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Abstract

Keeping risk under control is often more crucial than maximizing expected reward in
real-world decision-making situations, such as finance, robotics, autonomous driving, etc.
The most natural choice of risk measures is variance, while it penalizes the upside volatility
as much as the downside part. Instead, the (downside) semivariance, which captures negative
deviation of a random variable under its mean, is more suitable for risk-averse proposes.
This paper aims at optimizing the mean-semivariance (MSV) criterion in reinforcement
learning w.r.t. steady reward distribution. Since semivariance is time-inconsistent and
does not satisfy the standard Bellman equation, the traditional dynamic programming
methods are inapplicable to MSV problems directly. To tackle this challenge, we resort to
Perturbation Analysis (PA) theory and establish the performance difference formula for
MSV. We reveal that the MSV problem can be solved by iteratively solving a sequence of
RL problems with a policy-dependent reward function. Further, we propose two on-policy
algorithms based on the policy gradient theory and the trust region method. Finally, we
conduct diverse experiments from simple bandit problems to continuous control tasks in
MuJoCo, which demonstrate the effectiveness of our proposed methods.

1. Introduction

Reinforcement learning (RL) has shown great promise in solving complex decision problems,
such as Go (Silver et al., 2017), video games (Berner et al., 2019; Vinyals et al., 2019)
and dexterous robotic control (Nagabandi et al., 2020). Learning by trial and error, RL
enables an agent to maximize its accumulated expected rewards through the interaction
with a simulator. However, RL deployment in real-world scenarios is still challenging and
unreliable (Garcıa & Fernández, 2015; Dulac-Arnold et al., 2019). One of the reasons is
that real decision-makers need to consider multi-objective functions. The desired policy
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Figure 1: A toy example illustrates the effect of MSV. We refer the policy going left as l and
the other as r. Two policies have the same average return ηl = ηr = 0 and the same variance
ζ l = ζr = 2. However, since the semivariance ζ l− = 4/3 > ζr− = 2/3, the policy going right
has a smaller (downside) semivariance. It shows that MSV enables to avoid extreme costs
compared with MV.

should perform well for broader metrics, not just for expectation. That raises the demand of
risk-sensitive learning, which aims at balancing the return and risk in face of uncertainty.

The risk-sensitive decision-making has been widely studied beyond the scope of RL,
which can be traced back to the mean-variance (MV) optimization theory established by
Markowitz (Markowitz, 1952). Variance, which captures the fluctuation and concentration of
random variables, is a natural choice of the risk measure. As Markowitz only considers the
single-period problem, many studies focus on extending the results to multi-period scenarios,
from stochastic control (Li & Ng, 2000) to Markov decision process (Sobel, 1982; Filar
et al., 1989). However, the variance of a multi-period problem depends on the average
value of the whole process. It breaks the essential property of dynamic programming—time-
consistency, and makes it hard to design model-free learning algorithms under the standard
RL framework. Developing an efficient algorithm to optimize MV is still an ongoing topic
in the RL community (Xie et al., 2018; Bisi et al., 2020; Xia, 2020; Zhang et al., 2021; Ma
et al., 2022b, 2022a).

While MV analysis is the most widely applied risk-return analysis in practice, variance
metric is questionable as a risk measure. As a measure of volatility, variance penalizes
upside deviations from the mean as much as downside deviations. It could be problematic
as the upside deviation comes from the higher return which is desirable. In general, the
outcome distributions in the real world are often asymmetrical, such as the ones in the stock
market (Estrada, 2007; Bollerslev et al., 2020), suggesting that we should control the “good”
and “bad” volatility separately. Hence, Markowitz (1959) presents the mean-semivariance
(MSV) as an alternative measure, which only penalizes the “bad” volatility, performing as
a downside risk indicator. Even if the distribution is symmetrical, optimizing MSV is at
least effective as optimizing MV. To better illustrate the difference between variance and
semivariance, we construct a simple MDP example shown in Figure 1. The two policies
result in two reward distributions symmetrically, for which variances are indistinguishable.
However, the policy going right is preferred since it results in a lower semivariance.

Though MSV is a more plausible measure of risk, optimizing MSV is even more com-
plicated than MV. It inherits time-inconsistency from variance and introduces a truncation
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Algorithm 1 The framework of MSV optimization
Initialize policy as µ
repeat

Evaluate µ and get η (cf. Equation 1) and η− (cf. Equation 12)
Set reward function as g = (1 + 2βη−)r − β(r − η)2−
µ← POLICY_UPDATE(µ, g)

until µ converges

function of mean, making the analysis non-trivial. Due to the complexity of this objective,
existing works consider a subset of problems restricted with a fixed mean (Wei, 2019) or
heuristic algorithms for MSV (Yan et al., 2007; Zhang et al., 2012; Liu & Zhang, 2015; Chen
et al., 2019). To the best of our knowledge, there are currently no relevant studies on MSV
in the RL literature.

In this paper, we aim to fill the gap of the previous study on the single-period MSV
problem and extend the static methods to online RL algorithms. To achieve that, we resort to
Perturbation Analysis (PA) theory (Cao, 2007) (also called the sensitivity-based optimization
theory or the relative optimization theory) for Markov systems, which lays the basis of many
efficient RL methods, such as TRPO (Schulman et al., 2015), CPO (Achiam et al., 2017)
and MBPO (Janner et al., 2019). The contributions of our work are threefold. Firstly,
instead of constructing a Bellman operator, we establish the MSV performance difference
formula of two policies (see Section 4 for details). The result indicates that the performance
difference can be decomposed into two parts: the improvement corresponding to a reward
function depending on the current policy and the average performance change from the
current to the updated one. Second, we iteratively optimize MSV by considering the shift
in mean locally and constructing a surrogate reward function. The framework is shown in
Algorithm 1. Under this framework, we develop two algorithms based on the policy gradient
theory and the trust region method, respectively. We show that optimizing the surrogate
reward function in the trust region has a similar performance lower bound with the standard
TRPO, which guarantees the monotonic improvement if the trust region is tight. Finally, we
conduct diverse experiments to examine the effectiveness of our proposed methods, including
a bandit problem, a tabular portfolio management problem, and robotic control tasks based
on MuJoCo. The results demonstrate that the proposed algorithms successfully improve the
performance under the criterion of MSV, which is better than standard RL from a risk-averse
perspective.

2. Related Work

Below we briefly review the literature about optimization of MSV and other risk measures.

2.1 Mean-Semivariance

MSV is first introduced by Markowitz (1959) as an alternative to MV. Thereafter, many
researchers study portfolio selection problems by employing the semivariance as the risk
measure (Markowitz et al., 1993; Hogan & Warren, 1974; Choobineh & Branting, 1986;
Briec & Kerstens, 2009), most of which are limited to the single-period problem. Due
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to the complexity of MSV, previous studies on MSV in multi-period problems resort to
heuristic methods, such as fuzzy systems and genetic algorithms (Yan et al., 2007; Zhang
et al., 2012; Liu & Zhang, 2015; Chen et al., 2019). Wei (2019) studies a special case of
MSV in the continuous-time MDP, where the mean of the discounted total cost is equal to
a given function. Another stream of researches (Tamar et al., 2016; Shapiro et al., 2021)
study semideviation instead of semivariance. As standard deviation is an alternative to
variance, semideviation is considered as an alternative to semivariance. The main benefit of
mean-semideviation (MSD) is that it satisfies the property “coherent,” and hence it can be
written in a Bellman form (Ruszczyński, 2010). However, the additional square operation
makes optimizing MSD with a data-driven approach non-trivial. We leave the optimization of
MSD in RL as future work. Furthermore, maximizing the upside semivariance could improve
the exploration ability (Mavrin et al., 2019; Ma et al., 2020; Zhou et al., 2020), showing the
potential of MSV from an opposite perspective.

2.2 Mean-Variance

Since MSV is highly related to MV, in this part, we summarize the works on MV in Markov
decision processes (MDPs) and RL. Based on the definition of variance in the framework
of MDPs, the existing studies on variance can be broadly divided into two categories. One
stream of works (Sobel, 1982; Castro et al., 2012; Prashanth & Ghavamzadeh, 2016; Xie
et al., 2018) concern the variance of total return R =

∑∞
t=0 γ

trt under the initial state
distribution, i.e., Vπ0(R) where γ is the discount factor, π0 is the initial state distribution
and rt is the reward at the stage t. This definition concerns the risk of total rewards at the
final stage, while we are more concerned about long-term volatility in practical problems.
Hence, the long-run variance (Filar et al., 1989; Chung, 1994; Gosavi, 2014; Xia, 2016, 2020;
Bisi et al., 2020; Zhang et al., 2021), also known as the steady-state variance, is proposed to
describe the variance of the steady reward distribution. The long-run variance is defined by
limT→∞

1
T Eπ0,µ

[∑T−1
t=0 (r(st, at)− ηµ)2

]
(cf. Equation 3), where ηµ is the long-run average

of policy µ. Since the average reward ηµ depends on the current policy, it breaks the
time-consistency. To handle this problem, Xia (2016, 2020) derives a variance performance
difference formula with PA and proposes a policy iteration algorithm which is guaranteed to
converge to a local optimum. In this paper, we adopt similar definition of Xia’s work and
extend the formulation from MV to MSV.

2.3 Other Risk Measures

Besides the MV and MSV, other risk measures capture different features of the return
distribution. A classical risk measure in optimal control is exponential utility (Howard &
Matheson, 1972; Borkar & Meyn, 2002; Fei et al., 2020). The exponential utility enjoys a
product form of the Bellman equation. Therefore the corresponding value-based algorithms
such as Q-learning are well-developed. While the exponential Bellman equation is elegant in
theory, it poses some computational problems as the exponential values are often too large to
be numerically calculated. Another famous risk measure is Conditional Value at Risk (CVaR),
defined as the average value under the α-quantile. Many existing methods (Nemirovski &
Shapiro, 2007; Chow & Ghavamzadeh, 2014; Tamar et al., 2015; Chow et al., 2015, 2017)
optimize CVaR as the objective or constraints. The main difference between CVaR and

572



MSV Policy Optimization via Risk-Averse RL

MSV is that CVaR puts even weights for the events under a certain threshold, while the
importance of the extreme values on the concerned side increases quadratically in MSV. We
refer to Delage et al.’s work (2019) for more discussion on the connection of different risk
measures.

3. Preliminaries

In this paper, we focus on the infinite-horizon discrete-time MDP as M = ⟨S,A, r, P, π0⟩,
where S denotes the state space, A denotes the action space, r : S × A 7→ [−Rmax, Rmax]
denotes a bounded reward function and P : S × A 7→ ∆(S) is the transition matrix and
π0 ∈ ∆(S) denotes the initial state distribution. We assume that all the involved MDPs
are ergodic. Let µ : S 7→ ∆(A) denote a Markovian randomized policy and Π denote the
randomized policy space.

We are interested in the long-run average reward

ηµ := lim
T→∞

1

T
Eπ0,µ

[
T−1∑
t=0

r(st, at)

]
, (1)

where Eπ0,µ stands for the expectation with s0 ∼ π0, at ∼ µ(· | st), st+1 ∼ P (· | st, at). Note
that ηµ is independent of π0 when T →∞. With π denoting the steady state distribution, it
is convenient to rephrase the long-run average reward as

ηµ := Es∼π,a∼µ [r(s, a)] . (2)

The variance and semivariance w.r.t. µ are defined by

ζµ := lim
T→∞

1

T
Eπ0,µ

[
T−1∑
t=0

(r(st, at)− ηµ)2
]
, (3)

ζµ− := lim
T→∞

1

T
Eπ0,µ

[
T−1∑
t=0

(r(st, at)− ηµ)2−

]
, (4)

where (·)− := min{0, ·}. In this paper, we focus on the mean-semivariance criterion,

ξµ− := ηµ − βζµ−,

where β ≥ 0 is the parameter for the trade-off between mean and semivariance. Analogously,
when mean-variance criterion is mentioned, we mean ξµ := ηµ − βζµ.

We further respectively define state-value function, action-value function, and advantage
function for average reward as

V µ
η (s) := Eµ

[ ∞∑
t=0

(r(st, at)− ηµ) | s0 = s

]
,

Qµ
η (s, a) := Eµ

[ ∞∑
t=0

(r(st, at)− ηµ) | s0 = s, a0 = a

]
,

Aµ
η (s, a) := Qµ

η (s, a)− V µ
η (s).
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Similarly, the value functions for semivariance are defined as

V µ
ζ−
(s) := Eµ

[ ∞∑
t=0

(
(r(st, at)− ηµ)2− − ζµ−

)
| s0 = s

]
,

Qµ
ζ−
(s, a) := Eµ

[ ∞∑
t=0

(
(r(st, at)− ηµ)2− − ζµ−

)
| s0 = s, a0 = a

]
,

Aµ
ζ−
(s, a) := Qµ

ζ−
(s, a)− V µ

ζ−
(s).

For notation simplicity, we will omit the superscript “µ” when the context is clear, e.g.,
the average rewards ηµ, ηµ

′ are written as η, η′ instead. When r is mentioned, we omit (s, a)
and use r in short.

Before our analysis of MSV, we briefly review the average-reward policy gradient theorem
and the trust region theorem.

Theorem 1 (Average-Reward Policy Gradient by Sutton & Barto, 2018). For a policy µ
parameterized by θ, we have

∇θη = Es∼π,a∼µ[∇θ logµ(a | s)Aµ
η (s, a)].

Theorem 2 (Average-Reward Trust Region Policy Optimization by Zhang & Ross, 2021;
Ma et al., 2021). Consider the following problem,

max
µθ

Lµ(µθ), (5)

s.t. Es∼πDTV(µθ(· | s) ∥ µ(· | s)) ≤ ϵµ,

where

Lµ(µθ) := Es∼π,a∼µθ

[
Aµ

η (s, a)
]
. (6)

Denote µ′ as the solution of the above problem. The following bound holds:

η′ − η ≥ Lµ(µ′)− 2(κ′ − 1)ϵηϵµ, (7)

where ϵη = maxs |Ea∼µ′ [Aµ
η (s, a)]| and κ′ is Kemeny’s constant under µ′.

4. Perturbation Analysis

In this section, we derive the MSV performance difference formula (MSVPDF), where the
core concept—performance difference formula—comes from the PA for Markov systems, also
called the sensitivity-based optimization theory. With the aid of MSVPDF, we obtain the
necessary optimality condition for the MSV problem. It also lays the basis for developing
optimization algorithms (see Section 5), such as the policy gradient method and the trust
region method. For readers unfamiliar with PA, we provide a brief review of the theory in
Appendix A.

574



MSV Policy Optimization via Risk-Averse RL

4.1 Performance Difference Formula

MSVPDF is formally stated as below.

Theorem 3. For any two policies µ, µ′ ∈ Π, we have

ξ′− − ξ− = Es∼π′,a∼µ′ [Aµ
η (s, a)− βAµ

ζ−
(s, a)]− βEs∼π′,a∼µ′ [(r − η′)2− − (r − η)2−] (8)

Proof. To decompose the policy performance with the policy-dependent reward, we first
introduce a pseudo mean λ. We analyze the policy difference with the pseudo mean and
corresponding pseudo reward function, and then turn into the true mean by letting λ = η.

With a pseudo mean λ, we transform the original problem into a standard MDP with
reward function

f(s, a) := r − β(r − λ)2−. (9)

We obtain a pseudo mean-semivariance objective by optimizing this pseudo reward-
function,

ξλ,− := ξµλ,− = Es∼π,a∼µ [f(s, a)] .

By definition, we have

ξ− − ξλ,− = Es∼π,a∼µ

[
r − β(r − η)2− − f(s, a)

]
.

Since the pseudo reward is independent of the policy, we can write its performance difference
formula directly (Cao, 2007, Chapter 2):

ξ′λ,− − ξλ,− = Es∼π′,a∼µ′ [Aµ
f (s, a)], (10)

where Aµ
f (s, a) is the pseudo advantage with f as the reward function. With the aid of

Equation 10, we can derive the performance difference formula of ξ− as

ξ′− − ξ− = (ξ′λ,− − ξλ,−) + (ξ′− − ξ′λ,−) + (ξλ,− − ξ−)

= Es∼π′,a∼µ′ [Aµ
f (s, a)]− βEs∼π′,a∼µ′

[
(r − η′)2− − (r − λ)2−

]
− βEs∼π,a∼µ

[
(r − λ)2− − (r − η)2−

]
.

Finally, by setting λ = η, we arrive at

ξ′− − ξ− = Es∼π′,a∼µ′ [Aµ
f (s, a)]− βEs∼π′,a∼µ′

[
(r − η′)2− − (r − η)2−

]
,

which is the same as Equation 8 if we explicitly calculate the advantage function with reward
function f and λ = η.

The MSVPDF in Equation 8 or Equation 11 claims that the MSV improvement can be
separated into two parts. The first term in Equation 11 is a standard MDP with f as the
reward function, and the second term is caused by the perturbation of the mean. It clearly
quantifies the difficulty of solving the MSV problem, i.e., the policy-dependent reward function
breaks down the time-consistent nature of MDPs. Meanwhile, it also shows us the standard
MDP algorithm such as policy iteration (PI) is unavailable. A PI-like algorithm may be
efficient in improving the first term, but the sign of the remaining term (dependent on η′) is
unpredictable. It suggests that we need novel tools to guarantee the policy improvement.
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4.2 Performance Derivative Formula

While Equation 11 describes the performance difference between any two policies, we still need
the local structure of the MSV problem to guide the direction of optimization. Following the
line of the last part, we present the MSV performance derivative formula in this subsection,
which describes the performance derivative at µ towards another policy µ′.

Theorem 4. Given any two policies µ, µ′ ∈ Π, we consider a mixed policy µν ,

µν(a | s) = (1− ν)µ(a | s) + νµ′(a | s),

where the action follows µ with probability 1−ν, and follows µ′ with probability ν for ν ∈ [0, 1].
We have

dξ−
dν

= Es∼π,a∼µ′ [(1 + 2βη−)A
µ
η (s, a)− βAµ

ζ−
(s, a)].

Proof. From MSVPDF, we obtain the difference for µ, µν ,

ξν− − ξ− = Es∼πν ,a∼µν [Aµ
f (s, a)]− βEs∼πν ,a∼µν

[
(r − ην)2− − (r − η)2−

]
,

where ην := ηµ
ν . Taking the derivative w.r.t. ν and letting ν → 0, we obtain the performance

derivative formula. To simplify the derivation, we denote the terms on the right hand side as

h1(ν) = Es∼πν ,a∼µν [Aµ
f (s, a)],

h2(ν) = Es∼πν ,a∼µν

[
(r − ην)2− − (r − η)2−

]
.

Then ξν− − ξ− = h1(ν)− βh2(ν). Specifically, we have

h1(ν) = Es∼πν [(1− ν)Ea∼µ[A
µ
f (s, a)] + νEa∼µ′ [Aµ

f (s, a)]]

= νEs∼πν ,a∼µ′ [Aµ
f (s, a)],

where the last equality follows that Ea∼µ[A
µ
f (s, a)] = 0. Since limν→0 π

ν = π, we obtain

dh1
dν

= Es∼π,a∼µ′ [Aµ
f (s, a)].

Next, we differentiate (r − η)2−,

d(r − η)2−
dν

= 2(r − η)−
d(r − ην)−

dν
(i)
= −2(r − η)−1(r < η)

dη

dν
(ii)
= −2(r − η)−

dη

dν
,

(11)
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where (i) follows d(x)−
dx = 1(x < 0), and (ii) comes from (r − η)−1(r < η) = (r − η)−. Thus,

we have

dh2
dν

= lim
ν→0

1

ν

∑
s

πν(s)
∑
a

µν(a | s)
[
(r − ην)2− − (r − η)2−

]
= lim

ν→0

∑
s

πν(s)
∑
a

µν(a | s)(r − ην)2− − (r − η)2−
ν

=
∑
s

π(s)
∑
a

µ(a | s)d(r − η)2−
dν

=
∑
s

π(s)
∑
a

µ(a | s)
[
−2(r − η)−

dη

dν

]
= −2η−

dη

dν
.

Here we define the semimean η− as

η− := ηµ− = Es∼π,a∼µ[(r − η)−], (12)

which is the downside expectation of rewards under π. From the standard result of PA (Cao,
2007, Chapter 2), we have

dη

dν
= Es∼π,a∼µ′ [Aµ

η (s, a)].

Putting the above relationships together, we obtain

dξ−
dν

=
dh1
dν
− β

dh2
dν

= Es∼π,a∼µ′ [Aµ
f (s, a)] + 2βη−

dη

dν
= Es∼π,a∼µ′ [Aµ

f (s, a) + 2βη−A
µ
η (s, a)]

= Es∼π,a∼µ′ [(1 + 2βη−)A
µ
η (s, a)− βAµ

ζ−
(s, a)].

The above equality indicates that the performance derivative is related to another reward
function w.r.t. f (cf. Equation 9):

g(s, a) := f(s, a) + 2βη−r (13)

= (1 + 2βη−)r − β(r − η)2−, (14)

and the derivative formula can be written as

dξ−
dν

= Es∼π,a∼µ′ [Aµ
g (s, a)], (15)

where Aµ
g (s, a) is the advantage function w.r.t. g.

With the performance derivative formula, we define the local optimum for MSV and
present the necessary condition for MSV optimality.
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Definition 1. For a policy µ, ∃ν̄ ∈ (0, 1) and we always have ξµ− ≥ ξν−, ∀ν ∈ (0, ν̄), then we
say µ is a local optimum in the mixed policy space.

Theorem 5. The optimal policy of MSV can be found in the deterministic policy space, and
satisfies the necessary condition

µ∗(a | s) = δ

(
a ∈ argmax

b∈A
A∗

g(s, b)

)
,

which implies that A∗
g(s, a) ≤ 0, ∀s ∈ S, a ∈ A. Here δ denotes the Dirac delta function.

Proof. The theorem is a direct result of the derivative formula. The (local) optimality implies
that if µ is a local optimum, we always have dξ−

dν ≤ 0 for any direction in the policy space.
Assuming there is a contradiction, where for a state s there exists µ(a | s) = δ(a = a′) for
any a′ /∈ argmaxbA

µ
g (s, b), we can always find a better policy in the mixed policy space along

the derivative direction.

5. Optimization and Algorithms

In this section, we propose two approaches to optimize MSV with the parameterized policy.
We firstly extend the policy gradient method to MSV with the pseudo reward function (cf.
Equation 13) in Section 4. Following the same idea, we propose a trust region method to
solve the MSV problem, and prove the the lower bound for its performance improvement.
The two approaches together establish an iterative framework to solve the MSV problem.

5.1 MSV Policy Gradient Method

Policy gradient theorem is an essential foundation of modern deep RL algorithms, such as
Actor-Critic methods. Here we consider the policy µ parameterized by θ ∈ Θ, which can
be implemented with any differentiable function. We first give the MSV Policy Gradient
(MSVPG) theory formally as follows.

Theorem 6. For a policy µ parameterized by θ, we have

∇θξ− = Es∼π,a∼µ[∇θ logµ(a | s)Aµ
g (s, a)]. (16)

The policy gradient for MSV can be easily proved by PA, which follows the same lines of
derivative formula. For the readers from the DRL community, we also provide an alternative
proof based on (Sutton & Barto, 2018) in the appendix.

Proof. Consider two policies µ, µ′ parameterized by θ, θ′ respectively. Their performance
difference is given as

ξ′− − ξ− = Es∼π′,a∼µ′ [Aµ
f (s, a)]− βEs∼π′,a∼µ′

[
(r − η′)2− − (r − η)2−

]
.

Let denote ∆θ = θ′ − θ. Similar to the derivation in Section 4.2, we denote the terms of
above equation

h1(∆θ) = Es∼π′,a∼µ′ [Aµ
f (s, a)],

h2(∆θ) = Es∼π′,a∼µ′
[
(r − η′)2− − (r − η)2−

]
.
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We take the limit of ξ′− − ξ− by letting θ′ → θ.

∇θh1 = lim
∆θ→0

1

∆θ

∑
s

π′(s)
∑
a

[
µ′(a | s)Aµ

f (s, a)
]

(i)
= lim

∆θ→0

∑
s

π′(s)
∑
a

µ′(a | s)− µ(a | s)
∆θ

Aµ
f (s, a)

=
∑
s

π(s)
∑
a

∇θµ(a | s)Aµ
f (s, a)

(ii)
= Es∼π,a∼µ

[
∇θ logµ(a | s)Aµ

f (s, a)
]
,

where (i) follows Ea∼µ[A
µ
f (s, a)] = 0 and (ii) comes from ∇θ logµ(a | s) =

∇θµ(a | s)
µ(a | s) .

Similar to the derivation in Equation 11, we have

∇θh2 = lim
∆θ→0

∑
s

π′(s)
∑
a

µ′(a | s)(r − η′)2− − (r − η)2−
∆θ

=
∑
s

π(s)
∑
a

µ(a | s) lim
∆θ→0

(r − η′)2− − (r − η)2−
∆θ

=
∑
s

π(s)
∑
a

µ(a | s)∇θ(r − η)2−

=
∑
s

π(s)
∑
a

µ(a | s)[−2(r − η)−∇θη]

= −2η−∇θη.

Since ∇θη = Es∼π,a∼µ [∇θ logµ(a | s)Aµ
η (s, a)], we combine the results together and give

the gradient of ξ−

∇θξ− = ∇θh1 − β∇θh2

= Es∼π,a∼µ

[
∇θ logµ(a | s)Aµ

f (s, a)
]
+ 2βη−∇θη

= Es∼π,a∼µ

[
∇θ logµ(a | s)Aµ

f (s, a) + 2βη−A
µ
η (s, a)

]
= Es∼π,a∼µ

[
∇θ logµ(a | s)Aµ

g (s, a)
]
.

Here we present an Actor-Critic algorithm based on MSVPG, which is named MSVAC (see
Algorithm 2). In addition to the parameterized policy, we maintain another parameterized
function Vϕ as the value function. Then, the advantage function is estimated with the
generalized advantage estimation (GAE) (Schulman et al., 2016). Typically, we have

Âg(sn, an) =

N−1∑
t=n

λt−n (g(st, at)− ĝ + Vϕ(st)− Vϕ(st+1)) , (17)
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Algorithm 2 MSVAC
Input: α, β,K,N

1: Initialize the policy with θ and the value with ϕ randomly.
2: Set η̂ = 0, η̂− = 0, ζ̂− = 0.
3: for k = 1, 2, · · · ,K do
4: Execute policy µθ for N times to collect {(sn, an, rn, sn+1)}N−1

n=0 .
5: Update η̂ ← (1− α)η̂ + α 1

N

∑N−1
n=0 rn.

6: Update η̂− ← (1− α)η̂− + α 1
N

∑N−1
n=0 (rn − η̂)−.

7: Update ζ̂− ← (1− α)ζ̂− + α 1
N

∑N−1
n=0 (rn − η̂)2−.

8: Compute g(sn, an) with Equation 13 at all timesteps and ĝ.
9: Compute Âg(sn, an) with Equation 17 at all timesteps.

10: Update the θ with Equation 16.
11: Update the ϕ with Equation 18.
12: end for

where λ is the hyper-parameter to trade-off bias and variance, and ĝ = (1 + 2βη̂−)η̂ − βζ̂− is
the estimation of average surrogate reward function. With V̂n = Vϕ(sn) + Âg(sn, an) as the
target value, we update the value function with

LV (ϕ) :=
1

2N

N−1∑
n=0

(Vϕ(sn)− V̂n)
2. (18)

5.2 MSV Trust Region Method

While PG has a concise form, it often suffers from the difficulty of selecting step-sizes and
the sensitivity to initial points in practice, especially when it works with neural networks. To
address these drawbacks, trust region method (Schulman et al., 2015) is proposed to solve a
surrogate problem in a local trust region and perform an approximate policy iteration.

5.2.1 Monotonic Improvement Guarantee

We extend the idea of trust region in the standard MDP into MSV, and propose the MSV
Trust Region Policy Optimization (MSVTRPO) method. In MSVTRPO, we iteratively solve
the problem as below

max
µθ

Lµg (µθ) (19)

s.t. Es∼πDTV(µθ(· | s) ∥ µ(· | s)) ≤ ϵµ,

where

Lµg (µθ) := Es∼π,a∼µθ

[
Aµ

g (s, a)
]
.

Remark 1. The trust region method updates the policy via the direction of maximum deriva-
tive (cf. the performance derivative formula in Equation 15), constrained in the proximity
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policy space with the TV -divergence. In contrast, the standard policy iteration scheme updates
the policy via the same direction without constraint, which breaks the monotonic improvement
for MSV.

Next, we will show that MSVTRPO enjoys an analogous performance improvement
bound. When the trust region is tight enough, i.e., ϵµ → 0, the lower bound is dominated by
the first order term.

To complete the proof, we need following lemma to bound the state-action distributions.
For a policy µ, we denote the steady state-action distribution as ρ(s, a) := π(s)µ(s, a). Then
we have:

Lemma 1. For any two policies µ, µ′ ∈ Π, the difference of their steady state-action
distributions ρ, ρ′ is bounded by

∥ρ′ − ρ∥1 ≤ 2κ′ϵµ.

Proof.

∥ρ′ − ρ∥1 =
∑
s,a

|π′(s)µ′(a | s)− π(s)µ(a | s)|

≤
∑
s,a

|π′(s)µ′(a | s)− π(s)µ′(a | s)|+
∑
s,a

|π(s)µ′(a | s)− π(s)µ(a | s)|

=
∑
s

|π′(s)− π(s)|+
∑
s

π(s)
∑
a

|µ′(a | s)− µ(a | s)|

≤ 2
(
(κ′ − 1)ϵµ + ϵµ

)
= 2κ′ϵµ,

where the last inequality follows that ∥π′(s) − π(s)∥1 ≤ 2(κ′ − 1)ϵµ (see proposition 2 in
appendix shown by Ma et al., 2021).

Theorem 7. Let µ′ be the solution to the problem defined by Equation 19. We have

ξ′ − ξ ≥ Lµg (µ′)− 2(κ′ − 1)ϵgϵµ − 12β(κ′)2R2
maxϵ

2
µ,

where ϵg = maxs |Ea∼µ′ [Aµ
g (s, a)]| and κ′ is Kemeny’s constant under µ′.

Proof. Again, we start our analysis from MSVPDF. Based on Equation 11, we have

ξ′− − ξ− = Es∼π′,a∼µ′ [Aµ
f (s, a)]− βEs∼π′,a∼µ′

[
(r − η′)2− − (r − η)2−

]
= Es∼π′,a∼µ′ [Aµ

f (s, a) + 2βη−A
µ
η (s, a)]− Es∼π′,a∼µ′ [2βη−A

µ
η (s, a)]

− βEs∼π′,a∼µ′
[
(r − η′)2− − (r − η)2−

]
= Es∼π′,a∼µ′ [Aµ

g (s, a)]− 2βη−(η
′ − η)− βEs∼π′,a∼µ′

[
(r − η′)2− − (r − η)2−

]
,

where the last equation follows the difference formula of average reward,

η′ − η = Es∼π′,a∼µ′ [Aµ
η (s, a)]. (20)

The result indicates that the difference can be separated into two parts: the improvement
by optimizing the surrogate problem (the first term), and the discrepancy by the change of
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η (the rest terms). The insight of our proof is to show that the first term dominates the
difference and the rest terms can be ignored in a tight trust region.

The first term can be tackled with the standard trust region method. With the lower
bound of average trust region method in Equation 7, we have

Es∼π′,a∼µ′ [Aµ
g (s, a)]− Lµg (µ′) ≥ −2(κ′ − 1)ϵgϵµ. (21)

Now, we need to bound the rest terms. We have

2η−(η
′ − η) + Es∼π′,a∼µ′

[
(r − η′)2− − (r − η)2−

]
= Es∼π,a∼µ[2(r − η)−(η

′ − η)] + Es∼π′,a∼µ′
[
(r − η′)2− − (r − η)2−

]
= Es∼π′,a∼µ′

[
(r − η′)2− − (r − η)2− + 2(r − η)−(η

′ − η)
]

− 2(η′ − η)
(
Es∼π′,a∼µ′(r − η)− − Es∼π,a∼µ(r − η)−

)
.

Denote h := (r′ − η′)2− − (r′ − η)2− + 2(r′ − η)−(η
′ − η). Considering all potential cases for

the relationship between η, η′ and h, we have

• If r ≥ max{η, η′}, h = 0.

• If r < min{η, η′}, h = (r − η′)2 − (r − η)2 + 2(r − η)(η′ − η) = (η′ − η)2.

• If η ≤ r < η′, h = (r − η′)2 ≤ (η′ − η)2.

• If η′ ≤ r < η, we denote c0 = r − η′ ≥ 0 and c1 = η − r > 0. We have h =
−(r − η)2 + 2(r − η)(η′ − η) = c21 + 2c0c1 ≤ (c0 + c1)

2 = (η′ − η)2.

Synthesizing the above results, we conclude 0 ≤ h ≤ (η′ − η)2. Thus we have

Es∼π′,a∼µ′
[
(r − η′)2− − (r − η)2− + 2(r − η)−(η

′ − η)
]
≤ (η′ − η)2. (22)

With Lemma 1, we obtain that

|η′ − η| = |ρ′r − ρr| ≤ ∥ρ′ − ρ∥1Rmax ≤ 2κ′ϵµRmax,

where the first inequality follows the Hölder’s inequality. Similarly, we have

|Es∼π′,a∼µ′(r − η)− − Es∼π,a∼µ(r − η)−| (23)
= |ρ′(r − η)− − ρ(r − η)−| (24)
≤ ∥ρ′ − ρ∥1Rmax (25)
≤ 2κ′ϵµRmax (26)

where Equation 25 comes from that 0 ≤ (r− η)− ≤ 2Rmax. Substituting the previous results
into Equation 22 and combining with Equation 21, we arrive at

ξ′− − ξ− ≥ Lµg (µ′)− 2(κ− 1)ϵgϵµ − β|(η′ − η)2|
− 2β|η′ − η|

∣∣Es∼π′,a∼µ′(r − η)− − Es∼π,a∼µ(r − η)−
∣∣

≥ Lµg (µ′)− 2(κ′ − 1)ϵgϵµ − 12β(κ′)2R2
maxϵ

2
µ.
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Algorithm 3 MSVPO
Input: α, β,K,N,M

1: Initialize the policy with θ and the value with ϕ randomly.
2: Set η̂ = 0, η̂− = 0, ζ̂− = 0.
3: for k = 1, 2, · · · ,K do
4: Execute policy µθ for N times to collect {(sn, an, rn, sn+1)}N−1

n=0 .
5: η̂ ← (1− α)η̂ + α 1

N

∑N−1
n=0 rn.

6: η̂− ← (1− α)η̂− + α 1
N

∑N−1
n=0 (rn − η̂)−.

7: ζ̂− ← (1− α)ζ̂− + α 1
N

∑N−1
n=0 (rn − η̂)2−.

8: Compute g(sn, an) with Equation 13 at all timesteps and ĝ.
9: Compute Âg(sn, an) with Equation 17 at all timesteps.

10: Update the θ with equation 27 for M epochs.
11: Update the ϕ with Equation 18 for M epochs.
12: end for

5.2.2 Implementation details

In the end of this subsection, we address some implementation issues of MSVTRPO. First of
all, in practice, we replace the TV-divergence with KL-divergence as most of trust region
methods do. Since DTV(p ∥ q) ≤

√
DKL(p ∥ q)/2, the theoretical results are still applicable

for the practical algorithms.
In the tabular case, where the state and action spaces are finite and discrete, it is enough

to parameterize the policy tabularly. The previous analysis of TRPO (Abdolmaleki et al.,
2018) shows that Equation 19 enjoys a closed form solution:

µ′(· | s, a) ∝ µ(· | s, a) exp
(
Aµ

g (s, a)

υ∗

)
,

where υ∗ can be obtained by solving the dual problem

min
υ
L(υ) := υϵµ + υ

∑
s

π(s) log
∑
a

µ (a | s) exp
(
Aµ

g (s, a)

υ

)
.

With a known MDP, we name this iterative procedure as MSV Trust Region Policy Iteration
(MSVTRPI). As aforementioned in Section 4, PI is not available for MSV. Nevertheless, we
can do MSVTRPI as an alternative. When ϵµ →∞, it degrades to the standard PI without
the monotonic improvement guarantee.

In the model-free case with large state and action spaces, we recommend solving the
surrogate loss proposed by PPO (Schulman et al., 2017), for its stable performance and fast
computing with neural networks. Formally, instead of optimizing the problem in Equation 19,
we maximizing the clipping objective

LCLIP
µ (θ) :=

1

N

N−1∑
n=0

[
min

(
ωn(θ)Âg(sn, an), clip(ωn(θ), 1− ε, 1 + ε)Âg(sn, an)

)]
, (27)

where ωn(θ) =
µθ(an|sn)
µ(an|sn) is the importance sampling ratio. Since we consider the long-run

average performance in this paper, GAE is not applicable directly. Thus, we adopt the average
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value constraint (AVC) proposed by (Ma et al., 2021) to stabilize the value learning. The
full algorithm, named by MSV Policy Optimization (MSVPO) is presented in Algorithm 3.

6. Experiments

In the previous sections, we analyze the properties of MSV problem and find that it can
be soloved iteratively optimizing a surrogate reward function g (c.f. Equation 13). We also
propose two methods to solve the MSV problem in the parameterized policy space.

To validate the effectiveness of our proposed methods in solving MSV problem, we conduct
a series of experiments to answer the corresponding questions:

• Is the MSV really optimized by the the surrogate reward function g? Specifically, what
is the difference from optimizing g instead of f?

• What is the difference between the MV (Xia, 2020) and MSV criteria?

• Does the proposed algorithms work well with the current deep RL algorithms?

6.1 Bandit Problem

−4 −2 0 2 4
Reward

0.0

0.2

0.4

0.6

P
D

F

r0

r1

r2

(a) Reward distributions.

−6 −4 −2 0
log µ(a0)

−4

−2

0

lo
g
µ

(a
1
)

(1 + 2η−)r − (r − η)2
−

r − (r − η)2
−

r − (r − η)2

(b) Polices paths.

Figure 2: The bandit problem. (a) Reward distributions in the bandit problem. (b) Polices
paths in the bandit problem. The paths are shown in the logarithmic parameter space.

We start from a simple bandit problem. In this problem, there are three actions with only
a single state. Different actions result in different rewards following the distributions shown
in Figure 2(a). Specifically, we have r0 sampled from a shifted LogNormal(0, 1) distribution,
of which the mean is shifted to zero. If we choice a1, we will obtain r1 ∼ N(0, 22). Otherwise,
we will have r2 ∼ N(1, 32). Obviously, we have three different risk preference actions. When
we fix β = 1 in MV and MSV, the agent should always choice a0 if it optimizes the MSV
criterion, and choice a1 if it optimizes the MV criterion. The a2 has the highest outcome,
which is preferred by risk-neutral agents.

We compare three different agents, which optimize different reward functions. The first
one optimizes g = (1 + 2η−)r − (r − η)2− (cf. Equation 13), which is the derived reward
function with β = 1 in this work. The second one optimizes f = r− (r−η)2− (cf. Equation 9),
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Figure 3: Comparison of MSVTRPI and MVPI in the portfolio management problem. The
normalized MSV means β is doubled in comparison.

which is the Monte-Carlo return of MSV. We further consider a third agent which optimizes
r−(r−η)2 (Xia, 2020), an MV objective to illustrate the difference of MSV and MV problems.
All the agents use policy gradient with a parameterized policy initialized as a uniform one.

To visualize the learning process, we plot the curves in the logarithmic parameter space,
as shown in Figure 2(b). Since

∑
i µ(ai) = 1, µ(a2) is ignored in the figure. As expected,

the learning curve of the first agent (blue solid curve) approaches (0,−∞), meaning that
it always chooses a0 finally. Similarly, the third agent (green dotted curve) also chooses a1
correspondingly. Interestingly, the second agent (red dashed curve), which optimizes the
Monte-Carlo return of MSV, finally converges to choose a2. The result tells us optimizing the
reward f = r− β(r− η)2− cannot optimize the MSV objective even in such a simple problem.
This reflects the most essential difference between the optimization of policy-dependent
reward and other problems. As discussed in Section 4, to optimize a problem with a policy-
dependent reward function, we must consider the perturbation of the mean, at least in MSV
problems.

6.2 Portfolio Management

In this part, we compare the performances of MSV- and MV-optimal polices in a portfolio
management problem. We need to manage two independent assets and cash. At the stage t,
the gain of the i-th asset is denoted by xi,t ∈ {−0.2,−0.1, . . . , 0.5}, which transits according
to a transition probability matrix (described in Appendix). The action space is defined
as A = {(w1,t, w2,t) |

∑
i=1,2wi,t ≤ 1, wi,t ∈ {0, 0.2, . . . , 1}}, where wi,t is the weight of

current portfolio on the i-th asset. Let w0,t = 1− w1,t − w2,t denote the partition of cash
in current portfolio and x0 denote the return of cash. The reward function is defined as

585



Ma, Ma, Xia, & Zhao

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.02

0.04

0.06

0.08

0.10

P
ro

b
ab

ili
ty

Mean

Mean-Var

Mean-Semivar

Figure 4: Reward distribution in the portfolio management problem. The policy optimizing
MSV achieves η = 0.168, ζ = 0.014, ζ− = 0.006. As a comparison, the policy optimizing MV
achieves η = 0.073, ζ = 0.002, ζ− = 0.001.

rt = w0,tx0+
∑

i=1,2wi,txi,t−
∑

i=1,2 |wi,t−wi,t−1|c, where c is the transition cost. The state
is defined as st = (x1,t, x2,t, w0,t, w1,t). Hence, |A| = 21 and |S| = 1344.

For the MSV, we optimize the policy with the MSV trust region policy iteration
(MSVTRPI) (see Section 5.2 for details), which aims to maximize ξµ− = ηµ−βζµ−. We param-
eterize the policy in the softmax form as µθ(a | s) := softmax(θ(s, a)), where θ ∈ R|S||A| are
the “logic values”. For MV, we optimize the policy with the mean-variance policy iteration
(MVPI) proposed by Xia (2020), which maximizes ξµ = ηµ − βζµ.

We change the risk preference parameter β and compare the MSVTRPI and MVPI. We
depict the result in Figure 3, showing that with a fixed β, optimizing MSV always results
in a larger return than that of MV. Besides, MV is more sensitive than MSV in terms of
β, meaning that a small change of β will lead to a quick drop in both the return and risk.
To better compare MSV and MV, we also show the “normalized” results of MSV, where we
double β to provide the same penalty strength as MV. The result shows the normalized MSV
also outperforms MV in terms of the average reward, illustrating that MSV is more plausible
than MV. We demonstrate the reward distributions in Figure 4 with β = 10. It shows that
MSV maintains high returns while avoiding large losses. In contrast, optimizing MV may be
too conservative, as the upside rewards cause more volatility in this problem.

6.3 Robotic Control

To demonstrate the effectiveness of our proposed method in more general problem setups,
we implement a “deep” variant algorithm named mean-semivariance policy optimization
(MSVPO), which is based on the recent developed method APO (Ma et al., 2021) for
average-reward RL problems.

We evaluate MSVPO in the continuous control benchmark MuJoCo (Todorov et al.,
2012) with OpenAI gym (Brockman et al., 2016) as the interface. Since the original setup of
MuJoCo is not suitable for the long-run average setting, we slightly modify the experimental
protocol. In most of MuJoCo tasks, the agent will be terminated if it reaches any unsafe
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Figure 5: Training curves of Walker2d with noise. Each curve is averaged over 10 random
seeds and shaded by the standard deviation.

state, such as falling down. In that cases, we will reset the system and add an extra cost to
the terminal state. Different from other works focusing on the average episode returns, we
are interested in the long-run average and semivariance of the steady reward distribution.
To further increase the risk in the test scenarios, we add some noise to the agent outputs,
i.e., the real action taken by the environment is at + ϵ, where ϵ ∼ N(0, σ2). We call σ as the
noise level of the modified MuJoCo tasks.

We evaluate MSVPO with different β’s in the noisy Walker2d with different noise levels.
When the agent falls, we penalize it with an extra cost -10 and reset the system. As shown
in the Figure 5, the choice of different β’s achieves the trade-off between the average and
semivariance. In the noiseless environment (noise level = 0), we interestingly find that
risk-averse policy (β = 0.1) achieves competitive average reward with lower semivariance. It
indicates that in complex scenes, optimizing a risk-averse metric may generate more robust
policies with better performances comparing with a risk-neutral one.

To better understand the performance difference with different risk preference polices, we
visualize the reward distributions of typical agents in Figure 6, where each agent of noise
level 0.1 is evaluated for 1000 steps. We can see that risk-averse polices successfully avoid
the unsafe states. Meanwhile, the agent uses smaller steps forward with the risk parameter
β increasing. Instead, the risk-neutral agent tends to take the risk of falling for larger gains.
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Figure 6: Reward distribution of Walker2d with noise.

7. Conclusion

This paper discusses how to optimize the mean-semivariance criterion for the steady reward
of MDPs and RL, which is an alternative risk measure of mean-variance. The semivariance
is a more reasonable measure than the variance in general scenarios, as it only penalizes
the downside risk. We utilize PA theory to derive the performance difference formula and
optimize MSV with data-driven approaches. We develop two algorithms for MSV based on
PA theory, following the policy gradient theory and the trust region theory, respectively. We
also demonstrate the effectiveness of the proposed algorithms in different problems, showing
the risk-averse performance of MSV policy. We point out that the application of the proposed
two-stage optimization framework for risk measures is not limited for MSV. We hope our
work can promote the applications of data-driven approaches in risk-sensitive environments
of MDPs and RL.
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Appendix A. Brief Review of Perturbation Analysis theory

Consider an ergodic MDP with transition matrix P (induced by some policy µ), where
P (s′ | s) is the transition probability from s to s′. We also consider a corresponding reward
function r, where r(s) is the reward expectation at s. We are interested in the average
performance η = πr, where π denotes the steady state distribution. The Perturbation
Analysis (PA) theory (Cao, 2007) captures how the performance changes if the policy (or
system parameters P and r) has perturbations.

Theorem 8 (Performance difference formula). For two ergodic MDPs with P and P ′, we
have

η′ − η = π[(P ′ − P )V + r′ − r],

where V is the value function (called potential function in PA) for the system with P .

The value function satisfies the Poisson equation (I − P )g + ηe = r, where I denotes the
identity matrix and e is the unit vector.

Theorem 9 (Performance derivative formula). Consider another MDP with P ν = P +∆P =
(1− ν)P + νP ′ and rν = r + ν∆r = (1− ν)r + νr′. We have

dη

dν

∣∣∣∣
ν=0

= π[(∆P )V +∆r].

Appendix B. Alternative Proof of MSVPG

This proof follows the similar derivation of Sutton and Barto (2018, Chapter 13). We
first derive the policy gradient of ζ−, and give the complete form of MSV gradient by
∇θξ− = ∇θη − β∇θζ−. Taking the gradient of V µ

ζ−
for any arbitrary s ∈ S, we have

∇θV
µ
ζ−
(s)

= ∇θ

[∑
a

µ(a | s)Qµ
ζ−
(s, a)

]
=

∑
a

[
∇θµ(a | s)Qµ

ζ−
(s, a) + µ(a | s)∇θQ

µ
ζ−
(s, a)

]
=

∑
a

[
∇θµ(a | s)Qµ

ζ−
(s, a) + µ(a | s)∇θ

∑
s′

P
(
s′ | s, a

) (
(r − η)2− − ζ− + V µ

ζ−

(
s′
)) ]

=
∑
a

[
∇θµ(a | s)Qµ

ζ−
(s, a) + µ(a | s)

∑
s′

P (s′ | s, a)
(
− 2(r − η)−∇θη −∇θζ− +∇θV

µ
ζ−

(
s′
)) ]

.

Rephrasing the equation above, we obtain

∇θζ− =∑
a

[
∇θµ(a | s)Qµ

ζ−
(s, a) + µ(a | s)

∑
s′

P
(
s′ | s, a

) (
∇θV

µ
ζ−

(
s′
)
− 2(r − η)−∇θη

) ]
−∇θV

µ
ζ−
(s).
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Taking the expectation under π for both sides, we have

∇θζ−

=
∑
s

π(s)
∑
a

[
∇θµ(a | s)Qµ

ζ−
(s, a) + µ(a | s)

∑
s′

P
(
s′ | s, a

) (
∇θV

µ
ζ−

(
s′
)
− 2(r − η)−∇θη

) ]
−
∑
s

π(s)∇θV
µ
ζ−
(s)

=
∑
s

π(s)
∑
a

∇θµ(a | s)Qµ
ζ−
(s, a) +

∑
s′

∑
s

π(s)
∑
a

µ(a | s)P
(
s′ | s, a

)
∇θV

µ
ζ−

(
s′
)

−
∑
s

π(s)
∑
a

µ(a | s)
∑
s′

2(r − η)−∇θη −
∑
s

π(s)∇θV
µ
ζ−
(s). (28)

By the definitions of π and η−, we have

π
(
s′
)
=

∑
s

π(s)
∑
a

µ(a | s)P
(
s′ | s, a

)
,

η− =
∑
s

π(s)
∑
a

µ(a | s)
∑
s′

(r − η)−.

Substituting into the Equation 28, we have

∇θζ− =
∑
s

π(s)
∑
a

∇θµ(a | s)Qµ
ζ−
(s, a) +

∑
s′

π
(
s′
)
∇θV

µ
ζ−

(
s′
)
− 2η−∇θη −

∑
s

π(s)∇θV
µ
ζ−
(s)

=
∑
s

π(s)
∑
a

∇θµ(a | s)Qµ
ζ−
(s, a)− 2η−∇θη

=
∑
s

π(s)
∑
a

∇θµ(a | s)Qµ
ζ−
(s, a)− 2η−

∑
s

π(s)
∑
a

∇θµ(a | s)Qµ
η (s, a)

=
∑
s

π(s)
∑
a

∇θµ(a | s)
[
Qµ

ζ−
(s, a)− 2η−Q

µ
η (s, a)

]
.

Finally, applying the trick ∇ logµ = ∇µ/µ, we have

∇θζ− = Es∼π,a∼µ

[
Qµ

ζ−
(s, a)− 2η−Q

µ
η (s, a)

]
.

Thus, the MSVPG is given by

∇θξ− = Es∼π,a∼µ

[
(1 + 2η−)Q

µ
η (s, a)− βQµ

ζ−
(s, a)

]
.

Appendix C. Experiment Details

C.1 The Setup of Portfolio Management Problem

The return of cash x0 = 0.01. The transition cost c = 0.05.
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Table 1: The transition matrix of asset 1

x1 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.2 0.09 0.05 0.25 0.24 0.18 0.05 0.10 0.04
-0.1 0.05 0.02 0.33 0.22 0.17 0.09 0.06 0.06

0 0.04 0.03 0.26 0.24 0.18 0.07 0.12 0.06
0.1 0.04 0.04 0.20 0.28 0.26 0.08 0.03 0.07
0.2 0.00 0.02 0.16 0.24 0.27 0.11 0.15 0.05
0.3 0.07 0.02 0.16 0.19 0.25 0.14 0.12 0.05
0.4 0.02 0.04 0.14 0.19 0.18 0.20 0.17 0.06
0.5 0.03 0.03 0.09 0.19 0.23 0.15 0.14 0.14

Table 2: The transition matrix of asset 2

x2 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.2 0.13 0.10 0.08 0.09 0.20 0.36 0.02 0.02
-0.1 0.06 0.11 0.09 0.12 0.17 0.37 0.04 0.04

0 0.01 0.06 0.12 0.15 0.25 0.35 0.02 0.04
0.1 0.06 0.06 0.12 0.15 0.22 0.34 0.01 0.04
0.2 0.02 0.04 0.09 0.24 0.23 0.32 0.04 0.02
0.3 0.04 0.07 0.11 0.20 0.26 0.27 0.03 0.02
0.4 0.10 0.11 0.13 0.16 0.17 0.20 0.04 0.09
0.5 0.01 0.10 0.30 0.21 0.16 0.16 0.00 0.06
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Appendix D. Hyper-parameters of MSVPO

Hyper-parameter Value

Network learning rate β 3e-4
Network hidden sizes [64, 64]
Activation function Tanh
Optimizer Adam
Batch size 256
Gradient Clipping 10
Clipping parameter ε 0.2
Optimization Epochs M 10
GAE parameter λ 0.95
Average Value Constraint Coefficient in APO (Ma et al., 2021) ν 0.3

Table 3: Hyper-parameters sheet
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