
Journal of Artificial Intelligence Research 75 (2022) 857–911 Submitted 04/2022; published 11/2022

Creative Problem Solving in Artificially Intelligent Agents:
A Survey and Framework

Evana Gizzi evana.gizzi@tufts.edu
Department of Computer Science, Tufts University
Medford, MA 02155

Lakshmi Nair lnair3@gatech.edu
Sonia Chernova chernova@gatech.edu
College of Computing, Georgia Tech
Atlanta, GA 30332

Jivko Sinapov jivko.sinapov@tufts.edu
Department of Computer Science, Tufts University
Medford, MA 02155

Abstract
Creative Problem Solving (CPS) is a sub-area within Artificial Intelligence (AI) that

focuses on methods for solving off-nominal, or anomalous problems in autonomous systems.
Despite many advancements in planning and learning, resolving novel problems or adapting
existing knowledge to a new context, especially in cases where the environment may
change in unpredictable ways post deployment, remains a limiting factor in the safe and
useful integration of intelligent systems. The emergence of increasingly autonomous systems
dictates the necessity for AI agents to deal with environmental uncertainty through creativity.
To stimulate further research in CPS, we present a definition and a framework of CPS,
which we adopt to categorize existing AI methods in this field. Our framework consists of
four main components of a CPS problem, namely, 1) problem formulation, 2) knowledge
representation, 3) method of knowledge manipulation, and 4) method of evaluation. We
conclude our survey with open research questions, and suggested directions for the future.

1. Introduction

Creativity is often described as a hallmark of sophisticated intelligence. The Oxford English
Dictionary defines “creativity” as “Inventive, imaginative; of, relating to, displaying, using,
or involving imagination or original ideas as well as routine skill or intellect, esp. in
literature or art” (Dictionary, 1989). Despite our familiarity with the notion of creativity,
understanding and implementing creativity in artificially intelligent systems continues to
be a challenge. Computational Creativity (CC) is an active area of research that seeks to
develop computational methods that are capable of generating a creative output, reminiscent
of the creative processes in humans. The CC research community includes a diverse body of
researchers, spanning the fields of psychology, neuroscience, philosophy, and computer science.
The goal of CC research, as described by the Association for Computational Creativity1, is
“[to gain] the ability to model, simulate or replicate creativity using a computer, to achieve one
of several ends, including the construction of a program or computer capable of human-level

1. The Association of Computational Creativity is a nonprofit organization dedicated to the advancement of
CC, and organizing body of the International Conference on Computational Creativity (ICCC)

c©2022 AI Access Foundation. All rights reserved.



Gizzi, Nair, Sinapov & Chernova

Figure 1: Examples of CPS in human and non-human species: The jury-rigged filter
constructed by the astronauts on Apollo 13 (left, image credit: NASA). Rook extracting a
bucket by bending a piece of wire to make a hook (right) (Bird & Emery, 2009).

creativity, to better understand human creativity and to formulate an algorithmic perspective
on creative behavior in humans, and to design programs that can enhance human creativity
without necessarily being creative themselves” (ICCC, 2022). While there has been extensive
work in the area of Computational Creativity in Artificial Intelligence (AI), these works
are primarily focused on the generation of creative artifacts, e.g., paintings, poems etc.
In contrast, there is very limited focus on creativity that is specifically task-oriented, i.e.,
creativity in problem solving.

Creative problem solving (CPS) focuses on using creative processes in the context of
problem solving. Both human and non-human species have been shown to creatively solve
problems (Boesch & Boesch, 1990; Baker, Kanitscheider, Markov, Wu, Powell, McGrew, &
Mordatch, 2019) (Figure 1), e.g., crows have been shown to spontaneously modify tools by
shaping hooks out of wire, and using the modified tools in the correct sequence of actions
required to retrieve food (Bird & Emery, 2009). Various models of CPS in humans have
also been proposed by researchers over the years (Isaksen & Treffinger, 2004), beginning as
early as 1952 with the work of Alex Osborn, who presented a comprehensive description of a
seven-stage CPS process (Osborn, 1952). Prior work by Mumford et al. (1991, 1997) has
also investigated CPS processes in humans by conducting human participant studies and
evaluations. They define creative problems as problems that arise in ill-defined situations,
thus eliciting creativity in humans. Further, their work highlights core cognitive processes
involved in CPS, including problem construction, information encoding, idea evaluation,
implementation, and monitoring. While these works primarily explore CPS in humans and
other animals, there is very limited work focusing on CPS in artificial agents.

What makes CPS important for AI? Numerous real-world examples demonstrate
the practical importance of CPS, particularly when dealing with crises or time-constrained
scenarios. For instance, in the Apollo 13 incident of 1970, astronauts on board the spacecraft
creatively constructed a makeshift CO2 filter using unconventional materials, enabling them
to safely return home (Cass, 2005) (See left, Figure 1). More recently, makeshift ventilators
built using low-cost 3D printed parts and off-the-shelf items such as manual resuscitator
PVC bags and motors, have been used to combat the widespread equipment shortages
during COVID-19 (Kitchen, 2020; Turner, Duggan, Glezerson, & Marshall, 2020). However,
similar skills are currently beyond the scope of AI. Developing artificial agents with similar
capabilities, can greatly improve the resourcefulness and adaptability of existing AI systems.

858



Creative Problem Solving in Intelligent Agents: A Framework and Survey

These capabilities will be especially useful for robots that explore, as well as work in space,
underwater, remote locations on land, and disaster sites, where the robots are highly likely
to face unprecedented circumstances, requiring them to adapt (Atkeson, Benzun, Banerjee,
Berenson, Bove, Cui, DeDonato, Du, Feng, Franklin, et al., 2018).

In this survey, we describe how CPS can leverage concepts from CC and planning/learning
in AI to improve the adaptability of existing AI systems to novel scenarios. Similar surveys
have previously focused specifically on CC by reviewing interdisciplinary work in CC along
with evaluation techniques for CC systems (Jordanous, 2013; Lamb, Brown, & Clarke, 2018).
Rowe et al. (1993) surveyed CC works explicitly in an AI context, in which they suggest
five key aspects of CC systems. These include a) flexibility of knowledge representations,
b) tolerance to ambiguity in the knowledge representations, c) avoiding functional fixity,
d) assessing the usefulness of the creative output, and e) the capacity to elaborate on the
creative output to find out their consequences. The special issue journal on “Problem-solving,
Creativity and Spatial Reasoning” by Falomir et al. (2019) compiled selected works in
existing CPS research for a multi-disciplinary perspective on problem solving in CC, focused
specifically on highlighting the synergies between the traditionally separate research areas.
In contrast to prior surveys, to the best of our knowledge, this is the first survey that is
specifically focused on creative problem solving in AI, leveraging the literature from both
CC and AI. Our goal in this survey is to contribute a taxonomy of research in CPS, and
to provide organization and clarity into what has already been achieved as well as open
research questions. We believe that a comprehensive discussion of CPS, combining CC and
AI principles, is vital for encouraging future work in this area.

Our paper is organized as follows. We begin in Section 2, by discussing existing definitions
of CPS in AI along with presenting our definition, and contrasting it to the existing work. We
then describe relevant aspects in CC in Section 3, and describe how they can be adapted to
CPS. In Sections 4 and 5, we present a framework that highlights four key processes involved
in CPS. We further classify existing research in the context of the presented framework. In
Section 6, we discuss examples of CPS architectures in the current literature. Finally, we
conclude our survey in Section 7 with open research questions.

2. Defining Creative Problem Solving in AI

We begin by presenting existing definitions of creative problem solving. Derived from the
formulation of planning and learning problems in artificial intelligence (which we explain
in this section), we introduce our definition for CPS, and highlight its contribution and
differences from existing definitions.

2.1 Existing Definitions of Creative Problem Solving

There have been efforts within the research community to formalize a general definition and
process for CPS. Closely related to our work, prior research has formulated CPS based on
classical planning and concept re-representation.

Prior work by Olteţeanu (2014) defines CPS from an object affordance perspective.
Affordances broadly refer to action possibilities for objects, e.g., cups are pour-able and doors
are open-able (Gibson, 1977). Formally, affordances are defined as relationships between
objects, actions, and the effects of applying the actions on the objects (Şahin, Çakmak,

859



Gizzi, Nair, Sinapov & Chernova

Doğar, Uğur, & Üçoluk, 2007). Olteţeanu (2014) distinguishes creative problems from normal
problem solving tasks in that CPS problems have poor representational structure, in particular
the representation of objects (initial states, relations between objects etc.). Collectively,
these entities are referred to as concepts, and their representations consist of affordances,
visuospatial features, or semantic tags. From this, Olteţeanu defines the process of CPS as
“the ability of a cognitive, natural, or artificial system to use new objects to solve a problem,
other than the ones that have been stored in its memory as tools for that specific purpose (if
any), or to create those objects by putting together objects or parts of objects the system has
access to. Depending on the problem, objects can be either physical or abstract/informational
(concepts, problem templates, heuristics or other forms of representations)” (Olteteanu, 2015).
However, their framework specifically refer to objects, and do not cover other concepts
relevant to problem solving in AI, e.g., actions and environment states.

In a contrasting definition, Sarathy and Scheutz (2018) define the notion of “MacGyver-
esque” creativity as embodied agents that can “generate, execute, and learn strategies for
identifying and solving seemingly unsolvable real-world problems”. They approach CPS as
a planning problem, introducing the notion of a MacGyver Problem (MGP) as a planning
problem in the agent’s world that has a goal state that is currently unreachable by the agent
(Sarathy & Scheutz, 2018). They formalize MGP with respect to an agent t, as a planning
problem in the agent’s world Wt, that has a goal state g currently unreachable by the
agent. In order to solve an MGP, the agent modifies its domain knowledge (through domain
expansion or contraction) by sensing and perceiving its environment and its own self, enabling
the agent to discover previously unknown information needed for accomplishing the goal.
However, the proposed definition of MGPs do not cover learning approaches in AI for CPS
and does not describe potential methods for modifying domain knowledge of the agent.

2.2 Proposed Definition of Creative Problem Solving

In this section, we present a novel formalization of CPS. We begin by first defining the
components of a traditional planning or learning problem to be solved by an agent acting in
its environment.

2.2.1 Components of Traditional Planning and Learning in AI

The planning or learning problem specification in AI typically consists of a task goal G to
be accomplished, given a set of environment states S and agent actions A. The agent then
produces a solution Π for accomplishing the task goal. Depending on whether the initial
problem is formulated as planning or learning, the generated solution corresponds to either a
task plan or policy respectively, over the states and actions. Thus, Π : S → A, represents a
mapping from the set of environment states, to the set of actions. In the case of planning, a
full task plan is typically computed prior to the agent acting in the environment. Hence,
CPS may be observed before any action executes physically. In the case of learning, the
policy is typically learned on-the-fly as actions are executed in the environment and CPS
may be observed concurrently.

To highlight the definitions presented in this paper, we introduce the following running
example in a planning domain. Consider a scenario with a robot in a 2-dimensional 3x3
‘grid-world’ room with 9 locations denoted by t(1,1), t(1,2), t(1,3), t(2,1), t(2,2), ...t(3,3). The room

860



Creative Problem Solving in Intelligent Agents: A Framework and Survey

Figure 2: Nominal case where creative problem solving is not required, given the knowledge
in Table 1. The robot can push the box onto a nearby empty space and proceed to the exit.

CS c1s . . . c
9
s = robot at one of t(1,1), t(1,2), t(1,3), t(2,1), t(2,2), t(2,3), t(3,1), t(3,2), t(3,3)

c10s . . . c18s = box1 at one of t(1,1), t(1,2), t(1,3), t(2,1), t(2,2), t(2,3), t(3,1), t(3,2), t(3,3)

CA c1a = move to a designated location
c2a = push box to a location that is empty

Table 1: Initial concept space of the grid-world agent, shown partially.

consists of one box in front of an exit door. The robot may have the goal of exiting the room
(e.g., G = robot not in room), with two types of available actions, which allow the robot
to move around the room, and to move boxes around the room (e.g., A = {a1, a2}, where
a1 = move to a location, and a2 = push box to an empty location). This agent could then
generate a solution to get from its current state in the room to the goal state, by using the
actions that are known to it (e.g., Π = move to the exit, push the box covering the exit door
to the empty location on the side, move through exit door). This is shown in Figure 2.

2.2.2 Components of Creative Problem Solving in AI

Given the formalisms from planning and learning problems in AI, we now describe the
components of CPS. In creative problem solving, we broadly define the notion of a concept,
as a state (of the environment and/or agent) or action. More specifically, depending on the
problem formulation, concepts could refer to the actions that an agent can perform (e.g.,
“move”), or the state space including states of objects in the agent’s environment (e.g., “box
at location t(1,2)”), and the state of the agent (e.g., “agent at location t(2,3)”). Grouping states
and actions under the single term “concepts” allows us to unify the broad range of problem
formulations within a single definition. More generally, we denote concepts as cx, and a
conceptual space CX as the set of all concepts cx. We use cx only as notational convenience
since cx can refer to either a state s or an action a. This allows us to explain our CPS
framework across different concepts. Here, X relates to either the set of environment states
S or actions A. Hence, CS denotes the set of all states where each state is denoted by cs,
and CA denotes the set of actions, where each action is denoted by ca. For our grid-world
example, the concept space involved is partially highlighted in Table 1.

861



Gizzi, Nair, Sinapov & Chernova

Figure 3: Creative problem solving (CPS) occurs when the initial conceptual space of the
agent is insufficient to complete the task, and the agent needs to expand its conceptual space
to achieve the task goal. Traditional planning/learning approaches in AI would return a
failure in such scenarios.

Furthermore, let C̆X denote the universal set of the concepts cx, such that C̆X represents a
theoretical conceptual space containing every possible concept that the agent could potentially
know about, e.g., C̆A as the set of all possible actions that the agent can perform. In this
work, we assume that the initial conceptual space CX ⊂ C̆X , i.e., the agent’s initial knowledge
is limited. Note that CX = C̆X is not a practical assumption for real-world agents, since it
implies that the agent knows every concept possible. In practice, the agent often encounters
problems that it is unable to solve given the initial information available to it. Similar
scenarios are commonly observed in robots operating in unstructured environments where
they often have to improvise to effectively solve the task.

2.2.3 Key Definition

A crucial aspect of CPS that differentiates it from general planning or learning
problems in AI is that the initial conceptual space CX known to the agent is
insufficient to accomplish the task goal. We refer to such task goals as “un-achievable
goals”. Consider the original grid-world example, with an added switch that needs to be kept
pressed in order to turn off the lights in the room. The new goal for the robot in this case
is, G = robot not in room AND lights off. The initial concept space of the robot does not
include any action allowing it to accomplish this goal (i.e., Table 1 does not contain switch
press actions, or switch is_pressed states). Traditional planning approaches in AI often
yield a failure in these circumstances, since the initial set of actions available to the agent
is insufficient for completing the task. In traditional learning approaches, the initial action
space that the agent is allowed to explore is limited and often not extensible to include new
actions. Thus, CPS is characterized by its flexibility or adaptability to handle novel problems
(Guilford, 1967a). In particular, CPS seeks to enable the agent to discover new concepts for
accomplishing the task, by modifying the agent’s initial conceptual space. Here, given an
initial conceptual space the agent must generate a creative solution Π for accomplishing the
task. We now present our definition of CPS as follows (also shown in Figure 3):

862



Creative Problem Solving in Intelligent Agents: A Framework and Survey

Figure 4: Example of CPS in the grid-world planning domain. In the left image, the robot
has the goal of exiting the room with the lights turned off. Note that the blue switch needs
to be kept pressed in order to keep the lights off. A creative solution in this case involves
pushing the brown box over the light switch in order to accomplish the task goal, as shown
to the right. The agent here has to somehow discover that the box can be pushed onto the
switch to keep it pressed.

Definition 1 Given an un-achievable goal due to an insufficient conceptual space, creative
problem solving is defined as the process by which the agent manipulates its currently known
conceptual space in order to discover new concepts that are not in its current conceptual
space, thus allowing the agent to accomplish the previously un-achievable goal. Formally, CPS
refers to the process by which the agent discovers a new conceptual space C ′X * CX , such
that C ′X = f(CX) is the result of applying some function f on the current conceptual space,
enabling the agent to solve the previously unsolvable task by using C ′X .

In other words, the space of concepts that is explicitly represented by the agent defines the
boundaries of what the agent can accomplish. Creativity arises when the agent uses what it
already knows to discover something new. In CPS, the newly discovered knowledge is applied
to solve a previously impossible task. In our grid-world example with the light switch, the
initial conceptual space of the agent (shown in Table 1) is insufficient for accomplishing the
goal of <G = robot not in room AND lights off>. However, if the agent is able to somehow
discover (via modification of its initial conceptual space) that the box can be pushed onto
the light switch to keep the switch pressed, rather than only being able to move it to empty
locations, then the agent has exhibited CPS since it can now exit the room while the lights
are off (See Figure 4). More specifically, the agent would have to discover a new action c3

a =
push box onto switch, which has the effect of is_pressed(switch). In a learning context,
exploration is one possible approach for the agent to discover this new concept, i.e., the agent
may push the box around until it happens to be on the switch. This can be computationally
prohibitive in larger state spaces. In this paper, we will present three classes of approaches
(including informed exploration) by which the agent can manipulate the initial conceptual
space more efficiently to discover new concepts for accomplishing the task (Section 4).

Our definition of CPS differs from previous definitions (Section 2.1) in the following ways.
Firstly, in contrast to the prior definition by Olteţeanu where the concepts focused primarily
on object affordances, we describe the notion of concepts in terms of all the core entities
involved in a planning or learning problem, i.e., the actions and states (including, but not
limited to the states of objects). This allows us to capture CPS approaches that manipulate

863



Gizzi, Nair, Sinapov & Chernova

non-object related concepts (e.g., the agent itself) as well. Secondly, in contrast to the prior
definition by Sarathy and Scheutz that formulated macgyvering problems specifically as a
planning problem, we present CPS as a planning or learning problem, and further connect
problem solving in AI to relevant aspects of CC. In particular, we describe i) how CPS can
be performed by efficiently manipulating the initial conceptual space via the function f(.)
that correlates to existing methods developed in CC, and ii) how the output of CPS can be
evaluated by leveraging existing notions of output evaluation in CC. In the following sections,
we expand upon our definition, highlighting the theoretical aspects in CC that apply to CPS.

3. Aspects of Computational Creativity for Creative Problem Solving

In this section, we review four major aspects of CC, and their inheritance and adaptations to
creative problem solving. The four aspects include: novelty and value, evaluative methods,
procedural methods, and Boden’s types of creativity. These aspects are grouped into two
categories; output-based aspects and process-based aspects. These categorizations are not
meant to divide types of systems, but rather, to group key aspects. We leverage these aspects
when presenting the components of CPS in Section 4.

3.1 Output-based Aspects

In output-based aspects, the focus is on evaluating the creativity of a system by determining
whether the output produced in a task is considered creative. These systematic outputs,
referred to as artefacts, may take physical and/or non-physical form (e.g. paintings, songs).
The first aspect (Novelty and Value) describes two key characteristics of a creative output,
whereas the second aspect (Evaluative Methods) describes methods for evaluating the output.

Novelty and Value: Prior work by Boden (1998) proposed that creativity necessitates
both novelty and value. Novelty guarantees that the generated outputs of a creative process
are original, whereas the value criteria ensures that the generated outputs are not random, but
targeted to accomplishing a task goal. Both novelty and value have contextual considerations.
An agent may produce a novel painting, but in the context of a scenario which calls for a
creative recipe, the novel painting would not be considered valuable (Sosa & Gero, 2016;
Varshney, Wang, & Varshney, 2016).

Evaluative Methods: In evaluative methods, the creativity of a system is evaluated by
judging the output of its processes, if it is creative or not. Similar in nature to the Turing
test, these methods focus on using the judgement of an external observer. The evaluation
can either happen computationally (Colton, Wiggins, et al., 2012; Varshney et al., 2016),
from a human evaluator (Bishop & Boden, 2010; Guckelsberger, Salge, & Colton, 2017), or
from a social group (Varshney et al., 2016). The nature of these evaluations vary, the output
may be compared to a human’s creative output, judged in a social context, or evaluated
based on the agent’s ability to explain its own intentions to a human (Cook, Colton, Pease,
& Llano, 2019).

Adaptation of Output-based Aspects in Creative Problem Solving: In creative
problem solving, novelty is important with contextual considerations. Creative solutions may
not be completely original themselves, but rather in their application to the problem. For
example, using Tupperware as a container may not be original in itself, but using Tupperware

864



Creative Problem Solving in Intelligent Agents: A Framework and Survey

as a replacement for a soap dish may be considered a creative solution to a problem. The
second criteria in CC is that creativity necessitates value. In the context of CPS, this criteria
is inherited as usefulness or utility. That is, does the solution actually solve the problem?

CPS does not directly inherit evaluative methods, because the output of a CPS process
is simply evaluated by the agent as either successful or not successful, based on its ability to
solve the problem. As such, a successful solution to a problem which necessitates CPS is
inherently creative, because problem solving in this case requires the discovery of concepts
which are novel relative to the agent. Thus, evaluation in CPS involves evaluating whether
the new conceptual space is sufficient to accomplish the current goal.

3.2 Process-based Aspects

Process-based aspects are concerned with the question of how creative outputs are produced.
The first aspect (Procedural Methods) reviews existing methods for synthesizing the creative
process, whereas the second aspect (Boden’s Types of Creativity) reviews three ways of
implementing procedural methods.

Procedural Methods: Procedural methods of generating creative outputs consist of two
phases: An expansion phase where the agent synthesizes a large set of possible outputs for a
creative process, and a contraction phase where the agent processes the candidate outputs in
order to select valuable output. Analogous conceptualizations of the expansion/contraction
phases include divergent thinking/convergent thinking (Guilford, 1967a; Zhang, Sjoerds,
& Hommel, 2020), generative thinking/evaluative thinking (Ellamil, Dobson, Beeman, &
Christoff, 2012), and defocused attention/focused attention (Sarathy, 2018).

Boden’s Types of Creativity: Boden proposed three ways of generating creative out-
puts, namely, combinational creativity, transformational creativity, and exploratory creativity
(Boden, 1998). Combinational creativity involves taking known or familiar information, and
combining it in a way that generates a novel output. Transformational creativity involves
transforming one or more dimensions of the solution/output space to provide the means for
new structures to emerge in the transformed space. Lastly, exploratory creativity involves an
exhaustive search of a solution/output space to find a novel solution.

Adaptation of Process-based Aspects in Creative Problem Solving: CPS
directly utilizes process-based approaches. CPS is triggered by an impasse moment, where
the agent detects that nominal problem solving techniques are insufficient for accomplishing
the goal (Knoblich, Ohlsson, Haider, & Rhenius, 1999). Impasse is followed by a period
of incubation, where the agent generates the solution space, synthesizing possible ways of
solving the problem using a relaxed representation of the problem and domain. Once a
viable solution is found in this space, the agent is said to reach its insight or “Aha!” moment
(Colin & Belpaeme, 2019), wherein the agent proceeds to use the solution to solve the
problem. We call this process the impasse-incubation-insight process. While there exist
other general formalizations of the creative process (Mumford et al., 1991, 1997), we use the
impasse-incubation-insight paradigm for our CPS framework.

The impasse-incubation-insight process can be implemented using the two part method of
expansion and contraction in the following manner – the impasse moment triggers incubation,
where the agent enters the expansion phase and generates a new conceptual space. Upon

865



Gizzi, Nair, Sinapov & Chernova

generating new concepts, the agent enters the contraction phase, wherein the agent applies
the newly discovered concepts to generate a plan for accomplishing the goal (insight moment).
Boden’s types of creativity provides three ways to generate the new conceptual space during
the expansion phase (referred to as “Knowledge Manipulation” in the following sections). We
formalize each of these methods in detail in Section 4, describing how each method operates
on the initial conceptual space.

4. Components of a Creative Problem Solving Framework

In this section, we introduce a novel computational framework for creative problem solving
(also shown in Figure 5), leveraging the aspects discussed in Section 3. Our CPS framework
is motivated by two key ideas: First, we develop our CPS framework based on the impasse-
incubation-insight approach in computational creativity, described in Section 3. Specifically,
we contextualize and formulate the three steps based on how planning and learning problems
are formulated in the AI literature. We believe this is a key feature of our framework that
bridges the gap between impasse-incubation-insight in computational creativity and planning
and learning methods in AI. Secondly, we recognize the need to organize the vast breadth of
existing CPS literature through common formalisms. This would benefit future endeavors
in the area, and help identify existing gaps in the research. We begin by describing our
framework in detail, and in the following sections we demonstrate how existing research fits
within our framework.

Given a task that is currently unsolvable (i.e., impasse), the first step within our framework
involves appropriately formulating the problem. In this case, the problem may be formulated
as a planning and/or learning problem, with a few exceptions. Once the problem is formulated,
the agent must appropriately represent the relevant information (i.e., the concepts) in order
to form the initial conceptual space. In CPS, the initial conceptual space is insufficient
for accomplishing the task and as a result, the agent must expand its conceptual space
(i.e., incubation) to discover a new conceptual space for accomplishing the goal. The final
component of the framework involves evaluating the new conceptual space for its effectiveness
in solving the problem, by generating a solution from the new conceptual space (i.e., insight).
In summary, we organize existing work in CPS through the following questions: a) How
is the problem formulated? (Section 4.1: Problem Formulation); b) How are the
concepts represented? (Section 4.2: Knowledge Representation); c) How is the new
conceptual space derived? (Section 4.3: Knowledge Manipulation); and d) How is the
new conceptual space evaluated? (Section 4.4: Evaluation).

4.1 Problem Formulation

How is the problem formulated? There are primarily two problem formulations within the
CPS literature, namely, a) planning problem, and b) learning problem. In particular, learning
refers to reinforcement learning. We categorize and discuss each paper in terms of their
predominant methodology. A small subset of the papers in our review do not fall clearly
within either problem formulation, which we discuss in detail.

866



Creative Problem Solving in Intelligent Agents: A Framework and Survey

Figure 5: Creative problem solving framework, beginning with the problem formulation,
followed by representation of the initial conceptual space (knowledge representation). The
agent then operates on the initial conceptual space to derive a new conceptual space for
solving the task (knowledge manipulation), and evaluates the solutions generated from the
new conceptual space for their success (evaluation).

Figure 6: Examples of planning in CPS: Task planning within ICARUS (Choi et al., 2018)
(left) where the specifics of the motion trajectory is not considered; Task and Motion
Planning (TAMP) (right) for sequential manipulation that considers both the task and
motion trajectories (Toussaint et al., 2018).

4.1.1 Planning

We begin by defining a planning problem in AI. A planning problem consists of a set of states
S, a set of actions A and state transitions γ. Further, the formulation consists of an initial
state denoted as si, and a goal state denoted as sg. Most commonly in classical planning, a
problem specification consists of a domain definition PD = (S,A, γ), and a problem definition
PT = (PD, si, sg). Given the domain and problem definitions, planning involves identifying
a sequence of actions that can get the agent from the initial state to the goal state (i.e., a
task plan). Within CPS, planning formulations may be integrated into a larger architecture
or framework, or alternatively presented as standalone approaches.

867



Gizzi, Nair, Sinapov & Chernova

Architectural Integration
As an example of architectural integration of task planning, Choi et al. (2018) introduce
planning in the context of a cognitive architecture called ICARUS, for the creative construction
of navigational structures, e.g., ramps and bridges. In similar work, Freedman et al. (2020)
introduce analogical reasoning capabilities into a classical planning architecture called CIRCA,
to enable a robotic agent to reason about analogies when identifying substitute objects for
building navigational structures. In contrast to the construction of navigational structures,
prior work by Nair et al. (2020, 2020) introduce the Robogyver architecture that extends
classical planning through supervised learning, to enable a robot to create or “macgyver”
novel tools from available objects. In similar work, Wicaksono and Sammut (2017, 2020)
integrate planning within the CREATIVE architecture, to enable a robot to craft novel
tools through 3D printing, as opposed to using available objects. Lastly, in the cognitive
architecture of SOAR, Lieto et al. (2019) show that concept representation in a knowledge
base can be used as a means for “subgoal” resolution (or plan repair) within planning.

Standalone Task Planning
In addition to planning in the context of cognitive architectures, several standalone planning
approaches have also been proposed for CPS. The standalone approaches often focus on
either task planning, or motion planning. Task planning involves generating high-level action
sequences for accomplishing a task, whereas motion planning focuses on generating sequences
of valid joint configurations (of the robot) for performing different actions. In these cases,
creativity arises either at the level of the task plan, or at the level of the motion trajectory.

Within task planning for construction of navigational structures, prior work by Erdogan
and Stilman (2013) incorporate constraint optimization as a means of evaluating candidate
states during planning. More specifically, they search for specific object configurations
(when combining objects to construct structures such as bridges), in a convex continuous
domain. For each abstract action, they partition the convex space, and evaluate whether
a feasible solution exists in the partitioned spaces. Levihn and Christensen (2015) extend
constraint relaxed planning (using A∗) with inverse affordances to enable a robot to navigate
its environment in novel ways, e.g., cross gaps by making bridges. Inverse affordances are
a mapping from a failed action to object properties that are required to make the action
feasible. The agent then locates objects that satisfy the desired properties, and incorporates
them into the planner. Prior work by Saboia et al. (2019) leverage mathematical descriptions
of elevation in the terrain to extend planning, and incorporate the construction of ramps
to navigate uneven terrains. In closely related work, Tosun et al. (2018) use a specialized
planner to enable robots to create ramps for navigational tasks. The planner itself serves
two functions: 1) it synthesizes a robot controller for achieving the task, and 2) it executes
the controller. In contrast to navigational tasks, Boteanu et al. (2015), focus on using
Hierarchical Task Networks (HTNs) for CPS by incorporating novel uses of objects within
the planner, e.g., using a bowl instead of a basket. Prior work has also focused on discovery
of new actions in the context of planning. Suarez-Hernandez et al. (2020) introduce a novel
approach for the unsupervised synthesis of new action primitives. Gizzi et al. (2019, 2021)
discover novel actions through action segmentation and behavior babbling, respectively,
which they use as a method for knowledge expansion. In this way, the agent can then re-plan
toward a goal in a novel scenario with the new knowledge. In similar work, Sarathy et al.

868



Creative Problem Solving in Intelligent Agents: A Framework and Survey

Figure 7: Examples of learning in CPS: Agent policy optimization for solving tool-based
puzzles (Allen et al., 2019) (left) where the agent design is not considered, and joint
optimization of agent policy and design, e.g., morphology of the legs of the agent (Ha, 2019)
(right).

(2020), discover action operators through RL as a way to expand the knowledge base for
CPS through re-planning.

Motion Planning
While the approaches described above focus on task planning, several CPS approaches have
also been introduced for creative motion planning. Fitzgerald et al. (2017, 2014) focus
on the transfer of skills (i.e., motion trajectories) from a source object to a target object.
For example, their work introduces approaches for adapting motion trajectories for novel
uses, such as adapting trajectory for a ladle with a short handle to one that has a much
longer handle. In similar work, Gajewski et al. (2019) focus on adapting trajectories from
a source object to a target object by reasoning about the geometric similarities between
the source and target objects. Their work differs from that of Fitzgerald et al. in terms of
the underlying representations used. In contrast to trajectory adaptation, Qin et al. (2020)
introduce an approach for enabling robots to manipulate novel objects as tools for different
manipulation tasks. Here, the robot reasons about tool use based on the underlying object
representations, as opposed to adapting a known trajectory from a source to a target object.
In contrast to tool manipulation, Murooka et al. (2019) focus on incorporating the dynamics
of screws and screwdrivers into motion planning, in order to enable a robot to self-tighten
loose screws on its body to augment its physical capabilities.

Some CPS approaches leverage high-level task constraints for low-level motion planning.
For example, Toussaint et al. (2018) introduce a novel approach for “Task and Motion
Planning” (TAMP) to address the problem of sequential manipulation for tool use. They
impose explicit task constraints on actions (in a continuous space) regarding the physical
dynamics of objects, and optimize over the constraints using motion planning. Similarly,
Silver et al. (2021) show how bottom up relational learning can support learning new
probabilistic operators in a TAMP paradigm. Low-level transitions are converted into high
level state representations of lifted effects (predicates with argument placeholders), which
are then processed via greedy/best-first search to discover new preconditions. Hence, all of
the approaches described in this section enable robots to adapt to novel and unforeseen task
environments through planning.

869



Gizzi, Nair, Sinapov & Chernova

4.1.2 Learning

Within the CPS literature, learning is used in two ways: a) to learn a solution or policy for
accomplishing a task goal (i.e., through reinforcement learning), and b) to learn representa-
tions that can then be combined with planning or reinforcement learning (RL) techniques. In
this section, we focus on the former since it relates specifically to the problem formulation. In
section 4.2, we focus on the latter, and discuss how learning is applied to learn representations
for the conceptual space.

We begin by presenting the components of an RL problem. An RL problem is typically
formalized as a Markov Decision Process (MDP) consisting of the tuple (S,A, P, γ,R) that
represents a set of states S, a set of actions A, and transition probabilities P (s′|s, a) =
Pr(st+1 = s′|st = s, at = a), i.e., the probability of transitioning to a state s′, given an initial
state s and action a. The MDP further specifies a discount factor γ, and a reward function
R(s, s′, a) that indicates a reward for transitioning from s to s′ via action a. The goal of the
agent is to generate a policy (mapping from states to actions) that maximizes the expected
reward. In contrast to planning, the agent explores its environment to gather information
(via the reward function) to eventually settle on an appropriate policy or solution. In CPS,
existing RL approaches have been used to generate creative solutions to tasks. While most
of the approaches focus on optimizing the agent’s policy alone, a subset of the approaches
focus on jointly optimizing for the agent policy and the agent’s physical design.

Agent Policy Optimization
When optimizing for the agent’s policy, Xie et al. (2019) use model-based RL to enable a
robot to improvise using tools, e.g., using unconventional tools to grab out-of-reach objects.
Similar work by Allen et al. (2019) introduce the Sample-Simulate-Update-Predict (SSUP)
model for solving tool-based puzzles that improve upon more traditional RL techniques.
Their work samples actions that operate close to objects (in Cartesian space), and simulates
the potential outcomes of the actions using a physics simulator. Based on the simulations and
the actual outcomes of executing the actions, the agent eventually generates novel policies
for completing tool-based puzzles. Prior work by Baker et al. (2019) demonstrated emergent
creative tool use by agents playing a game of hide-and-seek. In their work, the agent policies
were generated by combining two separate networks: 1) a policy network that learns an
action distribution, and 2) a critic network that predicts the discounted feature returns. The
policies were optimized by using Proximal Policy Optimization (PPO), and Generalized
Advantage Estimation (GAE). In contrast to creative tool use, Bapst et al. (2019) generate
policies for structure construction via two approaches: 1) Multi-layer Perceptron (MLP)
Policy that uses a multi-layer perceptron-based algorithm to output actions or Q-values, and
2) Graph Network (GN) Policy that uses a stack of three Graph Networks to output a policy.

At the intersection of CPS and psychology, cognitively inspired RL approaches for CPS
have also been proposed. Chitnis et al. (2021) use model-based RL to learn a goal/action
relational model, where exploration goals are selected based on a novelty measure to optimize
the exploration of un-visited state spaces. Here, there is no extrinsic reward function, but
rather an intrinsic “novelty” motivation. They call this approach a “goal-literal” babbling
(GLIB) approach. In similar work, Oddi et al. (2020) use the notion of intrinsic motivation
for skill learning based on self-generated goals, where the measures driving goal generation
are based on competence (composed of novelty, curiosity, exploration, and surprise). Goals

870



Creative Problem Solving in Intelligent Agents: A Framework and Survey

are selected based on those which have the highest competence improvement rate. Kralik
et al. (2016) apply Q-Tree learning, a variant of Q-learning wherein a hierarchical state
representation is learned simultaneously with the action policy. They demonstrate that the
Q-Tree model simulates CPS observed in monkeys, thus hypothesizing potential underlying
cognitive mechanisms. Similarly, Colin et al. (2019) develop RL-based algorithms for
modeling insight in pigeons, motivated by a real life CPS experiment. They use a basic
MDP, along with a CNN to support an actor-critic model for agent behavior, suggesting
basic RL as a viable possible mechanism for cognitive CPS. In the context of discovering
new actions for accomplishing a task, Kroemer et al. (2014) use RL-based approaches to
learn low-level movements corresponding to primitives. In similar work, Jain et al. (2020)
learn novel actions through unsupervised methods and apply PPO for learning task policies.

Joint Agent Policy and Design Optimization
In contrast to optimizing for agent policies alone, existing work in CPS has also focused on
jointly optimizing for agent policy and design. These approaches demonstrate the emergence
of novel morphologies that are well-suited to specific environments. Prior work by Pathak
et al. (2019) focus on self-assembling morphologies wherein individual agents (“limbs”)
can combine to form new morphologies. They adopt an RL framework wherein the policy
parameters are optimized to jointly maximize the reward for each limb. Prior work by
Ha (2019) uses the REINFORCE algorithm to enable an agent to jointly optimize for its
policy and physical design. In closely related work, Schaff et al. (2019) use Proximal Policy
Optimization (PPO) as opposed to REINFORCE. In these CPS approaches, the agent learns
novel designs that enable effective locomotion in its environment.

Note that most RL approaches represent information in a strictly non-symbolic manner
whereas classical planning often represents information in a symbolic manner. In some cases,
the representations used in RL are themselves learned using supervised and semi-supervised
learning techniques (Xie et al., 2019). We will describe these in more detail in Section 4.2.

4.1.3 Other Paradigms

The papers described in this section conform to our definition of CPS, but do not fall strictly
under planning or learning categories, since they do not use the newly discovered concepts
to accomplish some task goal. A notable observation is that the majority of the papers in
this section pertain to tool-use. They involve the selection of tools that can be improvised
for a particular function but is not demonstrated in the context of accomplishing some task
goal. Hence, we include them in a separate section.

Within tool use, prior work has focused on identifying creative alternate uses for objects,
through various representations such as graphs (Zhu, Zhao, & Chun Zhu, 2015; Yang,
Lan, Zhang, & Zheng, 2020), semantic networks (Olteţeanu & Falomir, 2016), geometric
representations (Schoeler & Wörgötter, 2015; Abelha, Guerin, & Schoeler, 2016; Shrivatsav,
Nair, & Chernova, 2019; Nair, Srikanth, Erickson, & Chernova, 2019; Nair, Balloch, &
Chernova, 2019), and perceptual functions that capture the effects of interacting with objects
using tools (Sinapov & Stoytchev, 2007, 2008). In contrast to accomplishing a task goal, the
approaches discussed here are evaluated by comparing to ground truth data. For instance,
the approach may identify a rock as a good substitute for a hammer, but it is not used to
actually perform a hammering task. Rather, it is evaluated against a ground truth label

871



Gizzi, Nair, Sinapov & Chernova

indicating how well rocks can be used for hammering. In this sense, these approaches do not
strictly fit a planning or RL paradigm.

Apart from tool use, the other papers in this section focus on discovering new skills
(Hangl, Dunjko, Briegel, & Piater, 2017; Xu, Nair, Zhu, Gao, Garg, Fei-Fei, & Savarese,
2018) and discovering new agent designs (Zhao, Xu, Konaković-Luković, Hughes, Spielberg,
Rus, & Matusik, 2020). Hangl et al. (2017) combine already known skills to discover new
behaviors which are evaluated for their success at small sub-tasks such as grasping and
placement of objects, without a planning or RL formulation. Xu et al. (2018) leverage
Neural Task Programming (NTP) to learn skills by decomposing demonstrated tasks into
generalizable substructures. While they demonstrate learning of new skills, they do not
conform to the typical planning/RL formulation. In the context of learning new agent designs,
Zhao et al. (2020) use Model Predictive Control (MPC) to evaluate and optimize for agent
designs for traversing different kinds of environments. As a hybrid approach, Sarathy et al.
(2020) combine planning and RL to discover and execute new actions/policies to acquire an
environmental states in which the previously unachievable goal can be attained.

4.2 Knowledge Representation

How is the conceptual space represented? In the previous section, we described the components
of a problem formulation (for learning or planning) including states and actions. These
specifications form a part of the conceptual space of the agent. In this section, we discuss
how the conceptual space (i.e., information regarding actions and states) is represented. In
existing CPS works, there are two broad classes of representations that are most commonly
used, namely symbolic and non-symbolic. More recent approaches have also sought to
combine the two, to develop hybrid approaches that can leverage the relative strengths
of both representations. Note that, as described in Section 4.1, symbolic representations
are typically associated with planning problems, whereas non-symbolic representations are
typically associated with learning. In the case of hybrid representations, symbolic and
non-symbolic formulations are combined and used for planning and/or learning.

4.2.1 Symbolic Representations

Symbolic representations involve explicitly modeling all known and newly discovered concepts
in a declarative form, via facts and rules. These representations encode high-level information
as predicates and/or fluents, and the agent often learns relationships between concepts as
rules or facts. In this section, we review approaches that use symbolic representations for
CPS, including automated planners and large-scale semantic networks.

Planning Languages
Automated planning methods in CPS depend on symbolic representations of states, actions
and transitions in the form of planning languages. Two commonly used planning languages
include the Stanford Research Institute Problem Solver (STRIPS) language (Fikes & Nils-
son, 1971), and the Planning Domain Description Language (PDDL) (McDermott, 2000;
McDermott, Ghallab, Howe, Knoblock, Ram, Veloso, Weld, & Wilkins, 1998). Planning
languages encode information using logical predicates describing states and actions. States
are represented as a list of logical predicates that hold true when the agent is in that particular
state. Actions are encoded with preconditions, i.e., a list of logical predicates that must hold

872



Creative Problem Solving in Intelligent Agents: A Framework and Survey

true before action execution, and postconditions, i.e., logical predicates that are expected to
hold true after execution. Given an initial state and goal state, planners then use forward or
backward chaining of predicates and postconditions to yield a solution. Apart from PDDL
and STRIPS, examples of planning languages include PDDL 2.1, which handles temporal
planning domains (Fox & Long, 2003), PDDL 1.0, which is able to capture domains with
probabilistic effects (Younes & Littman, 2004), and PDDL 3, a constraints based PDDL
planner (Gerevini, Haslum, Long, Saetti, & Dimopoulos, 2009). Other examples include
the Action Description Language (ADL) (Pednault, 1987) and Hierarchical Task Networks
(HTNs) (Erol, Hendler, & Nau, 1994).

Erdogan et al. (2013) break down problems in high dimensional continuous spaces into
discrete, symbolic PDDL actions used in a constraint-based planner. Choi et al. (2018) use
a STRIPS-inspired planning language extended with numeric representations in order to
capture quantitative properties of objects such as their dimensions and weight. Planning and
execution is then performed through a modified planner in the ICARUS architecture, which
take these quantitative attributes into consideration. Prior work by Wickasono and Sammut
(2017, 2020) capture properties of tools within a hierarchical planning language that is then
used to create novel tools. Their hierarchy captures aspects such as length, width, and shape
of the tools. They capture the state representation at two levels: primitive and abstract.
Primitive states contain quantitative values, such as pose of objects, whereas abstract
captures qualitative relationships between objects. Suarez-Hernandes (2020) introduce a
novel algorithm for the synthesis of STRIPS actions from execution traces (sequences of
actions), within a planning framework. In Sarathy et al. (2020), the agent uses RL in
a fully symbolic 2D ’grid-world’ domain to resolve failures in PDDL plans. Chitnis et al.
(2021) utilize a fully symbolic problem representation, with grounded and un-grounded
literal representations of states, actions, and goal states (which they refer to as “goal-literals”.
Using this information, agents “plan to learn”, where goal-literals drive exploration of novel
goal/action combinations to learn a symbolic transition model.

Semantic Networks
In contrast to planning languages, semantic networks are symbolic encodings of information
with their inter-connections (e.g. semantic similarity), usually taking the form of a graph
structure (also referred to as “knowledge graphs” (Hélie & Sun, 2010)). The connections
and their corresponding strengths can be hand-coded, or learned over time. In Lieto et al.
(2019), CPS is performed by exploring conceptual blending (Fauconnier & Turner, 2008)
in a semantic network of concepts, represented using a non-monotonic logic system which
allows for concept composition. This representation accounts a measure for “common-sense
applicability” on its semantic concepts. In the work of Olteţeanu (2014, 2016), semantic
information (referred to as “concepts”) is captured based on affordances, visual features, and
explicit semantic tags. This collective knowledge base is called a “semantic map,” and can
assume many different structures. The semantic map is used for object replacement and
object composition (OROC) for creating new objects. Boteanu et al. (2015) use large-scale
semantic networks, particularly ConceptNet, that capture object affordances in the context
of Hierarchical Task Networks (HTNs), to enable a robot to reason about object replacement.
In similar work, Freedman et al. (2020) encapsulate knowledge about various object features
(such as geometry, length, width, rigidity etc.) within a graphical semantic network to
enable a robotic agent to perform analogical reasoning. Prior work by Zhao et al. (2020)

873



Gizzi, Nair, Sinapov & Chernova

(a) (b)

(c)

Figure 8: Examples of representations in CPS: a) ConceptNet 5 (Speer & Havasi, 2013):
Symbolically represented semantic networks expressing object-action relationships; b) Non-
symbolic non-parametric representation of a cuboid as a histogram (Schoeler & Wörgötter,
2015); and c) Non-symbolic parametric representations of objects using superquadrics (e.g.,
cylinders representing the handles of containers) (Abelha et al., 2016).

introduced the notion of a robot “grammar” (called “RoboGrammar”) for generating novel
robot designs for environment traversal. They represent the robot’s morphology using a
graph that symbolically describes the different parts of the robot, such as head, body, joints,
connectors, and limbs. Each node within the graph denotes a particular part, and the edges
denote the relationship between the parts.

A key advantage of symbolic approaches (planning languages or semantic networks) is
that they provide a vehicle for explanatory reasoning that is human readable and allows the
reasoning process to be easily understood and interpreted. However, a major disadvantage
of symbolic approaches is that in many cases, knowledge must be encoded a-priori, requiring
expertise and domain knowledge which can be difficult for non-expert users. Additionally,
although knowledge acquisition in symbolic systems is possible (as in the case of the CPS),
it can be challenging to acquire complete and useful information in symbolic systems.

4.2.2 Non-symbolic Representations

In contrast to symbolic representations, non-symbolic representations do not explicitly model
“rules” or “facts”. Instead, non-symbolic representations use parametric or non-parametric
means of representing information. Parametric representations are characterized by the
use of numerical parameters that encode some physical meaning. For instance, spheres
are characterized by the value of the radius, and the height of a terrain is characterized
by the numerical value of its elevation. In CPS, parametric representations are often
mathematical models that are pre-specified by the user/developer. In contrast, non-parametric

874



Creative Problem Solving in Intelligent Agents: A Framework and Survey

representations cannot be characterized by physically meaningful parameters and are not
pre-specified, but rather learned from observed data (called representation learning). While
pre-defined mathematical models such as models of physics, are used to parametrically
represent concepts such as the behavior of objects, non-parametric representations are
learned from data via representation learning. In the following paragraphs, we describe these
two types of non-symbolic representations.

Mathematical Models (Parametric)
The mathematical models used in CPS literature are used to generate outputs, and can be
thought of as a function f applied to an input x. A key distinction between mathematical
models and representation learning is that the function f(x) is pre-specified by the user rather
than learned from observed data. These mathematical models often capture the underlying
dynamics of a system, such as the physics of the environment in order to predict how objects
will behave in a given scenario. Within CPS, these models include 3D-transformations, models
of the 3D scene or environment, geometric models used to represent objects, mathematical
models of environment physics, and inverse kinematic models.

Prior work by Fitzgerald et al. (2019) use 3D transformations (rotations and translations)
to represent the relationships between tool use trajectories in a source and target environment
in order to enable a robot to adapt tool use trajectories learned from human demonstrations
in a source environment to a new target environment. In similar work, Abelha et al. (2016)
and Gajewski et al. (2019) model tools using Superquadrics (SQs) to identify creative
substitutes for missing tools. SQs are geometric shapes similar to other quadrics, but raised
to arbitrary powers as opposed to the power of two. SQ representations use 13 parameters
that characterize various geometric properties of the tools they represent, such as length,
width etc. Prior work by Allen et al. (2019) demonstrate CPS using a Sample-Simulate-
Update-Predict (SSUP) model. They model environment physics in order to simulate object
behavior in a given environment. The simulations are then used to update a policy for
predicting actions that can the enable the agent to solve novel puzzles.

Within navigation, prior work has focused on deriving parametric representations of the
environment by modeling various attributes such as elevation and gaps. Saboia et al. (2019)
model the navigability of an environment by describing mathematical models that capture
the height difference between points on the terrain, the pose stability of the robot and,
reachability of a particular point on the terrain. These representations are used to enable the
robot to construct ramps using available objects in order to traverse the terrain effectively.
Closely related work by Tosun et al. (2018) introduce a probabilistic template-based terrain
characterization algorithm that uses feature templates to identify regions of elevation, given a
2.5D elevation map of the robot’s environment. The robot then uses objects that are available
to it in order to construct ramps to scale the elevation. Levihn and Stilman (2015) focus on
using objects as simple machines, for enabling a robot to traverse its environment in new
ways, such as using a bar of wood to prop open doors. Their work uses an A∗ planner defined
over a set of constraints in a discretized configuration space of the robot. The constraints
model environment physics, such as kinetic energy, momentum, and mass.

More recent work by Murooka et al. (2019) use parametric representations modeled
through inverse kinematics to enable a robot to perform augmentation and self-repair by
tightening screws on its body. They incorporate the screwdriver and screw dynamics into the
inverse kinematic models, including physical concepts such as force, moment, and coefficients

875



Gizzi, Nair, Sinapov & Chernova

of static friction. In some creative results, the robot attaches hooks to its body to enable it to
carry grocery bags. Prior work by Hangl et al. (2017) parameterize the notions of “curiosity”
and “boredom” using Shannon entropy, in order to guide the learning of new robot behaviors.

Learned Representations (Non-parametric)
Representation learning refers to a set of techniques for learning representations or “fea-
tures” that are useful for encoding a given set of inputs (Bengio, Courville, & Vincent,
2013). Here, the term “useful” is used to indicate features that are capable of differenti-
ating between classes of inputs. When applied to CPS, non-parametric representations
of the initial conceptual space of the agent is learned through observed data. Within the
new representation, new concepts are discovered for solving tasks. The vast majority of
models used for learning non-parametric representations in CPS include different forms
of neural networks, such as Long Short Term Memory networks (LSTMs), Conditional
Variational Auto-Encoders (CVAEs), and Feedforward Neural Networks (FNN). In addition
to neural networks, few approaches in CPS have also used Support Vector Machines (SVM),
k-Nearest Neighbors (kNN), and Decision Trees (DTs). While we do not delve into the details
of each machine learning algorithm, we briefly describe the ML approaches used in each paper.

Supervised Learning: Among existing CPS approaches that learn non-parametric represen-
tations using neural networks, Xie et al. (2019) use LSTMs to learn skill representations
for improvisational tool use. In this case, the robot uses data collected from human demon-
strations in order to train the LSTMs to represent tool use trajectories for any given tool,
often adapting the trajectory to demonstrate improvisational skills. Similar work by Qin et
al. (2020) use the PointNet architecture (2017) for learning keypoint (i.e., points of interest)
representations of tools. The network predicts novel keypoints, given an input tool, e.g.,
Grasping locations for unconventional uses of the tool. Baker et al. (2019) use LSTMs
within their policy network architecture to enable a set of agents to learn creative policies
that involve using objects to succeed in a game of hide-and-seek. Within the space of tool
construction, prior work by Nair et al. (2019, 2019, 2019) have used FNNs and DNNs to
perform tool substitution and tool construction. These networks are used to represent objects
in terms of their shape and material, in order to identify appropriate objects for constructing
or substituting a missing tool. In closely related work, Yang et al. (2020) use Gated Graph
Neural Networks (GGNNs) to represent object shapes and reason about pairs of objects
for tool construction. Bapst et al. (2019) combine two types of internal representations,
namely, Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs)
for the construction of physical structures in simulation. Prior work in tool substitution by
Schoeler et al. (2015) uses SVMs to predict alternate uses for given objects. They formulate
their work as a part-based affordance learning problem, wherein the models learn shape
representations of the tools as histograms (called part signatures) through supervised learning.
These representations are then used for identifying tool substitutes.

Apart from representing tools and structures, neural networks have also been successfully
applied to represent the agent. In these cases, the non-parametric representations model the
agent’s physical design or morphology. Prior work by Pathak et al. (2019) have used Dynamic
Graph Networks (DGN) in order to enable an agent to reason about its morphology. Here,
the limbs and joints of the agent are represented in the form of a graph learned using DGN,

876



Creative Problem Solving in Intelligent Agents: A Framework and Survey

Figure 9: Example of hybrid symbolic and non-symbolic representation in CPS: The symbolic
PDDL representation of actions (left) is combined with their trajectory representations
(action executors) highlighting change points in the trajectory (right) (Gizzi et al., 2019).

and combined with RL to learn motion policies consistent with the graph structure. Similar
work, has also used FNNs to represent agent designs, in conjunction with RL approaches
such as REINFORCE (Ha, 2019) or Proximal Policy Optimization (PPO) (Schaff et al., 2019).

Unsupervised/Semi-Supervised Learning: Existing approaches in CPS have also used
unsupervised/semi-supervised learning methods. Prior work by Sinapov et al. (2007, 2008)
represent tools using k-nearest neighbors (kNN) and Decision Trees (DTs). In their work, the
robot gathers observations through repeated interactions with various tools and the collected
observations are used to cluster and learn affordance representations for new tools. In Kralik et
al. (2016), external state representations are clustered into hierarchical state representations,
thus discretizing a continuous non-symbolic state space for RL. Work in generating reusable
dynamic movement primitives (DMPs) commonly employ unsupervised learning techniques
to extract motion structures for accomplishing tasks. Kroemer et al. (2015) sample non-
symbolic state spaces comprised of robot end effector data (end effector torque/position, joint
angles, and contact features) and environment data (position, orientation, and relational
distances of objects) to learn new representations.

A key advantage of non-parametric representations is that they do not require significant
engineering on the part of the user, as they can be learned from data. However, they often lose
any meaningful interpretation. In contrast, parametric representations carry some physical
interpretation (such as elevation or shape), but require some engineering. In order to leverage
the advantages of interpretability and to alleviate hand-coding, several CPS approaches
introduce hybrid symbolic and non-symbolic representations.

4.2.3 Hybrid Symbolic/Non-symbolic Representations

Hybrid approaches seek to leverage the strengths of both symbolic and non-symbolic ap-
proaches. In most cases, the symbolic representations are used to capture domain knowledge,
that is then used to improve learning via non-symbolic approaches. Additionally, the
framework may switch between symbolic and non-symbolic representations depending on
the environment and the nature of the problem. In Zhu et al. (2015), videos of tool-use

877



Gizzi, Nair, Sinapov & Chernova

demonstrations are decomposed into non-symbolic representations of objects and trajectories
and composed to form a symbolic concept graph, containing spatial, causal, and temporal
information of objects. Next, SVM clustering and weight-based ranking algorithms are
used to capture the “essense” of the task, thereby providing a generative basis for problem
representation. As a result, when faced with a new task, the agent is able to use the generative
representations to “imagine” the use of candidate tools, eventually choosing an appropriate
object. The task transfer work presented by Fitzgerald et al. (2017) uses a previously
developed Tiered Task Abstraction (TTA) (Fitzgerald, Goel, & Thomaz, 2015) framework
for abstracting actions using low-level object and motion information, and re-grounding
them in novel CPS tasks using both trajectory information and high level object and task
descriptors. In Xu et al. (2018), actions are called at a symbolic level, where underlying
representations exist as low-level object position trajectories relative to the robots gripper
frame. In Toussaint et al. (2018), authors propose “Task and Motion Planning” (TAMP)
that combines symbolic and non-symbolic representations in classical search problems with
optimization as a way to accomplish a task. Specifically, they ground a set of symbolic
predicates describing dynamic and kinematic contact as physics-based constraint rules, using
non-symbolic processing methods. They define a set of modes in terms of these constraints,
and perform optimization using a decision tree. Lastly, these constraints are mapped to the
action level using a pre-defined knowledge based on symbolic actions, which have constraints
encoded in their end effects. In similar work, Silver et al. (2021) start with using low-
level state representations, which are converted into symbolic transitions used for operator
learning. This conversion happens through a deterministic parse function, which outputs
lossy grounded predicate values (predicates with set arguments). In Gizzi et al. (2019),
non-symbolic methods are used when symbolic planning fails to execute or plan for a creative
task, respectively. The CPS agent, upon incurring a plan execution failure, attempts to
discover new actions (represented both symbolically and non-symbolically, Figure 9) through
segmenting formerly known actions. In similar follow-up work, Gizzi et al. (2021) utilize
a framework for action discovery that applies low-level parameter variations to discover
new actions. Low-level parameter variations change symbolic level predicates by either, a)
generating a novel effect, or b) generating a set of effects equivalent to the original action,
which are then added back into the knowledge base. The representations used here exist
in both high-level symbolic form, and a low-level action controller form. Similarly, in Oddi
et al. (2020), a set of 10 continuous low-level state representations are abstracted into
predicate form descriptors, to populate the preconditions and effects of newly discovered
PDDL operators. This form of skill abstraction is shown to enable problem solving in novel
scenarios. Prior work by Nair et al. (2020) combine symbolic planning with non-symbolic
representations learned through supervised learning techniques, to enable a robot to construct
novel tools. They use feed-forward neural networks to predict “scores” for object-related
symbols in the planner, that indicate visual and material fitness of objects for constructing
tools. Here, the tool and object shapes are non-symbolically represented, whereas the actions
and states are symbolically represented in the planner through PDDL.

The benefit of implementing hybrid approaches is that they limit the amount of expert
knowledge that needs to be provided by the user, while also minimizing the data required to
learn non-symbolic representations.

878



Creative Problem Solving in Intelligent Agents: A Framework and Survey

Figure 10: Three methods of knowledge manipulation based on Boden’s levels (Boden, 1998):
a) Exploratory involving exploration in the universal conceptual space C̆X ; b) Combinational
where initial concepts are combined to discover new concepts; and c) Transformational where
initial concepts are transformed into new concepts.

4.3 Knowledge Manipulation

How is the initial conceptual space manipulated to create a new conceptual space that enables
creative problem solving? In this section, we elaborate on Boden’s three levels of creativity
(described in Section 3). Specifically, the agent can discover new concepts by: a) exploring the
universal conceptual space (Exploratory), b) combining concepts within the initial conceptual
space (Combinational), or c) transforming the initial conceptual space (Transformational)
(Boden, 1998). We formalize these approaches (also visualized in Figure 10) in terms of the
initial conceptual space CX , and the new conceptual space C ′X , and also categorize existing
CPS literature accordingly.

4.3.1 Exploratory Methods

In exploratory methods of knowledge manipulation (Figure 10a), the agent searches the
universal conceptual space C̆X , in order to discover a new conceptual space C ′X ⊂ C̆X and
C ′X * CX , that enables the agent to solve the task. Since unguided exploration can be
prohibitive, the search is informed by loss/reward functions or heuristics that “guide” the
agent to explore specific regions of the universal conceptual space. However, this raises
an important question, “Is all of search or reinforcement learning an example of creative
problem solving? ”. In Section 3.1, we noted the criteria of novelty applied to evaluate the
generated output. Re-iterating our “Tupperware” example; if the search or exploration yields
the solution: “Use Tupperware as food container”, it is not considered novel, and hence not
an example of CPS. Whereas, if it yields the solution: “Use Tupperware as a soap-dish”, it
is considered as an example of CPS. In this survey, we apply this criteria subjectively to
identify the subset of the search-RL literature that qualifies as examples of CPS, and we
focus our discussion on these papers, highlighting examples of how they satisfy the criteria.

We begin by formalizing exploratory CPS. In the formalization below, the agent uses
a loss function, although it can be extended to heuristics and reward functions as well. A
newly discovered concept c′x ∈ C ′X can be represented as follows:

{c′x = argminc̆xL(c̆x) s.t. c̆x ∈ C̆X},

879



Gizzi, Nair, Sinapov & Chernova

Here, L denotes an appropriate loss function, and C ′X contains novel concepts from the
universal conceptual space such that C ′X * CX (Figure 10a). From our grid-world example,
the agent may discover how to turn off the lights by pushing boxes around the room guided
by an appropriate reward function, in order to eventually discover that it can accomplish the
goal by pushing the box on top of the off button. Here, the agent discovers that in addition
to moving objects to empty locations, they can be moved on top of some other objects.

Loss/Reward Functions
Within existing CPS literature, prior work has focused on using cost and reward functions
that guide the agent towards creative behavior. Xie et al. (2019) use a cost function that is
the expected Euclidean distance between current and goal positions of a target object, in
order to guide a robot to use tools in an improvised manner to move the target object from
the initial to the goal position. The per-time step costs are summed together and used to
select an appropriate tool-use trajectory with the lowest cost. Their work yields novel, i.e.,
non-prototypical uses of objects previously unknown to the robot, such as using a knife to
pull objects closer. Within multi-agent systems, Baker et al. (2019) use reward functions for
policy learning, wherein the reward functions seek to maximize the total expected discounted
return for each agent within the multi-agent population. Their work demonstrates emergent
creative tool use, such as using boxes to build a fort to win at hide-and-seek. Prior work by
Bapst et al. (2019) use reward functions that enable the a set of agents to construct novel
physical structures that achieve different tasks such as connecting multiple structures or
covering existing structures.

In the context of discovering creative agent designs, Pathak et al. (2019) use reward
functions that guide multi-agent systems to assemble into a single agent, leading to the
discovery novel agent morphologies. Each self-assembling agent can be considered as a
primitive limb with linking actions to join other limbs, and the reward function seeks to
maximize the reward for each limb within the joint morphology. The reward itself measures
the capability of the joint morphology to perform locomotion tasks. Similar prior work
use reward functions within the REINFORCE algorithm (Ha, 2019) or Proximal Policy
Optimization (PPO) (Schaff et al., 2019) to enable an agent to optimize for novel agent
designs to traverse its environment in new ways.

Heuristic Search
Apart from using reward and loss functions, the agent’s search may also be guided by
heuristics. Heuristic search is commonly observed in the planning literature, wherein the
agent uses informed search over a planning space, guided by heuristics, to output a task plan.
Prior work by Erdogan and Stilman (2013), use a pre-defined action ordering (an uninformed
heuristic) to decide which child nodes to inspect first during the search. Their work enables
a robotic agent to construct novel structures for navigation by effectively searching through
the configuration space of the objects. In similar work, Choi et al. (2018) enable robots to
construct makeshift structures (e.g., ramps and bridges) using a unified forward-chaining
planner that applies a numeric heuristic to guide a best-first search process. Their heuristic
favors states that satisfy more elements in the goal formulae. Levihn and Christensen (2014),
introduce an approach that samples a set of contact points between objects, and sorts the
contact points using a custom scoring function (heuristic). Their work enables robots to
use unconventional objects such as planks of wood, or loaded carts to open jammed doors.

880



Creative Problem Solving in Intelligent Agents: A Framework and Survey

In Chitnis et al. (2021), the agent builds a world transition model through state-based
goal exploration, where selected goals are optimized on a novelty measure. In the space of
tool creation, prior work by Wickasono and Sammut (2017, 2020) use heuristics to guide
autonomous tool creation by a robot, where the heuristic prioritizes new tools that are
similar to an existing one, where the similarity between tool representations is computed as
the number of edit operations needed to transform one representation into the other. Nair
et al. (2020) use supervised learning techniques to compute object fitness scores that are
then incorporated into existing planning heuristics within A∗ planning to enable a robot to
perform tool construction.

In the context of other high-level tasks, prior work that uses heuristics have focused
on high-level task planning (Boteanu et al., 2015), sequential manipulation (Toussaint
et al., 2018; Allen et al., 2019), action discovery (Suárez-Hernández et al., 2020), and agent
design optimization (Zhao et al., 2020). Prior work by Boteanu et al. (2015) use fitness
functions to evaluate candidate objects that can serve as substitutes for a missing object
within a hierarchical planning framework (HTN). Their approach to identifying substitute
objects proceeds in three steps: generating candidates for the target, extracting contextual
information from the HTN, and evaluating the fitness of each candidate within the context.
Prior work by Toussaint et al. (2018) use the Multi-Bound Tree Search (MBTS) approach
to enable a robot to perform creative sequential manipulation tasks using tools. MBTS
acts as a best-first search approach, and is applied to a hybrid symbolic and non-symbolic
Logic Geometric Program (LGP) to solve for the tool manipulation trajectory. Allen et al.
(2019) use heuristics derived from physics simulators to evaluate agent actions based on their
simulated outcomes. The heuristics guide the agent to discover creative policies for solving
tool-based puzzles. Suarez-Hernandes et al. (2020) introduce cost functions to guide the
search for the discovery of new PDDL actions. Their cost function encodes the number of
editions required for the new action, such as the number of additions and deletions in effects,
as well as changes in the number of preconditions for the actions. Similarly, Gizzi et al. (2021)
apply behavior babbling to discover new actions, by varying action controller parameters
by partitioning their values evenly along a range of permissible values. For example, given
a min and max value of a parameters, of 0 and 100 respectively, a user selected partition
value of 5 would cause babbling experimentation for 1, 25, 50, 75 and 100. Oddi et al. (2020)
leverage a “competence”-based intrinsic heuristic for skill learning, where goals are generated
to facilitate exploration. Prior work by Zhao et al. (2020) use Graph Heuristic Search over
a conceptual space of graphs representing robot configurations. The heuristic function is
learned as the search progresses, using ground-truth data from MPC-based (Model Predictive
Control) evaluations of the robot’s performance.

4.3.2 Combinational Methods

In combinational methods of knowledge manipulation (Figure 10b), the agent discovers a
new concept c′x ∈ C ′X by combining existing distinct concepts in CX . Hence, the newly
discovered concept c′x can be thought of as a function of distinct concepts cix in the initial
conceptual space CX . A key point to note is that, once the new concept c′x is discovered
through combinational manipulation, search or exploration may be used to evaluate or search
through the newly discovered conceptual space in order to identify an appropriate solution

881



Gizzi, Nair, Sinapov & Chernova

for completing the task (analogous to the “Aha” or insight moment described in Section 3.2).
However, the discovery of new concepts itself does not happen through exploration, as is the
case with exploratory methods of Section 4.3.1.

Combinational methods operate as a function over a set of concepts cx ∈ CX . Formally,
we define a function f that combines k distinct concepts in CX to discover new concepts2,
where a single concept c′x ∈ C ′X is represented as follows:

f : CX → C ′X | c′x = f(c1
x, ...c

k
x); c1

x, ...c
k
x ∈ CX , C ′X * CX

Within our grid-world example, combinational methods involve the agent reasoning about
combinations of objects, e.g., combination of the box and switch in order to discover that the
box can keep the switch pressed. Here, the box-switch combination is a “composite” object
that is newly discovered, enabling the agent to solve the task. The states of the box-switch
composite can be thought of as a combination of the initial concepts regarding the states of
the switch and states of the box, wherein the switch “is_pressed”, if the box is “on(switch)”.

Pair-Wise Concept Combination
Within CPS, some existing works have focused on the use of pair-wise combinations, wherein
two concepts are combined to discover new concepts. Nair et al. (2019, 2019) introduce
the “Robogyver” framework for the construction of tools by combining pairs of available
objects. They reason about visual properties of objects to output novel tool constructions
that combine the properties of the individual objects, e.g., coin + pliers = screwdriver. Here,
the visual “flatness” of the coin serves as as the head of the screwdriver, while the “handle”
of the pliers serves as its handle. The novel objects (concepts) are a combination of the
visual properties of objects in the initial conceptual space. In closely related work, Yang
et al. (2020) reason about object shapes using Gated Graph Neural Networks, that model
relationships between pairs of objects for tool construction. The network takes depth maps
of the available objects, and a reference tool that needs to be constructed. It outputs the pair
of objects that can be combined to best match the provided reference tool. The resultant
objects are a combination of the depth maps of the objects in the initial conceptual space. In
contrast to reasoning about objects, prior work by Colin et al. (2019), show how RL can be
used to combine and generalize behavior in agents. In their simulated experiment, they show
that after a period of shaping (wherein the agent is exposed to a-priori reinforcement-based
training), the agent is able to combine two actions (a1 = jumping on a box to peck a banana
for a food reward, a2 = pushing a box to a green dot) and generalize their combination to a
CPS task (a′ = pushing box to location under the banana in order to reach it and peck it for
a reward).

Multi-Concept Combination
In contrast to combining two concepts, existing works have also looked at combining more
than two concepts. Prior work by Olteţeanu and Falomir (2016) focus on composing available
objects to create new objects for accomplishing a task (object composition), not limited
to pair-wise combinations alone. They introduce the Object Replacement and Object
Composition (OROC) framework that combines semantic tags or features associated with
objects. Thus the novel concepts are a combination of the semantic features in the initial

2. In cases where more than one distinct concept is not combined, i.e., only a single input is provided to f ,
we define the function to be an identity function, f(cix) = cix

882



Creative Problem Solving in Intelligent Agents: A Framework and Survey

conceptual space. Closely related is the work of Lieto et al. (2019), where object substitution
is found through combining existing object “concepts”, through conceptual blending methods
(Fauconnier & Turner, 2008). Solution objects are selected from a set of candidate objects
which are evaluated based on their rank of object similarity to the object being substituted.
Prior work by Hangl et al. (2017) focus on learning new skills or behaviors as a composition
of previously known behaviors. They introduce an approach that enables a robot to discover
new behaviors through behavior composition. Given a set of behaviors B, new behaviors can
be defined as a composition of behaviors bi ∈ B, as bl ◦ ... ◦ b2 ◦ b1 ◦ bσ. The goal of their
approach is to extend the domain, where the domain is the set of states in which a skill can
be applied successfully. The composite behaviors extend domain applicability if they can be
applied successfully, i.e., success(bl ◦ ... ◦ b2 ◦ b1 ◦ bσ(e)) = true.

4.3.3 Transformational Methods

In transformational methods, the agent transforms the initial conceptual space CX into a
new conceptual space C ′X * CX via some function or “transform”. The agent then derives
the creative solutions from the newly transformed conceptual space C ′X . Here, exploratory
methods may be used to evaluate or search through the newly discovered conceptual space
c′x ∈ C ′X . However, the discovery of new concepts itself does not occur through exploration.

We formalize transformational manipulation using a transformation function or transform
f . A concept c′x ∈ C ′X can then be represented as follows:

f : CX → C ′X | c′x = f(cx) ∀ cx ∈ CX , C ′X * CX

Thus, f denotes a surjective function that maps every concept cx ∈ CX to a new concept
c′x ∈ C ′X . Transformational creativity thus involves a mapping from the initial conceptual
space to a new conceptual space, via an appropriate transform. In our grid-world example,
the agent may transform the initial conceptual space of actions into a new conceptual space
that captures the forces applied by the actions. Within this new conceptual space, the agent
may discover that pushing a box onto the switch applies a downward force, thus keeping the
switch pressed. However, it is a challenging problem to identify the appropriate function for
transforming the initial conceptual space into one where the solution for the task becomes
evident. This closely relates to to prior work by Olteţeanu et al. (2015) (presented in Section
2), discussing re-representation within CPS, i.e., thinking about the different representations
of concepts wherein particular representations yield the solution to the task. A key point to
note that there is a strong correlation between transformational methods and parametric
mathematical representations as discussed in Section 4.2.2. Examples of transformations in
CPS mostly include geometric and graphical transformations, with some other paradigms.

Geometric Transformations
Geometric transformations manipulate geometric aspects of the concepts in the initial
conceptual space, e.g., applying rotations and translations. Thus, the concepts are re-
represented in terms of their geometrically transformed versions. Prior work by Fitzgerald et
al. (2017, 2019) use 3D rotations and translations in order to re-represent skill trajectories
in a new conceptual space where the skills can be re-applied to novel tools. Within the
new conceptual space, the robot would be able to adapt previously known skills to new
tools that it has not seen before. In similar work, Abelha et al. (2016), and Gajewski et al.

883



Gizzi, Nair, Sinapov & Chernova

(2019) introduce techniques for improvised tool use by mapping the initial conceptual space
of tool point clouds to a new conceptual space consisting of their geometric representation
using superquadrics. Within the new representation, similarities between tools are utilized
to identify how to adapt tool-use trajectories from one tool to another. Sinapov et al. (2007)
learn novel tool affordances by transforming the sensory input of the robot (i.e., a 2D image),
into five perceptual functions computed over the perceived sensory input. Each of the
perceptual functions represent a geometric transform, such as computing image center or
gripper location.

Graph Transformations
Graph transformations re-represent the initial concepts as a set of features within a graph.
Each initial concept is mapped to a feature node in a new graph space. The initial conceptual
space may or may not be a graph, but the transformed conceptual space is always a graph.
Prior work by Zhu et al. (2015) transform tools into three new graphs: spatial, temporal, and
causal parse graphs. Together, they highlight 13 concepts associated with each tool and its
use, e.g., material, density etc. Within this new conceptual space, a robot is able to identify
appropriate substitute tools for a task. Closely related, prior work by Schoeler et al. (2015)
transform tool point clouds into a set of part “signatures” indicating their shape and pose,
mapped into a graphical representation of the tool. This graph serves as the new conceptual
space for identifying tool substitutes. Prior work by Freedman et al. (2020) represent the
initial conceptual space as a graph that captures various properties of objects such as height,
weight, rigidity etc. The initial graph is then transformed to a new graphical representation
by computing a maximal common edge subgraph (MCES) over the initial conceptual space.
Within the new graph, the robot performs analogical reasoning to identify appropriate object
substitutes for replacing missing objects in novel contexts.

Other Transformations
Several approaches in CPS have also introduced other transformation functions. Kralik et
al. (2016) use complexity reduction to restructure an internal belief representation during
the incubation stage of CPS, providing a basis for spontaneous generalization to novelty in
problem solving. In navigation, Saboia et al. (2019) introduce an approach for enabling robots
to construct ramps for navigation by transforming the initial conceptual space representing
the environment via a custom “height function”, defined as a mapping from a construction
area Q to R+, as h : Q→ R+. In similar work, Tosun et al. (2018) map the initial conceptual
space representing the environment to a set of “templates” that characterize ledges within the
environment. The templates are then used by a set of modular robots for the construction of
ramps. Similar transformations have also been applied to the action space. Multiple works
have shown transformation of actions through abstracting low-level trajectories into higher
level behavior models, used for generalization to novel tasks (Kroemer et al., 2015). Xu et
al. (2018) transform low-level trajectory-based tasks into high level actions by decomposing
the tasks to exploit modular substructure. Similarly, prior work by Gizzi et al. (2019)
transform the actions (defined at a symbolic level) into a representation of their low-level
trajectories, in order to discover new actions via segmentation of the low-level representation.
Thus, transforms are applied to the initial conceptual space consisting of high-level symbolic
actions, to create a new conceptual space containing their low-level trajectory representation.
Prior work has also focused on transforming actions at a strictly symbolic level in order

884



Creative Problem Solving in Intelligent Agents: A Framework and Survey

Figure 11: Evaluation modes in CPS: Existing physics-based simulators such as OpenAI
(Schaff et al., 2019) (left), and physical evaluation on real robots, including custom platforms
(Saboia da Silva et al., 2019) (right).

to discover new actions without any change to the underlying low-level mechanics of the
actions (Sarathy et al., 2020; Silver et al., 2021). Murooka et al. (2019) re-represent motion
trajectories using inverse kinematic models that account for the physics of screw tightening,
such as force, momentum and friction. Within the new conceptual space, the robot was
able to repair itself, as well as augment its capabilities by attaching hooks to its body for
carrying bags. Lastly, Qin et al. (2020) re-represent tools using “Keypoints” that identify
specific points of interest on a given tool point cloud. The tool keypoints include, grasp
point, function point, and effect point. The keypoint representation of the tool is then used
to derive novel and unconventional tool manipulation trajectories.

With the three modes of knowledge manipulation discussed here, we highlight an important
connection between CC and AI, in the context of CPS. Note that existing work in CPS falls
into one of the three modes of knowledge manipulation described above, although in the
future, CPS frameworks could combine multiple modes of knowledge manipulation.

4.4 Evaluation

How is the novel conceptual space evaluated? This section discusses the different modes of
evaluation adopted by existing CPS approaches. The mode of evaluation helps distinguish
theoretical models from models that have been tested in real-world settings. The classes of
evaluation here include, a) using a simulated environment (Simulation), b) using a real robot
(Real robot), and c) developing a standard benchmark test to evaluate the approach.

4.4.1 Simulation-Based Evaluation

In this mode of evaluation, the conceptual space is evaluated in a simulated environment.
This mode of evaluation is beneficial because it does not require physical access to agents,
and can often generate a large number of trials in a small amount of time. Additionally,
simulation-based evaluation allows for greater customization capability. Evaluation in
simulation happens either as a holistic, end-to-end proof-of-concept evaluation, or as a way
to assess a particular feature of a CPS framework.

Physics-Based Simulators
In proof-of-concept cases, it is typical to use a 2D or 3D physics-based environments, so the

885



Gizzi, Nair, Sinapov & Chernova

end-to-end behavior of the agent can be visually and algorithmically validated. Common
examples of such environments include “Gazebo” (Gizzi et al., 2019; Levihn & Christensen,
2015; Toussaint et al., 2018; Gizzi et al., 2021; Oddi et al., 2020), “Unity” (Bapst et al., 2019;
Pathak et al., 2019), “OpenAIGym” (Wang, Lehman, Clune, & Stanley, 2019; Ha, 2019;
Schaff et al., 2019), “Mujoco” (Baker et al., 2019), “DeepMind Lab” (Leibo, Hughes, Lanctot,
& Graepel, 2019), “PyBullet” (Qin et al., 2020; Chitnis et al., 2021; Silver et al., 2021), and
“Bullet Physics Library” (Zhao et al., 2020). While all of these environments provide similar
support, each cater well to different CPS cases. Gazebo is known for its realistic 3D graphics
whereas Unity is known for its speed, especially for data-heavy CPS applications that use
RL. OpenAIGym is a platform that is typically known for its broad range of RL problem
domains, provided off-the-shelf. These domains range from text-based problems, to simple
2D problems, to 3D robotics problems (however these more complex domains are somewhat
limited compared to Gazebo and Unity). The open-sourced DeepMind Lab platform provides
support for game-based environments as a method for CPS evaluation. Both OpenAIGym
and DeepMind Lab provide game-based evaluation environments. Other examples of less
common simulation environments include “DART” (Levihn & Stilman, 2014), “CREATE”
(Jain et al., 2020), and “BREVE” (Sinapov & Stoytchev, 2007).

Custom Simulators
In the case of validating specific aspects of a CPS approach, it may be more favorable to
use a specialized or customized simulation environment for evaluation. In simple cases,
validation may happen using basic RGB imaging in a 2-D world (Colin & Belpaeme, 2019;
Sarathy et al., 2020). In more complex cases, computer vision algorithms built into the
simluators are used to identify entities in a physical environment, which are then intelligently
processed by a CPS method (Zhu et al., 2015; Abelha et al., 2016; Schoeler & Wörgötter,
2015). Here, CPS algorithms reason about the world without actually interacting with the
physical environment. In a more elaborate case, Wang et al. (2019) focus on automatic or
AI-generated testing environments, using the resultant performance to automatically improve
the system with a feedback loop. Additional approaches in CPS have also evaluated their
methods in simulation, not using a specific simulator, but rather evaluating their approach
in terms of simulated metrics (Suárez-Hernández et al., 2020; Freedman et al., 2020).

While simulation-based evaluation is less precise than real-world dynamic environments,
many approaches in CPS have been evaluated in this manner, owing to the ease of generating
and testing in a variety of environments.

4.4.2 Real World Evaluation

In this mode of evaluation, the approaches are evaluated on a real, physical robot. This mode
of evaluation can be advantageous in that they can evaluate performance of the approaches
against real-world dynamics and noise models.

Robots
Several existing works in CPS have focused on evaluating the models on various physical
platforms such as Sawyer (Xie et al., 2019; Xu et al., 2018), Baxter (Wicaksono & Sheh,
2017; Wicaksono & Sammut, 2020; Yang et al., 2020), Kinova (Fitzgerald et al., 2017, 2019;
Nair et al., 2019, 2019; Nair & Chernova, 2020), PR2 (Gajewski et al., 2019; Murooka et al.,
2019), KUKA (Hangl et al., 2017), Darias (Kroemer et al., 2015), and custom platforms

886



Creative Problem Solving in Intelligent Agents: A Framework and Survey

that are specifically built for the tasks that the robot is required to perform (Saboia da Silva
et al., 2019; Boteanu et al., 2015; Tosun et al., 2018; Hangl et al., 2017). The Sawyer and
Kinova platforms each have a single 7-DOF robot arm with a stationary base. Hence, they
are not well suited for mobile manipulation applications. The PR2 and ATLAS platforms
each consist of two 7-DOF robot arms for bi-manual manipulation, while also supporting
navigation. Both the Kinova and Sawyer platforms are quite commonly used for approaches
that involve learning from demonstration (LfD) since the robot arms are easily manipulated
by humans, particularly when mobility is not a requirement. The custom platforms used in
(Saboia da Silva et al., 2019; Boteanu et al., 2015) consist of robot arms that are attached to a
mobile platform in order to enable mobile manipulation, in addition to specific design aspects
that make the platform well suited for the task at hand, such as navigation. For example,
the custom platform used in (Saboia da Silva et al., 2019) is built to handle highly uneven
terrains. The custom platform used in (Hangl et al., 2017) consists of two KUKA robot arms
that are attached to Schunk SDH grippers in order to perform bi-manual manipulation of
objects. The custom platforms developed in (Tosun et al., 2018) consist of populations of
small modular robots that can attach to one another, with navigation capabilities.

Sensors
In terms of sensing capabilities of the platforms, the vast majority of evaluations predomi-
nantly test the approaches in unimodal settings (i.e., using a single sensor). These approaches
often use only RGB-D sensors that capture partial and noisy point clouds. A small sub-
set of CPS papers evaluate the approaches in multi-modal settings as well, such as using
spectrometers in addition to visual inputs (Nair et al., 2019, 2019). Multi-modal sensing
capabilities can be especially useful for CPS, since the robot may have to reason about
multiple modalities of the objects, including weight, materials, forces etc., rather than solely
relying on visual properties, in order to derive creative solutions.

Despite the benefits of evaluating CPS approaches in real-world settings, evaluation on
physical robots tend to be slower than simulators, due to hardware related shortcomings.

4.4.3 Benchmark

In this section, we discuss papers that introduce benchmarks for evaluating CPS algorithms.
Benchmarks allow a standardized comparison of different methods. Designing systems to
evaluate creativity often depends on the subjective definitions of creativity proposed by
the designer, and more general benchmarks of CPS are yet to be developed. A universal
benchmark of CPS would allow a uniform and fair comparison of different approaches. We
discuss this limitation in greater detail in Section 7. Note that a subset of the papers in this
section only introduce benchmarks, but not a specific CPS approach itself. However, we
include these papers here for completeness, discussing them in this section only.

Existing benchmarks in CPS typically evaluate specific types of creative tasks, rather than
a test of general creative intelligence, e.g., benchmarks that focus specifically on creative tool
use (Allen et al., 2019). In many cases, the CPS system is evaluated using an output-based
approach which compares the output to that of a human participant. In the case of the
“Alternative Uses Test,” a CPS system is evaluated in its ability to generate alternative
uses of an object by bench-marking its output against the set of corresponding alternative
uses generated by a human participant (Guilford, 1967b). This benchmark has been used

887



Gizzi, Nair, Sinapov & Chernova

specifically in evaluating CPS systems which employ combinational creativity (Olteţeanu &
Falomir, 2016; Lieto et al., 2019). In some cases, the percentage of CPS problems successfully
solved in a given set is used in bench-marking, either in comparison to human performance, or
in a standalone manner. Bisk et al. (2019), propose a benchmark to evaluate common-sense
physical reasoning capabilities for CPS by comparing the percentage of accurate reasoning
cases to human performance. Kralik et al. (2016), compare the performance of their
Hierarchical RL system to empirical data generated from trials of CPS in Rhesus monkeys.
Guzdial et al. (2018), propose a cross domain metric for evaluating the ability of a CPS
system to obtain a goal state, where given a specific domain, an “Uncreative Max” (UM)
baseline is developed to represent a solution most similar to the desired goal state, given CPS
was not employed. Creativity is then measured as any positive score differential between a
creative agent and its corresponding UM score. The challenge with this method is in the
domain specific crafting of the UM baseline, which is shown to have variance across different
domains. This metric is also limited in that it is specific to combinational creativity.

Benchmarks that extend existing simulation software have also been proposed. The
“POET” (Paired Open-Ended Trailblazer) benchmark (Wang et al., 2019), modifies the
“Bipedal walker hardcore” in OpenAI Gym to create challenging traversal environments
for a bipedal walker, requiring the generation of creative traversal policies. Similarly,
“NovelGridWorlds” (Goel, Tatiya, Scheutz, & Sinapov, 2021) present an OpenAI Gym
environment framework for evaluating agents that can adapt to sudden novelties in their
environments. NovelGridWorlds includes crafting tasks for a bow and pogostick, that requires
collection of different resources and presents the AI agents with different classes of novelties,
such as object, attributes and action novelties.

Current CPS benchmarks exists solely in simulation, limiting the practical applicability
of the methods. Designing benchmarks that evaluate different domains of creative problem-
solving, and can be tested on real-robots, remains an open problem (see Section 7).

5. Types of Conceptual Spaces

In the previous sections, we discussed the overall CPS framework and presented three
approaches for discovering a new conceptual space. However, what specific information does
the conceptual space contain? As described previously, the conceptual space can be associated
with states or actions. While all problem formulations consist of states and actions, either
the action space or the state space is manipulated to discover new actions or states. In
this section, we categorize existing CPS literature on the basis of the information that is
manipulated (also shown in Figure 12).

5.1 States

Based on our review, we categorize the existing literature in CPS based on the types of
states that are manipulated. These include, a) states of objects in the environment (object
modification); b) states of the environment terrain, e.g., holes or ledges in the environment
(terrain modification); and c) states of the agent itself (agent modification). In these cases,
creativity arises from modifying concepts related to objects, concepts related to the terrain
(i.e., modification of the terrain), and concepts related to the agent’s design or morphology.

888



Creative Problem Solving in Intelligent Agents: A Framework and Survey

Figure 12: The conceptual spaces of the agent that are manipulated for CPS can relate to
states or actions. The state space can involve concepts regarding the environment (terrain
modification and object modification), or concepts regarding the agent (agent modification).
Similarly, manipulating the action space can involve babbling in the existing action space, or
modifying existing actions.

5.1.1 Object Modification

The CPS literature presented in this subsection involves modeling and reasoning about the
objects themselves, such as their visual and material properties. Hence, the conceptual space
manipulated in these approaches is the states of objects in the environment. Commonly,
these problems are referred to as “Macgyvering”, defined as “solving problems creatively using
whatever objects are available at hand” (Dictionary, 1989). Macgyvering as a sub-class of
CPS has been researched in both AI (Olteţeanu & Falomir, 2016; Sarathy & Scheutz, 2018)
and Robotics (Erdogan & Stilman, 2016; Nair et al., 2019, 2019). Existing CPS research
in object modification can include a) object substitution that involves adapting objects for
non-prototypical uses, e.g., using a pan as a hammer, or b) object construction that involves
creating new objects, e.g., constructing a hammer from a rock and stick.

Object Substitution
Existing research in object substitution often involves comparing the physical attributes of
the available objects to those of the missing object in order to identify potential substitutes.
Prior work has focused on modeling objects in terms of geometric shapes (Abelha et al., 2016;
Gajewski et al., 2019) or shape histograms (Schoeler & Wörgötter, 2015), and reasoning about
the objects by computing their similarities to the missing object that is being substituted.
The similarity is computed based on the difference between the geometric parameters or a
score computed from the shape histograms. In contrast to using geometric similarities alone,
Shrivatsav et al. (2019) compare both material and shape properties of objects to identify
good substitutes. Prior work has also focused on modeling and reasoning about objects via
semantic networks representing object properties such as affordances and visual properties

889



Gizzi, Nair, Sinapov & Chernova

Figure 13: Examples of object modification in CPS: Substitution where robot uses non-
prototypical objects to chop wood (Zhu et al., 2015) (left), and construction where robot
constructs tools by combining individual objects, such as a screwdriver and foam block, to
make a squeegee (Nair et al., 2019) (right). In both cases, the agents reason about object
properties, e.g., shape and materials.

(Boteanu et al., 2015; Olteţeanu & Falomir, 2016; Lieto et al., 2019; Freedman et al., 2020).
Zhu et al. (2015) present a “hybrid” approach that reasons about visual properties of objects
as well as their physical attributes like mass and density to identify substitute tools, and to
suggest appropriate tool-use trajectories for the substitutes. In similar work, Levihn et al.
(2015, 2014) reason about weight and mass in order to identify objects that can supply the
required amount of force, or support the desired amount of weight in order to accomplish
navigational tasks.

Object Construction
In contrast to object substitution, object construction involves combining available objects
to construct new objects with desired capabilities. These approaches often involve reasoning
about individual objects that can be joined to create a new object that has a combination
of their individual properties. There is currently very limited research in the area of object
construction. The OROC framework (Olteţeanu & Falomir, 2016) proposed by Olteţeanu
and Falomir reason about “object composition” using semantic knowledge. In this case, the
semantic concepts encapsulate affordances of objects, enabling the agent to reason about
individual capabilities of objects, e.g., matchbox as a container, and tacks as an attachment
method. These can be combined to create a composite object with a new capability, e.g.,
combining the matchbox and tacks to create a container that can be attached to the wall. In
contrast to reasoning about semantic attributes, prior work has also focused on combining
objects through visual reasoning alone (Yang et al., 2020) or visual and material reasoning
(Nair et al., 2019, 2019; Nair & Chernova, 2020). These approaches decompose a reference
tool into sub-parts, reasoning about objects that are similar to each sub-part and can be
combined to create the reference tool. Similar work by Erdogan and Stilman (2016) focus
on the autonomous construction of simple machines, further incorporating reasoning about
physical concepts such as mass and weight. Wicaksono and Sammut (2017, 2020) focus on
creating novel tools from polymers through 3D printing by encoding visual attributes of the
tool such as length of the handle or angle of the hook (at the end of the tool). In all of the
cases described above, the manipulated conceptual space specifically encodes properties of
the objects.

890



Creative Problem Solving in Intelligent Agents: A Framework and Survey

Figure 14: Examples of terrain modification in CPS: Example of ADFS where the agent
constructs a stable structure to traverse a gap in the terrain (Erdogan & Stilman, 2013)
(left), and terrain modification in hide-and-seek where the blue agents build a fort to hide
from red agents (Baker et al., 2019) (right). In contrast to object modification, both these
cases involve reasoning about environment properties, such as gaps and walls, as opposed to
reasoning about the objects themselves.

5.1.2 Terrain Modification

The CPS literature discussed in this section involves modeling and reasoning about the terrain,
e.g., modeling and reasoning about gaps or elevations in the terrain that the agent is unable
to cross. Hence, the manipulated conceptual space involved in these approaches is the state
of the terrain. Terrain modification often involves modifying unstructured environments
to facilitate navigation. Note that terrain modification can involve using objects in the
environment to modify the terrain. However, the key distinction between terrain and object
modification is that the newly discovered concepts relate to the state of the terrain rather
than some object in the environment. Further, terrain modification includes approaches that
explicitly reason about terrain attributes such as elevation.

Navigational Tasks
In the context of terrain modification for navigational tasks, “Automated Design of Functional
Structures” (ADFS) (Erdogan & Stilman, 2013) deals with construction of structures such as
bridges to improve terrain navigability. Prior work in ADFS has focused on visual reasoning
about the height of elevation points on the terrain (Erdogan & Stilman, 2013; Tosun et al.,
2018) and symbolic reasoning of terrain properties such as the widths of a gap (Choi et al.,
2018) for traversing the environment in novel ways. More recently, Saboia et al. (2019) focus
on the construction of makeshift ramps using compliant bags, by modeling and reasoning
about the reachability or navigability between any two given points on the terrain, in addition
to other factors such as terrain elevation.

Non-Navigational Tasks
Beyond ADFS, terrain modification has also been applied to other domains such as games
(Baker et al., 2019), and construction of structures for purposes that are non-navigational
(Bapst et al., 2019; Colin & Belpaeme, 2019). Prior work by Baker et al. (2019) demonstrated
terrain modification using available objects within a multi-agent system, where the agents
attempt to succeed in a game of hide-and-seek. These agents reason about the environment,
e.g., walls, to devise strategies such as fort building to create unreachable locations in the
terrain (as hiders), or to traverse unreachable locations to find other agents (as seekers).

891



Gizzi, Nair, Sinapov & Chernova

Figure 15: Examples of agent modification in CPS: Self-augmentation where a single agent
augments its own capabilities, e.g., through self-repair and self-extension (Murooka et al.,
2019) (left), and recombinant augmentation where individual agents (“limbs”) combine to
form a composite agent, in which case both policy and agent design are optimized (Pathak
et al., 2019) (right).

Prior work by Bapst et al. (2019) construct physical structures that reason about, and
modify the terrain, for achieving different goals such as connecting separate structures or
covering existing structures. In the CPS task of Colin et al. (2019), the agent learns to move
a box to a certain location in order to obtain a previously unreachable reward. Lastly, in
Kralik et al. (2016), the agent restructures its representational belief about its environment
as a means for CPS. Note that in the mentioned non-navigational cases, agents implicitly
reason about the terrain in the context of reward functions, in contrast to the approaches in
ADFS that explicitly model the terrain attributes.

5.1.3 Agent Modification

The CPS literature presented in this subsection involves approaches wherein the agent models
and reasons about itself, e.g., modeling and reasoning about the joints of the agent’s body.
Hence, the conceptual space involved in these approaches is the state of the agents’ body.
Depending on whether the approach reasons about a single agent or multiple agents, we
divide the existing literature into two classes: Self-augmentation (for single agents), and
recombinant augmentation (for multiple agents). Note that in most cases, creativity in agent
modification arises from discovering novel agent designs.

Self-augmentation
Self-augmentation involves cases where a single agent augments or modifies its own body, in
order to accomplish the task. Murooka et al. (2019) describe a novel algorithm for self-repair
and self-extension of robots. In this work, they model the physical body of the robot using
CAD to enable the robot to reason about itself, further utilizing inverse kinematic models
of the joints of the robot. By applying these models, the robot is able to tighten screws
located on its own body, either for self-repair or to augment its capabilities by attaching
hooks to enable them to carry more bags. Prior work by Ha (2019) jointly optimize the
agent’s design and policy for navigation tasks. They model various properties of the agent’s
morphology such as mass, and the orientation of the agent’s body parts and joints. Each
of these properties are parameterized and incorporated into the policy network. In similar
work, Schaff et al. (2019) parameterize the lengths and radii of the links within the robot’s
configuration, wrapped into an optimization function that is used to guide the policy learning.

892



Creative Problem Solving in Intelligent Agents: A Framework and Survey

Figure 16: Examples of action modification in CPS: Action babbling through repeated
interactions with the tool and object (Xie et al., 2019) (left), and action modification that
adapts known tool use trajectories to new target objects, e.g., from a knife to a spatula
(Gajewski et al., 2019) (right).

In contrast to modeling agents within an RL framework, prior work by Zhao et al. (2020)
introduce “RoboGrammar”, that models robot designs as a graph. These graphs represent
various joints, body parts, and connectors, that make up the configuration space of the robot.

Recombinant Augmentation
Recombinant augmentation involves populations of agents that combine in order to augment
the capabilities of the individual agents by reasoning about their individual as well as
collective capabilities. Existing research has looked at modular agents that combine to create
a new single agent with capabilities that the modular agents do not possess individually.
Specifically, prior work by Pathak et al. (2019) have looked at self-assembling morphologies,
where individual agents combine to create a composite agent that is capable of efficiently
navigating its environment. Each primitive agent in the population can be construed as a
“limb” wherein the limbs may choose to link up to form a single agent. Note that there is
currently significantly limited work in the area of recombinant augmentation, thus making it
an open question for future research in the area.

5.2 Actions

In some cases of CPS, the agent may modify the conceptual space associated with actions, i.e.,
discovering new actions that enables the agent to accomplish its goal. Thus, in these cases the
agent models and reasons about actions. As opposed to learning from human demonstration
or instruction, we review methods for autonomous, fully and/or partially unassisted action
discovery. In autonomous action learning, it is important that the agent learns a representation
of the task on a motor/trajectory level for its execution, and on a semantic level for enabling
the agent to determine when the action should be used. Overarching methods of action
discovery include action decomposition, and action modification.

893



Gizzi, Nair, Sinapov & Chernova

5.2.1 Action Decomposition

In action decomposition, the agent evaluates known or demonstrated actions, to extract
useful and reusable substructures. These substructure element(s), in turn, are utilized as
standalone actions. CPS methods for decomposition include segmentation, and sub-tasking.

Segmentation
In the segmentation method of action decomposition, actions are broken into smaller sub-
actions through an evaluation of the action’s trajectories to identify change points. While
several segmentation techniques have been proposed in this context, specifically CPS ap-
proaches have used state-based transition autoregressive hidden markov model (STARHMM)
(Kroemer et al., 2015) and Bayesian Change-point Detection (BCP) (Gizzi et al., 2019).
In Kroemer et al. (2015), following segmentation using STARHMM, a combination of RL
and Dynamic Movement Primitives (DMPs) are used to sequence new actions and execute
them in problem solving. Gizzi et al. (2019), use BCP to segment recorded trajectories
of known actions to generate the controllers of candidate action primitives. They ground
each controller by evaluating their end effects at a logical descriptor level (using PDDL, see
section 4.2.1), and consider only those actions which symbolically change the environment to
be new action primitives. For example, the action of pushing a button is segmented into a
‘press’ and ‘release’ action, which can then be used in a generalized manner on any object in
the environment.

Sub-Tasking
In sub-tasking methods for action decomposition, a high-level task (sequence of actions)
is broken down into sub-tasks (smaller sub-sequences of actions). In contrast to action
segmentation which deals with individual actions, sub-tasking methods decompose larger
tasks into smaller sub-groups of actions (sub-tasks). Xu et al.(2018), use neural task
programming (NTP) for learning hierarchical decomposition of a task into sub-tasks, which
are then generalized to other novel tasks with different task length, topology, and semantics.
They demonstrate their method for successful completion of an object sorting, block stacking,
and table clean-up task, all of which were initially unseen tasks. In similar work, Hangl et
al. (2017) first break down larger tasks into smaller sub-behaviors, and later “compose” the
sub-behaviors to enable a robot to learn new behaviors. Given a set of behaviors B, they
define new behaviors as a composition of behaviors bi ∈ B, as bl ◦ ... ◦ b2 ◦ b1 ◦ bσ. Compound
behaviors that are successful at accomplishing the task are added to list of known behaviors
for the robot.

5.2.2 Action Modification

Action modification techniques adapt pre-existing capabilities to discover novel actions.
Modifications can happen at a high level representational level (i.e. operator learning), at a
low-level trajectory level, or both. Reviewed methods include behavior babbling adaptations
and trajectory/geometry adaptation.

Babbling-based Adaptation
A common method for autonomous action discovery is ‘babbling,’ where the agent interacts
with its environment with the goal of learning about the environment. Action discovery
happens through such interactions, in conjunction with validation of new behaviors. Behavior

894



Creative Problem Solving in Intelligent Agents: A Framework and Survey

validation can happen through the use of perceptual information, or through intrinsic
motivation. In the case of perceptual validation, Gizzi et al. (2021) demonstrate babbling
through systematic variations in continuous parameters of known actions, in order to discover
new actions to be used in CPS tasks. New actions are validated through novelty/usefulness
in predicate end effects. For example, when a “push” action results in an object falling off
of a surface, the speed parameter can be varied such that a “nudge” action is discovered.
In the case of tool use in sequential manipulation tasks, predictive models of consequences
of actions are developed through repeated interactions of using tools on objects in the
environment (Toussaint et al., 2018; Allen et al., 2019; Sinapov & Stoytchev, 2007; Xie
et al., 2019). The known actions are then adapted based on the outcomes of the interactions.
The work of Silver et al. (2021) show how action operators can be learned from data in a
task and motion planning (TAMP) domain. Their approach is to learn symbolic actions as
probabilistic transition operators, and to learn their controllers through a combination of
clustering, predicate search, and parameter estimation. Chitnis et al. (2021) use a technique
called “goal literal babbling” (GLIB) to learn object-relational transition models to enable
generalizable (lifted) planning. Intrinsically motivated goal-based exploration is driven
by a novelty measure, encouraging babbling in unvisited state space as a way to learn a
complete model for general action policies. The agent is able to use GLIB to update its
previously flawed transition model in order to handle novelty, where formerly learned actions
are used on novel objects. Qin et al. (2020) learn novel ways to use tools through repeated,
self-supervised interactions with the tools in a simulated environment. Oddi et al. (2020)
develop a framework for learning skills through intrinsically motivated reinforcement learning
(via self-generated goals), and then abstracting those newly acquired skills to high level, set
theoretic action representations. They demonstrate CPS in a grasp task, where the robot is
able to learn how to pick up a newly encountered object (vase shaped rock) which exceeds is
gripper span. The newly acquired action is encoded in PDDL for generalized use.

Trajectory/Geometric Adaptation
In some cases of action modification, the agent adapts known symbolic/non-symbolic action
representations to discover new actions. Prior work by Suarez-Hernandes (2020) discover new
STRIPS actions from execution traces, by introducing cost functions to effectively search
the action space. The discovery process consists of four phases: “Initialization” that involves
generating a new planning problem; “Searching” for new actions and validating whether they
satisfy the planning problem; “Expanding” which involves adding new compilations to an
existing open list; and “Induction” where the finalized set of actions are induced based on the
best planning solution. Prior work has also looked at adapting non-symbolic representations
of tool-use trajectories to new tool use scenarios, either adapting to new tool specifications
such as a different handle size (Fitzgerald et al., 2019, 2017) or to a completely new tool
(Gajewski et al., 2019).

6. Examples of Existing Creative Problem Solving Architectures

In this section, we describe four existing architectures capable of creative problem solving,
namely, CreaCogs, Robogyver, ICARUS and DIARC. We note that CreaCogs and Robogyver
are architectures targeted specifically for CPS, whereas ICARUS and DIARC are more
general problem-solving architectures that support CPS within them.

895



Gizzi, Nair, Sinapov & Chernova

Formulation Representation Manipulation Evaluation Concepts

CreaCogs N/a Symbolic Combinational N/a Objects

Robogyver Planning Non-symbolic Combinational Physical Objects

ICARUS Planning Symbolic Exploratory Simulation Terrain

DIARC Planning Symbolic Exploratory Simulation Objects

Table 2: Table highlighting the classifications of the frameworks discussed in Section 6

6.1 CreaCogs

CreaCogs is an architecture that enables agents to solve creative problems through Object
Replacement and Object Construction (OROC) (Olteţeanu & Falomir, 2016). CreaCogs seeks
to accomplish three creative tasks: i) replacement of a missing object for a task; ii) composing
objects to construct a final object for a task; and iii) decomposing objects. The architecture
reasons about object affordances and capabilities in order to accomplish each task. CreaCogs
consists of a symbolic large-scale knowledge base that organizes concepts at three levels:
i) a feature space that encodes features or attributes of objects; ii) a concept level that
represents all the relationships between the known features of an object; and iii) a problem
template where the relations between different concepts are encoded. In their work, the
information regarding the three levels is symbolically encoded a-priori. Given the knowledge
base, replacement objects are identified on the basis of the similarity of their features to the
missing object. Similarly, composite objects are represented as a conjunction of the features
(denoted as Y ) of the individual objects (denoted as Ok) that make up the composite object,
e.g., relation(O1, Y) ∧ relation(O2, Y). Hence, CreaCogs uses combinational manipulation
for identifying composite objects. Additionally, topological relationships are used to define
the relative positioning of the objects when constructing the composite object. Lastly, for
decomposition, a larger object is represented as a conjunction of its individual components,
e.g., object(fishing rod) → component(hook, fishing rod) ∧ component(line, fishing rod) ∧
component(rod, fishing rod) etc. Thus, new concepts (i.e., objects) can be identified through
various combinations of relevant concepts.

In Olteţeanu (2015), the authors discuss re-representation of the problem in order to
highlight concepts that are relevant for object replacement and composition, e.g., “contain-
ability” is a relevant concept when creating a candle holder. For this problem, a candle holder
is re-represented to highlight the containability feature that then helps identify substitute
objects for it. They discuss the notion of “seeing as” referring to: i) the ability to represent a
group of features as a meaningful object, and ii) ability to represent a group of objects as a
meaningful structure that can solve the problem on hand. Thus, the initial problem descrip-
tion is transformed into an alternate representation that highlights the relevant concepts
or features of object(s) that can enable the agent to solve the problem at hand. While the
authors discuss these ideas theoretically in (Olteteanu, 2015), the CreaCogs implementation
in (Olteţeanu & Falomir, 2016) does not include the re-representation, hence we categorize it
as combinational manipulation within our survey.

896



Creative Problem Solving in Intelligent Agents: A Framework and Survey

6.2 Robogyver

Robogyver is an architecture that enables robots to accomplish tasks where required tools are
missing, either through tool construction or tool substitution (Nair, Shrivatsav, & Chernova,
2020; Nair, 2020). While substitution and construction is closely related to object replacement
and composition in CreaCogs, Robogyver focuses specifically on tool-based problems through
non-symbolic rather than symbolic reasoning (Nair & Chernova, 2020). Robogyver formulates
tool macgyvering as a planning problem (Nair & Chernova, 2020), introducing the Feature
Guided Search (FGS) approach that extends classical planning using supervised learning
to guide the search through the planning space. The initial conceptual space comprises of
multi-modal sensory inputs (object point clouds and spectral readings). The authors perform
multi-objective optimization in order to identify viable objects for replacing the missing
tool, based on their point clouds (indicating shape) and spectral measurements (indicating
material). The objectives within the multi-objective function are learned through supervised
learning techniques. Robogyver uses a hybrid symbolic and non-symbolic representation
wherein the objects are represented in a non-parametric and non-symbolic manner, whereas,
the task planning itself uses symbols represented in PDDL. To perform tool construction,
the multi-objective functions are used to evaluate object combinations to identify viable
constructions. Specifically, the multi-objective function, denoted as f , acts as a combinational
function that takes object point clouds and spectral readings as inputs, i.e., f(o1, o2, ..., om)
(i.e., combinational methods). Within the new conceptual space, the multi-objective functions
are used to guide the search for a valid task plan. Specifically, the object-based symbols
within the planner are assigned the output scores of the multi-objective functions. The
scores are then incorporated into planning heuristics in order to guide the search (using A∗)
towards valid object combinations. Hence, given a task and a set of objects, the agent is
able to adapt the task plan to construct an appropriate tool for the task. The approach is
evaluated on a physical robot (Kinova) for the construction of tools for six different tasks.

6.3 ICARUS

ICARUS is a cognitive architecture that provides an infrastructure for building intelligent
AI systems (Langley, Choi, & Rogers, 2009). Choi et al. (Choi et al., 2018) extend the
cognitive architecture ICARUS to incorporate the capability to create and use structures,
specifically navigational structures, such as bridges and ramps. Hence, their work is an
example of Automated Design of Functional Structures (ADFS). ICARUS formulates ADFS
as a planning problem, and introduce a Unified Planning System (UPS) that incorporates
primitive skills, hierarchical skills, and their combination to generate plans. ICARUS consists
of two types of long-term knowledge, namely, concepts and skills. In their work, concepts
refers to percepts and their corresponding attribute values. For instance, ICARUS represents
objects as concepts, defined by various attributes. On the other hand, skills build upon
conceptual knowledge, by including conditions that must hold for their application as well
as the effects that their application produces. For example, ICARUS represents building or
construction actions as skills. Both concepts and skills are hard-coded within the system’s
knowledge base. Further, they are symbolically encoded, e.g., blocks are defined as block
?b, or left and right positions are denoted by ?left and ?right. Given the initial symbolic
conceptual space, the agent searches for a task plan that involves creating navigational

897



Gizzi, Nair, Sinapov & Chernova

structures such as bridges and staircases to traverse the environment. As described in Section
4.3.1, they apply numeric heuristics to guide a best-first search (exploratory manipulation),
where the heuristics favor states that satisfy more elements in the goal formulae. In order
to construct the structures, the planner specifically reasons about the terrain, such as the
width of gaps, and hence is an example of terrain modification. Note that the properties of
the objects are encoded a-priori, and the planner specifically reasons about the terrain in
order to identify a suitable construction of objects that makes the terrain traversable. Lastly,
the approach is evaluated in simulation for the construction of ramps.

6.4 Distributed Integrated Cognition Affect and Reflection (DIARC)

DIARC is a cognitive architecture comprising of action, vision, and natural language sub-
systems (Scheutz, Williams, Krause, Oosterveld, Sarathy, & Frasca, 2019). More recently,
DIARC was extended to incorporate creative capabilities for dealing with novelties in the
environment (Muhammad, Sarathy, Tatiya, Goel, Gyawali, Guaman, Sinapov, & Scheutz,
2021). The authors propose an architecture that uses a knowledge base in conjunction with
a PDDL-based planning framework. The authors further define novelty as an encounter
between the agent and an item that a) the agent has not experienced before, and b) cannot
derive it from its knowledge base. The agent uses a symbolic knowledge representation using
first-order language (FOL) and a knowledge base (KB) containing facts associated with
the agent’s environment/task specification. Given the FOL description of the world-state
σt at time t, the agent computes KB ∪ σt to generate a task plan π = 〈αt, αt+1...αn〉 to
achieve a task goal G. In the event that an action fails or leads to an unexpected state, the
agent updates its KB and attempts a re-plan. Hence, DIARC is an example of exploratory
manipulation of the initial KB (i.e., conceptual space) for deriving a new conceptual space
that enables the agent to deal with unexpected novelties. In particular, the agent reasons
about objects, and seeks to characterize object properties to resolve the novelties. Hence,
the conceptual space focuses on object properties for generating creative solutions (object
modification). The overall architecture proceeds as follows: the agent interacts with the
environment, and if novelties are encountered, the corresponding world states are incorpo-
rated into the KB via a novelty handling mechanism that deals with different categories of
novelties e.g., class and attribute novelties. In the case of class novelty, a new class of object
is introduced and in the case of attribute novelty, the property of an existing object changes.
Upon handling the novelty, the agent then attempts to re-plan for the task. This proceeds
until the task goal is achieved. Most recently, the architecture has been extended to allow the
agent to formulate a reinforcement learning problem on-the-fly in cases where manipulating
the existing KB is insufficient to adapt to the environmental change (Goel, Shukla, Sarathy,
Scheutz, & Sinapov, 2022; Lorang, Goel, Zips, Sinapov, & Scheutz, 2022). The authors
evaluate their approach in simulation using a “Polycraft” domain, and an internal grid-world
variant that mimics Polycraft (Goel et al., 2021). The task in the domain involves crafting
a pogo-stick using available materials. Here, the agent must reason about objects in the
environment and novelties specifically associated with objects, to successfully construct the
desired object (Object construction). The authors demonstrate that the agent is able to
successfully reason about novelties at different levels of complexity.

898



Creative Problem Solving in Intelligent Agents: A Framework and Survey

Figure 17: Distribution of the 51 papers in our survey. To note limited work in CPS, other
paradigms of knowledge manipulation have not focused on terrain modification, and learning
approaches have not looked at object modification indicating clear gaps in existing CPS
research. A tabulated list of papers in each category is provided in the Appendix.

7. Open Research Questions

In our survey of creative problem solving, we identified open research questions that have
not been adequately addressed in the field of CPS. In highlighting these problems, we hope
to stimulate further work and suggest future research directions. We divide this section into
two subsections. The first subsection discusses open research questions in the context of
our CPS framework. The second subsection discusses broader CPS questions that are not
specifically related to our framework or taxonomy, but need to be addressed, and potentially
incorporated into future iterations of the CPS framework.

7.1 Open Questions Relating to CPS Framework

In this section, we discuss open research questions in the context of our CPS taxonomy.

7.1.1 Hybrid Symbolic and Non-symbolic Representations

There has been limited work utilizing hybrid symbolic and non-symbolic representations in
CPS. Such hybrid representations can be useful in order to effectively represent different
types of information required by the CPS method. In particular, some types of information
such as visual properties are more easily represented through non-symbolic means, whereas
symbolic representations can be useful to encode hierarchies such as in semantic networks.

There are several challenges to further explore in this space. In particular, what specific
information should be represented as symbolic vs. non-symbolic (or vice-versa)? Moreover,

899



Gizzi, Nair, Sinapov & Chernova

how can we design hybrid systems that can effectively leverage the strengths of the hy-
brid representation? As noted in our survey, planning approaches are strongly correlated
to symbolic representations, whereas learning approaches are correlated to non-symbolic
representations. Hence, hybrid systems that combine planning and learning, can be useful
(and perhaps necessary) for effectively utilizing hybrid representations. To this end, existing
approaches such as hybrid planning and RL (Strens & Windelinckx, 2004) can be beneficial.
Additionally, recent advances in Neuro-symbolic AI (d’Avila Garcez & Lamb, 2020), can also
be useful in this context. Neuro-symbolic AI seeks to combine neural networks with symbolic
representations of the problem, and can greatly enhance the reasoning capability, as well as
explanability of CPS systems.

7.1.2 Rethinking Agent-Reasoning in CPS

Among the conceptual spaces discussed in our survey, the papers relating to conceptual
spaces of agent states, focus on agent modification alone. However, a key point to note is that
modeling and reasoning about the agent can have wider implications for CPS, beyond just
agent modification. Modeling the capabilities of the agent/robot, can be highly beneficial for
identifying practically viable creative solutions for performing the task, which is especially
important when operating in real-world domains rather than simulations. A key question
here is, how can CPS systems account for the agent when deriving solutions? In this case,
the solutions derived would depend on the agent’s capabilities, e.g., it could vary from the
two-armed Baxter robot to a single-armed Sawyer robot. Consider the example of opening a
tightly closed jar. The Baxter robot can potentially grasp the jar with one hand and use
a knife with the other to pry it open. In contrast, this would not be a viable solution for
Sawyer, that may instead run it under hot water to loosen the cap, or break it open to access
its contents. However, existing CPS research does not account for the agent’s capabilities in
this manner, making it an open question for future work.

7.2 Broader CPS Research Questions

In this section, we discuss broader CPS questions relating to, a) extension of additional
computational creativity methods to CPS, b) universal metric for evaluating CPS solutions,
c) generalizability and CPS, and d) lifelong CPS.

7.2.1 Extension of Additional Computational Creativity Methods to CPS

Conceptual blending, introduced by Fauconnier and Turner (Fauconnier & Turner, 2008)
is a widely studied approach in computational creativity. However, its applicability to
creative problem solving in AI has not been well explored. In Section 4.3.2, Multi-Concept
Combination, we presented work by Lieto et al. (2019) that uses conceptual blending, a mode
of combinational knowledge manipulation, to discover new concepts within a semantic network.
However, apart from the presented research, approaches to CPS have not focused on the
potential application of conceptual blending techniques. Recent approaches have developed
computational models for conceptual blending (Falomir & Plaza, 2020; Schorlemmer &
Plaza, 2021). An interesting question is the extension of similar methods to knowledge
representations observed in the context of CPS in AI. Approaches that use convolutional
neural networks for style transfer, referred to as Neural Style Transfer (Jing, Yang, Feng, Ye,

900



Creative Problem Solving in Intelligent Agents: A Framework and Survey

Yu, & Song, 2019), demonstrate that it is possible to learn conceptual blending. However,
the application of such techniques to the problem of task learning and planning in AI remains
an open question. An additional area of CC research which should be considered in its
application to CPS is the concept of “framing”, where an intelligent agent attempts to “explain”
its own creativity (Colton, Charnley, & Pease, 2011; Guckelsberger et al., 2017; Cook et al.,
2019). Examples include explanation of creative intentions, inward reflection of intrinsic
goals, and justification of actions in creativity. Integrating framing into CPS could provide a
computational method for isolating the novelty/salience responsible for converting a general
problem solving scenario into one which requires CPS. This in turn could expedite the time
required for CPS resolution.

7.2.2 Universal Metric for CPS Solutions

As described in Section 3, there does not yet exist a universally agreed upon definition of
computational creativity. Because of this lack of a concise definition of CC, it has been
challenging for the CPS research community to develop a universal measure of a CPS solution,
with consideration of both the traditional problem solving aspects of CPS, and the creativity
portion of CPS. Most evaluation metrics of CPS which have been developed in past research
are domain and/or problem specific (See Section 4.4.3). While some degree of universality
has been considered, most work has focused on developing tests for CPS success, rather
than a specific metric for objectively quantifying how creative a solution is. Other works
have developed theoretical measures of CPS solutions, without evidentiary implementation.
Developing such a metric for CPS would be highly beneficial, as it would help streamline
and benchmark existing and future CPS methods. For instance, an objective metric for
categorizing the subset of papers in RL that constitutes CPS needs to be defined, as opposed
to the subjective novelty-based criterion used in this survey.

7.2.3 Generalizability and CPS

A key consideration and theme in CPS research is the flexibility of systems, which allows
agents to handle the inherent novelty of CPS tasks. While current research has made this
consideration of generalizabilty within individual problem domains, there has yet to be
extensive research and testing of cross-domain generalizablity of CPS systems. Additionally,
despite the domain-agnostic theoretical formulations of CPS methods which exist in current
research, testing specific methods for cross-domain generalizablity at the implementation
level remains a largely unexplored challenge.

7.2.4 Lifelong CPS

Techniques in CPS have focused on flexibility in handling unforeseen and ill-structured
problems. Despite extensive research into creating flexible CPS methods for “problem at
hand” solutions, there has not been extensive research into methods for using past CPS
encounters to improve future CPS performance, thus employing “lifelong” learning for CPS. For
example, many CPS methods surveyed involve environment exploration, used for optimizing
a specific task solution. An open question here is, how can the agent learn from, and adapt its
prior experiences to effectively solve CPS tasks in the future? The agent’s prior interactions
could be used to support lifelong CPS, by minimizing the amount of environment interaction

901



Gizzi, Nair, Sinapov & Chernova

that the agent may need in a different, future CPS task. Existing research in lifelong learning
(Parisi, Kemker, Part, Kanan, & Wermter, 2019) and transfer learning (Pan & Yang, 2010)
could be useful venues to explore in this context. While there does exist preliminary work
in the area of life-long CPS (Gizzi, Lin, Castro, Harvey, & Sinapov, 2022), future research
should continue consideration of how agents can improve their own CPS abilities as they are
continually put into scenarios where they need to discover new information.

8. Conclusions

This survey discussed creative problem solving in artificial intelligence, by formally defining
CPS, and introducing a framework that encompasses existing CPS approaches. In contrast
to existing CPS formalizations, our definition 1) introduces a broader notion of concepts,
and 2) connects Boden’s three levels of creativity from computational creativity literature,
to problem solving in AI, thus leveraging theoretical aspects from both CC and AI. Our
presented CPS framework consists of four key steps including, 1) problem formulation, 2)
knowledge representation, 3) knowledge manipulation, and 4) evaluation. Additionally,
we categorized existing CPS research within our framework. We further expanded on our
CPS framework to discuss the two types of conceptual spaces that are modified, i.e., states
(including objects, terrain and agent) and actions. We further categorized existing approaches
along this dimension. Next, we presented existing CPS architectures, also organizing them
within our CPS taxonomy. Our survey of the literature concluded with a list of open research
questions, which we believe will serve as a useful guide for future work in CPS. We further
hope that this survey will encourage research into this relatively unexplored field, bridging
the gap between CC and problem solving in AI.

Paper Formuln. Repn. Manipn. Eval. Concepts

(Xie et al., 2019) Learning Non-symbolic Expl. Phys Action

(Fitzgerald et al., 2014, 2017) Planning Non-symbolic Trans Phys Action

(Wicaksono & Sheh, 2017) Planning Symbolic Expl. Phys Object

(Wicaksono & Sammut, 2020) Planning Symbolic Expl. Phys Object

(Saboia da Silva et al., 2019) Planning Non-symbolic Transf. Phys Terrain

(Toussaint et al., 2018) Planning Hybrid Expl. Sim Action

(Zhu et al., 2015) Other Hybrid Transf. Sim Object

(Boteanu et al., 2015) Planning Symbolic Expl. Phys Object

(Olteţeanu & Falomir, 2016) Other Symbolic Comb. n/a Object

(Erdogan & Stilman, 2013) Planning Symbolic Expl. Sim Terrain

(Erdogan & Stilman, 2016) Planning Symbolic Expl. Sim Object

(Choi et al., 2018) Planning Non-symbolic Expl. Sim Terrain

(Levihn & Christensen, 2015) Planning Symbolic Expl. Sim Object

902



Creative Problem Solving in Intelligent Agents: A Framework and Survey

(Tosun et al., 2018) Planning Non-symbolic Transf. Phys Terrain

(Abelha et al., 2016) Other non-symbolic Transf. Sim Object

(Schoeler & Wörgötter, 2015) Other Non-symbolic Transf. Sim Object

(Gajewski et al., 2019) Planning Non-symbolic Transf. Phys Action

(Baker et al., 2019) Learning Non-symbolic Expl. Sim Terrain

(Allen et al., 2019) Learning Non-symbolic Expl. Sim Action

(Sinapov & Stoytchev, 2007) Other Non-symbolic Transf. Sim Action

(Hangl et al., 2017) Other Non-symbolic Comb. Phys Action

(Bapst et al., 2019) Learning Non-symbolic Expl. Sim Terrain

(Pathak et al., 2019) Learning Non-symbolic Expl. Sim Agent

(Nair et al., 2019, 2019, 2020) Other Symbolic Comb. Phys Object

(Nair & Chernova, 2020) Planning Hybrid Comb. Phys Object

(Shrivatsav et al., 2019) Other Non-symbolic Comb. Phys Object

(Gizzi et al., 2019) Planning Hybrid Transf. Sim Action

(Gizzi et al., 2021) Planning Hybrid Expl. Sim Action

(Murooka et al., 2019) Planning Non-symbolic Transf. Phys Agent

(Suárez-Hernández et al., 2020) Planning Symbolic Expl. Sim Action

(Freedman et al., 2020) Planning Symbolic Transf. Sim Object

(Ha, 2019) Learning Non-symbolic Expl. Sim Agent

(Zhao et al., 2020) Other Symbolic Expl. Sim Agent

(Yang et al., 2020) Other Non-symbolic Comb. Phys Object

(Qin et al., 2020) Planning Non-symbolic Transf. Sim Action

(Colin et al., 2016) Learning Non-symbolic Comb. Sim Terrain

(Colin & Belpaeme, 2019) Learning Non-symbolic Comb. Sim Terrain

(Lieto et al., 2019) Planning Symbolic Comb. B.mark Object

(Silver et al., 2021) Planning Hybrid Transf. Sim Action

(Chitnis et al., 2021) Learning Symbolic Expl. Sim Action

(Oddi et al., 2020) Learning Hybrid Expl. Sim Action

(Kralik et al., 2016) Learning Non-symbolic Transf. B.mark Terrain

(Xu et al., 2018) Other Hybrid Transf. Sim Object

(Fitzgerald et al., 2019) Learning Non-symbolic Transf. Phys Action

(Kroemer et al., 2015) Learning Non-symbolic Transf. Phys Action

903



Gizzi, Nair, Sinapov & Chernova

(Ha, 2019) Learning Non-symbolic Expl. Sim Agent

(Schaff et al., 2019) Learning Non-symbolic Expl. Sim Agent

Table 3: Table highlighting the classifications of the papers discussed in this survey.

9. Acknowledgements

We would like to note that the two first authors, Evana Gizzi and Lakshmi Nair, both
contributed equally to all parts of the survey.

References

Abelha, P., Guerin, F., & Schoeler, M. (2016). A model-based approach to finding substitute
tools in 3d vision data. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp. 2471–2478. IEEE.

Allen, K. R., Smith, K. A., & Tenenbaum, J. B. (2019). The tools challenge: Rapid trial-
and-error learning in physical problem solving. Arxiv preprint, arXiv:1907.09620.

Atkeson, C. G., Benzun, P. B., Banerjee, N., Berenson, D., Bove, C. P., Cui, X., DeDonato,
M., Du, R., Feng, S., Franklin, P., et al. (2018). What happened at the darpa robotics
challenge finals. In The DARPA Robotics Challenge Finals: Humanoid Robots to the
Rescue, pp. 667–684. Springer.

Baker, B., Kanitscheider, I., Markov, T., Wu, Y., Powell, G., McGrew, B., & Mor-
datch, I. (2019). Emergent tool use from multi-agent autocurricula. Arxiv preprint,
arXiv:1909.07528.

Bapst, V., Sanchez-Gonzalez, A., Doersch, C., Stachenfeld, K. L., Kohli, P., Battaglia, P. W.,
& Hamrick, J. B. (2019). Structured agents for physical construction. Arxiv preprint,
arXiv:1904.03177.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35 (8),
1798–1828.

Bird, C. D., & Emery, N. J. (2009). Insightful problem solving and creative tool modification
by captive nontool-using rooks. Proceedings of the National Academy of Sciences,
106 (25), 10370–10375.

Bishop, M., & Boden, M. A. (2010). The turing test and artistic creativity. Kybernetes,
3 (39), 409—-413.

Bisk, Y., Zellers, R., Bras, R. L., Gao, J., & Choi, Y. (2019). Piqa: Reasoning about physical
commonsense in natural language. Arxiv preprint, arXiv:1911.11641.

Boden, M. A. (1998). Creativity and artificial intelligence. Artificial Intelligence, 1-2, 347–356.

Boesch, C., & Boesch, H. (1990). Tool use and tool making in wild chimpanzees. Folia
primatologica, 54 (1-2), 86–99.

Boteanu, A., Kent, D., Mohseni-Kabir, A., Rich, C., & Chernova, S. (2015). Towards robot
adaptability in new situations. In 2015 AAAI Fall Symposium Series.

904



Creative Problem Solving in Intelligent Agents: A Framework and Survey

Cass, S. (2005). Apollo 13, we have a solution. IEEE Spectrum On-line, 04, 1.

Chitnis, R., Silver, T., Tenenbaum, J., Kaelbling, L. P., & Lozano-Pérez, T. (2021). Glib:
Efficient exploration for relational model-based reinforcement learning via goal-literal
babbling. In Proc. AAAI.

Choi, D., Langley, P., & To, S. T. (2018). Creating and using tools in a hybrid cognitive
architecture. In 2018 AAAI Spring Symposium Series.

Colin, T. R., & Belpaeme, T. (2019). Reinforcement learning and insight in the artificial
pigeon. In CogSci, pp. 1533–1539.

Colton, S., Charnley, J. W., & Pease, A. (2011). Computational creativity theory: The
face and idea descriptive models. In The International Conference on Computational
Creativity (ICCC), pp. 90–95.

Colton, S., Wiggins, G. A., et al. (2012). Computational creativity: The final frontier?. In
Ecai, Vol. 12, pp. 21–26. Montpelier.

Cook, M., Colton, S., Pease, A., & Llano, M. T. (2019). Framing in computational creativ-
ity–a survey and taxonomy. In The 10th International Conference on Computational
Creativity (ICCC), pp. 156–163.

d’Avila Garcez, A., & Lamb, L. C. (2020). Neurosymbolic ai: The 3rd wave. Arxiv preprint,
arXiv:2012.05876.

Dictionary, O. E. (1989). Oxford english dictionary..

Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative
modes of thought during the creative process. Neuroimage, 59 (2), 1783–1794.

Erdogan, C., & Stilman, M. (2013). Planning in constraint space: Automated design
of functional structures. In 2013 IEEE International Conference on Robotics and
Automation, pp. 1807–1812. IEEE.

Erdogan, C., & Stilman, M. (2016). Autonomous realization of simple machines. In
Experimental Robotics, pp. 471–486. Springer.

Erol, K., Hendler, J. A., & Nau, D. S. (1994). Umcp: A sound and complete procedure for
hierarchical task-network planning.. In Aips, Vol. 94, pp. 249–254.

Falomir, Z., & Olteţeanu, A.-M. (2019). Special issue on problem-solving , creativity and
spatial reasoning. Cognitive Systems Research, 58, 31–34.

Falomir, Z., & Plaza, E. (2020). Towards a model of creative understanding: deconstructing
and recreating conceptual blends using image schemas and qualitative spatial descriptors.
Annals of Mathematics and Artificial Intelligence, 88 (5), 457–477.

Fauconnier, G., & Turner, M. (2008). The way we think: Conceptual blending and the mind’s
hidden complexities. Basic books.

Fikes, R. E., & Nilsson, N. J. (1971). Strips: A new approach to the application of theorem
proving to problem solving. Artificial intelligence, 2 (3-4), 189–208.

Fitzgerald, T., Goel, A., & Thomaz, A. (2015). A similarity-based approach to skill transfer.
In Women in Robotics Workshop at Robotics: Science and Systems Conference (RSS).

905



Gizzi, Nair, Sinapov & Chernova

Fitzgerald, T., Goel, A., & Thomaz, A. (2017). Human-robot co-creativity: Task transfer on
a spectrum of similarity. In 2017 International Conference on Computational Creativity
(ICCC), pp. 104–111.

Fitzgerald, T., Goel, A. K., & Thomaz, A. L. (2014). Representing skill demonstrations for
adaptation and transfer. In 2014 AAAI Fall Symposium Series.

Fitzgerald, T., Short, E., Goel, A., & Thomaz, A. (2019). Human-guided trajectory adap-
tation for tool transfer. In Proceedings of the 18th International Conference on Au-
tonomous Agents and MultiAgent Systems, pp. 1350–1358. International Foundation
for Autonomous Agents and Multiagent Systems.

Fox, M., & Long, D. (2003). Pddl2. 1: An extension to pddl for expressing temporal planning
domains. Journal of artificial intelligence research, 20, 61–124.

Freedman, R., Friedman, S., Musliner, D., & Pelican, M. (2020). Creative problem solving
through automated planning and analogy. AAAI Workshop on Generalization in
Planning, -.

Gajewski, P., Ferreira, P., Bartels, G., Wang, C., Guerin, F., Indurkhya, B., Beetz, M., &
Śniezyński, B. (2019). Adapting everyday manipulation skills to varied scenarios. In
2019 International Conference on Robotics and Automation (ICRA), pp. 1345–1351.
IEEE.

Gerevini, A. E., Haslum, P., Long, D., Saetti, A., & Dimopoulos, Y. (2009). Deterministic
planning in the fifth international planning competition: Pddl3 and experimental
evaluation of the planners. Artificial Intelligence, 173 (5-6), 619–668.

Gibson, J. (1977). The concept of affordances. Perceiving, acting, and knowing, 1.

Gizzi, E., Castro, M. G., & Sinapov, J. (2019). Creative problem solving by robots using action
primitive discovery. In 2019 Joint IEEE 9th International Conference on Development
and Learning and Epigenetic Robotics (ICDL-EpiRob), pp. 228–233. IEEE.

Gizzi, E., Hassan, A., Lin, W.-W., Rhea, K., & Sinapov, J. (2021). Toward creative problem
solving agents: Action discovery through behavior babbling. In The International
Conference on Development and Learning (ICDL). IEEE.

Gizzi, E., Lin, W. W., Castro, M. G., Harvey, E., & Sinapov, J. (2022). Toward life-long
creative problem solving: Using world models for increased performance in novelty
resolution. In 13th International Conference on Computational Creativity.

Goel, S., Shukla, Y., Sarathy, V., Scheutz, M., & Sinapov, J. (2022). Rapid-learn: A
framework for learning to recover for handling novelties in open-world environments.
In IEEE International Conference on Development and Learning (ICDL), London, UK,
September 12-15, 2022, pp. 1–8. IEEE.

Goel, S., Tatiya, G., Scheutz, M., & Sinapov, J. (2021). Novelgridworlds: A benchmark
environment for detecting and adapting to novelties in open worlds. Adaptive and
Learning Agents (ALA) Workshop, -.

Guckelsberger, C., Salge, C., & Colton, S. (2017). Addressing the" why?" in computational
creativity: A non-anthropocentric, minimal model of intentional creative agency. In
The 8th International Conference on Computational Creativity (ICCC).

906



Creative Problem Solving in Intelligent Agents: A Framework and Survey

Guilford, J. P. (1967a). Creativity: Yesterday, today and tomorrow. The Journal of Creative
Behavior, 1 (1), 3–14.

Guilford, J. P. (1967b). The nature of human intelligence. McGraw-Hill.

Guzdial, M., Liao, N., Shah, V., & Riedl, M. O. (2018). Creative invention benchmark. Arxiv
preprint, arXiv:1805.03720.

Ha, D. (2019). Reinforcement learning for improving agent design. Artificial life, 25 (4),
352–365.

Hangl, S., Dunjko, V., Briegel, H. J., & Piater, J. (2017). Skill learning by autonomous
robotic playing using active learning and creativity. Arxiv preprint, arXiv:1706.08560.

Hélie, S., & Sun, R. (2010). Incubation, insight, and creative problem solving: a unified
theory and a connectionist model.. Psychological review, 117 (3), 994.

ICCC (2022). Association of computational creativity: What is computa-
tional creativity?. https://computationalcreativity.net/home/about/
computational-creativity/. Online, accessed in 2022.

Isaksen, S. G., & Treffinger, D. J. (2004). Celebrating 50 years of reflective practice: Versions
of creative problem solving. The Journal of Creative Behavior, 38 (2), 75–101.

Jain, A., Szot, A., & Lim, J. (2020). Generalization to new actions in reinforcement learning.
In International Conference on Machine Learning, pp. 4661–4672. PMLR.

Jing, Y., Yang, Y., Feng, Z., Ye, J., Yu, Y., & Song, M. (2019). Neural style transfer: A
review. IEEE transactions on visualization and computer graphics, 26 (11), 3365–3385.

Jordanous, A. K. (2013). Evaluating computational creativity: a standardised procedure for
evaluating creative systems and its application. Ph.D. thesis, University of Sussex.

Kitchen, O. E. D. (2020). Apollobvm - emergency use ventilator..
http://oedk.rice.edu/apollobvm/.

Knoblich, G., Ohlsson, S., Haider, H., & Rhenius, D. (1999). Constraint relaxation and
chunk decomposition in insight problem solving. Journal of Experimental Psychology:
Learning, memory, and cognition, 25 (6), 1534–1555.

Kralik, J. D., Mao, T., Cheng, Z., & Ray, L. E. (2016). Modeling incubation and restructuring
for creative problem solving in robots. Robotics and Autonomous Systems, 86, 162–173.

Kroemer, O., Daniel, C., Neumann, G., Van Hoof, H., & Peters, J. (2015). Towards learning
hierarchical skills for multi-phase manipulation tasks. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), pp. 1503–1510. IEEE.

Kroemer, O., Van Hoof, H., Neumann, G., & Peters, J. (2014). Learning to predict phases
of manipulation tasks as hidden states. In 2014 IEEE International Conference on
Robotics and Automation (ICRA), pp. 4009–4014. IEEE.

Lamb, C., Brown, D. G., & Clarke, C. L. (2018). Evaluating computational creativity: An
interdisciplinary tutorial. ACM Computing Surveys (CSUR), 51 (2), 1–34.

Langley, P., Choi, D., & Rogers, S. (2009). Acquisition of hierarchical reactive skills in a
unified cognitive architecture. Cognitive Systems Research, 10 (4), 316–332.

907



Gizzi, Nair, Sinapov & Chernova

Leibo, J. Z., Hughes, E., Lanctot, M., & Graepel, T. (2019). Autocurricula and the emergence
of innovation from social interaction: A manifesto for multi-agent intelligence research..

Levihn, M., & Christensen, H. (2015). Using environment objects as tools in unknown
environments. In 2015 IEEE-RAS 15th International Conference on Humanoid Robots
(Humanoids), pp. 160–165. IEEE.

Levihn, M., & Stilman, M. (2014). Using environment objects as tools: Unconventional
door opening. In 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 2502–2508. IEEE.

Lieto, A., Perrone, F., Pozzato, G. L., & Chiodino, E. (2019). Beyond subgoaling: a dynamic
knowledge generation framework for creative problem solving in cognitive architectures.
Cognitive Systems Research, 58, 305–316.

Lorang, P., Goel, S., Zips, P., Sinapov, J., & Scheutz, M. (2022). Speeding-up continual learn-
ing through information gains in novel experiences. In 4th Planning and Reinforcement
Learning (PRL) Workshop at IJCAI-2022.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., &
Wilkins, D. (1998). Pddl-the planning domain definition language. Technical Report,
CVC TR-98-003/DCS TR-1165.

McDermott, D. M. (2000). The 1998 ai planning systems competition. AI magazine, 21 (2),
35–35.

Muhammad, F., Sarathy, V., Tatiya, G., Goel, S., Gyawali, S., Guaman, M., Sinapov, J.,
& Scheutz, M. (2021). A novelty-centric agent architecture for changing worlds. In
Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent
Systems, pp. 925–933.

Mumford, M. D., Mobley, M. I., Reiter-Palmon, R., Uhlman, C. E., & Doares, L. M. (1991).
Process analytic models of creative capacities. Creativity Research Journal, 4 (2),
91–122.

Mumford, M. D., Supinski, E. P., Baughman, W. A., Costanza, D. P., & Threlfall, K. V.
(1997). Process-based measures of creative problem-solving skills: V. overall prediction.
Creativity Research Journal, 10 (1), 73–85.

Murooka, T., Okada, K., & Inaba, M. (2019). Self-repair and self-extension by tightening
screws based on precise calculation of screw pose of self-body with cad data and graph
search with regrasping a driver. In 2019 IEEE-RAS 19th International Conference on
Humanoid Robots (Humanoids), pp. 79–84. IEEE.

Nair, L., Balloch, J., & Chernova, S. (2019). Tool macgyvering: Tool construction using
geometric reasoning. In 2019 International Conference on Robotics and Automation
(ICRA), pp. 5837–5843. IEEE.

Nair, L., & Chernova, S. (2020). Feature guided search for creative problem solving through
tool construction. Frontiers in Robotics and AI, 7, 205.

Nair, L., Shrivatsav, N., & Chernova, S. (2020). Tool macgyvering: A novel framework for
combining tool substitution and construction. Arxiv preprint, arXiv:2008.10638.

908



Creative Problem Solving in Intelligent Agents: A Framework and Survey

Nair, L., Srikanth, N. S., Erickson, Z. M., & Chernova, S. (2019). Autonomous tool con-
struction using part shape and attachment prediction.. In Robotics: Science and
Systems.

Nair, L. V. (2020). Robogyver: Autonomous Tool Macgyvering for Inventive Problem Solving.
Ph.D. thesis, Georgia Institute of Technology.

Oddi, A., Rasconi, R., Santucci, V. G., Sartor, G., Cartoni, E., Mannella, F., & Baldassarre,
G. (2020). Integrating open-ended learning in the sense-plan-act robot control paradigm.
In 24th European Conference on Artificial Intelligence (ECAI).

Olteteanu, A.-M. (2014). Two general classes in creative problem-solving? an account based
on the cognitive processes involved in the problem structure-representation structure
relationship. In The International Conference on Computational Creativity (ICCC).

Olteteanu, A.-M. (2015). “seeing as” and re-representation: Their relation to insight, creative
problem-solving and types of creativity. In The Workshop on Computational Creativity,
Concept Invention, and General Intelligence, p. 105.

Olteţeanu, A.-M., & Falomir, Z. (2016). Object replacement and object composition in a
creative cognitive system. towards a computational solver of the alternative uses test.
Cognitive Systems Research, 39, 15–32.

Osborn, A. F. (1952). Wake up your mind: 101 ways to develop creativeness. Scribner.

Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 22 (10), 1345–1359.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., & Wermter, S. (2019). Continual lifelong
learning with neural networks: A review. Neural Networks, 113, 54–71.

Pathak, D., Lu, C., Darrell, T., Isola, P., & Efros, A. A. (2019). Learning to control self-
assembling morphologies: a study of generalization via modularity. In Advances in
Neural Information Processing Systems, pp. 2292–2302.

Pednault, E. P. (1987). Formulating multiagent, dynamic-world problems in the classical
planning framework. In Reasoning about actions & plans, pp. 47–82. Elsevier.

Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017). Pointnet: Deep learning on point sets for
3d classification and segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 652–660.

Qin, Z., Fang, K., Zhu, Y., Fei-Fei, L., & Savarese, S. (2020). Keto: Learning keypoint
representations for tool manipulation. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pp. 7278–7285. IEEE.

Rowe, J., & Partridge, D. (1993). Creativity: A survey of ai approaches. Artificial Intelligence
Review, 7 (3), 43–70.

Saboia da Silva, M., et al. (2019). Autonomous adaptive modification of unstructured
environments. Ph.D. thesis, State University of New York at Buffalo.

Şahin, E., Çakmak, M., Doğar, M. R., Uğur, E., & Üçoluk, G. (2007). To afford or not
to afford: A new formalization of affordances toward affordance-based robot control.
Adaptive Behavior, 15 (4), 447–472.

909



Gizzi, Nair, Sinapov & Chernova

Sarathy, V. (2018). Real world problem-solving. Frontiers in Human Neuroscience, 12.

Sarathy, V., Kasenberg, D., Goel, S., Sinapov, J., & Scheutz, M. (2020). Spotter: Extending
symbolic planning operators through targeted reinforcement learning..

Sarathy, V., & Scheutz, M. (2018). Macgyver problems: Ai challenges for testing resourceful-
ness and creativity. Advances in Cognitive Systems, 6, 31–44.

Schaff, C., Yunis, D., Chakrabarti, A., & Walter, M. R. (2019). Jointly learning to construct
and control agents using deep reinforcement learning. In 2019 International Conference
on Robotics and Automation (ICRA), pp. 9798–9805. IEEE.

Scheutz, M., Williams, T., Krause, E., Oosterveld, B., Sarathy, V., & Frasca, T. (2019). An
overview of the distributed integrated cognition affect and reflection diarc architecture.
Cognitive architectures, -, 165–193.

Schoeler, M., & Wörgötter, F. (2015). Bootstrapping the semantics of tools: Affordance
analysis of real world objects on a per-part basis. IEEE Transactions on Cognitive and
Developmental Systems, 8 (2), 84–98.

Schorlemmer, M., & Plaza, E. (2021). A uniform model of computational conceptual blending.
Cognitive Systems Research, 65, 118–137.

Shrivatsav, N., Nair, L., & Chernova, S. (2019). Tool substitution with shape and material
reasoning using dual neural networks. Arxiv preprint, arXiv:1911.04521.

Silver, T., Chitnis, R., Tenenbaum, J., Kaelbling, L. P., & Lozano-Pérez, T. (2021). Learning
symbolic operators for task and motion planning. Arxiv preprint, arXiv:2103.00589.

Sinapov, J., & Stoytchev, A. (2008). Detecting the functional similarities between tools using
a hierarchical representation of outcomes. In 2008 7th IEEE International Conference
on Development and Learning, pp. 91–96. IEEE.

Sinapov, J., & Stoytchev, A. (2007). Learning and generalization of behavior-grounded tool
affordances. In 2007 IEEE 6th International Conference on Development and Learning,
pp. 19–24. IEEE.

Sosa, R., & Gero, J. S. (2016). Multi-dimensional creativity: a computational perspective.
The International Journal of Design Creativity and Innovation, 4 (1), 26–50.

Speer, R., & Havasi, C. (2013). Conceptnet 5: A large semantic network for relational
knowledge. In The People’s Web Meets NLP, pp. 161–176. Springer.

Strens, M., & Windelinckx, N. (2004). Combining planning with reinforcement learning
for multi-robot task allocation. In Adaptive Agents and Multi-Agent Systems II, pp.
260–274. Springer.

Suárez-Hernández, A., Segovia-Aguas, J., Torras, C., & Alenyà, G. (2020). Strips action
discovery. Arxiv preprint, arXiv:2001.11457.

Tosun, T., Daudelin, J., Jing, G., Kress-Gazit, H., Campbell, M., & Yim, M. (2018).
Perception-informed autonomous environment augmentation with modular robots.
In 2018 IEEE International Conference on Robotics and Automation (ICRA), pp.
6818–6824. IEEE.

910



Creative Problem Solving in Intelligent Agents: A Framework and Survey

Toussaint, M., Allen, K., Smith, K. A., & Tenenbaum, J. B. (2018). Differentiable physics
and stable modes for tool-use and manipulation planning.. In Robotics: Science and
Systems.

Turner, M., Duggan, L., Glezerson, B., & Marshall, S. (2020). Thinking outside the (acrylic)
box: a framework for the local use of custom-made medical devices. Anaesthesia, -.

Varshney, L. R., Wang, J., & Varshney, K. R. (2016). Associative algorithms for computational
creativity. The Journal of Creative Behavior, 50 (3), 211–223.

Wang, R., Lehman, J., Clune, J., & Stanley, K. O. (2019). Paired open-ended trailblazer
(poet): Endlessly generating increasingly complex and diverse learning environments
and their solutions. Arxiv preprint, arXiv:1901.01753.

Wicaksono, H., & Sammut, C. (2020). A cognitive robot equipped with autonomous tool
innovation expertise.. International Journal of Electrical & Computer Engineering
(2088-8708), 10 (2).

Wicaksono, H., & Sheh, C. S. R. (2017). Towards explainable tool creation by a robot. In
IJCAI-17 Workshop on Explainable AI (XAI), p. 63.

Xie, A., Ebert, F., Levine, S., & Finn, C. (2019). Improvisation through physical understand-
ing: Using novel objects as tools with visual foresight. Robotics Science and Systems.
Freiburg, Germany, -.

Xu, D., Nair, S., Zhu, Y., Gao, J., Garg, A., Fei-Fei, L., & Savarese, S. (2018). Neural
task programming: Learning to generalize across hierarchical tasks. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pp. 3795–3802. IEEE.

Yang, C., Lan, X., Zhang, H., & Zheng, N. (2020). Autonomous tool construction with
gated graph neural network. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pp. 9708–9714. IEEE.

Younes, H. L., & Littman, M. L. (2004). Ppddl1. 0: An extension to pddl for expressing
planning domains with probabilistic effects. Techn. Rep. CMU-CS-04-162, 2, 99.

Zhang, W., Sjoerds, Z., & Hommel, B. (2020). Metacontrol of human creativity: The
neurocognitive mechanisms of convergent and divergent thinking. NeuroImage, 210,
116572.

Zhao, A., Xu, J., Konaković-Luković, M., Hughes, J., Spielberg, A., Rus, D., & Matusik,
W. (2020). Robogrammar: graph grammar for terrain-optimized robot design. ACM
Transactions on Graphics (TOG), 39 (6), 1–16.

Zhu, Y., Zhao, Y., & Chun Zhu, S. (2015). Understanding tools: Task-oriented object modeling,
learning and recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2855–2864.

911


