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Abstract

The generation of SAT instances is an important issue in computer science, and it
is useful for researchers to verify the effectiveness of SAT solvers. Addressing this issue
could inspire researchers to propose new search strategies. SAT problems exist in various
real-world applications, some of which have more than one solution. However, although
several algorithms for generating random SAT instances have been proposed, few can be
used to generate hard instances that have multiple predefined solutions. In this paper,
we propose the KHidden-M algorithm to generate SAT instances with multiple predefined
solutions that could be hard to solve by the local search strategy when the number of
predefined solutions is small enough and the Hamming distance between them is not less
than half of the solution length. Specifically, first, we generate an SAT instance that
is satisfied by all of the predefined solutions. Next, if the generated SAT instance does
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not satisfy the hardness condition, then a strategy will be conducted to adjust clauses
through multiple iterations to improve the hardness of the whole instance. We propose
three strategies to generate the SAT instance in the first part. The first strategy is called
the random strategy, which randomly generates clauses that are satisfied by all of the
predefined solutions. The other two strategies are called the estimating strategy and greedy
strategy, and using them, we attempt to generate an instance that directly satisfies or is
closer to the hardness condition for the local search strategy. We employ two SAT solvers
(i.e., WalkSAT and Kissat) to investigate the hardness of the SAT instances generated
by our algorithm in the experiments. The experimental results show the effectiveness of
the random, estimating and greedy strategies. Compared to the state-of-the-art algorithm
for generating SAT instances with predefined solutions, namely, M-hidden, our algorithm
could be more effective in generating hard SAT instances.

1. Introduction

The satisfiability (SAT) problem is a widely known NP-complete problem. It plays an
important role in computer science. Existing work on the SAT problem focuses mainly on
solving the problem, and many SAT solvers have been proposed. Verifying the performance
of SAT solvers requires a large number of SAT instances as a resource (SAT Competition,
2016). Random SAT instances have become one of the main parts of resources. Generation
algorithms are required for producing random SAT instances that are properly hard to solve
by current SAT solvers. Investigating the generation algorithms of random SAT instances
requires us to explore the characteristics that induce the hardness of the SAT instances and
the search strategies that are employed by the SAT solvers. Therefore, this process could
inspire researchers to improve existing SAT solvers. Conversely, generation algorithms for
hard SAT instances could also be used for privacy preservation (Esponda et al., 2004, 2007,
2009), information hiding (Esponda, 2008b), data security (Esponda et al., 2007, 2004;
Esponda, 2008a), and authentication and recognition (Dasgupta & Azeem, 2008; Dasgupta
& Saha, 2009; Bringer & Chabanne, 2010; Zhao et al., 2015b; Luo et al., 2019).

Thus far, several researchers have attempted to develop algorithms for generating ran-
dom SAT instances. These algorithms can be divided into two classes according to whether
their solutions are predefined or not. Several algorithms can randomly generate only those
SAT instances that do not have predefined solutions, e.g., the 0-hidden algorithm (Achliop-
tas, 2001; Achlioptas et al., 2005; Jia et al., 2007). In addition, Ansótegui et al. applied
complex network theories to SAT problems and showed that most industrial SAT instances
have scale-free structures and high modularity. Based on this, they proposed several random
instance models to generate industrial-like instances (Ansótegui et al., 2009; Giráldez-Cru
& Levy, 2016; Giráldez-Cru & Levy, 2017). The SAT instances that are generated by these
algorithms can be used to test the performance of complete SAT solvers, but they might be
hard to use in testing the performance of incomplete SAT solvers (Achlioptas et al., 2005;
Jia et al., 2007). When an incomplete SAT solver cannot solve the SAT instances that
are generated by such algorithms, we cannot determine whether that incomplete solver has
failed or the generated instances are unsatisfiable. Algorithms that have predefined solu-
tions, e.g., 1-hidden algorithm (Achlioptas et al., 2005; Jia et al., 2007), 2-hidden algorithm
(Achlioptas et al., 2005), and q-hidden algorithm (Jia et al., 2007), are more promising. The
SAT instances that are generated by algorithms that have predefined solutions can be used
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to test not only complete SAT solvers but also incomplete SAT solvers. Moreover, they can
be easily used to protect data privacy and enhance data security (Esponda et al., 2007).
In other words, by encoding confidential data or private data as predefined solutions, the
above algorithms can generate hard SAT instances from the data. Next, the SAT instances
will be stored and used instead of private data, and attackers should solve the instances if
they want to obtain the private data; thus, the private data are protected because of the
hardness of the SAT instances.

SAT problems exist in various real-world applications, some of which have more than
one solution. The SAT instances that are derived from real-world applications usually
have specific structures, but testing SAT solvers requires an entire family of benchmarks
(Achlioptas et al., 2005; Jia et al., 2007). Therefore, it is important to propose algorithms
for generating SAT instances that have multiple solutions. Currently, few algorithms for
generating random SAT instances with multiple predefined solutions have been proposed.
Designing generation algorithms for random SAT instances with multiple predefined solu-
tions could be useful for exploring the relationship between the hardness of the random
SAT instances and the number of solutions. Moreover, in some security applications, multi-
ple records must be protected simultaneously. For example, a negative database (Esponda
et al., 2009), which can be converted to an SAT instance (and vice versa), attempts to
hide a whole database and support database operations. In these applications, generation
algorithms for hard SAT instances that have multiple predefined solutions could be more
suitable than those that have a single predefined solution. Moreover, by hiding multiple
records simultaneously, these algorithms could also hide the number of records, and this
property is quite important in some scenarios (Ateniese et al., 2011; Lindell et al., 2013;
Bradley et al., 2016). Furthermore, these generation algorithms could be used to hide real
private data together with some fake data to confuse attackers and enhance the security of
the real private data. Liu, Luo and Yue (2015) proposed the M-hidden algorithm for gener-
ating random hard SAT instances that have multiple predefined solutions. The algorithm
chooses a solution s among the predefined solutions as the central solution, which holds the
minimum Hamming distance between s and the other solutions. Then, it generates SAT
instances that satisfy their deduced hardness conditions according to s to mislead the local
search strategy to search in the direction away from s. They proved that if the Hamming
distance of any two of the predefined solutions is larger than half of the number of variables,
they cannot generate the instance that satisfies the hardness conditions of two solutions si-
multaneously (even if it satisfies the hardness conditions of the other solutions). Therefore,
their algorithm can generate only hard SAT instances that hide predefined solutions that
are relatively close to each other (i.e., the Hamming distances between those solutions are
limited).

In this paper, we propose the KHidden-M algorithm for generating random SAT in-
stances that have multiple predefined solutions. Specifically, we propose three strategies for
generating an initial SAT instance that is satisfied by all of the predefined solutions for the
KHidden-M algorithm, and we also propose a strategy for adjusting the initial SAT instance
if it cannot satisfy the hardness condition for the local search strategy. The first strategy
is called the random strategy, which randomly generates clauses that are satisfied by all
of the predefined solutions. The second strategy is called the estimating strategy, which
attempts to estimate a set of probability parameters to control the distribution of different

437



Zhao, Liao, Luo, Xiang, Jiang, & Hu

types of clauses and allows the clauses to be adjusted more easily to satisfy the hardness
condition (or directly satisfy the hardness condition) for the local search strategy. The third
strategy is called the greedy strategy, which attempts to greedily generate clauses that can
directly satisfy the hardness condition. Compared with the M-hidden algorithm (which
is a state-of-the-art algorithm for generating hard SAT instances with multiple predefined
solutions), our algorithm no longer considers the Hamming distance between the predefined
solutions but makes the generated SAT instances satisfy the hardness condition of each
solution as much as possible and iteratively optimizes it if it does not. Experimental results
show that our algorithm could be more effective than the M-hidden algorithm. Specifically,
the KHidden-M algorithm can generate harder SAT instances when the number of prede-
fined solutions is large (e.g., not less than 10) or the Hamming distance between any two
solutions is large (e.g., not less than half of the number of variables), and it can generate
SAT instances that satisfy the hardness condition for the local search strategy from more
general predefined solutions. Overall, our contributions are listed as follows.

(1) We propose an algorithm for generating random SAT instances that have multiple
predefined solutions and are difficult to solve by the local search strategy.

(2) We propose three strategies to generate an initial SAT instance that is satisfied by all
of the predefined solutions for the KHidden-M algorithm, i.e., the random, estimating
and greedy strategies. The effectiveness of the three strategies is demonstrated in
experiments.

(3) We investigate the hardness of solving the SAT instances generated by the proposed
algorithm by two typical SAT solvers, i.e., WalkSAT (Selman et al., 1995) and Kissat
(Fleury & Heisinger, 2020), and our experimental results show that our algorithm
could be more effective than the M-hidden algorithm in terms of generating hard
instances from more general predefined solutions.

The remainder of this paper is organized as follows. Section 2 presents related work on
generation algorithms for random SAT instances. Section 3 introduces the concept of SAT
instances and the hardness condition for the local search strategy. The basic KHidden-M
algorithm and the random, estimating, and greedy strategies are given in Section 4. Section
5 shows the experimental results of using the SAT solvers to solve SAT instances generated
by the KHidden-M algorithm. The KHidden-M algorithm is also compared with the M-
hidden algorithm in Section 5. Some issues about the KHidden-M algorithm are discussed
in Section 6. The proposed work is concluded in Section 7.

2. Related Work

Several algorithms for generating random SAT instances have been proposed. Specifically,
the 0-hidden algorithm was first proposed to randomly generate SAT instances, and the
instances (called 0-hidden instances for simplicity) are used to test SAT solvers (Achlioptas,
2001; Achlioptas et al., 2005; Jia et al., 2007). Selman et al. (1996) proposed using
appropriate parameters and the right distribution to generate random SAT instances for
which it is difficult to test the satisfiability; however, they did not consider the hiding of
predefined multiple solutions. Achlioptas (2000, 2005) and Jia et al. (2007) showed that
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the 0-hidden instances could not be used to test incomplete SAT solvers, and the 1-hidden
algorithm was proposed to generate random SAT instances (called 1-hidden instances for
simplicity) that have a predefined solution. Barthel et al. (2002) proposed a statistical
mechanics approach based on the existence of a first order ferromagnetic phase transition
and the glassy nature of excited states for generating hard and satisfiable 3-SAT instances.
Achlioptas et al. (2005) showed that 1-hidden instances are easy to solve by some solvers
such as WalkSAT (Selman et al., 1995), and they proposed the 2-hidden algorithm, which
hides not only the predefined solution but also its complementary solution. They claimed
that hiding the complementary solution can eliminate the bias of SAT instances toward the
predefined solution, and their experimental results showed that the 2-hidden algorithm could
generate SAT instances (called 2-hidden instances) that are harder to solve by WalkSAT
than the 1-hidden instances. Jia et al. (2007) showed that the 2-hidden instances are also
easy to solve by some solvers such as WalkSAT, and they proposed the q-hidden algorithm.
The q-hidden algorithm generates three different types of clauses with different probabilities,
and these probabilities are controlled by a parameter q. Their experimental results showed
that the q-hidden algorithm can generate SAT instances (called q-hidden instances) that
are hard to solve by the solvers based on the local search strategy (Selman et al., 1995),
e.g., WalkSAT, because these solvers are guided in a wrong direction when searching for
solutions. The q-hidden instance has one predefined solution.

Liu, Luo and Yue (2014) improved the q-hidden algorithm and proposed the p-hidden
algorithm. The p-hidden algorithm is used to generate negative databases, which is a new
privacy-preserving technique. Esponda et al. (2007) demonstrated that every negative
database can be converted to an SAT instance, and vice versa. Thus, the p-hidden algo-
rithm can also be used to generate SAT instances, and each instance has one predefined
solution. The p-hidden algorithm uses parameters p1 and p2 to control the probabilities of
generating different types of clauses in an SAT instance. The p-hidden algorithm can search
over a wider scope than the q-hidden algorithm to generate harder SAT instances. Zhao et
al. (2015a, 2017) proposed a more fine-grained algorithm called the K-hidden algorithm to
generate hard-to-reverse negative databases. Compared with the p-hidden algorithm and q-
hidden algorithm, their algorithm can generate harder K-SAT instances, and it can control
the hardness of the SAT instances (against the local search strategy) in a more fine-grained
manner. The K-hidden algorithm also has only one predefined solution. Xu et al. (2000,
2006) proposed several models for generating random constraint satisfaction instances, and
they showed that their models can also be used to generate satisfiable and hard SAT in-
stances (Xu et al., 2007). They claimed that their models can precisely locate a threshold
where all of the instances are hard to solve, but they did not investigate the hiding of mul-
tiple predefined solutions. Oleksii Omelchenko et al. (2021) proposed a configurable model
that first samples each variable based on the number of occurrences and then generates
a random instance with the prescribed degrees. Giráldez-Cru et al. (2021) proposed the
popularity-similarity model for random SAT instances, which can generate formulas with a
power-law distribution for the number of variable occurrences and high clustering between
them. They showed that the performance of CDCL SAT solvers is related to the existence
of popularity and similarity in the SAT formulas. Barak-Pelleg (2022) et al. proposed a
random industrial SAT model, which focuses on the community structure of instances, and
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they showed experimentally that the satisfiability threshold of such instances tends to be
lower than that for random SAT and even vanishes under certain conditions.

Liu, Luo and Yue (2015) proposed an algorithm called the M-hidden algorithm for gen-
erating random SAT instances with multiple predefined solutions. However, to successfully
generate SAT instances that are expected to be hard to solve by the local search strategy,
the predefined solutions in their algorithm should be somewhat close to each other (e.g., ev-
ery predefined solution should have more than half of the assignments being the same as any
of the other predefined solutions). This algorithm is adopted for experimental comparisons
with the algorithm proposed in this paper.

In this paper, we propose the KHidden-M algorithm, which could be more effective than
the M-hidden algorithm, to generate random hard SAT instances with multiple predefined
solutions. Note that our algorithm can also be used to generate hard-to-reverse negative
databases.

3. Preliminaries

In this section, we introduce the concept of the SAT instance (also called the SAT formula)
in Subsection 3.1, and we introduce the hardness condition for the local search strategy in
Subsection 3.2.

3.1 SAT Instance

In general, one SAT instance is a conjunctive normal form (CNF) formula with n logical
variables v1, ..., vn, each variable has two literals, a positive literal li (i = 1, ..., n) and
a negative literal l̄i. The positive literal li is satisfied if and only if the variable vi is
assigned “True”, and the negative literal l̄i is satisfied if and only if the variable vi is
assigned “False”. Specifically, SAT instance C consists of the conjunction of m clauses
c1, ..., cm, each of which is the disjunction of several literals. C is satisfied if and only
if all the clauses in C are satisfied, and a clause is satisfied if and only if at least one
literal in the clause is satisfied. A satisfying assignment for C is a set of assignments to
variables v1, ..., vn, and this satisfying assignment is called one solution of C. For example,
if C = (l1 ∨ l̄2 ∨ l3) ∧ (l1 ∨ l̄3 ∨ l5) ∧ (l̄3 ∨ l̄4 ∨ l̄5), then n = 5, m = 3 and a solution is v1 =
true, v2 = false, v3 = false, v4 = true and v5 = true. For simplicity, we denote “True” 1
and “False” 0 in the rest of this paper, and the above assignments can be denoted a string
10011, corresponding to variables v1, ..., v5, respectively. SAT problems exist in various real-
world applications, and the problems are extracted as SAT instances while their solutions
are unknown but important. Thus, SAT solvers are designed to solve the SAT instances to
obtain the solutions.

3.2 Hardness Condition for the Local Search Strategy

The local search strategy is widely used in SAT solvers to search the solutions of SAT in-
stances. The well-known solver WalkSAT (Selman et al., 1995) based on the local search
strategy is described in Algorithm 1 below. First, the algorithm generates a set of assign-
ments for all variables in step 2. Then, steps 3−18 attempt to flip variables (i.e., switches
“True” to “False” or “False” to “True”) to find a solution for C. At each iteration, an un-
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satisfied clause c is randomly chosen first. Then if there is a variable in c with break-count
(i.e., the number of currently satisfied clauses that become unsatisfied after flipping) equals
0, this variable is flipped. Otherwise, with probability p, the algorithm flips a random vari-
able in c, and with probability 1 − p, it flips a variable in c that minimizes break-count.
Such flips can be performed at most maxFlips times. Once a solution for C is found, it is
immediately returned to step 5. This process can be repeated up to maxTries times, and
then, if no solution is found, the algorithm returns a failure message in step 20.

Algorithm 1 WalkSAT

Input: An SAT instance C, maxTries, maxFlips, noise parameter p ∈ [0, 1]
Output: A satisfying assignment for C, or FAIL
1: for i← 1 to maxTries do
2: σ ← a randomly generated truth assignment for C
3: for j ← 1 to maxFlips do
4: if C is satisfied by σ then
5: return σ
6: end if
7: c← a randomly selected unsatisfied clause in C
8: if there is a variable x in c with break-count = 0 then
9: v ← x

10: else
11: if random(0, 1) ≤ p then
12: v ← a randomly selected variable in c
13: else
14: v ← a variable in c with the smallest break-count
15: end if
16: end if
17: Flip v
18: end for
19: end for
20: return FAIL

The hardness condition for the local search strategy has been analyzed in some work
(Achlioptas, 2001; Achlioptas et al., 2005; Jia et al., 2007; Liu et al., 2015, 2014; Zhao et al.,
2015a). Specifically, assume that s is a solution for C, and the clauses in C are divided into
K types according to s, where the type i (i = 1, ...,K) clause has i literals that are satisfied
by s. Assume that pi refers to the proportion of type i clauses to all clauses in C. As shown
in Subsection 3.1, s can be denoted an n-bit string. For another random string t, if it has
u bits that are different from s, the probability that a type i clause is unsatisfied by t can
be calculated as follows (Jia et al., 2007; Liu et al., 2014; Zhao et al., 2015a):

Pi,t =

(
n−K
u−i
)(

n
u

) =

∏K−i−1
j=0 (n− u− j)×

∏i−1
j=0(u− j)∏K−1

j=0 (n− j)
n→∞−−−→ αi × (1− α)K−i,
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Figure 1: Example of searching s using the local search strategy.

where α = u/n. Next, the expected proportion of clauses in C that are satisfied by t can
be calculated as follows (Jia et al., 2007; Liu et al., 2014; Zhao et al., 2015a):

g(α) = 1−
K∑
i=1

pi × αi × (1− α)K−i.

Jia et al. (2007) concluded through theoretical and experimental analysis that when
g′(0.5) > 0, it is difficult for the local search strategy to find solution s. Figure 1 presents
an example of searching s by the local search strategy. The horizontal coordinate is the value
of α between the current string t (i.e., the current assignments that are achieved by the local
search strategy) and solution s. The vertical coordinate is the expected proportion of clauses
that are satisfied by t. Initially, t is expected to have approximately 0.5n bits different from
s (when n is large enough, e.g., n > 100) because the strings that have approximately 0.5n
bits different from s occupy more than half of the search space. According to the mechanism
of the local search strategy, it will search along the direction of satisfying more clauses in
C, i.e., the direction away from s. Therefore, when g′(0.5) > 0, the local search strategy is
expected to be unable to find s. Based on g(α), g′(0.5) > 0 is converted to the following
(Liu et al., 2014; Zhao et al., 2015a):

f = g′(0.5) =

K∑
j=1

(K − 2× j)× pj > 0. (1)

Formula (1) is considered the hardness condition for the local search strategy.

4. KHidden-M Algorithm

In this section, the KHidden-M algorithm is proposed. Subsection 4.1 describes the al-
gorithm framework and the random strategy, and Subsection 4.2 gives the details of the
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adjustment strategy. The estimating strategy and the greedy strategy for improving the
basic KHidden-M algorithm are presented in Subsections 4.3 and 4.4, respectively.

4.1 Basic Algorithm and Random Strategy

The KHidden-M algorithm is shown in Algorithm 2. The input includes a set of predefined
solutions S = {s1, ..., sns} and the parameters K and r. Parameter K determines that
the generated clauses will have exactly K literals (these clauses are called K-clauses for
simplicity), and parameter r is the ratio of the number of clauses to the number of variables,
i.e., m = n× r, where n is the number of variables. The output is the SAT instance C that
consists of m generated clauses. Steps 1−6 constitute the random strategy.

Algorithm 2 KHidden-M algorithm

Input: A set of solutions S = {s1, ..., sns}, K, r
Output: An SAT instance C
1: C ← ∅, m← n× r
2: i← 0
3: while i < m do
4: t← a randomly generated clause that is satisfied by all of the solutions in S
5: C ← C ∧ t, i← i+ 1
6: end while
7: if isHard(C, S) = False then
8: return adjust(C, S)
9: end if

10: return C

In the KHidden-M algorithm, first, C is initialized as the empty set, and m is set to
be n × r. Next, m clauses, which are satisfied by all of the solutions in S, are generated
by m iterations and added to C in steps 2−6. Specifically, in step 4, clause t is generated
as follows: 1) K different variables are randomly selected uniformly and independently; 2)
all of the clauses that contain only the literals of the selected K variables are enumerated
and are satisfied by all of the solutions in S; and 3) a clause is randomly selected from the
clauses obtained in 2). Note that the time complexity of step 4 is O(max(2K , ns × K)).
Then, step 7 checks whether C is expected to be hard to solve by the local search strategy
using the function isHard(C, S). This function is based on the hardness condition for the
local search strategy, and it returns “true” only when the following conditions are satisfied
simultaneously:



∑K
j=1(K − 2× j)× p1,j > 0

...∑K
j=1(K − 2× j)× pi,j > 0

...∑K
j=1(K − 2× j)× pns,j > 0

, (2)
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where P = {P1, ..., Pns}, Pi = {pi,0, ..., pi,K}(i = 1, ..., ns), and pi,j(j = 0, ...,K) is the
proportion of the type j clause with regard to si in C. With regard to si, the K-clauses can
be divided into the following K + 1 types:

• Type 0 clause Ti,0: All of its literals are unsatisfied by si.
...

• Type j clause Ti,j : It has j literals that are satisfied by si, and the others are
unsatisfied by si.
...

• Type K clause Ti,K : All of its literals are satisfied by si.

If C does not satisfy the hardness condition in (2), then it will be adjusted in step 8, and
the adjusted C will be returned. Otherwise, C will be returned in step 10. The details of the
function adjust() are given in Subsection 4.2, and adjust() returns the adjusted instance and
a Boolean value to identify whether the adjustment is successful. Although the returned
Boolean value is not used here, we collect it as experimental results in Section 5. Assume
that ns predefined solutions have ti situations for the value for the i-th combination of K
variables selected from n variables, so the probability of generating two duplicate clauses

in the KHidden-M algorithm is 1

(n
K)

2 ×
∑(n

K)
i=1

1
(2K−ti)2

, which is very low; thus we generally

do not consider it. If and only if the number of given predefined solutions is larger than
2n−2n−K , the KHidden-M algorithm cannot generate the instance that satisfies all solutions
and will fall into an infinite loop (which can be avoided by simply adding corresponding
conditional judgments to the code).

4.2 Adjustment Strategy

The details of the adjustment strategy are given in Algorithm 3. The input includes C,
S, the maximum number of iterations maxIter and ε used to control the data precision.
Generally, we set maxIter and ε to 3000 and 10−6, respectively. The output is the adjusted
instance and a Boolean value. The Boolean value is true if C is successfully adjusted to
satisfy (2); otherwise, it is false.

In the 1st step, the f values of all solutions in S are calculated by the function getF(),
where the f value of si(i = 1, ..., ns) is defined as follows, and F = {f1, ..., fns}. Note that
the function getF() has no effect on the current SAT instance.

fi =
K∑
j=1

(K − 2× j)× pi,j . (3)
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Algorithm 3 adjust(C, S,maxIter, ε)

Input: An SAT instance C = c1∧, ...,∧cm, a set of solutions S = {s1, ..., sns}, maxIter, ε
Output: Adjusted instance C, True/False
1: F ← getF ()
2: for j ← 1 to maxIter do
3: idx← a random permutation of {1, ...,m}
4: for i← 1 to m do
5: temp c← cidx[i]

6: flip n← random({1, ...,K})
7: B = {b1, ..., bflip n} ← randomly select flip n literals from cidx[i]

8: cidx[i] ← (cidx[i] \B) ∪ {b̄k|bk ∈ B}
9: if cidx[i] is satisfied by all of the solutions then

10: F ′ ← F
11: v ← dF (cidx[i], temp c)
12: if v < −ε then
13: cidx[i] ← temp c, F ← F ′

14: else if −ε ≤ v ≤ ε then
15: cidx[i] ← temp c, F ← F ′ with probability 50%
16: else if isHard(C) = True then
17: return C and True
18: end if
19: end if
20: end for
21: end for
22: return C and False

Steps 2−21 attempt to randomly flip the literals in C to iteratively enhance the f
values of the predefined solutions. In each iteration, a random permutation of {1, ...,m} is
generated first, and this permutation determines the order of the clauses in which literals
will be flipped. For the i-th selected clause, after it is backed up to temp c in step 5, flip n
literals will be randomly chosen and flipped in steps 6−8, where flip n is a random number
that is generated in step 6. Assume that Ti(x) denotes the type of clause x with regard to
si, and dF (x, y) for any clause x or y denotes the gain after substituting x for y instead
of simply the sum of changes in the f value of the predefined solutions. After flipping, if
the new clause is still satisfied by all of the solutions in S, then dF (cidx[i], temp c) will be
computed to judge whether this flip is useful in steps 10−19. Specifically, if C does not
satisfy the hardness condition in (2) before or after flipping, dF (x, y) can be calculated as
follows:

dF (x, y) =
∑ns

i=1

([
(fi < 0) ∨

(
fi + 2×(Ti(y)−Ti(x))

m < 0
)]
× 2×(Ti(y)−Ti(x))

m

)
, (4)

where
[
(fi < 0) ∨

(
fi + 2×(Ti(y)−Ti(x))

m < 0
)]

returns 1 when it is true; otherwise, it returns

0.
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If C satisfies the hardness condition in (2) both before and after flipping, then dF (x, y)
can be calculated as follows:

dF (x, y) = min{f ′i |∀i = 1, ..., ns} −min{fi|∀i = 1, ..., ns}, (5)

where min{fi|∀i = 1, ..., ns} and min{f ′i |∀i = 1, ..., ns} denote the minimum f values before
and after flipping, respectively. If the minimum f value before flipping is equivalent to the
minimum f value after flipping, then dF (x, y) will be recalculated as follows:

dF (x, y) =

ns∑
i=1

2× (Ti(y)− Ti(x))

m
. (6)

If dF (x, y) is less than −ε, the flipping and f values will be restored in step 13. If
|dF (x, y)| is not larger than ε, the flipping and f values will be restored with a probability
of 50% in step 15. Otherwise, flipping will take effect, and if C satisfies (2), then Algorithm
3 will immediately return the adjusted C and “True” in step 17. If C does not satisfy (2)
after maxIter iterations, Algorithm 3 will return the adjusted C and “False” in step 22
(which means that even if the final adjustment fails, the previous useful flips will still be
saved). Note that the value of maxIter can be set empirically or according to pretesting.
Usually, when maxIter is larger, Algorithm 3 can be more effective in adjusting C to satisfy
(2), but more computational cost are needed. According to the computing resources, users
can properly enlarge the value of maxIter to enhance the success rate of the adjustment
strategy.

4.3 Estimating Strategy

In this subsection, we provide a strategy called the estimating strategy to improve the
basic KHidden-M algorithm. With this improvement, the rate of successfully generating a
random SAT instance that satisfies (2) could be enhanced (as demonstrated in Section 5).

Algorithm 4 Estimating strategy

Input: A set of solutions S = {s1, ..., sns}, K, r
Output: An SAT instance C
1: C ← ∅, m← n× r
2: sx ← randomly select a solution from S
3: Calculate Px = {px,0, ..., px,K} according to (12) or (13)
4: Let SP = {SP0, ..., SPK}, where SP0 = 0 and SPi = px,0 + ...+ px,i(i = 0, ...,K)
5: i← 0
6: while i < m do
7: temp v = random(0, 1)
8: t← randomly generate a type u clause (with regard to sx) that is satisfied by all of

the solutions in S, where u satisfies SPu−1 ≤ temp v < SPu

9: C ← C ∧ t, i← i+ 1
10: end while
11: return C
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Literals Type with regard to sx

Part 1 Part 2 0 ... u ... K

0 K Ty,K ... Ty,K−u ... Ty,0

1 K − 1 Ty,K−1 ... u
KTy,K−u+1 + K−u

K Ty,K−u−1 ... Ty,1

... ... ... ... ... ... ...

w K − w Ty,K−w ...
∑min{w,u}

v=0
(wv)×(K−w

u−v )
(Ku)

Ty,K−w−u+2v ... Ty,w

... ... ... ... ... ... ...

K 0 Ty,0 ... Ty,u ... Ty,K

Table 1: Proportions of different types of clauses with regard to sy

In the random strategy in Algorithm 2, the initial m clauses of instance C are arbitrarily
and randomly generated (while being satisfied by all of the predefined solutions). In this
case, the f values of the predefined solutions that are obtained from C are usually less than 0.
Therefore, the KHidden-M algorithm would need much effort or even fail when it attempts
to adjust C to satisfy (2). Thus, we present the estimating strategy for generating the
initial C in Algorithm 4. The estimating strategy exploits the fact that if the SAT instance
is generated according to a predefined Pi = {pi,0, ..., pi,K}(pi,0 = 0) for a solution si, the
Pj of any other predefined solution sj can be roughly estimated (Liu et al., 2015). Thus,
by selecting an appropriate Pi, the estimating strategy roughly controls Pj and attempts
to generate a random SAT instance that may be easier to adjust to satisfy the hardness
condition (or directly satisfy the hardness condition). Specifically, in Algorithm 3, a solution
sx is randomly selected from S in step 2, and an appropriate Px is computed in step 3. In
steps 6−10, m iterations are performed. In each iteration, the type j(j = 1, ...,K) clause
with regard to sx is generated with probability px,j , and then, the generated clause is added
to C in step 9. The details of obtaining an appropriate Px are described as follows.

First, we consider the case where there are two predefined solutions, i.e., sx and sy. We
divide n variables into two parts, i.e., part 1 contains the variables where sx and sy have
the same assignments, and part 2 contains the variables where sx and sy have different
assignments. Assume that part 1 contains u variables, that u = α × n and that part 2
contains n− u variables. When generating an SAT instance C that has the solution sx and
is hard to solve by the local search strategy, the proportions of clauses in C are expected to
satisfy fx =

∑K
j=1(K − 2× j)× px,j > 0 and px,0 = 0. In step 8, when randomly generating

the clause t, K variables are selected first. The probability that t contains w variables that
belong to part 1 and K −w variables that belong to part 2 is as follows (when n→ +∞) :

qw =

(
K

w

)
× αw × (1− α)K−w. (7)

447



Zhao, Liao, Luo, Xiang, Jiang, & Hu

Table 1 shows the proportions of different types of clauses with regard to sy when t is a
type u(u = 1, ...,K) clause with regard to sx(without considering whether t is satisfied by
sy). Ty,j in Table 1 denotes a type j clause with regard to sy.

If solution sy is also hidden, then the type 0 clause with regard to sy will be rejected in
step 8 in Algorithm 4. According to (7) and Table 1, the expected proportion of the type
j clause with regard to sy can be calculated by (8). Note that the process of deducing py,j
is based on (Liu et al., 2015).

py,j =
∑K

u=1 Psum
−1
y,u ×

∑K
w=0 Ps

−1
u,w ×

(
K
w

)
× αw × (1− α)K−w×

∑min{w,u}
v=0

(wv)×(K−w
u−v )

(Ku)
× px,u × [j = K − w − u+ 2v]

=
∑K

u=1 Psum
−1
y,u ×

∑K
w=0 Ps

−1
u,w × αw × (1− α)K−w×

[j −K + w + u is even]×
( u

j−K+w+u
2

)
×
( K−u

K+w−u−j
2

)
× px,u

, (8)

where Psu,w (u = 1, ...,K, w = 0, ...,K) is calculated as follows:

Psu,w = 1−
∑min{w,u}

v=0
(wv)×(K−w

u−v )
(Ku)

× [K − w − u+ 2v = 0]

= 1− [K − w − u is even]×
( w
w+u−K

2
)×( K−w

K+u−w
2

)

(Ku)

, (9)

Psumy,u(u = 1, ...,K) is calculated as follows:

Psumy,u = 1−
K∑

w=0

(
K

w

)
× αw × (1− α)K−w × [Psu,w = 0]. (10)

Dividing by Psu,w in (8) occurs because when generating a type u clause with regard
to sx and the K variables (used for constructing the clause) are selected, the probability of
generating other types of clauses with regard to sy will be increased if the type 0 clause with
regard to sy is rejected. Dividing by Psumy,u occurs because if all of the type u clauses
(with regard to sx) that are constructed by the literals of the selected K variables are type
0 clauses with regard to sy, these clauses will be rejected and the probability of selecting
other sets of variables will be increased.

If C hides the ns solutions in S, then the corresponding α1, ..., αns between s1, ..., sns and
sx can be calculated, where αi(i = 1, ..., ns) denotes the proportion of variables that have
different assignments between si and sx. Based on Algorithm 4 and Px = {px,1, ..., px,ns},
the expected proportion of type j clauses with regard to si can be roughly approximated
as follows:

pi,j ≈
∑K

u=1 Psum
−1
i,u ×

∑K
w=0 Ps

−1
u,w × αw × (1− α)K−w×

[j −K + w + u is even]×
( u

j−K+w+u
2

)
×
( K−u

K+w−u−j
2

)
× px,u

. (11)
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To generate an SAT instance C that hides s1, ..., sns and is hard to solve by the local
search strategy, (2) must be satisfied. Note that pi,0 = 0(i = 1, ..., ns) because only the
clauses that are satisfied by all of the solutions in S will be accepted and added to C (refer
to Algorithm 4).

After substituting (11) into (2), we obtain ns inequalities with K variables, px,1, ..., px,K .
Several algorithms can be used to solve these inequalities and obtain an appropriate Px,
which can be used to generate SAT instances that are expected to be hard to solve by the
local search strategy. For example, searching an appropriate Px can be formalized as a
linear programming problem in (12), and there are many algorithms for solving the linear
programming problem. Note that the hardness of finding a solution si by the local search
strategy is expected to increase with the f value of si (Jia et al., 2007; Liu et al., 2014;
Zhao et al., 2017), and flinear might be related to the overall hardness.

Minimize : flinear = −
ns∑
i=1

K∑
j=1

(K − 2× j)× pi,j . (12)

Subject to 

∑K
j=1 px,j = 1

0 ≤ px,j ≤ 1 for j = 1, ...,K∑K
j=1(K − 2× j)× pi,j > 0 for i = 1, ..., ns

,

where pi,j is calculated using (11).

When the above linear programming problem has a feasible solution, it can be effectively
solved, and the expected px,1, ..., px,K can be obtained. However, in a few cases, e.g., there
is a solution in S that has more than 90% assignments different from sx (i.e., α > 0.9), the
above linear programming problem might have no feasible solutions. In these cases, the 3rd
constraint in (12) can be abandoned, and the modified linear programming problem can be
solved to obtain a solution. Although this solution is not what we originally expected, it
could be used to randomly generate an instance C that would be easier to adjust to satisfy
the hardness condition in (2).

Another way, which could be more reasonable, to handle the case in which no feasible
solutions exist is to redefine the object as follows:

Minimize : fquad = max
i=1,...,ns

−
K∑
j=1

(K − 2× j)× pi,j

 . (13)

The constraints are the first two constraints in (12), and the 3rd constraint is abandoned.
Note that the above problem can be solved by the sequential quadratic programming (SQP)
method (Boggs & Tolle, 1995), e.g., using the “fminimax” function in MATLAB.

After solving the problem, we can obtain a setting of Px = {px,0, ..., px,K}, and we
can randomly generate clauses of C according to Px and sx (as shown in Algorithm 4).
According to the above analyses, the proportions of different types of clauses with regard
to other solutions in S are expected to satisfy the hardness condition as well. Although the
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generated SAT instance is expected to be hard to solve by the local search strategy, in a bad
situation, it would violate some hardness conditions in (2) after the estimating strategy is
called. In this situation, an adjustment strategy in Algorithm 3 will be performed to tune
P . Even in the bad situation, the C generated based on the estimating strategy would be
easier to adjust to satisfy the hardness condition in (2) than that generated based on the
random strategy in Algorithm 2. The effectiveness of the estimating strategy is shown in
Section 5.

4.4 Greedy Strategy

In this subsection, we provide a greedy strategy for improving the basic KHidden-M algo-
rithm. Similar to the estimating strategy, this strategy attempts to improve the random
generation of the initial C in steps 1−6 (i.e., the random strategy) in Algorithm 2. The
greedy strategy is shown in Algorithm 5. By using this algorithm, we attempt to randomly
generate an SAT instance that makes the f values of most of the predefined solutions larger
than 0 and enhances the success rate of adjusting C to satisfy (2).

Algorithm 5 Greedy strategy

Input: A set of solutions S = {s1, ..., sns}, K and r
Output: An SAT instance C
1: C ← ∅, m← n× r
2: Initialize F = {f1, ..., fns}, fi ← 0(i = 1, ..., ns)
3: i← 0
4: while i < m do
5: Let S1 be the set of predefined solutions that have the minimum f value in F
6: Randomly select a solution sj from S1
7: v ← random

(
1, ..., bK−1

2 c
)

8: Randomly generate a type v clause t (with regard to sj) that is satisfied by all of the
solutions in S

9: C ← C ∧ t, i← i+ 1
10: updateF (F,C, t, S)
11: end while
12: return C

The greedy strategy attempts to make the current SAT instance satisfy (2) as much
as possible when generating each clause. This may result in the generated SAT instance
directly satisfying (2), rendering the adjustment strategy ineffective. In addition, the pur-
pose of the greedy strategy is to make the generated SAT instance have the maximum f
value with regard to each predefined solution, rather than just above zero. Intuitively, the
f values of the SAT instance generated by the estimating strategy may be slightly greater
than 0, while the f values of the SAT instance generated by the greedy strategy may be far
greater than 0. The effectiveness of the greedy strategy is shown in Section 5.

In Algorithm 5, the f values in F are initialized to 0 in step 2. In steps 4−11, m
iterations are performed to generate m clauses. In each iteration, a solution sj that has
the minimum f value in the current F is selected, and then, a type v clause t (with regard
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to sj) that is satisfied by all of the solutions in S is generated. Specifically, in step 8, t is
generated as follows: 1) randomly select K variables; 2) enumerate all of the clauses that
contain only the literals of the selected K variables and insert them into clause set L; 3)
delete the clauses that are not satisfied by any solution in S or are not a type v clause with
regard to sj from L; and 4) randomly select a clause from L. Because v is randomly selected
from the interval

[
1, bK−1

2 c
]
, the f value of sj will increase after t is added to C. The f

values of all of the predefined solutions are updated by the function updateF() in step 10.

Algorithm 6 updateF (F,C, t, S)

Input: The set of f values F = {f1, ..., fns}, an SAT instance C, a clause t, and a set of
solutions S = {s1, ..., sns}

1: u← the current number of clauses in C
2: for i← 1 to ns do
3: v ← the type of t with regard to si
4: fi ← (u− 1)× fi

u + K−2×v
u

5: end for

The details of updateF () are given in Algorithm 6. Specifically, if t is a type v clause
with regard to si(i = 1, ..., ns), then adding t to C leads to a change in pi,v. Assume that
pi,j(j = 1, ...,K) denotes the proportion of type j clauses with regard to si in C before
adding t and that p

′
i,j denotes the proportion after adding t. Then, we have the following:

p
′
i,j =

(u−1)×pi,j
u , 1 ≤ j ≤ K and j 6= v

p
′
i,j =

(u−1)×pi,j+1
u , j = v

, (14)

where u is the current number of clauses in C.

Assume that the f value of si before adding t is fi and that the f value after adding t
is f

′
i . Thus, we have the following:

f
′
i =

∑K
j=1(K − 2× j)× p′i,j

=
∑K

j=1(K − 2× j)× (u−1)×pi,j
u + K−2×v

u

= u−1
u fi + K−2×v

u

. (15)

The greedy strategy can be used to replace the random strategy (i.e., steps 1−6) in
Algorithm 2. Section 5 shows that the greedy strategy can enhance the success rate of
generating an SAT instance that satisfies (2) from multiple predefined solutions.

5. Experimental Results

In this section, we conduct several experiments to show the performance of the KHidden-M
algorithm and the hardness of the instances that are generated by the KHidden-M algorithm
(called KHidden-M instances for simplicity).
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5.1 Experimental Setup

In the experiments, first, we randomly generate an n-bit string s0, and next, we construct
the predefined solutions in S based on s0. Specifically, the assignment “True” is denoted
1, and “False” is denoted 0. Each solution si (i = 1, ..., ns) in S is denoted an n-bit string.
A parameter maxH is used to control the Hamming distances between the predefined so-
lutions. When constructing a solution in S, t bits are randomly selected first, and then, si
is set to be the same as s0 except for those t bits being different. For ns − 2 predefined
solutions, t is a random number that is not larger than maxH/2. For the other two pre-
defined solutions su and sv, t is fixed as maxH/2. Moreover, the t bits of su are forced
to be different from those of sv, i.e., there are maxH different bits between su and sv. In
the above way, the Hamming distance between any two predefined solutions in S is limited
by maxH, and maxH is set to n/2 by default. After S is generated, we randomly choose
sx from S and collect the values of α1, ..., αns between s1, ..., sns and sx. Then, we use
the function “fminimax” (which uses the sequential quadratic programming method) in
MATLAB to calculate an appropriate Px for the estimating strategy.

Next, the KHidden-M algorithm is used to generate an SAT instance C from S. Then,
the SAT solvers WalkSAT and Kissat are used to solve C, where the number of flips made
by WalkSAT and the runtime of Kissat are recorded. WalkSAT is set to restart at most
104 times and to perform at most 104 flips per time, and the noise is set to 0.5. Kissat
is set to “sat” mode, and the maximum runtime is set to 3600 seconds. When the solver
performs more flips or executes for a longer time, C is harder to solve by the solver. The
above experiment is conducted 29 times, and the number of flips made by WalkSAT and
the runtime of Kissat are recorded to evaluate the hardness of KHidden-M instances. Note
that WalkSAT is a typical SAT solver based on the local search strategy and is widely
used to verify the hardness of SAT instances (Achlioptas et al., 2005; Jia et al., 2007; Liu
et al., 2015, 2014; Zhao et al., 2017). Specifically, we choose the v56 version of WalkSAT
released in May 2018. Kissat is a state-of-the-art CDCL solver that won the first place of
the main track in SAT Competition 2020. For simplicity, the KHidden-M algorithms using
the random, estimating, and greedy strategies are called the KHidden-M-rand, KHidden-
M-estimate, and KHidden-M-greedy algorithms, respectively.

5.2 Hardness of KHidden-M Instances against WalkSAT and Kissat

In this subsection, we investigate the influence of the parameters r, n,maxH and ns on the
hardness of the KHidden-M instance against WalkSAT and Kissat. Moreover, we compare
the effectivenesses of the random, estimating and greedy strategies.

5.2.1 Varying r

To investigate the influence of the parameter r on the hardness of the KHidden-M instance
against WalkSAT and Kissat, we conduct this experiment. Specifically, the parameter
settings are n = 500, maxH = n/2, ns = 2 and K = 3. We vary r from 1 to 10 with
a step size of 0.5. In each attempt, three SAT instances are generated by the KHidden-
M-rand, KHidden-M-estimate and KHidden-M-greedy algorithms. The three instances are
then solved by WalkSAT and Kissat, and this process is repeated 29 times for both solvers.
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Figure 2: Performances of WalkSAT (top) and Kissat (bottom) in solving the SAT instances
generated by the KHidden-M algorithm with the random, estimating and greedy
strategies when r is varied from 1 to 10.

Note that in this experiment, regardless of whether a generated SAT instance satisfies the
hardness condition in (2), it will be solved by two solvers.

Figure 2 (top) shows that when r is not larger than 4.5, the hardness for WalkSAT to
solve the SAT instances generated by the KHidden-M-rand and KHidden-M-estimate algo-
rithms increases rapidly with the increase in r. When r equals 4.5, WalkSAT needs approx-
imately 20 million flips to solve the SAT instances generated by the KHidden-M-estimate
algorithm but only approximately 10 million flips to solve the SAT instances generated by
the KHidden-M-rand algorithm. The SAT instances generated by the KHidden-M-greedy
algorithm are relatively easier to solve by WalkSAT than that generated by the other two
algorithms when r is not larger than 5. The reason might be that all three algorithms can
adjust the instances to satisfy the hardness condition; the KHidden-M-greedy algorithm
generates instances with less randomness, and WalkSAT can solve the instances more eas-
ily. When r is not less than 4.5, the hardness of the SAT instances generated by the
KHidden-M-rand and KHidden-M-estimate algorithms gradually decreases with increasing
r. WalkSAT cannot successfully solve the SAT instances generated by the KHidden-M-
greedy algorithm when r is not less than 5.5. All these results show that the estimating and
greedy strategies can be more effective than the random strategy, and the greedy strategy
can outperform the other two strategies when r is large (e.g., r > 5.5).

As shown in Figure 2 (bottom), regardless of how r changes, the performance of the
KHidden-M-estimate algorithm is almost the same as that of the KHidden-M-rand algo-
rithm. When r is less than 4.5, the hardness of the SAT instances generated by the KHidden-
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M-rand and KHidden-M-estimate algorithms increases with increasing r and finally reaches
a peak at r equals 4.5, which means that Kissat needs approximately 150 seconds to solve
them. However, Kissat can solve the SAT instances generated by the KHidden-M-estimate
and KHidden-M-rand algorithms in 1 second when r is less than 4. Similarly, the process of
peaking the hardness of the SAT instances generated by the KHidden-M-greedy algorithm
is delayed until r increases to 5.5, which means that Kissat takes approximately 40 seconds
to solve them. When r is larger than 4.5, the hardness of the SAT instances generated by
the KHidden-M-estimate and KHidden-M-rand algorithms decreases rapidly with increas-
ing r and finally stabilizes at approximately 0.2 seconds. When r is larger than 5.5, the
performance of the KHidden-M-greedy algorithm is the best, but it decreases rapidly with
increasing r, and finally stabilizes at approximately 0.1 seconds. Overall, no matter how r
is modified, the SAT instances generated by the three strategies are not difficult to solve
by Kissat (most cases can be solved in seconds). These results show that for Kissat, the
instances generated by our three algorithms have a certain hardness only when r is fixed to
a specific value. Once r is modified, the hardness of the whole instance will drop rapidly.

5.2.2 Varying n

In this experiment, we investigate the influence of n on the hardness of the KHidden-M
instance against WalkSAT and Kissat. In view of the results of r changes in the previous
subsection, we decided to adopt the optimal r for different strategies: 4.5 for the random
strategy and the estimating strategy and 5.5 for the greedy strategy. The settings of other
parameters are ns = 2, maxH = n/2 and K = 3. We vary n from 100 to 1500 with a step
size of 100. The results are shown in Figure 3.

Figure 3 (top) shows that when n is not larger than 700, the hardness of the SAT in-
stances (against WalkSAT) generated by the KHidden-M-rand and the KHidden-M-estimate
algorithms increases with increasing n. When n is larger than 700, the number of flips made
by WalkSAT to solve the KHidden-M-rand instances and the KHidden-M-estimate instances
goes to the upper bound, i.e., 108. Increasing n usually leads to an exponential increase in
the search space of the SAT solvers, and thus, the SAT solvers usually need to make more
flips. The number of flips made by WalkSAT to solve the KHidden-M-greedy instances goes
to the upper bound at a smaller n (i.e., 300), but the performance of the greedy strategy
is more unstable than that of the other two strategies, a phenomenon gradually disappears
when n is large enough (e.g., 1000). These results also show that with these parameter set-
tings, the greedy strategy can be more effective (in generating hard SAT instances against
WalkSAT) than the random and estimating strategies.

Figure 3 (bottom) shows that the performances of the three strategies are similar. Over-
all, the KHidden-M-estimate algorithm performs slightly better than the KHidden-M-rand
and KHidden-M-greedy algorithms most of the time. When n is less than 800, the time
spent by Kissat to solve the SAT instances generated by the three algorithms increases
rapidly with increasing n, and finally reaches the upper limit, i.e., 3600 seconds. When n
is not less than 800, Kissat can only solve several SAT instances generated by the three
strategies within a specified time, and most of them are generated by the KHidden-M-greedy
algorithm. These results show that the hardness of the SAT instances (against Kissat) gen-
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Figure 3: Performances of WalkSAT(top) and Kissat(bottom) in solving the SAT instances
generated by the KHidden-M algorithm with the random, estimating and greedy
strategies when n is varied from 100 to 1500.

erated by our three strategies can be guaranteed when the number of variables is sufficient
and with other optimal parameters.

5.2.3 Varying maxH

In this experiment, we investigate the hardness of the KHidden-M instances generated
based on the random, estimating and greedy strategies against WalkSAT and Kissat when
varying maxH from 0 to n. The results are shown in Figure 4. For simplicity, in Figure 4, we
denote the KHidden-M algorithm that uses the adjust strategy with the random, estimating,
and greedy strategies “rand-adjust”, “estimate-adjust”, and “greedy-adjust”, respectively.
We denote the KHidden-M algorithm that uses only the random, estimating, and greedy
strategies (and does not use the adjustment strategy) “rand”, “estimate”, and “greedy”,
respectively. The parameter settings are n = 500, r = 4.5 for “rand”, “rand-adjust”,
“estimate” and “estimate-adjust”, r = 5.5 for “greedy” and “greedy-adjust”, ns = 2 and
K = 3. For all of these settings, we use the same 29 predefined solution sets to generate
SAT instances and record the median number of flips made by WalkSAT and the median
Kissat runtime as results.

First, the performance of the adjustment strategy is examined. As Figure 4 shows, for
the random and estimating strategies, the effect of using the adjustment strategy is obvious,
while the improvement in the greedy strategy is relatively insignificant. The changes in the
hardness of the SAT instances generated by the three strategies (against WalkSAT and
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Figure 4: Performances of WalkSAT(left) and Kissat(right) in solving the SAT instances
generated by the KHidden-M algorithm with random, estimating and greedy
strategies when maxH is varied from 0 to m.

Kissat) exhibit similar characteristics when maxH varies. For the random strategy, the
performance of the adjustment strategy is optimal when maxH equals zero, but the effect
rapidly decreases with the increase in maxH when maxH is less than 150. As maxH
continues to increase, the effect first increases and then decreases until no enhancement
is made. For the estimating strategy, when maxH is less than 350, the ability of the
adjustment strategy to increase the hardness of the generated SAT instances improves as
maxH increases and then decreases rapidly as maxH increases. For the greedy strategy,
the plot is almost the same regardless of whether the adjustment strategy is used. We
demonstrate through more experiments that these results are obtained because the greedy
strategy can generate a random instance that initially satisfies the hardness condition in (2)
and the adjustment strategy would not be called at all, while the random and estimating
strategies exhibit the oppsite behavior, so the adjustment strategy can be used to further
increase the hardness of the generated instances.

As shown in Figure 4 (left), when none of the three strategies use the adjustment
strategy, the hardness of the SAT instances generated by the random strategy is always
higher than that generated by the estimating strategy. The reason might be that the
probability distribution added by the estimating strategy limits the randomness of the
instance when maxH is small (e.g., maxH < n/2). As maxH increases to 250, WalkSAT
is unable to solve the SAT instance generated by the greedy strategy under the limit of 108

flips. When maxH is less than 225, the hardness of the SAT instance generated by the
random strategy after using the adjustment strategy is much higher than that of the other
two strategies. These results show that for WalkSAT, when maxH is less than n/2, using
the combination of the random strategy and the adjustment strategy is better. In other
cases, using the greedy strategy with the adjustment strategy appears to be more effective.

When none of the three strategies uses the adjustment strategy, regardless of how maxH
changes, Kissat can solve the SAT instances generated by the random and estimating strate-
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Figure 5: Performances of WalkSAT (top) and Kissat (bottom) in solving the SAT instances
generated by the KHidden-M algorithm with random, estimating and greedy
strategies when ns is varied from 2 to 40.

gies in 1 second. When maxH is between 250 and 425, Kissat needs approximately 30
seconds to solve the SAT instance generated by the greedy strategy. Figure 4 (right) shows
that the most difficult instance (against Kissat) is generated by the random strategy after
using the adjustment strategy when maxH equals zero. After using the adjustment strat-
egy, the estimating strategy performs best when maxH is between 250 and 325, and the
greedy strategy performs best when maxH is larger than 325. Overall, when maxH equals
half of n, the performance of the three strategies and the adjustment strategy is the best.

Figure 4 also shows that when maxH equals n (i.e., 500), the two predefined solutions
are complementary to each other, and no SAT instances can satisfy the hardness condition
in (2). Therefore, the adjustment strategy cannot modify the clauses to satisfy the hardness
condition in (2), and it becomes useless in improving the hardness of the generated instances.

5.2.4 Varying ns

In this experiment, we investigate the influence of the number of predefined solutions (i.e.,
ns) on the hardness of the KHidden-M instances against WalkSAT and Kissat. We vary
ns from 2 to 40 with a step size of 2. The parameter settings are n = 500, r = 4.5 for
the random and estimating strategies, r = 5.5 for the greedy strategy, maxH = n/2 and
K = 3. The results are shown in Figure 5.

In Figure 5 (top), the plots of the three versions of the KHidden-M algorithm, which
use the random, estimating and greedy strategies, are quite similar to each other. When ns
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Figure 6: Performance of WalkSAT using the best (top) and gsat (bottom) heuristic strate-
gies in solving the SAT instances generated by the KHidden-M algorithm with
random, estimating and greedy strategies when noise is varied from 0 to 1.

equals 2, the KHidden-M-greedy algorithm performs better than the other two strategies,
and WalkSAT cannot solve the generated SAT instances successfully under the limit of 108

flips. For the three algorithms, the number of flips made by WalkSAT roughly decreases
with increasing ns. This finding indicates that it would be more difficult to generate hard
SAT instances against WalkSAT when there are more predefined solutions. It could be
easier for SAT solvers to find one of the predefined solutions as the true assignment when
there are more predefined solutions. In such case, it would be reasonable to adjust other
parameters to generate hard SAT instances against WalkSAT, e.g., by enlarging n.

Similarly, Kissat shows the same trend as WalkSAT when solving the SAT instances
generated by the KHidden-M algorithm. The time taken by Kissat to solve the SAT in-
stances generated by the three strategies gradually decreases with increasing ns. When ns
equals 2, the hardness of the SAT instance generated by the estimating strategy is higher
than that generated by the other two strategies, and Kissat needs approximately 400 sec-
onds to solve the instance. When ns is not less than 4, the SAT instances generated by the
three strategies can be solved by Kissat within 1 second, which means that we may need to
modify other parameters to ensure the hardness of the instances.

5.2.5 Varying heuristics and the noise of WalkSAT

In this experiment, we investigate the influence of WalkSAT using different heuristic strate-
gies and noise on solving KHidden-M instances. For the KHidden-M algorithm, the pa-
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rameter settings are n = 500, r = 4.5 for the random and estimating strategies, r = 5.5
for the greedy strategy, ns = 2, maxH = n/2 and K = 3. For WalkSAT, we choose two
different heuristics, best (the default heuristic of WalkSAT) and gsat, which differ in the
calculation of the greedy move. The best heuristic attempts to minimize the break-count
(the number of unsatisfied clauses decreases after flipping) of each variable, while the gsat
heuristic attempts to minimize the break-count of each variable minus make-count (the
number of satisfied clauses increases after flipping) . For both heuristics, we vary the noise
(which determines the probability of the random walk) from 0 to 1 with a step size of 0.05.
The results are shown in Figure 6.

In Figure 6, WalkSAT using the best or gsat heuristic exhibits similar characteristics
as the walk probability is changed. When solving the instance generated by the Khidden-
M-rand and Khidden-M-estimate algorithms, the performance of both heuristics decreases
first and then increases with the increase in walk probability. When the walk probability is
between 0.2 and 0.5, the best heuristic shows optimal performance, and WalkSAT requires
approximately 10 million flips to solve the SAT instances generated by the KHidden-M-
rand and KHidden-M-estimate algorithms. The performance of the gsat heuristic is slightly
worse; it is optimal when the walk probability is between 0.4 and 0.6, and WalkSAT needs
approximately 40 million flips to solve the generated SAT instances. These results suggest
that WalkSAT uses the best heuristic better than the gsat heuristic in solving the SAT
instances generated by the KHidden-M algorithm.

Regardless of whether WalkSAT uses the best or gsat heuristic or how to adjust the
noise, it cannot successfully solve the SAT instances generated by the KHidden-M-greedy
algorithm under the limit of 108 flips. However, the greedy strategy is also the most un-
stable, and this is consistent with the results of the previous experiments on r and n.
The result indicates that the SAT instances generated by the KHidden-M-greedy algorithm
around the threshold (i.e., 5.5) maintain quite high hardness, and WalkSAT cannot move
randomly to help itself approach any hidden predefined solution. Meanwhile, when the
walk probability is greater than 0.6, neither of the two heuristics can successfully solve the
SAT instances generated by our three algorithms. The reason for this result is that the
high walk probability leads to the failure of heuristics (regardless of whether it is best or
gsat), and WalkSAT wastes much time on meaningless random flipping variables. Overall,
a good choice for WalkSAT is to use the best heuristic and to set the noise to 0.5 to solve
the instance generated by the KHidden-M algorithm, which is also the default setting for
WalkSAT.

5.3 Comparison with the M-hidden Algorithm

In this experiment, we compare the KHidden-M algorithm with the M-hidden algorithm in
generating hard SAT instances. The default parameter settings are n = 500 and r = 5.6
(as in Liu et al., 2015). ns is set to 2, 5, 10, 15 and 20, and maxH is set to n/4, n/2,
and 3n/4. For the KHidden-M algorithm, K is set to 3, and the random, estimating, and
greedy strategies are used. For the M-hidden algorithm, four settings of p1 and p2 are
chosen, i.e., (p1 = 0.63, p2 = 0.32), (p1 = 0.69, p2 = 0.23), (p1 = 0.75, p2 = 0.14) and
(p1 = 0.81, p2 = 0.05). These four settings of p1 and p2 are recommended in (Liu et al.,
2015).
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ns 2 5 10 15 20

M-hidden (p1 = 0.63, p2 = 0.32) 4% 0 0 0 0

M-hidden (p1 = 0.69, p2 = 0.23) 26% 4% 7% 8% 5%

M-hidden (p1 = 0.75, p2 = 0.14) 84% 16% 40% 42% 34%

M-hidden (p1 = 0.81, p2 = 0.05) 100% 32% 67% 69% 72%

KHidden-M-rand 100% 100% 100% 100% 99%

KHidden-M-estimate 100% 100% 100% 100% 100%

KHidden-M-greedy 100% 100% 100% 100% 100%

Table 2: Success rates of the KHidden-M and M-hidden algorithms in generating instances
that satisfy (2) when maxH = n/4.

ns 2 5 10 15 20

M-hidden (p1 = 0.63, p2 = 0.32) 0 0 0 0 0

M-hidden (p1 = 0.69, p2 = 0.23) 0 0 0 0 0

M-hidden (p1 = 0.75, p2 = 0.14) 0 0 0 0 0

M-hidden (p1 = 0.81, p2 = 0.05) 0 0 0 0 0

KHidden-M-rand 100% 100 95% 26% 0

KHidden-M-estimate 100% 100% 100% 63% 3%

KHidden-M-greedy 100% 100% 100% 91% 36%

Table 3: Success rates of the KHidden-M and M-hidden algorithms in generating instances
that satisfy (2) when maxH = n/2.

5.3.1 Success rate of generation

In this experiment, first, for each parameter setting, we randomly generate 100 predefined
solution sets. Next, we use the M-hidden algorithm and the KHidden-M algorithm to
generate SAT instances from the 100 predefined solution sets, and we compute their success
rates in generating SAT instances that satisfy the hardness condition in (2).

The results for maxH = n/4 are shown in Table 2. The success rate of the M-hidden
algorithm with p1 = 0.63 and p2 = 0.32 or p1 = 0.69 and p2 = 0.23 is lower than 30% for
all of the settings of ns. The success rate of the M-hidden algorithm is 100% only when
p1 = 0.81, p2 = 0.05 and ns = 2. For the other parameter settings in Table 2, the KHidden-
M algorithm has higher success rates than the M-hidden algorithm. The success rate of
the KHidden-M-rand algorithm is 100% for ns = 2, 5, 10 and 15. For ns = 20, its success
rate is 99%. For all of the settings of ns, the success rates of the KHidden-M-estimate
and KHidden-M-greedy algorithms are 100%. These results show that the KHidden-M
algorithm can be more effective than the M-hidden algorithm in generating SAT instances
that satisfy the hardness condition in (2) when maxH = n/4.

The results for maxH = n/2 and 3n/4 are shown in Tables 3 and 4, respectively. For
all of the parameter settings in Tables 3 and 4, the M-hidden algorithm cannot generate
an SAT instance that satisfies the hardness condition in (2). When maxH = n/2 and
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ns 2 5 10 15 20

M-hidden (p1 = 0.63, p2 = 0.32) 0 0 0 0 0

M-hidden (p1 = 0.69, p2 = 0.23) 0 0 0 0 0

M-hidden (p1 = 0.75, p2 = 0.14) 0 0 0 0 0

M-hidden (p1 = 0.81, p2 = 0.05) 0 0 0 0 0

KHidden-M-rand 100% 100% 37% 0 0

KHidden-M-estimate 100% 100% 51% 0 0

KHidden-M-greedy 100% 100% 88% 10% 1%

Table 4: Success rates of the KHidden-M and M-hidden algorithms in generating instances
that satisfy (2) when maxH = 3n/4.

ns = 20 or maxH = 3n/4 and ns = 15 or 20, the KHidden-M-rand algorithm cannot
generate an SAT instance that satisfies the hardness condition in (2). For the KHidden-M-
estimate algorithm, the success rate is also 0 when maxH = 3n/4 and ns = 15 or 20. For
the other parameter settings, the KHidden-M-rand, KHidden-M-estimate and KHidden-M-
greedy algorithms have higher success rates than the M-hidden algorithm. The success rate
of the KHidden-M-greedy algorithm remains higher than 0 for all of the settings of maxH
and ns. These results show that the KHidden-M algorithm can be more effective than the
M-hidden algorithm in generating SAT instances that satisfy the hardness condition in (2),
and the KHidden-M algorithm is suitable for more general predefined solutions.

As seen in Tables 2, 3 and 4, the success rates of the KHidden-M-rand, KHidden-M-
estimate and KHidden-M-greedy algorithms seem to decrease with maxH and ns. When
maxH and ns are larger, it is more difficult for the three algorithms to generate SAT
instances that satisfy the hardness condition in (2). The KHidden-M-estimate algorithm
always obtains higher success rates than the KHidden-M-rand algorithm (except for param-
eter settings in which both algorithms have a success rate of 100%), and the KHidden-M-
greedy algorithm achieves the highest success rates for all of the parameter settings. This
indicates that the greedy strategy would be more effective than the other two strategies in
generating SAT instances that satisfy the hardness condition in (2).

5.3.2 Hardness against WalkSAT

In this experiment, we investigate the performance of WalkSAT in solving the SAT instances
that are generated by the KHidden-M algorithm and the M-hidden algorithm. We set ns
to 2, 5, 10, 15 and 20 and set maxH to n/4, n/2, and 3n/4. The other parameters are
n = 500, r = 5.6, and K = 3. The predefined solutions are randomly generated according
to the parameter settings. Next, the KHidden-M algorithm and the M-hidden algorithm
are employed to generate SAT instances from the predefined solutions. After the SAT
instances are generated, WalkSAT is employed to solve them regardless of whether those
instances satisfy the hardness condition in (2). This experiment is conducted 29 times, and
the number of flips made by WalkSAT is recorded to evaluate the hardness of the generated
instances against WalkSAT.
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ns 2 5 10 15 20

M-hidden
(p1 = 0.63, p2 = 0.32)

23208
(100%, -)

2430
(100%, -)

1321
(100%, -)

473
(100%, -)

585
(100%, -)

M-hidden
(p1 = 0.69, p2 = 0.23)

75971
(100%, -)

3600
(100%, -)

1094
(100%, -)

757
(100%, -)

472
(100%, -)

M-hidden
(p1 = 0.75, p2 = 0.14)

165813
(100%, -)

5150
(100%, -)

1067
(100%, -)

646
(100%, -)

539
(100%, -)

M-hidden
(p1 = 0.81, p2 = 0.05)

2938365
(86%,852231)

4551
(100%, -)

1117
(100%, -)

575
(100%, -)

382
(100%, -)

KHidden-M-rand
28344

(100%, -)
5313

(100%, -)
1286

(100%, -)
938

(100%, -)
699

(100%, -)

KHidden-M-estimate
283

(100%, -)
374

(100%, -)
430

(100%, -)
878

(100%, -)
733

(100%, -)

KHidden-M-greedy
481

(100%, -)
3030

(89%,2576)
31962

(100%, -)
2417

(100%, -)
855

(100%, -)

Table 5: Median number of flips made by WalkSAT in solving the instances generated by
the KHidden-M and M-hidden algorithms when maxH = n/4. The parentheses
include the percentage of successful runs and the median of successful runs; “-”
indicates that it is consistent with the median number of flips.

ns 2 5 10 15 20

M-hidden
(p1 = 0.63, p2 = 0.32)

2721
(100%, -)

2988
(100%, -)

671
(100%, -)

473
(100%, -)

374
(100%, -)

M-hidden
(p1 = 0.69, p2 = 0.23)

2974
(100%, -)

4412
(100%, -)

682
(100%, -)

424
(100%, -)

281
(100%, -)

M-hidden
(p1 = 0.75, p2 = 0.14)

3010
(100%, -)

3341
(100%, -)

637
(100%, -)

408
(100%, -)

268
(100%, -)

M-hidden
(p1 = 0.81, p2 = 0.05)

2893
(100%, -)

2369
(100%, -)

590
(100%, -)

351
(100%, -)

242
(100%, -)

KHidden-M-rand
147945

(100%, -)
13403

(100%, -)
1394

(100%, -)
682

(100%, -)
403

(100%, -)

KHidden-M-estimate
459565

(100%, -)
2922

(100%, -)
1234

(100%, -)
805

(100%, -)
449

(100%, -)

KHidden-M-greedy
100000000
(10%,18579)

4168
(100%, -)

1502
(100%, -)

1128
(100%, -)

566
(100%, -)

Table 6: Median number of flips made by WalkSAT in solving the instances generated by
the KHidden-M and M-hidden algorithms when maxH = n/2. The parentheses
include the percentage of successful runs and the median of successful runs; “-”
indicates that it is consistent with the median number of flips.
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ns 2 5 10 15 20

M-hidden
(p1 = 0.63, p2 = 0.32)

2257
(100%, -)

4452
(100%, -)

849
(100%, -)

374
(100%, -)

274
(100%, -)

M-hidden
(p1 = 0.69, p2 = 0.23)

2016
(100%, -)

6578
(100%, -)

791
(100%, -)

297
(100%, -)

269
(100%, -)

M-hidden
(p1 = 0.75, p2 = 0.14)

2126
(100%, -)

4667
(100%, -)

572
(100%, -)

264
(100%, -)

255
(100%, -)

M-hidden
(p1 = 0.81, p2 = 0.05)

1732
(100%, -)

4106
(100%, -)

607
(100%, -)

262
(100%, -)

233
(100%, -)

KHidden-M-rand
27043

(100%, -)
6998

(100%, -)
1601

(100%, -)
455

(100%, -)
259

(100%, -)

KHidden-M-estimate
6053

(100%, -)
8818

(100%, -)
2078

(100%, -)
504

(100%, -)
296

(100%, -)

KHidden-M-greedy
100000000

(0%,0)
7560

(100%, -)
2574

(100%, -)
754

(100%, -)
510

(100%, -)

Table 7: Median number of flips made by WalkSAT in solving the instances generated by
the KHidden-M and M-hidden algorithms when maxH = 3n/4. The parentheses
include the percentage of successful runs and the median of successful runs; “-”
indicates that it is consistent with the median number of flips.

The results for maxH = n/4, n/2 and 3n/4 are shown in Tables 5, 6, and 7, respec-
tively. The M-hidden algorithm with p1 = 0.81 and p2 = 0.05 achieves the best results
when maxH = n/4 and ns = 2. The reason might be that when maxH and ns are small,
the solutions for an SAT instance are located in a small region, and WalkSAT needs con-
duct more flips to find a solution, even if the SAT instance does not satisfy the hardness
condition in (2). In this case, the randomness in generating the SAT instance might be
more important, and the M-hidden algorithm contains more randomness than KHidden-M
algorithm. For a similar reason, the KHidden-M-rand algorithm performs better than the
KHidden-M-estimate and KHidden-M-greedy algorithms when maxH = n/4 and ns = 2.
As maxH or ns increases, the importance of satisfying the hardness condition in (2) in-
creases. The KHidden-M algorithm performs better than the M-hidden algorithm for all
of the other parameter settings. Specifically, the KHidden-M-rand algorithm achieves the
best results when maxH = n/4 or n/2 and ns = 5 (as shown in Tables 5 and 6). The
KHidden-M-estimate algorithm achieves the best results when maxH = 3n/4 and ns = 5
(as shown in Table 7). The KHidden-M-greedy algorithm achieves the best results at the
remaining parameter settings (as shown in Tables 5, 6, and 7). Note that WalkSAT cannot
solve the instances generated by the KHidden-M-greedy algorithm under the 108 flips limit
when maxH = n/2 or 3n/4 and ns = 2. Overall, these results show that none of the three
strategies for the KHidden-M algorithm can always perform better than the others, and the
KHidden-M algorithm can perform better than the M-hidden algorithm when maxH or ns
is large (e.g., maxH ≥ n/2 or ns ≥ 5).
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ns 2 5 10 15 20

M-hidden
(p1 = 0.63, p2 = 0.32)

0.385
(100%, -)

0.353
(100%, -)

0.352
(100%, -)

0.349
(100%, -)

0.341
(100%, -)

M-hidden
(p1 = 0.69, p2 = 0.23)

1.036
(89%,0.997)

0.357
(96%,0.356)

0.357
(100%, -)

0.350
(100%, -)

0.344
(100%, -)

M-hidden
(p1 = 0.75, p2 = 0.14)

66.665
(68%,1.015)

0.356
(100%, -)

0.352
(100%, -)

0.361
(100%, -)

0.268
(100%, -)

M-hidden
(p1 = 0.81, p2 = 0.05)

3596.230
(55%,377.879)

0.335
(100%, -)

0.327
(100%, -)

0.332
(100%, -)

0.138
(100%, -)

KHidden-M-rand
0.387

(100%, -)
0.353

(100%, -)
0.355

(100%, -)
0.360

(100%, -)
0.316

(100%, -)

KHidden-M-estimate
0.004

(100%, -)
0.015

(100%, -)
0.012

(100%, -)
0.070

(100%, -)
0.111

(100%, -)

KHidden-M-greedy
0.096

(100%, -)
0.354

(100%, -)
40.551

(100%, -)
0.378

(100%, -)
0.323

(100%, -)

Table 8: Median runtime (s) of Kissat in solving the instances generated by the KHidden-
M and M-hidden algorithms when maxH = n/4. The parentheses include the
percentage of successful runs and the median of successful runs; “-” indicates that
it is consistent with the median runtime.

5.3.3 Hardness against Kissat

In this experiment, we investigate the performance of Kissat in solving the SAT instances
generated by the KHidden-M algorithm and the M-hidden algorithm. We set ns to 2, 5,
10, 15, and 20 and set maxH to n/4, n/2, and 3n/4. The other parameters are n =
1000, r = 5.6, and K = 3. The predefined solutions are randomly generated according to
the parameter settings. Next, the KHidden-M algorithm and the M-hidden algorithm are
employed to generate SAT instances from the predefined solutions. After the SAT instances
are generated, Kissat is employed to solve them regardless of whether those instances satisfy
the hardness condition in (2). This experiment is conducted 29 times, and the runtime of
Kissat is recorded to evaluate the hardness of the generated instances against Kissat.

The results for maxH = n/4, n/2, and 3n/4 are shown in Tables 8, 9, and 10, respec-
tively. The hardness of the generated instances is roughly the same as the experimental
results in the previous subsection. The M-hidden algorithm with p1 = 0.81 and p2 = 0.05
performs best when maxH = n/4 and ns = 2, and Kissat only solves half of the instances.
With the increase in maxH, the performance of the M-Hidden algorithm drops sharply,
while the KHidden-M-greedy algorithm performs better. Even if more than half of the
instances generated by the KHidden-M-geedy algorithm are successfully solved, the median
runtime of successful runs is still approximately one hour.

When ns not less than 5, most SAT instances generated by the M-hidden algorithm and
the KHidden-M algorithm can be solved by Kissat within 1 second, and the gap between the
results of different algorithms is small. Notably, the KHidden-M-greedy algorithm performs
best when maxH = n/4 and ns = 10, but Kissat only takes approximately 40 seconds
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ns 2 5 10 15 20

M-hidden
(p1 = 0.63, p2 = 0.32)

0.351
(100%, -)

0.355
(100%, -)

0.345
(100%, -)

0.086
(100%, -)

0.021
(100%, -)

M-hidden
(p1 = 0.69, p2 = 0.23)

0.366
(100%, -)

0.366
(100%, -)

0.349
(100%, -)

0.070
(100%, -)

0.013
(100%, -)

M-hidden
(p1 = 0.75, p2 = 0.14)

0.344
(100%, -)

0.359
(100%, -)

0.329
(100%, -)

0.024
(100%, -)

0.012
(100%, -)

M-hidden
(p1 = 0.81, p2 = 0.05)

0.331
(100%, -)

0.340
(100%, -)

0.236
(100%, -)

0.016
(100%, -)

0.005
(100%, -)

KHidden-M-rand
7.836

(93%,7.806)
0.346

(100%, -)
0.359

(100%, -)
0.330

(100%, -)
0.064

(100%, -)

KHidden-M-estimate
101.174

(93%,62.978)
0.369

(100%, -)
0.371

(100%, -)
0.346

(100%, -)
0.106

(100%, -)

KHidden-M-greedy
3566.569

(75%,3566.079)
0.365

(100%, -)
0.343

(100%, -)
0.322

(100%, -)
0.242

(100%, -)

Table 9: Median runtime (s) of Kissat in solving the instances generated by the KHidden-
M and M-hidden algorithms when maxH = n/2. The parentheses include the
percentage of successful runs and the median of successful runs; “-” indicates that
it is consistent with the median runtime.

ns 2 5 10 15 20

M-hidden
(p1 = 0.63, p2 = 0.32)

0.351
(100%, -)

0.357
(100%, -)

0.233
(100%, -)

0.022
(100%, -)

0.004
(100%, -)

M-hidden
(p1 = 0.69, p2 = 0.23)

0.348
(100%, -)

0.365
(100%, -)

0.236
(100%, -)

0.023
(100%, -)

0.004
(100%, -)

M-hidden
(p1 = 0.75, p2 = 0.14)

0.346
(100%, -)

0.373
(100%, -)

0.288
(100%, -)

0.015
(100%, -)

0.004
(100%, -)

M-hidden
(p1 = 0.81, p2 = 0.05)

0.329
(100%, -)

0.346
(100%, -)

0.099
(100%, -)

0.013
(100%, -)

0.003
(100%, -)

KHidden-M-rand
0.359

(100%, -)
0.347

(100%, -)
0.352

(100%, -)
0.092

(100%, -)
0.005

(100%, -)

KHidden-M-estimate
0.358

(100%, -)
0.360

(100%, -)
0.390

(100%, -)
0.143

(100%, -)
0.005

(100%, -)

KHidden-M-greedy
3569.578

(55%,3565.549)
0.362

(100%, -)
0.347

(100%, -)
0.317

(100%, -)
0.017

(100%, -)

Table 10: Median runtime (s) of Kissat in solving the instances generated by the KHidden-
M and M-hidden algorithms when maxH = 3n/4. The parentheses include the
percentage of successful runs and the median of successful runs; “-” indicates that
it is consistent with the median runtime.
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to solve the generated SAT instances. In fact, after our extensive experiments concluded
that the SAT instances generated by our algorithms are intractable for Kissat only with
the combination of specific parameter intervals: r = 4.5 for the KHidden-M-rand and
KHidden-M-estimate algorithms, r = 5.5 for the KHidden-M-greedy algorithm, n ≥ 800,
n/2 ≤ maxH ≤ 3n/4 and ns ≤ 2.

6. Discussion

In this paper, we propose a more effective algorithm for generating hard SAT instances
(with regard to the local search strategy) that hide multiple solutions. Experimental results
show that compared with the M-hidden algorithm, our algorithm can generate harder SAT
instances when the number of predefined solutions is large (e.g., not less than 10) or the
Hamming distance between any two solutions is large (e.g., not less than half of the number
of variables).

The proposed algorithm can be used for privacy preservation. Because each SAT in-
stance can be converted to a negative database (NDB) and vice versa (Esponda et al., 2007;
Esponda, 2008a), the KHidden-M algorithm can be used to generate hard-to-reverse NDBs
that hide multiple strings, and thus, they can be used for privacy preservation. In some
situations, the number of hidden strings is also critical and must be well protected, and
this problem has been studied in previous works (Ateniese et al., 2011; Lindell et al., 2013;
Bradley et al., 2016). Specifically, Ateniese (2011) described one scenario in which the U.S.
Department of Homeland Security (DHS) attempts to check whether there is a suspected
terrorist in an international flight that flies over the U.S. DHS has a list of suspected terror-
ists (denoted X), and the airline has a list of passengers (denoted Y ) on the international
flight. Obviously, the DHS wants to know the intersection of X and Y . If the airline does
not belong to the U.S., it might be unwilling to directly provide the whole list of passengers
to the DHS, and the DHS certainly would not directly provide the list of suspected terrorists
to the airline. Moreover, the DHS does not want to reveal the size of its list (i.e., the number
of suspected terrorists) to the airline because the size is also a state secret. A private set
intersection protocol based on negative databases was proposed by Zhao et al. (2013), and it
could be used to solve the above problem. In the protocol, a negative database is generated
from X and Y to protect the concrete elements in X and Y and to hide the sizes of X and
Y . Currently, several algorithms for generating an NDB with multiple hidden strings have
been proposed, e.g., the prefix algorithm (Esponda et al., 2004, 2009), Randomized-NDB
algorithm (Esponda et al., 2004, 2009) and M-hidden algorithm (Liu et al., 2015). However,
the prefix algorithm cannot generate hard-to-reverse NDBs, and thus, the privacy of the
hidden strings cannot be protected. The Randomized-NDB algorithm cannot ensure the
hardness of reversing the generated NDB, and it is inefficient. Section 5 shows that the
KHidden-M algorithm can be more effective than the M-hidden algorithm. Therefore, it
is reasonable to employ the KHidden-M algorithm in the proposed protocol (Zhao & Luo,
2013) to solve the above problem. Luo et al. (2018) summarized more applications of NDBs,
e.g., authentication, secure multiparty computation, information hiding, privacy-preserving
data mining and data publication.

Another advantage of using the KHidden-M algorithm to hide multiple strings/solutions
is that some extra strings can be hidden together to further enhance the security of the
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predefined hidden strings. To the best of our knowledge, most existing SAT solvers are
designed with such a mechanism: if a feasible solution is found, then the solver will return
the solution, and it will not continue to find other solutions. Finding all strings hidden
by NDBs can be much harder than finding only one hidden string. When generating an
NDB using the KHidden-M algorithm, the hardness conditions with regard to extra hidden
strings need not be satisfied. In this case, SAT solvers can find an extra hidden string as the
solution more easily, and thus, the security of the predefined solutions can be enhanced by
the cover of extra hidden solutions. Moreover, even if attackers have reversed the NDBs and
have found all of the hidden strings, they cannot determine which strings are the secrets.

There are also some issues with the KHidden-M algorithm that might need to be further
studied. For example, we consider only the hardness of the SAT instances against the
local search strategy when designing the KHidden-M algorithm, and the hardness of the
KHidden-M instances against other strategies that are used in state-of-the-art SAT solvers
also needs to be investigated in future work. Some prior works have demonstrated a strong
correlation between the performance of CDCL solvers and the community structure of SAT
instances (Ansótegui et al., 2009; Giráldez-Cru & Levy, 2016). In fact, we have already
conducted some preliminary follow up on this work, but simply dividing the variables into
communities and then generating intracommunity/intercommunity clauses in our model
did not lead to better results. Our model appears to attenuate the effects of community
structure in the generated SAT instances and vice versa. How to better integrate our model
with the community structure is an expected research direction in future work. In addition,
it is worthwhile to further consider the scale-free structure of SAT instances in our model.
We will also try to use our model to generate appropriate SAT instances and submit them
to future SAT Competition/Race/Challenge as benchmarks.

7. Conclusion

In this paper, we propose the KHidden-M algorithm to generate hard SAT instances (against
the local search strategy) that hide multiple predefined solutions. Three strategies for gen-
erating clauses that are satisfied by all predefined solutions are proposed, and each can be
employed in the KHidden-M algorithm. If the generated clauses do not satisfy the hard-
ness condition for the local search strategy, the KHidden-M algorithm will call an adjust-
ment strategy to tune the clauses. The experimental results prove the effectiveness of the
KHidden-M algorithm. Overall, the KHidden-M-greedy algorithm outperforms the other
two algorithms in most parameter settings, but it also exhibits more significant instability
than the other two algorithms. When the number of variables is large (e.g., greater than
800), we may prefer the KHidden-M-estimate algorithm. When the number of predefined
solutions and the Hamming distance between them are small, we may prefer the KHidden-
M-rand algorithm. In other cases, we may prefer the KHidden-M-greedy algorithm. Each
of the three algorithms has applicable scenarios. Moreover, the KHidden-M algorithm can
generate harder SAT instances (against WalkSAT) than the M-hidden algorithm. The ex-
perimental results also show that with specific parameter settings, the KHidden-M instance
is intractable for Kissat. The proposed algorithm can be used to generate benchmarks
for the SAT Competition/Race/Challenge. The KHidden-M algorithm can also be used in
some applications, e.g., secure iris recognition and secure multiparty computation.
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