D

e8 e4

B
U

e3

C
U

e5 e6 e7

D
e8 e9

E

e1 e2 e3

A
U

e8 e4

B
e3

C
D

e5 e6 e7

D
U

e8 e9

E
U

(a) (b
1
) (b

2
)

TP(A) T
S1
(A) T

S2
(A)

Figure 1: (a) The potential dialectical tree TP(A) for argument A, and two active dialec-
tical trees for A: (b1) TS1(A) in session S1 and (b2) TS2(A) in session S2.

for pruning. That is, during the construction of dialectical trees, the possibility of pruning
a branch depends on the order in which the attackers of a given argument (node) are
considered. Finally note that, although this pruning technique is not too restrictive and
could even be used quite often, finding all the opportunities for pruning (thus, obtaining the
smallest pruned active dialectical trees) requires just plain luck. This is because undefeated
attackers must be found first at each step, and undefeatedness is not predictable — indeed,
its discovery is the reason for building dialectical trees in the first place, to determine the
acceptance status of arguments. To illustrate this, let us consider the following example.

Example 2. First, it is important to highlight the difference between the parts of a pruned
active dialectical tree that have been cut off (thus, unexplored) and those corresponding to
failed attempts for building arguments. The former are depicted using light grey color and
striking the pruned branch with a double line; the same color-coding is applied to the pieces
of evidence of arguments that were not attempted to be retrieved. In contrast, the latter
(i.e., arguments for which some piece of evidence is detected to be missing) are depicted
as in Example 1 using dotted outlines; furthermore and the name of the argument and the
corresponding piece of missing evidence are striked with a single line.

Let TS1(A) and TS2(A) be the active dialectical trees for argument A in sessions S1

and S2, introduced in Example 1. The pruned active dialectical tree PS1(A)1, depicted in
Figure 2(a), is the pruned version of TS1(A) obtained by considering the child B of A before
C, and the child D of C before E. Therefore, by having the argument node D marked as
U, we can prune its sibling (E) and establish the mark of C as D. Alternatively, if E is
chosen before D when considering the children of C, we obtain the pruned active dialectical
tree PS1(A)2, shown in Figure 2(b).

Regarding TS2(A), if the argument node C is chosen before B when considering the
children of A in session S2, we obtain PS2(A)1, as depicted in Figure 3(a). Contrastedly,
by choosing B before C, we obtain the tree PS2(A)2 illustrated in Figure 3(b).

On the one hand, the two pruned trees from Figure 2 attempted to build argument B
and failed while trying to retrieve the piece of evidence e4 in session S1; hence, argument
B is illustrated with a dotted outline. In contrast, Figures 2(a) and (b), pruned the branch

1300

Towards Evidence Retrieval Cost Reduction in AFFEs

e1 e2 e3

A
U

e8 e4

B
e3

C
D

e5 e6 e7

D
U

e8 e9

E

(a)

e1 e2 e3

A
U

e8 e4

B
e3

C
D

e5 e6 e7

D
e8 e9

E
U

(b)

P
S1
(A)

1
P
S1
(A)

2

Figure 2: Two pruned active dialectical trees for TS1(A), corresponding to Example 2.

e1 e2 e3

A
D

e8 e4

B
e3

C
U

e5 e6 e7

D
e8 e9

E

(a)

e1 e2 e3

A
D

e8 e4

B
U

e3

C

e5 e6 e7

D
e8 e9

E

(b)

P
S2
(A)

1
P
S2
(A)

2

Figure 3: Two pruned active dialectical trees for TS2(A), corresponding to Example 2.

corresponding to argument E or D, respectively. Thus, the subtree corresponding to the
pruned branch was not explored at all (as shown by the light grey color in the figure).

On the other hand, the pruned tree from Figure 3(a) corresponds to the case where
argument C was chosen as the first attacker of A and then, its children could not be built
since the pieces of evidence e6 and e9 were not available in session S2; therefore, arguments
D and E have a dotted outline in Figure 3(a). Again, it is important to note the difference
between the pieces of evidence associated with argument D: whereas e5 was fetched and
retrieved, and there was a failed attempt to retrieve e6, no search for e7 was carried out
(hence, e7 is depicted with a light grey color in the figure). Finally, Figure 3(b) illustrates
the pruned active dialectical tree obtained by choosing B as the first child of A in session S2.
Then, since B is built and has no attackers, it is marked as U and the branch corresponding
to argument C is pruned.

As mentioned before, in this work we aim at building dialectical trees for determining
the acceptance status of arguments to resolve queries, while trying to minimize the evidence
retrieval costs for obtaining them. For this purpose, we will introduce a pruning technique
based on the evidence retrieval cost. Driven by this goal, in the next section we propose a
heuristic measure that can be used for guiding the construction of pruned active dialectical
trees.

1301

Cohen, Gottifredi, Garćıa, & Simari

3. Argument Related Evidence and Heuristic Measure

Here, we will propose a heuristic measure for guiding the construction of active dialectical
trees in order to prune those subtrees with the highest evidence retrieval cost. Briefly,
given a node corresponding to an argument in a potential dialectical tree and a session,
this measure will provide an estimate of the cost for building the dialectical subtree rooted
in that argument, given the evidence retrieved so far in that session. Thus, the measure
will be computed using information from the potential and active scenarios, allowing for a
partial pre-computation before the argumentation inference machinery starts running.

For that purpose, given a node N labeled with an argument A in a potential dialectical
tree, we will first determine the set of evidence related to that argument, which includes
every piece of evidence required to build the potential subtree rooted in it. Then, the
cost associated with the related evidence set will be determined, accounting for the cost of
attempting to retrieve each piece of evidence in the set, as specified by the function Γ.

Recall that a piece of evidence may be associated to multiple arguments (i.e., different
arguments may share the same piece of evidence). Moreover, since the same argument may
appear more than once within the same dialectical tree (through the existence of different
nodes in alternative branches of the tree that are labeled with the same argument), the
same piece of evidence might be required at different points in a tree. As a result, when
calculating the related evidence and its cost, every piece of evidence will be accounted for
only once, regardless of the amount of argument nodes in the tree requiring it.

On the other hand it should be noted that, given the possibility of pruning active
dialectical trees, an argument located in a deep level of a potential tree is less likely to be
constructed in an active scenario than another argument located closer to the root of the
tree. Consequently, in an active scenario, it would be less likely to attempt to retrieve a
piece of evidence required by such arguments in deep levels. In general, the probability of
trying to retrieve a piece of evidence in an active scenario decreases as the depth of the
argument requiring that piece of evidence increases. Hence, when determining the related
evidence of an argument in a potential tree, we estimate its cost accounting for these issues.
This calculus is formalized in the following definition.

Definition 9 (Related Evidence and Cost). Let τ = 〈U, ↪→,E,Θ,Γ, ev〉 be an AFFE, N
a node labeled with an argument A ∈ U in a potential dialectical tree TP and CIF ∈ (0, 1]
a constant representing the cost impact factor of a piece of evidence. We define the set of
related evidence of N in TP and its cost as:

RelEv(N,TP) = {(ε,Γ(ε) ∗ CIFL) | ε ∈ ev(Arg), Arg ∈ ({A} ∪ desc(N,TP))}

where L = minLevel(ε, subTree(TP , N)) is the lowest level of a node in the subtree of
TP rooted in A, that is labeled with an argument requiring the piece of evidence ε1; and
desc(N,TP) returns the set of arguments that label the descendants of N in the potential
tree TP.

1. We consider that the level numbering in a dialectical tree starts with 0 (i.e., the root of the tree is in
level 0, its children are in level 1, and so on).

1302

Towards Evidence Retrieval Cost Reduction in AFFEs

The related evidence cost given in Definition 9 provides an estimation of the actual cost
of building an active dialectical tree. In particular, the reduction by CIF aims at adjusting
the impact the cost of a piece of evidence has in the final cost, depending on its location on
the tree. In other words, the cost of every piece of evidence is reduced by the cost impact
factor CIF as many times as the lowest level number (i.e., the closest to the root) of an
argument requiring that piece of evidence. Finally, the reason why we consider the lowest
level, is that it corresponds to the level of the argument requiring that piece of evidence
that is more likely to be constructed.

Example 3. Let us consider the potential dialectical tree TP(A) from Example 1. For
simplicity, since every node in TP(A) is labeled with a different argument, we will refer to
the nodes in the tree directly by their associated arguments. Let us assume a cost impact
factor CIF = 0.5, and suppose that the evidence cost function Γ is such that: Γ(e1) = 8,
Γ(e2) = 7, Γ(e3) = 2, Γ(e4) = 20, Γ(e5) = 9, Γ(e6) = 3, Γ(e7) = 1, Γ(e8) = 6, Γ(e9) = 4.
The related evidence and cost for the different argument nodes in TP(A) is:

RelEv(A,TP(A)) = {(e1, 8 ∗ 0.50), (e2, 7 ∗ 0.50), (e3, 2 ∗ 0.50), (e8, 6 ∗ 0.51),
(e4, 10 ∗ 0.51), (e5, 9 ∗ 0.52), (e6, 3 ∗ 0.52), (e7, 1 ∗ 0.52),
(e9, 4 ∗ 0.52)} = {(e1, 8), (e2, 7), (e3, 2), (e8, 3), (e4, 5),
(e5, 2.25), (e6, 0.75), (e7, 0.25), (e9, 1)}

RelEv(B,TP(A)) = {(e8, 6 ∗ 0.50), (e4, 10 ∗ 0.50)} = {(e8, 6), (e4, 10)}

RelEv(C,TP(A)) = {(e3, 2 ∗ 0.50), (e5, 9 ∗ 0.51), (e6, 3 ∗ 0.51), (e7, 1 ∗ 0.51),
(e8, 6 ∗ 0.51), (e9, 4 ∗ 0.51)} = {(e3, 2), (e5, 4.5), (e6, 1.5),
(e7, 0.5), (e8, 3), (e9, 2)}

RelEv(D,TP(A)) = {(e5, 9 ∗ 0.50), (e6, 3 ∗ 0.50), (e7, 1 ∗ 0.50)} = {(e5, 9),
(e6, 3), (e7, 1)}

RelEv(E ,TP(A)) = {(e8, 6 ∗ 0.50), (e9, 4 ∗ 0.50)} = {(e8, 6), (e9, 4)}

It should be noted that the calculus of the related evidence and cost only uses information
from potential dialectical trees; specifically, it accounts for the pieces of evidence required by
the arguments labeling the descendant nodes and the level of such nodes in the corresponding
subtree. As a result, for every node in every potential tree, it is possible to determine its
related evidence and cost during precompilation, avoiding any runtime overhead during the
system’s query-answering process in an active scenario.

Next, using the information about the related evidence and cost for a given argument
node in a potential dialectical tree (which, as mentioned before, can be obtained prior to
the system’s execution), we define the heuristic evidence cost for that node. This measure
will be used for guiding the construction of active dialectical trees in a particular session,
with the aim of minimizing the evidence retrieval cost for building them.

Definition 10 (Heuristic Evidence Cost). Let τ = 〈U, ↪→,E,Θ,Γ, ev〉 be an AFFE, N a
node labeled with an argument A ∈ U in a potential dialectical tree TP and σ = (s,CE,ME)

1303

Cohen, Gottifredi, Garćıa, & Simari

a session state. We define the heuristic evidence cost of N in TP and σ as follows:

HeurEvCost(N,TP , σ) =


∞ if (ME ∩ ev(A)) 6= ∅∑

c otherwise

(ε,c)∈RelEv(N,TP)∧ε/∈CE

Example 4. Continuing with our example, let σ = (S1, {e1, e2, e3}, ∅) be the session state
after building argument node A in session S1. Then, for instance, we can determine the
heuristic evidence cost of argument nodes B, C, D, and E in the potential dialectical tree for
A in σ as follows:

• HeurEvCost(B,TP(A), σ) = 6 + 10 = 16.

• HeurEvCost(C,TP(A), σ) = 4.5 + 1.5 + 0.5 + 3 + 2 = 11.5 (note that e3 is in the
current evidence set, so its associated cost is disregarded).

• HeurEvCost(D,TP(A), σ) = 9 + 3 + 1 = 13.

• HeurEvCost(E ,TP(A), σ) = 6 + 4 = 10.

Differently from the calculus of the related evidence and cost, the heuristic evidence
cost requires the consideration of information from the session state and thus, cannot be
obtained during precompilation time. However, since the biggest part of the calculus in-
volves determining the related evidence and its cost, the computation during execution
time simply reduces to sum up the cost of the pieces of related evidence (determined during
precompilation) that are not in the set of current evidence from the given session state.
Otherwise, if the corresponding argument has a piece of evidence that was already found
missing in the session, the heuristic evidence cost is set to infinity; the aim of doing this
is to avoid the selection of such argument nodes when building the active dialectical trees
in the given session, since they cannot be built. Consequently, the overhead of computing
the heuristic evidence cost during the system’s execution is significantly reduced in every
session.

4. A Heuristic Pruning Approach for Building Active Dialectical Trees

In this section, we propose an approach for using the heuristic measure introduced in Sec-
tion 3 to guide the construction of dialectical trees in an active scenario in order to determine
the acceptance status of queried arguments. This measure will help to decide which branch
of a tree should be explored at each time (thus, which arguments are to be built next).
Also, the tree-building process will exploit the possibility of pruning branches that can be
dismissed since they do not change the acceptance status of the root argument.

We will start by addressing the construction of a single argument in a session state.
Given the abstract nature of arguments in our approach, this task reduces to determining
whether the argument is active or not. As mentioned in Section 2, an argument will be
active in a session state if all the evidence required by it can be retrieved in that session.
Therefore, we have to find out whether we can successfully gather all its evidence in the
given session.

1304

Towards Evidence Retrieval Cost Reduction in AFFEs

Algorithm 1: Attempts to build the given argument, checking and collecting the
necessary evidence

Function: canBeBuilt(A)
Input: An argument A
Global: An AFFE 〈U, ↪→,E,Θ,Γ, ev〉, and a session state σ = (s,CE,ME)
Result: true if all evidence associated with A is available in σ; false otherwise

1 EvidToFetch ← ev(A) \ CE;
2 if EvidToFetch ∩ME 6= ∅ then
3 return false;

4 foreach ε ∈ ev(A) do
5 if Θ(ε, s) = > then
6 σ ← (s,CE ∪ {ε},ME);
7 else
8 σ ← (s,CE,ME ∪ {ε});
9 return false;

10 return true;

The process of building an argument will incur the costs associated with the retrieval of
its associated evidence. These costs come from the use of the function Θ; thus, regardless
of whether we are successful in the attempt of retrieving a piece of evidence or fail in the
process (in which case the piece of evidence is considered to be missing), the associated cost
is paid. As a result, since our goal is to minimize the evidence retrieval costs, we will try to
use the function Θ as little as possible. For this purpose, when building an argument, we
will take advantage of the information gathered while previously trying to build arguments
in the corresponding session. On the one hand, our strategy will reutilize every piece of
evidence that was already fetched during the session, avoiding to pay their retrieval cost
more than once. On the other hand, if we are attempting to build an argument that has
a piece of evidence we already found to be missing in the session, such an argument will
be immediately discarded. Finally, for this strategy to work, every time the function Θ is
used to attempt to retrieve a piece of evidence (paying the corresponding cost), the sets
of current and missing evidence are updated, leading to a new session state. The process
of determining whether an argument can be built in the current session is captured by the
function canBeBuilt, illustrated in Algorithm 1.

The construction process of active dialectical trees, shown in Algorithm 2, follows a
Depth-First Search strategy. Once an argument node N is built, we need to account for the
children of N in the potential tree and then decide which subtree we will attempt to build
next. In particular, the choice between different children will be guided by the Heuristic
Evidence Cost of the corresponding argument nodes.

Since the construction of an active tree involves the construction of its subtrees, the
algorithm is designed for building the subtree rooted in an argument, given its ancestors.
In particular, given an argument A, if A is established as the root and we consider an
empty set of ancestors, the algorithm will in turn build the active dialectical tree rooted in
A. The structure of a node in Algorithm 2 contains an argument, its marking, and a set of

1305

Cohen, Gottifredi, Garćıa, & Simari

Algorithm 2: Builds the pruned active subtree of a given argument

Function: prunedActiveSubTree(A,Root ,Ancestors)
Input: An argument A, the root argument Root of an active dialectical tree, and a

set of arguments Ancestors representing the ancestors of argument node A in
the active tree rooted in Root

Global: An AFFE 〈U, ↪→,E,Θ,Γ, ev〉
Result: A Pruned (sub)Tree

1 NodeA ← createNode(A,U);
2 Attackers ← {B | (B,A) ∈ ↪→};
3 OrderedAttackers ← heuristicSort(Attackers,Root);
4 while OrderedAttackers 6= ∅ do
5 B ← getFirst(OrderedAttackers);
6 if B /∈ Ancestors then
7 if canBeBuilt(B) then
8 NodeB ← prunedActiveSubTree(B,Root ,Ancestors ∪ {A});
9 NodeA ← addChild(NodeA,NodeB);

10 if mark(NodeB) = U then
11 NodeA ← setMark(NodeA,D);
12 return NodeA;

13 OrderedAttackers ← remove(B,OrderedAttackers);
14 OrderedAttackers ← heuristicSort(OrderedAttackers);

15 NodeA ← setMark(NodeA,U);
16 return NodeA;

child nodes; therefore, a tree is represented directly by the node corresponding to its root
argument.

It should be noted that the active tree returned by Algorithm 2 is a pruned tree. That
is, once an argument node has been marked as U in the active tree, its unexplored siblings
from the corresponding potential tree are dismissed. As a result, by guiding the selection of
argument nodes through their heuristic evidence cost, the final cost of building the active
pruned trees is reduced. Also, even though Algorithm 2 does not make explicit reference
to a session, information from the session state is used by Algorithms 1 and 3 (which are
in turn used by Algorithm 2). Finally, Algorithm 3 shows how the heuristic measure is
calculated and then used for sorting a set of attackers from lowest to highest value. In
particular, as mentioned in Section 3, to calculate an argument’s heuristic evidence cost,
the function heuristicSort makes use of the current session state, more specifically, of the
set of current evidence. Finally, we note that sort is a standard sorting function taking a
set of pairs (x, y) and ordering them from lowest to highest, depending on the value of y.

Example 5. Let us consider the resolution of a query about argument A through the con-
struction of its pruned active dialectical tree in session S1. After building the argument
node A we obtain the session state σ = (S1, {e1, e2, e3}, ∅}) and we have the empty set
of ancestors. We establish {B, C} as the set of attackers of A and obtain a list sorted

1306

Towards Evidence Retrieval Cost Reduction in AFFEs

Algorithm 3: Sorts a set of attackers using their heuristic evidential cost

Function: heuristicSort(Attackers,Root)
Global: An AFFE 〈U, ↪→,E,Θ,Γ, ev〉, a session state σ, and the potential dialectical

tree TP(Root) of Root
Input: A set of arguments Attackers, the root argument Root of an active

dialectical tree
Result: A sorted list of arguments

1 ArgsCost ← ∅;
2 foreach A ∈ Attackers do
3 CostA ← HeurEvCost(A,TP(Root), σ));
4 if CostA 6=∞ then
5 ArgsCost ← ArgsCost ∪ {(A,CostA)};

6 return sort(ArgsCost);

by their heuristic evidence cost (lines 2 and 3 in Algorithm 2). As shown in Example 4,
HeurEvCost(B,TP(A), σ) = 16 and HeurEvCost(C,TP(A), σ) = 11.5. As a result, the
sorted list returned by Algorithm 3 is [C,B] and C is chosen next (Algorithm 2, line 5).
Then, since argument C is not in the set of ancestors and is buildable in S1 (because e3,
the only piece of evidence it requires, is in the current evidence set), we proceed to build
the pruned dialectical subtree rooted in C (Algorithm 2, line 8). The process of building
the subtree for C is then analogous, by considering the set of ancestors {A} and the new
session state; however, since the only piece of evidence required by C was already in the
current evidence set, the session state obtained after building C continues to be σ. The set
of attackers of C is {D, E} and, by Example 4, we have HeurEvCost(D,TP(A), σ) = 13 and
HeurEvCost(E ,TP(A), σ) = 10. So, the ordered list of attackers is [E ,D] and argument
E is chosen next. We are then able to build argument E (because its pieces of evidence e8

and e9 are available in session S1) and, since it has no attackers to be considered, it is
marked as U. Consequently, C can be marked as D, pruning the branch corresponding to
the argument node D. As a result, we go back to the construction of the tree rooted in A and
consider the remaining attacker B. Then, since the piece of evidence e4 cannot be retrieved
in session S1, argument B is not buildable. Finally, since A has no remaining attackers we
come up with the pruned dialectical active tree PS1(A)2, depicted in Figure 2(b), whose root
is marked as U meaning that argument A is accepted in session S1.

It should be noted that, each time an attacker has to be selected (Algorithm 2, line 5)
when building an active tree, the remaining set of attackers is re-ordered (for the first time:
Algorithm 2, line 3; subsequent times: Algorithm 2, line 14). This is of special interest
since, as mentioned before, Algorithm 3 recomputes the heuristic evidence cost accounting
for the current (updated) session state. Thus, it could be the case that a previous ordering
among attacking arguments is changed afterwards. On the one hand, it could be the case
that one of the attackers required a piece of evidence that was already found to be missing,
in which case its heuristic evidence cost will be set to ∞ and the function heuristicSort

will directly dismiss such attacker. On the other hand, it could be the case that one of the
attackers required a piece of evidence that was already fetched (hence, it is in the current

1307

Cohen, Gottifredi, Garćıa, & Simari

evidence set) and thus, its heuristic evidence cost is now reduced. These advantages of
Algorithm 2 are illustrated by the following example.

Example 6. Let us consider an AFFE τ = 〈U, ↪→,E,Θ,Γ, ev〉 and TP(A), the potential
dialectical tree for an argument A ∈ U in the context of τ , as illustrated in Figure 4. Let us
now suppose that Θ is such that every piece of evidence, except from e4, can be retrieved in
a session s. Then, Figure 5 illustrates the active dialectical tree for A in session s. Also,
let us assume a cost impact factor CIF = 0.5 and suppose that the evidence cost function Γ
is such that: Γ(e1) = 2, Γ(e2) = 3, Γ(e3) = 7, Γ(e4) = 4, Γ(e5) = 7, Γ(e6) = 9, Γ(e7) = 8,
Γ(e8) = 12, Γ(e9) = 11. The related evidence and cost for the argument nodes corresponding
to the children of A in TP(A) is:

RelEv(B,TP(A)) = {(e4, 4 ∗ 0.50), (e5, 7 ∗ 0.50)}
= {(e4, 4), (e5, 7)}

RelEv(C,TP(A)) = {(e5, 7 ∗ 0.50), (e6, 9 ∗ 0.50), (e7, 8 ∗ 0.50)}
= {(e5, 7), (e6, 9), (e7, 8)}

RelEv(D,TP(A)) = {(e4, 4 ∗ 0.50), (e8, 12 ∗ 0.50)}
= {(e4, 4), (e8, 12)}

RelEv(E ,TP(A)) = {(e9, 11 ∗ 0.50), (e7, 8 ∗ 0.50), (e1, 2 ∗ 0.51)}
= {(e9, 11), (e7, 8), (e1, 1)}

Let us now consider the construction of Ps(A), the pruned active dialectical tree for A
in session s, through Algorithm 2. We start by building the argument node A and, after
that, we reach the session state σ = (s, {e1, e2, e3}, ∅). Then, we consider the attackers of
A and sort them by their heuristic evidence cost, obtained as follows:

• HeurEvCost(B,TP(A), σ) = 4 + 7 = 11.

• HeurEvCost(C,TP(A), σ) = 7 + 9 + 8 = 24.

• HeurEvCost(D,TP(A), σ) = 4 + 12 = 16.

• HeurEvCost(E ,TP(A), σ) = 11+8 = 19 (note that e1 is in the set of current evidence
of σ, so its associated cost is disregarded).

Therefore, the sorted list of attackers is [B,D, E , C] and B is chosen next. Now, suppose that
while attempting to build argument B the piece of evidence e5 is fetched first and then, e4

cannot be retrieved in session s preventing the construction of argument B. Consequently,
the new session state is σ′ = (s, {e1, e2, e3, e5}, {e4}). Next, as stated by Algorithm 2 (lines
13–14) argument B is removed from the set of attackers and the list of remaining attackers
of A is reordered, for which their heuristic values are recomputed. Given the new session
state σ′, it holds that:

• HeurEvCost(C,TP(A), σ′) = 9 + 8 = 17 (e5 is in the set of current evidence of σ′, so
its associated cost is disregarded).

1308

Towards Evidence Retrieval Cost Reduction in AFFEs

e1 e2 e3

A

e5 e4

B
e5 e6 e7

C
e4 e8

D
e7 e9

E

TP(A)

e1 e7

F

Figure 4: Potential dialectical tree TP(A) from Example 6.

e1 e2 e3

A

e5 e4

B
e5 e6 e7

C
e4 e8

D
e7 e9

E

T
S
(A)

e1 e7

F

D

D

U

U

Figure 5: Active dialectical tree Ts(A) from Example 6.

• HeurEvCost(D,TP(A), σ) =∞ (because e4 is in the set of missing evidence of σ′, so
D cannot be built in session s).

• HeurEvCost(E ,TP(A), σ) = 11 + 8 = 19 (e1 is still in the set of current evidence of
σ′, so its associated cost is disregarded).

As a result, the new list of ordered attackers is [C, E], with D being removed because it cannot
be built in session s. Now, we select C as the next attacker to be considered and we proceed
to build the pruned dialectical subtree rooted in C (Algorithm 2, line 8), which is analogous
to the process of building the tree rooted in A while considering the set of ancestors {A}
and the new session state σ′. Finally, since argument C can be built in session s and has
no attackers, the corresponding node will be marked as U and A can be marked as D,
pruning the branches corresponding to the argument nodes E and D. That is, the pruned
active dialectical tree returned by Algorithm 2 is the one depicted in Figure 6, whose root is
marked as D, meaning that argument A is rejected in session s.

Finally, we show the correctness of Algorithm 2, by showing that it indeed returns a
tree structure corresponding to a pruned active dialectical tree.

1309

Cohen, Gottifredi, Garćıa, & Simari

e1 e2 e3

A

e5 e4

B
e5 e6 e7

C
e4 e8

D
e7 e9

E

P
S
(A)

e1 e7

F

D

U

Figure 6: Pruned active dialectical tree Ps(A) from Example 6.

Theorem 1. Let τ = 〈U, ↪→,E,Θ,Γ, ev〉 be an AFFE, s a session, As the set of active argu-
ments in s, A ∈ As and Ts(A) the active dialectical tree for A in s. The result of applying
Algorithm 2 as prunedActiveSubTree(A,A, ∅) is a tree structure Ps(A), corresponding to
a pruned active dialectical tree for A in s.

Proof. By hypothesis, Algorithm 2 is called as prunedActiveSubTree(A,A, ∅). Then, by
lines 1, 8, 9, 12 and 16 of Algorithm 2, the output tree structure is rooted in A. Also, it
follows directly that the output of Algorithm 2 is a tree structure, since every recursive call
creates a new subtree whose root node is set as a child of its parent (lines 8–9). Moreover,
the output tree structure is built using a set of nodes Np ⊆ N, where N is the set of nodes
in Ts(A). This is because, for every node X of the output tree structure, every attacker
of the argument labelling X is considered (lines 2–3); also, by line 6, the attackers already
appearing in the set of ancestors of X are discarded. Therefore, from the resulting set of
attackers (which coincides with the set of children of X in Ts(A)) only a subset will be
added as children of X in the output tree structure (line 9). Finally, by lines 8–12, it can
be seen that for every node X, its children will be added to the output tree structure up to
the point in which one of X’s children is marked as U, thus discarding (i.e., pruning) the
remaining children.

5. Empirical Testing

In this section we will present the results we obtained by empirically testing our approach,
from hereon referred to as heuristic evidence cost-guided pruned active tree building pro-
cess (CGPT). We tested it against two baseline approaches: a non-guided process for
building pruned active dialectical trees (NGPT) and another heuristic-based pruning tech-
nique based on arguments’ strength (SGPT). In particular, the comparison between the
results obtained for our approach and the two baselines will help us in understanding the
improvement achieved by our method.

On the one hand, the non-guided approach imitates the usual process for the tree’s
construction. The main difference between NGPT and the other two approaches is that
the former does not sort the set of attackers of a node, but randomly (hence, blindly)
selects one attacker from the set as the next node to be considered. The implementation of

1310

Towards Evidence Retrieval Cost Reduction in AFFEs

NGPT can be obtained from Algorithm 2, by by directly using the set Attackers instead
of OrderedAttackers and avoiding the heuristic sorting process.

On the other hand, the strength-guided pruning approach (SGPT), proposed in (Rot-
stein et al., 2010), uses a heuristic measure encoding the arguments’ strength. This measure
is pre-computed for nodes in the potential dialectical trees, determined by the following for-
mula, originally considered in (Besnard & Hunter, 2001):

Str(A) =
1

1 +
∑
B↪→A

Str(B)

that is, B ranges over the set of the attackers of A. Briefly, this formula captures the
intuition that an argument is as strong as weak are its attackers. Then, the implementation
of SGPT corresponds to Algorithm 2 but modifying the function heuristicSort so that
attackers of a node are decreasingly ordered by their strength (i.e., stronger attackers are
considered first).

We ran a simulation involving the generation of AFFEs and potential dialectical trees,
according to the following parameters:

• TreeNodeCount: Amount of nodes in the potential dialectical tree. Values used: 100,
300, 500, 700, 900.

• MaxBranchFactor: Maximum branching factor in the potential dialectical tree. Values
used: 5, 10, 20.

• EvidUnivSize: Coefficient by which TreeNodeCount is multiplied, in order to obtain
the size of the evidence universe, expressed as the amount of pieces of evidence. Values
used: 0.5, 1, 2.

• MaxArgEvid: Maximum number of pieces of evidence allowed per argument. Values
used: 10, 20.

• CIF: Cost Impact Factor, as referred to in Definition 9. Value used in all tests: 0.5.

• MaxEvidCost: Maximum cost associated with each piece of evidence. Values used: 1,
10, 100, 1000.

• DeactQuota: Percentage of missing/deactivated evidence in a given session (w.r.t.
EvidUnivSize). Values used: 1, 10, 20, 30.

In order to run the tests, we implemented the CGPT, NGPT and SGPT approaches in
Prolog and used the SWI-Prolog interpreter. We also implemented an AFFE bench-
mark generator, taking into account the above described parameters.2

For each combination of values we built 500 AFFEs and performed 100 evidence deacti-
vations (with the corresponding % of DeactQuota) per AFFE, each of which was considered
for building a potential dialectical tree (i.e., 500 potential trees were built, each of which was

2. The source code and the bash script shell file used for running the empirical evaluation described in this
section are available at https://github.com/nonicohen/HeurEvCost

1311

Cohen, Gottifredi, Garćıa, & Simari

considered under 100 scenarios with different sets of available evidence). First of all, before
starting the construction of an AFFE, the universal set of evidence (set E in Definition 1) was
built by generating pieces of evidence numbered from 1 to TreeNodeCount ×EvidUnivSize,
rounded down.

In order to facilitate running the experiments and ensure the amount of nodes in a po-
tential dialectical tree built from an AFFE, as specified by the TreeNodeCount parameter,
we chose to build each AFFE as a tree structure. Consequently, each of the 500 AFFEs
being generated actually corresponds to a potential dialectical tree considered in the ex-
periments. In that way, the key parameters associated with the structure of an AFFE are
TreeNodeCount and MaxBranchFactor, where the former establishes the number of argu-
ments in the AFFE (which, in particular, is a potential dialectical tree), and the latter
establishes an upper bound for the number of attackers per argument in the AFFE. Also,
this choice ensures that the same potential dialectical tree is tested against the 100 scenarios
with different sets of deactivated evidence.

Specifically, for the AFFE construction, we generated arguments numbered from 1 to
TreeNodeCount. Then, starting from argument 1 (set to be the root node), arguments were
successively considered to be associated with their evidence and attackers in the following
way. On the one hand, the corresponding pieces of evidence were associated to the argument
by choosing a random number between 0 and MaxArgEvid, and the cost of each piece of
evidence was determined by choosing a random number between 1 and MaxEvidCost. On
the other hand, to associate an argument with its attackers, we first determined whether
the argument was attacked at all, considering an 80% probability of being attacked.3 Then,
for the attacked arguments, the number of attackers was selected by choosing a random
number between 1 and MaxBranchFactor, and each attacker was successively taken from
the node count. For instance, if argument 1 has four attackers, these are arguments 2, 3, 4,
and 5; then, if, for instance, argument 2 has three attackers, these correspond to arguments
6, 7 and 8.

Regarding the selection of attackers, we should remark that each argument can only
be considered once as an attacker of another argument; this is to ensure that the AFFE
being built actually has TreeNodeCount different nodes and, furthermore, to ensure that
the AFFE is indeed a potential dialectical tree according to Definition 4 (because an ar-
gument cannot appear twice in a branch of the potential dialectical tree). Finally, in case
of reaching a point where attackers for an argument have to be selected but all arguments
have been already chosen as attackers of other arguments (i.e., no arguments are available
to be selected as new attackers), the process simply continues by leaving that argument
unattacked.

It should be noted that, since every argument to be included in the AFFE under gen-
eration has an 80% probability of being attacked, in theory, it could be the case that the
resulting AFFE has less than TreeNodeCount argument nodes. However, in practice, we
evidenced that all generated AFFE instances had TreeNodeCount nodes. Notwithstanding
this, during the AFFE generation, we explicitly checked that this was the case and, if not,
the instance being generated was discarded and a new one was obtained.

3. It should be noted that, for the first argument (i.e., the root argument, numbered by 1) we did not
perform this, as the root argument always has to be attacked; otherwise, we would get a potential
dialectical tree with just one node.

1312

Towards Evidence Retrieval Cost Reduction in AFFEs

Before moving to discuss the experiments performed over the AFFEs, we would also like
to highlight the following. The fact that AFFEs are built as tree structures, satisfying the
conditions imposed over potential dialectical trees in Definition 4, do not make our results
any less general. If we had considered AFFEs with generic graph structures, which might
include cycles, Definition 4 would have prevented the appearance of the same argument more
than once within the same branch of the potential dialectical trees built from those AFFEs.
This behavior (i.e., the non-repetition of arguments within the same branch) is guaranteed
though our AFFE generation process. On the other hand, let us analyze the construction
of a potential dialectical tree from an AFFE with a graph-like structure. According to
Definition 4, the same argument from an AFFE could appear in different branches of a
potential dialectical tree built from it. In contrast, this is not the case with our AFFE
construction process, since all arguments in the AFFE (which, as stated before, coincides
with a potential dialectical tree) are different. Notwithstanding this, the behavior of having
the same argument in different branches of the tree can be achieved by having different
arguments in alternative branches with exactly the same pieces of related evidence and
equivalent sub-trees (i.e., equivalent attackers, attackers of those attackers, and so on). So,
in summary, our AFFE generation process has the advantage of simplifying the construction
of potential dialectical trees and ensuring the amount of nodes per tree, while keeping the
behavior of general graph-like structures.

For each generated AFFE or potential tree and scenario, we built the pruned active
dialectical trees following the CGPT, NGPT and SGPT approaches. Finally, for each
combination of parameters, we obtained the average cost of building an active tree under
each approach (referred to as TreeEvidCost), where the cost associated with the construc-
tion of an active tree is determined by adding up the cost of the retrieved pieces of evidence
and the cost the pieces of evidence found missing (i.e., pieces of evidence with failed re-
trieval attempts). Next, we contrast the results obtained for our approach against those for
the two baselines, illustrated in Figures 7–12.

When contrasting CGPT vs. NGPT, the tests showed that CGPT leads to obtaining
a significant reduction of TreeEvidCost in all cases. In general, the cost reduction obtained
with CGPT over NGPT increases with the tree size. This reduction also increases on trees
with a high branching factor (MaxBranchFactor). Furthermore, the deactivation quota
(DeactQuota) also affected the results, with smaller percentages of missing evidence leading
to obtain greater cost reductions. Finally, even though a variation of other parameters af-
fected the results regarding TreeEvidCost, they were not as significant as the ones obtained
with the previously discussed parameters. For instance, a change in MaxEvidCost did not
seemingly affect the results, leading to obtain similar values of TreeEvidCost for different
tree sizes; this was also the case when varying the evidence universe size (EvidUnivSize).
On the other hand, the tests showed that increasing the amount of evidence per argument
(MaxArgEvid) reduces, although not significantly, the gain associated with TreeEvidCost.

The results of the comparison between CGPT and SGPT indicate that, in general, our
approach leads to obtaining lower values of TreeEvidCost than those obtained with SGPT.
However, these results do not show, in general, tendencies as sharp as those observed when
contrasting CGPT with NGPT. In particular, the tests revealed that MaxBranchFactor is
still a key parameter, with better results obtained as the trees’ branching factor increased.
Also, like in the previous case, the maximum cost associated with each piece of evidence

1313

Cohen, Gottifredi, Garćıa, & Simari

100

300

500

700

900

0
10
20
30
40
50
60
70
80
90

100

1 10 20 30

37.32

23.75
15.50

9.19

56.03

34.87

19.11
8.97

62.96

40.41

20.23
10.35

66.24

42.44

20.21
9.68

69.83

44.54

20.23
11.40

%
 T

re
eE

vi
dC

os
t R

ed
uc

tio
n

CG
PT

 v
s N

G
PT

% Deactivation Quota (Missing Evidence)

Parámetros Fijos (FR 5):
Evidence Universe Size = 50% of Argument Universe Size
Max de Evid por Arg = 10
Cost Impact Factor = 0,5
Max Costo por Pieza de Evid = 10

(a) With MaxBranchFactor = 5, EvidUnivSize = 0.5; MaxArgEvid = 10; CIF = 0.5; MaxEvidCost = 10Figure 7: CGPT vs. NGPT, with MaxBranchFactor= 5, EvidUnivSize=
0.5, MaxArgEvid = 10, MaxEvidCost = 10

Parámetros Fijos (FR 10):
Evidence Universe Size = 50% of Argument Universe Size
Max de Evid por Arg = 10
Cost Impact Factor = 0,5
Max Costo por Pieza de Evid = 10

(b) With MaxBranchFactor = 10, EvidUnivSize = 0.5; MaxArgEvid = 10; CIF = 0.5; MaxEvidCost = 10

100

300

500

700

900

0
10
20
30
40
50
60
70
80
90

100

1 10 20 30

48.49
36.23

26.94
20.86

65.98

51.41

37.00
25.83

72.29

56.62

39.77
28.17

75.08

59.77

42.06

29.00

77.75

61.83

44.77

27.42

%
 T

re
eE

vi
dC

os
t R

ed
uc

tio
n

C
G

PT
 v

s N
G

PT

% Deactivation Quota (Missing Evidence)

Figure 8: CGPT vs. NGPT, with MaxBranchFactor = 10, EvidUnivSize=
0.5, MaxArgEvid = 10, MaxEvidCost= 10

1314

Towards Evidence Retrieval Cost Reduction in AFFEs

100

300

500

700

900

0
10
20
30
40
50
60
70
80
90

100

1 10 20 30

53.45 50.42
44.46

36.81

69.15
58.10

50.71
40.14

75.45
64.76

54.41
44.23

79.18
68.33

58.55
46.24

80.71
71.39

59.95
49.18

%
 T

re
eE

vi
dC

os
t R

ed
uc

tio
n

CG
PT

 v
s N

G
PT

% Deactivation Quota (Missing Evidence)

Parámetros Fijos (FR 20):
Evidence Universe Size = 50% of Argument Universe Size
Max de Evid por Arg = 10
Cost Impact Factor = 0,5
Max Costo por Pieza de Evid = 10

(c) With MaxBranchFactor = 20, EvidUnivSize = 0.5; MaxArgEvid = 10; CIF = 0.5; MaxEvidCost = 10Figure 9: CGPT vs. NGPT, with MaxBranchFactor= 20,
EvidUnivSize= 0.5, MaxArgEvid= 10, MaxEvidCost= 10

Parámetros Fijos (FR 5):
Max de Evid por Arg = 10
Cost Impact Factor = 0,5
Max Costo por Pieza de Evid = 10
% Deact Cuota (Missing Evid) = 10

100

300

500

700

900
0

1

2

3

4

5

0.5 x 1 x 2 x

2.07

3.46
3.93

1.87
2.33 2.36

1.43

0.17

1.55

0.67

1.70 1.56

0.74

1.82 1.75

%
 T

re
eE

vi
dC

os
t R

ed
uc

tio
n

C
G

PT
 v

s S
G

PT

Evidence Universe Size (w.r.t. # Tree Nodes)

Figure 10: CGPT vs. SGPT, with MaxBranchFactor = 5, DeactQuota =
10, MaxArgEvid = 10, MaxEvidCost = 10

1315

Cohen, Gottifredi, Garćıa, & Simari

Parámetros Fijos (FR 10):
Max de Evid por Arg = 10
Cost Impact Factor = 0,5
Max Costo por Pieza de Evid = 10
% Deact Cuota (Missing Evid) = 10

100

300

500

700

900
0

5

10

15

20

25

0.5 x 1 x 2 x

7.88 9.05 9.55

8.63 8.61 8.73

8.60 7.99 8.54

7.45 8.17 8.45

7.09 7.31 6.39

%
 T

re
eE

vi
dC

os
t R

ed
uc

tio
n

C
G

PT
 v

s S
G

PT

Evidence Universe Size (w.r.t. # Tree Nodes)

Figure 11: CGPT vs. SGPT, with MaxBranchFactor = 10, DeactQuota = 10,
MaxArgEvid = 10, MaxEvidCost = 10

Parámetros Fijos (FR 20):
Max de Evid por Arg = 10
Cost Impact Factor = 0,5
Max Costo por Pieza de Evid = 10
% Deact Cuota (Missing Evid) = 10

100

300

500

700

900
0

10

20

30

40

50

0.5 x 1 x 2 x

24.41 25.95 27.02

15.10
18.20 17.48

14.25 14.88 13.29

13.79 13.29
16.10

14.36 14.63 14.86

%
 T

re
eE

vi
dC

os
t R

ed
uc

tio
n

C
G

PT
 v

s S
G

PT

Evidence Universe Size (w.r.t. # Tree Nodes)

Figure 12: CGPT vs. SGPT, with MaxBranchFactor = 20, DeactQuota = 10,
MaxArgEvid = 10, MaxEvidCost = 10

1316

Towards Evidence Retrieval Cost Reduction in AFFEs

did not significantly affect the results, since similar gains were obtained when varying the
MaxEvidCost parameter over tests considering the same tree size. On the other hand it
was noted that, differently from before, better results (i.e., greater cost reductions) were
obtained for smaller trees. In general, a smaller amount of evidence per argument (i.e., a
lower MaxArgEvid value) resulted in the CGPT approach increasing the cost reduction
over the SGPT approach. Differently from before, the deactivation quota (DeactQuota)
was not a key parameter. This is because, when considering a branching factor of 10 or
20, the cost reduction of CGPT over SGPT was more or less the same for trees of the
same size, regardless of the deactivation quota percentage. Moreover, it was observed that
the cost reduction did not vary much when considering the same deactivation quota and
different tree sizes, with a branching factor of 5 or 10. Then, for trees with a low branching
factor (MaxBranchFactor = 5) and a nearly insignificant percentage of missing evidence
(DeactQuota = 1), the SGPT approach outperformed ours. Nevertheless, remarkably,
among all the tests performed (i.e., by considering every combination and variation of the
parameters), this setting was the only one where our approach did not yield a cost reduction
with respect to NGPT or SGPT. Finally, similarly to before, except from isolated cases,
variations in the evidence universe size (EvidUnivSize parameter) did not affect the results.

The most significant results of the comparison between CGPT and NGPT are illus-
trated in Figures 7–9, and correspond to tests varying the MaxBranchFactor, TreeNodeCount
and DeactQuota parameters. On the other hand, Figures 10–12 illustrate the test cases
where the highest cost reductions of CGPT over SGPT were obtained, with variations of
the MaxBranchFactor, TreeNodeCount and EvidUnivSize parameters.

It can be noted that the branching factor and the tree size are the two common param-
eters that impact the performance of our approach against the two baselines. Thus, we will
end this section by discussing the reasons why we believe this is the case. On average, bigger
trees offer more opportunities for pruning. In addition, increasing the branching factor over
trees having the same size yields wider and less deep trees; therefore, each prune performed
over such trees has the effect of avoiding the exploration of a bigger amount of arguments
(the wider sub-trees) and thus, avoiding to pay their (higher) evidence retrieval costs. Tak-
ing this into account, it is not surprising that CGPT outperforms NGPT, and that the
advantages of our approach are further exploited for bigger trees and higher branching fac-
tor values. This is because, in general, bigger trees are associated with higher evidence
retrieval costs. Thus, guiding the exploration of arguments by their heuristic evidential
cost offers the possibility of early pruning those branches with higher retrieval costs.

In contrast, when considering the outcome relating CGPT and SGPT, we note that
the improvement of our approach over the strength-guided one is smaller, and that SGPT
bridges the gap as trees become bigger. We believe that this has to do with the fact that
SGPT guides the exploration of arguments by their strength, avoiding to choose arguments
that would end up being defeated (i.e., marked as D in the corresponding dialectical tree)
and avoiding to unnecessarily pay the evidence retrieval cost of their corresponding sub-
trees; as a result, SGPT has the effect of pruning more siblings of each argument at
a time. Consequently, for bigger trees, the SGPT strategy compensates a little for the
non-consideration of the evidence retrieval costs. Notwithstanding this, when increasing
the branching factor, the children of an argument are more likely to have similar strength
values and thus, SGPT cannot make up for the non-consideration of evidence retrieval

1317

Cohen, Gottifredi, Garćıa, & Simari

costs. This is because, when having to choose between two or more arguments with the
same strength, SGPT would select any of them (somehow randomly), whereas CGPT
will always aim at minimizing the evidence retrieval cost. Therefore, as in the case of the
comparison between CGPT and NGPT, higher branching factors allow to further exploit
the advantages of our approach.

6. Related Work and Conclusions

In this paper we proposed the Abstract Argumentation Framework with Fallible Evidence
(AFFE), an extension of Dung’s framework (Dung, 1995) which accounts for the fact that
arguments should be backed by evidence, and that each piece of evidence associated with an
argument comes at a cost that has to be paid in order to (attempt to) retrieve it. Moreover,
since it might be the case that some evidence cannot be retrieved (e.g., in the case of
an online article, because the corresponding server may be down), each argument can be
active or inactive in a given scenario; we equipped the AFFE with a function enabling it to
determine whether each piece of evidence can be retrieved or not in different sessions, which
can represent different scenarios or time-frames. Taking this into account, we proposed a
heuristic measure to be used as part of the acceptability calculus of an argumentation system
based on the construction of dialectical trees.

Specifically, we used the heuristic measure to select the order in which arguments are
explored for building the active dialectical trees (i.e., the dialectical trees considering only
active arguments), with the aim of pruning and minimizing the arguments’ evidence retrieval
cost in a given scenario. As mentioned before and shown in (Skiba et al., 2020), finding
the optimal set of evidence that should be attempted to be retrieved in order to guarantee
the acceptance status of a given argument, thus yielding the minimum evidence retrieval
cost, is computationally hard. Consequently, heuristic-based approaches like ours become
handy and could provide an appealing method for knowledge representation and reasoning
in application scenarios where the consideration of evidence is natural, such as online forum
debates or discussions.

We formally showed the correctness of our approach, and we empirically tested it against
two baselines, namely a non-guided pruning technique (NGPT) and the strength-guided
pruning technique (SGPT) proposed in (Rotstein et al., 2010). The results showed that our
cost-guided pruning technique (CGPT) significantly outperforms the non-guided approach
in all cases. In contrast, even though the evidence retrieval cost with CGPT is lower than
that incurred with SGPT, the improvement is not as significant as that obtained against
the non-guided approach. As discussed in Section 5, this has to do with the fact that
SGPT aims at building smaller trees, seeking to explore the undefeated arguments first.
Notwithstanding this, our approach still offers the advantage of yielding lower evidence
retrieval costs than the other two baselines.

We want to highlight the main differences between this paper and (Cohen et al., 2019).
In this work we improved the theoretical basis section, reshaping definitions and formalizing
some notions that were only introduced intuitively in (Cohen et al., 2019), as well as chang-
ing the definition of the framework our approach is based on (i.e., the AFFE). We added
new examples and expanded the ones in (Cohen et al., 2019), and formally showed the
correctness of our approach showing that it indeed returns a tree structure corresponding

1318

Towards Evidence Retrieval Cost Reduction in AFFEs

to a pruned active dialectical tree. In addition, we presented and discussed the algorithms
developed for our heuristic pruning technique. Also, regarding the empirical validation of
our proposal, we incorporated a new section introducing and detailedly discussing the ex-
periments we carried out and the results we obtained, where we tested our approach against
two baselines. Furthermore, we added a detailed description of the generation process for
the frameworks used in our experiments.

It should be noted that, since our proposal is such that the same piece of evidence
may be available or unavailable in different sessions (leading to different sets of active
arguments in each case), it has an inherently dynamic component. Recently, there has been
an increasing interest in studying the dynamic nature of argumentation (Doutre & Mailly,
2018), and this has also become evident with the inclusion of a dedicated track in the
latest editions of the International Competition of Computational Models of Argumentation
(ICCMA)4. In particular, approaches like (Liao et al., 2011; Baroni et al., 2014; Alfano et al.,
2017; Niskanen & Järvisalo, 2020) address the incremental recomputation of extensions
of a Dung’s abstract argumentation framework after some updates have been performed;
moreover, this line of work has been further extended to consider extensions of Dung’s
framework which incorporate support relations or high-order interactions (Alfano et al.,
2018, 2020, 2020). Our approach aligns with these works in the sense that, in order to
determine the acceptance status of a given argument, we only seek to account for those
arguments (also, the interactions) that affect it. However, since those works are aimed at
identifying sets of extensions of a given framework (hence, the acceptance status of every
argument in the framework), to determine the acceptance status of an argument A they
may also require to consider (thus, attempt to build) arguments whose acceptance status is
affected by A, but which do not affect the acceptance status of A; consequently, they may
incur unnecessary costs.

Another difference between our proposal and the works mentioned above is that, in the
other approaches, after the updates have been performed, the entire set of arguments of the
framework is known to be active. In contrast, in our approach, the dynamic component is
the available evidence; then, since the changes in the set of available evidence are not known
beforehand, we still have to attempt to retrieve the evidence associated with the arguments,
not knowing whether they will be active or not. As a result, our proposal relates to works
like (Capobianco et al., 2005) and (Rotstein et al., 2010) that put more focus on how the
set of active arguments changes. In particular, our work is most closely related to (Rotstein
et al., 2010), since we considered the variation of the available evidence, determining the
active arguments in each session.

Despite the fact that extension-based approaches for Dung’s abstract argumentation
frameworks may require to consider arguments in the framework that do not affect the
acceptance status of the queried argument, extension-based approaches are the most widely
used within the community of argumentation. In addition to the computation of exten-
sions, another common task tackled by argumentation systems is the computation of skep-
tical or credulous acceptance of a single argument under a given semantics (Dung et al.,
2007; Baumeister et al., 2021). For that purpose, dialectical proof procedures for deter-
mining credulous or skeptical acceptance of a single argument under some of the original

4. http://argumentationcompetition.org

1319

Cohen, Gottifredi, Garćıa, & Simari

Dung semantics were proposed; examples of such approaches are (Dung & Thang, 2009)
and (Thang et al., 2009). With this in mind, in the future, to minimize the evidence re-
trieval cost and reduce the search space by discarding irrelevant arguments, we will seek to
apply our heuristics-based pruning technique to those procedures.

Finally, as it was discussed before, our approach relates to (Gottifredi et al., 2013),
where another heuristic strategy guiding the construction of dialectical trees was proposed.
Our tests revealed that our heuristic measure outperforms the one proposed in (Gottifredi
et al., 2013) in most cases, being more suitable for reducing the evidence retrieval costs.
Notwithstanding this, as future work, we plan to explore an alternative heuristic measure
that will combine the intuitions of our approach and those associated with the notion of
argument strength.

Acknowledgments

The authors would like to thank Matthias Thimm for the helpful and insightful comments
and discussions. This research was partially supported by PGI-UNS under grants 24/N046
and 24/ZN37.

References

Al-Abdulkarim, L., Atkinson, K., & Bench-Capon, T. J. M. (2014). Abstract dialectical
frameworks for legal reasoning. In Proc. of JURIX, pp. 61–70.

Alfano, G., Cohen, A., Gottifredi, S., Greco, S., Parisi, F., & Simari, G. R. (2020). Dynamics
in abstract argumentation frameworks with recursive attack and support relations. In
Proc. of ECAI, pp. 577–584.

Alfano, G., Greco, S., & Parisi, F. (2017). Efficient computation of extensions for dynamic
abstract argumentation frameworks: An incremental approach. In Proc. of IJCAI, pp.
49–55.

Alfano, G., Greco, S., & Parisi, F. (2018). A meta-argumentation approach for the efficient
computation of stable and preferred extensions in dynamic bipolar argumentation
frameworks. Intelligenza Artificiale, 12 (2), 193–211.

Alfano, G., Greco, S., & Parisi, F. (2020). Computing skeptical preferred acceptance in
dynamic argumentation frameworks with recursive attack and support relations. In
Proc. of COMMA, pp. 67–78.

Baroni, P., Caminada, M., & Giacomin, M. (2018). Abstract argumentation frameworks and
their semantics. In Baroni, P., Giacomin, M., & van der Torre, L. (Eds.), Handbook
of Formal Argumentation - Volume 1, pp. 159–236. College Publications, London.

Baroni, P., Giacomin, M., & Liao, B. (2014). On topology-related properties of abstract
argumentation semantics. A correction and extension to dynamics of argumentation
systems: A division-based method. Artificial Intelligence, 212, 104–115.

Baumeister, D., Järvisalo, M., Neugebauer, D., Niskanen, A., & Rothe, J. (2021). Accep-
tance in incomplete argumentation frameworks. Artificial Intelligence, 295, 103470.

1320

Towards Evidence Retrieval Cost Reduction in AFFEs

Bedi, P., & Vashisth, P. B. (2014). Empowering recommender systems using trust and
argumentation. Information Sciences, 279, 569–586.

Besnard, P., Garćıa, A. J., Hunter, A., Modgil, S., Prakken, H., Simari, G. R., & Toni, F.
(2014). Introduction to structured argumentation. Argument & Computation, 5 (1),
1–4.

Besnard, P., & Hunter, A. (2001). A logic-based theory of deductive arguments. Artificial
Intelligence, 128 (1-2), 203–235.

Black, E., & Hunter, A. (2009). An inquiry dialogue system. Autonomous Agents and
Multi-Agent Systems, 19 (2), 173–209.

Briguez, C. E., Budán, M. C. D., Deagustini, C. A. D., Maguitman, A. G., Capobianco, M.,
& Simari, G. R. (2014). Argument-based mixed recommenders and their application
to movie suggestion. Expert Systems with Applications, 41 (14), 6467–6482.

Capobianco, M., Chesñevar, C. I., & Simari, G. R. (2005). Argumentation and the dynamics
of warranted beliefs in changing environments. JAAMAS, 11, 127–151.

Chesñevar, C. I., Simari, G. R., & Garćıa, A. J. (2000). Pruning search space in defeasible
argumentation. In Proc. of ATAI, pp. 46–55.

Cohen, A., Gottifredi, S., & Garćıa, A. J. (2019). A heuristic pruning technique for dialec-
tical trees on argumentation-based query-answering systems. In Proc. of FQAS, pp.
101–113.

Deagustini, C. A. D., Dalibón, S. E. F., Gottifredi, S., Falappa, M. A., Chesñevar, C. I., &
Simari, G. R. (2017). Defeasible argumentation over relational databases. Argument
& Computation, 8 (1), 35–59.

Deagustini, C. A. D., Dalibón, S. E. F., Gottifredi, S., Falappa, M. A., Chesñevar, C. I.,
& Simari, G. R. (2013). Relational databases as a massive information source for
defeasible argumentation. Knowledge-Based Systems, 51, 93–109.

Doutre, S., & Mailly, J. (2018). Constraints and changes: A survey of abstract argumentation
dynamics. Argument & Computation, 9 (3), 223–248.

Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence,
77 (2), 321–358.

Dung, P. M., Mancarella, P., & Toni, F. (2007). Computing ideal sceptical argumentation.
Artificial Intelligence, 171 (10-15), 642–674.

Dung, P. M., & Thang, P. M. (2009). A unified framework for representation and de-
velopment of dialectical proof procedures in argumentation. In Proc. of IJCAI, pp.
746–751.

Dvorák, W., & Dunne, P. E. (2018). Computational problems in formal argumentation and
their complexity. In Baroni, P., Giacomin, M., & van der Torre, L. (Eds.), Handbook
of Formal Argumentation - Volume 1, pp. 631–687. College Publications, London.

Ferretti, E., Tamargo, L. H., Garćıa, A. J., Errecalde, M. L., & Simari, G. R. (2017). An
approach to decision making based on dynamic argumentation systems. Artificial
Intelligence, 242, 107–131.

1321

Cohen, Gottifredi, Garćıa, & Simari

Garćıa, A. J., Prakken, H., & Simari, G. R. (2020). A comparative study of some central
notions of ASPIC+ and delp. Theory and Practice of Logic Programming, 20 (3),
358–390.

Garćıa, A. J., & Simari, G. R. (2004). Defeasible logic programming: An argumentative
approach. Theory and Practice of Logic Programming, 4 (1-2), 95–138.

Gómez, S. A., Goron, A., Groza, A., & Letia, I. A. (2016). Assuring safety in air traf-
fic control systems with argumentation and model checking. Expert Systems with
Applications, 44, 367–385.

Gottifredi, S., Rotstein, N. D., Garćıa, A. J., & Simari, G. R. (2013). Using argument
strength for building dialectical bonsai. Annals of Mathematics and Artificial Intelli-
gence, 69 (1), 103–129.

Liao, B., Jin, L., & Koons, R. C. (2011). Dynamics of argumentation systems: A division-
based method. Artificial Intelligence, 175 (11), 1790–1814.

Lippi, M., & Torroni, P. (2016). Argumentation mining: State of the art and emerging
trends. ACM Transactions on Internet Technology, 16 (2), 10:1–10:25.

Niskanen, A., & Järvisalo, M. (2020). Algorithms for dynamic argumentation frameworks:
An incremental sat-based approach. In Proc. of ECAI, pp. 849–856.

Prakken, H., & Sartor, G. (2015). Law and logic: A review from an argumentation perspec-
tive. Artificial Intelligence, 227, 214–245.

Rotstein, N. D., Moguillansky, M. O., Garćıa, A. J., & Simari, G. R. (2010). A dynamic
argumentation framework. In Proc. of COMMA, pp. 427–438.

Skiba, K., Thimm, M., Cohen, A., Gottifredi, S., & Garćıa, A. J. (2020). Abstract argu-
mentation frameworks with fallible evidence. In Proc. of COMMA, pp. 347–354.

Thang, P. M., Minh, P., & Hung, N. D. (2009). Towards a common framework for dialectical
proof procedures in abstract argumentation. Journal of Logic and Computation, 19 (6),
1071–1109.

1322

