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Abstract

Statistical relational AI and probabilistic logic programming have so far mostly focused
on discrete probabilistic models. The reasons for this is that one needs to provide constructs
to succinctly model the independencies in such models, and also provide efficient inference.

Three types of independencies are important to represent and exploit for scalable infer-
ence in hybrid models: conditional independencies elegantly modeled in Bayesian networks,
context-specific independencies naturally represented by logical rules, and independencies
amongst attributes of related objects in relational models succinctly expressed by combin-
ing rules.

This paper introduces a hybrid probabilistic logic programming language, DC#, which
integrates distributional clauses’ syntax and semantics principles of Bayesian logic pro-
grams. It represents the three types of independencies qualitatively. More importantly,
we also introduce the scalable inference algorithm FO-CS-LW for DC#. FO-CS-LW is
a first-order extension of the context-specific likelihood weighting algorithm (CS-LW), a
novel sampling method that exploits conditional independencies and context-specific inde-
pendencies in ground models. The FO-CS-LW algorithm upgrades CS-LW with unification
and combining rules to the first-order case.

1. Introduction

Statistical relational AI (StarAI) and probabilistic logic programming (PLP) (De Raedt &
Kimmig, 2015; De Raedt, et al., 2016) have contributed many languages for declaratively
modeling expressive probabilistic models and have devised numerous inference techniques.
They have been applied to many applications in databases, knowledge graphs, social net-
works, robotics, chemical compounds, genomics, etc.

To enable scalable probabilistic inference, it is essential to represent three different types
of independencies in the modeling language. Firstly, the traditional classical conditional in-
dependencies (CIs) represented by Bayesian networks (BNs). Secondly, the context-specific
independencies (CSIs): independencies that hold only in certain contexts (Boutilier, et al.,
1996). These independencies arise due to structures present in conditional probability
distributions (CPDs) of BNs, which BNs do not qualitatively represent, but rule-based rep-
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resentations do by making structures explicit in the clauses (Poole, 1997). Thirdly, the
combining rules such as NoisyOR to express probabilistic influences among attributes of
related objects (Koller, et al., 2007; Jaeger, 2007). Combining rules are particularly in-
teresting since they allow one to qualitatively represent independence of causal influences
(Zhang & Poole, 1996, ICIs), where each influence is considered independent of others.
This independence is natural and commonly assumed to keep relational models succinct
(Natarajan, et al., 2008). In probabilistic logic programs that deal with only discrete
random variables, combining rules are the core component (Kersting & De Raedt, 2007;
De Raedt, Kimmig, & Toivonen, 2007).

Over the past few decades, many PLP languages have been proposed; however, only a
few of them are hybrid, i.e., support both discrete and continuous random variables. Nev-
ertheless, such hybrid PLP are needed to cope with applications in areas such as activity
recognition, robotics, sensing, perception, etc. Current hybrid PLP languages suffer from
two problems. Firstly, they generally do not support combining rules (Gutmann, Jaeger,
& De Raedt, 2010; Gutmann, et al., 2011; Islam, Ramakrishnan, & Ramakrishnan, 2012;
Michels, Hommersom, & Lucas, 2016; Alberti, et al., 2017). Secondly, and more impor-
tantly, there exist, to the best of our knowledge, no inference techniques that exploit all
three types of independencies for hybrid PLPs.

To remedy this, we first introduce DC# (pronounced “DC sharp”), a hybrid PLP lan-
guage that supports combining rules. DC# uses a special form of clauses called distribu-
tional clauses (DCs) to express probabilistic knowledge. We borrow the syntax of DCs from
(Nitti, De Laet, & De Raedt, 2016) but introduce an extended new semantics based on
Bayesian Logic Programs (Kersting & De Raedt, 2007, BLPs). Thus, in terms of repre-
sentation, DC#, a rule-based representation, differs from graphical model-based relational
representations, such as BLPs, which are associated with CPDs. However, the semantics of
DC# are based on BLPs, so DC# programs can be seen as BLPs qualitatively representing
CSIs.

Our second contribution is the first-order context-specific likelihood weighting (FO-CS-
LW) algorithm that exploits these three types of independencies for scalable inference in
DC# programs. Before going to the first-order case, we introduce the CS-LW algorithm for
ground programs. CS-LW exploits both CIs and CSIs, which is an approximate inference
algorithm that, until our earlier work, has not been well-studied yet (Kumar & Kuželka,
2021).

There exist state-of-the-art inference algorithms for exact inference (Friedman & Van
Den Broeck, 2018) in discrete models. These algorithms are based on the knowledge
compilation technique (Darwiche & Marquis, 2002) that uses logical reasoning to exploit
CSIs. However, for many models, exact inference quickly becomes infeasible. Stochastic
sampling for approximate inference is a standard solution. Sampling algorithms are simple
yet powerful tools, and they can be applied to arbitrary complex hybrid models, unlike exact
inference. It is widely believed that CSI properties in distributions are difficult to exploit for
approximate inference (Friedman & Van Den Broeck, 2018). To solve this difficult problem,
we introduce the context-specific likelihood weighting (CS-LW), a sampling algorithm that
exploits both CI and CSI properties, leading to faster convergence and faster sampling speed
than standard likelihood weighting (LW).
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Next, we extend CS-LW to first-order DC# programs specifying relational probabilistic
models. Due to the use of combining rules, such models, when grounded, have many
symmetrically repeated parameters. Inference algorithms designed for grounded models can
not exploit these symmetries, rendering inference infeasible even for very simple relational
models. It is widely believed that the inference can be feasible if one does not ground
out these models, but reason at the first-order level with unification (Poole, 2003). There
have been several attempts at doing this for various simple languages (Kisynski & Poole,
2009; Choi, Braz, & Bui, 2011; Van Den Broeck, et al., 2011; Beame, et al., 2015),
but not for hybrid and expressive languages like DC#. For example, well-known graphical
model-based relational representation languages that do not qualitatively represent CSIs,
construct ground BNs for inference (Getoor, et al., 2007; Kersting & De Raedt, 2007).
Similarly, well-known PLP systems, which do represent CSIs qualitatively, first ground
the first-order programs and then perform inference at the ground level (Fierens, et al.,
2015). In contrast, FO-CS-LW reasons at the first-order level. Using the tools of logic,
i.e., unification, substitution, and resolution, FO-CS-LW samples only relevant variables
from first-order DC# programs determined by various forms of independencies present in
the programs. We empirically demonstrate that FO-CS-LW scales with domain size and
provide an open-source implementation of our framework

1
.

This paper is a significantly extended and completed version of our previous paper
(Kumar & Kuželka, 2021), where we introduced CS-LW to exploit the structures present
in CPDs of BNs. The present paper first introduces a language to describe first-order
probabilistic models and then extends CS-LW to the first-order case.

Contribution We summarise our contributions in this paper as follows:

• We introduce a new PLP language DC# that supports combining rules to describe
hybrid relational probabilistic models succinctly.

• We present a novel sampling methodology, CS-LW, that exploits both CIs and CSIs
for probabilistic inference in BNs and ground probabilistic logic programs.

• We present a first-order extension of CS-LW that applies directly to first-order DC#
programs and in additional exploits the symmetries present through combining rules.

• We empirically show that our inference algorithm scales with the domain size when
applied to hybrid relational probabilistic models described as DC# programs.

Organization The paper is organized as follows. We start by motivating our discussion
with some examples in Section 2. In Section 3, we review the standard likelihood weighting
and basic concepts of logic programming. Section 4 presents the DC# language. Section
5 presents the CS-LW algorithm for ground DC# programs describing BNs, which is then
extended to first-order DC# programs in Section 6. We then evaluate our algorithms in
Section 7. Before concluding, we finally touch upon related work and directions for future
work.

1. The code is publicly available: https://github.com/niteshroyal/DC-Sharp
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(a) (b)

Figure 1: (a) Context-Specific Independence; (b) A Bayesian network with client and loan
plates

2. Motivating Examples

Let us illustrate, with examples, the independencies that DC# programs will qualitatively
represent and that our algorithm will exploit. Consider a BN in Figure 1a, where a tree-
structure is present in the CPD of variable E. If one observes the CPD carefully, one can
conclude that P (E ∣ A = 1, B,C) = P (E ∣ A = 1), that is, P (E ∣ A = 1, B,C) is the same
for all values of B and C. The variable E is said to be independent of variables {B,C} in
the context A = 1. This local independence statement corresponds to the influence of edges
{B → E,C → E} vanishing in this context; consequently, it may have global implications.
For example, E ⊥ B,C ∣ A = 1 implies E ⊥ D ∣ H,A = 1. These independencies are
called CSIs. They arise naturally in various real-world situations (Poole & Zhang, 2003),
including when one writes if-then conditions in probabilistic programs (Li & Russell, 2013).
Our CS-LW algorithm aims to exploit CSIs arising due to the structures present within
CPDs of BNs when ground DC# programs describe such BNs.

The exploitation of CSIs in relational probabilistic models is even more crucial since a
huge amount of CSIs is present in these models. As a simple example, consider the model in
Figure 1b, where the plate notation is used to represent direct influence relationships among
credit scores of c clients, statuses of l loans, and c × l number of has loan type random
variables for each client-loan pair, which can be either true or false. Given that a client has
a loan, it is easy to imagine that the status of the loan may affect the client’s credit score.
On the other hand, if a client has only a few loans, then it is just as easy to imagine that
the status of the loans that the client does not have will not affect the client’s credit score.
That is, the client’s credit is independent of the status of all those loans that the client
does not have. This is a first-order level CSI, which BNs with plates do not qualitatively
represent. We will introduce a PLP language to represent it.

Furthermore, it is natural to imagine that the client’s credit score depends on the num-
ber of loans that the client has with approved and rejected statuses but not on the identity
of those approved and rejected loans. That is, loans are exchangeable objects. In such a
case, it is common to consider that each loan’s status independently has its own probabilistic
influence on the client’s credit score, and the final probabilistic influence is a combination of
all these influences (Natarajan et al., 2008; Koller & Friedman, 2009). This independence
assumption implies exchangeability. Relational models written as DC# programs quali-
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tatively represent these independencies and the first-order level CSIs that our FO-CS-LW
algorithm aims to exploit for scalability.

3. Background

A Bayesian network B is a pair (G,D), where G is a directed acyclic graph structure speci-
fying direct influence relationships among random variables (nodes), and D is a set of CPDs
associated with each node. The CPD specifies the conditional probability of the variable
given its parents. The graph structure G represents local CI statements, which states that
each variable is conditionally independent of its non-descendants given its parents. The
local CIs and the set of CPDs D together induce a joint probability distribution P over all
the variables.

We denote random variables (RVs) with uppercase letters (A) and their assignments with
lowercase letters (a). Bold letters denote sets of RVs (A) and their assignments (a). Parents
of the variable A are denoted with Pa(A) and their assignments with pa(A). Suppose P
is a probability distribution over disjoint sets of variables E,X,Z, then E denotes a set of
observed variables, X a set of unobserved query variables and Z a set of unobserved variable
other than query variables. The expected value of A relative to a distribution Q is denoted
by EQ[A].

3.1 Likelihood Weighting

Next, we briefly review likelihood weighting (LW), one of the most popular sampling algo-
rithms for BNs.

A typical query to the distribution P (E,X,Z) is to compute P (xq ∣ e), that is, the
probability of X being assigned xq given that E is assigned e. Following Bayes’s rule, we
have:

P (xq ∣ e) =
P (xq, e)
P (e) =

∑x,z P (x, z, e)f(x)
∑x,z P (x, z, e) = µ,

where f(x) is an indicator function 1{x = xq}, which takes value 1 when x = xq, and 0
otherwise. We can estimate µ using LW if we specify P using a Bayesian network. LW
belongs to a family of importance sampling schemes that are based on the observation,

µ =
∑x,zQ(x, z, e)f(x)(P (x, z, e)/Q(x, z, e))

∑x,zQ(x, z, e)(P (x, z, e)/Q(x, z, e)) , (1)

where Q is a proposal distribution such that Q > 0 whenever P > 0. The distribution
Q is different from P and is used to draw independent samples. Generally, Q is selected
such that the samples can be drawn easily. In the case of LW, to draw a sample, variables
Xi ∈ X∪Z are assigned values drawn from P (Xi ∣ pa(Xi)) and variables in E are assigned
their observed values. These variables are assigned in a topological ordering relative to the
graph structure of B. Thus, the proposal distribution in the case of LW can be described
as follows:

Q(X,Z,E) = ∏
Xi∈X∪Z

P (Xi ∣ Pa(Xi)) ∣E=e.
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Figure 2: The four rules of Bayes-ball algorithm that decide next visits (indicated using )
based on the direction of the current visit (indicated using ) and the type of
variable. To distinguish observed variables from unobserved variables, the former
type of variables are shaded.

Consequently, it is easy to compute the likelihood ratio P (x, z, e)/Q(x, z, e) in Equation
1. All factors in the numerator and denominator of the fraction cancel out except for
P (xi ∣ pa(Xi)) where xi ∈ e. Thus,

P (X,Z, e)
Q(X,Z, e) = ∏

xi∈e

P (xi ∣ Pa(Xi)) = ∏
xi∈e

Wxi =We,

where Wxi , which is also a RV, is the weight of evidence xi. The likelihood ratio We is the
product of all of these weights, and thus, it is also a RV. Given M independent weighted
samples from Q(X,Z,E), we can estimate the query:

µ̂ =
∑M
m=1 f(x[m])we[m]

∑M
m=1we[m]

. (2)

3.2 Likelihood Weighting + Bayes-Ball

In the previous section, we used all random variables to estimate µ. However, due to CIs
encoded by the graph structure in a Bayesian network B, observed states and CPDs of only
some variables “might” be required for computing µ. These variables are called requisite
variables. To get a better estimate of µ, it is recommended to use only these variables.
The standard approach is to first apply the Bayes-ball algorithm (Shachter, 1998) over
the graph to obtain a sub-network of requisite variables, then simulate the sub-network to
obtain the weighted samples. An alternative approach is to use Bayes-ball to simulate the
original network B and focus on only requisite variables to obtain the weighted samples.
This approach is trivial and might already be used by many BN inference tools. However,
it is not described in the literature clearly, so we will describe it next. It will form the basis
of our discussion on CS-LW, where we will also exploit structures within CPDs of BNs.

To obtain the samples, we need to traverse the graph in a topological ordering. The
Bayes-ball algorithm, which is linear in the graph’s size, can be used for it. The advantage
of using Bayes-ball is that it also detects CIs; thus, it traverses only a sub-graph that
depends on the query and evidence. We can also keep assigning unobserved variables, and
weighting observed variables along with traversing the graph. In this way, we assign/weigh
only requisite variables. The Bayes-ball algorithm uses four rules to traverse the graph
(when deterministic variables are absent in B), and marks variables to avoid repeating the
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same action. These rules are illustrated in Figure 2. Next, we discuss these rules and also
indicate how to assign/weigh variables, resulting in a new algorithm that we call Bayes-ball
simulation of BNs. Starting with all query variables scheduled to be visited as if from one
of their children, we apply the following rules until no more variables can be visited:

1. When the visit of an unobserved variable U ∈ X ∪ Z is from a child, and U is not
marked on top, then do these in the order: i) Mark U on top; ii) Visit all its parents;
iii) Sample a value y from P (U ∣ pa(U)) and assign y to U ; iv) If U is not marked
on bottom, then mark U on bottom and visit all its children.

2. When the visit of an unobserved variable is from a parent, and the variable is not
marked on bottom, then mark the variable on bottom and visit all its children.

3. When the visit of an observed variable is from a child, then do nothing.

4. When the visit of an observed variable E ∈ E is from a parent, and E is not marked on
top, then do these in the order: i) Mark E on top; ii) Visit all its parents; iii) Let e be
an observed value of E and let w be the probability at e according to P (E ∣ pa(E)),
then the weight of E is w.

The above rules define an order for visiting parents and children so that variables are
assigned/weighted in a topological ordering. Indeed we can define the order since the original
rules for Bayes-ball do not prescribe any order. The marks record important information,
and the following result holds.

Lemma 1. Let E⋆ ⊆ E be marked on top, E⭒ ⊆ E be visited but not marked on top, and
Z⋆ ⊆ Z be marked on top. Then the query µ can be computed as follows,

µ =
∑x,z⋆

P (x, z⋆, e⋆ ∣ e⭒)f(x)
∑x,z⋆

P (x, z⋆, e⋆ ∣ e⭒)
(3)

The proof is straightforward and is present in Appendix A. Now, since X,Z⋆,E⋆,E⭒

are variables of B and they form a sub-network B⋆ such that variables in E⭒ do not have
any parent, we can write,

P (x, z⋆, e⋆ ∣ e⭒) = ∏
ui∈x∪z⋆∪e⋆

P (ui ∣ pa(Ui))

such that ∀p ∈ pa(Ui) ∶ p ∈ x ∪ z⋆ ∪ e⋆ ∪ e⭒. This means the CPDs of some observed
variables are not required for computing µ. Now we define these variables.

Definition 1. The observed variables whose observed states and CPDs might be required to
compute µ will be called diagnostic evidence.

Definition 2. The observed variables whose observed states, but not their CPDs, might be
required to compute µ will be called predictive evidence.

Diagnostic evidence (denoted by e⋆) is marked on top, while predictive evidence (de-
noted by e⭒) is visited but not marked on top. The variables X, Z⋆, E⋆, E⭒ will be called
requisite variables.
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Example 1. Consider the network of Figure 1a, and assume that our evidence is {D =

1, F = 1, G = 0, H = 1}, and our query is {E = 0}. Suppose we start by visiting the query
variable from its child and apply the four rules of Bayes-ball. One can easily verify that
observed variables F,G,H will be marked on top; hence {F = 1, G = 0, H = 1} is diagnostic
evidence (e⋆). The observed variable D will only be visited; hence {D = 1} is predictive
evidence (e⭒). Variables A,B,C,E will be marked on top and are requisite unobserved
variables (X ∪ Z⋆).

Now, we can sample from a factor Q⋆ of Q such that,

Q⋆(X,Z⋆,E⋆ ∣ E⭒) = ∏
Xi∈X∪Z⋆

P (Xi ∣ Pa(Xi)) ∣E⋆=e⋆ (4)

When we use Bayes-ball, precisely this factor is considered for sampling. Starting by first
setting E⭒ to their observed values, X∪Z⋆ is assigned and e⋆ is weighted in the topological
ordering. Given M weighted samples D⋆ = ⟨x[1], we⋆[1]⟩, . . . , ⟨x[M], we⋆[M]⟩ from Q⋆,
we can estimate:

µ̃ =
∑M
m=1 f(x[m])we⋆[m]

∑M
m=1we⋆[m]

. (5)

In this way, we sample from a lower-dimensional space; thus, the new estimator µ̃ has
a lower variance compared to µ̂ due to the Rao-Blackwell theorem. Consequently, fewer
samples are needed to achieve the same accuracy. Hence, for improved inference, we exploit
CIs encoded by the graph structure in B.

3.3 Context-Specific Independence

Next, we formally define the independencies that arise due to the structures present within
CPDs, which were informally discussed in Section 2.

Definition 3. Let P be a probability distribution over variables U, and let A,B,C,D be
disjoint subsets of U. The variables A and B are independent given D and context c if
P (A ∣ B,D, c) = P (A ∣ D, c) whenever P (B,D, c) > 0. This is denoted by A ⊥ B ∣ D, c.
If D is empty then A and B are independent given context c, denoted by A ⊥ B ∣ c.

Independence statements of the above form are called context-specific independencies
(CSIs). When A is independent of B given all possible assignments to C then we have: A ⊥
B ∣ C. The independence statements of this form are generally referred to as conditional
independencies (CIs). Thus, CSI is a more fine-grained notion than CI. The graphical
structure in B can only represent CIs. Any CI can be verified in linear time in the size of
the graph. However, verifying any arbitrary CSI has been recently shown to be coNP-hard
(Corander, et al., 2019).

3.4 A Bit of Logic Programming

Probabilistic logic programming is a probabilistic characterization of logic programming.
So, before describing our system, in this section, we review relevant syntactic and semantic
notions related to logic programming. More details can be found in (Nilsson & Ma luszyński,
1995).
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An atom p(t1, . . . , tn) consists of a predicate p/n of arity n and terms t1, . . . , tn. A
term is either a constant (written in lowercase), a variable (in uppercase), or a struc-
tured term of the form f(u1, . . . , uk) where f is a functor and the ui are terms. For ex-
ample, has account(ann, L), has account(ann, a 1) and has account(ann, func(A)) are
atoms and ann, L, a 1 and func(A) are terms. A literal is an atom or the negation of
an atom. A positive literal is an atom. A negative literal is the negation of an atom.
A clause is a universally quantified disjunction of literals. A definite clause is a clause
which contains exactly one positive literal and zero or more negative literals. For exam-
ple, ∀(A0 ∨ ¬A1 ∨ ⋅ ⋅ ⋅ ∨ ¬An) is a definite clause, where A0, A1, . . . , An are atoms. In logic
programming, one usually writes definite clauses in the implication form A0 ← A1, . . . , An
(where we omit the universal quantifiers for ease of writing). Here, the atom A0 is called
head of the clause; and the set of atoms {A1, . . . , An} is called body of the clause. A clause
with an empty body is called a fact. A definite program consists of a finite set of definite
clauses.

Example 2. A clause C ≡ has loan(C, L)← has account(C, A), account loan(A, L) is a
definite clause. Intuitively, it states that a client C has a loan L if C has an account A and
A is associated to the loan L.

An expression, which can be either a term, an atom or a clause, is ground if it does not
contain any variable. A substitution θ = {V1/t1, ..., Vm/tm} assigns terms ti to variables Vi.
The element Vi/ti is a binding for variable Vi. Applying θ to an expression E yields Eθ,
the instance of E , where all occurrences of Vi in E are replaced by the corresponding terms
ti. A substitution θ is a grounding for E if Eθ is ground, i.e., contains no variables (when
there is no risk of confusion we drop “for E”).

Example 3. Applying a substitution θ = {C/ann} to the clause C from Example 2 yields Cθ
which is has loan(ann, L)← has account(ann, A), account loan(A, L).

A substitution θ unifies two expressions E1 and E2 if E1θ and E2θ are identical (denoted
E1θ = E2θ). Such a substitution is called a unifier. Unifiers may not always exist. If there
exists a unifier for two expressions E1 and E2, we call such atoms unifiable and we say that
E1 and E2 unify.

Example 4. A substitution θ = {C/ann, M/l 1, L/l 1} unify has loan(ann, L) and has loan(C, M).

A substitution θ is said to be more general than a substitution σ iff there exists a
substitution σ

′
such that σ = θσ

′
. A unifier θ is said to be a most general unifier (mgu) of

two expressions iff θ is more general than any other unifier of the expressions. Expression
E1 is a renaming of E2 if they differ only in the names of variables.

Example 5. Unifiers {C/ann, M/L} and {C/ann, L/M} are both most general unifiers of
has loan(ann, L) and has loan(C, M). The resulting applications,

has loan(C, M){C/ann, M/L} = has loan(ann, L)
has loan(ann, L){C/ann, L/M} = has loan(ann, M)

are renamings of each other.
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The Herbrand universe of a definite program P, denoted UP , is the set of all ground
terms constructed from functors and constants appearing in P. The Herbrand base BP
is the set of all ground atoms that can be constructed by using predicates from P with
ground terms from UP as arguments. Subsets of the Herbrand base are called Herbrand
interpretations. A Herbrand interpretation I is a model of a clause A0 ← A1, . . . An iff for
all grounding substitutions θ, such that {A1θ, . . . , Anθ} ⊆ I, it also holds that A0θ ∈ I. A
Herbrand model of a set of clauses is a Herbrand interpretation which is a model of every
clause in the set.

The least Herbrand model of a definite program P, denoted MP , is the intersection of
all Herbrand models of P, i.e., MP is the set of all ground atoms that are logical conse-
quences of the program. MP is unique for definite programs and can be constructed by
repeatedly applying the so-called TP operator, which is defined as a function on Herbrand
interpretations of P as follows:

TP(I) ∶= {A0θ ∣ A0 ← A1, . . . , An ∈ P ∧ {A1θ, . . . , Anθ} ⊆ I},
where, θ are grounding substitutions. Let I1 be the set of all ground facts in the program.
Now, applying the operator on I1, it is possible to use every ground instance of each clause
to construct new ground atoms from I1. In this way, a new set I2 ∶= TP(I1) is obtained,
which can be used again to construct more ground atoms. The new atoms added to Ii+1 are
those which must follow immediately from Ii. It is possible to construct MP by recursively
applying the operator until a fixpoint is reached (TP(MP) =MP), i.e., until no more ground
atoms can be constructed.

A query Q is of the form B1, . . . , Bm where the Bj are atoms and all variables are under-
stood to be existentially quantified. Given a definite program P, a correct answer to the
query Q is a substitution θ such that Qθ is entailed by P, denoted by P ⊧ Qθ. That is, Qθ
belongs to MP . The answer substitution θ is often computed using SLD-resolution. Finally,
the answer set of Q is the set of all correct answer substitutions to Q.

4. DC#: A Representation Language for Hybrid Relational Models

This section presents a PLP language DC# for describing hybrid relational probabilistic
models. The syntax of our language is based on the elegant syntax of distributional clauses
(DCs) used by (Nitti et al., 2016). However, we extend its semantics to support combining
rules. The new semantics, however, do not allow for describing open-universe probabilistic
models (OUPMs) (Milch & Russell, 2009), which was possible in the previous system. The
semantics supporting both OUPMs and combining rules is another topic of research. We
do not study it in this paper. The new semantics have been developed along the lines of
Bayesian Logic Programs (BLPs) (Kersting & De Raedt, 2007).

4.1 Syntax

DC is a natural extension of definite clauses for representing conditional probability distri-
butions.

Definition 4. A DC is a formula of the form A0 ∼ D← A1, . . . , An, where ∼ is a special
binary predicate used in infix notation, and Ai(i > 0) are atoms. Term A0 is called a
random variable term and D is called a distributional term.
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Intuitively, the clause defines that RV A0θ is distributed as Dθ whenever all Aiθ are
true for a grounding substitution θ. The ground terms A0θ and Dθ belong to the Herbrand
universe.

Ground RV terms are interpreted as RVs. To refer to the values of RV terms, we use a
binary predicate ≅, which is used in infix notation for convenience. A ground atom Aθ ≅ x

is defined to be true if x is the value of RV (or ground RV term) Aθ.

Example 6. Consider the following clause,

credit score(C) ∼ gaussian(755.5, 0.1)← has loan(C, L) ≅ true, status(L) ≅ appr.

Applying a grounding substitution {C/ann, L/l 1} to the clause results in defining a RV
credit score(ann) distributed as gaussian(755.5, 0.1) when RVs has loan(ann, l 1) and
status(l 1) take values true and appr (“approved”) respectively; that is, when atoms
has loan(ann, l 1) ≅ true and status(l 1) ≅ appr are true.

A DC without body is called a probabilistic fact, for example:

age(bob) ∼ gaussian(40, 0.2).
This clause states that the age of bob is normally distributed with mean 40 and variance 0.2.
It is also possible to define deterministic variables that take only one value with probability
1, e.g., to express our absolute certainty that the age of bob takes value 40, we can write,

age(bob) ∼ val(40).
Hence, it is also possible to write the definite clause C of Example 2 as a DC like this:

has loan(C, L) ∼ val(true)← has account(C, A) ≅ true, account loan(A, L) ≅ true

DC also supports comparing the values of RVs with constants or with values of other
RVs in the ground instance of clauses. This can be done using the binary infix predi-
cates ==,<,>,≥, and ≤, which are especially useful while conditioning continuous RVs as
illustrated by the following clause:

credit score(C) ∼ gaussian(645.5, 0.1)← age(C) ≅ X, X < 40.

This clause specifies the distribution of a client’s credit score when the client’s age is less
than 40.

A distributional program P consists of a set of distributional clauses.

Example 7. The following program describes probabilistic influences among attributes of
clients and related loans. Here, we have used t as a shorthand for true, f for false, a for
approved, and d for declined.

client(ann) ∼ val(t).
loan(l 1) ∼ val(t).
loan(l 2) ∼ val(t).
has loan(C, L) ∼ bernoulli(0.2)← client(C) ≅ t, loan(L) ≅ t.

status(L) ∼ discrete([0.3 ∶ a, 0.7 ∶ d])← loan(L) ≅ t.

credit score(C) ∼ gaussian(650, 15.4)← has loan(C, L) ≅ Y, Y == f.

credit score(C) ∼ gaussian(700, 10.9)← has loan(C, L) ≅ t, status(L) ≅ X, X == a.

credit score(C) ∼ gaussian(600, 20.5)← has loan(C, L) ≅ t, status(L) ≅ X, X == d.
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Now, we provide the semantics of such a program.

4.2 Semantics

First, we specify the form of DCs allowed in our programs.

Definition 5. A DC# program is a finite set of DCs A0 ∼ D← A1, . . . , An whose atoms
Ai(i > 0) are either of the following form

2
:

1. q(t1, . . . , tk) ≅ V, where q(t1, . . . , tk) is a RV term and V can either be a variable or a
constant belonging to the domain of the RV. If V is a variable then it must not appear
in RV terms of the DC.

2. V1 ⋄ V2, where V1, V2 can be logical variables or constants belonging to the correspond-
ing domains of RVs, and ⋄ is a comparison infix predicate that can be either of these:
==,<,>,≥,≤. The predicates ⋄ have the same meaning as they have in Prolog.

For example, all clauses shown in Section 4.1 are already of this form, and the program
in Example 7 is a DC# program. The reason why logical variables Vi, in the above-stated
form (Condition 1), are not allowed to appear in RV terms is that the existence of RVs is
not uncertain in DC# programs. This is not the case in the following program:

loan id ∼ poisson(10).
status(L) ∼ discrete([0.3 ∶ a, 0.7 ∶ d])← loan id ≅ L.

Here, the first clause models the identity of loans as a Poisson distribution with a mean of 10.
Thus, loan id can be any natural number starting with 0, and the existence of the statuses
of loans, say status(12), is uncertain. We disallow writing such open-universe models in
the DC# framework because identifying RVs in such models may require analyzing the
programs dynamically. It is not clear how to exploit CSIs in such a case. For closed-
universes, they can be identified using simple static analysis, which we describe next.

Definition 6. Let P be a DC# program. An RV set of the program, denoted rv(P), is
the set of definite clauses obtained by transforming each clause A0 ∼ D← A1, . . . , An ∈ P as
follows:

1. Let Body be the empty set.

2. For each atom Ai(i > 0) of the form q(t1, . . . , tk) ≅ V, an atom rv(q(t1, . . . , tk)) is
added to Body.

3. A clause rv(A0)← Body is added to rv(P).

Notice that we ignore comparison atoms while constructing the RV set since they do
not contain RV terms. They only deal with the values of RVs.

2. Even though only two forms of atoms are allowed, one can still write a deterministic atom u(t1, . . . , tn)
as in definite clauses like this: u(t1, . . . , tn) ≅ true. So, by restricting the form of allowed atoms, we are
not losing expressivity. Recall that a definite clause can be expressed as a DC.

694



First-Order Context-Specific Likelihood Weighting

Example 8. The RV set for the program in Example 7 is:

rv(client(ann)).
rv(loan(l 1)).
rv(loan(l 2)).
rv(has loan(C, L))← rv(client(C)), rv(loan(L)).
rv(status(L))← rv(loan(L)).
rv(credit score(C))← rv(has loan(C, L)).
rv(credit score(C))← rv(has loan(C, L)), rv(status(L)).

Atom rv(has loan(ann, l 1)) is in the least Herbrand model of the above RV set but
rv(has loan(l 1, l 2)) is not. So, term has loan(ann, l 1) is identified as a RV but the
meaningless term has loan(l 1, l 2) is not, even though it belongs to the Herbrand uni-
verse. Recall that a ground instance of a DC defines a RV only when its body is true. No
ground DC defines has loan(l 1, l 2) as a RV since term l 1 is a loan and not a client. We
will show that the RV set of a program identifies all RVs defined by the program. This is
similar to Bayesian clauses in Bayesian logic programs, where atoms in the least Herbrand
model of Bayesian clauses are RVs over which a probability distribution is defined (Kersting
& De Raedt, 2007).

Now, it is possible to ground a DC# program P given an assignment u of RVs. We
denote such ground programs by ground(P)u.

Example 9. Given the following assignment of RVs identified from the RV set (Example
8),

u = {client(ann) ≅ t, loan(l 1) ≅ t, loan(l 2) ≅ t, has loan(ann, l 1) ≅ t,

has loan(ann, l 2) ≅ t, status(l 1) ≅ a, status(l 2) ≅ d, credit score(ann) ≅ 601.2},

the program of Example 7 grounds with respect to the assignments like this:

client(ann) ∼ val(t).
loan(l 1) ∼ val(t).
loan(l 2) ∼ val(t).
has loan(ann, l 1) ∼ bernoulli(0.2)← client(ann) ≅ t, loan(l 1) ≅ t.

has loan(ann, l 2) ∼ bernoulli(0.2)← client(ann) ≅ t, loan(l 2) ≅ t.

status(l 1) ∼ discrete([0.3 ∶ a, 0.7 ∶ d])← loan(l 1) ≅ t.

status(l 2) ∼ discrete([0.3 ∶ a, 0.7 ∶ d])← loan(l 2) ≅ t.

credit score(ann) ∼ gaussian(650, 15.4)← has loan(ann, l 1) ≅ t, t == f.

credit score(ann) ∼ gaussian(650, 15.4)← has loan(ann, l 2) ≅ t, t == f.

credit score(ann) ∼ gaussian(700, 10.9)← has loan(ann, l 1) ≅ t, status(l 1) ≅ a, a == a.

credit score(ann) ∼ gaussian(700, 10.9)← has loan(ann, l 2) ≅ t, status(l 2) ≅ d, d == a.

credit score(ann) ∼ gaussian(600, 20.5)← has loan(ann, l 1) ≅ t, status(l 1) ≅ a, a == d.

credit score(ann) ∼ gaussian(600, 20.5)← has loan(ann, l 2) ≅ t, status(l 2) ≅ d, d == d.

Notice that neither meaningless terms like has loan(l 1, l 2) appear in this ground program
nor atoms like has loan(ann, l 1) ≅ f appear.
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One might wonder why we require RVs and their assignment to be given before grounding
DC# programs. There are two main reasons. First, the programs may define continuous
RVs that can take infinitely many values, so we would be constructing infinitely large ground
programs without knowing the values of RVs. Second, we do not want meaningless terms
like has loan(l 1, l 2) to appear in the head of clauses in the ground programs. These
clauses define RVs, and it does not make sense to treat these meaningless terms as RVs.
So, we should know RVs before grounding the programs.

Furthermore, the assignment u can be thought of as asserted facts in the ground pro-
grams, which decide the truth values of atoms of the form X ≅ Y in the body of clauses.
Since the truth values of bodies of clauses depend on the assignment u of RV terms, when
the body of a clause is true, we say that the body is true with respect to u.

Clearly, the next step is to identify direct influence relationships among RVs defined by
programs.

Definition 7. Let P be a DC# program, u be an assignment of RVs, and ground(P)u be a
ground program constructed given u. A ground RV term A directly influences B if there is
clause B ∼ D← B1, . . . , Bn ∈ ground(P)u for some u such that n > 0, A is in the body of the
clause, and the body is true with respect to u.

For example, we observe from the ground program of Example 9 that ground RV terms
has loan(ann, l 1), has loan(ann, l 2), status(l 1), and status(l 2) directly influence
credit score(ann). However, these relationships are defined with respect to assignments
u, and it is hard to construct ground programs with respect to all u for identifying these
relationships. For this purpose, we need a simple approach that can be implemented and
executed efficiently. Next, we present such an approach. It performs a simple transformation
of the RV sets of DC# programs.

Definition 8. Let rv(P) be the RV set of a DC# program P. The dependency set dep(P)
is the union of rv(P) and the set of definite clauses pa(P) obtained by transforming each
clause rv(A0)← rv(A1), . . . , rv(An) ∈ rv(P) with non empty body as follows:

• For each rv(Ai), such that i > 0, a clause pa(A0, Ai)← rv(A0), rv(A1), . . . , rv(An) is
added to pa(P).

Example 10. By transforming the RV set constructed in Example 8, we obtain the depen-
dency set of Example 7 that consists of the RV set and the following extra clauses:

pa(has loan(C, L), client(C))← rv(has loan(C, L)), rv(client(C)), rv(loan(L)).
pa(has loan(C, L), loan(L))← rv(has loan(C, L)), rv(client(C)), rv(loan(L)).
pa(status(L), loan(L))← rv(status(L)), rv(loan(L)).
pa(credit score(C), has loan(C, L))← rv(credit score(C)), rv(has loan(C, L)).
pa(credit score(C), has loan(C, L))← rv(credit score(C)), rv(has loan(C, L)), rv(status(L)).
pa(credit score(C), status(L))← rv(credit score(C)), rv(has loan(C, L)), rv(status(L)).

One can easily infer from the above definite program that status(l 1) directly influences
credit score(ann) since pa(credit score(ann), status(l 1)) is entailed by the above
program. Basically, pa(A, B) states that the parent of A is B. Note that Definition 7 defines
the direct influences and Definition 8 presents an approach to identify them efficiently. The
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dependency set is similar to the dependency graph in BLPs (Kersting & De Raedt, 2007).
The only difference is that we use definite clauses instead of graphs to represent direct
influences. These clauses can be automatically constructed from DC# programs using the
transformations.

However, it is still unclear how to interpret the clauses, in the ground programs, which
may specify multiple distributions for RVs.

Definition 9. Let ground(P)u be a ground DC# program constructed given an assignment
u, and let

A0 ∼ DA10 ← A11, . . . , A1n1
⋮

A0 ∼ DAk0 ← Ak1, . . . , Aknk

be k clauses for A0 in ground(P)u, whose bodies are true with respect to u. Then, there is a
multiset of distributions [DA10 , . . . , DAk0] specified for A0 in ground(P)u. If k > 1 for some A0

then we say the clauses in ground(P)u are mutually inclusive; otherwise, they are mutually
exclusive.

For example, there are two distributions specified for credit score(ann) in the above
example since client ann has two loans and these loans make the bodies of two clauses for
credit score(ann) true according to the used assignment of RVs. This, however, raises
several questions: What distribution does the RV follow? Using DCs, how can we describe
that multiple loans probabilistically influence the credit score?

The standard answer to these questions is to combine multiple distributions into a single
distribution using so-called combining rules (Ngo & Haddawy, 1995; Kersting & De Raedt,
2001; Jaeger, 2007; Natarajan et al., 2008). Combining rules are based on the assumption of
independence of causal influence (ICI), where it is assumed that multiple causes on a target
variable can be decomposed into several independent causes whose effects are combined
to yield a final value (Zhang & Poole, 1996). In terms of the above example, this means
that we can let each loan independently define a distribution for the credit score and then
somehow combine all the defined distributions into a single distribution using a combining
rule CR. The most commonly used combining rules in relational systems are Mean, and
NoisyOR (Kersting & De Raedt, 2007; Natarajan et al., 2008; Fierens et al., 2015).

Let [D1, . . . ,Dn] be a non-empty multiset of probability distributions. Then, the mean
combining rule is defined as follows:

Mean([D1, . . . ,Dn]) =
1
m

n

∑
i=1

Dn

where the right-hand side of the equation is a mixture of distributions. When all distribu-
tions in the multiset are Bernoulli distributions, denoted bernoulli(pi), with parameters
pi, then generally noisy OR combining rule is used, which is defined as follows:

NoisyOR([bernoulli(p1), . . . , bernoulli(pn)]) = bernoulli(1 −
n

∏
i=1

(1 − pi))

To specify a proper probability distribution, a DC# program has to be well-defined.
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Definition 10. Let P be a DC# program, VP be the set of all RVs identified from rv(P),
ω be an assignment of VP, and Ω be the set of all such ω. The program P is well-defined if
it satisfies the following conditions:

1. Exhaustiveness: For all A0 ∈ VP and for all ω ∈ Ω, there is at least one clause of
the form A0 ∼ D← A1, . . . , An in ground(P)ω such that the clause’s body is true with
respect to ω.

2. Acyclicity: There exists a function rank(.) that maps A ∈ VP to natural numbers N.
Let A0 ∼ D← A1, . . . , An be a clause in ground(P)ω, and let {rv1, . . . rvm} be the set
of RV terms in {A1, . . . , An}. For all ω, for all clauses in ground(P)ω, and for all i,
rank(A0) > rank(rvi).

3. Finite Support: The set VP is non-empty and each A0 ∈ VP is directly influenced by
a finite set of RVs.

These conditions are similar to the conditions imposed on BLPs for them to be well-
defined (Kersting & De Raedt, 2007). Since BLPs consist of Bayesian clauses along with
CPDs, the exhaustiveness condition is implicitly imposed. Recall that CPDs define a condi-
tional probability distribution for an RV given any possible assignment of the RV’s parents,
which means CPDs are exhaustive.

Let us investigate some ill-defined programs.

Example 11. The program

a(X) ∼ bernoulli(0.2)← b(X) ≅ t.

is not well-defined since the least Herbrand model of the RV set of the program is empty.
The program

s(a, b) ∼ val(t).
s(X, f(Y)) ∼ val(t)← s(X, Y) ≅ t.

r(X) ∼ val(t)← s(X, f(Y)) ≅ t.

is ill-defined because r(a) is influenced by infinite number of RVs: s(a, b), s(a, f(b)),
s(a, f(f(b))), and so on. However, the following program

s(a, b) ∼ val(t).
s(X, f(Y)) ∼ val(t)← s(X, Y) ≅ t.

is well-defined since each RV is influenced by a finite number of RVs. Such programs allow
for writing models that can have infinite RVs such as hidden Markov models. The following
program violates the exhaustiveness condition.

a(1) ∼ discrete([0.2 ∶ t, 0.8 ∶ f]).
b(1) ∼ bernoulli(0.6)← a(1) ≅ t.
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This is because the distribution of b(1) when a(1) is f (“false”) is undefined. The program

a(1) ∼ discrete([0.2 ∶ t, 0.8 ∶ f]).
a(1) ∼ discrete([0.1 ∶ t, 0.9 ∶ f])← a(1) ≅ t.

a(1) ∼ discrete([0.7 ∶ t, 0.3 ∶ f])← a(1) ≅ f.

is ill-defined as well since it has a cyclic dependency.

We can show that the RV set of a well-defined DC# program identifies all RVs defined
by the program, and the dependency set all direct influences among RVs.

Proposition 2. Let rv(P) be a RV set of a well-defined DC# program P. Then, P defines
A as a RV iff rv(A) is in the least Herbrand model of rv(P).

The proofs of all results presented in this paper are in Appendix A.

Proposition 3. Let dep(P) be a dependency set of a well-defined DC# program P. Then,
A directly influences B iff pa(B, A) is in the least Herbrand model of dep(P).

A possible world is an assignment of all RVs VP defined by a program. Since VP can
be an infinite set, as discussed in Example 11, defining how probabilities are assigned to
possible worlds is non-trivial

3
. However, we can still define how probabilities are assigned

to assignments of a certain subset of RVs.

Definition 11. Let VP be the set of all RVs defined by a well-defined DC# program P, u
be an assignment of a finite subset U ⊆ VP. Denote the set of RVs that directly influence
X by Pa(X). The assignment u is said to be closed under direct influence relationships if
X ∈ U implies Pa(X) ⊆ U.

Example 12. Reconsider the DC# program of Example 7. Partial assignment u1 =

{client(ann) ≅ t, loan(l 1) ≅ t, has loan(ann, l 1) ≅ f } is closed under direct influence
relationships, but partial assignment u2 = {credit score(ann) ≅ 651.2, client(ann) ≅ t,
loan(l 1) ≅ t, has loan(ann, l 1) ≅ f} is not closed under such relationships. This is be-
cause random variable term has loan(ann, l 2) directly influences credit score(ann), but
is not assigned in u2.

Definition 12. Let P be a well-defined DC# program, u be an assignment that is closed
under direct influence relationships, and ground(P)u be the ground program constructed
given u. Then the probability (or density) that ground(P)u assigns to u is given by

P (u) = ∏
Ai≅x∈u

CR([DA1i , . . . , DAki])(Ai ≅ x)

where [DA1i , . . . , DAki] is a multiset of distributions specified for RV term Ai in ground(P)u
and CR([DA1i , . . . , DAki])(Ai ≅ x) is the conditional probability density/mass of Ai at x ac-
cording to the combined distribution CR([DA1i , . . . , DAki]) obtained after applying CR on the
multiset.

3. To define a probability distribution over infinite RVs, one uses the Kolmogorov extension theorem.
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Example 13. Suppose we use Mean as a combining rule for the program of Example 9.
Then, to compute the probability density given to the assignment in the example, we will
use the following conditional probability densities/masses:

client(ann) ≅ t 1.00
loan(l 1) ≅ t 1.00
loan(l 2) ≅ t 1.00

has loan(ann, l 1) ≅ t 0.20
has loan(ann, l 2) ≅ t 0.20

status(l 1) ≅ a 0.30
status(l 2) ≅ d 0.70

credit score(ann) ≅ 601.2 0.04

where, the last entry is the probability density at 601.2 according to the mixture of Gaussians
{N (x ∣ 700, 10.9) + N (x ∣ 600, 20.5)}/2. Thus, the density assigned to the assignment is
0.20 × 0.20 × 0.30 × 0.70 × 0.04.

We can show that these probability (or density) assignments define a unique probability
distribution.

Proposition 4. Let P be a well-defined DC# program, and VP be a set of all RVs defined
by it. Then P specifies a unique probability distribution over VP.

Since well-defined DC# programs satisfy all conditions of well-defined BLPs, this propo-
sition follows from Proposition 1 of (Kersting & De Raedt, 2001)

5. Inference in Ground DC# Programs

Before presenting the sampling algorithm for first-order DC# programs, we will first design
an efficient sampling algorithm for ground DC# programs describing BNs with structured
CPDs. Thus, this section will focus only on programs having mutually exclusive clauses,
which are sufficient to describe such BNs. The algorithm presented in this section aims to
exploit structures within CPDs or the structure of clauses in ground programs. However,
in this section, we will assume that continuous RVs are absent for simplicity. Once this
algorithm is clear, the extended algorithm for first-order DC# programs presented in the
next section will be easy to comprehend.

A natural representation of the structures in CPDs is via tree-CPDs (Koller & Friedman,
2009), as illustrated in Figure 1a. For all assignments to the parents of a variable A, a unique
leaf in the tree specifies a (conditional) distribution over A. The path to each leaf dictates
the contexts, i.e., partially assigned parents, given which this distribution is used. We can
easily represent tree-CPDs using DCs, where each path from the root to a leaf in each
tree-CPD maps to a rule.

Example 14. The set of clauses for the tree-CPD in Figure 1a:
e ∼ bernoulli(0.2)← a ≅ 1.
e ∼ bernoulli(0.9)← a ≅ 0, b ≅ 1.
e ∼ bernoulli(0.6)← a ≅ 0, b ≅ 0, c ≅ 1.
e ∼ bernoulli(0.3)← a ≅ 0, b ≅ 0, c ≅ 0.
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Conversely, we can view a ground program with mutually exclusive clauses as a rep-
resentation of tree-CPDs of all variables of a BN. Thus, we can alternatively define the
probability distribution specified by such ground programs as follows,

Definition 13. Let B be a Bayesian network with tree-CPDs specifying a distribution P .
Let P be a set of distributional clauses such that each path from the root to a leaf of each
tree-CPD corresponds to a clause in P. Then P specifies the same distribution P .

To avoid confusion, such ground programs will be called DC(B) programs.
While an efficient sampling algorithm for B only exploits the graph structure (CIs prop-

erties) in B, the key to designing an efficient sampling algorithm for DC(B) programs is to
exploit both the underlying graph and the clause structure (CSIs properties). To this end,
we start with our discussion on the estimation of unconditional probability queries, which
is necessary to support our further discussion on conditional probability queries, where we
present the full algorithm for DC(B) programs.

5.1 Top-Down Proof Procedure for DC(B) programs

Estimating unconditional probability queries in BNs is easy. We just need to generate
some random samples of query variables and to find the fraction of times the query is true,
which is the estimated probability of the query. In this sampling process, all ancestors of
query variables are also sampled. However, due to the clause structure in DC(B) programs,
it is possible to generate random samples of query variables by sampling only some (not
all) ancestors, which makes the sampling process more efficient. A simplified version of an
approach due to (Nitti et al., 2016) is discussed in Algorithm 1. This approach resembles
SLD resolution (Kowalski, 1974) for definite programs. However, there are some differences
due to the stochastic nature of sampling. Unlike SLD resolution, this approach maintains
global variable Asg to record sampled values of RVs.

Given an initial goal G0 and global variable Asg, the algorithm recursively produces new
goals G1,G1, etc., and updates Asg. There are two cases when it is not possible to obtain
Gi+1 from Gi:

• the first is when the selected subgoal of the form t ≅ v cannot be resolved because
the sampled value of the RV term already recorded in Asg is different from v.

• the other case appears when Gi = □ (i.e. the empty goal).

The procedure
4

results in a derivation of G0, a finite sequence of goals starting with the
initial goal

Example 15. Consider the initial goal (G0) ← e ≅ 1 and the following DC(B) program:
a ∼ bernoulli(0.1).
d ∼ bernoulli(0.3).
b ∼ bernoulli(0.2)← a ≅ 0.
b ∼ bernoulli(0.6)← a ≅ 1.
c ∼ bernoulli(0.2)← a ≅ 1.

4. Since cyclic dependency among RVs is not allowed in well-defined programs, and the number of clauses
in the program is finite, the procedure is guaranteed to terminate.
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Algorithm 1 DC(B) Proof Procedure

procedure prove-ground(G)

• Proves a conjunction of ground atoms G.

• Returns yes if there is a choice that makes G empty; otherwise the procedure fails.

1. While G is not empty:

(a) Select the first atom A from G.

(b) If A is of the form t ≅ v:

i. If a value of t is recorded in Asg:

A. If Asg[t] == v: remove A from G.

ii. Else:

A. Choose t ∼ D← B1, . . . , Bn ∈ P with t in the head.

B. Set G ∶= B1, . . . , Bn, sample(t, D), G.

(c) Else If A is of the form sample(t, D):
i. Sample a value v from D, record Asg[t] ∶= v, and remove A from G.

2. Return yes.

c ∼ bernoulli(0.7)← a ≅ 0, b ≅ 1.

c ∼ bernoulli(0.8)← a ≅ 0, b ≅ 0.

e ∼ bernoulli(0.9)← c ≅ 1.

e ∼ bernoulli(0.4)← c ≅ 0, d ≅ 1.

e ∼ bernoulli(0.3)← c ≅ 0, d ≅ 0.

Use sample(k, l) as a shorthand notation for sample(k, bernoulli(l)). A derivation of
G0, the state of Asg and the program clause used in each step is shown in Figure 3.

As usual, the derivation of goal G0 that ends in the empty goal corresponds to a refutation
of the goal. Not all derivations lead to refutations. As already pointed out, if the selected
subgoal cannot be resolved, the derivation fails. A refutation or a failed derivation is a
complete derivation. If the selected subgoal of some goal can be resolved with more than
one program clause, there can be many complete derivations. The procedure searches
a refutation by generating multiple complete derivations in a depth-first search fashion.
Notice that, unlike SLD-resolution, here derivations might depend on previous complete
derivations. This is because the previous derivations might have updated the Asg table,
which in turn might influence the current derivation. Additionally, it should be clear that
no or only one derivation can be the refutation when clauses in a program are mutually
exclusive. So, for efficiency, one should stop generating more derivations in such programs
once a refutation is obtained.

To estimate the probability of e ≅ 1, we call PROVE-GROUND(e ≅ 1) repeatedly. The
fraction of times we get refutation (i.e., the algorithm returns yes) is the estimated prob-
ability. Notice that some ancestors of the query variables may not be sampled on some
occasions, e.g., in Example 15, variables d and b were not sampled. Thus, we speed up the
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G0: ← e≅1.  Asg: []

G2: ← a≅1,sample(c,0.2),c≅1,sample(e,0.9),e≅1. Asg∶[]

G3: ← sample(a,0.1),a≅1,sample(c,0.2),c≅1,sample(e,0.9),e≅1.  Asg∶[]

G5: ← sample(c,0.2),c≅1,sample(e,0.9),e≅1.  Asg∶[a≅1]

G8: ← e≅1.  Asg∶[a≅1,c≅1,e≅1]

G9: ← Asg∶[a≅1,c≅1,e≅1]

C2: a ~ bernoulli(0.1).

C0: e ~ bernoulli(0.9) ← c≅1.

G1: ← c≅1,sample(e,0.9),e≅1. Asg∶ [] C1: c ~ bernoulli(0.2) ← a≅1.

G4: ← a≅1,sample(c,0.2),c≅1,sample(e,0.9),e≅1. Asg∶[a≅1]

G6: ← c≅1,sample(e,0.9),e≅1. Asg∶[a≅1,c≅1]

G7: ← sample(e,0.9),e≅1. Asg∶[a≅1,c≅1]

Figure 3: A search graph for a top-down derivation

sampling process and, in this way, exploit the structure of clauses while estimating marginal
probabilities.

5.2 Exploiting Context-Specific Independencies

We now turn our attention to the problem of estimating conditional probabilities, which is
more interesting but is significantly more complicated. Exploiting CSIs in this problem is
unexplored in (Nitti et al., 2016). Here we introduce a sampling algorithm that combines
the proof procedure, discussed in the previous section, with the Bayes-ball simulation,
discussed in Section 3.2. The combined algorithm then exploits both the clause structures
and the underlying graph structure of DC(B) programs. As we will see, it samples variables
given the states of only some of their requisite ancestors. This contrasts with the Bayes-ball
simulation of BNs, where knowledge of all such ancestors’ states is required. This section
is divided into two parts. The first part presents a novel notion of contextual assignment
that allows for exploiting CSIs. It provides insight into the computation of µ using partial
assignments of requisite variables. We will show that CSIs allow for breaking the main
problem of computing µ into several sub-problems that can be solved independently. The
second part presents the sampling algorithm and justifies it using the notion introduced in
the first part.
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5.2.1 Notion of Contextual Assignments

Recall from Section 3.2 that variables X, Z⋆, E⋆, E⭒ are requisite for computing the query
µ and the requisite network B⋆ is formed by these variables. We will consider partial
assignments of these variables, which will be used to compute µ. Let us start by defining
these assignments.

Definition 14. Let Z† ⊆ Z⋆ and e† ⊆ e⋆. Denote Z⋆ \ Z† by Z‡, and e⋆ \ e† by e‡. A
partial assignment x, z†, Z‡, e†, e‡ will be called contextual assignment if due to CSIs in
P ,

∏
ui∈x∪z†∪e†

P (ui ∣ pa(Ui)) = ∏
ui∈x∪z†∪e†

P (ui ∣ ppa(Ui))

where ppa(Ui) is a set of partially assigned parents of Ui, that is, Ppa(Ui) = Pa(Ui) \ Z‡.

Here, we summarise some important RVs or their assignments:

X Query variables

Z⋆ Unobserved requisite variables apart from query variables

e⋆ Diagnostic evidence

e⭒ Predictive evidence

z† Assigned subset of Z⋆ in a contextual assignment

Z‡ Subset of Z⋆ not assigned in a contextual assignment

e† Subset of e⋆ in a contextual assignment

e‡ Subset of e⋆ not in a contextual assignment

Example 16. Consider the network of Figure 1a, and assume that our diagnostic evidence
is {F = 1, G = 0, H = 1}, predictive evidence is {D = 1}, and query is {E = 0}. From the
CPD’s structure, we have: P (E = 0 ∣ A = 1, B,C) = P (E = 0 ∣ A = 1); consequently,
a contextual assignment is x = {E = 0}, z† = {A = 1}, e† = {},Z‡ = {B,C}, e‡ = {F =

1, G = 0, H = 1}. We also have: P (E = 0 ∣ A = 0, B = 1, C) = P (E = 0 ∣ A = 0, B = 1);
consequently, another such assignment is x = {E = 0}, z† = {A = 0, B = 1}, e† = {H =

1},Z‡ = {C}, e‡ = {F = 1, G = 0}.

We aim to treat the evidence e‡ independently, thus, we define it first.

Definition 15. The diagnostic evidence e‡ in a contextual assignment x, z†, Z‡, e†, e‡ will
be called residual evidence.

However, contextual assignments do not immediately allow us to treat the residual
evidence independently. We need the assignments to be safe.

Definition 16. Let e ∈ e⋆ be a diagnostic evidence, and let S be an unobserved ancestor
of E in the graph structure in B⋆, where B⋆ is the sub-network formed by the requisite
variables. Let S → ⋯ Bi ⋯ → E be a causal trail such that either no Bi is observed or
there is no Bi. Let S be the set of all such S. Then the variables S will be called basis of e.
Let ė⋆ ⊆ e⋆, and let Ṡ⋆ be the set of all such S for all e ∈ ė⋆. Then Ṡ⋆ will be called basis
of ė⋆.
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Reconsider Example 16; the basis of {F = 1} is {B}.

Definition 17. Let x, z†, Z‡, e†, e‡ be a contextual assignment, and let S‡ be the basis of
the residual evidence e‡. If S‡ ⊆ Z‡ then the contextual assignment will be called safe.

Example 17. Reconsider Example 16; the first example of a contextual assignment is safe,
but the second is not since the basis B of e‡ has a non-empty intersection with Z†. We can
make the second safe like this: x = {E = 0}, z† = {A = 0, B = 1}, e† = {F = 1, H = 1},Z‡ =

{C}, e‡ = {G = 0}. See Figure 4.

Before showing that the residual evidence can now be treated independently, we first
define a random variable called weight.

Definition 18. Let e ∈ e⋆ be a diagnostic evidence, and let We be a random variable defined
as follows:

We = P (e ∣ Pa(E)).
The variable We will be called weight of e. The weight of a subset ė⋆ ⊆ e⋆ is defined as
follows:

Wė⋆ = ∏
ui∈ė⋆

P (ui ∣ Pa(Ui)).

Now we can show the following result:

Theorem 5. Let ė⋆ ⊆ e⋆, and let Ṡ⋆ be the basis of ė⋆. Then the expectation of weight
Wė⋆ relative to the distribution Q⋆ as defined in Equation 4 can be written as:

EQ⋆[Wė⋆] =∑
ṡ⋆

∏
ui∈ė⋆∪ṡ⋆

P (ui ∣ pa(Ui)).

Hence, apart from unobserved variables Ṡ⋆, the computation of EQ⋆[Wė⋆] does not
depend on other unobserved variables.

Let ψ denotes a contextual assignment x, z†, Z‡, e†, e‡. The range of ψ, denoted
range(ψ), is the set of all full assignments constructed by assigning the unobserved variables
in Z‡. Reconsider the contextual assignment of Example 17. Since C is a Boolean random
variable, the range of the contextual assignment is {{E = 0, A = 0, B = 1, F = 1, H = 1, C =

0, G = 0}, {E = 0, A = 0, B = 1, F = 1, H = 1, C = 1, G = 0}}.
It is worth noting that a full assignment ψ is a safe contextual assignment, where

the set of unobserved variables and the residual evidence set are empty. In such a case,
range(ψ) = {ψ}.

The next theorem requires contextual assignments to be mutually exclusive. Two con-
textual assignments ψ and ψ

′
are mutually exclusive if range(ψ) ∩ range(ψ′) = ∅.

Theorem 6. Let Ψ be a set of mutually exclusive contextual assignments such that each
full assignment x, z⋆, e⋆, e⭒ of the requisite network B⋆ is under the range of a safe con-
textual assignment ψ ∈ Ψ. Let x[ψ], z†[ψ], Z‡[ψ], e†[ψ], e‡[ψ] denote assigned variables,
unobserved variables and evidence in ψ ∈ Ψ. Then the query µ to P can be computed as
follows:

∑
ψ∈Ψ

( ∏
ui∈x[ψ]∪z†[ψ]∪e†[ψ]

P (ui ∣ ppa(Ui))f(x[ψ])R[ψ])

∑
ψ∈Ψ

( ∏
ui∈x[ψ]∪z†[ψ]∪e†[ψ]

P (ui ∣ ppa(Ui))R[ψ]))
(6)
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Figure 4: Two safe contextual assignments to RVs of BN of Figure 1a: (a) in the context
A = 1, where edges C → E and B → E are redundant since E ⊥ B,C ∣ A =

1; (b) in the context A = 0, B = 1, where the edge C → E is redundant since
E ⊥ C ∣ A = 0, B = 1. To identify such assignments, intuitively, we should
apply the Bayes-ball algorithm after removing these edges. Portions of graphs
that the algorithm visits, starting with visiting the variable E from its child, are
highlighted. Notice that variables X,Z†,E† lie in the highlighted portion.

where R[ψ] denotes EQ⋆[We‡[ψ]].

We draw some important conclusions: i) µ can be exactly computed by performing
the summation over safe contextual assignments; notably, variables in Z† vary, and so do
variables in E†; ii) For all ψ ∈ Ψ, the computation of EQ⋆[We‡[ψ]] does not depend on
the context x[ψ], z†[ψ] since no basis of e‡[ψ] is assigned in the context (by Theorem 5).
Hence, EQ⋆[We‡[ψ]] can be computed independently. However, the context decides which
evidence should be in the subset e‡[ψ]. That is why we can not cancel EQ⋆[We‡[ψ]] from
the numerator and denominator.

5.2.2 Context-Specific Likelihood Weighting

First, we present an algorithm that simulates a DC(B) program P and generates safe contex-
tual assignments. Then we discuss how to estimate the expectations independently before
estimating µ.

Simulation of DC(B) Programs We start by asking a question. Suppose we modify
the first and the fourth rule of Bayes-ball simulation, discussed in Section 3.2, as follows:

• In the first rule, when the visit of an unobserved variable is from its child, everything
remains the same except that only some parents are visited, not all.

• Similarly, in the fourth rule, when the visit of an observed variable is from its parent,
everything remains the same except that only some parents are visited.

Which variables will be assigned, and which will be weighted using the modified simulation
rules? Intuitively, only a subset of variables in Z⋆ should be assigned, and only a subset of
variables in E⋆ should be weighted. But then how to assign/weigh a variable knowing the
state of only some of its parent. We can do that when structures are present within CPDs
of B, and these structures are explicitly represented using clauses in a DC(B) program P.
Recall that the proof procedure, discussed in Section 5.1, can sample random variables
without sampling some of their ancestors. Hence, the key idea is to visit only some parents
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Algorithm 2 Simulation of DC(B) Programs

procedure Simulate-ground-DC(x, e)

• Simulates a DC(B) program P based on inputs: i) x: a query; ii) e: evidence.

• Let dep(P) be the dependency set of P.

• The procedure maintains global data structures: i) Asg, a table that records as-
signments of variables (x ∪ z†); ii) Forward, a set of variables whose children to be
visited from parent; iii) Top, a set of variables marked on top; iv) Bottom, a set of
variables marked on bottom.

• Output: i) f(x) that can be either 0 or 1; ii) W: a table of weights of diagnostic
evidence (e†).

1. Empty Asg, W, Top, Bottom, Forward.

2. If prove-marked-ground(x) is yes then f(x) ∶= 1 else f(x) ∶= 0.

3. While Forward is not empty:

(a) Remove A from Forward and add A to Bottom.

(b) For all A0 such that dep(P) ⊧ pa(A0, A):
i. If A0 is observed with value v in e and A0 ∉ Top:

A. Choose A0 ∼ D← A1, . . . , An ∈ P such that prove-marked-
ground(A1, . . . , An) is yes. Add A0 to Top.

B. Let p be the likelihood at v according to distribution D. Record W[A0] ∶= p.

ii. If A0 is not observed in e and A0 ∉ Bottom: add A0 to Forward.

4. Return [f(x), W].

(if possible due to structures); consequently, those unobserved parents that are not visited
might not be needed to be sampled.

To realize that, we need to adapt the Bayes-ball simulation such that it works on DC(B)
programs. However, there is a problem: P is a set of clauses, and no explicit graph is as-
sociated with it on which the Bayes-ball can be applied. Fortunately, we can infer direct
influence relationships using the dependency set of P, which is automatically constructed,
as discussed in Section 4.2. The adapted simulation for DC(B) programs is defined pro-
cedurally in Algorithm 2. The algorithm visits variables from their parents and calls the
top-down proof procedure (Algorithm 3) to visit variables from their children. Like Bayes-
ball, these algorithms also mark variables on top and bottom to avoid repeating the same
action.

Since the simulation of P follows the same four rules of Bayes-ball simulation except
that only some parents are visited in the first and fourth rule, we show that

Lemma 7. Let E† be a set of observed variables weighed and let Z† be a set of unobserved
variables, apart from query variables, assigned in a simulation of P, then,

Z† ⊆ Z⋆ and E† ⊆ E⋆.
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Algorithm 3 DC(B) Proof Procedure Marked

procedure prove-marked-ground(G)

• Proves a conjunction of ground atoms G, consequently, visits variables from child.

• Accesses P, Top, Bottom, Forward, Asg, and e as defined in Algorithm 2.

• Returns yes if there is a choice that makes G empty; otherwise the procedure fails.

1. While G is not empty:

(a) Select the first atom A from G.

(b) If A is of the form t ≅ v:

i. If t is observed in e and its observed value is v: remove A from G.

ii. Else if t ∈ Top:

A. If Asg[t] == v: remove A from G.

iii. Else:

A. Add t to Top.

B. Choose t ∼ D← B1, . . . , Bn ∈ P with t in the head.

C. Set G ∶= B1, . . . , Bn, sample(t, D), G.

(c) Else If A is of the form sample(t, D):
i. Sample a value v from D, record Asg[t] ∶= v, and remove A from G.

ii. If t ∉ Bottom: add t to Forward

2. Return yes.

Algorithm 4 Generation of residual evidence’s weights for DC(B) Programs

procedure Weight-Res-Ground(Res)

• Generates residual evidence’s weights based on input: i) Res, a list of residual evi-
dence. This procedure accesses P of Algorithm 2.

• Output: i) W1, a table of residual evidence’s weights.

1. For all random variables A0 in Res.

(a) Let v be the value observed for A0 in Res.

i. Choose A0 ∼ D← A1, . . . , An ∈ P such that prove-marked-
ground(A1, . . . , An) is yes.

ii. Let p be the likelihood of v according to distribution D. Record W1[A0] ∶= p.

2. Return W1.

The query variables X are always assigned since the simulation starts with visiting these
variables as if visits are from one of their children. To simplify notation, from now on we
use Z† to denote the subset of variables in Z⋆ that are assigned, E† to denote the subset
of variables in E⋆ that are weighted in the simulation of P. Z‡ to denote Z⋆ \ Z†, and E‡

708



First-Order Context-Specific Likelihood Weighting

to denote E⋆ \ E† We show that the simulation performs safe contextual assignments to
requisite variables.

Theorem 8. Partial assignments x, z†, Z‡, e†, e‡ generated in simulations of DC(B)
programs are safe contextual assignments.

The proof of Theorem 8 relies on the following Lemma.

Lemma 9. Let P be a DC(B) program specifying a distribution P . Let B,C be disjoint
sets of parents of a variable A. In a simulation of P, if A is sampled/weighted, given an
assignment c, and without assigning B, then,

P (A ∣ c,B) = P (A ∣ c).

Furthermore, two contextual assignments generated in two simulations of a DC(B) pro-
gram are either identical or mutually exclusive. This is because the algorithm behind the
two simulations is the same, so both will generate identical contextual assignments unless a
different value is sampled for at least one unobserved variable. However, the two contextual
assignments will clearly become mutually exclusive when a different value is sampled for an
unobserved variable.

Hence, just like the standard LW, we sample from a factor Q† of the proposal distribution
Q⋆, which is given by,

Q† = ∏
ui∈x∪z†∪e†

P (ui ∣ ppa(Ui))

where P (ui ∣ ppa(Ui)) = 1 if ui ∈ e†. It is precisely this factor that Algorithm 2 considers
for the simulation of P. Starting by first setting E⭒, E‡ their observed values, it assigns
X∪Z† and weighs e† in the topological ordering. In this process, it records partial weights
we† , such that: ∏xi∈e†

wxi = we† and wxi ∈ we† . Given M partially weighted samples

D† = ⟨x[1],we†[1]⟩, . . . , ⟨x[M],we†[M]⟩ from Q†, we could estimate µ using Theorem 6 as
follows:

µ =
∑M
m=1 f(x[m]) × we†[m] × EQ⋆[We‡[m]]

∑M
m=1we†[m] × EQ⋆[We‡[m]]

(7)

However, we still can not estimate it since we still do not have expectations EQ⋆[We‡[m]].
Fortunately, there are ways to estimate them from partial weights in D†. We discuss one
such way next.

Estimating the Expected Weight of Residuals We start with the notion of sample
mean. Let W⋆ = ⟨we1[1], . . . , wem[1]⟩, . . . , ⟨we1[n], . . . , wem[n]⟩ be a data set of n obser-
vations of weights of m diagnostic evidence drawn using the standard LW. How can we
estimate the expectation EQ⋆[Wei] from W⋆? The standard approach is to use the sam-

ple mean: W ei =
1
n
∑n
r=1wei[r]. In general, EQ⋆[Wei . . .Wej] can be estimated using the

estimator: Wei . . .W ej
=

1
n
∑n
r=1wei[r] . . . wej[r]. Since LW draws are independent and

identical distributed (i.i.d.), it is easy to show that the estimator is unbiased.

However, some entries, i.e., weights of residual evidence, are missing in the data set W†
obtained using CS-LW. The trick is to fill the missing entries by drawing samples of the
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missing weights once we obtain W†. More precisely, missing weights ⟨Wei , . . . ,Wej⟩ in r
th

row of W† are filled in with a joint state ⟨wei[r], . . . , wej[r]⟩ of the weights. To draw the
joint state, we use Algorithm 4 and call weight-res-ground([ei, . . . , ej]) to visit observed
variables ⟨Ei, . . . , Ej⟩ from parent. Once all missing entries are filled in, we can estimate

EQ⋆[Wei . . .Wej] using the estimator Wei . . .W ej
as just discussed. Once we estimate all

required expectations, it is straightforward to estimate µ using Equation 7.

Interpretation At this point, we can gain some insight into the role of CSIs in sampling.
They allow us to estimate the expectation EQ⋆[We‡] separately. We estimate it from all
samples obtained at the end of the sampling process, thereby reducing the contribution We‡

makes to the variance of our main estimator µ. The residual evidence e‡ would be large
if many CSIs are present in the distribution; consequently, we would obtain a much better
estimate of µ using significantly fewer samples. Moreover, drawing a single sample would
be faster since only a subset of requisite variables is visited. Hence, in addition to CIs, we
exploit CSIs and improve LW further. We observe all these speculated improvements in our
experiments.

6. Inference in First-Order DC# Programs

This section extends CS-LW to first-order DC# programs where clauses need not be mutu-
ally exclusive. The extended algorithm is called first-order context-specific likelihood weight-
ing (FO-CS-LW).

Using tools of logic such as unification and substitution, it is easy to simulate first-
order programs without completely grounding them first. The simulation process defined
in Algorithm 5 does that. It uses dependency sets of programs to visit RVs from parents
and calls Algorithm 7 to visit RVs from children. The RV sets of programs are used to
identify RVs defined by programs. There are two important features of the top-down proof
procedure with logical variables defined in Algorithm 7, which are worth highlighting.

Firstly, it computes answer substitutions of a query ← A1, . . . , Am, that is, the substitu-
tions of the refutations of the query restricted to the variables in the query. To realize that,
instead of the query, the initial goal G0 is of the form:

yes(V1, . . . , Vk)← A1, . . . , Am

where V1, . . . , Vk are the logical variables that appear in the query. This allows the procedure
to return the answer {V1/t1, . . . , Vk/tk} when the body of goal Gi is empty after applying
the resolution rules. This is just like the proof procedure for definite programs with logical
variables (Poole & Mackworth, 2010).

Secondly and more importantly, the procedure searches and collects all distributions
defined for an RV in a global variable Dst before sampling values of the RV from the
combined distribution obtained using the combining rules. This is as per the semantics of
DC# programs, and in this way, the algorithm also exploits ICIs.

The generation of residual evidence’s weights is defined in Algorithm 7.

Dealing with Continuous RVs Till now, we have not talked about inference in pro-
grams with continuous RVs. Nevertheless, the notions discussed so far are sufficient to
explain inference in such programs. Likelihood weighting naturally extends to continuous

710



First-Order Context-Specific Likelihood Weighting

Algorithm 5 Simulation of DC# Programs

procedure Simulate-DC#(x, e)

• Simulates a DC program P based on inputs: i) x, a ground query; ii) e: evidence.

• Let dep(P) be the dependency set of P.

• The procedure maintains global data structures: i) Asg, a table that records partial
assignments of unobserved variables; ii) Forward, a set of variables whose children
to be visited from parent; iii) Top, a set of variables marked on top; iv) Bottom, a set
of variables marked on bottom; v) Dst, a table that records variables’ distributions.

• Output: i) f(x) that can be either 0 or 1; ii) W: a table of weights of diagnostic
evidence (e†).

1. Empty Asg, W, Top, Bottom, Dst, Forward. Let CR be combining rules used for P.

2. If prove-marked(x) fails then f(x) ∶= 0 else f(x) ∶= 1

3. While Forward is not empty:

(a) Remove A from Forward and add A to Bottom

(b) For all A0 such that dep(P) ⊧ pa(A0, A):
i. If A0 is observed to be v in e and A0 ∉ Top:

A. Add A0 to Top.

B. For all (renamed) clause B0 ∼ D← B1, . . . , Bm ∈ P such that mgu σ unifies
B0 and A0: call prove-marked((B1, . . . , Bm, add dst(B0, D))σ)

C. Let [D1, . . . , Dl] be distributions for A0 recorded in table Dst, and let p be
the likelihood at v according to CR([D1, . . . , Dl]). Record W[A0] ∶= p.

ii. If A0 is not observed in e and A0 ∉ Bottom: add A0 to Forward

4. Return [f(x), W]

domains (Koller & Friedman, 2009). We just need rules to resolve comparison atoms of
the form V1 ⋄ V2 that appear in the body of clauses. These rules are already present in the
proof procedure.

To ensure that FO-CS-LW correctly estimates the probabilities, we need to ensure that
the simulation of DC# programs also generates safe contextual assignments that are iden-
tical or mutually exclusive. For this, we just need to ensure that Lemma 9 also holds for
the DC# programs’ simulation.

Theorem 10. Lemma 9 is also true for simulation of DC# programs.

7. Empirical Evaluation

In this section, we empirically evaluate our inference algorithms and answer several research
questions.
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Algorithm 6 DC# Proof Procedure

procedure prove-marked(Q)

• Proves a conjunction of atoms Q with variables V1, . . . , Vk.

• Accesses P, Asg, Top, Bottom, Dst, Forward, e, and CR as defined in Algorithm 5.

• Returns substitutions of variables V1, . . . , Vk if refutation exists; otherwise fails.

• Let rv(P) be an RV set of P.

1. Set G to a clause yes(V1, . . . , Vk)← Q

2. While the body of G is not empty:

(a) Suppose G is yes(t1, . . . , tk)← A1, . . . , An. Select A1
(b) If A1 is an atom of the form X ≅ V:

i. Choose a grounding substitution σ1 such that rv(P) ⊧ Xσ1
ii. If Xσ1 is observed in e: let v be the observed value.

iii. Else if Xσ1 ∈ Top: let v be Asg[Xσ1].
iv. Else:

A. For all (renamed) clause B0 ∼ D← B1, . . . , Bm ∈ P such that mgu σ2 unifies B0 and
Xσ1: call prove-marked((B1, . . . , Bm, add dst(B0, D))σ2)

B. Let M = [D1, . . . , Dl] be distributions for Xσ1 recorded in table Dst. Let v be value
sampled from CR(M). Record Asg[Xσ1] ∶= v.

C. Add Xσ1 to Top. If Xσ1 ∉ Bottom then add Xσ1 to Forward

v. If mgu σ3 unify Xσ1 ≅ v and X ≅ V: set G ∶= ((yes(t1, . . . , tk)← A2, . . . , An)σ1)σ3
(c) Else if A1 is of the form add dst(X, D): // A1 will always be ground here

i. Record Dst[X] ∶= D and set G ∶= yes(t1, . . . , tk)← A2, . . . , An
(d) Else if A1 is of the form V1 ⋄ V2 and evaluates to true: G ∶= yes(t1, . . . , tk)← A2, . . . , An

3. Return {V1/t1, . . . , Vk/tk} when G is yes(t1, . . . , tk)←

7.1 How do the sampling speed and the accuracy of estimates obtained using
CS-LW compare with the standard LW in the presence of CSIs?

To answer it, we need BNs with structures present within CPDs. Such BNs, however, are
not readily available since the structure while designing inference algorithms is generally
overlooked. We identified two BNs from the Bayesian network repository (Elidan, 2001),
which have many structures within CPDs: i) Alarm, a monitoring system for patients with
37 variables; ii) Andes, an intelligent tutoring system with 223 variables.

We used the standard decision tree learning algorithm to detect structures and overfitted
it on tabular-CPDs to get tree-CPDs, which was then converted into clauses. Let us denote
the program with these clauses by Ptree. CS-LW is implemented in the Prolog programming
language, thus to compare the sampling speed of LW with CS-LW, we need a similar
implementation of LW. Fortunately, we can use the same implementation of CS-LW for
obtaining LW estimates. Recall that if we do not make structures explicit in clauses and
represent each entry in tabular-CPDs with clauses, then CS-LW boils down to LW. Let Ptable
denotes the program where each rule in it corresponds to an entry in tabular-CPDs. Table
1 shows the comparison of estimates obtained using Ptree (CS-LW) and Ptable (LW). Note
that CS-LW automatically discards non-requisite variables for sampling. So, we chose the

712



First-Order Context-Specific Likelihood Weighting

Algorithm 7 Generation of residual evidence’s weights for DC# Programs

procedure Weight-Residuals(Res)

• Generates residual evidence’s weights based on input: i) Res, a list of residual evi-
dence. This procedure accesses P and CR of Algorithm 5.

• Output: i) W1, a table of residual evidence’s weights.

1. For all random variable A0 in Res.

(a) Let v be the value observed for A0 in Res.

i. For all (renamed) clause B0 ∼ D← B1, . . . , Bm ∈ P such that mgu σ unifies B0
and A0: call prove-marked((B1, . . . , Bm, add dst(B0, D))σ)

ii. Let [D1, . . . , Dl] be distributions for A0 recorded in table Dst, and let p be
the likelihood at v according to CR([D1, . . . , Dl]). Record W1[A0] ∶= p.

2. Return W1.

LW CS-LW

BN N MAE ± Std. Time MAE ± Std. Time

Alarm

100 0.2105 ± 0.1372 0.09 0.0721 ± 0.0983 0.06
1000 0.0766 ± 0.0608 0.86 0.0240 ± 0.0182 0.53
10000 0.0282 ± 0.0181 8.64 0.0091 ± 0.0069 5.53
100000 0.0086 ± 0.0067 89.93 0.0034 ± 0.0027 57.64

Andes

100 0.0821 ± 0.0477 1.07 0.0619 ± 0.0453 0.22
1000 0.0257 ± 0.0184 10.62 0.0163 ± 0.0139 2.20
10000 0.0087 ± 0.0069 106.55 0.0058 ± 0.0042 22.62
100000 0.0025 ± 0.0015 1074.93 0.0020 ± 0.0016 233.72

Table 1: The mean absolute error (MAE), the standard deviation of the error (Std.), and
the average execution time (in seconds) versus the number of samples (N). For
each case, LW and CS-LW were executed 30 times.

query and evidence such that almost all variables in BNs were requisite for the conditional
query.

As expected, we observe that less time is required by CS-LW to generate the same
number of samples. This is because it visits only the subset of requisite variables in each
simulation. Andes has more structures compared to Alarm. Thus, the sampling speed
of CS-LW is much faster compared to LW in Andes. Additionally, we observe that the
estimate, with the same number of samples, obtained by CS-LW is much better than LW.
This is significant. It is worth mentioning that approaches based on collapsed sampling
obtain better estimates than LW with the same number of samples, but then the speed of
drawing samples significantly decreases (Koller & Friedman, 2009). In CS-LW, the speed
increases when structures are present. This is possible because CS-LW exploits CSIs.
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Hence, we get the answer to our first question: When many structures are present, and
when they are made explicit in clauses, then CS-LW will draw samples faster compared to
LW. Additionally, estimates will be better with the same number of samples.

7.2 How does FO-CS-LW perform as the domain size increases?

The exact inference algorithms that PLP systems generally use for inference do not scale
with domain sizes of logical variables in the program. Large domain sizes result in a huge
ground program on which exact inference becomes intractable even for PLPs supporting
only Boolean RVs. Thus, it is interesting to investigate how FO-CS-LW, an approximate
inference algorithm, performs on such PLPs.

For this purpose, we compared FO-CS-LW with the inference algorithm used in ProbLog,
one of the most popular PLP systems. This algorithm first grounds first-order programs
and then performs exact inference to exploit structures of clauses in the programs. We used
a ProbLog program shown in Figure 5 for this experiment. Note that in ProbLog, when
multiple distributions are specified for an RV, they are combined using NoisyOR, and when
no distribution is specified, the RV is set to false. So, using this combining rule, the ProbLog
program of Figure 5 can be expressed as a DC# program. The domain size of each logical
variable in the program is two since there are two clients, two accounts, and two loans. In
such cases, instead of specifying the domain size of each logical variable separately, we will
simply say that the domain size is two. Notice that relationships among clients, accounts,
and loans are also probabilistic, so the number of RVs explicated by the program becomes
huge as the domain size increases. More precisely, there are 3n

2 + 6n RVs when domain
size is n.

We also compared the performance of FO-CS-LW when applied directly to equivalent
first-order programs versus when applied to the grounded programs. Indeed, when the full
ground network is huge, and the requisite network is also huge, it is better first to ground
the programs and then apply FO-CS-LW. This is because unifications used to reason in
first-order programs are somewhat costly operations, which are performed once if programs
are grounded first. This case is illustrated in Figure 6, where the probability of query
Q1 = P (high savings(a1) ≅ t ∣ home loan(l1) ≅ f, debt(c1) ≅ t, has loan(c1, l1) ≅ f)
is estimated and FO-CS-LW performs well if programs are grounded first. However, if the
full ground network is huge, but the requisite network is very small, it is better to reason on
the first-order level. This is because the cost of searching a few relevant clauses in a huge
set of ground clauses exceeds the unification cost. This is the case when the query (Q2) is
to compute P (debt(c1) ≅ t) given all other RVs (all RVs of type has loan(C, L) were set
to f (“false”), all RVs of type high savings(A) were set to f, and rest RVs were set to t

(“true”). Furthermore, ProbLog could not compute probabilities beyond the domain size of
9 on a machine with 132 GB main memory, whereas FO-CS-LW quickly scaled to a domain
size of 50.

One might expect that FO-CS-LW would perform poorly as domain size increases, and
more samples would be required to get a reasonable estimate of probabilities. Figure 6
suggests the opposite. Using the same number of samples, the standard deviation from
the mean does not increase as domain size increases. This is because FO-CS-LW exploits
symmetries that arise due to noisy OR. Notice that exact probabilities do not change much
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client(c1). client(c2). . . .

account(a1). account(a2). . . .

loan(l1). loan(l2). . . .

0.7 ∶∶ home loan(L) ∶− loan(L).
0.3 ∶∶ high savings(A) ∶− account(A).
0.01 ∶∶ has account(C, A) ∶− client(C), account(A).
0.02 ∶∶ account loan(A, L) ∶− account(A), loan(L).
0.9 ∶∶ has loan(C, L) ∶− has account(C, A), account loan(A, L).
0.001 ∶∶ has loan(C, L) ∶− client(C), loan(L).
0.9 ∶∶ debt(C) ∶− has loan(C, L), home loan(L).
0.6 ∶∶ debt(C) ∶− has loan(C, L), \+home loan(L).
0.3 ∶∶ debt(C) ∶− has account(C, A), \+high savings(A).
0.01 ∶∶ debt(C) ∶− client(C).

client(c1) ∼ val(t). client(c2) ∼ val(t). . . .

account(a1) ∼ val(t). account(a2) ∼ val(t). . . .

loan(l1) ∼ val(t). loan(l2) ∼ val(t). . . .

home loan(L) ∼ bernoulli(0.7)← loan(L) ≅ t.

high savings(A) ∼ bernoulli(0.3)← account(A) ≅ t.

has account(C, A) ∼ bernoulli(0.01)← client(C) ≅ t, account(A) ≅ t.

account loan(A, L) ∼ bernoulli(0.02)← account(A) ≅ t, loan(L) ≅ t.

has loan(C, L) ∼ bernoulli(0.9)← has account(C, A) ≅ t, account loan(A, L) ≅ t.

has loan(C, L) ∼ bernoulli(0.001)← client(C) ≅ t, loan(L) ≅ t.

debt(C) ∼ bernoulli(0.9)← has loan(C, L) ≅ t, home loan(L) ≅ t.

debt(C) ∼ bernoulli(0.6)← has loan(C, L) ≅ t, home loan(L) ≅ f.

debt(C) ∼ bernoulli(0.3)← has account(C, A) ≅ t, high savings(A) ≅ f.

debt(C) ∼ bernoulli(0.01)← client(C) ≅ t.

Figure 5: (Left) A ProbLog program specifying a probability distribution over relation-
ships and attributes of clients, accounts, and loans. (Right) The equivalent DC#
program.

as domain size increases because unique parameters do not increase even though the domain
size increases and the number of parameters increases.

We conclude that FO-CS-LW scales with the domain size and can be useful on problems
where the ProbLog inference algorithm fails.

7.3 How does FO-CS-LW compare to the state-of-the-art inference algorithms
for hybrid relational probabilistic models?

Those exact inference algorithms that exploit CSIs are not readily applicable to hybrid re-
lational probabilistic models. There are not many open-source implementations of inference
algorithms for such models

5
. The exploitation of first-order CSIs and symmetries arising

due to aggregations in such models is challenging, and to the best of our knowledge, no
algorithm can exploit them in such models. To some extent, the likelihood weighting-based
inference algorithm developed for the old version of DC can exploit them (Nitti et al.,
2016). However, it does not filter out irrelevant evidence before inference, which is crucial
in the case of relational databases. So, in this experiment, we aim to investigate how much
FO-CS-LW improves upon old-DC’s inference algorithm.

For this purpose, we used a real-world relational data generated by processing the finan-
cial database from the PKDD’99 Discovery Challenge. This data set is about services that
a bank offers to its clients, such as loans, accounts, and credit cards. It contains information
of four types of entities: 5, 358 clients, 4, 490 accounts, 680 loans and 77 districts. Ten at-
tributes are of the continuous type, and three are of the discrete type. The data set contains
four relations: hasAccount/2 that links clients to accounts; hasLoan/2 that links accounts
to loans; clientDistrict/2 that links clients to districts; and finally clientLoan/2 that
links clients to loans.

5. The publicly available code for BLPs is based on SICStus Prolog 3, the version that SICStus no longer
supports. So, it is difficult to run the code.
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Figure 6: The first two graphs are for query Q1, and the last two graphs are for query Q2,
mentioned in Section 7.2. (a) Comparison of exact probabilities of Q1 computed
by ProbLog, and probabilities estimated by FO-CS-LW when applied to the first-
order and the grounded program. (b) The average time for processing Q1 versus
the domain size. (c) Comparison of probabilities of query Q2 for the three cases.
(d) The average time for processing Q2 versus the domain size. To estimate the
probabilities, FO-CS-LW used 10, 000 samples. The size of n indicates that n
clients, n accounts, and n loans are present in the program. The shaded region
denotes the standard deviation from the mean probability estimated by FO-CS-
LW when executed 30 times for each n. The execution time includes the grounding
time when FO-CS-LW is applied to grounded programs.

We learned a model in the form of distributional clauses as described in (Kumar,
Kuželka, & De Raedt, 2021) from the financial data set. The learned model, which was
a program, specified a probability distribution over all attributes of all instances of the
entities in the data set. Since the program was learned just as described in (Kumar et al.,
2021), relationships among entities could not be probabilistic. Furthermore, clauses in the
program were mutually exclusive, and aggregation atoms and statistical model atoms were
used in the bodies of the clauses. Negations were allowed in the bodies to deal with miss-
ing values or missing relationships. Details about these advanced constructs are present in
Appendix B. A snippet of the learned program is shown in Figure 9.

Next, we created multiple subsets of the financial data set with varying numbers of ac-
counts. These subsets were created by considering account to be the central entity. All in-
formation about clients, loans, and districts related to an account appeared in the same sub-
set. All subsets had an account a 10001 that was linked with a loan l 7034. Two queries to
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Figure 7: The first two graphs are for query Q3, and the last two graphs are for query Q4,
mentioned in Section 7.3. (a) Comparison of estimates obtained using FO-CS-LW
and Old-DC for query Q3. (b) Average time taken by FO-CS-LW and Old-DC
for Q3. (c) Comparison of estimates for query Q4. (d) Average time taken
for Q4. 10, 000 samples were used for each of the two algorithms. The shaded
region denotes the standard deviation from the mean probability estimated by
algorithms when executed 100 times for each case. Old-DC suffered arithmetic
underflow as observed data increased.
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Figure 8: (a) Comparison of estimates obtained using FO-CS-LW and Old-DC for query
Q5. (b) Average time taken by FO-CS-LW and Old-DC for Q5.

the learned program were considered: i) Q3 = P (stdMonthInc(a 10001) ≅ X, X > 22000.0)
given the rest subsets of data, ii) Q4 = P (loanAmount(l 7034) ≅ X, X > 20000.0) given the
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%Entities

account(a 10001) ∼ val(true).
loan(l 7034) ∼ val(true).
client(c 12303) ∼ val(true).
district(d 24) ∼ val(true).
. . .

%Relations

clientLoan(c 12303, l 7034) ∼ val(true).
hasLoan(a 10001, l 7034) ∼ val(true).
hasAccount(c 12303, a 10001) ∼ val(true).
clientDistrict(c 12303, d 24) ∼ val(true).
. . .

%Model

loanAmount(L) ∼ gaussian(151080.0, 12853887266.5)← loan(L) ≅ true.

. . .

stdMonthInc(A) ∼ gaussian(M, 36225870.62)← account(A) ≅ true, avgSumOfW(A) ≅ X, avgNrWith(A) ≅ Y, avg(Z1, (hasLoan(A, L) ≅ true,

loanAmount(L) ≅ Z1), Z), freq(A) ≅ m, linear([X, Y, Z], [0.34,−516.12, 0.004, 12797.18], M).

Figure 9: A snippet of the program learned from the financial data set. The ag-
gregation atom avg( , , ) in the body of the last clause collects all loans’
amounts that a client has into a list and unifies Z with the average
of the list. The statistical model atom linear( , , ) implements a lin-
ear function M is 0.34 × X − 516.12 × Y + 0.004 × Z + 12797.18. Predicates like
loanAmount/1, stdMonthInc/1, . . . , represent the attributes of entities.

rest subsets of data. Figure 7 shows the comparison of estimates obtained for queries Q3

and Q4. The old-DC suffered arithmetic underflow as observed data increased, whereas
FO-CS-LW scaled quite well. An important observation, in this case, is that the execution
time of FO-CS-LW does not increase by adding more data. This is because real-world data
is often not highly relational, e.g., clients generally have one or two accounts, not ten ac-
counts. This is the case here. By adding more data, we are just adding data irrelevant
to account a 10. FO-CS-LW that exploits CIs can detect that, but the old-DC inference
engine can not.

Similar observations were made when we used the program learned from the real-world
NBA data set as described in (Kumar et al., 2021). This data set is about basketball
matches from the National Basketball Association (Schulte & Routley, 2014). It records
information about matches played between two teams and actions performed by each player
of those two teams in the matches. This data set also contains relations and discrete-
continuous attributes. We created multiple subsets of the data set with varying numbers
of actions (the domain size). These subsets were created by considering actions to be the
central entity. All subsets had actions of a player with id 41 in game 27. The query that
we considered was: Q5 = P (points(27, 41) ≅ X, X > 10) given the rest subsets of data. As
shown in Figure 8, the observations are similar to those made for the financial dataset.

Thus, we conclude that when a significant amount of independencies are present in
hybrid relational probabilistic models, FO-CS-LW outperforms the state-of-the-art inference
algorithm of Old-DC.
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8. Related Work

We describe relationships of the DC# framework introduced here with previous works in
terms of representation and inference.

8.1 Relation to Representation Languages

Several relational representation languages based on aggregation functions and combining
rules have been introduced in the past. Examples include probabilistic relational models
(Friedman, et al., 1999, PRMs), directed acyclic probabilistic entity-relationship models
(Heckerman, Meek, & Koller, 2004, DAPER), probabilistic relational language (Getoor
& Grant, 2006, PRL), Bayesian logic programs (Kersting & De Raedt, 2007, BLPs), and
first-order conditional influence language (Natarajan et al., 2008, FOCIL). These languages
consist of two components: a qualitative component representing the relational structure
of the domain (either using graphs or definite clauses) and a quantitative component spec-
ifying conditional probability distributions (CPDs) in the tabular form. So, they do not
qualitatively represent the structures present within the CPDs.

A tree or a rule-based representation lets us represent the structures qualitatively
(Boutilier et al., 1996; Poole, 1997; Ngo & Haddawy, 1997). That is why, probabilistic
logic programming (PLP) has received much attention. Over the past three decades, many
PLP languages have been proposed: PHA (Poole, 1993), Prism (Sato & Kameya, 1997),
LPADs (Vennekens, Verbaeten, & Bruynooghe, 2004), ProbLog (De Raedt et al., 2007),
ICL (Poole, 2008), CP-Logic (Vennekens, Denecker, & Bruynooghe, 2009). However, only
a few of them support both discrete and continuous RVs: HProbLog (Gutmann et al.,
2010), DC (Gutmann et al., 2011; Nitti et al., 2016), Extended-Prism (Islam et al.,
2012), Hybrid-cplint (Alberti et al., 2017), (Michels et al., 2016). Nonetheless, the hybrid
PLPs that have been studied in the past do not support combining rules, which is a core
component of PLPs. BLPs do support combining rules, but then they do not qualitatively
represent the structures. The syntax of DC# is the same as the syntax of DC introduced by
(Nitti et al., 2016), but the semantics is different as DC# supports combining rules. The
semantics of DC# is based on BLPs, so one can view DC# programs as BLPs qualitatively
representing structures. Furthermore, a huge fragment of Problog programs, one of the
most popular PLPs, is expressible as DC# programs. Annotated disjunctions and directed
cycles are not supported in DC# currently.

DC# is a probabilistic programming language (PPL); thus, we should also describe how
DC# relates to various other PPLs that generally extends imperative programming with
probability distributions such as Infer.NET (Minka, et al., 2010), BLOG (Li & Russell,
2013), Stan (Team, 2015), etc. DC# relates to these languages in the manner similar to
how logic programming relates to imperative programming. One must use if-then conditions
in these languages to express the structures and for loops to express aggregations/combin-
ing rules. Using statistical model atoms in the body of DCs, one can describe complex
probabilistic models written in these languages. However, DC# currently does not support
writing open-universe models that some PPLs, such as BLOG, support. On the other hand,
it is unclear how to write DC programs with negations in these PPLs, which is important
when dealing with missing data.
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8.2 Relation to Inference Algorithms

Resolving representation issues does not quickly imply that crucial issues inherent to infer-
ence are also resolved. The prime focus of past works on relational representation languages,
for example, those discussed at the beginning of the previous section, has been the devel-
opment of syntax and semantics so that these languages succinctly represent first-order
probabilistic models. For inference, most of them construct ground BNs and rely on infer-
ence algorithms for BNs. Thus, they do not exploit symmetrical parameters that arise due
to grounding the first-order models. Indeed they do not exploit structures present within
CPDs of ground BNs since they do not even qualitatively represent them.

The case of the related PPLs is quite surprising. A remarkable feature of PPLs is that
the structures can be represented using if-then conditions in programs. However, equivalent
BNs are constructed during inference, and algorithms for BNs are used; thus, CSIs implied
by the structures are ignored. For example, Stan, the most popular PPLs that is also
commercially used, does that. Interestingly, BLOG (Milch, et al., 2005) does exploit CSIs,
but a different class of CSIs, CSIs that arise in open-universe models due to the addition
and subtraction of some RVs from the model when some other RVs take certain values.
It does not exploit those that are implied by if-then conditions even in closed-universe
models/programs. The exploitation of such CSIs and symmetrical parameters that appear
after unrolling (similar to grounding in relational models) for loops even in closed-universe
PPLs are not well studied.

Leaving expressive languages aside, the exploitation of CSIs implied by structures within
CPDs of ground BNs is itself a difficult problem that has puzzled researchers for decades.
Research in this direction has mainly been focused on exact inference (Boutilier et al., 1996;
Poole & Zhang, 2003). Nowadays, it is common to use knowledge compilation-based exact
inference for this purpose (Chavira & Darwiche, 2008; Fierens et al., 2015; Shen, Choi, &
Darwiche, 2016); however, this approach does not apply to hybrid models. The problem
of exploiting CSIs in hybrid models is non-trivial and is poorly studied. Recently, it has
attracted some attention (Zeng & Van Den Broeck, 2020). However, proposed approaches
are also exact and rely on complicated weighted model integration (Belle, Passerini, & Van
Den Broeck, 2015), which do not scale (Feldstein & Belle, 2021). CS-LW that we propose
for BNs is simple, scalable, and applies to hybrid BNs.

FO-CS-LW that extends CS-LW to first-order DC# programs also exploits symmetries
in such programs. So, it makes sense to relate FO-CS-LW with the literature of lifted
inference algorithms that aim to exploit symmetries in first-order models. Broadly these
algorithms can be divided into two categories. Firstly, those that exploit symmetries but do
not exploit CSIs. Belonging to this category, there are exact (Poole, 2003; De Salvo Braz,
Amir, & Roth, 2006; Getoor & Taskar, 2007; Kisynski & Poole, 2009; Taghipour, et al.,
2013) and approximate algorithms (Niepert, 2012; Ahmadi, et al., 2013; Chen, et al.,
2020). Belonging to the second category are those that also exploit CSIs. These algorithms
are generally exact and do not easily apply to hybrid models (Van Den Broeck et al., 2011;
Gogate & Domingos, 2011). Recently, an exact inference algorithm belonging to the second
category was applied to hybrid models (Feldstein & Belle, 2021). However, this algorithm
inherits the limitations of exact lifted inference. It is well known that exact lifted inference
has two major limitations: i) only a small class of models is liftable (Van Den Broeck, 2011;
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Kazemi, et al., 2016); ii) the inference is hard when binary relations are observed (Van
Den Broeck & Darwiche, 2013). An any-time lifted inference algorithm was developed by
(de Salvo Braz, et al., 2009), which provides intervals (upper and lower bounds) in which
the desired answer is guaranteed to lie. However, even this is an exact method, and it may
not scale well when one requires the intervals to be narrow. FO-CS-LW belongs to the
second category of algorithms, which is approximate thus does not have these limitations.
It applies to DC# language in which a larger class of models can be written, which is
remarkable.

9. Future Work

Our paper intends to introduce an interesting probabilistic programming framework that
can be further developed in the future. Several features can be added to this framework,
which are discussed next.

The semantics of DC# can be extended to support open-universe models. The syntax
already supports them, which was shown at the beginning of Section 4.2. One can borrow
ideas from BLOG for this purpose (Milch & Russell, 2009). However, extending FO-CS-LW
to the language supporting open-universe models will require solving a complex problem:
how to detect requisite networks in such models while sampling? To detect them in closed-
universe models, RV and dependency sets are automatically constructed by static analysis
of programs as discussed in this paper; however, it is difficult to construct such sets for
open-universe models as it might require dynamic analysis.

Our algorithm does not support inference in DC# programs specifying mixtures of
discrete and continuous distributions. This is the case when some clauses state that an RV
is distributed according to continuous distributions, while others state that the same RV is
distributed according to discrete distributions. More precisely, suppose a program contains
the following two clauses:

credit score(C) ∼ gaussian(700, 10.9)← has loan(C, L) ≅ true.

credit score(C) ∼ discrete([0.9 ∶ 600, 0.1 ∶ 650])← has loan(C, L) ≅ false.

It is not clear whether the client’s credit score is of discrete type or continuous type. Likeli-
hood weighting (LW) based algorithms do not estimate correct probabilities in such a case.
To resolve this issue, (Wu, et al., 2018) proposed lexicographic LW. A context-specific
variant of the lexicographic LW is needed for such programs. This has been left for the
future.

As shown in Example 7, the val(.) functor in DC# provides an elegant way of describing
deterministic dependencies (constraints) among RVs in probabilistic models (Mateescu &
Dechter, 2009). It is, however, well known that sampling algorithms, in general, perform
poorly when a significant amount of determinism is present in models. So, an important and
interesting avenue for future work is to combine constraint propagation with FO-CS-LW.

Finally, we aim to open up a new direction towards improved sampling algorithms that
exploit CSIs. Like LW, we believe MCMC algorithms can also be extended along the same
line.
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10. Conclusion

We have introduced a hybrid PLP framework called DC#. It supports combining rules
required to describe relational models succinctly.

We have emphasized the exploitation of both CIs and CSIs for efficient inference. After
realizing that a sampling algorithm that can properly do that is not well studied, we studied
the role of CSIs in sampling. Subsequently, we introduced a notion of contextual assignment
to show that CSIs allow for breaking the main problem of estimating conditional probability
queries into several small problems that can be estimated independently. Based on this
notion, we presented CS-LW that exploits CSIs implied by structures present within CPDs
of BNs. We empirically showed that when a significant amount of structures are present,
CS-LW generates samples faster than the standard LW and provides a better estimate of
the query with much fewer samples.

Since CS-LW is based on theorem proving, we easily extended it with unification and
substitution of logical variables for inference in first-order DC# programs. The resulting
first-order inference algorithm, called FO-CS-LW, naturally exploits symmetries or ICIs
that arise due to combining rules in programs.

Empirical results showed that FO-CS-LW scales with the domain size and outperforms
the inference algorithm of the state-of-the-art hybrid PLP.
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Appendix A. Missing Proofs

A.1 Proof of Lemma 1

In this section, we present the detailed proof of Lemma 1.

Proof. Let us denote the variables in Z that are marked on the top (requisite) by Z⋆ and
that are not marked on the top (not requisite) by Z⋆̄. The required probability µ is then
given by,

µ = P (xq ∣ e) =
∑x,z⋆,z⋆̄

P (x, z⋆, z⋆̄, e)f(x)
∑x,z⋆,z⋆̄

P (x, z⋆, z⋆̄, e)
=

∑x,z⋆
P (x, z⋆, e)f(x)∑z⋆̄

P (z⋆̄ ∣ x, z⋆, e)
∑x,z⋆

P (x, z⋆, e)∑z⋆̄
P (z⋆̄ ∣ x, z⋆, e)

Since ∑z⋆̄
P (z⋆̄ ∣ x, z⋆, e) = 1, we can write,

µ =
∑x,z⋆

P (x, z⋆, e)f(x)
∑x,z⋆

P (x, z⋆, e)
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Now let us denote the observed variables in E that are visited (requisite) by Er and those
that are not visited (not requisite) by En. We can write,

µ =
∑x,z⋆

P (x, z⋆, er)P (en ∣ x, z⋆, er)f(x)
∑x,z⋆

P (x, z⋆, er)P (en ∣ x, z⋆, er)

The variables in X∪Z⋆ pass the Bayes-balls to all their parents and all their children, but
En is not visited by these balls. The correctness of the Bayes-ball algorithm ensures that
there is no active path from X∪Z⋆ to any En in En given Er. Thus X,Z⋆ ⊥ En ∣ Er and
P (en ∣ x, z⋆, er) = P (en ∣ er). After cancelling out the common term P (en ∣ er), we get,

µ =
∑x,z⋆

P (x, z⋆, er)f(x)
∑x,z⋆

P (x, z⋆, er)

Now let us denote observed variables in Er that are only visited by E⭒ and that are visited
as well as marked on top by E⋆. After canceling out the common term, we get the desired
result,

µ =
∑x,z⋆

P (x, z⋆, e⋆ ∣ e⭒)P (e⭒)f(x)
∑x,z⋆

P (x, z⋆, e⋆ ∣ e⭒)P (e⭒)
=

∑x,z⋆
P (x, z⋆, e⋆ ∣ e⭒)f(x)

∑x,z⋆
P (x, z⋆, e⋆ ∣ e⭒)

A.2 Proof of Proposition 2

In this section, we present the detailed proof of Proposition 2.

Proof. First, we show that if rv(A) is in the least Herbrand model of rv(P) (denoted by
Mrv(P)) then P defines A as an RV: Since P is well-defined, there will be at least one clause for
A in ground(P)ω whose body is true with respect to ω due to the exhaustiveness condition.
So, P defines A as an RV.

Now, we show the converse: Let ω be an assignment where each B is assigned a value if
rv(B) is in Mrv(P). Given ω, we construct a ground program ground(P)ω such that there is
a clause A ∼ D← Body in ground(P)ω with atoms {B1 ≅ V1, . . . , Bm ≅ Vm} in Body and these
atoms are true with respect to ω. Then, due to the way DC# programs have been defined in
Definition 5, there must be a definite clause rv(A)← rv(B1), . . . , rv(Bm) in ground(rv(P)).
Now, {rv(B1), . . . , rv(Bm)} are in Mrv(P) since those RVs are assigned in ω. So, rv(A) will
be in Mrv(P) since the body of the definite clause will be true. This completes the proof.

A.3 Proof of Proposition 3

In this section, we present the detailed proof of Proposition 3.

Proof. First, we show that if A directly influences B then pa(B, A) is in the least Herbrand
model of dep(P): Since A directly influences B there must be a clause C ≡ B ∼ D← B1, . . . , Bn ∈
ground(P)ω for some possible world ω such that n > 0, A is a RV term in the body of
C, and the body is true with respect to ω. This implies that there must be a clause
rv(B)← rv(A1), . . . , rv(Am) in ground(rv(P)) such that {A1, . . . , Am} is the set of RV terms
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in the body of C and A ∈ {A1, . . . , Am}. Consequently, there must be a definite clause
C ′ ≡ pa(B, A)← rv(B), rv(A1), . . . , rv(Am) in ground(dep(P)) by construction. {A1, . . . , Am}
is assigned in ω so due to Proposition 2: rv(P) ⊧ (rv(A1), . . . , rv(Am)), consequently,
rv(P) ⊧ rv(B). This is also true in dep(P) since all clauses in rv(P) are in dep(P). So, the
body of clause C ′ will be true and dep(P) ⊧ pa(B, A).

Now, we show the converse: Since dep(P) ⊧ pa(B, A), there must be a definite clause
pa(B, A)← rv(B), rv(A1), . . . , rv(Am) in ground(dep(P)) such that A ∈ {A1, . . . , Am} and the
clause’s body is true in ground(dep(P)). This implies that there must be a definite clause
rv(B)← rv(A1), . . . , rv(Am) ∈ ground(rv(P)) whose body is true in ground(rv(P)). Due
to the way DC# programs are defined (Definition 5), there must be a distributional clause
B ∼ D← Body ∈ ground(P)ω for some ω such that {A1 ≅ V1, . . . , Am ≅ Vm} belongs to Body

that is true in ω. So, A directly influences B, which completes the proof.

A.4 Proof of Theorem 5

In this section, we present the detailed proof of Theorem 5.

Proof. The expectation EQ⋆[Wė⋆] is given by

∑
x,z⋆

∏
ui∈x∪z⋆

P (ui ∣ pa(Ui)) ∏
vi∈ė⋆

P (vi ∣ pa(Vi)).

The basis Ṡ⋆ is a subset of X ∪ Z⋆ by Definition 16 . Let us denote (X ∪ Z⋆) \ Ṡ⋆ by Z⋄.
We can now rewrite the expectation as follows,

∑
ṡ⋆,z⋄

∏
ui∈ė⋆∪ṡ⋆

P (ui ∣ pa(Ui)) ∏
vi∈z⋄

P (vi ∣ pa(Vi)).

We will show that Pa ∉ Z⋄ for any Pa ∈ Pa(Ui), which will then allow us to push the
summation over z⋄ inside. Let us consider two cases:

• For Ui ∈ Ė⋆, let Pa ∈ Pa(Ui) be an unobserved parent of Ui, then there will be a
direct causal trail from Pa to Ui, consequently Pa will be in the set Ṡ⋆.

• For Ui ∈ Ṡ⋆, there will be a causal trail Ui →⋯ Bj ⋯→ E such that E ∈ Ė⋆ and such
that either no Bi is observed or there is no Bi. Let Pa ∈ Pa(Ui) be an unobserved
parent of Ui then there will be a direct causal trail from Pa to Ui, consequently, there
will be such causal trail from Pa to E and Pa will be in the set Ṡ⋆.

Hence, we push the summation over z⋄ inside and use the fact that ∑z⋄
∏vi∈z⋄

P (vi ∣
pa(Vi)) = 1, to get the desired result.

A.5 Proof of Theorem 6

In this section, we present the detailed proof of Theorem 6.
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Proof. Since X,Z⋆,E⋆,E⭒ are variables of the Bayesian network B and they form a sub-
network B⋆ such that E⭒ do not have any parent, we can always write,

P (x, z⋆, e⋆ ∣ e⭒) = ∏
ui∈x∪z†∪e†

P (ui ∣ pa(Ui)) ∏
vi∈z‡∪e‡

P (vi ∣ pa(Vi))

such that p ∈ x∪z⋆∪e⋆∪e⭒ for all p ∈ pa(Ui) or p ∈ pa(Vi). Now consider the summation
over all possible assignments of variables in X,Z⋆, that is: ∑x,z⋆

P (x, z⋆, e⋆ ∣ e⭒). We will
write this summation as a summation over contextual assignments ψ ∈ Ψ. The collection
of the ranges of all ψ ∈ Ψ will have all possible assignments of variables in X,Z⋆ without
any duplicates as assignments ψ ∈ Ψ are mutually exclusive. So, we can always write,

∑
x,z⋆

P (x, z⋆, e⋆ ∣ e⭒) = ∑
ψ∈Ψ

∑
z‡[ψ]

P (x[ψ], z†[ψ], z‡[ψ], e†[ψ], e‡[ψ] ∣ e⭒) (8)

In the above equation, notice that the inner summation is over the range of ψ. To simplify
notation, from now we denote {x[ψ], z†[ψ], Z‡[ψ], e†[ψ], e‡[ψ]} by {x, z†, Z‡, e†, e‡}.
After using the definition of contextual assignments, we have that,

P (x, z†, z‡, e†, e‡ ∣ e⭒) = ∏
ui∈x∪z†∪e†

P (ui ∣ ppa(Ui)) ∏
vi∈z‡∪e‡

P (vi ∣ pa(Vi))

Since p ∉ z‡ for any p ∈ ppa(Ui), we can push the summation over z‡ inside to get,

∑
ψ∈Ψ

∑
z‡

P (x, z†, z‡, e†, e‡ ∣ e⭒) = ∑
ψ∈Ψ

∏
ui∈x∪z†∪e†

P (ui ∣ ppa(Ui))∑
z‡

∏
vi∈z‡∪e‡

P (vi ∣ pa(Vi)).

(9)
However, we get a strange term ∑z‡

∏vi∈z‡∪e‡
P (vi ∣ pa(Vi)). Let S‡ denote the basis of

residual e‡. We have that S‡ ⊆ Z‡ by Definition 17. Let us denote Z‡ \ S‡ with Z⋄. Now
the strange term can be rewritten as,

∑
s‡,z⋄

∏
ui∈e‡∪s‡

P (ui ∣ pa(Ui)) ∏
vi∈z⋄

P (vi ∣ pa(Vi)).

In the proof of Theorem 5, we showed that the summation over variables not in S‡ can be
pushed inside; hence, Z⋄ can be pushed inside. After using the fact that ∑z⋄

∏vi∈z⋄
P (vi ∣

pa(Vi)) = 1, we conclude that the strange term is actually the expectation EQ⋆[We‡]. Using
Equation (3), (8), (9) and rearranging terms, the result follows.

A.6 Proof of Lemma 7

In this section, we present the detailed proof of Lemma 7.

Proof. It is clear that a subset of unobserved variables is assigned. Let Z‡ be a set of
unobserved variables left unassigned. Let E ∈ E⋆ be an observed variable. Consider two
cases:

• All ancestors of E are in Z‡ ∪E⭒ ∪E⋆.
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• Some ancestors of E are in Z‡ ∪ E⭒ ∪ E⋆ and some are in X ∪ Z†. Let A ∈ X ∪ Z†
and let A→⋯ Bi ⋯→ E be a causal trail. Some Bi are observed in all such trails.

Clearly, E will not be visited from any parent in the first case, and in the second case, the
visit will be blocked by observed variables. Consequently, E will not be weighted, which
completes the proof.

A.7 Proof of Theorem 8

In this section, we present the detailed proof of Theorem 8.

Proof. Variables in Z‡ are not assigned in the simulation; hence, it follows immediately from
Lemma 9 that the assignment is contextual. Assume by contradiction that A ∈ X ∪ Z†,
E ∈ E‡ and there is a causal trail A →⋯ Bi ⋯ → E such that no Bi is observed or there
is no Bi. Since A is assigned, all children of A will be visited, and following the trail, the
variable E will also be visited from its parent since there is no observed variable in the trail
to block the visit. Consequently, E will be weighted, which contradicts our assumption that
E is not weighted. Hence, the assignment is also safe.

A.8 Proof of Lemma 9

In this section, we present the detailed proof of Lemma 9.

Proof. Since A is assigned/weighted and rules in P are exhaustive, a rule R ∈ P with A in
its head must have fired. Let d be a body and D be a distribution in the head of R. Since
each di ∈ d must be true for R to fire, d ⊆ c. We assume that rules in P are mutually
exclusive. Thus, among all rules for A, only R will fire even when an assignment of some
variables in B is also given. Hence, by definition of the rule R, we have that,

D = P (A ∣ d) = P (A ∣ c) = P (A ∣ c,B)

A.9 Proof of Theorem 10

In this section, we present the detailed proof of Theorem 10.

Proof. Since random variable A is sampled/weighted, k clauses out of n ground distribu-
tional clauses for A must have fired. Those n− k clauses that do not fire must have at least
one atom in their body that is false. Let d be an assignment of random variables in the
body of the k clauses and D be a distribution obtained after applying a combining rule on
the multiset of distributions in the head of the k clauses. Since each d ∈ d must be true
for k clauses to fire, d ⊆ c. Even if an assignment of some variables in B is also given, the
n−k clauses cannot fire since one atom in the body of these clauses is already false. Hence,
by definition, we have that

D = P (A ∣ d) = P (A ∣ c) = P (A ∣ c,B)
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Appendix B. Advanced Constructs in DC# Framework

This section describes advanced constructs such as negation, aggregates, and statistical
models in the DC# framework, which are useful while writing complex relational models
(Kumar et al., 2021).

Example 18. The following program illustrates advanced constructs such as negation, ag-
gregates, and statistical models.

client(ann) ∼ val(true).
loan(l 1) ∼ bernoulli(0.9).
loan(l 2) ∼ bernoulli(0.9).
age(C) ∼ gaussian(40, 10.5)← client(C) ≅ true.

has loan(C, L) ∼ bernoulli(0.2)← client(C) ≅ true, loan(L) ≅ true.

status(L) ∼ discrete([0.3 ∶ appr, 0.7 ∶ decl])← loan(L) ≅ true.

credit score(C) ∼ gaussian(700, 10.9)← has loan(C, L) ≅ true, status(L) ≅ appr.

credit score(C) ∼ gaussian(600, 20.5)← has loan(C, L) ≅ true, status(L) ≅ decl.

credit score(C) ∼ gaussian(750, 30.2)← has loan(C, L) ≅ true, \+status(L) ≅ .

credit score(C) ∼ gaussian(M, 15.9)← age(C) ≅ Y,

mode(X, (has loan(C, L) ≅ true, status(L) ≅ X), appr), linear([Y], [20.1, 30.9], M).

Next, we explain the advanced constructs of the above program one by one in detail.

Negation The exhaustiveness condition for well-defined programs is somewhat contrived.
In practice, it is difficult to specify conditional probability distributions of a RV given all
possible assignments of its parents because real-world data is often inadequate and contains
missing values. In such cases, it is convenient to describe models using negative literals in
the bodies of DCs.

The second last clause in the program of Example 18 has a negation in the body. The
negation is interpreted as negation as failure as usual in logic programming. We understand
from the above program that the loan’s status can take three values: appr (“approved”),
decl (“declined”), and “undefined”. That is, its value can be unknown (or undefined) in
some possible worlds. The loan’s status takes the undefined value with a probability of 1
when the loan’s identity is false, and the program specifies a probability distribution over
such worlds.

To avoid floundering (Nilsson & Ma luszyński, 1995), we allow writing only those clauses
A0 ∼ D← L1, . . . , Ln in DC# programs, which satisfy this condition: if a logical variable J

occurs in the RV term of a negative literal Li then J occurs in the RV term of a positive
literal in {A0, L1, . . . , Li−1}. This means writing unsafe negations are not allowed. For
example, writing the clause

credit score(C) ∼ gaussian(500, 30.2)← \+status(L) ≅ .

is not allowed because the logical variable L occurs in the RV term of the negative literal
but it does not occur in any positive literal.
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Aggregates An alternative approach to combining rules, extensively used for describing
models for relational data, is the aggregation function or aggregate. It is a function that
maps a multiset of values to a single value. Standard examples are average (if values are
numerical), mode (most frequently occurring value), maximum, minimum, cardinality, etc.
For example, the mode maps a multiset {appr, decl, appr} to a value appr. To express these
functions, built-in aggregation predicates are used in conjunction with the second-order
predicate findall/3 as follows: findall(T, G, L), aggr(L, R), where T is a target variable
such that it occurs in a goal G, and L unifies with the multiset of the instantiations that
T gets successively on backtracking over G. This is just like Prolog’s findall/3 predicate
(Wielemaker, et al., 2011). The atom findall(T, G, L) succeeds with an empty multiset if
goal G has no solutions. A built-in predicate aggr/2 implements an aggregation function
(e.g., mode) that maps the multiset L to a single value R. When the multiset L is empty,
the aggregation atom aggr(L, R) fails. We will use a shorthand notation aggr(T, G, R) for
findall(T, G, L), aggr(L, R) and call it an aggregation atom.

The last clause in the program of Example 18 has an aggregation atom in its body. Here,
the idea is to consider the joint influence of statuses of all loans that a client has on the
distribution of the client’s credit score (instead of letting each loan have its own independent
influence as in Example 7). There are three situations in which the aggregation atom will
fail, and the body of the last clause will be true: (i) the client has no loan, (ii) it is undefined
that the client has loans or not, (iii) the client has loans, but statuses of those loans are
undefined.

The support for aggregates, which in turn requires support for the second-order predicate
findall/3, takes DC# outside the domain of first-order probabilistic logic. However, the
semantics of programs with aggregates can also be understood in terms of the ground
programs. Just like Prolog, atom aggr(T, G, R) gets its truth value after checking for truths
of all instantiations of goal G in the ground program.

Statistical Model Atom It maps outcomes of RVs in the body of a DC to parameters of
the distribution in the head. Formally, a DC with a statistical model is a clause of the form
A0 ∼ Dφ ← A1, . . . , An, Mψ, where Mψ is an atom implementing a mathematical function that
relates the values of RVs in {A1, . . . , An} with parameters φ in distribution Dφ via parameters
ψ.

An example is shown in the last clause of the program of Example 18. Here, linear
is a built-in predicate that implements a linear model relating the value of client’s age
and mean M of the distribution in the head using parameters ψ = [20.1, 30.9] as follows:
M is 20.1 × X + 30.9.

Many well-known statistical models, such as linear regression, logistic regression, soft-
max regression, etc., can be used to describe very complex relational models (Kumar et al.,
2021). Importantly, we have integrated the full expressiveness of logic programming with
the strengths of statistical models in learning intricate patterns.

B.1 Inference in Programs with Advanced Constructs

For inference, first, we should identify RVs from DC# programs with advanced constructs.
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Definition 19. Let P be a well-defined DC# program with advanced constructs. The RV
set rv(P) of the program is the set of definite clauses obtained by transforming each clause
A ∼ D← L1, . . . , Lm ∈ P like this:

1. Let Body be the empty set. For each positive or negative literal Li of the form T ≅ V,
an atom rv(T) is added to Body.

2. A clause rv(A)← Body is added to rv(P).

Example 19. The RV set for the program in Example 18 is:

rv(client(ann)).
rv(loan(l 1)).
rv(loan(l 2)).
rv(age(C))← rv(client(C)).
rv(has loan(C, L))← rv(client(C)), rv(loan(L)).
rv(status(L))← rv(loan(L)).
rv(credit score(C))← rv(has loan(C, L)), rv(status(L)).
rv(credit score(C))← rv(age(C)).

The above definition differs from Definition 6 in only one way. It additionally specifies
the way negative literals of the form \+T ≅ V should be handled. However, nothing special is
done for them because just like positive literals that compare outcomes of ground RV terms
with values, negative literals compare the outcomes with values or with the “undefined”
value. Additionally, comparison and statistical model atoms are ignored while constructing
the RV set. This is because they do not contain RV terms. The aggregation atoms do
contain RV terms, but they do not constrain instantiations of logical variables appearing in
other atoms. So, they are also ignored.

However, we must ensure that Proposition 2 is valid even after using negations that relax
the exhaustiveness condition. Now, it may happen that rv(P) ⊧ rv(A) but no distribution
is specified for A in some ground programs. In this case, however, the “undefined” value is
assigned to A, so the exhaustiveness condition is still implicitly present and Proposition 2
is valid.

Next, we should be able to identify direct influence relationships among RVs. However,
the second-order aggregation atoms complicate the construction of dependency sets. We
add an additional rule in Definition 8 to deal with it.

Definition 20. Let rv(P) be the RV set of a well-defined DC# program P with advanced
constructs. The dependency set dep(P) is the union of rv(P) and the set of definite clauses
pa(P) obtained by transforming each clause C ≡ A ∼ D← L1, . . . , Lm ∈ P with non empty body
as follows:

1. Let rv(A)← rv(T1), . . . , rv(Tn) be the clause in rv(P) corresponding to C.

2. For each rv(Ti), a clause pa(A, Ti)← rv(A), rv(T1), . . . , rv(Tn) is added to pa(P).

3. For each literal Li of the form aggr(T, Q, R),

(a) Let Q be of the form (Q1, . . . , Qn) and let Body be the empty set.
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Kumar, Kuželka, & De Raedt

(b) For each positive or negative literal Qi of the form T ≅ V, an atom rv(T) is added
to Body.

(c) For each positive or negative literal Qi of the form T ≅ V, a clause

pa(A, T)← rv(A), rv(T1), . . . , rv(Tn), Body

is added to pa(P).

However, note that in Prolog, all free variables appearing in findall/3 are bound
with the existential operator. So, all free variables in aggr/3 should be renamed before
constructing the dependency set.

Example 20. In addition to the RV set of Example 19, the dependency set of Example 18
contains the following clauses. Notice the renamings in the last two clauses.

pa(age(C), client(C))← rv(age(C)), rv(client(C)).
pa(has loan(C, L), client(C))← rv(has loan(C, L)), rv(client(C)), rv(loan(L)).
pa(has loan(C, L), loan(L))← rv(has loan(C, L)), rv(client(C)), rv(loan(L)).
pa(status(L), loan(L))← rv(status(L)), rv(loan(L)).
pa(credit score(C), has loan(C, L))← rv(credit score(C)), rv(has loan(C, L)), rv(status(L)).
pa(credit score(C), status(L))← rv(credit score(C)), rv(has loan(C, L)), rv(status(L)).
pa(credit score(C), age(C))← rv(credit score(C)), rv(age(C)).
pa(credit score(C), has loan(C, L1))← rv(credit score(C)), rv(age(C)),

rv(has loan(C, L1)), rv(status(L1)).
pa(credit score(C), status(L2))← rv(credit score(C)), rv(age(C)),

rv(has loan(C, L2)), rv(status(L2)).

After identifying RVs and direct influences among them, the simulation of programs
defined in Algorithm 5 is straightforward. One can easily add rules to the proof procedure
(Algorithm 6) for resolving these advanced constructs. In the implementation, predicates
rv/1, pa/2 should be tabled (Warren, 1992) for efficiency.
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