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Abstract

This paper solves the Watchman Route Problem (WRP) on a general discrete graph
with Heuristic Search. Given a graph, a line-of-sight (LOS) function, and a start vertex,
the task is to (offline) find a (shortest) path through the graph such that all vertices in the
graph will be visually seen by at least one vertex on the path. WRP is reminiscent but
different from graph covering and mapping problems, which are done online on an unknown
graph. We formalize WRP as a heuristic search problem and solve it optimally with an
A*-based algorithm. We develop a series of admissible heuristics with increasing difficulty
and accuracy. Our heuristics abstract the underlying graph into a disjoint line-of-sight
graph (GDLS) which is based on disjoint clusters of vertices such that vertices within the
same cluster have LOS to the same specific vertex. We use solutions for the Minimum
Spanning Tree (MST) and the Traveling Salesman Problem (TSP) of GDLS as admissible
heuristics for WRP. We theoretically and empirically investigate these heuristics. Then,
we show how the optimal methods can be modified (by intelligently pruning away large
sub-trees) to obtain various suboptimal solvers with and without bound guarantees. These
suboptimal solvers are much faster and expand fewer nodes than the optimal solver with
only minor reduction in the quality of the solution.

1. Introduction and Overview

Imagine you are in a museum and you want to see all the exhibits on the floor. To do so,
you want to tour the museum so that you can see every item in all the rooms. Similarly,
the museum’s security wants to have a known path so that during its traversal, it will be
able to see every item in the exhibit to check that it was not damaged. As another example,
assume you want to water your garden, and you wish to find a path that your funnel will
be able to pour water to all of your plants. This problem is called the Watchman Route
Problem (WRP), where the task is to find a route that ‘sees’ every point in the environment.
WRP was proven to be NP-hard for polygons (Chin & Ntafos, 1986).

In our variant of WRP, we are given a graph G(V,E), a start vertex (similar to fixed or
anchored WRP, as described in Section 2.4) and a line-of-sight (LOS) function. The task
is to (offline) find a path from the start vertex through the graph, such that all vertices in
the graph were visually covered by line-of-sight (LOS) from at least one of the vertices on
the path. Such a watchman path is the output for our problem. In the optimal variant of
WRP, we seek for the shortest path with these attributes.

The LOS function (LOS : V → P (V)) determines which vertices a given vertex can see
(i.e., has line-of-sight to) and it can be any arbitrary function. Trivial LOS functions on
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Figure 1: Optimal WRP Path

grids (four-connected graphs) are the cardinal lines (4-way) possibly combined with diagonal
lines (8-way). An example of a non-trivial LOS function is a transmission frequency function
that indicates for each vertex which are the vertices that can receive the transmission.
Importantly, the exact map is known in advance and our task is to search offline for the
requested (shortest) path. For example, Figure 1 shows the shortest possible tour such
that each empty cell is seen by a vertical/horizontal LOS. An optimal solution for this
problem is the shortest Watchman Route path. WRP has many practical applications, such
as planning a patrol route, visually mapping a floor room in a building, finding a path for
watering the garden and more.

In this paper we formally define WRP and formulate it as a heuristic-search problem
by defining a corresponding search tree. We also investigate a number of variants for
the LOS function. We then propose several admissible heuristics for WRP of increasing
difficulty and accuracy that can be used on top of A* (Hart, Nilsson, & Raphael, 1968). In
particular, we abstract the map into a disjoint line-of-sight graph (GDLS), which is built
from disjoint components, such that each has its own line-of-sight region. We prove that
both the Minimum Spanning Tree (MST) and the solution tour of the Traveling Salesman
Problem (TSP) on GDLS are admissible heuristics for WRP.

We then introduce WRP-A*, an A*-based algorithm that uses these heuristics on top
of the defined search tree. We also introduce a novel node expansion mechanism that
significantly reduces the search tree by directly jumping to the different LOS regions. We
theoretically study all these methods and heuristics. We prove their admissibility, show how
to efficiently implement them, and study their trade-offs. We then provide an experimental
study where we applied all our variants on a large number of different grid maps. We
show that our strongest variant can optimally solve grids with up to 1,500 cells in several
hundreds of seconds.

We also aim to solve large problems in short computation time by sacrificing the opti-
mality of the solution. We therefore provide different search algorithms and methods which
modify WRP-A* to two search cases:

1. Bounded Suboptimal Search. Given a bound W , the task is to find a solution
path π where cost(π)≤W ×C∗, where C∗ is the cost of the optimal solution. In this
paper, we compare variants of WA* as well as of XDP and XUP (Chen & Sturtevant,
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2019). Experimental results show that these variants are much faster than WRP-A*
while their solution is much better than the bound that they guarantee.

2. Suboptimal Search. The task is to find a solution as fast as possible without
any guarantee on the quality. We introduce three methods that intelligently prune
away subtrees that are less likely to contain a solution. When combining all these
methods together, a solution is found orders of magnitude faster than baseline WRP-
A*. Although not guaranteed, the quality of the solution was close to optimal.

We experiment with all these variants on mazes and maps of different size taken from
the movingai benchmark (Sturtevant, 2012). Our experimental results show that we solve
grids with up to 3,100 cells in less than a second while achieving close-to-optimal solutions.

This paper is organized as follows. Background and related work are covered in Section 2.
A formal definition of WRP and the WRP-A* algorithm are given in Section 3. Next, we
provide our admissible heuristics (Sections 4–5). An enhancement to the WRP-A* is given
in Section 6 while Section 7 deals with the case of specific goal states. Section 8 provides
a detailed experimental study. Then, Sections 9–10 introduce bounded suboptimal solvers
and unbounded suboptimal solvers. Conclusions are given in Section 11.

All our definitions, algorithms and theoretical studies refer to general graphs. But, we
always provide examples on grids. Similarly, in our experiments we focus on grids.

2. Background and Related Work

Next, we provide background on the Watchman Route Problem (WRP), on similar prob-
lems, and on algorithms that solve them.

2.1 Simultaneous Localization and Mapping (SLAM)

In the field of robotics, the Simultaneous Localization And Mapping problem (SLAM) is a
prominent challenge that includes many variants and many solving approaches. The basic
variant includes an autonomous moving agent that tries to explore the environment and
build a map while simultaneously locating itself in the map (Dissanayake, Newman, Clark,
Durrant-Whyte, & Csorba, 2001). A number of surveys on SLAM algorithms appeared
in the literature (Aulinas, Petillot, Salvi, & Lladó, 2008; Taketomi, Uchiyama, & Ikeda,
2017). The main differences between SLAM and WRP is that in SLAM the environment is
unknown and the task is to online explore the environment and build the map by a moving
agent. By contrast, WRP is an offline search problem on a known map. Also, in SLAM
the outcome of sensing is unknown until it is performed, while in WRP the actions of the
agent are deterministic.

2.2 Inspection Planning

Another related problem is inspection planning (Fu, Kuntz, Salzman, & Alterovitz, 2019).
A robot is equipped with a sensor and a set of Points Of Interest (POIs) in the environment
to be inspected (i.e., physically seen with the sensor). This is a Bi-Objective problem (Her-
nandez, Yeoh, Baier, Zhang, Suazo, & Koenig, 2020a) where the solution is a motion plan
for the robot that aims to maximize the number of POI inspected and minimize the cost of
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Figure 2: Differences between Art Gallery and Watchman

the plan. (see Fu et al. (2019) for more details). WRP can be seen as a special case where
all POIs must be seen and that every vertex v ∈ V is a POI (i.e., we are interested only in
one of the extreme parto-optimal solutions). In addition, in this paper we focus on discrete
graphs whereas inspection planning works on a continuous high-dimensional configuration
space (for the states of the robot) which is built on top of the physical environment.

2.3 Art Gallery Problem

A reminiscent classic problem is the Art Gallery Problem (AGP) which was proven to be
NP-hard (Garey & Johnson, 1979). In AGP, we are given a map (e.g., an art gallery) and
the task is to find the minimal set of points S on the map (to place guards) such that all
points in the map can be seen by at least one point s ∈ S. A comparison between the
two problems could be seen as the task of watching over an art gallery either by placing a
minimal number of stationary guards/cameras to guard the gallery (AGP) or considering
one mobile guard instead (WRP).

There are many algorithms that solve AGP on polygons. Such algorithms use geo-
metric techniques such as triangulating a polygon. Then, some algorithms add internal
diagonals between vertices until there are no more such diagonals that can be added (Fisk,
1978). After doing so, the problem can be transformed to the 3-coloring problem, which
is NP-Complete (Appel & Haken, 1977), giving a solution to AGP (O’Rourke, 1987). An
important algorithm for solving AGP on polygons (Honsberger, 1979) finds a solution with
bn/3c points where n is the number of the polygon’s vertices.

Indeed, the shortest possible tour between the points in S is a solution to WRP, but it
may not be optimal (Kang, Kim, & Zhou, 2015). This is shown in Figure 2. The gray point,
labeled X, is optimal with regards to the number of guards needed to cover the entire map
(its LOS is the entire map). Yet, the optimal WRP path (the Red path) is much shorter
than the path that travels to X.

2.4 WRP on Polygonal Domains

WRP has been extensively researched on polygonal domains in the field of computational
geometry. The objective is to find a cyclic path that sees all internal points of a closed
polygon. Here two points have line-of-sight if the straight line between them does not
cross any edge. A specific variant of WRP is to define a start point that the guard must
travel from. This is called fixed WRP or anchored WRP (Chin & Ntafos, 1991), as opposed
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to floating WRP where no such point is required (Li & Klette, 2008). In general, the
problem was proven to be NP-hard but a polynomial-time approximation algorithm exists
with increased solution cost over the optimal solution of O(log2n), where n is the number
of vertices of the polygon (Mitchell, 2013). Such algorithms are used for complex polygons
and polygons with internal holes.

For simple polygons (with no internal holes) there are polynomial-time algorithms (Chin
& Ntafos, 1986) that identify a set of lines inside the polygon that the optimal watchman
route must include. A full algorithm for optimal WRP on simple and complex polygons
exists (Chin & Ntafos, 1991) which uses the same idea used for solving AGP (O’Rourke,
1987). An enhancement and corrections to that algorithm was introduced (Dror, Efrat,
Lubiw, & Mitchell, 2003) with a proved running time of O(n3logn). These algorithms use
the following high-level framework. First, we place a horizontal line inside the polygon which
cuts the polygon into two polygons. If every point on this line has line-of-sight to the entire
smaller neighboring polygon then the smaller polygon can be deleted, and we recursively
repeat this process for the larger polygon. Next, we repeat this process with vertical lines
and this is called the “folding” process. Then, the remaining polygon is triangulated and
now the triangles can be moved in such a manner that each triangle is connected to only two
triangles (this is called the “roll-out” process). A shortest path that travels through all these
triangles in their new formation can be found in polynomial time and it can be transformed
back to the original (non-triangulated) polygon giving a (not necessarily optimal) solution
for WRP on a simple or complex polygon.

2.5 The Uniqueness of Our Work

None of the other works on solving WRP just described is directly relevant to our prob-
lem because of the following differences. They assume a specific setting that includes a
polygonal, continuous environment, with a specific line-of-sight such that two points can
see each other if no edge of the polygon cuts the straight line between them. In addition,
they assumed that the desired route is a cycle, i.e., that it ends at the start point. By
contrast, we assume a general graph and may accommodate any LOS function, including
asymmetric LOS functions. Furthermore, we do not require to end the path by returning
to the start vertex but it can end at any vertex once all vertices have been seen.

2.6 The A* Algorithm and its Suboptimal Variants

A common framework for problem-solving in artificial intelligence is heuristic search for
finding a minimum-cost solution path in a graph or a tree. The A* algorithm (Hart et al.,
1968) is a general best-first search algorithm that is guided by the cost function f(n) =
g(n) +h(n) where g(n) is the cost of the path from the start node to node n, and h(n) is an
estimation of the remaining cost to the goal. If h is admissible (i.e., it never overestimates)
then A* is guaranteed to find an optimal solution. Also, under certain circumstances,
A* was proved to be optimally efficient (Dechter & Pearl, 1985). A* and its variants are
commonly used to solve search problems.

For large and complex problems, finding an optimal solution can take a lot of time
and suboptimal solutions can be found more quickly and therefore are considered in the
case of dealing with hard or complex problems. Naturally, suboptimal solvers trade the
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optimality of the solution for faster running time. Suboptimal variants of A* exist. Some of
these variants are bounded suboptimal algorithms (such as weighted A* (WA*) (Pohl, 1973))
which guarantee a certain bound on the quality of their returned solution compared to the
quality of the optimal solution. Others provide no such guarantees.

2.7 Traveling Salesman Problem

Given a complete graph (clique) G(V,E), the task in the Traveling Salesman Problem (TSP)
is to find a path that travels through all the vertices of V and returns to the start vertex
of this path. There are two variants of TSP. One variant allows multiple visits to the same
vertex and one variant that does not allow multiple visits. A reminiscent problem is that
of Hamiltonian cycle (Garey & Johnson, 1979) where the question to answer is whether a
cycle exists that passes thorough all vertices exactly once. Finding the optimal (shortest
path) solution for both versions of TSP is proven to be NP-hard (Papadimitriou, 1977).
It is a common practice to transfer any graph G′ to a complete graph G while adding
missing edges with the cost of the shortest-path between the two vertices in case repetitions
are allowed, and a cost of ∞ if repetitions are not allowed. Then, when solving TSP, one
should find a permutation on the vertices of G. Because of the complexity of this problem,
many suboptimal solvers were presented but below in various steps of our algorithm, we
only use algorithms that solve TSP optimally. In our paper, when we talk about TSP, we
refer to TSP where multiple visits are allowed.

3. Problem Definition of WRP

We now turn to define the variant of WRP we focus on in this paper. The input is the tuple
〈G, start, LOS〉, where G(V,E) is a graph (e.g., a map or a grid). For simplicity we assume
that G is connected.1 start ∈ V is the start location of the agent, and LOS is the line-of-
sight function (LOS : V → P (V)). For grid-map instances, blocked (un-traversable) cells
are denoted as obstacles, and the empty (traversable) cells are the vertices of the graph and
correspond to V. We say that cells p and q are neighbors iff there is a legal move from p to
q (and visa versa). While our algorithms are general and apply to any graph, in this paper,
for clarity, we provide examples for WRP and for the algorithms on grid maps, and assume
that only the four cardinal moves are legal actions to move along the grid. However, our
work applies to any general graph and LOS function. For example, in the context of grids,
generalizing our work to allow diagonal moves or other moves (such as the 2k neighborhood
moves (Rivera, Hernández, & Baier, 2017)) should be easy.

A path π = 〈s0 = start, . . . , sk〉 is a sequence of neighboring vertices starting from start.
The cost of the path is the sum of edge costs of that path. The task is to find a watchman
path in the map. In a watchman path π, for every vertex v ∈ V there is line-of-sight from at
least one vertex si ∈ π. An optimal watchman path is a watchman path with minimal cost.

In the main part of the paper, we assume that the watchman does not have to return to
the start vertex. The important aspect of the problem is that all vertices were seen. The
reason is that, practically, we do not want to restrict the whereabouts of the watchman

1. If the graph is not connected, then depending on the LOS function, there might still be a valid solution
and in fact, our algorithms below are valid for such settings too.
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(a) 4-way LOS (b) 8-way LOS (c) BresLOS (d) Optimal Path
Example using BresLos

Figure 3: Example of WRP with each of the LOS functions.

after the task is completed. It might stay idle, it might leave through the nearest exit or
might destroy itself. Nevertheless, our algorithms below can be adjusted to solve the cyclic
case as well as the case where a specific goal or set of goals are given and we discuss such
settings in Section 7.

3.1 Line of Sight

The line-of-sight (LOS) relation may be defined in many ways; it may or may not be
symmetric. For every vertex v, we use LOSFrom(v) to denote the set of all the vertices
that can be seen from v. In this case, we write that q ∈ LOSFrom(p) and say that an
agent located at vertex p can see vertex q or equivalently, we say that p has line-of-sight
to q or that q is in the line-of-sight of p. For asymmetric LOS functions, we use LOSTo(v)
to denote the set of all the vertices that can see v or equivalently, all vertices that have
line-of-sight to v. We refer to each vertex in LOSTo(v) as a watcher of v. A LOS is
symmetric if p ∈ LOSFrom(q) ⇐⇒ q ∈ LOSFrom(p), or equivalently, v sees all the vertices
that see v (i.e., LOSFrom(v) = LOSTo(v)). All our algorithms and definitions are general
and applicable for asymmetric LOS functions. Nevertheless, in this paper, we focus on the
following three symmetric LOS functions for grids:

1. 4-way LOS (LOS4): LOS4 exists between two cells p and q iff there is a path π
from p to q such that all moves in π are the same cardinal move (e.g., they are all
East). The Gray cells in Figure 3a represent LOS4 for the Green cell.

2. 8-way LOS (LOS8): LOS8 exists between two cells p and q iff there is a path π
from p to q such that all moves in π are the same cardinal or diagonal move (e.g.,
they are all North East). Figure 3b shows LOS8 for the Green cell.

3. Bresenham LOS (BresLos): BresLos is a LOS function commonly used in com-
puter graphics, video games and bitmap pictures. It allows to see more cells beyond
the cardinal and diagonal lines. BresLos is perhaps the most suitable LOS function
that discretizes real-world continuous domains into grids and simulates a continuous
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Figure 4: The graph G′. The new vertex is colored Blue.

field of view.2 Computing BresLos involves many low-level details. But, intuitively, it
approximates a straight line between two cells that does not pass through any obsta-
cles. The exact definition of BresLos is complex and is given in (Bresenham, 1965).
Figure 3c shows BresLos for the Green cell.

Sometimes, there is an upper-bound LOS radius R such that vertices at distance larger
than R are not seen. Unless stated otherwise, for simplicity, we assume that R =∞. But,
all our algorithms below are applicable to any radius R as shown in Section 8.3 where we
experiment with different R values.

3.2 WRP is NP-hard

We next prove that our version of WRP is NP-hard. We first define a non-cyclic variant
of TSP (NC-TSP) and prove that it is NP-hard. Then, we reduce NC-TSP to WRP. Our
proofs will be on the decision variants of these problems.

Definition 1. In the decision variant of TSP, we are given a graph G and cost K, and the
task is to decide whether there is a TSP path on G with cost ≤ K.

Definition 2. In the decision variant of NC-TSP, we are given a graph G, a start vertex,
and cost K. The task is to decide whether there is a path of cost ≤ K from start that passes
through all vertices in G at least once. In the optimal variant of NC-TSP the task is to find
the optimal such path.

Lemma 1. NC-TSP is NP-hard.

Proof. We reduce TSP (assuming that vertices and edges can be visited multiple times)
to NC-TSP. Assume a TSP instance with input graph G(V,E) and cost K. We build a
graph G′(V ′, E′). All vertices and edges in G also appear in G′ but we add one more vertex
denoted as end. We pick an arbitrary vertex start ∈ V as the start vertex. Let S be the
sum of all edge costs in E. We then connect start to end with an edge with cost U = 2 · S.
Figure 4 shows the new graph G′. We now ask whether there is a NC-TSP path on graph
G′ that starts in start with cost ≤ K + U .

We next prove the reduction. That is, we prove that there is a TSP path of cost ≤ K
on G iff there is a NC-TSP path from start of cost ≤ U +K on G′.

2. Originally, BresLos is asymmetric. But it can be converted to a symmetric LOS function by, e.g., taking
the union of the two directions (LOSFrom and LOSTo).
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Direction 1: Assume that there is a TSP path on graph G with cost X ≤ K. We can
now construct a NC-TSP path on G′ with cost X + U ≤ K + U as follows. The path will
start at start, follow the TSP path on G which is a cyclic path with cost X. Then, it will
go over the edge from start to end with cost U to a total cost of X + U ≤ K + U .

Direction 2: Assume that there is a NC-TSP path on graph G′ from start with cost
X ≤ K+U . We divide our discussion to two cases. Case 1: K > U . Observe that there is a
trivial TSP tour as follows. Find an MST of G and assume that its cost is M . Then, cover
the edges of the MST twice (from the root of the tree to the leaves and back). Now, observe
that M ≤ S. Thus, the cost of this TSP tour is 2M ≤ 2S = U < K. In fact, when K > U
then there is also always a NC-TSP path on G′ with cost ≤ U + K by adding the edge
(start, end) to the TSP path on G that was just described. Case 2: K ≤ U . In this case,
the NC-TSP path cannot pass twice in the edge (start, end) because it will incur a cost of
C where C > K + U . So, the path only passes on this edge once with cost U (it ends at
end). The rest of the path must be a TSP tour on G with cost ≤ X −U ≤ U +K −U = K

We next reduce NC-TSP to our version of WRP (where there is a specific start vertex
and the path ends once all vertices in V have been seen).

Lemma 2. WRP is NP-hard.

Proof. We reduce NC-TSP to WRP. The reduction is easy. NC-TSP is a special case of
WRP where LOS is defined such that LOSFrom(v) ≡ {v} for all vertices v ∈V. That is, a
vertex can only see itself (LOS radius R = 0). Thus, one must pass through the entire set
of vertices V.

We note that NC-TSP (i.e., WRP with LOS radius R = 0) is also known as Coverage
Planning or Shortest Hamiltonian Path (Galceran & Carreras, 2013). In Appendix A, we
provide a proof that WRP on a grid is also NP-hard.

3.3 WRP as a Search Problem

We next define the search tree of WRP that can be searched by any search algorithm. Then,
we define admissible heuristics that can guide an A*-based search.

• State: A state is pair 〈location, seen〉 where location is a vertex (current location of
the agent) and seen is a list of vertices (all the vertices that have been seen so far by
the agent).

• Node: A node S in the search tree contains a state. The components of the state
are referred to as S.location and S.seen. The complement of seen is the unseen list;
their union is the entire set of vertices (seen ∪ unseen = V). A node also has a parent
pointer as well as a list of pointers to its children.

• Root Node: Root is a node such that Root.location = start and
Root.seen = LOSFrom(start).
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• Expansion: Expanding node S = 〈location, seen〉 is to perform all legal movements
on S.location. Each child S′ of S corresponds to a given legal movement. S′.location
is the neighboring vertex of S.location derived from the movement. S′.seen is first
inherited from the parent S.seen. Then, we add to S′.seen all the vertices that
are now seen from S′.location and were not seen before. In other words, S′.seen =
S.seen ∪ LOSFrom(S′.location). The cost of the edge from S to S′ is the cost of the
movement action.

• Goal Nodes: Any node S where S.seen = V. Thus Goal.location may be any vertex
in V as long as all vertices have been seen.

• Path and Cost of Nodes: Every node S in this search tree is associated with a
path π = 〈s0 = start, ..., sk = S.location〉 which is determined by the branch of the
search tree that leads to S. This enables the pruning of duplicate nodes that have
the same state (same location and the same seen list) S.seen includes all the vertices
such that at least one of the locations in the path associated with S has line-of-sight
to them. The g-cost of node S is the sum of the costs of applying the operators from
Root to S, i.e., the cost of the path associated with that branch in the tree.

We use WRP-A* to denote the variant of A* that works on the search tree defined for
WRP. OPEN denotes the open list of WRP-A*. Any A* search relies on an admissible
heuristic to return optimal solutions. Below we introduce admissible heuristics for WRP-A*.

3.4 Preprocessing

All our heuristics and algorithms rely on the following three functions (defined on u and v
which are two vertices from the input graph):

• LOSFrom(v): returns a set of all vertices that vertex v can see (vertices that have
line-of-sight from v).

• LOSTo(v): returns a set of all vertices that can see vertex v (vertices that have line-
of-sight to v). Naturally, if LOS is symmetric then these two functions are identical.

• d(u, v): returns the cost of the shortest path from u to v.

For efficiency, these functions can be implemented via three lookup tables that can be
generated in a preprocessing phase and can be looked up during the A* phase. The table
that stores d(u, v) is also known as the All Pairs Shortest Path (APSP) table (Salvetti,
Botea, Saetti, & Gerevini, 2017).

Let n = |V|, the number of vertices. The size of each of these tables is O(n2). Building
the APSP table may take up to O(n3) time. If p is the time to compute whether there is
LOS between two vertices, then building the LOS tables may take up to O(p · n2) time.
These lookup tables can be fully built in a preprocessing phase or lazily during the search
process. Nevertheless, these tables are polynomial in nature while the main problem is NP-
hard. Therefore, the time and memory needed to build these tables is negligible compared
to the resources needed to solve the main problem. In addition, the tables can be built once
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and be used for solving multiple instances of the main problem. In our implementation, the
APSP table was built lazily but the LOS tables were built in a preprocessing phase.

Next, we introduce several admissible heuristics to be used by WRP-A*.

4. Singleton Heuristic

Figure 5: Example of Singleton heuristic

Our first heuristic is based on the idea that, in order to solve WRP, the watchman agent
must see each of the vertices from S.unseen. Thus, for each vertex p ∈ S.unseen (denoted
as the pivot p) we define its Singleton heuristic to be the minimal distance from S.location
to a vertex q ∈ LOSTo(p). Formally, given a pivot vertex p ∈ S.unseen:

hp(S) = min
q∈LOSTo(p)

d(S.location, q) (1)

where d(x, y) is the cost of the shortest path between vertices x and y. For every p ∈
S.unseen, hp(S) is admissible because the agent will surely travel to some vertex that has
LOS to p and hp(S) takes the minimum among all those vertices.

4.1 Aggregating Singleton Heuristics

Every possible pivot has its own singleton heuristic. Therefore, we can take the maximum of
each of these heuristics in order to maintain admissibility (Holte, Felner, Newton, Meshulam,
& Furcy, 2006). There exist a spectrum of possibilities to decide how many and which pivots
to use. Naturally, adding more pivots has a diminishing return in terms of accuracy of the
overall heuristic vs. time overhead. While we tried many combinations, in our experiments
below we took the extreme case of using all cells in the unseen list as pivots. We calculated
the singleton heuristic for all of them and took the maximum. We denote this heuristic by
hSingleton. It is formally defined by:

hSingleton(S) = max
p∈S.unseen

hp(S) (2)

hSingleton is larger than or equal to any other combination of pivots. hSingleton is first
fully calculated for the root node. Then, every vertex that is added to seen is removed from
the set of pivots. This significantly reduces the computation of the heuristic as the search
progresses.
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In Figure 5 we show an example of the calculation of hSingleton. Let S be the start
location where S.location (the location of the agent at the start) is the Green cell, the
Gray cells are in S.seen according to the BresLos LOS function, the Red cells are the
chosen pivots (many permutations available) and each pivot has its watchers colored Yellow.
Figure 5 shows that when aggregating the singleton heuristic to all these pivots we get that
hSingleton(S) = 11, represented by the Green line.

5. Graph Heuristics

Our next two heuristics are based on a graph called the Disjoint LOS graph (GDLS(V,E)).
GDLS(S) is abstracted from the input graph G(V,E) for every node S in OPEN. For clarity,
the following notations are used in this context. Since we always give examples with grids,
then, when discussing GDLS we use the term cell to denote a cell of the grid (= the vertex
of the original input graph G) and the term vertex to denote a vertex of GDLS . The term
node refers to nodes of the search tree.

We say that two cells x, y ∈ V are LOS-disjoint if LOSTo(x) ∩ LOSTo(y) = ∅ (i.e.,
there is no mutual cell that can see both vertices). Additionally, we say that a set of cells
LD is LOS-disjoint if every two cells in LD are LOS-disjoint (i.e.,

⋂
v∈LD

LOSTo(v) = ∅).

We next define GDLS(S) while demonstrating it on an example node S on a grid G
with traversable cells V. We then introduce admissible heuristics that are based on GDLS .
Figure 6a presents a grid G where the agent is located in the start cell X and LOS4 is used.
The root node S is generated with S.location = X and S.seen includes the cells in the grid
which are horizontally right or left of X or vertically above X (all the Gray cells as well as
A and D). GDLS(S), shown in Figure 6b3, is built as follows.

5.1 Vertices of GDLS

The set of vertices of GDLS(S) is created from a subset of cells from G. These vertices are
classified into the following three types (each with a different color in Figure 6):

• Agent Vertex. The AgentVertex (X – colored Green) is associated with S.location.

• Pivots. The Pivots vertices (C, F and J – colored Red) are a LOS-disjoint set of
cells from S.unseen. Importantly, there are many possible ways to choose the set of
Pivots, and thus GDLS(S) can be built in many ways. We describe our own method
in Section 5.5.

• Watchers. The Watchers (A,B,D,E,H,K and L – colored Yellow) are all the cells
that have LOS to one pivot from Pivots. Because the pivots are LOS-disjoint, each
watcher has LOS to exactly one pivot. Formally, Watchers =

⋃
p∈Pivots

LOSTo(p).

Note that some cells in V do not have vertices in GDLS(S) and are omitted. These cells
are either the Gray cells which are in S.seen, or the White cells which are in S.unseen. A
cell is White if it is not a watcher of any pivot (Yellow) and it cannot be made another

3. The colored edges will be explained later and can be ignored for now.
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(a) The Grid G (b) GDLS (c) GDLS1 (d) GDLS2 (e) GDLS3 and
GDLS4

Figure 6: Example of a grid with LOS4 and the derived GDLS graphs.

LOS-disjoint pivot (Red) in GDLS(S) because it has a watcher that is also a watcher of
another pivot. For example, the White cell above L cannot be made a pivot because it will
share the watcher L with J .

A pivot p and its watchers are denoted as component p of GDLS(S). Similarly, the
AgentVertex (without its LOS) is its own component. There are four components marked
with Blue background in Figures 6b and 6c: One for each of the pivots C,F and J and one
for AgentVertex.

5.2 Edges of GDLS

First, all edges (u, v) ∈ G where both u and v exist in GDLS are projected onto GDLS ,
e.g., the edge (A,B) in Figure 6b. Next, we iterate over all cells that were omitted from
GDLS and contract away (Geisberger, Sanders, Schultes, & Delling, 2008) these vertices. A
vertex v is contracted away by iterating over all pairs u,w that are both neighbours of v
and adding an edge (u,w) that replaces vertex v. For example, the Gray cell above X is
contracted away and X is connected to D in GDLS(S). Edges in GDLS(S) can be classified
into two types. Their cost represents the distance that the agent needs to travel to see the
pivots:

• Watching edges. These are edges inside a component that connect two watcher
vertices or a watcher to its pivot in GDLS(S). Such edges have a cost of 0 (e.g., in
Figure 6b, c(A,B) = 0).

• Traveling edges. These are inter-component edges. The cost of these edges is the
APSP distance between the two vertices (e.g., c(X,D) = 2, c(X,H) = 3, c(D,A) = 2,
as shown in Figure 6b).

5.3 Properties of GDLS

Consider a valid solution path π = 〈s0 = start, ..., sk = Goal.location〉. SinceGoal.seen = V
then it includes all cells that are pivots in GDLS(S). Therefore, we get the following obser-
vation:
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Observation 1: π will include at least one watcher cell for every pivot (the pivot is
considered a watcher of itself).

GDLS enables the following lemmas:

Lemma 3. The minimum distance that the agent has to travel in G from S.location to see
pivot cell p is the cost of the shortest path from S.location to p in GDLS(S).

Proof. This is a direct result of the fact that each watching edge has a cost of 0 and a
traveling edge has a cost of the APSP distance.

Lemma 4. A pivot-covering path is a path in GDLS(S) that starts at S.location and
passes through all the pivots. The cost of the minimum pivot-covering path is a lower bound
for the remaining cost in node S to complete a full solution to WRP.

Proof. This is a direct result of Observation 1, Lemma 3 and the fact that the pivots are
LOS-disjoint. It is only a lower bound because GDLS(S) may not cover all the cells in V as
some cells are left out. Also, it assumes that traveling within a component has a cost of zero
but this cost might be larger in practice, e.g., when the path travels through a component
on its way to another component.

The heuristics described below calculate different lower bounds to pivot-covering paths.

5.4 Simplifying GDLS

Since we are interested in a minimum pivot-covering path, we can simplify GDLS by con-
tracting away many of the vertices of GDLS while maintaining the fact that a minimum
pivot-covering path is a lower bound on the remaining cost from node S. This is done via
the following two procedures.

5.4.1 Contracting Away Internal Watchers

Consider cells A and B in Figure 6a. They are both watchers of pivot C. However, any path
that arrives to the component of C (from outside that component) must first arrive at A.
Therefore, B can be contracted away from GDLS because it does not add any information.
In general, we divide the watchers into two classes. Frontier watchers which are watchers
that have neighbours in G outside of the component. Internal watchers which are (non-
pivot) watchers that have all their neighbours within the component (either other watchers
of the same pivot or the pivot itself). We thus simplify GDLS by contracting away the
internal watchers; only frontier watchers remain in GDLS . The resulting graph is denoted
GDLS1 and is shown in Figure 6c, where cells B, E and K are internal watchers and are
contracted away. Contracting away internal watchers does not change the pivot-covering
path, it only reduces the number of vertices for some components in GDLS . The cost of
this path is also preserved because internal watchers are connected only with a 0 cost edges
(watching edges) as described in Section 5.2.
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5.4.2 Redundant Components

We define that component P is redundant with respect to component Q if all paths in
GDLS(S) from S.location to Q pass through component P . We similarly say that the pivot
of a redundant component P is a redundant pivot. In that case, component P can be deleted
from GDLS(S) because that component must be passed when traveling to Q. For example,
in Figure 6, the component of F is redundant with respect to the component of C. The
redundant component is contracted away and neighbors of redundant components are then
directly connected to cover the removal. The resulting graph is denoted GDLS2 and is
shown in Figure 6d where X is now connected to A with cost 4. Components that are
not redundant are called cardinal and they remain in GDLS2. Contracting away redundant
components does not change the pivot-covering path, it only reduces the number of the
components in GDLS that will surely be on that path. However, by doing so, the cost of
this path may increase because traveling inside a component that was not contracted away
means traveling only through watching edges with cost 0. But, when this component is
contracted away we use the real shortest distance that passes through that component.

5.5 Choosing Pivot Vertices

We now turn to discuss how pivots are chosen. We say that a set L of LOS-disjoint pivots
is maximal if no other cell is LOS-disjoint to any of the cells of L (i.e., we cannot further
increase L). Naturally, in order to produce high heuristic values we would like the size of
the Pivots set to be as large as possible and thus obtain a maximal LOS-disjoint set.

We used the following greedy method to obtain a maximal LOS-disjoint set. We first
set Pivots ← ∅. We then iterate over all cells c ∈ S.unseen. If c is LOS-disjoint to all
existing pivots in Pivots, c is added as a new pivot. In our implementation, we iterated
over all cells in increasing order of |LOSTo(c)| so as to prefer pivots with small components
(which allows a larger set of pivots). But, any other order of iterating over the cells will
also produce a maximal LOS-disjoint set. We tried other orders (e.g., to find vertices that
are farthest from the previous ones) and found this method to have the best performance.

We note that GDLS is built from scratch for every node S in the search tree. The reason
is that the unseen list is getting smaller on the fly. So, maximal sets of LOS-disjoint pivots
can also dynamically change and even increase. For example, consider a cell d that was
not LOS-disjoint to all pivots at a given node S. d might be LOS-disjoint to all pivots
in its child C. This happens if there exists a cell e and a pivot p such that e ∈ LOSTo(d),
e ∈ LOSTo(p) and d ∈ C.unseen. In the child C, if the agent has seen p from a cell that is
not e, then p is in C.seen and d can now be pivot (assuming it is LOS-disjoint to all other
pivots). This makes d LOS-disjoint to all pivots and d can be added to the set of pivots.
The following steps summarize how GDLS(S) is built.4

1. Add S.location as AgentVertex to GDLS(S).

2. Choose a maximal set of LOS-disjoint pivots, identify their watchers and add all of
them to GDLS(S).

4. A similar situation is illustrated in Figure 17 below.
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3. Complete the edges by contracting away cells that are not in GDLS(S) and assign
them their costs.

4. Build GDLS1 by contracting away internal watchers.

5. Build GDLS2 by contracting away redundant components.

Now that GDLS is fully defined, we turn to introduce the heuristics that are based on
it.

5.6 MST Heuristic

Given a graph G(V,E), the Minimum Spanning Tree (MST) is a spanning tree of G so that
the sum of its edge costs is minimal among all spanning trees. There are two classic greedy
algorithms with time complexity of O(|E| × log|V |) (E and V refer to GDLS in our case)
which were given by Kruskal and by Prim (Greenberg, 1998; Cormen, Leiserson, Rivest,
& Stein, 2009).5 The MST heuristic hMST (S) computes a MST of GDLS(S). The sum of
costs of edges of the MST is the minimum cost of a sub-graph that connects AgentVertex
to all the Pivots, and is used for the heuristic value of hMST . In Figures 6b-6e, the edges
of the MST are marked by the Blue lines.

Lemma 5. hMST is admissible.

Proof. Observe that all vertices within a component are connected with zero cost edges.
Therefore, any MST also contains non-zero edges that connect the different components.
The sum of costs of edges of the MST is the minimum cost of a sub-graph of GDLS that
connects AgentVertex to all the Pivots. Since the components are a disjoint set of vertices
of GDLS , this is a lower bound of a minimum pivot covering path.

Since there exist quadratic-time algorithms for MST, hMST is fast to compute.

5.7 TSP Heuristic

We now aim to find a minimum pivot covering path in GDLS . Given GDLS , we in fact want
a path that starts at AgentVertex and passes through all the components. To do this, we
further abstract GDLS2 to GDLS3 and then to GDLS4. These graphs are complete graphs
(cliques) and smaller than the previous ones so that we can apply TSP solvers on them
as shown below. GDLS3 is a homomorphic abstraction of GDLS2. All vertices within a
component in GDLS2 are merged into a single vertex in GDLS3 and internal edges within
such components disappear. Edges between two components are merged into one edge. The
cost of an edge between vertices in GDLS3 is the minimal cost among all edges that connect
these components in GDLS2.

These new vertices are associated either with the corresponding pivot or with AgentVer-
tex. GDLS3 for our example is illustrated in Figure 6e(top). It has three vertices: X, C
and J . As a result, GDLS3 is always a complete graph (clique).

5. Faster, but much more sophisticated algorithms for MST also exist (Chazelle, 2000) but we used the
traditional ones as GDLS is relatively small.
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We note that the MST of GDLS3 includes exactly the non-zero edges of the MST of
GDLS2 (the zero cost edges disappeared because they belong to the same component).
Furthermore, the MST of GDLS and of GDLS3 also use the same non-zero edges. Thus, one
can compute hMST on either of these versions of GDLS . Nevertheless, we have found that it
is most time-efficient to compute hMST on GDLS2. Indeed, to compute hMST one can first
generate GDLS3 and then execute MST on GDLS3. However, generating GDLS3 requires
to iterate over all edges of GDLS2, but while doing so we can already compute MST so this
duplication is not necessary.

We are interested in the minimum-cost path that starts at AgentVertex and visits all
other vertices in GDLS3. In fact, we are interested in the minimum-cost Hamiltonian path in
a clique graph that starts at a specific vertex. This is different from the Traveling Salesman
Problem (TSP) which calculates a minimal cycle in a clique which, by definition, does not
have a specific start vertex. We therefore slightly modify GDLS3 to yet a new graph GDLS4
so that we can exploit TSP solvers. GDLS4 adds a single reference vertex (denoted R) to
GDLS3. R is connected by edges to all other vertices in the graph. The cost of 0 is given
to the edge connecting R to AgentVertex while all other edges have a cost of U . U is a
constant larger than the sum of all edges in GDLS3. GDLS4 for our example is shown in
Figure 6e(bottom).

Observe that a minimum traveling salesman tour (while visiting each vertex only once)
for GDLS4 must include the zero edge between R and AgentVertex (it is {R−X−J−C−R}
in our example). Furthermore, if we remove R and its two incident edges from the tour
then we are left with a path whose one end is AgentVertex (this path is {X −J −C}). The
cost of this path is an admissible heuristic for our problem, denoted by hTSP (solve TSP
on GDLS4 and remove R).

Lemma 6. hTSP is admissible.

Proof. As built, a TSP tour on GDLS4 without the edges connecting R is a lower bound
on the shortest pivot covering path that travels from AgentVertex to see all the chosen
pivots.

Lemma 7. hTSP ≥ hMST .

Proof. It is easy to see that given a graph G its MST is always smaller than or equal to a
TSP tour on G. The reason is that an MST of G is the minimum-cost connected subgraph
of G while TSP is the minimum-cost connected subgraph that is also a cycle.

In our example (Figure 6e(top)), the MST is highlighted in Blue (4+3=7) while the
path associated with hTSP is highlighted in Green (3+7=10). However, unlike MST, TSP
is NP-hard (Held & Karp, 1970; Garey & Johnson, 1979). Thus, there exists a natural
trade-off of accuracy vs. time to compute the heuristic. We used an off-the-shelf TSP
solver (Michail, Kinable, Naveh, & Sichi, 2020), based on an algorithm by Held and Karp
(1970) that finds the optimal TSP tour. In our experiments below, we never had more than
12 pivots. However, if there are many more pivots, one can limit their number (and not use
a maximal set of LOS-disjoint pivots). This will still be admissible and still competitive
to the MST heuristic.6

6. We experimented with such variants and confirmed this claim.
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(a) The Grid G

(b) GDLS1(S)

(c) GDLSJ

Figure 7: JF example

6. Jump to Frontier (JF): an Enhanced Branching Mechanism

Trivially, when node S is expanded, then new nodes are generated for all the cells that are
neighbours of S.location. However, we can significantly reduce the size of the search tree
by adopting the enhanced branching mechanism which we describe in this section. This
mechanism is called the Jump to Frontier enhancement (JF). JF can optionally be added
to WRP-A*. JF is a reminiscent of Jump Point Search (JPS) (Harabor, Uras, Stuckey, &
Koenig, 2019) — a framework that implements A* on grids. In JPS, only jump point cells
(e.g., those who are in a corner of an obstacle and therefore break the so called Canonical
Ordering) are considered neighbors of the current node and are placed in OPEN. Other
cells (e.g., those along a cardinal line) are just passed through.

We next describe two types of frontier cells for WRP-A* that are added as children of
a given node S. From node S, the search branches to these children and they are added
to OPEN. The first type of frontier cells corresponds to watchers of pivots of GDLS(S) and
the second type corresponds to watchers of the White cells. Both types are described next.

6.1 Frontier Watchers of Neighboring Pivot Components

Given a node S and a corresponding GDLS1(S), consider any watchman path π that con-
tinues further from S.location. Such a path must include at least one watcher for each
of the neighbouring components. We are interested in the first such watcher that appears
on π. Recall that Frontier watchers are watchers that have neighbours in G outside their
own component. We define the set of Frontier Watchers with respect to node S (denoted
FW (S)) as watchers from components that do not include S.location (= AgentVertex ) such
that the shortest path (or any of the shortest paths in case there are multiple shortest paths)
from S.location to them (taken from the APSP table) does not include any other frontier
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watcher. An optimal watchman path π that will continue from S.location will include one
of FW (S). To be complete we add all FW (S) as children of S in the search tree.

We demonstrate FW (S) using Figure 7 with the BresLos LOS function.7 Assume that
the current node is S, that S.location is the Green cell X and that the Gray cells are in
S.seen. When we build GDLS1(S), we find two LOS-disjoint pivots — cells A and B
(colored Red). Each has a component of watchers colored Yellow. Cells that are both
watchers of a pivot and in S.seen are colored with Gray and Yellow diagonal stripes. Cell
D is a frontier watcher for the component of A, and cells F , E, and I are frontier watchers
for the component of B. Cells E and D are not in FW (S) because the shortest path from
X to them must pass through F . Thus, FW (S) includ the frontier watchers F and I. They
are frontier watchers of neighbouring components and they are direct neighbours of X in
GDLS1(S) as depicted in Figure 7b. F and I are candidates to be children of S as shown
Figure 8a. They are only considered candidates because cell I will be removed from being
a child in the next step below due to the addition of White components.

Note that F and I are not enough to find an optimal solution for this instance. After
jumping from X to F and seeing pivot B, cell C becomes a pivot, and to see C the agent
will have to go to J , K, or I. In addition, jumping from X to I (with cost 7) is not optimal
either. An optimal path (depicted in Figure 7a) is shorter as it first goes to J to see C
and then goes to see the component of B via cell F , and then ends at D with a cost of 8.
Thus, we need to consider cells besides those in FW (S) that are neighbours of S.location
in GDLS1.

6.2 Frontier Watchers of White Components

So far we have taken care of all components in GDLS1(S) that are direct neighbors of the
component of AgentVertex , i.e., the Green cell and the Red and Yellow cells (of component
B) in the map of Figure 7a. We are left with Gray and White cells. Gray cells are trivially
covered because they are all in S.seen. To preserve optimality, we need to take care of
cases where the optimal path first goes to see the White cells. Recall that White cells are
in S.unseen. They are not colored Yellow because they do not see any of the pivots. They
could not become new pivots (cannot be colored Red) because such a new pivot will not be
LOS-disjoint with other pivots since they have a mutual watcher. For example, a White
cell in the column right of I in Figure 7a (e.g., cell C) cannot be colored Red because it has
LOS to I, which is a watcher of pivot B. Nevertheless, any watchman path must also see the
White cells. Therefore, to guarantee the optimality of the solution returned by WRP-A*,
we also need to consider the possibility that the optimal path first passes via watchers of a
White cell. To do so, we build “auxiliary” components for the White cells and add them
to GDLS as follows. We iterate over all White cells. Given a White cell Z, we add Z as an
auxiliary pivot and all the cells with LOS to Z as its watchers. We then add this auxiliary
component to GDLS1 similarly to real pivots. In this manner, we will continue until we
have dealt with all White cells. The new graph that also includes the auxiliary components
is denoted GDLSJ . Then, we add FW (S) of GDLSJ(S) as children of S.

7. We use a more complicated example than the example presented in the former section because we need
this example to demonstrate the algorithm presented in Section 10.1.
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(a) (b)

Figure 8: (a) The search tree of Red pivots built from GDLS1(S). (b) The final search tree
with the White pivots built from GDLSJ(S).

We demonstrate this step using Figure 7a. Cell C is a White cell that becomes an
auxiliary pivot (marked with a Red circle), and all the cells marked with a Yellow circle are
its watchers. The frontier watchers of C are cells J , K, and I. However, only J is in FW (S)
but not K and I because the shortest paths to them pass through J (or F ). GDLSJ after
this stage is shown in Figure 7c. So, J is added as a child of S to a total of two children
{F, J}. We note that after considering the new components of White pivots, cell I is no
longer in FW (S) because the shortest path to it must pass either trough F or through J .
Thus, I is surplus and not added as a child of S. In fact, After GDLSJ(S) is built we just
take the neighbours of S.location in GDLSJ(S) as the children of S.8

Importantly, these auxiliary components (of White cells) are not considered by the graph
heuristics (MST and TSP) because their pivots are not LOS-disjoint with the other pivots.
They are only added later (after the heuristic computation) for the JF branching process.9

Expanding the root node in our example of Figure 7 will result with the tree in Figure 8b.

6.3 Generating the Children for FW (S)

When expanding a node S, after building GDLSJ we generate one child S′ for each edge in
GDLSJ that connects AgentVertex to a member W ∈ FW (S) (= neighbour of AgentVertex
in GDLSJ(S)) as follows. S′.location = W . Let π(AgentVertex,W ) be a shortest path in
G(V,E) from AgentVertex to W (taken from the APSP lookup table or calculated on the
fly). The cost of edge (S, S′) in the search tree is set to the cost of π(AgentVertex,W ) (= the
cost of the corresponding edge in GDLSJ(S)). S′.seen is copied from S.seen and is updated
to also include LOSFrom(W ). We note that W is the first vertex in π(AgentVertex,W ) that
sees a new vertex. Thus, if there are multiple shortest paths to W it does matter which one
the watchman will finally take. The following steps summarize the JF enhancement:

1. Build GDLS1(S).

8. Strictly speaking, there are two other White cells in the figure that are being treated in the same way.
However, we omit these from the discussion for simplicity of the description.

9. In Section 10.1, we further develop this process of adding White cells to GDLS and suggest a (suboptimal)
variant that does not add White cells (Ignore Whites). As we demonstrate there, on our example (that
was carefully handcrafted for this purpose), the Ignore Whites variant might lose optimality of the
solution but might run faster.
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2. Build GDLSJ(S).

3. Add neighbours of S.location in GDLSJ(S) as children of S.

4. For each new child, generate the corresponding node.

6.4 Theoretical Analysis

We next prove a number of claims about WRP-A* with JF.

Lemma 8. WRP-A* with JF is sound.

Proof. WRP-A* (with and without JF) halts only when seen = V (unseen is empty).
Therefore, forcing the algorithm to jump to a specific cell will not cause it to halt without
seeing all the cells.

Lemma 9. Applying JF on top of WRP-A* is complete.

Proof. We first begin with the following simple observation.

Observation 1. When expanding a node S, every generated child S′ has a seen list that
contains S.seen plus all the vertices seen when jumping from S.location to S′.location.
Therefore, the size of seen is always increasing with each JF operation, i.e., S.seen ⊂
S′.seen.

At the root node, Root.seen contains all locations that are seen from Root.location. For
any node S selected for expansion, as long as S.unseen is not empty (S is not a goal), at
least one child will be generated because there is always somewhere to jump to. According
to Observation 1, each of the generated children nodes will have more vertices in seen. As
the search progresses (in any best-first order), for some node selected for expansion, since
the number of vertices in V is finite, seen will include all vertices. i.e., a solution will be
found and returned.

Lemma 10. Applying JF on top of the WRP-A* preserves optimality.

Proof. Let π be an optimal watchman path. π contains a list of vertices, starting from start.
Some of the vertices in π add new vertices to seen and others do not. JF builds a search
tree such that new generated nodes always add new vertices to seen, and between each
two nodes the shortest path is considered. When expanding a node, JF generates nodes
according to all pivots, as well as all the auxiliary pivots. These are all options for moving
and adding new vertices to seen. Therefore, the search tree built by JF also represents π,
and executing WRP-A* is guaranteed to return it because it expands nodes according to a
best-first order of their f -costs.
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7. Specific Goal States

Up until now, we assumed that any vertex can be the goal as long as all vertices in V have
been seen. This is an implicit goal. But, in many scenarios, the input might include an
explicit goal vertex (exit door) or even an explicit set of possible goal vertices (several exit
doors). The task here is to find a path from start to one of the goals such that all vertices
in V have been seen. A special case of this is where the start vertex is also the goal vertex
and the task is to find a cycle that sees all vertices in V.

Figure 9: Multiple Goals Example

Given explicit goals, we next show how to modify the input graph G(V,E) to a new
graph G′(V ′,E ′) such that a solution to the implicit goal case for G′ is also a solution to
the explicit goal case for G. G′ is built as follows. For each explicit goal (one or more),
we add an edge of cost U (where U is a very large constant) to a new vertex X. X is
then connected to another vertex Y such that X is the only vertex that has LOS to Y
(i.e., {X} = LOSTo(Y )). Figure 9 shows how our example graph from Figure 1 is modified
where the top corners are the explicit goals.

Lemma 11. An optimal path for the implicit case for G′ must end at X via one of the
U -cost edges.

Proof. Any WRP path must pass through X because X is the only vertex that has LOS
to Y . Now, since U is very large, every path that does not end in X must travel via such
edge twice and incur the cost of U twice. Thus it is always cheaper to only incur the cost
of U once.

Deleting the last edge of cost U from the solution to the implicit case of G′ results with
the shortest path that ends at one of the explicit goals in G. Thus, all our algorithms are
applicable to such cases after a small modification to the input graph.

8. Experimental Results for WRP-A*

We have performed extensive experiments with variants of WRP-A* (the optimal solver)
that use the different heuristics with and without JF on many grid maps. We report our
findings on representative example maps, but, it should be noted that similar trends were
observed for other maps that are not reported. Indeed, each of our improvements achieved
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a significant improvement in performance. The baseline breadth-first search algorithm
(labelled BFS) which did not have any heuristic could only solve relatively small problem
instances within reasonable computing resources while the best method (TSP+JF) could
solve much larger problem instances. We next provide detailed experimental results.

8.1 Time Per Node Breakdown

0

0.5

1

1.5

2

2.5

3

Si
ng

le
to

n

M
ST

T
SP

B
F
S+

JF

Si
ng

le
to

n+
JF

M
ST

+
JF

T
SP

+
JF

R
u

n
ti

m
e

p
e
r

n
o
d

e
(m

s)

calculate h

build GDLS

basic operations

Figure 10: Runtime breakdown per node for the various variants

Figure 10 shows a breakdown to three categories of the average runtime per generated
node on a large map while running WRP-A* using the various heuristics, without JF (basic
expansion; left three) and with JF (right four). Only seven bars are shown because BFS
without JF could not solve the problem and is not reported. The basic operations category
includes all the Best-first Search overhead (e.g., operations on OPEN ) as well as updating
the seen and unseen lists. The build GDLS category includes the overhead of building GDLS .
Finally, the calculate h category includes the overhead of calculating the heuristic.

The basic operations consumed more time for the JF methods compared to the basic
expansion because JF jumped to farther locations, and updating the seen and unseen lists
took more time. The basic operations for BFS+JF consumed more time because OPEN was
larger. Note that for MST and TSP the build GDLS category (which included simplifying
GDLS to GDLS2) consumes more time than all other operations. In fact, solving MST and
even TSP did not consume too much time because the resulting GDLS was very small. We
observed that the number of pivots varied from 9 in the root to 1 in the leaves and the
average number of pivots in GDLS per node was 5.8. Solving MST and even TSP on a few
nodes can be done very fast and the calculate h category consumed on average less than
20% of the total time.

For the left part of the figure, JF was not applied and Singleton did not create GDLS (it
was not needed by the heuristic and not by JF). Therefore, Singleton consumed less runtime
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(a) Maze 11×11 (b) Full 13×13 maze (c) 13x13 maze after removing
50% of the obstacles

Figure 11: Maze Maps

Basic Expansion JF expansion Ratio: Basic/JF
LOS h Nodes Time Nodes Time Nodes Time

LOS4
OPT=73

BFS 666,370 27,670 28,485 7,499 23 3
Singleton 296,264 19,166 13,980 3,772 47 7

MST 1,256 1,363 213 276 3,128 100
TSP 350 617 79 57 8,435 485

LOS8
OPT=64

BFS 467,079 19,842 6,226 1,158 75 17
Singleton 152,362 6,878 3,016 761 155 26

MST 1,122 509 119 203 3,925 98
TSP 507 412 75 59 6,228 336

BresLos
OPT=57

BFS 149,450 6,345 2,316 503 64 13
Singleton 61,959 2,639 1,175 246 127 26

MST 921 143 93 44 1,607 144
TSP 293 75 35 18 4,270 352

Table 1: All algorithms with all LOS functions. 11x11 maze. We report the number of
nodes and the CPU time in Msec.

per node than the graph heuristics because the build GDLS is the most time-consuming part
per node. In Singleton, the total time is mostly influenced by the basic operations category
and the calculate h category is negligible, and is a very thin slice in the graph.

8.2 11x11 Maze Grid

We next experiment on an 11x11 maze map shown in Figure 11a with a specific start state
(the Green cell at the top left corner). We picked this relatively small domain so as to be
able to provide a full comparison between all methods and all LOS functions. Results are
presented in Table 1. The columns give the number of nodes expanded and the CPU time
(in msec) to fully solve the problem for the basic expansion (left) and for the jump to frontier
expansion (JF) (middle) for each of our LOS functions. Rows correspond to the different
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heuristics. Consider LOS4 (top region). For basic expansion, the more informed heuristics
significantly reduce the number of expansions over BFS by a factor of up to 1,900 (for TSP)
and the CPU time by a factor of up to 44 (for TSP). The more liberal LOS functions further
reduce the search effort. But, the relative advantage of using the heuristics increases. For
LOS8 and BresLos the reduction of TSP over BFS was by a factor of ∼1000 for nodes and
∼100 for CPU time. The middle columns show the results when JF was used. Finally,
the Ratio columns gives the improvement factor of the JF of each row compared to the
basic expansion with BFS. For BFS, JF outperformed basic expansion by almost a factor of
two orders of magnitude. This factor is naturally smaller when the heuristics were added.
However, even when JF was applied, the heuristics further achieved a significant reduction
over BFS. For BresLos, TSP+JF solved the entire problem in only 18ms. In the rest of the
experiments we only focus on BresLos when JF was activated on top of WRP-A*.

8.3 Limiting the Line-Of-Sight Radius

(a) R=0 (b) R=1 (c) R=2 (d) R=3 (e) R=4 (f) R=∞

Figure 12: Limited radius R with an optimal path. BresLos.

Expansion Method Radius Generated Expanded Time(ms) Cost

basic 4-way

0 > 107 > 107 > 106 61
1 71,379 56,936 1,950 44
2 9,829 7,634 333 35
3 2,068 1,515 76 28
4 1,237 921 123 27
∞ 457 339 107 27

JF

0 428 203 332 61
1 37 23 19 44
2 27 17 18 35
3 16 10 14 28
4 14 8 9 27
∞ 11 7 42 27

Table 2: Limiting the LOS Radius. The TSP heuristic was used with BresLos

A realistic way to modify an existing LOS is by limiting the sensing radius. Figure 12
illustrates a grid with 42 empty cells where the agent is located left to the bottom-right
corner (colored Green). The frames are ordered in increasing LOS radius R. The LOS from
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the cell of the agent is colored Grey. The Red arrows are the optimal WRP paths, and the
Red dots inside these arrows indicate the jumping points of JF. Table 2 presents the data
on the optimal paths on the map from Figure 12 where both expansion methods (Basic
expansion 4-way movements and JF) were applied while varying the radius R. The TSP
heuristic was used on top of BresLos. Naturally, increasing R results in a shorter optimal
path because the agent can see farther cells. In fact, for R = 4 the path is identical to the
path where R = ∞. Similarly, the search effort is reduced with larger values of R. Time
increases when moving to R = ∞ because updating the seen and unseen lists incur more
time. As mentioned above, when R = 0, the agent can only see the vertex it is currently
located at, and the problem becomes equivalent to NC-TSP where the task is to travel
through all the vertices of the graph.

8.4 Increasing Density of Obstacles

Figure 13: Varying the number of obstacles.

Figure 11b shows a 13x13 maze with 71 obstacles. From this we built 71 instances
(1 . . . 71) where instance #n only had n obstacles randomized from the 71 obstacle set.
Figure 11c shows the half way point where 35 obstacles were present. Figure 13 presents
results on a log scale for all 71 instances averaged over 25 trials that randomly chose the
subset of obstacles of the given size. When going from left to right in the figure more
obstacles were added until the full maze was built. The right frame presents the number of
nodes expanded for BFS and for our three heuristics, while the left frame is for CPU time.
All curves are for the BresLos LOS when JF was activated. Here too, one can observe the
significant superiority of the strong heuristics. TSP outperformed BFS by up to a factor of
100 in nodes and time. One can observe a phase transition; after 55 obstacles the problems
become easier.

Observe that Singleton seems to be the best heuristic in relatively open maps (up to 40
obstacles). The reason is that MST and TSP might lose information due to the fact that
edges inside a component cost 0 as we explain in Section 8.5. By contrast, the most costly
Singleton pivot has exact distance to its watchers and in open maps this might be very close
to the real cost.

After reaching the halfway point one can observe a trend where the curves of BFS and
Singleton continue to increase while MST and TSP are more stable. The reason is that,
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when more obstacles are added (this decreases the size of the map), the informativeness
of MST and TSP remains stable because pivots are placed inside rooms and corridors.
Singleton and BFS do not have this attribute and they continue to lose their effectiveness
when more obstacles are added.

8.5 Advantages of the Singleton Heuristic

Figure 14: Orz106d from movingai.com

While the TSP heuristic is usually superior, there are cases where the Singleton heuristic
should be preferred. We show an example for that next. Figure 14 shows the orz106d map
from the movingai repository (Sturtevant, 2012) with two pivots colored Red and their
watchers colored Yellow (components A and C). The Blue arrow shows an optimal path
from the start cell (colored Green) which is at the top of the figure. When expanding the
root, GDLS is built with the two Red pivots shown in Figure 14. For the TSP heuristic, the
path calculated on GDLS(root) has the cost of reaching the component of C minus the cost
of traveling inside the component of A because the edges between the watchers and their
pivots cost 0. Therefore, traveling within component A is not considered in the calculation of
the TSP heuristic. The same applies for the edges of the MST in GDLS(root) (the MST will
contain the 0 edges). By contrast, the Singleton heuristic takes only the maximum distance
of the closest watcher of each cell of the map. In this example, the Singleton heuristic will
take the cost of fully reaching component C. This causes the Singleton heuristic to return
higher heuristic values than the other graph heuristics for some expanded nodes.

In general, the Singleton heuristic outperforms the graph heuristics if the solution path
contains a very small number of jumps. This phenomenon usually happens when the map
is a large open area. In such maps, each cell of the map has many watchers (i.e., large
coverage of the map) and the cost of the pivot-covering path (see Lemma 4) will be small.
In the example of Figure 14, one jump to a frontier of component C is a valid solution.

Table 3 shows data on this instance (of Figure 14). Indeed, Singleton outperforms the
other heuristics in the node counts by a factor of up to 10 and, since it is faster to compute,
its time improvement was by a factor of up to 30. This is an example where a simple fast
heuristic outperforms a more complicated heuristic.
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Movement Heuristic Expanded Generated Time

Basic Expansion
TSP 2,478 4,786 11,367
MST 3,831 6,961 6,753
Singleton 331 801 345

JF
TSP 328 1,086 2,887
MST 542 1,277 1,915
Singleton 37 185 136

Table 3: Results for Orz106d

Figure 15: Den101d

8.6 Larger Map

We also experimented with the den101d map from the movingai repository (Sturtevant,
2012) shown in Figure 15. This map is of size 36x69 and has 1,360 empty cells. Our
implementation was not optimized to save memory and each node consumed a few Kbytes.
The start cell is marked in Green (bottom left) and the Red path is the optimal path found.
The Gray cells are those who have BresLos LOS to the Blue cells. We executed our 4
heuristics on this map (with JF and BresLos). BFS and Singleton exhausted the available
memory of 2GB and a failure was reported. Table 4 presents the maximal f -value that
an algorithm reached, the number of generated nodes and the amount of time passed until
the failure point. TSP and MST solved the problem optimally (OPT=137) but the other

Heuristic Maxf Expanded Generated Time(sec)
Optimal solvers

BFS 66 >11,314 >50,000 >2,340
Singleton 103 >9,977 >45,000 >1,094

MST 137 13,271 41,837 1,577
TSP 137 5,096 15,476 471

Table 4: The den101d map and its experimental results
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variants reported failure after a few minutes while only reaching f -values of 66, and 103 for
BFS and Singleton, respectively.

We have also built suboptimal variants of WRP-A* which further reduced the branching
factor and the size of the search tree. In the next sections, we discuss these variants for
bounded suboptimal search and for unbounded suboptimal search.

9. Bounded Suboptimal Algorithm

It is common, especially in NP-hard problems, to trade the quality of the solution with
running time. A common setting for this is that of Bounded Suboptimal Search (BSS).
Given a bound W , the task is to find a solution with cost ≤W ×C∗. Many BSS algorithms
exist but there is no universal winner and each algorithm has pros and cons. We studied
a number of variants of Weighted A* (WA*) (Pohl, 1970). WA* is simple and performs
relatively robustly across domains (Gilon, Felner, & Stern, 2016). WA* is a best-first
search algorithm that prioritizes nodes in OPEN according to fW (n) = g(n) + W · h(n)
where W ≥ 1. The solution cost returned by WA* is guaranteed to be ≤ W × C∗ (Pohl,
1973).

New members of the WA* family have been introduced recently (Chen & Sturtevant,
2019). When placing the g-value on the x-axis and the h-value on the y-axis then with WA*
the set of nodes with the same fW -value form a straight diagonal line. Convex Downward
Parabola (XDP) modifies WA* by changing the straight line to a parabola as follows:

fXDP =
1

2W
· (g + (2W − 1)h+

√
(g − h)2 + 4Wgh) (3)

XDP focuses the search on nodes with near-optimal g-values (with respect to the optimal
path) near the start and nodes with g-values are up to (2W −1)×C∗ near the goal. Overall,
the paths found are still bounded suboptimal (with W ), and re-openings are not required.
Convex Upward Parabola (XUP) is similar to XDP but focuses on nodes with near-optimal
g-values near the goal and nodes with g-values are up to (2W − 1) × C∗ near the start.
XUP is defined as:

fXUP =
1

2W
· (g + h+

√
(g + h)2 + 4W (W − 1)h2) (4)

We experimented with WA*, XDP and XUP on the Den405d map (Sturtevant, 2012)
(Figure 16) with different values for W . In our implementation we did not allow to re-
open closed nodes.10 Table 5 provides the results (time in msec, number of expanded and
generated nodes, and the solution cost) averaged over 30 random start cells. Chen and
Sturtevant (2019) report that XDP tends to expand fewer nodes than WA* on the domains

10. The policy of not repeoning nodes was shown to produce solutions within the desired bound while
usually expanding fewer nodes than the policy of always repoening (Sepetnitsky, Felner, & Stern,
2016). Additionally, we did not experiment with Explicit Estimation Search (Thayer & Ruml, 2011)
and Dynamic Potential Search (Gilon et al., 2016) because they re-order their open lists every time the
minimal f -value changes. Reordering is very costly especially in domains with many possible f -values
such as WRP. This can probably be done more effectively if nodes that have the same g- and h-values
are clustered together in g-h-buckets and if there is a small number of unique g- and h-values. This is
valid mostly in permutation puzzles but not in WRP where valid paths are very long.
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W Alg. Exp Gen Time Cost

1 A* 840 3,662 20,608 99.69

1.1
WA* 203 859 6,285 99.76
XUP 201 897 5,486 99.76
XDP 206 906 6,134 99.76

2
WA* 40 247 1,599 101.14
XUP 53 283 2,101 101.21
XDP 91 498 3,113 99.83

5
WA* 26 178 813 106.59
XUP 27 178 668 107.07
XDP 34 229 1,366 103.07

10
WA* 25 173 653 107.07
XUP 25 172 790 107.07
XDP 38 252 1,597 104.79

Table 5: Results of WA*, XDP and XUP on Den405d map

Figure 16: Den405d

they tested. By contrast, our results are mixed. XDP tends to provide better quality of
solutions but tends to expand more nodes. Further study and comparison on the general
behavior of these three variants is needed but is beyond the scope of this paper. But, one
can see that all variants expand up to 34 times fewer nodes than WRP-A* while the solu-
tions they return are never larger than 1.075 × C∗ (7.5%) which is much better than the
bounds they guarantee which are up to W = 10.

10. Unbounded Suboptimal Algorithm

In BSS, there is a guarantee of W on the suboptimality. In this section we describe a
suboptimal algorithm without a suboptimality bound. To do so, we modify WRP-A* by
adding the following three techniques that reduce the size of the search tree (searched by
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(a) Example with White Pivot C (b) Example After One Step

Figure 17: Suboptimality of Ignoring White cells

WRP-A*) by pruning subtrees that are less likely to contain the optimal path: (1) Ignoring
White cells (those who do not have LOS to any of the pivots or the agent), thus reducing
the branching factor of the tree. (2) A greedy method to remove pivots from GDLS that
are on the way to other pivots. This method is less strict than the removal of redundant
pivots. (3) Bounding the jump points of JF to have distance no larger than by a constant
factor more than the distance of the nearest neighbor. We cover these next.

10.1 Ignoring White Cells

Consider Figure 17 (which has the same grid as Figure 7a). Recall that White cells are
unseen cells that do not have LOS to any of the pivots (Red cells) in GDLS so they are not
Yellow. They cannot be colored Red because they will not be LOS-disjoint to all other
pivots as they have a common watcher with at least one existing pivot. As explained in
Section 6, to ensure the optimality of the solution, given a node S we build (auxiliary)
components for the White cells for the JF expansion (but not for the TSP heuristic com-
putation). We use GDLSJ to denote the resulting GDLS after White cells were added (see
Figure 7c). Neighbours of X in GDLSJ are added as children of node S (see Figure 8).

We now suggest to ignore the White cells and not add White components, thus applying
JF on the original GDLS1 (and not GDLSJ). Cutting those components out will reduce the
size of the search tree (no edges to frontier watchers of White cells). This will lose the
guarantee of an optimal solution because, in rare cases, the optimal path passes through
these White cells before any other cell from the other components as we now demonstrate
using Figure 17a with BresLos.

As described in Section 6, assume that the current node is S, that S.location is the
Green cell X and that the Gray cells are in S.seen. Cells A and B are the two LOS-
disjoint pivots and their frontier watchers (cells F , I) are added as children of S with JF.
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Map Alg Exp Gen Time BF Depth Cost

Maze 21X21

Opt 8,146 27,658 143,008 4.5 20.4 182.52
IW 2,448 8,039 30,662 5 11.8 182.52
WR 1,064 5,981 46,819 11 5.4 183.48
Both 1,020 5,678 43,506 11 5.4 183.29

Den405d

Opt 840 3,662 20,608 9 11.2 99.69
IW 46 177 792 9 4.3 99.69
WR 26 153 818 13 2.4 100.17
Both 10 84 238 15 1.9 100.17

Map from
Opt 4.83 12.91 3.93 2.68 2.71 10.37
IW 2.65 7.30 0.74 2.39 1.75 10.46

Figure 17 WR 4.12 10.83 1.93 2.35 2.12 10.37
Both 2.18 5.28 0.49 1.78 1.47 10.37

Table 6: Subsections 10.1 and 10.2 results

Next, based on the former method for JF of WRP-A*, White cell C becomes an auxiliary
pivot and its frontier watcher J is also added as a child of S to a total of 2 neighbors: {F, J}
(I is reduandant). It turns out that the optimal path (that is colored Red in Figure 17a)
first jumps to the new child J (adding the two rightmost columns to seen). Then, it jumps
left to F (adding pivot B to seen). Finally, it jumps to D covering the left side of the figure
and halts. This is the optimal path of length 8.

By contrast, when we ignore the White cells and not add White components to GDLS , we
do not add C as an auxiliary pivot. As a consequence, J is not added as a child of S which
now has two children: F and I. In this setting of ignoring While cells, the minimal-cost
path first jumps to F . The situation after this is shown in Figure 17b and the corresponding
node is denoted by S′. Now, S′.location = F (F is colored Green) and B and some of its
watchers are covered (i.e., added to S′.seen, colored Gray). GDLS1(S′) now includes A as
a pivot but C also becomes a pivot because it is LOS-disjoint with A. So, now three cells
are added as children of S′: D (∈ LOSTo(A)), J and K (∈ LOSTo(C)). The minimal-cost
path from F will go to K and cover the right side of the map, and then will go to D to
cover the left side of the map and halt. The path returned (from the original location X),
when ignoring White cells, is of length 10.

Here, we gave an example where components of White cells are crucial for finding the
optimal solution. Ignoring White cells reduces the search tree but optimality is not guaran-
teed. We note that this example was carefully handcrafted. In practice, however, such cases
are very rare and, usually, optimal solutions are returned (but not guaranteed), even when
White cells are ignored from the JF procedure as we experimentally demonstrate next.

Table 6 presents results on a 21x21 maze (Figure 18) and on the Den405d map (Fig-
ure 16) averaged over 30 instances. It also provides results for the example of Figure 17.
One can see that Ignore Whites (IW) reduced the number of expanded nodes and the time
by up to a factor of 30 over WRP-A* (Opt). We also added the average branching factor
(BF) and average depth of the leaves of the final search tree (Depth). One can see that
the search tree is much shallower compared to the optimal tree. Indeed, BF can get larger
but the depth of the search is significantly smaller, causing fewer nodes to be expanded. In
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Figure 18: Maze 21X21

almost all instances, the optimal path was returned, even though it was not formally guar-
anteed. Thus, the phenomenon of losing optimality, as presented in Figures 17a and 17b,
happens very rarely. We performed similar experiments on 17 other maps, 50 instances
per map and IW always returned an optimal solution. This suggests that IW is practically
effective and that the quality of the solution will not be hurt too much.

10.2 Removing Likely Redundant Pivots

One of our goals is to solve larger problem instances. The number of pivots will increase
accordingly because we will be able to identify more LOS-disjoint pivots to GDLS . This
will increase the TSP heuristic values because they are based on GDLS . But, it will also
increase the size of GDLS as well as the branching factor of the main search (assuming that
JF is applied) because there will be more jump points that will be added as children of a
node. We next reduce the size of GDLS by removing some of the pivots from it. To do so
intelligently, we want to remove pivots with minimal effect on the quality of the solution
returned.

Above, we defined redundant components and suggested deleting them from GDLS keep-
ing only cardinal components when calculating the graph heuristics. Recall that GDLS is
built from components of pivots and their watchers, and that to have an admissible heuris-
tic, all inner edges of a component cost 0. Thus, the additional cost of passing through a
component is 0. However, when removing redundant components, the costs of the paths
inside these components are accumulated when jumping to the cardinal component because
we take the true shortest path along an edge. So removing redundant pivots may reduce the
time overhead of calculating the heuristics and may even improve their values. Nevertheless,
for JF, redundant components are needed as we jump to frontier watchers of neighboring
components to guarantee the optimality of the solution.

But, since we are now willing to forfeit optimality for running time we next suggest
to delete redundant components from the search tree of JF. For this we provide a greedy
method that further relaxes the definition of redundant component to a weakly redundant
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component. We then suggest to modify JF such that it will not add such components as
jumping points. Such modification will reduce the size of the search tree of JF but optimality
might be sacrificed. We describe this process next.

Recall that the definition of redundant components in Section 5.4.2 is strict — all
paths to a cardinal component Q must pass through component P to make P a redundant
component. Let Q be a component with q as its pivot. A component P is weakly redundant
with respect to Q if one shortest path in the underlying original map from S.location to
q passes through component P . Practically, when building GDLS and finding a new LOS-
disjoint pivot p, we also find a shortest path to p. There might be many such shortest
paths. But, in order to reduce the computation, we chose the first one that we find with an
A* search on the underlying graph G. Alternatively, we can use the all pairs shortest paths
(APSP) database if one is built, as suggested in Section 3.4. If that path includes a watcher
of q then component Q is weakly-redundant. So, Q is removed from GDLS . Importantly,
removing weakly-redundant components preserves completeness — as long as unseen is not
empty, at least one point will be selected and the search continues.

(a) WR Example Map (b) WR Example GDLS (c) GDLS with
WR

Figure 19: Suboptimality of weakly redundant pivots

Consider the example in Figure 19a. Assume we are at node S where S.location = X
and that S.seen already contains all the Gray cells. Figure 19b shows GDLS(S) that has
two pivots A and D. It is important to note that the component of D is not fully redundant
because there exists a path to the component of A that does not pass through watchers of
D (the topmost path of cost 8 to B which is a watcher of A). The optimal path (colored
Red in Figure 19a) is to jump to watcher F of pivot D and then jump to watcher B of pivot
A with solution cost of 10.

Now, observe that the shortest path from X to pivot A passes through E which is a
watcher of pivot D. So, in this case, the component of D (which includes E, the cell to
its right, and F as frontier watchers) is a weakly redundant component and we remove D
and its watchers from GDLS(S), as seen in Figure 19c. Removing the component of D will
lose the optimality of the solution. After removing the component of D there are now two
possible solutions to develop in the search tree: (1) Jump to watcher C of pivot A while
seeing pivot D on the path to C with cost of 11. (2) Jump back to watcher B of pivot A
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and then jump to watcher F of pivot D (which will become a pivot again) also with solution
cost of 11.

Table 6 also presents our greedy method to detect and prune weakly-redundant pivots
(WR). A reduction in nodes and in time is seen when compared to the optimal WRP-A*
variant (Opt) at a cost of a small loss in the quality of the solution. IW tends to be slightly
faster in time than WR although it expanded slightly more nodes. When adding WR on
top of IW (the Both line), we see that in the maze, results were not improved by a large
margin. But, in Den405d there is a total reduction of a factor of 80 in nodes and of 86 in
time over Opt. Again, this was at a negligible loss (∼0.4%) in the quality of the solution.
We also report the average branching factor and depth of the search tree. As can be seen,
all these algorithms reduce the depth of the search tree significantly by up to a factor of 6.
As can be seen in Table 6, WR has an effect which is similar to improving a heuristic: it
reduces the number of nodes but increases the time overhead per node. By contrast, IW
ignores some information in order to reduce the size of the search tree.

10.3 Bounding the Jump Points

Figure 20: DF tree example

Observe the following two attributes in a search tree rooted at S when JF is applied.
(1) Edges going out from S can have different costs. (2) All leaves of the search tree are
goal nodes because the algorithm will keep generating children as long as there are unseen
cells in the graph.

We would like to further reduce the branching factor of the search tree of JF. Inspired
by the nearest neighbor heuristic in TSP (Hurkens & Woeginger, 2004), we only connect
S.location to nearby jump points but prune away jump points that are far from S.location.
This is done as follows. Let ε(S) be the cost of the edge to the closest jump point from
S.location. Let distance factor (DF) be a constant factor. We now connect S.location
only to jump points whose edges have costs C such that C ≤ DF × ε(S). For example,
Figure 20 presents a search tree where edges costs are different and all leaves are goal nodes.
The partial expanded trees of different DF values are marked with different line thickness.
When DF = 1, and ε(root) = 2 then at the root we will prune edges from root to b and
c because their cost C is C > DF × ε(S) = 2, and thus the root is only connected to a.
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When DF = 2, then DF × ε(root) = 2 × 2 = 4 and we will now jump to a and to b but
prune c. This algorithm will be complete (because of attribute 2 just described), but the
solution might be suboptimal.

(a) Bounded Example Map (b) Bounded Example GDLS

Figure 21: Suboptimality of Bounded Jump

The optimal path in Figure 21a is the Red arrow (X,D,A,B,C) and its cost is 30. The
corresponding GDLS is shown in Figure 21b. When DF = 2 is applied on X (S.location),
the watcher of pivot A is the only child. Any of the frontier watchers of other pivots are
with distance ≥ 9 which is more than twice than the nearest child which is at distance 4
from X. Thus, the Blue path (X,A,B,C,D) of cost 31 is returned.

Map DF Exp Gen Time BF Cost

Maze 21X21

1 130 134 629 1.04 207.48
1.2 167 183 763 1.13 206.14
1.5 597 723 3,421 1.32 191.67

2 4,312 6,493 31,314 1.92 186.90
4 6,075 12,766 60,114 2.84 182.52

Opt 8,146 27,658 143,008 4.48 182.52

Den405d

1 200 213 1,253 1.45 115.97
1.2 306 375 1,287 2.20 109.10
1.5 441 755 3,729 3.29 102.66

2 698 1,530 7,220 4.78 101.10
4 780 2,373 12,432 6.83 99.69

Opt 840 3,662 20,608 9.29 99.69

Table 7: Bounded Jump Operator

Table 7 presents results for the DF technique on our two domains (without applying
IW and WR). Indeed, in both domains, smaller values of DF resulted in smaller branching
factors and therefore faster solutions times and fewer node expansions. For the maze, the
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improvement was up to ×60 in nodes and up to ×225 in time while for Den405d it was up
to ×4 in nodes and up to ×20 in time. The quality of the solution was never more than
15% over Opt (DF =∞).

10.4 Combining All Methods

Map DF Exp Gen Time BF Cost

Maze 21X21

1 29 30 647 1.08 218.48
1.1 33 37 709 1.20 215.71
1.2 84 104 1,118 1.52 204.05
1.5 365 660 4,052 2.61 187.76

2 503 1,403 10,112 4.43 183.29
4 932 4,434 31,585 8.78 183.29
∞ 1,020 5,678 43,506 10.83 183.29

Opt 8,146 27,658 143,008 4.48 182.52

Den405d

1 4 5 14 1.14 107.83
1.1 6 24 65 7.00 101.21
1.2 7 34 227 8.87 100.59
1.5 8 54 155 12.50 100.45

2 9 60 297 13.01 100.45
4 9 74 211 13.52 100.17
∞ 10 84 238 14.93 100.17

Opt 840 3,662 20,608 9.29 99.69

Table 8: All improvements on two maps

Table 8 shows the results when combining all our three techniques (IW, WR and DF).
Different rows are for different DF values. Dramatic improvements are seen. The maze
can be solved in less than a second and the map can be solved in 14ms. This comes at an
increased cost above the optimal solution of 20% for the maze and 8% for Den405d.

We also studied the effect of increasing density of obstacles. We experimented on the
same 13x13 maze with 71 obstacles used above. Here too, we built 71 instances (1 . . . 71)
where instance #n only had n obstacles randomized from the 71 obstacle set. The full maze
as well as the halfway point in which only 35 obstacles are present are shown in the top left
corner of Figure 22(top). The results in that figure are for all 71 instances averaged over 25
trials that randomly chose the subset of obstacles. Figures 22(top) and 22(bottom) present
the solution length and the CPU time, respectively (y-axis), as a function of increasing
number of obstacles (x-axis).

The different curves are as follows. DF = 1 is for the DF technique only. All = 1 is
for all three improvements where DF = 1 (similarly All = 2 has DF = 2). Five of our
variants obtained almost-optimal solutions except All = 1 and DF = 1 which were a little
larger but never off by more than 20%. As for runtime, one can observe a phase transition
behavior for all variants. All = 1 was best on time – significantly better (almost an order
of magnitude) than all other variants. All = 2 produced the best balance between solution
quality (almost optimal) and running time (only worse than All = 1). Importantly, these
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Figure 22: Different densities for the 13x13 maze

trends can be seen for all densities of obstacles, implying the robustness and generality of
our improvements.

Finally, Table 9 compares combining WA* with all our methods tested on Den020d
which is a complex large map with 3,100 free cells, shown in Figure 23. Both IW and
WR are used and the tested parameters are DF and W for WA*. Increasing W somewhat
speeds up the search at a cost of a longer solution. Reducing DF also speeds up the search
but tends to better preserve the solution quality. When both are combined, we get better
quality solutions (than each of them alone) in less time which implies that the combination
is beneficial.

10.5 Anytime Algorithms

In many cases, the amount of time given to a problem solver is limited or unknown. Anytime
algorithms are used for such cases (Zilberstein, 1996). A first (usually low quality) solution
is found as fast as possible. Then, as time allows, better and better solutions are found. In
our former paper (Yaffe, Skyler, & Felner, 2021), we introduced an anytime solver called
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Figure 23: Den020d

Anytime DF (ADF) which iterates over increasing values of DF. ADF is a general algorithm
that is applicable beyond WRP and it has many properties that were not yet studied. Thus,
it deserves a paper on its own and discussing it is left for future work.

11. Discussion and Conclusions

In this paper, we solved the Watchman Route Problem with heuristic search and provided
strong admissible heuristics for this problem. Our heuristics showed their effectiveness by
allowing a vast reduction in the search effort. In particular, the TSP heuristic is usually
most effective. However, if the environment has very large open areas then the Singleton
heuristic should be used. We also presented algorithms that solve WRP for bounded and
unbounded suboptimal solutions. A significant reduction is shown in the search effort with
a relatively low increase in the cost of the solution when the suboptimal variants are used.
Thus, we can now solve much larger problems.

We feel that we have touched the surface of an iceberg regarding this fascinating problem.
Future work will continue in the following directions:
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DF W Alg Exp Gen Time BF Cost

1
1 A* 21 23 488 1.17 532.11
2 WA* 14 18 646 1.25 532.11

10 WA* 14 18 652 1.25 532.11

1.2
1 A* 105 154 4,292 3.85 514.22
2 WA* 15 55 746 3.72 520.67

10 WA* 15 57 1,147 3.83 523.33

1.5
1 A* 243 421 10,357 5.97 506.89
2 WA* 16 106 2,309 6.62 514.00

10 WA* 18 98 2,627 5.70 535.56

2
1 A* 422 998 43,195 8.90 506.22
2 WA* 19 139 4,934 7.77 517.56

10 WA* 22 136 6,172 6.60 543.89

∞
1 A* 761 5,246 175,221 25.75 492.00
2 WA* 18 465 7,860 28.34 523.71

10 WA* 16 400 8,831 26.56 681.71

Table 9: WA* variants with our algorithm on Den020d

• There are a number of approaches for adding sensing abilities to the problem. In
this paper we assumed that at each location sensing is done for free to all directions.
Another approach is adding a specific operator for sensing which the agent can activate
once arriving at a node, or even during its movements. Additionally, different types
of sensing can be applied, e.g., to a different direction, or with a different sensing
radius or a different sensing angle. These approaches will significantly increase the
search space due to a much larger branching factor of the different possible operators.
Another approach is to add sensing costs in parallel to travel costs. This will make
the problem a Bi-Objective Search Problem (BOS) (Hernandez, Yeohz, Baier, Zhang,
Suazoy, & Koenig, 2020b). BOS is currently extensively researched, and WRP may
be a nice application for that research.

• Algorithms can be developed for more advanced search settings, such as bounded cost
search (Stern, Puzis, & Felner, 2011) where the task is to find a solution with cost
≤ C where C is a constant. Similarly, anytime algorithms that improve the quality
of the solution on the fly should be developed. These will be compared to existing
general solvers for these settings that are based on A*.

• Future work will solve this problem in a multi-agent setting where multiple agents
need to find watchman routes while combining their efforts under different communi-
cation paradigms, such as centralized controller and centralized knowledge sharing or
different variants of distributed decision abilities and distributed sharing of informa-
tion. In addition, ADF is a general framework which can be applied to other domains
such as TSP and other graph problems, especially when all leaves are solutions and
the costs of edges will be used to apply the algorithm.
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• From a robotics point of view, one may complicate the system by adding noise, dis-
cretization problems and online errors. This will enable to modify this work to a real
environment with real robots.
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Appendix A. WRP on a Grid is NP-hard

We next prove that our version of WRP is NP-hard also on grids. We label the grid map
G and use C to denote the set of empty (traversable) cells.

Definition 3 (Hamiltonian Cycle Problem). The Hamiltonian Cycle Problem (HCP) in
4-connected grids gets as input a grid and the output is a cyclic path that travels through
each of the empty (non-obstacle) cells of the grid exactly once.

HCP is proven to be NP-Complete (Garey & Johnson, 1979) and in particular in
grids (Itai, Papadimitriou, & Szwarcfiter, 1982).

Up until now, we only used the TSP variant that allows repetitions, i.e., multiple visits
at each cell (or vertex). We next prove the following 4 claims. (1) We prove that TSP
without repetitions (TSPonce) on a grid is NP-hard. (2) We then reduce TSPonce to TSP
(with repetitions). (3) We then show that NC-TSP on a grid is NP-hard by reducing TSP
to it. (4) Finally, we show that WRP on a grid is NP-hard because NC-TSP on a grid is a
special case of WRP on a grid.

Lemma 12. TSPonce (i.e., without repetitions) on 4-connected grids is NP-hard.

Proof. In 4-connected grids the cost of moving between two neighboring empty cells is 1.
Thus, both problems TSPonce and HCP are identical in 4-connected grids. So, the proof
that HCP on grids is NP-hard (Itai et al., 1982) is also a proof for TSPonce on a grid.

Definition 4. In the decision variant of TSPonce in 4-connected grids, we are given a grid
G and cost K, and the task is to decide whether there is a (cyclic) TSPonce path (that visits
each cell exactly once) on G with cost ≤ K.

Definition 5. In TSP (repetitions allowed) in 4-connected grids, we are given a grid G
and cost K. The task is to decide whether there is a (cyclic) TSP path of cost ≤ K that
passes through all cells in G at least once. In the optimal variant of TSP in 4-connected
grid domains the task is to find the optimal (shortest) such path.
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Figure 24: The new grid G′. The original grid G is shown in the bottom right of the figure.

Observation 2. In any 4-connected grid G (with |C| cells), a cyclic path that travels through
all cells of G has a cost of at least |C|. Moreover, the cost of such path is exactly |C| iff
every cell is visited exactly once.

Lemma 13. TSP on 4-connected grids is NP-hard.

Proof. We reduce TSPonce to TSP. Assume a TSPonce instance with input grid G and cost
K. According to Observation 2, if K < |C| then no solution exists for both problems. If
K ≥ |C|, any solution for TSPonce (if exists) costs exactly |C|. We thus build a respective
TSP problem where we set K ′ = |C| and we need to decide whether there is a TSP path on
grid G with cost ≤ K ′ = |C|.

Direction 1: Assume that there is a TSP path on grid G with cost ≤ K ′ = |C|.
According to Observation 2, the cost of the path is |C| and, hence, visits each cell exactly
once. Therefore, this is also a valid TSPonce path that costs ≤ K (K ≥ |C|).

Direction 2: Assume that there is a TSPonce path on grid G with cost K ≥ |C|.
According to Observation 2, the cost of the path must be exactly |C| and, hence, the path
is also a valid TSP with cost ≤ K ′ = |C|.

Observation 3. The solution path returned by a TSP solver is cyclic. Any cell (or vertex
for general graph cases) on that path can be considered as the start and end of that path.

Lemma 14. NC-TSP (Defined above - non-cyclic path with a start cell) on 4-connected
grid domains is NP-hard.

Proof. We reduce TSP (assuming that cells can be visited multiple times) to NC-TSP.
Assume a TSP instance with input grid G with traversable cells C and cost K. We build a
grid G′ with traversable cells C′. All cells in G also appear in G′ but we add more cells to the
map (labeled cor) that are connected to some cell start ∈ C11 (i.e., cor = 〈start, ..., end〉).

11. According to Observation 3, any cell in C can be chosen as the start cell.
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start is at the border of G (or next to an obstacle which has a path of obstacles to a border
cell). We denote the cell at the other side of cor from start as end, and the length of the
corridor cor is |cor| = U = 2 · |C|. We now ask whether there is a NC-TSP path on grid G′

that starts in start with cost ≤ K + U .

We next prove the reduction. That is, we prove that there is a TSP path of cost ≤ K
on G iff there is a NC-TSP path from start of cost ≤ U +K on G′.

Direction 1: Assume that there is a TSP path on grid G with cost X ≤ K.12 We can
now construct a NC-TSP path on G′ with cost X + U ≤ K + U as follows. The path will
start at start, follow the TSP path on G which is a cyclic path with cost X. Then, it will
go over cor from start to end with cost U to a total cost of X + U ≤ K + U .

Direction 2: Assume that there is a NC-TSP path on graph G′ from start with cost
X ≤ K+U . We divide our discussion to two cases. Case 1: K > U . Observe that there is a
trivial TSP tour as follows. Find an MST of G and assume that its cost is M . Then, cover
the edges of the MST twice (from the root of the tree to the leaves and back). Now, observe
that since this is a 4-connected grid then M = |C| − 1. Thus, the cost of this TSP tour is
2 ·M = 2 · |C| − 2 < U < K. In fact, when K > |cor| then there is also always a NC-TSP
path on G′ with cost ≤ K +U by adding cor from start to end to the TSP path on G that
was just described. Case 2: K ≤ U . In this case, the NC-TSP path cannot pass twice in
cor because it will incur a cost of 2 · U for cor, and X for G, where 2 · U + X > K + U .
So, the optimal path only passes on cor once with cost U (it ends at end). The rest of the
path must be a TSP tour on G with cost ≤ X − U ≤ U +K − U = K

We next reduce NC-TSP on a grid to our version of WRP on a grid (where there is a
specific start vertex and the path ends once all cells in C have been seen).

Lemma 15. WRP on a grid is NP-hard.

Proof. We reduce NC-TSP on a grid to WRP on a grid. The reduction is easy. NC-TSP on
a grid is a special case of WRP on a grid where LOS is defined such that LOSFrom(c) ≡ {c}
for all cells c ∈ C. That is, a cell can only see itself (LOS radius R = 0). Thus, one must
pass through the entire set of cells C.
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