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Abstract
We investigate the problem of preselecting a subset of buyers (also called agents) participating in a

market so as to optimize the performance of stable outcomes. We consider four scenarios arising from
the combination of two stability notions, namely market envy-freeness and agent envy-freeness, with the
two state-of-the-art objective functions of social welfare and seller’s revenue. When insisting on market
envy-freeness, we prove that the problem cannot be approximated within n1−ε (with n being the number
of buyers) for any ε > 0, under both objective functions; we also provide approximation algorithms with
an approximation ratio tight up to subpolynomial multiplicative factors for social welfare and the seller’s
revenue. The negative result, in particular, holds even for markets with single-minded buyers. We also
prove that maximizing the seller’s revenue is NP-hard even for a single buyer, thus closing a previous open
question. Under agent envy-freeness and for both objective functions, instead, we design a polynomial
time algorithm transforming any stable outcome for a market involving any subset of buyers into a stable
outcome for the whole market without worsening its performance. This result creates an interesting middle-
ground situation where, if on the one hand buyer preselection cannot improve the performance of agent
envy-free outcomes, on the other one it can be used as a tool for simplifying the combinatorial structure
of the buyers’ valuation functions in a given market. Finally, we consider the restricted case of multi-unit
markets, where all items are of the same type and are assigned the same price. For these markets, we show
that preselection may improve the performance of stable outcomes in all of the four considered scenarios,
and design corresponding approximation algorithms.

1. Introduction

Pricing-based mechanisms (Nagle & Holden, 2002) provide a fundamental approach for conflict resolution
in several competitive scenarios, such as the allocation of scarce resources in multi-agent systems or the sale
of items with limited supplies in monopolistic markets. While satisfying suitable constraints for coping with
the autonomous and self-interested agents’ behavior, such as incentive-compatibility and/or fairness, these
mechanisms also seek for the optimization of a given objective function.

We consider a market with perfect information in which there is one seller selling m items to n buyers
(also called agents). In the most general case, every buyer has a valuation for every possible set of items, and
her utility is given by the valuation she has for the set of bought items minus the sum of the prices assigned
to them by the pricing mechanism. Usually, optimal prices are the result of a challenging counterbalancing
process. For instance, if, on the one hand, selecting low prices may be profitable for the seller when it attracts
considerably more customers, on the other hand, it may leave some buyers unsatisfied, thus generating
discontent. In particular, this happens when, in case of limited supply, a customer is negated the right to
buy her preferred set of items, or even any item at all, despite the fact that she is willing to pay for them. In
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this case she is often called loser, as opposed to a customer receiving items, called winner. This situation is
practically illustrated by the following example.

Example 1. Consider a market with 2 identical items (in this case, the pricing mechanism has to decide
a unique price p) and 2 single-minded buyers, i.e., being interested only at buying a unique combination
of items in the sense that any other combination gives them zero value. Buyer 1 has a valuation of 3 for
obtaining both items, while buyer 2 has a valuation of 2 for a single item.

Notice that, if 3
2 < p ≤ 2, only buyer 2 is willing to buy, and one item remains unsold. So, the seller’s

revenue is at most 2. On the other hand, if the price is set to p = 3
2 , buyer 1 can purchase both items, leaving

nothing to buyer 2. Thus, even though the seller gets a higher revenue of 3, buyer 2 is negated the right to
buy an item, despite the fact that she is willing to pay for it: a sort of unfairness is present in the market.

For this reason, pricing problems are traditionally considered under the hypothesis of envy-freeness
(Foley, 1967; Varian, 1974), which prescribes that, once a pricing strategy has been established, items have
to be allocated to buyers in such a way that no one can get a higher utility by buying a different set of items.

Apart from fairness, envy-free pricing possesses additional appealing properties. From a theoretical
point of view, the following structural parallelism can be claimed: envy-freeness can be seen, in the context
of markets, as a notion corresponding to the one of equilibria in the context of game theory or multi-agent
systems. In fact, it decentralizes the market in the sense that buyers, up to a proper tie-breaking rule, au-
tonomously converge to the allocation dictated by a sort of equilibrium, since it corresponds to their preferred
choices (Easley & Kleinberg, 2010). From an economic point of view, envy-free pricing, by safeguarding
the losers’ interests, shelters the seller from possible future losses due to their dissatisfaction. However, Bilò
et al. (2017) show that, in certain markets, an intrinsic and unavoidable hurdle to the construction of a good
quality envy-free solution may come from the presence of a set of “disturbing” customers, that is, a set of
buyers such that at least one of them gets envious in any assignment of sufficiently high revenue. This ob-
servation naturally leads to the following intriguing question: “What happens if envy-freeness is restricted
to apply only to the set of winners? Can the seller raise enough more revenue (with certainty) today to
compensate the (uncertain) future loss of potential customers?”. This relaxed form of envy-freeness models
indeed the situation in which the seller is allowed the freedom to discard any subset of buyers from the
given instance, so as to get rid of envious losers in the assignment she would like to propose. In addition,
one might consider buyer “preselection” as an application of personalized marketing (Kim, Kim, Oh, &
Ryu, 2010; Weng & Liu, 2004) in which the seller, knowing the buyer valuations for instance by performing
market research, advertises about the existence of the supply only to targeted buyers that, once involved, will
all consider the allocation fair; the excluded ones then are simply unaware and will not feel any unfairness.

1.1 Our Contribution

Motivated by the above discussion, we introduce and investigate the buyer preselection problem in which,
given a pricing problem PP with n buyers andm items, sold by a unique seller, we are interested in comput-
ing the best possible envy-free solution that can be achieved by removing a subset of buyers from PP. We
consider four scenarios arising from the combination of two stability notions, called market envy-freeness
and agent envy-freeness, with the two classical objective functions to be maximised, namely, the social
welfare and the seller’s revenue.

In a market envy-free allocation, given a pricing of the items, each buyer gets the subset maximizing
her utility (given by the difference between the valuation she has for the subset and the prices assigned to
the items belonging to it) among all possible subsets that can be created from the set of available items; in
an agent envy-free allocation, no buyer gets a better utility by receiving the bundle allocated to any winner.
Thus, a market envy-free allocation is also agent envy-free. Moreover, both types of allocations are always
guaranteed to exist, as it suffices to assign all items an arbitrarily high price, so that no winner is possible.
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It is worth remarking that market envy-freeness is the strongest considered notion of envy-freeness, as it
looks to any possible subset of items in the whole market (and for this reason we have called it market
envy-freeness), while agent envy-freeness only cares about the bundles allocated to other winning buyers,
and is therefore called agent envy-freeness.

Throughout all the paper, we focus on polynomial time approximation algorithms, i.e., we require that
the running time of the algorithms is polynomial in the size of the input instance. We first focus on the most
general case, called market with combinatorial valuations, in which the buyers’ valuations are completely
arbitrary. For market envy-free allocations and both objective functions, we show that the buyer preselection
problem cannot be approximated within n1−ε for every ε > 0, unless P = NP. On the positive side, under
the objective of maximising social welfare, we design an n-approximation algorithm, while, for the case
of revenue maximization, we give an O(n logm)-approximation. These results are summarized in the first
row of Table 1. In particular, they are obtained as follows: all but one buyer are discarded from the given
instance, so that we are left with a pricing problem with a single buyer. While this problem is solvable
in polynomial time under the objective of social welfare, for revenue maximization, it already exhibits
challenging combinatorial structures and, to the best of our knowledge, has been considered before only by
Balcan et al. (2008). There, an O(logm)-approximation is provided, but no lower bound on the problem
complexity is given. We show that the problem is NP-hard, thus solving the corresponding open question.
We also conjecture (see the discussion at the beginning of Section 3.2 for all details) that the pricing problem
with k buyers cannot be approximated up to a factor smaller than k unless P = NP. As a first evidence of this
conjecture, we provide, in Theorem 11, a formal proof for the case of k = 2. These results are summarized
in Table 2.

Market type Objective function Negative results Positive results

n buyers,
combinatorial valuations

Social welfare
no n1−ε-approximation, ∀ε > 0

(Theorem 6)

n-approximation
(Theorem 10)

Revenue O(n logm)-approximation
(Theorem 10)

n buyers,
multi-unit market

with identical items

Social welfare
polynomial time solvable

(Theorem 21)Revenue

n single-minded buyers,
multi-unit market

with identical items

Social welfare
FPTAS

(Theorem 22)Revenue NP-hardness
(Theorem 23)

Table 1: Computational results for the buyer preselection problem under market envy-freeness.

We stress that efficient preselection can be profitable under two orthogonal directions: on the one hand,
the removal of a subset of envious buyers may increase the value of the optimal solution; on the other hand,
even when this does not happen or it has only a modest impact, simplifying the combinatorial structure
defined by the valuation functions of the winners may lead to the design of better approximation algorithms.
In fact, for the two preselection problems obtained by considering agent envy-free allocations, we show in
Theorems 16 and 17 how to transform in polynomial time any allocation which is agent envy-free only for
the subset of the winners to an agent envy-free allocation for all buyers without worsening its performance,
with respect to both objective functions. Hence, although this transformation implies that, for agent envy-
freeness, buyer preselection cannot improve the performance of stable outcomes, it can be used to map any
agent envy-free allocation for a subset of winners obtained through preselection back to an agent envy-free
allocation involving all buyers. Therefore, it can be used as an algorithmic tool for computing good stable
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Market type Objective function Negative results Positive results

1 buyer,
combinatorial valuations

Social welfare polynomial time solvable
(Claim 8)

Revenue NP-hardness
(Theorem 9)

O(logm)-approximation
(Balcan et al., 2008)

2 buyers,
combinatorial valuations

Social welfare
no (2− ε)-approximation, ∀ε > 0

(Theorem 11)Revenue

Table 2: Computational results for pricing problems (without preselection) with few buyers under market
envy-freeness.

outcomes when preselection is not allowed. In fact, it can be first exploited to simplify the combinatorics of
the problem, and then for mapping back the computed solution to one encompassing all the buyers.

In this respect, consider for instance the case in which the set of buyers of a pricing problem PP can
be partitioned in two (or more) subsets A and B, each containing only buyers of the same type, such
as, unit-demand buyers or single-minded buyers or buyers with additive valuations. Assume also that the
valuations of agents in A and B, when considered separately, allow to compute an rA-approximate (resp.
rB-approximate) solution of the problem restricted to subsetA (resp. B) by exploiting known or new simpler
algorithms/techniques. This would give an easy r-approximation for pricing problem PP with r = rA+ rB ,
by selecting the best of the two solutions obtained when considering the two subsets separately, whereas
approximating PP directly would be much more challenging. In fact, consider an optimal solution of value
opt and let optA and optB = opt− optA be the contributions to opt due to agents in A and B, respectively.
When selecting the best of the two solutions, we obtain a solution of value v ≥ max

{
optA
rA

, optBrB

}
=

max
{
optA
rA

, opt−optArB

}
that is minimized when optA is such that optA

rA
= opt−optA

rB
, which gives optA =

opt rA
rA+rB

and v ≥ opt
rA+rB

.

Envy-freeness Objective function Lower bound Upper bound

market envy-freeness
Social welfare

m− ε, ∀ε > 0
(Claim 20)

m
(Claim 19)Revenue

agent envy-freeness
Social welfare

(2− ε), ∀ε > 0
(Claim 25)Revenue 2

(Theorem 24)

Table 3: How preselection can improve the objective functions of envy-free solutions in multi-unit markets
with identical items. All lower bounds hold even in the case of single-minded buyers.

Finally, we consider the multi-unit case, where all items are of the same type and are assigned the
same price. We show how preselection can improve the revenue and the social welfare of both market and
agent envy-free solutions. In particular, for market envy-free allocations, we show a tight multiplicative
factor of m for both objective functions. For agent envy-free allocations, we show a lower multiplicative
bound of 2 for both the revenue and the social welfare, and prove that it is tight for the objective of revenue
maximization. These results are summarized in Table 3. We also provide essentially tight results on the
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complexity of computing optimal solutions for the buyer preselection problem under market envy-freeness:
these results are summarized in the last two rows of Table 1.

1.1.1 COMPARISON BETWEEN OUR AND PREVIOUS RESULTS

In this subsection, we make a comparison between our results and the ones contained in other two papers
(Flammini, Mauro, & Tonelli, 2019; Guruswami, Hartline, Karlin, Kempe, Kenyon, & McSherry, 2005) that
consider a similar model.

Guruswami et al. (2005) were the first to deal with the problem of computing a market envy-free pricing
of maximum revenue1. They consider the unit-demand setting where every buyer would like to buy at
most one item, and the single-minded one where every buyer is only interested in a particular set of items.
For the unit-demand setting they prove, by a reduction from the vertex cover problem, that computing a
market envy-free pricing of maximum revenue is APX-hard even for the special case of unlimited supply.
Moreover, they provide an O(log n) approximation algorithm for the limited supply unit-demand setting
by using a Walrasian Equilibrium (that is a market envy-free outcome with the additional requirement that
the market clears) with reserved prices. For the single-minded setting they prove, by a reduction from the
max cut problem, that computing a market envy-free pricing of maximum revenue is APX-hard even for
the special case of unlimited supply. Moreover, they present a simple algorithm assigning the same price to
every item and prove that it is an O(log n+ logm)-approximation for the unlimited supply case.

Our paper differs from the one by Guruswami et al. (2005) in a variety of aspects. In particular, we con-
sider the more general setting of combinatorial valuations and also focus of the notion of agent envy-freeness
and on the objective function of social welfare. More importantly, we deal with the problem of preselecting
buyers in order to get higher revenue or social welfare; this problem was not considered by Guruswami
et al. We thus provide a new set of results, obtained by exploiting, in our proofs, different arguments and
techniques. Specifically, we make use of reductions from the Maximum Independent Set problem, the Satis-
fiability problem and the Subset Sum problem to show our hardness results, whereas reductions from vertex
cover and max cut problems were used by Guruswami et al. Moreover, the provided approximation or exact
polynomial time algorithms are completely different from the ones given by Guruswami et al. Finally, we
also exploit Walrasian Equilibria, but only when maximizing the social welfare under agent envy-freeness
and in a different way with respect to the one considered by Guruswami et al.

Flammini et al. (2019) consider the problem of computing envy-free pricing of maximum revenue for
the multi-unit setting where all the items are identical. In particular, they consider social envy-freeness
where buyers are the nodes of a given graph and envy is possible only among neighbors in the graph. We
notice that social envy-freeness is a relaxation of agent envy-freeness. They provide tight complexity results
for single-minded and general buyers valuations. Moreover, they introduce the price of envy-freeness and
provide tight bounds for it in the considered setting.

In our paper, as in the one by Flammini et al. (2019), we also consider the multi-unit setting. However,
we get a different set of results. In particular, we show how preselection can improve both the revenue and
the social welfare of both market and agent envy-free solutions. Moreover, we provide almost tight results
on the complexity of computing optimal solutions for the buyer preselection problem under market envy-
freeness. None of these problems were considered by Flammini et al. Finally, like other papers dealing
with the multi-unit setting (Flammini et al., 2019; Monaco, Sankowski, & Zhang, 2015), in some cases we
exploit polynomial reductions to the multiple-choice knapsack problem in order to prove our positive results
in a constructive way.

1. Given that they only consider the notion of market envy-freeness, they call it simply envy-freeness without any further specifi-
cation.

1795
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1.2 Related Work

The literature on envy-free pricing is so vast that it cannot be exhaustively covered here. For this reason,
we simply refer to the achievements which are mostly related to the model introduced by Guruswami et al.
(2005) we consider in this paper.

For the social welfare maximization without money transfers, Bouveret and Lang (2008) and Karp et al.
(2014) consider the problem of assigning items to agents in an agent envy-free way. When money transfers
are allowed, the VCG mechanism (Clarke, 1971; Groves, 1973; Vickrey, 1961) provides an optimal solution
to the agent envy-free pricing problem. However, while this mechanism is efficiently computable in markets
with unit-demand buyers, yet for single-minded ones its computation becomes NP-hard. Approximate
solutions are still possible in this case thanks to the results by Archer et al. (2003). Also Walrasian Equilibria,
which are market envy-free outcomes with the additional requirement that the market clears (Walras, 1954),
provide an optimal solution to the problem (Bikhchandani & Mamer, 1997); however, they are guaranteed
to exist only under very stringent hypothesis on the buyers’ valuation functions (Gul & Stacchetti, 1999).

For the revenue maximization, several studies design logarithmic approximation algorithms for various
special cases of market and agent envy-free problems (Balcan et al., 2008; Briest & Krysta, 2006; Cheung &
Swamy, 2008; Guruswami et al., 2005; Hartline & Yan, 2011). Related hardness results are alsto studied in
the literature (Briest, 2008; Chalermsook, Chuzhoy, Kannan, & Khanna, 2012; Chalermsook, Laekhanukit,
& Nanongkai, 2013a, 2013b; Demaine, Feige, Hajiaghayi, & Salavatipour, 2008). Further variants such
as large markets (Anshelevich, Kar, & Sekar, 2015), sharp demands where each buyer asks for a fixed
quantity of items (Bilò et al., 2017; Chen & Deng, 2010; Chen, Deng, Goldberg, & Zhang, 2016), market
with metric substitutability among the items (Chen, Ghosh, & Vassilvitskii, 2011), and buyers with budgets
(Colini-Baldeschi, Leonardi, Sankowski, & Zhang, 2014; Feldman, Fiat, Leonardi, & Sankowski, 2012) are
also considered.

Feldman et al. (2016) propose an interesting relaxation of the notion of Walrasian Equilibrium, called
Combinatorial Walrasian Equilibrium (CWE), obtained by grouping items into bundles so as to induce a
“reduced market” to which, then, applying the notion of Walrasian Equilibrium. They show the existence of
a CWE yielding a 2-approximation of the optimal social welfare and that of a CWE yielding a logarithmic
approximation of the optimal revenue.

Furthermore, Monaco et al. (2015) study the case of revenue maximization in multi-unit markets under
both market and agent envy-freeness when allowing both item and bundle pricing.

In our model, by preselecting buyers, we basically require that all the winners are envy-free (we consider
both market and agent envy-freeness). Settings in which, in a similar way, envy-freeness is not guaranteed
for all buyers, but only for the winners, are studied in the literature (Alon, Mansour, & Tennenholtz, 2013;
Amanatidis, Markakis, & Sornat, 2016; Chen & Rudra, 2008; Elbassioni, Fouz, & Swamy, 2010; Nyman,
Su, & Zerbib, 2020; Segal-Halevi & Nitzan, 2019; Segal-Halevi & Suksompong, 2019). In particular, Chen
and Rudra (2008) consider “weak” Walrasian Equilibrium, a relaxed version of Walrasian Equilibrium in
which the goal is that of maximizing the number of market envy-free buyers, with the condition that all
the winners must be market envy-free. Alon et al. (2013) and Amanatidis et al. (2016) consider a relaxed
version of market envy-freeness: in their model, identical items have to be sold to buyers, with every buyer
constituting a node of a given unweighted graph; adjacent winning buyers have to pay similar prices for the
received item, while the losers cannot envy. This feature is exploited to achieve higher revenue with respect
to the classical case in which there cannot be losers, even if it makes the computational problem harder.
Elbassioni et al. (2010) consider an approximated variant of agent envy-freeness that has to be guaranteed
for the winners, in the case of bundle pricing (differently than the one of item pricing addressed in this
paper). Nyman et al. (2020) study how to guarantee fairness for a portion of agents when cutting multiple
cakes. Segal-Halevi and Nitzan (2019) deal with the division of a cake among groups, with the constraint of
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guaranteeing fairness to a given portion of each group. Analogously, Segal-Halevi and Suksompong (2019),
study a similar notion of group fairness for the case of indivisible goods.

Moreover, other settings in which related fairness notions are dealt with in a similar way (i.e., by guar-
anteeing the considered fairness notion only for a portion of agents) are also studied in the literature (Segal-
Halevi, 2018; Ortega, 2018; Searns, 2020). In particular, Segal-Halevi considers the problem of redividing
an heterogeneous resource in a way that balances fairness with ownership rights, guaranteeing ownership
retention to at least for a portion of agents. Ortega deals with the monotonicity of assignments when merg-
ing two-sided matching markets, and succeeds to guarantee it for one half of agents. Searns considers the
notion of maximin share guarantee when allocating indivisible items, by showing that this fairness notion
can be obtained for a fraction of agents.

Finally, some papers deal with multi-unit markets and consider a relaxed definition of market envy-
freeness, in which, given a social graph, every agent (corresponding to a node) can only see the prices of
items assigned to her neighbors (Flammini, Mauro, & Tonelli, 2018; Flammini et al., 2019). Similarly,
several works in fair allocation of goods in absence of pricing assume an individual’s view of the subjec-
tive well-being as based on a comparison with peers, that is restricting agent envy-freeness constraints to
social neighbors (Abebe, Kleinberg, & Parkes, 2017; Chevaleyre, Endriss, & Maudet, 2007b). Moreover,
distributed mechanisms for allocating indivisible goods under the absence of central control are investigated
in the literature (Chevaleyre, Endriss, Estivie, & Maudet, 2007a; Chevaleyre et al., 2007b; Chevaleyre, En-
driss, & Maudet, 2017); in this setting, given an underlying social structure, agents can locally agree on
deals to exchange some of the goods in their possession, again under the assumption of agent envy-freeness
restricted only to social neighbors.

2. Model and Definitions

In this section, we formally define the buyer preselection problem. In order to do that, we first have to define
markets, stability notions and pricing problems.

2.1 Markets

A market with perfect information is a tuple Γ = (N,M, (vi)i∈N ). We assume there is a seller who owns a
set M of m items and wants to sell these items to a set N of n buyers (also called agents). For every buyer
i ∈ N , vi : 2M → R≥0 is a valuation function expressing, given a set of items X ⊆ M , the amount of
money that buyer i is willing to pay for X; we assume that vi(∅) = 0 for every buyer i ∈ N . The seller sets
a price for each item. If a buyer buys a subset of items, her utility is the difference between the valuation
and the purchase price, i.e., the amount of money she “saves” compared to her valuation. We will formally
define the buyers’ utility in the next subsection. We assume that a buyer is indifferent between buying one
of two or more different subsets of items giving her the same non-negative utility. In particular, a buyer is
indifferent between buying a subset of items giving her zero utility and buying no items at all.

Depending on the definition of the valuation functions, different types of markets can be modeled. In
the most general case, called market with combinatorial valuations, function vi is completely arbitrary for
every buyer i ∈ N . In a market with unit-demand buyers, vi(X) = 0 for every i ∈ N and X ⊆ M with
|X| > 1, that is, every buyer is only interested in singleton sets. In a market with single-minded buyers,
for every i ∈ N , there exists a unique set of items X ⊆ M such that vi(X) 6= 0, that is, every buyer is
only interested in a particular set of items. In a market with additive valuations, vi(X) =

∑
j∈X vi({j}) for

every i ∈ N and X ⊆M . A valuation function v is monotone, if v(X) ≥ v(X ′) for each X ′ ⊆ X . Finally,
in a multi-unit market with identical items, all the m items are of the same type and so, for every i ∈ N , the
valuation function becomes of the form vi : {0, 1, . . . ,m} → R≥0, since it is only required to specify how
much a buyer evaluates a set of k items, for every k ∈ {1, . . . ,m} (clearly, vi(0) = 0).
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In this paper we mostly focus on markets with combinatorial valuations (Sections 3 and 4) and on multi-
unit markets with identical items (Section 5).

2.2 Stable Outcomes

Fix a market Γ. A price vector is anm-tuple p = (p1, . . . , pm) such that, for every j ∈M , pj ∈ R≥0∪{∞}
is the price of item j.2 We denote by 0m the price vector assigning price 0 to all items. Given a price
vector p and a set of items X ⊆ M , ui(X,p) = vi(X) −

∑
j∈X pj is the utility of buyer i when buying

X . The demand set of buyer i for the price vector p is the family Di(p) = argmaxX⊆Mui(X,p) of
subsets of items maximizing i’s utility according to the prices specified by p. An allocation vector is an
n-tuple X = (X1, . . . , Xn) such that Xi ⊆ M is the set of items sold to buyer i. The allocation vector
X = (X1, . . . , Xn) is feasible if Xi ∩ Xi′ = ∅ for each i 6= i′ ∈ N . An outcome is a pair (X,p) such
that X is feasible. Denote with OUT(Γ) the set of outcomes of Γ. Given any i ∈ N , a set of items X and
a price vector p, the pair (X,p) is individually-rational for buyer i if ui(X,p) ≥ 0; given any allocation
vector X = (X1, . . . , Xn), an outcome (X,p) is individually-rational if, for every i ∈ N , it holds that the
pair (Xi,p) is individually rational for buyer i.

Given an outcome (X,p), denote by M(X) =
⋃
i∈N Xi the set of items sold to some buyer according

to a feasible allocation vector X. Moreover, buyer i is a winner if Xi 6= ∅; W (X) denotes the set of all
winners in X. For an item j ∈ M(X), denote by bX(j) the buyer i ∈ W (X) such that j ∈ Xi. When the
allocation vector is clear from the context, we simply write b(j).

We say that a buyer i envies a set of items T in outcome (X,p) if ui(Xi,p) < ui(T,p). The following
concepts define two types of stable outcomes for Γ.

Definition 1. An individually-rational outcome (X,p) is market envy-free if ui(Xi,p) ≥ ui(T,p) for
every buyer i ∈ N and T ⊆ M , that is, Xi ∈ Di(p) for every i ∈ N , i.e., no buyer in (X,p) envies any
subset of items.

Definition 2. An individually-rational outcome (X,p) is agent envy-free if ui(Xi,p) ≥ ui(Xj ,p) for
every two buyers i, j ∈ N , i.e., no buyer in (X,p) envies any subset of items being assigned to other buyers.

Buyer
Item set {1} {2} {1, 2}

1 1 0 5

2 4 0 0

Table 4: The buyers’ valuations of example 2.

Example 2. Consider a market Γ = (N,M, (vi)i∈N ) with n = 2 buyers and m = 2 items. The buyers’
valuations are summarized in Table 4.

Consider the outcome (X,p) = (({1, 2}, ∅), (2, 3)) assigning both items to buyer 1 for a total price of
5. First of all, notice that, given the price vector p, buyer 1 is obtaining the most profitable item set. This
implies that (X,p) is agent envy-free, because buyer 2 cannot increase her utility by purchasing the set of
items sold to buyer 1. However, (X,p) is not market envy-free because buyer 2 envies the item set {1} that
would provide her a utility equal to v2({1})− p1 = 4− 2 = 2.

Consider now the outcome (X,p′) = (({1, 2}, ∅), (4, 1)) with the same allocation vector and a different
price vector. Again, on the one hand, given the price vector p′, buyer 1 is obtaining the most profitable item

2. For the case of multi-unit markets with identical items, it is only required to fix the price of a single item so that vector p
collapses to a real number p ≥ 0.
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set. On the other hand, under price vector p′, buyer 2 cannot obtain a positive utility by choosing a different
item set. Therefore, (X,p′) is market envy-free (and clearly also agent envy-free).

Denote by MEF(Γ) and AEF(Γ) the sets of market envy-free and agent envy-free outcomes for Γ,
respectively. Notice that MEF(Γ) ⊆ AEF(Γ) and MEF(Γ) 6= ∅ (and so also AEF(Γ) 6= ∅), since the
outcome (X,p) such that Xi = ∅ for every i ∈ N and pj =∞ for every j ∈M is individually-rational and
market envy-free.

In our proofs we sometimes need also the following fundamental notion of stability.

Definition 3. A Walrasian Equilibrium is a market envy-free outcome with the additional requirement that
the market clears, i.e., every unsold item is assigned price zero.

We denote by WE(Γ) the set of Walrasian Equilibria for Γ. Notice that WE(Γ) ⊆ MEF(Γ) ⊆ AEF(Γ).

2.3 Pricing Problems

Fix an outcome (X,p) for a market Γ. The revenue raised by (X,p) is REV(X,p) =
∑

j∈M(X) pj . The
social welfare generated by (X,p) is SW(X,p) =

∑
i∈N ui(Xi) +

∑
j∈M(X) pj =

∑
i∈W (X) vi(Xi), i.e.,

it is given by the sum of the utilities of the seller and of all buyers. Note that, since the utility of the seller,
i.e., the revenue

∑
j∈M(X) pj , is cancelled out by the total price paid by the buyers, social welfare does

not depend on the price vector p; moreover, under the assumption of individual rationality, it holds that
SW(X,p) ≥ REV(X,p).

In the following, we formally define the pricing problem. Roughly speaking, it is an optimization
problem that, given in input a market (i.e., a set of items and a set of buyers with their valuations), an envy-
free notion (i.e., market envy-freeness or agent envy-freeness) and an objective function (i.e., social welfare
or revenue), returns an allocation of items to buyers and a pricing vector for the items (i.e., an outcome)
maximizing the objective function and satisfying the given envy-free notion.

Given a market Γ, let sol(Γ) ⊆ OUT(Γ) denote any subset of outcomes for Γ and obj : OUT(Γ)→ R≥0

denote an objective function associating a non-negative value to every outcome for Γ. Let opt(Γ, sol, obj) :=
argmax(X,p)∈sol(Γ){obj(X,p)} denote the set of outcomes in sol(Γ) maximizing the objective function obj.

Definition 4. The pricing problem PP = (Γ, sol, obj) is an optimization problem which, given a market Γ,
an envy-freeness notion sol and an objective function obj, asks for an outcome o∗(PP) ∈ opt(PP).

In this paper, we consider the cases in which sol ∈ {MEF,AEF} and obj ∈ {REV,SW}.

2.4 Oracles

Fix a pricing problem PP = (Γ, sol, obj). As we have seen, when Γ is a market with combinatorial val-
uations, any algorithm for PP needs to deal with an input of exponential size. In order to circumvent this
problem and remain within the realm of polynomial time algorithms, it is usually assumed that functions vis
are not given as an input of the problem and are replaced by a polynomial time (with respect to n and m)
oracle providing information about a buyer’s valuation function. An oracle is usually assumed to answer
two types of questions: a value query which, given a buyer i ∈ N and a set of items X , returns the valuation
vi(X), and a demand query which, given a price vector p and a buyer i ∈ N , returns any set in Di(p).

We remark that all algorithms in this paper exploiting oracles are polynomial also in the sense that they
call the oracle a polynomial number of times. Therefore, when the oracle is polynomially computable, the
algorithm computation is polynomial as well.
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2.5 The Buyer Preselection Problem

Given a market Γ = (N,M, (vi)i∈N ) and a subset of buyers N ′ ⊆ N , the submarket of Γ induced by N ′ is
the market Γ(N ′) = (N ′,M, (vi)i∈N ′).

We are now ready to define the buyer preselection problem. Roughly speaking, it is defined upon a
pricing problem PP = (Γ, sol, obj), with Γ = (N,M, (vi)i∈N ), and returns a pair (N∗, o∗). In particular, it
aims at selecting a subset N∗ ⊆ N of buyers to admit to the market so that submarket Γ(N∗) induced by
N∗ is such that the returned outcome o∗ maximizes, among all possible choices of the buyers to admit to the
market, the objective function (i.e., social welfare or revenue) while satisfying the given envy-free notion.

Definition 5. The buyer preselection problem is an optimization problem BPP(PP) which,
given a pricing problem PP = (Γ, sol, obj) with Γ = (N,M, (vi)i∈N ), asks for a pair
(N∗(BPP(PP)), o∗(BPP(PP))) such that N∗(BPP(PP)) ∈ argmaxN ′⊆N{opt(Γ(N ′), sol, obj)} and
o∗(BPP(PP)) ∈ opt(Γ(N∗(BPP(PP))), sol, obj), that is, o∗(BPP(PP)) is the best outcome which can
be realized in all possible submarkets of Γ.

Clearly, by definition, for every pricing problem PP, obj(o∗(PP)) ≤ obj(o∗(BPP(PP))), that is, buyer
preselection can only improve the quality of the optimal solution.

Coming back to Example 1, it is worth noticing that, without considering preselection, all market envy-
free outcomes cannot sell (both) items to the first buyer: in this case, the price should be at most 3

2 and
the second buyer would be envious. Therefore, market envy-free outcomes can sell an item only to the
second buyer at price 3

2 < p ≤ 2. In particular, an outcome maximizing social welfare and revenue is
o = ((∅, {1}), 2), i.e., the one selling a copy of the item only to the second buyer at price 2: it holds that
REV(o) = SW(o) = 2. If we exploit buyer preselection, we can exclude from the market the second buyer,
and we can sell both items to the first buyer at price 3

2 , thus obtaining outcome o∗ = (({1, 2}), 3
2): in such

a way, we obtain REV(o∗) = SW(o∗) = 3, thus increasing the performance of envy-free solutions. In
Section 5 it is shown that preselection can be profitable, in terms of social welfare and revenue, also when
considering agent envy-free outcomes.

3. Results for Market Envy-Free Outcomes

In this section, we consider the buyer preselection problems BPP(Γ,MEF, SW) and BPP(Γ,MEF,REV) in
their most general form, that is, when Γ is a market with combinatorial valuations. We start by providing a
severe lower bound on their best-possible approximation guarantee. We achieve this result by designing an
approximation-preserving reduction from the Maximum Independent Set problem, which cannot be approx-
imated within a factor of n1−ε unless P = NP (Zuckerman, 2007). Interestingly, this lower bound holds
even under the more stringent assumption of single-minded buyers.

Theorem 6. Let PP = (Γ,MEF, obj) be a pricing problem with obj ∈ {REV,SW} and Γ being a mar-
ket with combinatorial valuations. For every ε > 0, the buyer preselection problem BPP(PP) cannot be
approximated within n1−ε, unless P = NP, even when Γ is a market with single-minded buyers.

Proof. We prove the claim through an approximation-preserving reduction from the Maximum Independent
Set problem, in which, given an undirected graph, it is asked for a subset of nodes, no two of which are
adjacent, of maximum cardinality. To this aim, consider an instance of the Maximum Independent Set
problem defined by a graph G = (V,E) and denote with δi(G) the set of edges incident to node i. We
create a market Γ = (N,M, (vi)i∈N ) with single-minded buyers as follows: we set N = V , M = E and,
for every i ∈ N , we define the valuation function vi in such a way that, for every X ⊆M ,

vi(X) =

{
1 if X = δi(G)
0 otherwise.
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Fix any subset of buyers N ′ ⊆ N . Given an individually-rational outcome o = (X,p) ∈ OUT(Γ(N ′)),
define VREV(o) := {i ∈ V :

∑
j∈Xi

pj > 0} and VSW(o) := {i ∈ V : vi(Xi) > 0}. By construction of the
valuation functions, both VREV(o) and VSW(o) have to be independent sets for G. Let obj ∈ {REV,SW}.
Since

∑
j∈Xi

pj ≤ 1 and vi(Xi) ≤ 1 for every i ∈ N ′, it follows that

obj(o) ≤ |Vobj(o)|. (1)

Let V ∗ ⊆ V be a maximum independent set for G. It is easy to see that the outcome (X∗,p∗) such that
X∗i = δi(G) for every i ∈ V ∗ and

p∗j =

{
1/δi(G) if j ∈ δi(G)
0 otherwise.

is a market envy-free outcome (actually it is also a Walrasian Equilibrium because the market clears, i.e,
every unsold item is assigned price zero) for market Γ(V ∗). This implies

obj(o∗(BPP(PP))) ≥ obj(X∗,p∗) = |V ∗|. (2)

Assume, for the sake of contradiction, that there exists an approximation algorithm for BPP(PP) returning
an outcome o such that n1−εobj(o) ≥ obj(o∗(BPP(PP))) for some ε > 0. Using (2), we get n1−εobj(o) ≥
|V ∗| which combined with (1) implies that n1−ε|Vobj(o)| ≥ |V ∗|: a contradiction to the inapproximability
result for the Maximum Independent Set problem.

As a positive result, we show that, by building upon (approximation) algorithms for pricing problems
defined on markets with a constant number of buyers, it is possible to obtain approximation algorithms for
the buyer preselection problem. The key ingredient is provided by the following lemma.

Lemma 7. Given a buyer preselection problem BPP(PP), where PP = (Γ,MEF, obj) with obj ∈
{REV, SW}, and a positive integer k ≤ n, if there exists a polynomial time algorithm Ak running in
time T (k) and returning an outcome for the pricing problem defined on markets with k buyers whose ob-
jective value is at least an αk fraction of the optimal social welfare, then BPP(PP) admits an

(
dnk eαk

)
-

approximation algorithm running in time O(nk)T (k).

Proof. Assume that o∗(BPP(PP)) := (X∗,p∗). For every i ∈ N∗(BPP(PP)), define

obji(o
∗(BPP(PP))) =

{ ∑
j∈X∗i

p∗j if obj = REV,

vi(X
∗
i ) if obj = SW,

(3)

so that obji(o
∗(BPP(PP))) is the contribution of buyer i to the objective value in the optimal solution of

BPP(PP). Let

N∗k =

{
N∗(BPP(PP)) if |N∗(BPP(PP))| ≤ k,
argmaxN⊆N∗(BPP(PP)):|N |≤k

∑
i∈N vi(X

∗
i ) otherwise,

be a subset ofN∗(BPP(PP)) having cardinality min{k, |N∗(BPP(PP))|} and maximizing the overall valu-
ation of the allocated bundles. Roughly speaking, given an optimal outcome o∗(BPP(PP)) of the buyer pre-
selction problem,N∗k just maximizes the sum of valuations of allocated bundles among all subsets of at most
k (preselected) buyers, independently from the considered objective function obj. For k ≥ |N∗(BPP(PP))|,
we get ∑

i∈N∗(BPP(PP))

vi(X
∗
i ) ≤

⌈
|N∗(BPP(PP))|

k

⌉ ∑
i∈N∗k

vi(X
∗
i ), (4)
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BILÒ, FLAMMINI, MONACO, & MOSCARDELLI

by definition. When k < |N∗(BPP(PP))|, set N∗(BPP(PP)) can be partitioned into
⌈
|N∗(BPP(PP))|

k

⌉
subsets each having cardinality k, except for at most one set which we denote by S. Clearly, any set
S′ of cardinality k satisfies

∑
i∈S′ vi(X

∗
i ) ≤

∑
i∈N∗k

vi(X
∗
i ) by the definition of N∗k . Moreover, also∑

i∈S vi(X
∗
i ) ≤

∑
i∈N∗k

vi(X
∗
i ) holds as S can be extended to a set of cardinality k by adding k − |S|

buyers from N∗k \ S without worsening the overall valuation of the allocated bundles. Thus, we conclude
that (4) holds for any value of k.

Consider algorithm Best which, given Γ and k, calls Ak on all O(nk) possible subsets of k buyers and
returns the solution, let us call it oBest, with the largest objective value. We show that the approximation
guarantee of oBest is dnk eαk. Let o ∈ MEF(Γ(N∗k )) be the outcome returned by Ak when executed on the
pricing problem (Γ(N∗k ),MEF, obj). We have

obj(o∗(BPP(PP))) =
∑

i∈N∗(BPP(PP))

obji(o
∗(BPP(PP)))

≤
∑

i∈N∗(BPP(PP))

vi(X
∗
i )

≤
⌈n
k

⌉ ∑
i∈N∗k

vi(X
∗
i )

≤
⌈n
k

⌉
αkobj(o)

≤
⌈n
k

⌉
αkobj(oBest),

where the first inequality comes from (3) and the fact that, because of individual rationality,
∑

j∈X∗i
p∗j ≤

vi(X
∗
i ); the second inequality follows from (4) together with |N∗(BPP(PP))| ≤ n; the third inequality

comes from the approximation guarantee of algorithm Ak; and the last inequality holds as Best returns the
outcome with highest objective value.

As a consequence of Theorem 6 and Lemma 7, the buyer preselection problem BPP(Γ,MEF, obj),
with obj ∈ {REV,SW}, admits a polynomial time algorithm asymptotically achieving the best possible
approximation guarantee (up to subpolynomial factors), whenever there is a constant value k for which the
pricing problem defined on markets with k buyers admits a polynomial time algorithm computing a market
envy-free outcome providing a k-approximation of the optimal social welfare. Clearly, the value of k for
which better approximation guarantees are ideally expected is k = 1. For this reason, in the following
subsection, we focus on the solution of pricing problems with a unique buyer.

3.1 Pricing Problems Defined on Markets with a Unique Buyer

Throughout this subsection, we assume that there is only one buyer in the market. Therefore, for the sake of
simplicity, we remove the subscript 1 from the notation.

As a warm-up, we start by considering the simpler case in which obj = SW.

Claim 8. Let Γ be a market with a single buyer and combinatorial valuations. The pricing problem PP =
(Γ,MEF,SW) can be solved in polynomial time.

In fact, observe that an outcome (X∗,0m) such that X∗ ∈ argmaxX⊆Mv(X) is such that (X∗,0m) ∈
opt(PP), and a set X∗ ∈ argmaxX⊆Mv(X) can be obtained in polynomial time by using the price vector
0m as the input of an oracle demand query.

We show, in the next theorem, that the case of obj = REV is NP-hard. Before our contribution, only
an approximation algorithm was known (Balcan et al., 2008, Lemma 7). Towards this end, we exploit a
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polynomial time reduction from 3SAT, in which a given boolean formula φ is transformed into a market
with a unique buyer and monotone combinatorial valuations, whose items are the literals of φ.

Theorem 9. Let Γ be a market with a single buyer and combinatorial monotone valuations. The pricing
problem PP = (Γ,MEF,REV) is NP-hard.

Proof. We prove the claim through a reduction from 3SAT. To this aim, given a boolean formula φ, let
V(φ) denote the set of its variables and L(φ) the set of all literals on variables in V(φ), i.e., either a variable
or its negation. Denote ν = |V(φ)|, so that |L(φ)| = 2ν. Throughout this proof, we assume ν ≥ 4. We
shall denote by vi the ith variable in V(φ) and by xi and x̃i the two literals related to vi. An assignment
for φ is a function f : V(φ) → {0, 1} associating each variable of φ with a boolean value. Denote with
F (φ) the set of all possible assignments for φ and with φ(f) the boolean value obtained by evaluating all
literals occurring in φ according to the following rule: if f(vi) = 1, then xi = 1 and x̃i = 0, whereas, if
f(vi) = 0, then xi = 0 and x̃i = 1. An assignment f can be also defined by listing the ν literals which
are evaluated 1 according to f . φ is satisfiable if there exists an assignment f ∈ F (φ) such that φ(f) = 1
and is not satisfiable if, for every assignment f ∈ F (φ), φ(f) = 0. Given a set of literals X ⊆ L(φ), we
say that X represents V(φ) if X contains at least one literal for each variable in V(φ). Observe that any set
X representing V(φ) needs have at least ν elements. A formula φ is an instance of 3SAT if φ is expressed
in Conjunctive Normal Form and each clause is the disjunction of 3 literals, so that φ can be completely
expressed by listing the set C = {c1, . . . , cγ} of its clauses, where each clause is a set of three literals.

Given an instance φ := C of 3SAT, we construct a market Γ = ({1},M, v) with a unique buyer such
that M = L(φ) and, for each X ⊆M , the valuation function v is defined as follows:

v(X) =


ν if X represents V(φ),
3 + ε if X does not represent V(φ) and X contains a clause in C,
0 if X = ∅,
1 otherwise,

where ε > 0 is arbitrarily small. Observe that, by the definitions of ε and ν, the valuation of a set X either
stays the same or increases when adding new items, so that v is monotone.

For example, the instance C = {{x1, x2, x̃3}, {x̃1, x2, x̃4}, {x̃2, x3, x̃4}, {x1, x3, x4}} defines the
boolean formula

φ := (x1 ∨ x2 ∨ x̃3) ∧ (x̃1 ∨ x2 ∨ x̃4) ∧ (x̃2 ∨ x3 ∨ x̃4) ∧ (x1 ∨ x3 ∨ x4),

which has four variables V(φ) = {v1, v2, v3, v4} and eight literals L(φ) = {x1, x̃1, x2, x̃2, x3, x̃3, x4, x̃4}.
The assignment f1 = {x1, x2, x3, x4} satisfies φ as f1 ∩ cj 6= ∅ for each j ∈ [γ], while the assignment f2 =
{x̃1, x̃2, x3, x4} does not satisfy φ, as it does not intersect c1. The set of items X1 = {x1, x2, x̃2, x3, x4}
represents V(φ) as X1 ∩ {xi, x̃i} 6= ∅ for each i ∈ [ν], while the set of items X2 = {x1, x2, x̃2, x3, x̃3}
does not represent V(φ), as X2 ∩ {x4, x̃4} = ∅. Moreover, X2 contains clause c1. Thus, v(X1) = ν and
v(X2) = 3 + ε. Finally, X3 = {x1, x2, x̃2, x3} neither represents V(φ) nor contains a clause in C, so that
v(X3) = 1.

Clearly Γ can be constructed in polynomial time with respect to the representation of φ. However, in
order to complete the reduction, we have to construct an oracle which can answer both demand and value
queries in polynomial time. To this aim, observe first that both ν and γ are polynomial in the representation
of φ. Hence, given a set of literals X , determining whether it contains a clause in C, or whether it represents
V(φ) can be performed in polynomial time, so that value queries can be efficiently answered. In order to
provide an efficient response to a demand query, we first observe that, by the definition of v, the answer to a
demand query is a set X satisfying exactly one of the following four properties: (1) X represents V(φ), (2)
X contains a clause inC but does not represent V(φ), (3)X is the empty set; (4)X is non-empty and neither
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represents V(φ) nor contains a clause in C. Moreover, as item prices are non-negative and the valuation of
all sets satisfying the same property is the same, a set X∗i maximizing the buyer’s utility among all the ones
satisfying properties (1), (2) and (4) can be obtained by selecting the ν items obtained by choosing, for each
variable in V(φ), the related literal having the lowest price (doable in O(ν) time), the three items of smallest
total price among all the triplets belonging to a clause in C (doable in O(γ) time) and the item of smallest
price (doable in O(ν) time), respectively. It follows that a response to the demand query can be done by
selecting the set providing the higher buyer’s utility among the empty set (giving a utility equal to 0) and the
sets maximizing the utility among all the ones satisfying properties (1), (2) and (4), computed as described
above. Thus, market Γ can be generated and managed in polynomial time.

With respect to the example outlined above, consider the pricing vector p = (2, 3, 1, 4, 2, 1, 0, 2) for the
set of items M = L(φ) = {x1, x̃1, x2, x̃2, x3, x̃3, x4, x̃4}. The item yielding the highest utility is x4 for
which u({x4},p) = 1− 0 = 1. The set of items containing a clause and not representing V(φ) yielding the
highest utility is c4 for which u(c4,p) = 3 + ε− 4 = −1 + ε. The set of items representing V(φ) yielding
the highest utility is X = {x1, x2, x̃3, x4} for which u(X,p) = 4 − 4 = 0. Finally, the empty set yields a
utility equal to 0. Thus, the demand query answers by returning bundle {x4}.

Now, in order to complete the proof, we show that there exists a market envy-free outcome o ∈ MEF(Γ)
such that REV(o) = ν if and only if φ is satisfiable.

Assume first that φ is satisfiable and let f be a satisfying assignment for φ. Let X be the set of literals
which are evaluated 0 in f and let p be the pricing vector such that all literals in X are priced 1, while all
literals in L(φ) \ X are priced ∞. By definition, X represents V(φ), thus, we have u(X,p) = 0, so that
((X),p) is individually-rational. Moreover, X ∈ D(p). In fact, for every X ′ 6= X such that X ′ represents
V(φ), u(X ′,p) < 0 since X ′ has to contain at least one item priced∞; for every X ′ such that X ′ does not
represents V(φ) and X ′ contains a clause in C, u(X ′,p) < 0 since, as we have φ(f) = 1, X ′ has to contain
at least one item priced ∞; for every non-empty X ′ such that X ′ neither represents V(φ) nor contains a
clause in C, we have v(X ′) = 1, so that u(X ′,p) ≤ 0. Hence, (X,p) ∈ MEF(Γ) and REV(X,p) = ν.

Secondly, assume that there exists an outcome (X,p) ∈ MEF(Γ) such that REV(X,p) = ν. By
construction of the valuation function, this is possible only if X represents V(φ) and

∑
j∈X pj = ν, so

that u(X,p) = 0. However, since v({`}) = 1 for every ` ∈ L(φ), (X,p) ∈ MEF(Γ) implies that it
must also be pj ≥ 1 for each j ∈ X . Hence, we can conclude that pj = 1 for each j ∈ X . Assume,
for the sake of contradiction, that φ is not satisfiable. This implies that the assignment induced by all
literals in L(φ) \ X cannot satisfy φ, that is, there exists a clause cj ∈ C such that cj ⊆ X . This implies
u(cj ,p) = 3 + ε− 3 = ε > 0 thus contradicting (X,p) ∈ MEF(Γ). Hence, φ has to be satisfiable.

On the positive side, Balcan et al. (2008) derive anO(logm)-approximation algorithm for this problem.
An interesting feature of this algorithm is that its performance guarantee holds also with respect to the
maximum social welfare which is an upper bound to the maximum revenue, thus allowing the application
of Lemma 7.

Hence, by combining Lemma 7 with Claim 8 and the result by Balcan et al. (2008), we obtain the
following upper bounds.

Theorem 10. Let Γ be a market with combinatorial valuations and let PP = (Γ,MEF, obj) be a pricing
problem with obj ∈ {REV, SW}. The buyer preselection problem BPP(PP) admits an n-approximation
when obj = SW, and an O(n logm)-approximation when obj = REV.

It is worth noticing that, given the proof of Lemma 7 when k = 1, the preselection claimed in Theorem
10 is somehow “oblivious”, as it can be obtained by exploiting the minimum possible number of oracle
queries. In fact, to determine the buyer having the highest valuation for a single bundle, a single demand
query is sufficient for each buyer (it suffices asking for a bundle in the demand set when all prices are set
equal to zero).
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In light of the lower bound given in Theorem 6, the upper bounds given in Theorem 10 are (unless
P = NP) asymptotically tight up to subpolynomial multiplicative factors (notice that even for obj = SW,
the lower bound of n1−ε for any ε > 0 may be a subpolynomial multiplicative factor far from the upper
bound of n).

3.2 Pricing Problems Defined on Markets with Few Buyers

From the inapproximability result of Theorem 6 it follows that, given any ε > 0, for any n ≥ n(ε), there
exists a preselection problem with n buyers which cannot be approximated up to n1−ε unless P = NP.
Conversely, by Lemma 7 it follows that an

⌈
n
k

⌉
αk approximation is possible if the pricing problem (without

preselection) on markets with k buyers, k being a constant, admits an αk-approximation (satisfying some
additional assumptions).

It is worth noticing that a stronger negative result on the complexity of the preselection problem, stating
that, given any ε > 0, for any n ≥ n(ε), there exists a preselection problem with n buyers which cannot be
approximated up to n − ε (unless P = NP), would imply that the pricing problems (without preselection)
with k buyers cannot be approximated up to a factor smaller than k (unless P = NP), even for every constant
value of k. In fact, if the considered stronger result about the preselection problem held, it would follow
that, given any ε > 0, for any n ≥ n(ε) such that k divides n and any integer k ≥ 1,

⌈
n
k

⌉
αk > n− ε, which

implies αk > k.
Although these results cannot be formally claimed, we conjecture they may be true. As a first evidence

of our conjectures, we provide, in the following, a formal proof for the case of k = 2, leaving the extension
to any value of k as an open problem. The proof of this result builds on the ideas exploited in the proof of
Theorem 9 with some additional technicalities and extends to even agent envy-freeness.

Theorem 11. Let Γ be a market with two buyers and combinatorial monotone valuations. The pricing
problem PP = (Γ, sol, obj), with sol ∈ {MEF,AEF} and obj ∈ {REV, SW}, cannot be approximated up to
a factor α < 2 unless P = NP.

Proof. Again, we prove the claim through a reduction from 3SAT (see the proof of Theorem 9 for basic
definitions and notation).

Given an instance φ := C of 3SAT, we construct a market Γ = ([2],M, v1, v2) with two buyers as
follows. The set of items M is obtained by creating γ different copies of each literal, one for each of the γ
clauses, and then associating a different item to every copy; so M = {xji : i ∈ [ν], j ∈ [γ]} ∪ {x̃ji : i ∈
[ν], j ∈ [γ]} and |M | = 2νγ, where xji and x̃ji are the jth copies of the two literals associated with variable
vi ∈ V(φ).

For example, if C = {c1, c2} = {{x1, x2, x3}, {x̃1, x2, x̃3}}, we have V(φ) = {v1, v2, v3}, L(φ) =
{x1, x̃1, x2, x̃2, x3, x̃3} and M = {x1

1, x
2
1, x̃

1
1, x̃

2
1, x

1
2, x

2
2, x̃

1
2, x̃

2
2, x

1
3, x

2
3, x̃

1
3, x̃

2
3}.

Given a set of items X ⊆M , we say that X represents V(φ) if, for each variable vi ∈ V(φ), X contains
all items associated to the γ copies of one of the two literals associated to vi, that is, for each i ∈ [ν], either
{x1

i , . . . x
γ
i } ⊆ X or {x̃1

i , . . . x̃
γ
i } ⊆ X . Thus, any set X representing V(φ) needs have at least νγ items.

Similarly, we say that X represents C if, for each clause cj ∈ C, X contains the jth copy of at least one of
the three literals contained in cj . For instance, clause c1 = {x1, x2, x3} is represented by X = {x1

1}, but is
not represented by X = {x2

1, x̃
1
2}. As, by construction, each clause has its dedicated copies of the literals,

no item can represent more than one clause. Hence, any set X representing C needs have at least γ items.
The valuation functions of the two buyers are defined as follows:

v1(X) =

{
1 if X represents V(φ),
0 otherwise.

v2(X) =

{
1 if X represents C and |X| ≥ νγ,
0 otherwise.
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Observe that, for both buyers, the valuation of a set X either stays the same or increases when adding new
items, so that both v1 and v2 are monotone.

Clearly Γ can be constructed in polynomial time with respect to the representation of φ. However,
in order to complete the reduction, we have to implement an oracle which can answer demand and value
queries in polynomial time. To this aim, observe first that both ν and γ are polynomial in the representation
of φ. Hence, given a set of items X , determining whether it represents either V(φ) or C can be performed
in polynomial time, so that value queries can be efficiently answered for both buyers. In order to provide an
efficient answer to a demand query for a given price vector p, we consider the two buyers separately.

For buyer 1, observe that, by the definition of v1, the answer to a demand query is either a set X rep-
resenting V(φ) or the empty set. Moreover, as item prices are non-negative and the valuation of all sets
representing V(φ) is the same under v1, a set X∗ maximizing the buyer’s utility among all the ones repre-
senting V(φ) can be obtained by selecting, for each variable in V(φ), the literal whose copies amount for
the lowest total price. Formally, for each i ∈ [ν], we choose {x1

i , . . . , x
γ
i } if

∑
j∈[γ] p(x

j
i ) ≤

∑
j∈[γ] p(x̃

j
i )

and {x̃1
i , . . . , x̃

γ
i } otherwise. This choice can be performed in O(νγ) time.

For buyer 2, observe that, by the definition of v2, the answer to a demand query is either a set X
representing C and such that |X| ≥ νγ or the empty set. Moreover, as item prices are non-negative and the
valuation of all sets representing representing C and having cardinality at least νγ is the same under v2, a
set X∗ maximizing the buyer’s utility among all the ones representing C and such that |X∗| ≥ νγ can be
obtained by selecting, for each clause cj ∈ C and each literal in cj , the cheapest among their jth copies and
then the νγ − γ cheapest items among the remaining ones. Formally, for each j ∈ [γ], if cj = {`1, `2, `3},
any item belonging to argmin{p(`ji ) : i ∈ [3]} is chosen. Then, the cheapest items among the leftovers are
added. The entire selection can be performed in O(νγ) time, after having ordered the price vector.

Thus, market Γ can be generated and managed in polynomial time.
Now, in order to complete the proof, we show that there exists a market envy-free outcome o ∈ MEF(Γ)

such that SW(o) = REV(o) = 2 if φ is satisfiable and that, whenever φ is not satisfiable, for any outcome
o ∈ OUT(Γ), we have SW(o) ≤ 1 and REV(o) ≤ 1. As market envy-free outcomes are also agent
envy-free ones, it follows that any α-approximation algorithm for the pricing problem (Γ, sol, obj), with
sol ∈ {MEF,AEF}, obj ∈ {SW,REV} and α < 2, could be used to solve 3SAT, thus implying P = NP.

Assume first that φ is satisfiable and let f be a satisfying assignment for φ. Let L′ be the set of literals
which are false in f and let X denote the set of items corresponding to all the copies of literals in L′, so that
|X| = νγ. Let p be the pricing vector in which all items are priced 1

νγ . By definition, X represents V(φ),
thus, we have u1(X,p) = 0, so that (X,p) is individually rational for buyer 1. Moreover, as every set of
items representing V(φ) needs have at least νγ items, none of them can give buyer 1 a utility larger than
zero. Thus, X ∈ D1(p). As f is a satisfying assignment, by definition of L′, it follows that L(φ) \ L′ is a
set of literals satisfying φ. This implies that, for any clause cj ∈ C, there exists a literal ` ∈ L(φ) \ L′ such
that ` ∈ cj . Thus, the jth copy of ` can represent clause cj . As this property holds for each cj ∈ C, set
M \ X represents C and satisfies |M \ X| = νγ. It follows that u2(M \ X,p) = 0, so that (M \ X,p)
is individually rational for buyer 2, and therefore outcome o = ((X,M \ X),p) is individually-rational.
Moreover, as every set of items yielding a non-zero valuation to buyer 2 needs have at least νγ items, none
of them can give buyer 2 a utility larger than zero. Thus, M \ X ∈ D2(p). Hence, we conclude that
o ∈ MEF(Γ) and SW(o) = REV(o) = 2.

Now assume that φ is not satisfiable. We claim that, for any set of items X representing V(φ), there
cannot exist a set Y ⊆M \X representing C. Assume the contrary, by way of contradiction. That is, there
exists a set of items Y ⊆ M \X such that, for each cj ∈ C, Y contains the jth copy of a literal occurring
in cj . This implies that there exists a set of literals L′ ∈ L(φ) such that L′ ∩ cj 6= ∅ for each j ∈ [γ]. As
X represents V(φ) and X ∩ Y = ∅, it follows that, for any variable vi ∈ V(φ), L′ cannot contain both xi
and x̃i. Thus, by setting to true every literal in L′, we obtain a satisfying assignment for φ, contradicting the
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assumption that φ is not satisfiable. We conclude that, when φ is not satisfiable, any outcome o ∈ OUT(Γ),
no matter whether o meets some envy-freeness property or not, cannot assign to both buyers a set of items
of value 1. Thus, SW(o) ≤ 1 and REV(o) ≤ 1.

4. Results for Agent Envy-Free Outcomes

In this section, we consider the buyer preselection problem BPP(Γ,AEF, obj) with obj ∈ {REV,SW} and
Γ being a market with combinatorial valuations. Since we deal with agent envy-free outcomes, we suppose
that the price of any unsold item is infinite. Formally, given a solution (N, o), where outcome o = (X,p),
for the buyer preselection problem BPP(Γ,AEF, obj) with Γ = (N,M, (vi)i∈N ), we have that, for any
j ∈M \M(X), pj =∞.

We start by considering the buyer preselection problem BPP(Γ,AEF,REV). We are going to show how
it is possible to transform an agent envy-free solution (N̄ , ō) with preselection into anther one (without
preselection) having a non-smaller revenue.

In order to do that, we first need an additional definition and some lemmas.

Definition 12. A solution (N̄ , ō), where ō = (X̄, p̄), for the buyer preselection problem BPP(Γ,AEF,REV)
is called maximal if there is no solution (N̄ , ō′) for the same buyer preselection problem BPP(Γ,AEF,REV)
with the same subset of preselected agents N̄ where outcome ō′ = (X̄, p̄′) is such that p̄′j ≥ p̄j , for any
j ∈M , and there is at least an item k ∈M(X̄) such that p̄′k > p̄k.

Informally, a solution (N̄ , ō) for the buyer preselection problem BPP(Γ,AEF,REV) (i.e., where AEF
holds for agents in N̄ ) is maximal if it is not possible to obtain another one with the same allocation vector,
in which we increase the price of at least one sold item while keeping the prices of the remaining items
unchanged.

The following claim shows that any non-maximal solution can be efficiently transformed into another
one (with the same allocation vector) being maximal.

Claim 13. Given a solution (N̄ , ō), where ō = (X̄, p̄), for the buyer preselection problem
BPP(Γ,AEF,REV), it is always possible to compute in polynomial time a solution (N̄ , ō′) for the buyer
preselection problem BPP(Γ,AEF,REV) with the same allocation vector, i.e., with ō′ = (X̄, p̄′), such that
REV(ō′) ≥ REV(ō).

Proof. Given an allocation vector X̄ = (X̄1, . . . , X̄|N̄ |), consider the following linear program.

max
∑
i∈N̄

∑
j∈X̄i

p̄j

subject to vi(X̄i)−
∑
j∈X̄i

p̄j ≥ vi(X̄z)−
∑
j∈X̄z

p̄j , i ∈ N̄ , z ∈ N̄

vi(X̄i)−
∑
j∈X̄i

p̄j ≥ 0, i ∈ N̄

p̄j ≥ 0 j = 1, . . . ,m

Notice that, since we start from an agent envy-free solution, the linear program always admits a feasible
solution. It is easy to see that, by solving the linear program, we get a pricing vector for the allocation X̄
such that the obtained solution is agent envy-free and the revenue is maximized. Clearly, this solution is also
maximal.

The following lemmas show some interesting properties of maximal solutions that will be useful in the
proof of Theorem 16.
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Lemma 14. Given a maximal solution (N̄ , ō), where ō = (X̄, p̄), for the buyer preselection problem
BPP(Γ,AEF,REV) with Γ = (N,M, (vi)i∈N ), there exists a buyer i ∈W (X̄) such that ui(X̄i, p̄) = 0.

Proof. Assume, for the sake of contradiction, that for any i ∈ W (X̄) it holds that ui(X̄i, p̄) > 0. Let
t ∈ W (X̄) be the winner with the minimum (greater than zero) utility. Then, for any i ∈ W (X̄), let us
consider any item ji ∈ X̄i (i.e., ji is any item sold to buyer i). By increasing the prices of all ji, for any
i ∈ W (X̄), by the quantity ut(X̄t, p̄), we obtain another solution (with the same allocation vector X̄) for
BPP(Γ,AEF,REV). In particular, we notice that the new solution is still agent envy-free since, by raising
the price of each bundle by the same quantity, we do not create new envy. Moreover, each buyer has still
greater or equal than zero utility. This is a contradiction to the fact that solution (N̄ , ō) is maximal.

Lemma 15. Given a maximal solution (N̄ , ō), where ō = (X̄, p̄), for the buyer preselection problem
BPP(Γ,AEF,REV), with Γ = (N,M, (vi)i∈N ), for any buyer i ∈ W (X̄) such that ui(X̄i, p̄) > 0, there
exists ti ∈W (X̄), where i 6= ti, such that ui(X̄i, p̄) = ui(X̄ti , p̄).

Proof. Clearly, since (N̄ , ō) is a solution for the BPP(Γ,AEF,REV), then for any i, i′ ∈ W (X̄) it holds
that ui(X̄i, p̄) ≥ ui(X̄i′ , p̄). That is, among all the sold bundles, X̄i is the one that gives maximum utility
to buyer i.

Assume, for the sake of contradiction, that there exists i ∈ W (X̄) such that for any i′ ∈ W (X̄) \ {i}
it holds that ui(X̄i, p̄) > ui(X̄i′ , p̄). Let l ∈ W (X̄) \ {i} such that ui(X̄l, p̄) ≥ ui(X̄v, p̄), for any
v ∈ W (X̄) \ {i}, i.e., X̄l is the bundle giving maximum utility to buyer i if we exclude bundle X̄i. By
increasing the price of an item j ∈ X̄i by the quantity ui(X̄i, p̄) − max{ui(X̄l, p̄); 0} we obtain another
solution (with the same allocation vector X̄ and higher revenue) for BPP(Γ,AEF,REV). In fact, since we
started from an agent envy-free outcome, from one hand we have that buyer i still gets the bundle for which
she has the maximum utility (that is still greater or equal than zero). On the other hand, for each other buyer
but i, it still holds that she does not envy buyer i (as well as none of the other buyers) since we have increased
the price of the bundle assigned to i. This is a contradiction to the fact that solution (N̄ , ō) is maximal.

We are now ready to prove the following theorem.

Theorem 16. Let Γ = (N,M, (vi)i∈N ) be a market with combinatorial valuations and PP =
(Γ,AEF,REV) be a pricing problem. Given any solution (N̄ , ō) for the buyer preselection problem
BPP(PP), it is possible to compute in polynomial time an outcome o ∈ AEF(Γ) for problem PP such
that REV(o) ≥ REV(ō).

Proof. Without loss of generality, we can assume that solution (N̄ , ō) is maximal, because, otherwise, it can
be transformed by Claim 13 in a maximal one with at least the same revenue.

Let ō = (X̄, p̄). We show how to constructively get in polynomial time the outcome o ∈ AEF(Γ)
starting from (N̄ , ō). For any buyer i ∈ N \ N̄ , let Ui be the set of bundles belonging to X̄ giving maximum
and positive (i.e., greater than zero) utility to i. Moreover, for any i ∈ N̄ , let Ei ⊆ X̄ \ {X̄i} be the set
of bundles such that, for any X̄j ∈ Ei, ui(X̄i, p̄) = ui(X̄j , p̄), (i.e., Ei is the set of sold bundles giving to
buyer i the same utility as bundle X̄i). By Lemma 15 we know that Ei 6= ∅ whenever ui(X̄i, p̄) > 0.

If, for every buyer i ∈ N \ N̄ , it holds that Ui = ∅, it implies that ō ∈ AEF(Γ) and the theorem holds.
Otherwise, let us define the following directed graph G = (N,A). We first notice that given an allocation
vector X = (X1, X2, . . .), we have that the bundle Xi, which is the set of items sold to buyer i, univocally
identifies the buyer i. That is, in the following we will use Xi also for identifying buyer i. For instance, Ei
identifies both the set of bundles and the set of buyers getting bundles in Ei. The set of nodes of the graph G
is the set of buyers N . Moreover, for any i ∈ N \ N̄ and for any j ∈ Ui, there is a directed edge (i, j) ∈ A.
Finally, for any i ∈ N̄ and for any j ∈ Ei, there is a directed edge (i, j) ∈ A.
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Let us consider any buyer i ∈ N \ N̄ such that Ui 6= ∅. Then we argue that, in the graph G there is a
directed path a = 〈i, i′, i′′, . . . , z, j〉 from node i to another j ∈ N̄ such that uj(X̄j , p̄) = 0. Notice that
such path can be efficiently computed by performing a breadth first search starting from node i. Suppose,
for the sake of contradiction, that such path does not exist. It implies that the sub-tree rooted in the node i
contains all winners, excluding i, having utility strictly greater than zero. Let us denote with Ti ⊆ W (X̄)
the set of winners belonging to such sub-tree rooted in the node i. Notice that for any j ∈ Ti, it holds
that Ej ⊆ Ti. By exploiting arguments similar to the ones exploited in the proofs of lemmas 14 and 15,
it is possible to show that (N̄ , ō) is not a maximal solution: a contradiction. Indeed, for any j ∈ Ti, let
lj ∈ W (X̄) \ Ej such that uj(X̄lj , p̄) ≥ uj(X̄i, p̄), for any i ∈ W (X̄) \ Ej , that is, X̄lj is the bundle
giving maximum utility to buyer j among all the bundles assigned to buyers in W (X̄) \ Ej . Notice that
uj(X̄j , p̄) > uj(X̄lj , p̄). Let δ = minj∈Ti(uj(X̄j , p̄) − uj(X̄lj , p̄)). For any j ∈ Ti, let us consider any
item ij ∈ X̄j (i.e., ij is an item sold to buyer j). By increasing by δ the prices of all ij , for any j ∈ Ti,
we obtain another solution (N̄ , ō′) for the buyer preselection problem BPP(PP) with the same allocation
vector X̄ where we have increased the price of at least one sold item while keeping the prices of the other
ones unchanged. This is in contradiction with the fact that the solution (N̄ , ō) is maximal.

Therefore, given the path a, we can obtain a new allocation vector where buyer i becomes a winner
and buyer j gets no item. Recall that uj(X̄j , p̄) = 0 and therefore node j would not envy any bundle. In
particular, node (i.e., buyer) i gets the bundle X̄i′ , node i′ gets the bundle X̄i′′ and so on, and finally node j
gets no item. That is, the new allocation vector X̄′ is as follows: any buyer not in the path a gets the same
allocation as in X̄, and moreover X̄ ′i = X̄i′ , X̄

′
i′ = X̄i′′ , . . . , X̄

′
z = X̄j , X̄

′
j = ∅.

In this way we get a new solution (N̄ ′ = N̄ ∪ {i}, ō′), where ō′ = (X̄′, p̄), for the buyer preselection
problem BPP(Γ,AEF,REV) with the same revenue as (N̄ , ō), and where node i is not excluded anymore.
However, notice that the obtained solution could be not maximal anymore. Indeed, we need to make it
maximal and such that buyer j would be still not envious. We can get it by using a linear program similar
to the one defined in the proof of Claim 13, with some further constraints. In particular, we want that the
total price of any bundle is at least as it is in solution (N̄ , ō). Notice that in the new allocation vector the
set of sold bundles is the same, because we are just changing the allocation of bundles to buyers. Given the
allocation X̄′, let us consider the following linear program.

max
∑
i∈N̄ ′

∑
j∈X̄′i

p̄′j

subject to vi(X̄
′
i)−

∑
j∈X̄′i

p̄′j ≥ vi(X̄ ′z)−
∑
j∈X̄′z

p̄′j , i ∈ N̄ ′, z ∈ N̄ ′∑
j∈X̄′i

p̄′j ≥
∑
j∈X̄′i

p̄j , i ∈ N̄ ′

p̄′j ≥ 0 j = 1, . . . ,m

Notice that the above defined linear program admits at least a feasible solution, being (N̄ ′, ō′), where
ō′ = (X̄′, p̄).

It is easy to see that, by solving the linear program, we get a maximal solution (N̄ ′, ō′′), where ō′′ =
(X̄′, p̄′), for the buyer preselection problem BPP(Γ,AEF,REV). Indeed, remind that a solution for the
buyer preselection problem is such that AEF holds among preselected buyers. If the solution to this linear
programming is not maximal it means that we can get a new outcome for the buyer preselection problem
with the same set of preselected buyers N̄ ′ with the same allocation where we can increase the price of at
least one sold item while keeping the prices of the remaining items unchanged. However, this new outcome
satisfies all the constraints of the linear programming and this is a contradiction with the fact that in the
linear programming we maximize the sum of the prices of sold items. Moreover, notice that in the obtained
maximal solution, buyer j has still maximum utility at most zero, that is, buyer j is not envious and we do
not need to exclude her from the market.
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At this point, for each buyer i not in the market, we compute again (as before) the set Ui, and for any
buyer i in the market the set Ei. We then repeat the same procedure described above. Notice that the sets Ui
and Ei, and the edges in the graph G can be in general different at any step.

Finally, since at each step we include a new buyer in the market (without excluding any other buyer) and
the prices of the bundles never decrease, we are able to get in polynomial time outcome o ∈ AEF(Γ) such
that REV(o) ≥ REV(ō), as desired.

Buyer
Item set {1} {2} {3} {4} {5} {6} {7} {8}

1 2 3 4 4 4 1 3 5

2 3 2 3 3 4 1 4 4

3 4 4 1 3 3 3 5 5

4 2 3 3 2 4 1 3 3

5 3 2 0 3 5 0 7 4

Table 5: The buyers’ valuations of Example 3.

We now present an illustrating example showing how Theorem 16 works for a specific instance of the
problem. In particular, we consider a market with additive valuations to make things simpler.

Example 3. Let Γ = (N,M, (vi)i∈N ) be a market with additive valuations with n = 5 buyers
and m = 8 items, and PP = (Γ,AEF,REV) a pricing problem. The buyers’ valuations for each
item are reported in Table 5. Let us consider the solution (N̄ , ō) for the buyer preselection problem
BPP(PP) where N̄ = {1, 2, 3} and ō = (X̄, p̄) = ((X̄1, X̄2, X̄3), (p̄1, p̄2, p̄3, p̄4, p̄5, p̄6, p̄7, p̄8)) =
(({1, 2, 3}, {4, 5, 6}, {7, 8}), (2, 3, 3, 3, 4, 1, 5, 4)). Notice that u1(X̄1, p̄) = 1, u2(X̄2, p̄) = 0, and
u3(X̄3, p̄) = 1. It is easy to check that (N̄ , ō) is a maximal solution (see Definition 12) for the buyer
preselection problem BPP(PP). In fact, if we increase the price of any item assigned to buyer 2 (i.e., p̄4,
p̄5 and p̄6) her utility becomes negative. Moreover, if we increase the price of any item assigned to buyer
1 (i.e., p̄1, p̄2 and p̄3) her utility becomes smaller than one and the resulting outcome would not be agent
envy-free since u1(X̄2, p̄) = 1. Finally, if we increase the price of any item assigned to buyer 3 (i.e., p̄7

and p̄8) her utility becomes smaller than one and the resulting outcome would not be agent envy-free since
u3(X̄2, p̄) = 1.

We now show how, by exploiting Theorem 16, starting from the solution (N̄ , ō), we can compute an
outcome o ∈ AEF(Γ) for problem PP such that REV(o) ≥ REV(ō).

In the first iteration of the theorem we have that U4 = ∅ since u4(X̄1, p̄) = 0, u4(X̄2, p̄) = −1 and
u4(X̄3, p̄) = −2. Moreover, U5 = {X̄3} since u5(X̄1, p̄) = −3, u5(X̄2, p̄) = 0 and u5(X̄3, p̄) = 2.
Finally, it is easy to check that E1 = {X̄2}, E2 = ∅, and E3 = {X̄1, X̄2}. Therefore, we get the directed
graph G = (N,E) where E = {(1, 2), (3, 1), (3, 2), (5, 3)}. A graphical representation of graph G is
reported in Figure 1.

1 2 3

4 5

Figure 1: The graph G of Example 3.
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Let us consider the directed path a = 〈5, 3, 2〉 in G (notice that we could also consider the path
a = 〈5, 3, 1, 2〉). We get the new solution (N̄ ′, ō′) for the buyer preselection problem BPP(PP)
where N̄ ′ = {1, 2, 3, 5} and ō′ = (X̄′, p̄′) = ((X̄1

′
, X̄2

′
, X̄3

′
, X̄5

′
), (p̄′1, p̄

′
2, p̄
′
3, p̄
′
4, p̄
′
5, p̄
′
6, p̄
′
7, p̄
′
8)) =

(({1, 2, 3}, ∅, {4, 5, 6}, {7, 8}), (2, 3, 3, 3, 4, 1, 5, 4)). Notice that in the new solution buyer 5 is a win-
ner and buyer 2 gets no item, and that we do not get a smaller revenue with respect to (N̄ , ō).
We further notice that (N̄ ′, ō′) is not maximal. Therefore, we apply the linear program defined in
the proof of Theorem 16 to (N̄ ′, ō′) and get, for instance, the following maximal solution (N̄ ′′, ō′′)
where N̄ ′′ = N̄ ′ and ō′′ = (X̄′′, p̄′′) = ((X̄1

′′
, X̄2

′′
, X̄3

′′
, X̄5

′′
), (p̄′′1, p̄

′′
2, p̄
′′
3, p̄
′′
4, p̄
′′
5, p̄
′′
6, p̄
′′
7, p̄
′′
8)) =

(({1, 2, 3}, ∅, {4, 5, 6}, {7, 8}), (2, 3, 4, 3, 4, 2, 7, 4)). We notice that by solving the linear program we do
not get a different allocation of items to buyers with respect to (N̄ ′, ō′), and that item prices do not decrease.

In the second iteration considered in the proof of the theorem we still have that U4 = ∅.
We conclude that (N, o) where o = (X,p) = ((X1, X2, X3, X4, X5), (p1, p2, p3, p4, p5, p6, p7, p8)) =

(({1, 2, 3}, ∅, {4, 5, 6}, ∅, {7, 8}), (2, 3, 4, 3, 4, 2, 7, 4)) is such that o ∈ AEF(Γ) and REV(o) ≥ REV(ō) (in
particular, in this example we have that REV(o) > REV(ō)).

We now consider the buyer preselection problem BPP(Γ,AEF,SW). Analogously to Theorem 16 hold-
ing for the revenue maximization case, next theorem shows that an agent envy-free outcome for the buyer
preselection problem can be efficiently transformed in an agent envy-free outcome, for the corresponding
pricing problem (without preselection), having at least the same social welfare.

Theorem 17. Let Γ = (N,M, (vi)i∈N ) be a market with combinatorial valuations and PP = (Γ,AEF, SW)
a pricing problem. Given any solution (N̄ , ō) for the buyer preselection problem BPP(PP), it is possible to
compute in polynomial time an outcome o ∈ AEF(Γ) for problem PP such that SW(o) ≥ SW(ō).

Proof. We first give an intuitive explanation of what we do in this proof. Given any solution (N̄ , ō) for the
buyer preselection problem BPP(PP) where the market is Γ = (N,M, (vi)i∈N ), we create a new market
Γ′ = (N,M ′, (v′i)i∈N ) with unit-demand buyers and where the number of items is |N̄ |. More precisely,
there is an item in M ′ for each sold bundle in (N̄ , ō). Moreover, for each buyer i ∈ N , the valuation
v′i({j}) that i has for item j in market Γ′ is equal to the valuation vi(X̄j) that i has for the corresponding
sold bundle in (N̄ , ō) for market Γ (we assume, without loss of generality, that each buyer in N̄ gets a non-
empty bundle in the outcome ō). We then consider a Walrasian equilibrium for market Γ′ which, we recall,
is a market envy-free outcome with the additional requirement that the market clears and which has the
important property of maximizing the social welfare. We finally obtain, by using the Walrasian equilibrium,
an agent envy-free outcome for the pricing problem (without preselection) for market Γ with social welfare
greater or equal than SW(ō). We now proceed with the formal proof.

Without loss of generality, let us assume that the agents orderings in N̄ and N are such that the i-th
agent of N̄ is also the i-th agent of N (for i = 1, . . . , |N̄ |).

Let ō = (X̄, p̄) be the considered outcome for problem BPP(Γ,AEF, SW).
Consider a new market Γ′ = (N,M ′, (v′i)i∈N ) with unit-demand buyers, whereM ′ = {1, . . . ,m′} with

m′ = |N̄ | and (v′i)i∈N are such that v′i({j}) = vi(X̄j). Consider the allocation vector X′ = (X ′1, . . . , X
′
n)

for market Γ′, in which X ′i = {i} for any i = 1, . . . ,m′, and X ′i = ∅ for any i = m′ + 1, . . . , n. It is easy
to check that SW(X′,p) = SW(ō) for any price vector p.

Recall that, given any market Γ, WE(Γ) denotes the set of Walrasian Equilibria for Γ. By the well
known First Welfare Theorem (Nisan, Roughgarden, Tardos, & Vazirani, 2007, Theorem 11.13), whenever
they exist, Walrasian equilibria maximize social welfare over all possible outcomes. It is also known (Kelso
& Crawford, 1982; Leme & Wong, 2017) that a market with gross substitutes valuations always admits a
Walrasian Equilibrium that can be computed in polynomial time and with a polynomial number of calls to
the value oracle. Moreover, a market with unit-demand buyers (as Γ′) is a special case of a market with gross
substitutes valuations in which the value oracle trivially requires polynomial time to be implemented, and
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therefore always admits a Walrasian Equilibrium that can be computed in polynomial time. Thus, we can
compute in polynomial time an outcome o′′ = (X′′,p′′) for market Γ′ such that (i) SW(o′′) ≥ SW(X′,p) =
SW(ō) (for any price vector p) and (ii) o′′ ∈WE(Γ′).

Let Y =
⋃
j∈M(X′′) X̄j be the set of all items of market Γ corresponding to items of market Γ′ sold

in allocation X′′, and, for any i = 1, . . . , n such that X ′′i 6= ∅, let ki be the unique element of X ′′i . Now,
consider the outcome o = (X,p) for market Γ, where X = (X1, . . . , Xn) is such that, for any i = 1, . . . , n,

• if X ′′i = ∅ then set Xi = ∅ as well;

• otherwise, set Xi = X̄ki and, for any j ∈ X̄ki , set pj =
p′′ki
|X̄ki
| .

Finally, for any j /∈ Y , set pj = 0.
Clearly, by construction, for any i, j = 1, . . . , n such that Xj 6= ∅, it holds that vi(Xj) = v′i({kj}) and

ui(Xj ,p) = u′i({kj},p′′). Therefore, SW(o) = SW(o′′) (hence we obtain SW(o) ≥ SW(ō)) and, given
that o′′ ∈WE(Γ′), it follows that o ∈ AEF(Γ).

As a consequence of Theorems 16 and 17, we obtain the following corollary.

Corollary 18. Let Γ = (N,M, (vi)i∈N ) be a market with combinatorial valuations. For obj ∈ {REV,SW},
given an α-approximate solution (N, o) (with α ≥ 1) for the buyer preselection problem BPP(PP) with
PP = (Γ,AEF, obj), it is possible to compute in polynomial time an outcome o′ ∈ AEF(Γ) approximating
the optimal solution of PP by a factor equal to α.

On the one hand, Corollary 18 tells us that, for obj ∈ {REV, SW}, any inapproximability result holding
for a pricing problem PP = (Γ,AEF, obj) directly extends to the buyer preselection problem BPP(PP); on
the other hand, it tells us that any α-approximation algorithm for BPP(PP) is also an α-approximation algo-
rithm for PP. Thus, as discussed in Section 1.1, preselection can be exploited as an algorithmic framework
for designing approximation algorithms for the normal market scenario (without preselection).

5. The Multi-Unit Case

In this section we study the multi-unit case, in which all the m items are of the same type. Recall that,
for every i ∈ N , the valuation function becomes of the form vi : {0, 1, . . . ,m} → R≥0. Notice that, in
this case, the market requires Ω(nm) bits to be represented, because every buyer has a valuation for every
possible number of items. Furthermore, in this case an allocation vector X can be specified by the number
of items assigned to each buyer, i.e., X = (x1, . . . , xn), with xi ∈ {0, . . . ,m} for any i = 1, . . . , n, and∑n

i=1 xi ≤ m. Finally, we set the item price to p (i.e., all the items have the same price) and the total price
for selling x items is px.

A particular situation of multi-unit market arises when one assumes single-minded buyers; in this case,
for every agent i = 1, . . . , n, the valuation function vi can be completely defined by specifying how much
every agent valuates the set containing ki items (being the only set she is interested in). Notice that, in
this particular case, the market requires Ω(n logm) bits to be represented, because, for every buyer i, it is
necessary to represent integer ki.

We first focus on the case of market envy-free solutions. The following claim says that preselection
cannot improve the revenue and social welfare of envy-free solutions by a factor greater than m.

Claim 19. Given a multi-unit market Γ with identical items and a pricing problem PP = (Γ,MEF, obj)
with obj ∈ {REV,SW}, it holds that obj(o∗(BPP(PP))) ≤ m · obj(o∗(PP)).

1812



PRICING PROBLEMS WITH BUYER PRESELECTION

Proof. We now show that a market envy-free solution (without preselection) which is a 1/m-approximation
with respect to both the optimal social welfare and the optimal revenue (with preselection) can be obtained
by selling j̄ items to the buyer ī such that (̄i, j̄) ∈ argmaxi=1,...,n;j=1,...,m

vi(j)
j at price vī(j̄)

j̄
, i.e., we are

considering outcome (X, p) such that xī = j and xi = 0 for all i 6= ī, and p =
vī(j̄)
j̄

.
First of all, notice that the utility of all buyers in outcome (X, p) is 0: buyer ī has utility vī(j) − jp =

vī(j) − j
vī(j̄)
j̄

= 0 and all other buyers clearly have utility equal to 0 as they receive no item. The market
envy-freeness follows because, for every buyer i = 1, . . . , n (including buyer ī) and any j = 1, . . . ,m, it
holds that vi(j)− jp = vi(j)− j vī(j̄)j̄

≤ 0 (by the choice of ī and j̄).

Finally, the approximation ratio follows by the fact that (X, p) is selling at least an item at price p =
vī(j̄)
j̄

and in no solution (even with preselection, selling at most all m items) there can exist an item sold at a price
p′ > p, because the corresponding buyer i buying j items would have utility vi(j) − jp′ < 0 for any
i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} (again by the choice of ī and j̄).

We notice that the above bound is tight: next claim shows that preselection can improve both the revenue
and the social welfare of a multi-unit market with identical items of a factor at least m− ε (for any ε > 0),
in the case of single-minded buyers.

Claim 20. For any ε > 0, there exists a multi-unit market Γ with single-minded buyers and identical
items, and a pricing problem PP = (Γ,MEF, obj) with obj ∈ {REV, SW}, such that obj(o∗(BPP(PP))) ≥
(m− ε)obj(o∗(PP)).

This claim follows from the following example.

Example 4. Consider a market with only two single-minded buyers. Buyer 1 has a valuation of 1 + ε′, for
an ε′ > 0, for receiving any (one) item. Buyer 2 has a valuation of m for receiving all the m items.

Notice that, in any market envy-free outcome for the setting without preselection, buyer 2 receives no
item. In fact, if buyer 2 receives m items, the item price p must be at most 1. Thus, buyer 1 would be
envious since she would get no item (i.e., there are not enough items). Therefore, for the market without
preselection, the only feasible solutions are selling one item to buyer 1 at price at least 1 and at most 1 + ε′.
Thus the optimal revenue and the optimal social welfare are equal to 1 + ε′. However, if we exclude buyer 1
and consider the submarket with only buyer 2, we can sell m items at item price 1, thus obtaining a revenue
and social welfare of m. We get that, for any 0 < ε < m, m

1+ε′ ≥ m− ε when 0 < ε′ ≤ ε
m−ε .

Now we focus on the computation of either an optimal or an approximate solution for the preselection
problem in the case of market envy-free outcomes, both for the social welfare and the revenue objective
functions.

Both Theorem 21, holding for the multi-unit case, and Theorem 22, holding for the special case of
single-minded buyers, exploit reductions to the 0-1 Multiple-Choice Knapsack Problem, that is defined as
follows.

The 0-1 Multiple-Choice Knapsack Problem (0-1 MCKP) is a generalization of the classical Knapsack
problem introduced by Lawler (1979). In this problem, we are given σ elements, partitioned into α classes
C1, C2, . . . , Cα, to be packed in some knapsack of capacity c. Notice that σ =

∑α
i=1 |Ci|. For every

i = 1, . . . , α, each element e ∈ Ci has a profit βe and a volume γe, and the problem is to choose a set E
containing at most one element from each class such that the profit sum is maximized without the volume
sum exceeding capacity c. It is known that this problem can be optimally solved in pseudo-polynomial time,
i.e., in time O(σc) (Martello & Toth, 1990, Section 2.12).

Theorem 21. Given a pricing problem PP = (Γ,MEF, obj), where Γ = (N,M, (vi)i∈N ) is a multi-
unit market with identical items and obj ∈ {REV,SW}, the buyer preselection problem BPP(PP) can be
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optimally solved in time O(nm2) (i.e., in polynomial time in the size of the instance, given that the instance
requires Ω(nm) space for its representation).

Proof. Recall that solving the buyer preselection problem BPP(PP) corresponds to finding a subset N∗ of
agents to admit to the market and an optimal outcome o∗ = (X∗, p∗), where, since we are considering a
multi-unit market, p∗ is just the price of a single item.

In order to prove the claim, we first show that it is possible to compute in polynomial time a set P
containing the optimal price p∗ for problem BPP(PP).

Consider the set P defined as follows:

P = {y|y > 0 ∧ ∃i∈N∃k,k′∈0,...,m,k 6=k′ vi(k)− ky = vi(k
′)− k′y}.

P can be computed in O(nm2) time, i.e., in polynomial time in the size of the instance: in fact, for all
buyers i ∈ N and for all pairs (k, k′) of integers belonging to {0, 1, . . . ,m} such that k 6= k′, P contains
the solution y of equality vi(k)− yk = vi(k

′)− yk′.
Coming back to Example 1, Table 6 shows that, in this case, P =

{
3
2 , 2, 3

}
.

i k k′ equation solution
1 0 1 0 = v1(1)− y y = v1(1) = 0

1 0 2 0 = v1(2)− 2y y = v1(2)
2 = 3

2

1 1 2 v1(1)− y = v1(2)− 2y y = v1(2)− v1(1) = 3

2 0 1 0 = v2(1)− y y = v2(1) = 2

2 0 2 0 = v2(2)− 2y y = v2(2)
2 = 0

2 1 2 v2(1)− y = v2(2)− 2y y = v2(2)− v2(1) = −2

Table 6: The values in set P relative to the market of Example 1.

Now, let (N∗, o∗), with o∗ = (X∗, p∗), be an optimal solution for BPP(PP) with the highest possible
item price p∗ and assume by contradiction that p∗ 6∈ P; let p′ ∈ P the smallest element of P such that
p′ > p∗. Notice that this element p′ ∈ P has to exist, because p∗ must satisfy, for any i = 1, . . . , n,
vi(x̄i) − p∗x̄i ≥ 0 and y satisfying equality vi(x̄i) − yx̄i = 0 belongs to P . Since p∗ induces a market
envy-free solution, it has to satisfy, for every i = 1, . . . , n, constraint vi(x̄i) − p∗x̄i ≥ vi(j) − p∗j for
any j = 0, . . . ,m; since, p∗ 6∈ P , given how P is defined, it follows that all the above constraints are not
satisfied in a strict manner, i.e., it holds that, for every i = 1, . . . , n, vi(x̄i)−p∗x̄i > vi(j)−p∗j for any j =
0, . . . ,m. Therefore, p′ still continues to satisfy all envy-free constraints (with some inequalities possibly
become strict). It follows that we have found a new envy-free outcome o′ such that SW(o′) = SW(o∗) and
REV(o′) > REV(o∗): a contradiction to the fact that o∗ was the optimal outcome with the highest possible
item price.

Therefore, since the number of values that can be assigned to p∗ in order to obtain an optimal outcome
is polynomial in the size of the instance, it remains to show that, given a fixed price p∗, it is possible to
optimally compute in polynomial time a subset N∗ of agents to admit to the market and an allocation X∗.
In fact, the optimal solution of BPP(PP) is given by the best solution among the ones obtained for all the
candidate prices belonging to P .

We now provide a polynomial reduction from our problem to 0-1 MCKP. Given an instance I of
BPP(PP) and fixed a price p∗, we construct an instance I ′ of 0-1 MCKP as follows: We have α = n classes
(one class for each buyer) and the capacity c = m. Consider, for every buyer i = 1, . . . , n, the number of
items providing her with the highest possible positive utility: let Ūi = (arg maxk=0,...,m (vi(k)− kp∗))\{0}
be the set containing these values. Notice that if a buyer i has negative utility for all possible bundles of
k = 1, . . . ,m items, then arg maxk=0,...,m (vi(k)− kp∗) = {0} and Ūi = ∅. It is easy to check that, in
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every market envy-free solution, allocation X must satisfy xi ∈ Ūi for every agent i = 1, . . . , n receiving
at least an item. For every i = 1, . . . , n, consider set Ūi: for every k ∈ Ūi, we add to class Ci an element e
such that γe = k and

• βe = kp∗ if obj = REV;

• βe = vi(k) if obj = SW.

Notice that the total number of elements σ is at most nm. If we consider again the market of Example 1, we
have α = 2 classes and capacity c = 2. Moreover, if we set p∗ = 3

2 and consider obj = SW, Ū1 = {2} and
Ū2 = {1}: we therefore add to class C1 an element e1 such that γe1 = 2 and βe1 = v1(2) = 3, and to class
C2 an element e2 such that γe2 = 1 and βe2 = v2(1) = 2.

Given a solution E for I ′ with total profit β =
∑

e∈E βe, it is possible to obtain a solution for I with
fixed price p∗, i.e., a subset N̄ of agents to admit to the market and an allocation X̄ , as follows: N̄ contains
the agents associated to classes containing an element belonging to E, i.e., N̄ = {i|Ci ∩ E 6= ∅}, and
the allocation vector X̄ = (x̄1, . . . , x̄n) is such that, for every i ∈ N̄ , x̄i = γe if there exists an element
e ∈ Ci ∩ E. Let ō = (X̄, p∗); clearly, obj(ō) = β. Furthermore, by the way Ūi is defined, outcome ō
is market envy-free. Coming back to the example considered above, if we consider solution E containing
only element e1 (of total profit 3), then we admit to the market only buyer 1 and allocate 2 items to her, thus
obtaining a market envy-free outcome of social welfare 3.

Conversely, given a subset N̄ of preselected agents and an outcome o = (X, p∗) for I , it is possible to
obtain a solution for I ′ with the profit being equal to obj(o) as follows: for every i ∈ N̄ , add to E element
e ∈ Ci such that γe = xi (by recalling the definition of Ūi, it holds that this element e belongs to Ci because
outcome o is market envy-free). Clearly, the total profit β =

∑
e∈E βe = obj(o).

The claim follows by noticing that, since σ ≤ nm and c = m, the pseudo-polynomial algorithm by
Martello and Toth (1990) is in fact polynomial with respect to the size of the instance of problem BPP(PP).

For the special case of single-minded buyers, by exploiting the same ideas used for proving Theorem
21, the following theorem provides an FPTAS, i.e., a fully polynomial time approximation scheme. More
precisely, an FPTAS for a problem is an approximation scheme providing, for any ε > 0, a (1 + ε)-
approximation algorithm whose time complexity is polynomial both in the input size and in 1/ε; we call ε
the FPTAS parameter.

Theorem 22. Given a pricing problem PP = (Γ,MEF, obj), where Γ = (N,M, (vi)i∈N ) is a multi-
unit market with single-minded buyers and identical items, for obj ∈ {REV,SW}, the buyer preselection
problem BPP(PP) admits a fully polynomial approximation scheme generating algorithms with execution
time O

(
n2

ε

)
, i.e., polynomial both in the instance size (given that the instance requires Ω(n logm) space

for its representation) and in 1/ε, where ε is the FPTAS parameter.

Proof. Since we are considering a multi-unit market with identical items, the proof is analogous to the one
of Theorem 21: We will first show that it is possible to compute in polynomial time a set P containing the
optimal price p∗ for problem BPP(PP), and then we will show that, given a fixed price p∗, it is possible to
optimally compute in polynomial time a subset N∗ of agents to admit to the market and an allocation X∗.

The critical point here is that in this case an instance of the buyer preselection problem requires only
Ω(n logm) bits.

First of all, we have to check that the computation of the possible optimal prices is still polynomial. In
order to compute, analogously to the proof of Theorem 21 (notice that if buyer i is single-minded, she does
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not envy bundles with size different from ki), set P containing the optimal price p∗ for problem BPP(PP),
we note that in this case P can be defined as follows:

P = {y|y > 0 ∧ ∃i∈N vi(ki)− yki = 0}.

Therefore, it is possible to compute set P in time O(n).
Furthermore, since in this case, for every i = 1, . . . , n, |Ūi| ≤ 1 (where Ūi is defined as in the proof of

Theorem 21), also the reduction from our problem to 0-1 MCKP is still polynomial and σ ≤ n.
Finally, notice that in this case we cannot exploit the pseudo-polynomial algorithm by Martello and Toth

(1990) having complexityO(σc) = O(nm), becausem cannot be guaranteed to be polynomial in the size of
the instance being Ω(n logm). The claimed FPTAS result follows from the FPTAS provided by Lawler
(1979) for 0-1 MCKP, running in time O

(
α logα+ ασ

ε

)
, that in our reduction becomes O

(
n2

ε

)
.

We complement the result of Theorem 22 by showing the NP-hardness of the problem of computing
the maximum revenue for the case of market envy-free in multi-unit markets with single-minded buyers and
identical items. The following theorem is proved by exploiting a reduction from the Subset Sum problem.

Theorem 23. Given a pricing problem PP = (Γ,MEF,REV), where Γ = (N,M, (vi)i∈N ) is a multi-unit
market with single-minded buyers and identical items, the buyer preselection problem BPP(PP) is NP-hard.

Proof. We use a reduction from the Subset Sum problem, that is defined as follows: given a set of integers
and an integer s, does any non-empty subset sum to s? Let n be the number of elements {a1, a2, . . . , an} in
the given instance of the Subset Sum problem, and let s be the required sum. We assume that

∑n
i=1 ai > s, as

otherwise the problem is trivial. For all ai in the input of the Subset Sum problem, we create a corresponding
buyer i with the following valuation. Buyer i has valuation ai for receiving ai items, and zero otherwise.
Moreover, we set the number of items m = s.

If there is a solution for the given instance of the Subset Sum problem, then by setting the item price
p = 1 and selling to corresponding buyers gives us a feasible and envy-free outcome in which the revenue
equals to m. It is easy to see that m is an upper bound to the maximum revenue. In fact, every buyer has
a value per item equal to 1, and therefore, by individual rationality, no buyer can be assigned items priced
more than 1.

On the other hand, if the revenue of the optimal outcome to the buyer preselection problem is equal to
m, we can obtain a solution to the Subset Sum problem. Notice that we can obtain a revenue of m only if
we sell exactly m items at item price p = 1. In fact, at item price p > 1, we sell no item, and at item price
p < 1, we do not get an optimal solution.

We now focus on the case of agent envy-free solutions. We first notice that the results of Section 4
claiming that buyer preselection in agent envy-free solutions does not improve the quality of outcomes (with
respect to neither social welfare nor revenue maximization) do not hold for the multi-unit case, because in
this case it is not possible to change the price of some items without influencing the other ones; actually, as
proved in Claim 25, preselection can improve, with respect to both social welfare and revenue maximization,
the quality of outcomes.

We start by showing that, for multi-unit markets with identical items and general valuations, preselection
can improve the revenue by a multiplicative factor of at most 2.

Theorem 24. Given a solution (N̄ , ō) for the buyer preselection problem BPP(PP), with PP =
(Γ,AEF,REV) and Γ = (N,M, (vi)i∈N ) being a multi-unit market with identical items, it is possible
to compute in polynomial time an outcome o ∈ AEF(Γ) for problem PP such that REV(ō) ≤ 2REV(o).
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Proof. Let ō = (X̄, p̄). In the following we will show how to compute in polynomial time an outcome
o ∈ AEF(Γ) with o = (X, p) such that (i) p ≥ p̄ and (ii) |M(X)| ≥ |M(X̄)|

2 : this directly implies that
REV(o) ≥ REV(ō)

2 , because outcome o sells at least one half of the items sold by outcome ō at a price at least
equal to p̄. See Example 5 and the subsequent discussion for a clarifying example showing how this proof
can be exploited in order to obtain an outcome o ∈ AEF(Γ) with REV(o) ≥ REV(ō)

2 .
For every j = 1, . . . ,m, let aj be the number of items that could be sold to some buyers in bundles of

cardinality j at price p̄ (we require that these buyers obtain a non-negative utility for a bundle of j items).
More formally, for every j = 1, . . . ,m, let Bj(p̄) = {i|vi(j)− jp̄ ≥ 0} be the subset of agents obtaining a
non-negative utility for a bundle with j items; then, aj = j|Bj(p̄)|.

We divide the proof in two disjoint cases.

• If there exists j ∈ {1, . . . ,m} such that aj ≥ |M(X̄)|
2 , outcome o = (X, p) is such that xk = j for

every k ∈ Bj(p̄), and xk = 0 otherwise. By setting p = p̄, by the definition of aj , we know that aj
items could be sold without generating envy.

If aj ≤ m, we are done.

If j ≥ |M(X̄)|
2 , we can increase the price p so that only buyer i, with i such that vi(j) = maxnk=1 vk(j),

is assigned the bundle (notice that in this way no other buyer is envious).

It remains to deal with the subcase in which aj > m and j < |M(X̄)|
2 : We increment price p until the

number of buyers x with positive utility is such that xj ≤ m. We then assign bundles of j items to
all buyers with positive utility and to as many buyers with zero utility as possible, thus selling at least
m − j items. Notice that (i) since j < |M(X̄)|

2 implies that m − j > |M(X̄)|
2 , this process leads to

obtain at least |M(X̄)|
2 assigned items and (ii) again no buyer is envious.

• If for all j ∈ {1, . . . ,m} it holds that aj <
|M(X̄)|

2 , outcome o = (X, p̄) (with the same price as in
outcome ō) is computed as follows.

For any i = 1, . . . , n and k = 1, . . . ,m, let u∗ki = maxkt=0{vi(t) − tp̄} be the maximum possible
utility of buyer i for bundles of at most k items and b∗ki = max{j|0 ≤ j ≤ k ∧ vi(j) − jp̄ = u∗ki }
the maximum size of a bundle for buyer i that achieves utility u∗ki . Moreover, for any k = 1, . . . ,m
and j = 0, . . . , k, let Bk,j = {i|b∗ki = j} be the set of buyers having j items as their best bundle of
maximum utility, among all bundles made up to k items, and resolving ties by selecting the bundle of
maximum size. Notice that, for any k = 1, . . . ,m, sets Bk,0, . . . , Bk,k partition the set N of buyers.

Notice that Bk,j can be computed in time poly(n,m). In fact, for any i ∈ {1, . . . , n}, u∗ki and b∗ki
can be computed in time being linear in k ≤ m (by enumerating all the k candidates that can realize
the requested maximum) and Bk,j can be computed in time proportional to nk (by computing b∗ki for
i = 1, . . . , n, i.e., for all the n buyers in the market).

For k = 1, . . . ,m, consider allocation Xk = (xk1, . . . , x
k
n) such that, for every i = 1, . . . , n, xki = j

if i ∈ Bk,j . By the definition of Bk,j it follows that allocation Xk is envy-free. Moreover, it can be
easily verified that |M(X1)| = a1 and, for any j = 2, . . . ,m, |M(Xj)| − |M(Xj−1)| ≤ aj .
If |M(Xm)| ≤ m, the claim trivially follows by setting X = Xm because we are allocating at least
all items allocated in ō.

Otherwise, let k′ be the minimum value of k = 2, . . . ,m such that |M(Xk′)| > m: the claim follows
by setting X = Xk′−1. In fact, since |M(Xk′)| − |M(Xk′−1)| ≤ ak′ ≤ |M(X̄)|

2 , it follows that

|M(Xk′−1)| ≥ m− |M(X̄)|
2 ≥ |M(X̄)|

2 .
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We now show that there exist multi-unit markets with identical items in which preselection can improve
both the revenue and the social welfare in the case of single-minded buyers, thus closing in a tight way the
previous bound.

Claim 25. For any ε > 0, there exists a multi-unit market Γ with single-minded buyers and identical items,
and a pricing problem PP = (Γ,AEF(Γ), obj) with obj ∈ {REV,SW}, such that obj(o∗(BPP(PP))) ≥
(2− ε)obj(o∗(PP)).

This claim follows from the following example.

Example 5. Consider a market with x+ 1 single-minded buyers. Buyer 1 has a valuation of x for receiving
x items. Buyer i, for any i = 2, 3, . . . , x+ 1, has a valuation of 1 + ε′, for a small ε′ > 0, for receiving any
(one) item. Finally, the number of items is 2x− 1.

Notice that, in any agent envy-free outcome for the setting without preselection, if buyer 1 receives x
items, then the item price p must be at most 1. Moreover, no buyer i, for any i = 2, 3, . . . , x + 1, can get
items. The reason is that such buyers have positive utility for receiving one item, but the number of items
is not sufficient to satisfy all of them. Therefore, the only chance is selling no bundle of one item. Thus,
on one hand, without preselection, the best revenue and social welfare is x(1 + ε′). It can be obtained by
selling one item to buyers i, for any i = 2, 3, . . . , x+ 1, at price 1+ ε′. On the other hand, if we consider the
submarket with only buyers 1, 2, . . . , x (i.e., we exclude one buyer that has a valuation of 1+ε′ for receiving
any (one) item), we can sell 2x− 1 items at item price 1, that is x items to buyer 1, and one item to buyers
i, for any i = 2, . . . , x, thus obtaining a revenue and social welfare of 2x − 1. We get that, for any x > 1

ε
and 0 < ε < 2, 2x−1

x(1+ε′) ≥ 2− ε when 0 < ε′ ≤ xε−1
x(2−ε) . Notice that xε−1

x(2−ε) > 0.
If we consider the latter solution (N̄ , ō) of the buyer preselection problem with N̄ = {1, . . . , x} and

ō = (X̄, p̄) such that p̄ = 1 and x items are sold to the first buyer, while other x− 1 items to the remaining
x − 1 buyers (one item for each of them), we can exploit the proof of Theorem 24 as follows. First of
all, notice that REV(ō) = |M(X̄)| = 2x − 1 and, since B1(1) = {2, 3, . . . , x + 1}, Bx(1) = {1} (and
Bj(1) = ∅ for all j 6∈ {1, x}), it holds that a1 = ax = x. Therefore, we are in the first case considered in
the proof, given that a1 = ax ≥ |M(X̄)|

2 . In fact, an agent envy-free solution o with REV(o) = x can be
obtained by selling, at price p = p̄ = 1, either only a bundle of x items to buyer 1, or x bundles of one item
to buyers 2, 3, . . . , x+ 1.

It is worth noticing that, on the one hand, preselection can be exploited as an algorithmic framework for
designing good approximation algorithms (losing only a multiplicative factor of 2) for the normal market
scenario without preselection; on the other hand, since the optimal revenue with preselection is at most
twice the one without, an α-approximation algorithm for the normal market without preselection, is a 2α-
approximation one for market with preselection.

6. Final Remarks and Future Work

Many results holding for market envy-free outcomes and the objective function of social welfare extend to
the notion of Walrasian Equilibrium. In particular, the inapproximability result of Theorem 6 (as already
noticed in its proof) and the n-approximation algorithm for the buyer preselection problem of Theorem 10
(given that the outcome considered in Claim 8 has all prices set to 0) directly extend to Walrasian Equilibria.
Notice also that, for the remaining uncovered cases, that is when the goal is that of optimizing the seller’s
revenue, there is no reason for requiring market clearance, a condition clearly limiting the power of setting
prices so as to maximize the revenue.

The main problems which are left open are: for markets with a unique buyer, closing the gap between
NP-hardness and the logarithmic approximation for the case of revenue maximization and market envy-free
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solutions; for markets with few buyers, proving (or disproving) the conjecture stated at the beginning of
Section 3.2; for the multi-unit case with agent envy-free outcomes, determining an upper bound to the social
welfare improvement achievable by preselection and settling the complexity of computing optimal solutions,
for both objective functions.
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Bilò, V., Flammini, M., Monaco, G., & Moscardelli, L. (2018b). Pricing problems with buyer preselec-
tion. In Proceedings of the 43rd International Symposium on Mathematical Foundations of Computer
Science (MFCS), pp. 47:1–47:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Bouveret, S., & Lang, J. (2008). Efficiency and envy-freeness in fair division of indivisible goods: Logical
representation and complexity. J. Artif. Intell. Res., 32, 525–564.

1819
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