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Abstract

Strategy-optimization is a fundamental element of dynamic and complex team sports
such as soccer, American football, and basketball. As the amount of data that is collected
from matches in these sports has increased, so has the demand for data-driven decision-
making support. If alternative strategies need to be balanced, a data-driven approach can
uncover insights that are not available from qualitative analysis. This could tremendously
aid teams in their match preparations. In this work, we propose a novel Markov model-
based framework for soccer that allows reasoning about the specific strategies teams use in
order to gain insights into the efficiency of each strategy. The framework consists of two
components: (1) a learning component, which entails modeling a team’s offensive behavior
by learning a Markov decision process (MDP) from event data that is collected from the
team’s matches, and (2) a reasoning component, which involves a novel application of
probabilistic model checking to reason about the efficacy of the learned strategies of each
team. In this paper, we provide an overview of this framework and illustrate it on several use
cases using real-world event data from three leagues. Our results show that the framework
can be used to reason about the shot decision-making of teams and to optimise the defensive
strategies used when playing against a particular team. The general ideas presented in this
framework can easily be extended to other sports.

1. Introduction

There is currently a vast amount of data collected from professional sports matches. Clubs,
news media, researchers, and fans are increasingly employing techniques from artificial
intelligence to analyze this data. Markov models are a key analysis tool because they enable
modeling the dynamic environment that characterizes many sports such as soccer, American
football, ice hockey, basketball, volleyball, and (table) tennis. Specifically, they are used
to model the observed team and player behavior and they have provided insights into
areas such as valuing players’ contributions for recruitment purposes (Cervone, D’Amour,
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Bornn, & Goldsberry, 2016; Routley & Schulte, 2015; Rudd, 2011; Singh, 2019; Yam,
2019), performing match analysis (Fernández, Bornn, & Cervone, 2021; Liu & Hohmann,
2013; Pfeiffer, Zhang, & Hohmann, 2010; Wenninger & Lames, 2016), and assessing win
probability (Dong, Shi, Chuong, Jiang, & Sun, 2015).

This paper presents a framework that can support a professional soccer coach’s tactical
planning. To motivate the need for this, consider the following questions that a coach is
confronted with:

1. Which areas of the pitch are most effective to help a team reach the area around the
opponent’s goal?

2. Given that a player possesses the ball in a specific location, what is the chance of
generating a shot with a higher probability of resulting in a goal later on in the
possession?

3. How would shooting more often from outside the penalty box affect the number of
goals the team would be expected to score over the course of a season?

Unfortunately, these are difficult questions to answer. On the one hand, one must be able
to learn a model that accurately captures a team’s observed behavior in matches. On the
other hand, one must reason, often in a counterfactual way, to understand the implications
of what would happen if the team were to behave differently.

We develop a novel framework for addressing tactical questions such as those listed
above based on the combination of learning and reasoning. The learning component entails
learning the model underlying a Markov decision process (MDP), specifically the transition
probabilities, where the state space consists of locations on the pitch and the actions involve
moving between these zones or shooting on goal. The MDP only focuses on modeling
offensive behavior by estimating the observed policy and the transition function when a
team possesses the ball. Moreover, a separate MDP is learned for each team by estimating
their observed policy from data about their matches. By averaging over, e.g., a season of
data,1 the MDP captures a team’s general behavior and is agnostic to the opponent. This
setting roughly corresponds to a passive model-based reinforcement learning setting, albeit
one where the reward is known (a reward of 1 is received for scoring a goal).

The MDPs will be learned from event stream data, which annotates various information
(e.g., location, time, players involved) about all on-the-ball events (e.g., passes, tackles, and
shots) that occur during a match. The data poses two challenges from a learning perspective.
First, the observational nature of the data means that when an action is unsuccessful, its
intended end location is not recorded and hence unknown. For example, if a player attempts
a cross that the opposition clears, we are unsure of where the player was aiming for. We
address this challenge using a combination of domain knowledge and predictive modeling.
Second, the data is sparse due to the size of the pitch, dynamic nature of the game, and
the relatively short seasons. Therefore, we estimate the probability model of each team’s
MDP using a hierarchical Bayesian approach that uses a prior based on a “typical team”.
The probability model is then specialized to an individual team on the basis of their data.

1. Data can go out of date due to switches in team personnel and general changes in playing style.
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The reasoning component operates on two different levels. First, we demonstrate a
novel application of probabilistic model checking (Kwiatkowska, Norman, & Parker, 2011)
to reason about a team’s fixed, learned policy (i.e., one that is observed in the data). This
enables reasoning about the probabilities of certain patterns of movement that a team may
use to generate scoring opportunities. Moreover, we show how to reason about an opponent’s
policy to evaluate the effect that certain defensive strategies would have on reducing the
chance of conceding a goal. Second, we discuss several different ways to (slightly) modify a
team’s observed policy. This enables reasoning about the effects of, e.g., shooting more or
less often from certain areas of the pitch.

Using event stream data from three leagues, we provide a number of illustrative use
cases. The first use case focuses on investigating the analytical-driven trend that long-
distance shots have steadily decreased over the past decade in all major leagues. We reason
about various aspects of long-distance shooting behavior, including the effects of shooting
more or less often from outside the penalty box, which was a question posed by the director
of analytics at a professional soccer club.2 Intriguingly, our analysis goes against the new
conventional wisdom and indicates that teams have overcorrected and may now be taking
too few long-distance shots. Namely, teams would roughly score an extra goal per season
if they shot more frequently from distance. The second use case focuses on optimizing a
defending team’s game plan. We use our techniques to reason about (1) how an opponent
may generate scoring opportunities and (2) the effect of certain defensive strategies on
reducing the chance of conceding a goal. For each team, we found various regions on the
pitch that are crucial for their chance-creation patterns. By forcing these teams to avoid
these regions, a defending team could decrease their chances of conceding a goal, even if
the opponent were to adapt to it.

2. Preliminaries

In this section, we provide background on soccer, the data, the notion of expected goals in
soccer, Markov decision processes, and probabilistic model checking.

2.1 Soccer

Soccer is a ball sport that is played between two teams on a grass pitch with a dimension
of 105 meters by 68 meters. A pitch is illustrated in Figure 1. Each match consists of two
45-minute halves where the clock runs continuously. The objective is to score more goals
than your opponent.

Each team may have (at most) eleven players on the pitch consisting of one goalkeeper
and ten outfield players. The goalkeeper guards the goal and is the only player that is
allowed to touch the ball with their arms or hands, and only within a designated area called
the penalty box (see Figure 1). The outfield players can move the ball over the pitch using
their head or feet. Typical ways in which outfield players move the ball are by (1) a shot,
(2) a pass, (3) a cross, and (4) a dribble. A shot is any type of action that deliberately
tries to move the ball into the opponent’s goal. With a pass, a player tries to move the
ball to another player on his team by kicking the ball with his foot or head (i.e., a headed

2. https://twitter.com/devinpleuler/status/1226919308762193920
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Figure 1: Illustration of a soccer pitch. Each team has their own goal (drawn outside the
pitch) at opposite sides of the pitch. The two rectangles near each team’s goal are mainly
important for goalkeepers: from within the six-yard box (small rectangle) the goalkeepers
can perform goal-kicks, within the penalty box (large rectangle) the goalkeepers are allowed
to touch the ball with their hands. The dots and arcs near each goal are used for penalties.
The dot and circle in the middle of the field are used for kick-offs.

pass). A cross is a special type of pass that originates from near the sides of the pitch
close to the opponent’s goal and ends in or near the penalty box. Crosses typically follow a
parabolic path through the air with the aim of bypassing several opposing players to reach
a teammate who is in a shooting position. With a dribble, a player aims to move the ball by
repeatedly kicking it while running. A dribble involves only the current on-the-ball player
and possibly an opposing player that is bypassed or that interrupts the dribble. Typically,
data providers do not agree on terminology, but they all distinguish between actions that
just progress the ball and actions that aim to pass a defender. The definition of dribbles
used in this work includes both actions that aim to carry the ball forward and actions that
try to move the ball past an opposing player. Dribbles can fail when the player loses control
of the ball and the other team recovers possession of the ball. On defense, players can also
perform various actions, such as tackling an opposing player that possesses the ball (i.e.,
to force them to lose control of the ball) or trying to intercept a pass made by an opposing
player.

2.2 Event Stream Data

While there are a variety of sources of data collected about soccer matches (e.g., box scores,
video), one of the most widely available is event stream or play-by-play data with vendors
collecting this data for 100s of leagues worldwide. Event stream data describes all on-the-
ball actions that occur during each game, which is typically collected by human annotators
while watching videos. A match typically has around 1500 to 3000 on-the-ball actions.3 For
each on-the-ball action, event stream data records a number of features such as the type of

3. The number of on-the-ball actions depends on what is annotated in the data (e.g., pressure events,
separate actions for pass and receival).
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Figure 2: Illustration of a sequence of four actions from the Manchester City versus Liver-
pool game on January 14, 2018, as recorded in the event stream data format.

the action (e.g., pass, dribble, shot, interception), the start and end locations of the action,
the body part used to execute the action, the result of the action (i.e., successful or not),
the time at which the action was performed, the player who performed the action, and the
team the acting player belongs to. Figure 2 illustrates a sequence of four actions from a
game between Manchester City and Liverpool as they were recorded in the event stream
data format.

2.3 Expected Goals

While goals are the main currency in soccer matches, they are exceedingly rare as only about
three goals are scored per match on average. While shots are more common, on average a
shot results in a goal only 10% of the time. Hence, the number of goals scored fluctuates
and is subject to some randomness (e.g., lucky bounces or deflections). To try to give a
more accurate view of chance creation, the analytics community developed the expected
goals (xG) metric which aims to quantify the quality of each scoring opportunity (Green,
2012). This has now become a well-accepted metric that appears in mainstream media
outlets and is mentioned by managers.

From a technical perspective, xG assigns a probability to each shot that represents its
chance of directly resulting in a goal. These models are typically trained using logistic
regression or gradient boosted trees on large historical datasets of shots. Each shot is
described by the game context from when it was taken, and how this is represented is
the key difference among existing models (Caley, 2015; Decroos, Bransen, Van Haaren,
& Davis, 2019; Decroos & Davis, 2020; Ijtsma, 2015; Knutson, 2020; Lucey, Bialkowski,
Mofort, Carr, & Matthews, 2015; Robberechts & Davis, 2020). The context can range
from relatively straightforward such as just a location (Spearman, 2018) to very complex
including many features (e.g., the shot’s distance and angle to the goal, time in the match,
score differential, location of the goalie, the previous action type).

2.4 Markov Decision Process

An MDP is a tuple M = ⟨S,A, P,R, γ⟩ where S is a finite set of states, A is a finite set of
actions, P : S × A× S → [0, 1] is the transition function, R : S × A× S → R and γ is the
discount factor. The transition function P must denote a proper probability distribution
for all state-action pairs (s, a), that is,

∑
s′∈S P (s, a, s

′) = 1. A state is absorbing if one
cannot escape from it once entering. When an absorbing state is entered, the episodic
task ends (either success or failure). Given an MDP, a path of length n is denoted by
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ρn = s1
a1−→ s2

a2−→ ...
an−1−−−→ sn where si ∈ S, ai ∈ A and P (si, ai, si+1) > 0. Similarly, an

infinite path is denoted by ρ = s1
a1−→ s2

a2−→ ....

A policy (or strategy) π : S×A → [0, 1] specifies, for each state, a probability distribution
over all actions. Given an MDP and a policy π, the value function Vπ : S → R represents
the value of being in a state. The value function is denoted as V (Bellman, 1966).

Vπ(s)=
∑
a∈A

π(a | s)
∑
s′∈S

P (s, a, s′)(R(s, a, s′)+γVπ(s
′))

A Markov reward process (MRP) is a specialization of an MDP which allows for exactly
one fixed policy and a reward function (Baier & Katoen, 2008). When learning the value
function of a team, we learn it for a fixed policy and use a state-based reward function
R : S → N that assigns to each state a non-negative integer reward. Thus, the MDP
becomes an MRP.

2.5 Probabilistic Model Checking

Probabilistic model checking is a formal verification technique that determines whether a
stochastic system satisfies a given desired stochastic property (Kwiatkowska et al., 2011;
Hensel, Junges, Katoen, Quatmann, & Volk, 2022). It provides rigorous guarantees by
formulating both the system and the property in mathematical forms. The standard for-
malism includes various discrete and continuous Markov models and probabilistic temporal
logics (Forejt, Kwiatkowska, Norman, & Parker, 2011). We consider MRPs, MDPs, and
PCTL∗ (which subsumes Probabilistic Computational Tree Logic (PCTL) and Probabilistic
Linear Temporal Logic (LTL)) (Forejt et al., 2011).

PCTL∗ is a temporal logic that expresses model properties over time and allows for
probabilistic quantification. The syntax of PCTL∗ is as follows. We fix a finite set of
atomic propositions AP. A state formula (denoted by ϕ) and a path formula (denoted by
ψ) over AP can be constructed by the grammar below. A PCTL∗ property is always a state
formula ϕ.

state formula ϕ ::= true | c | ϕ ∧ ϕ | ¬ϕ | P▷◁p[ψ]
path formula ψ ::= ϕ | X ψ | ψ U≤k ψ | ψ U ψ | ¬ψ

where c ∈ AP, p is a probability such that 0 ≤ p ≤ 1, k ∈ N is a positive integer and
▷◁ ∈ {≤, <,≥, >}. A PCTL∗ property evaluates to either true or false in a state.

Intuitively, X α means α holds in the next step, α U β means α holds until β holds,
α U≤k β means α holds until β holds and β will hold within k steps, and P▷◁p[α] means α
holds with a probability ▷◁ p. Additionally, the commonly used temporal component F α
(α will eventually hold) can be defined by the until operator: F α ≡ true U α. General
examples of PCTL∗ properties are P[F A] (“probability of finally reaching a state A”), or
P[¬A U B] (“probability of never entering A before reaching B”). A specific example for
soccer could be P[F penalty box] (“probability of finally reaching the penalty box”) where
penalty box denotes all states in the Markov model that correspond with being in the
penalty box. We refer the readers to Baier (1998) for more details of PCTL∗.
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3. Modeling Offensive Behavior as a Markov Model

To reason about a team’s observed behavior, we model each team’s offensive behavior using
an MDP. This formalism allows us to model and analyze the dynamic environment of soccer
and the in-game decisions made by players. On a high level, the proposed MDP models the
probability of a team moving the ball from one location to another location on the pitch.
This can be done by either (1) a movement action such as a pass or a cross to a teammate,
or a dribble, and (2) a shot. Specifically, we model this at the level of a possession sequence,
which is a sequence of consecutive on-the-ball actions made by the same team. A possession
sequence corresponds to a path in the MDP (see Section 2.4).

Formally, the MDP consists of the state space S, the set of actions A, the transition
function P , the policy π, the reward function R, and a discount factor γ. We discuss each
of these in the following sections.

3.1 State Space

The state space is defined as S = E ∪ L. We use E = {lost possession, no goal, goal}
to denote the set of absorbing states where lost possession signifies loss of possession (i.e.,
a failed movement action), no goal a failed shot, and goal a successful shot. L is the
set of transient states that can be entered and exited during a possession sequence. As
event data only contains information about on-the-ball actions (i.e., the locations of players
not possessing the ball are unknown), we will define the state space based entirely on the
location of the ball. Specifically, the transient states are defined by partitioning the field
into various grid cells. The precise set of transient states varies by use case.

3.2 Action Space

For each state s ∈ L, we consider the actions A = {move to(s) | s ∈ L} ∪ {shoot}. The
action move to(s) denotes that a player intends to move the ball to state s. Modeling the
intended end location where the player wants to move the ball to allows us to explicitly
model and analyze the goal-directed policies of players and teams. In contrast, existing
approaches for soccer have used the observed end location of movement actions, which
makes analyzing a team’s decisions not straightforward (Rudd, 2011; Singh, 2019; Yam,
2019).

Using an expressive action space means that the number of actions is larger than the
number of states (i.e., len(A) > len(S)), introducing an enormous policy space of the
MDP. This indicates that the team behavior analysis has a high worst-case computational
complexity and could potentially be a performance bottleneck. However, this is not an issue
in practice because a number of actions “do not make sense” (e.g., passing from in front of
the opponent’s goal back to your own goal) and hence are not observed in the real-world
data.

3.3 Transition Function

Each of the previously defined actions can either succeed or fail. This is modeled by the
transition function P : S × A × S → [0, 1]. For the absorbing states E , A = ∅, and the
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only possible transition is a self-loop with a probability of one. For each state s ∈ L, the
transition function is defined as follows:

• P (s,move to(s′), s′) is the probability of successfully moving to state s′ ∈ L from
state s;

• P (s,move to(s′), lost possession) is the probability of unsuccessfully moving to state
s′ ∈ L from state s, this is equal to 1− P (s,move to(s′), s′);

• P (s, shoot, goal) is the probability of scoring a goal from state s, and this can be
viewed as a location-based xG value;

• P (s, shoot, no goal) is the probability of failing to score a goal when shooting from
state s, this is equal to 1− P (s, shoot, goal);

• P (s, a, s′) = 0 in all other cases.

3.4 Policy

The policy π defines the probability distribution over actions for each state: π(a | s) =
Pr[A = a | S = s]. In this case, it denotes how likely a team is to choose each specific
movement or shot action in each state. The policy and the transition function completely
define the in-game behavior of the team. The policy is also the only part that the team or
player can immediately control. We do not compute the optimal policy for each team, as
removing the randomness from a team’s policy makes its behavior very predictable for an
opponent. Often, teams will also not be acting optimally as the individual players are not
perfect optimizers (Sandholtz & Bornn, 2020). Rather, we look into analyzing the current
policy that teams use. Thus, we assume that the current policy of the MDP is fixed and is
equal to the one that is observed in the data.

Analyzing the currently employed policy can already provide numerous insights regard-
ing a team’s strategies. Furthermore, by adapting the policy to certain counterfactual sce-
narios and estimating the effects of these changes, further insights into what would happen
if different strategies were to be employed can be provided to practitioners.

3.5 Reward Function and Discount Factor

The reward function R : S ×A×S → R of our model mimics the rewards obtained during
a real-life soccer game. It assigns a reward of one when a goal is scored from a state s ∈ L,
i.e., R(s, shoot, goal) = 1. All other actions do not receive a reward. The discount factor γ
is set to 1. As soccer is a low-scoring sport and extreme scores (i.e., more than five goals)
are uncommon, it is reasonable to assume that the rewards should not be discounted.

4. Learning the Markov Model from Event Stream Data

Because teams have unique styles, we learn a separate transition function and observed
policy for each team from historical event stream data. The resulting MDP for each team
is agnostic over its opponent and captures the general behavior employed by a team dur-
ing their games. However, to learn the MDP, two important challenges must be tackled.
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First, explicitly modeling the intended end location of actions complicates calculating the
transition probabilities. Estimating these probabilities requires knowing the total number
of times a team chooses to move from any state s ∈ L to any other state s′ ∈ L, regardless
of whether the action succeeded. However, because the data contains only the end locations
of successful actions and not the intended end locations of failed actions, this total number
is unknown and also unknowable without asking the player. We address this by combining
domain knowledge with predictive modeling.

Second, the amount of data per team per season is limited, with teams typically per-
forming between 400 and 700 shots and 10,000 and 25,000 passes per season. Using data
that is more than a few seasons old is not of great use due to changes in players, managing
personnel, and game trends. Most teams will also not often perform the same actions at
the exact same locations. Moreover, the actions are not evenly distributed over the pitch.
For example, there is much more action in midfield than there is near the opponent’s goal.
Thus, the amount of relevant data available per team per state can be quite limited, and
accurately estimating the probabilities for these states can become problematic. We mit-
igate these sparsity issues by estimating these probabilities using a hierarchical Bayesian
approach with a prior that is based on a “typical team”.

Next, we outline our approaches for (1) predicting the intended end locations of failed
actions, and (2) learning the transition function and policy with a hierarchical Bayesian
approach.

4.1 Predicting the Intended End Locations of Actions

For each failed movement action, we aim to predict a probability distribution over all possi-
ble intended end locations. As a movement action can both be a pass, a cross, or a dribble,
which each have characterizing dynamics, we will treat each of these separately. Addition-
ally, the predictions will be made on a per-team basis to capture each team’s distinctive
behavior.

Passes: A gradient boosted trees ensemble is first trained on the end states of a team’s
successful passes, as it is reasonable to assume that these passes reached their intended
destination. Each pass is described by a set of 6 features, including the pass’ start state,
the direction of the pass, the body part used to execute the pass, and the start states of
the three preceding actions.4 These features are commonly used in sports analytics to de-
scribe the context of actions (Caley, 2015; Decroos et al., 2019; Power, Ruiz, Wei, & Lucey,
2017; Robberechts & Davis, 2020). Appendix C provides and discusses an ablation study
on these features. The trained model is subsequently used to obtain an initial probability
distribution over all possible intended end states for a team’s failed passes. We improve
the predicted distributions based on two reasonable assumptions. First, we assume that
passes generally travel in straight lines. Thus, the intended end location must lie along the
line through the pass’ observed start location, its (failed) end location, and the location
where the ball would have gone out of bounds. Hence, all end states that are not on this

4. Sequences containing less than three actions are not considered during training. To infer the end location
of failed passes with less than three preceding actions, we simply use the distribution over observed
successful end locations in the training set.
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Pass start 
location

(Failed) end 
location

Out of bounds

Figure 3: Illustration of an unsuccessful pass, starting at the circle and unsuccessfully ending
at the square. The intended end location most likely lies along the line that starts from
the pass’ start location, passes through its failed end location, and ends when it goes out
of bounds. If the pass was intercepted, the intended end location most likely lies on the
dashed part of the line.

straight line can be pruned from the distribution. Second, when a pass was intercepted
by the opponent before it could reach the intended teammate, the intended end location
should lie further on this line than the location where it was intercepted. Hence, when the
pass was intercepted, we can additionally prune all end states on the straight line between
its start location and its (failed) end location. Figure 3 illustrates these ideas. However,
pruning these states has as a consequence that the remaining probabilities no longer form
a probability distribution. Therefore, we normalize the distribution after pruning.

Crosses: Similarly to our approach for passes, we train a gradient boosted trees ensemble
using the same set of features on all successful crosses of a team. Next, the ensemble is used
to predict a probability distribution over all possible intended end states and is improved
with domain knowledge. Here, we can make use of the data provider’s definition that crosses
originate from the sides of the field near the opponent’s goal and end in the area in front of
the opponent’s goal.5 Additionally, we make a simplifying assumption that crosses follow a
parabolic path through the air, thereby bypassing all states that lie in between these two
locations.6 Thus, with this definition in mind, the intended end location will most likely
be a location that is close to the failed one. Specifically, we post-process the predicted
distribution by only retaining those states that lie within a radius r from the failed one and
normalize the probabilities afterwards.

Dribbles: Given that dribbles are extremely local actions, we assume that when dribbles
fail the player had intended to move the ball to a location that is not too far from its failed
end location. Thus, we assume that the most likely intended end state of a failed dribble is
simply the same state where the dribble failed.

5. See https://www.statsperform.com/opta-event-definitions/
6. In reality, 86.5% of all crosses in the data set are “chipped into the air”.
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4.2 A Bayesian Approach to Learning the Transition Model and Policy

Using a hierarchical Bayesian approach to estimate the transition function and policy allows
sharing information between teams by using a prior that is based on a “typical team”.
Conceptually, this can be seen as starting with a generic model for how a typical team
behaves and then adapting it based on the observed actions that the specific team performed
during games. If there is strong evidence that a team deviates from what is typical in a
given location, this will be picked up by the model. However, the parameters will shrink
towards the prior for locations where there is little data for a team.

We define a separate hierarchical Bayesian model for the transition function and policy
of a team:

Transition function model: For a specific team t, we model the probability that a chosen
action a ∈ A in a certain state s ∈ L succeeds as a Bernoulli random variable Ot,s,a:

Ot,s,a ∼ Bernoulli(pt,s,a)

pt,s,a = invlogit(γt,s,a)

γt,s,a ∼ N (µs,a, σ
2
t,s,a)

σ2t,s,a ∼ Half-Normal(5.0)

Here, invlogit(x) stands for the inverse logit function 1/(1 + e−x). The log-odds of team
t successfully completing action a in state s is represented by γt,s,a and is normally dis-
tributed with an overall prior mean µs,a and a team-dependent variance σ2t,s,a. In turn, the
team-dependent variance is half-normally distributed with a scale factor of 5.0. This corre-
sponds to a weakly informative prior for the variance. The overall prior mean is computed
based on the data of all other teams. The probabilities of this prior mean are calculated us-
ing simple counts and afterwards Gaussian smoothing is applied to ensure spatial coherence.

Policy model: For a specific team t, we model the probability of choosing a specific action
in state s as a categorical random variable At,s with action type probabilities p⃗t,s (i.e., a
specific move to or shoot action):

At,s ∼ Categorical(p⃗t,s)

p⃗t,s = softmax(λ⃗t,s)

λt,s,a ∼ N (αs,a, ν
2
t,s,a)

ν2t,s,a ∼ Half-Normal(5.0)

Here, softmax(x⃗) is the softmax function where each entry i in x⃗ is set equal to exi/
∑

k e
xk .

The log-odds of team t choosing each different action a ∈ A in state s is represented by
λ⃗t,s. For each chosen action a, each λt,s,a is normally distributed with an overall prior
mean αs,a and a team-dependent variance ν2t,s,a. In turn, the team-dependent variance is
half-normally distributed with a scale factor of 5.0. This again corresponds to a weakly
informative prior for the variance. Similarly to the transition function model, the overall
prior mean is computed based on the data of all other teams using simple counting and
Gaussian smoothing.
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5. Reasoning About Learned Policies

The tactical planning to prepare for a match is an arduous task that involves identifying the
movement patterns from which a team creates its best chances. Based on this information,
a coach can then devise a tactical plan that utilizes his team’s strong points and disrupts
the opponent’s most effective patterns. For example, from an offensive perspective, the
coach may want to provide advice to players about the merits of long throw-ins to create
immediate scoring chances vs. focusing on trying to maintain possession in order to create
a better chance after a couple of additional actions. From a defensive perspective, the coach
might want to identify which action sequences and areas of the pitch the opposing team
tends to use to generate the most shooting opportunities.

In a highly dynamic environment such as soccer where the exact same patterns never
repeat and the outcome is affected by variability due to luck, fatigue, and the skill of players,
these are difficult questions to answer both for a coach and a data analyst. Analyzing
the efficiency of strategic behaviors requires reasoning about the inherent uncertainty in
terms of which subsequent actions will occur and whether these actions will succeed or fail.
Unfortunately, assessing this is (nearly) impossible to do solely based on the raw data.

Our key insight is that probabilistic model checking techniques can be applied on a
team’s MRP (i.e., their MDP with the team’s policy fixed) to reason about the efficacy of
various offensive and defensive strategies in soccer. That is, probabilistic model checking
techniques can provide formal guarantees about the probabilities of teams scoring or reach-
ing other desired situations from certain possible behaviors (i.e., sequences of actions) that
can arise in the system. Thus, these techniques allow us to (1) formulate various possible
behaviors teams could exhibit, and (2) evaluate and compare their relative merits. We will
now describe our proposal for how to use these techniques to reason about the efficacy of
various offensive and defensive strategies in soccer.

5.1 Reasoning About the Effect of Offensive Strategies

Ultimately, a team’s offensive strategy revolves around generating shots and scoring goals.
Consequently, a coach may want to provide general advice about how to optimize the chance
of scoring such as whether his players should take a shot or pass in the hopes of generating
a better shot later on. While a player may have a good sense of the chance of scoring from
a particular shot or the chance of successfully completing a pass, it is harder to assess the
probability of generating a shot within the next couple of actions. We propose to evaluate
the relative merits of such options as follows. Given a finite sequence of actions denoted
by their end states (s1, . . . , sn−1) where s1, . . . , sn−1 ∈ L, the probability of yielding a goal
immediately after this sequence can be formulated as:

Ps=?[X (s1 ∧ (. . . ∧ (X (sn−1 ∧ (X goal)))))] (1)

where s ∈ L is the state in which the sequence starts. By comparing the returned proba-
bilities for multiple such sequences, the relative merits of different courses of actions can be
compared.

More generally, when possessing the ball at a certain location, one might want to know
how likely it is to ever generate a better shot within the same possession. For a particular
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state s ∈ L, this probability can be computed as:

Ps=?[X (L1 ∧ (F (L2 ∧ (X goal))))] (2)

where L1, L2 ⊆ L with L1 the set of states to which the ball can be moved to from s (i.e.,
performing anything but a shot in the current state) and L2 the set of states with a higher
success probability for executing a shot than the one associated with performing it in state
s.

5.2 Reasoning About the Effect of Defensive Strategies

From a defensive perspective, broadly speaking, a soccer team’s objective is to minimize its
chance of conceding a goal. This requires understanding how the opposing team tends to
generate dangerous situations. Based on this understanding, a coach would want to evaluate
the efficacy of different tactics for disrupting the opponent’s attack. For example, how would
an opponent’s chance of generating a shot be affected by forcing them to avoid reaching
certain areas of pitch? It is possible to reason about such scenarios using probabilistic
model checking. Specifically, we reason about where a team should focus defensively to (1)
limit or suppress the number of shots the opponent will generate and (2) disrupt movement
in the midfield to reduce the chance of conceding.

5.2.1 Shot Suppression

Johan Cruyff, one of the greatest soccer players of all time, famously said “You can’t score
if you don’t shoot”. Hence, a defending team can ultimately reduce its chances of conceding
a goal by attempting to reduce the number of shots the opponent takes. As over 90% of the
shots are taken from the yellow-shaded region (denoted shot locations) in Figure 4, a first
approach to reduce your chances of conceding is to directly suppress the shots the opponent
takes from this region. However, as a dangerous situation was already created by reaching
this region, this is not an ideal situation to be in as a defending team. Therefore, the second
approach indirectly suppresses the number of shots taken by limiting the number of times
the opponent reaches this favored region. Next, we explain the specific properties that can
be evaluated by a model checker to reason about the effect of both approaches.

Direct shot suppression. To reason about how a team generates shots, consider the
query:

Ps=?[F (shot locations U (goal ∨ no goal))] (3)

which gives the probability of a sequence starting in s eventually reaching a state in
shot locations after which it eventually reaches either goal or no goal. That is, it com-
putes the unrestricted probability of a sequence starting in s resulting in a shot from
shot locations. Suppose we could prevent an opponent from ever entering s′ ∈ non shot,
where non shot = L\shot locations. We can reason about the effect of forcing the opposing
team to avoid state s′ (i.e., the opposing team can never enter state s′) on the probability
of shooting using the following query:

Ps=?[¬s′ U (shot locations U (goal ∨ no goal))] (4)
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Figure 4: Illustration of three interesting areas used to optimize the defensive game plan.
The region where most shots are taken from is shaded in yellow, the final third entry region
is shaded in gray, and the middle third of the pitch is shaded in blue.

Both queries can be combined to reason about the effect of avoiding s′ on the probability
of eventually shooting when starting the sequence in s. However, a sequence can begin in
any state. Therefore, to compute the average reduction in your opponent’s probability of
shooting when forced to avoid s′, we must sum over all locations in non shot in numerator
and denominator:

1−
∑

s∈non shot Ps=?[¬s′ U (shot locations U (goal ∨ no goal))]∑
s∈non shot Ps=?[F (shot locations U (goal ∨ no goal))]

(5)

By computing this for all s′, we can measure each state’s importance for directly suppress-
ing shots.

Indirect shot suppression. To reason about how likely your opponent is to reach
shot locations from a location s, consider the following query:

Ps=?[F shot locations] (6)

We can reason about the effect of a counterfactual policy that forces the opposing team to
avoid state s′ on this probability using the following query:

Ps=?[¬s′ U shot locations] (7)

By combining these two queries, we can reason about the effect on your opponent’s proba-
bility of ever reaching shot locations if you can force them to avoid entering location s′:

1−
∑

s∈non shot Ps=?[¬s′ U shot locations]∑
s∈non shot Ps=?[F shot locations]

(8)

By computing this for all s′, we can measure each state’s percent decrease in the probability
of reaching shot locations when prevented from entering s′. This gives an indication of the
importance of s′ for indirectly suppressing shots.
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5.2.2 Movement Suppression

Disrupting your opponent’s movement further away from the penalty area can be equally
effective because an opponent will often start their possession in their own defensive half or
near midfield. By employing such defensive strategies, the defending team may be able to
make it more challenging to get the ball into dangerous positions.

Figure 4 visualizes two critical regions (denoted region) for which we want to decrease
the attacking team’s overall chances of scoring from: the final third entry and middle third
regions. Once in the middle third of the pitch, the attacking team has already bypassed
some defending players and created some threat. Once the team reaches the final third
entry region, the threat increases as the team possesses the ball closer to goal.

The goal of movement suppression is to identify a set of states area that if your
opponent was forced to avoid, would decrease their chance of scoring from each state s ∈
region by at least x percentage points. Formally, this can be framed as the following query:

∀s ∈ region : (Ps=?[F goal]− Ps=?[¬area U goal]) ≥ x (9)

Thus, this query computes both the unrestricted chance of scoring from state s and the
restricted chance of scoring from state s when forced to avoid any state in area. Then it
checks whether the difference is at least x percentage points for each state in region. The
different possible sets of states that form area can be found using the following query:

area = {s′′ ∈ L \ region | Ps′′=?[F s
′] ≥ b} (10)

This query finds all states s′′ around a central state s′ ∈ L \ region such that they reach
s′ with a probability greater than threshold b. The specific values for b and x can be
chosen dependent on the team and use case. While we focus on the final third entry and
middle third regions, this approach is generally applicable to any region that is interesting
to practitioners.

6. Reasoning About Alternative Policies

The soccer MDPs are learned from observed team behavior. From a coaching and tactical
point of view, it would be incredibly valuable to assess the merits of alternative strategies
(i.e., slightly different policies). For example, a coach may want to know what the effect is
of passing more aggressively (e.g., fewer backwards or lateral passes, more through balls)
or shooting more frequently from outside the penalty box. The small number of games
and inherent randomness of soccer make it difficult to evaluate slightly different policies
based on match results. This is compounded by the high-stakes nature of professional
soccer, and the incredibly short tenure of most managers discourages such experimentation.
Therefore, a simulation-based approach to assessing the efficacy of slight modifications
would be extremely useful.

This section describes techniques to reason about these tactical counterfactual questions
in a simulated manner by estimating the effect of (slightly) altering a team’s observed policy.
From a technical perspective, one way to modify a policy is by altering the probabilities
of selecting various actions in a particular state. However, such a modification raises two
questions:
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1. If one action becomes more likely, then other actions must become less likely to main-
tain a probability distribution. Thus, which actions become less likely and by how
much does each one’s probability of being selected decrease?

2. How can we estimate the effect of the altered policy? This is complicated by the
fact that for some actions, namely shots, their probability of succeeding is unlikely
to remain constant as their volume increases (or decreases) due to a quality-quantity
trade-off. Thus, estimating the effect of the modified policy requires accounting for
this trade-off.

We treat movement actions and shots separately and we now describe how we address these
two points for each action type.

6.1 Counterfactual Movement Actions

First, we describe two approaches for altering the movement policy. Second, we provide a
general approach to evaluate the effect on the created danger of a team.

6.1.1 Changing the Movement Policy

It is possible to modify a policy to select an action both more or less often. For simplicity,
the following discussion focuses on increasing the probability of selecting actions with the
discussion of decreasing the probability deferred to Appendix B.1.

Suppose that, given a start state s, the objective is to move to a set of states area by
an additional x percent. This requires increasing the probability of moving from s to each
state s′ ∈ area as follows:

π′(move to(s′) | s) = (1 + x) ∗ π(move to(s′) | s) (11)

However, to maintain a probability distribution, the probability of moving from s to all
other states s′′ ∈ L \ area must decrease. We describe two approaches to address this:
the proportional approach, which was originally proposed for basketball (Sandholtz &
Bornn, 2018, 2020), and the novel same aggressiveness approach which is tailored to-
wards soccer.

Proportional approach. This approach assumes that when the probability of performing
an action increases in a state, the probability of all other actions decreases proportionally
to their original share. Hence, in the adapted policy the team will try to move to all states
not in area slightly less often. Concretely, when increasing the probability of trying to move
to any state in area, the probability of moving to any other state s′′ /∈ area is decreased as
follows:

π′(move to(s′′) | s) = π(move to(s′′) | s)
total other

∗ (total other − x ∗ total area) (12)

with total other and total area defined as:

total other =
∑

s′′∈L\area

π(move to(s′′) | s) (13)

total area =
∑

s′∈area
π(move to(s′) | s) (14)
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Same aggressiveness approach. In soccer, certain movements, namely backwards and
lateral passes, generally tend to be less risky than playing the ball forward. Consequently,
a team’s aggressiveness in a state s roughly corresponds to the total probability of selecting
any action that moves the ball forward. The previous proportional modification could alter
this balance. This is not always ideal as a team might want to assess what would happen
if they slightly avoided the middle of the field but kept their aggressiveness the same (i.e.,
use the flanks more often). Hence, this approach aims to keep a team’s aggressiveness
unchanged.

Concretely, when increasing the probability of trying to move to any state in area, the
probability of moving to any other state s′′ /∈ area is decreased using the following approach.
If s′ ∈ area is a state that lies higher up the pitch than state s (i.e., the ball needs to be
moved forward to reach state s′), the additional probability of choosing to move from s to
s′ is removed from all other states s′′ ∈ sh ⊆ L \ area that also lie higher up the pitch than
state s as follows:

π′(move to(s′′) | s) = π(move to(s′′) | s)
total

∗ (total − x ∗ π(move to(s′) | s)) (15)

with total defined as:
total =

∑
s′′∈sh

π(move to(s′′) | s) (16)

For all other states s′′ /∈ sh, the policy remains unchanged. Similarly, if s′ ∈ area lies at an
equal height or lower on the pitch than state s (i.e., the ball needs to be moved backward
or laterally to reach state s′), the additional probability of choosing to move from s to s′ is
removed from all other states s′′ ∈ sl ⊂ L\ area that also lie at an equal height or lower on
the pitch than state s using the same formulas. To keep the probability of moving forward
equal, the policy of moving to the other states (i.e., higher up the pitch) then remains
unchanged.

6.1.2 Estimating the Effect of an Altered Movement Policy

Estimating the effect of employing the adapted policy can be done by measuring the effect
on the team’s overall chances of scoring. Specifically, we measure a team’s chances of scoring
from each state using the value function, both before and after they adapt their policy, and
compare them. The following formula computes the percent change in the team’s overall
chances of scoring when employing a new policy π′ compared to their original policy π:

1−
∑

s∈L Vπ′(s)∑
s∈L Vπ(s)

(17)

We assume that the number of possession sequences starting in each state is not affected
by the changes in the policy. Thus, the probability of starting a sequence in each state is
not taken into account in the above formula.

6.2 Counterfactual Shot Actions

Similar to movement actions, we consider both increasing and decreasing the shot volume
of teams. Changing the policy itself is relatively straightforward. However, care must be
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taken when evaluating the effect of policy changes as increasing (decreasing) the propensity
to shoot in a state will not only affect the number of shots a team takes, but also the
success probability of these shots as there is likely a quantity-quality trade-off. We propose
a method that takes both the quantity and the quality of the shots into account when
evaluating the effect of shooting more or less often.

6.2.1 Changing the Shot Policy

When altering the shot volume in a particular state, we assume that when the probability
of performing a shot increases (decreases) in a state, the probability of all other actions
decreases (increases) proportionally to their original share. Mathematically, increasing the
shot probability by x percent in a state s can be done using the following formulas:

π′(shoot | s) = (1 + x) ∗ π(shoot | s) (18)

∀s′ ∈ L : π′(move to(s′) | s) = π(move to(s′) | s)
total

∗ (total − x ∗ π(shoot | s)) (19)

Decreasing the shot probability by x percent in a state s can be realized as:

π′(shoot | s) = (1− x) ∗ π(shoot | s) (20)

∀s′ ∈ L : π′(move to(s′) | s) = π(move to(s′) | s)
total

∗ (total + x ∗ π(shoot | s)) (21)

with in both cases
total =

∑
s′∈L

π(move to(s′) | s) (22)

6.2.2 Estimating the Effect of an Altered Shot Policy

Ultimately, the objective of shooting more frequently is to score more goals. However, goals
are extremely rare events in soccer matches, and even most very high-quality shots from
open play have less than 20% chance of resulting in a goal. Therefore we evaluate the effect
of a new shot policy by estimating the number of goals that the team is expected to score
over the course of a season. This can be done by knowing (1) the expected number of shots
in each state over the course of a season, and (2) the probability of a shot resulting in a
goal for each state. Formally, this can be computed as:

E[goals | π] =
∑
s∈L

E[shots in s | π] ∗ P (s, shoot, goal) (23)

Estimating the expected number of shots. Estimating the expected number of shots
in each state is relatively straightforward, and can be done as follows:

E[shots in s | π] = π(shoot | s) ∗ E[visits to s | π] (24)

In turn, estimating the expected number of visits to a state over the course of a season can
be computed by knowing (1) how many possessions start in each state s′ ∈ L and (2) given
that a possession starts in s′, how many times state s will be visited prior to absorption.
The number of possessions starting in each state s′ can be computed by calculating it from
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the event stream data. We assume that this number is not affected by the changes in
the policy. The number of visits to each state can be derived directly from the MDP by
computing its fundamental matrix N . Each entry Nij is equal to the expected number of
times state j will be visited before an absorbing state is reached, given that the possession
started in state i. Formally, N can be computed as:

N = (I −Q)−1 (25)

where I is the |L|-by-|L| identity matrix and Q describes the probability of transitioning
from one state s ∈ L to another. Each entry Qij = P (i,move to(j), j) ∗ π(move to(j) | i)
and π can either be the observed (to estimate the current expected number of goals) or
altered policy. Appendix B.2 provides an analysis on the accuracy of the outlined approach
when using the observed policy.

Estimating the success probability of shots. Finally, estimating P (s, shoot, goal) for
the observed policy π is also straightforward as it is simply the probability learned from the
data. However, when we modify the policy, this will likely affect the success probability of
the shots taken because there is likely a quantity-quality trade-off. For example, increasing
the shot volume from a particular location would likely entail a team taking more low-
quality shots from that location. When decreasing their shot volume, it stands to reason
that the team likely continues to take high-quality chances and tries to remove the lower-
quality shots from their profile. This relation between the frequency of a given shot type
and its probability of succeeding has previously been discussed in basketball (Goldman &
Rao, 2014; Sandholtz & Bornn, 2018, 2020).

It seems reasonable to assume that such a relationship would also exist for soccer. There-
fore, we adjust for this trade-off when computing P (s, shoot, goal) when an altered policy
π′ is in place. Recall that P (s, shoot, goal) is the xG value for any shot taken in state s
because our model uses a purely location-based xG score. To obtain a fine-grained distri-
bution over possible xG values for a given state s we compute the xG values of each shot
using the XGBoost model with advanced feature set included in the soccer xg package.7

For a detailed description of the model, we refer to Robberechts and Davis (2020). We
then use the distribution of these xG values to derive an adjustment to the estimate of
P ′(s, shoot, goal) for an altered policy π′. We apply a different modification for increasing
and decreasing the number of shots.

Case 1: Increasing the propensity to shoot. In this case, each additional shot taken will
likely be of lower quality. In the new policy, E[shots in s | π′]−E[shots in s | π] more shots
will be taken than in the original policy. We only modify the xG value for the additional
shots taken in π′ by awarding them an xG of:

P (s, shoot, goal)− (µs − µlows ) (26)

where µs is the average computed xG of all shots occurring in state s and µlows is the average
computed xG of the below-average shots occurring in state s. We illustrate this for one

7. https://github.com/ML-KULeuven/soccer xg
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Figure 5: Possible expected goals (xG) distribution in one state. Orange indicates the
average xG value (µs), green indicates the average of the below-average xG values (µlows ),
and purple indicates the average xG value of the shots with an xG value in the top 90% of
all shots in the considered zone (µhighs ).

state in Figure 5.

Case 2: Decreasing the propensity to shoot. In this case, fewer shots will be taken than
in the original policy. Hence, the xG estimate for shooting in each state is too low. We
counter this by modifying the xG values in each state where shooting has decreased and
award them an xG of:

P (s, shoot, goal) + (µhighs − µs) (27)

where µs is again the average computed xG of all shots occurring in state s and µhighs is the
average computed xG of the 1-x highest-quality shots occurring in state s, when decreasing
the propensity to shoot by x percent. Thus, we drop the x percent lowest-quality shots and
compute the average xG of the remaining shots. We illustrate this for x = 10% in Figure 5.

7. Experimental Setup and Evaluation

In this section, we provide details on the experimental setup for learning the MDP. Next,
we evaluate the proposed learning approaches to answer the following three questions: (1)
whether the intended end locations can be accurately predicted by our proposed approach,
(2) whether the proposed hierarchical Bayesian approaches better capture the data of each
team than approaches without a global prior, and (3) whether the final learned MDP cap-
tures the same information as is available in the event data of the team. These evaluations
allow us to validate whether the learned MDP faithfully mimics the observed behavior of
the team.
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Table 1: Average number of actions that are passes, dribbles, crosses, or shots per team in
each season for each of the considered competitions.

Competition 2018/19 2019/20

Bundesliga 22,166 22,190
LaLiga 23,154 22,864
Premier League 24,584 24,946

7.1 Data Sets

Our analyses focus on the event stream data of the 2018/19 and 2019/20 seasons of the
English Premier League, German Bundesliga, and Spanish LaLiga. Each of these leagues
employs a format where each team plays every other team twice: once at home and once
away. The English and Spanish competitions contain 20 teams, resulting in a total of 380
matches per season. The German competition contains 18 teams, resulting in a total of 306
matches per season. Table 1 shows, for each season and competition, the average number
of considered actions (i.e., pass, dribble, cross, shot) per team to construct the models. We
use a team’s actions during both seasons to learn their MDP. In our analyses, we focus on
20 teams, including 7 English Premier League teams (Burnley, Chelsea, Everton, Liverpool,
Manchester City, Manchester United, and Newcastle), 7 German Bundesliga teams (Bayern
Munich, Dortmund, Leipzig, Hoffenheim, Mönchengladbach, Schalke, and Wolfsburg), and
6 Spanish LaLiga teams (Atlético Madrid, Barcelona, Eibar, Real Madrid, Sevilla, and
Valencia).

7.2 Transient State Spaces

We consider two different sets of transient states (Figure 6), which are tailored to the use
cases.

An offensive grid. This grid divides the offensive half of the field into zones of 3m ×
3m and captures the defensive half in one state (Figure 6a). This set of states is very
fine-grained around the opponent’s goal area and will be used in the use cases to analyze a
team’s shot policy.

A custom grid. This grid is more fine-grained where chances of scoring are higher and
more coarse-grained where the chances of scoring are lower. These states also capture
the differences between locations in the defensive half (Figure 6b). The size of the states
ensures that there is sufficient data available in each state to analyze the different movement
strategies and their effects. Additionally, the states also correspond to zones that are
frequently used by practitioners when discussing movement strategies (e.g., the final third
and their entry zones, the penalty box, half-spaces). Therefore, this set of states will be
used in the use cases to analyze (defensive) movement policies.

7.3 Learning the MDP

Learning each team’s MDP consists of two steps. In the first step, the proposed team-
specific models to predict the end location of passes and crosses (Section 4.1) are trained
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(a) Offensive grid (b) Custom grid

Figure 6: Illustration of two sets of transient states that are used. Each transient state is
determined by their location on the field. Teams play left to right. In (a), the defensive
half denotes one state, the offensive half is split into zones of 3m × 3m. This state space is
more suited for analyzing shot strategies as it is more fine-grained around the opponent’s
goal area. In (b), the field is divided into custom zones, which are more suited for analyzing
movement strategies.

using XGBoost (Chen & Guestrin, 2016).8 The training data consists of the successful
passes or crosses performed by the team. This data set is split into a train and test set using
a 70-30 split and 5-fold cross-validation is performed on the train set to tune XGBoost’s
hyperparameters. The test set is used for evaluation. For crosses, a radius r = 2.5 meters
is used, which is a reasonable error margin for professional soccer players. Appendix A.1
contains more information on the experimental setup. After training, the intended end
locations of failed actions are predicted for each team that played during both seasons in
the same league. The predictions of all teams in the same league over both seasons are used
to create the prior for the Bayesian approach.

In the second step, the team-specific MDPs are learned using a hierarchical Bayesian ap-
proach. The probabilistic programming package PyMC3 (Salvatier, Wiecki, & Fonnesbeck,
2016) is used to model each of the Bayesian models (Section 4.2).9 We use PyMC3’s Auto-
Differentiation Variational Inference (ADVI) implementation to train the models. This
allows us to scale to large data sets. All pass, cross, dribble, and shot actions in a team’s
data set are used to train the models. For failed actions, there are multiple possible in-
tended end locations in the data set, each with its own predicted probability. This means
that each failed example is represented multiple times in the data set, once for each possible
end location. To ensure that failed examples are not overly represented in the data set and
to not count these examples more than once, we weigh each observation when passing it as
input to the Bayesian models. The weight used for each failed observation is taken from the
probability distribution over all possible intended end locations. For successful examples,
the weight is set to one, as their intended end location is known. This ensures that failed
and successful examples are weighted equally. To fit the transition function models (policy
models) until convergence, 50,000 (40,000) iterations are used. Each model is then sampled

8. See https://xgboost.ai/. We used XGBoost v1.5.
9. See https://docs.pymc.io/. We used PyMC3 v3.11.
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Table 2: AUROC and Brier scores for the end location prediction models averaged (± 1 std)
over all teams that played during both 2018/19 and 2019/20 seasons in the English Premier
League, German Bundesliga, or Spanish LaLiga. Results are shown for each state space
(OFF = offensive grid, CUSTOM = custom grid). The baseline predicts the distribution
over observed end locations in the training set. DK refers to the post-processing step using
domain knowledge. For AUROC, higher values are better. For the Brier score, lower values
are better.

State Space Action Model AUROC Brier Score

Baseline 0.50 (± 0.00) 0.73 (± 0.04)
OFF Pass XGBoost 0.73 (± 0.04) 0.57 (± 0.04)

DK 0.99 (± 0.00) 0.51 (± 0.03)

Baseline 0.50 (± 0.00) 0.94 (± 0.01)
Cross XGBoost 0.52 (± 0.03) 0.97 (± 0.04)

DK 0.92 (± 0.02) 0.78 (± 0.07)

Baseline 0.50 (± 0.00) 0.98 (± 0.00)
CUSTOM Pass XGBoost 0.93 (± 0.01) 0.80 (± 0.02)

DK 0.99 (± 0.00) 0.52 (± 0.02)

Baseline 0.50 (± 0.00) 0.87 (± 0.02)
Cross XGBoost 0.53 (± 0.03) 0.89 (± 0.03)

DK 0.96 (± 0.01) 0.55 (± 0.05)

4,000 times and the average of these samples is used to compute the final probabilities.
Appendix A.2 contains more information on the experimental setup.

7.4 Evaluation of the Intended End Location Predictions

The held-out test set of each team’s successful actions is used to evaluate the performance
of the end location prediction models. Table 2 reports the area under the ROC curve
(AUROC) and the original Brier score (Brier, 1950) averaged across all teams that played
during both the 2018/19 and 2019/20 seasons in the English Premier League, German
Bundesliga, or Spanish LaLiga (i.e., 49 teams in total) and for both proposed state spaces.
The model’s ability to distinguish between classes is measured by AUROC. Whether the
model’s probability estimates are well-calibrated is measured by the Brier score. In this
case, calibration is more important as the estimates are used to learn the transition model
of the MDP. The baseline model corresponds to naively predicting a prior probability of an
action ending in each state, which can be retrieved from the data. The results show that the
learned models outperform the baseline and that using domain knowledge to post-process
the predictions substantially improves performance.

7.5 Evaluation of the Bayesian Approach

Evaluating the predictive accuracy of the Bayesian models is done by computing the ex-
pected log pointwise predictive density using Pareto-smoothed importance sampling leave-
one-out cross-validation (PSIS-LOO-CV).10 As training the models can be quite time-

10. See https://arviz-devs.github.io/arviz/. We used the PSIS-LOO-CV implementation from Arviz
v2.0.
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Table 3: Expected log pointwise predictive density (in thousands) using PSIS-LOO-CV
for each proposed hierarchical model and state space (OFF = offensive grid, CUSTOM =
custom grid). The results are averaged (± standard error) over all 20 teams that were
considered (7 Premier League, 7 Bundesliga, and 6 LaLiga teams). We compare the results
against non-hierarchical versions of the models. Higher values indicate models with better
predictive accuracy.

State Space Model π(·) P (·)

OFF Unpooled -180.1 (± 0.73) -27.1 (± 0.13)
Hierarchical -161.4 (± 0.68) -26.2 (± 0.28)

CUSTOM Unpooled -159.1 (± 0.29) -19.4 (± 0.14)
Hierarchical -157.5 (± 0.29) -18.9 (± 0.18)

consuming depending on the used state space, this approach can be used to efficiently
estimate the expected log pointwise predictive density without the need for refitting and
evaluating each model for each left out sample.

Table 3 shows the estimated log pointwise predictive density values for our proposed
Bayesian models, averaged over all 20 teams for which an MDP was constructed and for both
state spaces. We compare this to the results of a non-hierarchical approach in which the prior
means µs,a and αs,a are estimated for each team separately using a prior normal distribution
with zero mean and standard deviation 5.0. The results show that the hierarchical models
outperform the non-hierarchical approaches for both the policy and transition probability
models and for both state spaces. The ability to use information about a global prior helps
with resolving sparsity issues and in turn increases predictive accuracy.

7.6 Evaluation of the Complete Model

Evaluating the correctness of the complete MDP (i.e., that it faithfully captures the behavior
of the team) is not straightforward as there is no ground-truth model against which can
be compared. Instead, we propose to evaluate the model on a soccer-relevant metric. We
compute the probability of eventually scoring from each state and compare (1) the results
when computing these values using the model, and (2) the values obtained when only using
the raw event stream data. This metric evaluates all learned parts of the MDP because all
learned probabilities in the model (i.e., the transition function and policy) are needed to
calculate the probability of scoring from each state. That is because teams can use both
movement actions and shot actions during their possession sequences to score goals, and
each action can either fail or succeed.

Computing these probabilities from the model can be done by using the value function.
Each state’s value is equal to the probability of eventually scoring as only scoring results
in a reward. Computing these probabilities empirically from the data can be done by
identifying possession sequences that lead to a goal later on and computing the fraction of
such possession sequences over all possession sequences per state.

Averaged over the 20 teams for which an MDP was constructed, the mean absolute error
(± 1 std) between the results from the model and the empirical results is 0.021 (± 0.002)
using the offensive grid (Figure 6a) and 0.008 (± 0.002) using the custom grid (Figure 6b).
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Figure 7: Evolution of shooting in the English Premier League between 2013/14 and
2018/19. A long-distance shot is defined as a shot taken from outside the penalty box.
Over the course of this time period, the number of these shots has declined by around 20%.

This comparison illustrates that the models provide fairly accurate estimates of derived
results. The small difference between the results from the model and the results obtained
from the raw data is possibly due to the fact that the Markov model approach generalizes
over all possible sequences to reach the goal, whereas not all these sequences are observed in
the data set. There is also a difference visible between both state spaces. As could already
be seen in the previous two evaluations, the results using the custom grid were slightly
better than the results using the offensive grid, which can be attributed to the offensive
grid being more fine-grained and containing fewer data in each state. Naturally, the ability
to better predict the intended end locations and estimate the transition model for one state
space over the other propagates to the quality of the final model.

8. Use Case: Reasoning About Shot Policies

A key trend in soccer that could be attributed to the rise of analytics is a change in teams’
shooting policies: teams shoot much less frequently from outside the penalty box, which is
illustrated in Figure 7 for the English Premier League. This has been driven by analysis of
the xG metric that has shown that because long-distance shots have a much lower chance of
resulting in a goal than closer ones, a (slightly) smaller number of high-quality attempts will
likely yield more goals than a slew of low-quality ones. In this use case, we use the reasoning
tools developed in this work to question this new conventional wisdom and analyze whether
teams are now shooting too infrequently from long distance.

To gain better insights into long-distance shooting, we perform four analyses. First, we
investigate in which situations players should forgo a shot outside the penalty box because
the near-term chance of scoring is higher (e.g., by passing it to a teammate who then
shoots). Second, we extend our first analysis by looking further into the future and aim to
evaluate the odds of the team ever generating a better shooting chance than the one they
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Figure 8: Illustration of the state space and interesting areas used to analyze shot policies.
The long-distance zone from which shots can occur is shown in blue. The flanks to which
the ball is often played to open up space are shaded in gray.

have now. Third, we reason about the possible effects of uniformly increasing or decreasing
the number of long-distance shots on the expected number of goals a team would score in
a season. Fourth, we perform a similar analysis as the third one but focus on a targeted
increase instead of a uniform increase. For all analyses, we use the offensive grid (Figure 6)
as transient states.

8.1 Shoot Immediately or Move Before Shooting?

Consider a player possessing the ball a few meters outside the penalty box with two choices:

1. Take the shot now from the present location;

2. Try to move the ball to another location (e.g., pass it to a teammate) and shoot from
the new location.

What decision should the player make? Common sense dictates that the best option is the
one that has the highest chance of generating a goal. However, knowing which choice is best
according to this criterion involves a trade-off. Taking the shot now ensures the possibility
of scoring the goal. Forgoing the shot may generate a better opportunity down the line, but
does entail some risk. The pass may be errant or your teammate may miscontrol it, leading
to the shooting opportunity evaporating. While the best decision will clearly be context-
specific (e.g., how much pressure is the shooter under, where is the teammate located), we
can use the techniques from Section 5.1 to get a general sense of when it is preferable to
shoot and when it is better to pass.

First, we consider two specific movement conditions: (1) there is exactly one attempted
move action after which a shot is attempted, and (2) there are exactly two move actions to
any field location after which a shot is attempted. We use the approach of Section 5.1 to
calculate the exact probability of scoring in both scenarios for each state inside the blue-
colored box in Figure 8. Figure 9 visualizes for each movement scenario the difference in xG
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Figure 9: The difference in xG between moving once prior to shooting (top), moving exactly
twice to any location prior to shooting (middle), or moving twice prior to shooting with
the constraint that the first move action must move the ball to one of the flanks (bottom)
versus directly shooting. Red indicates where immediately shooting is the better choice as
moving would decrease your odds of scoring. Blue indicates when moving would optimize
your chances of scoring.

between that scenario and directly shooting for the following teams: Everton, Hoffenheim,
Liverpool, Schalke, Sevilla, and Valencia. These results show that for each team there
are zones where moving is better and also zones where shooting is better. Interestingly,
the differences in benefits of shooting and moving are not symmetric. When shooting is
preferred, the payoff in terms of increase in the chance of scoring is much higher than
when moving is preferred. The locations where shooting is preferred vary by team, but
commonalities do arise. Zones that are in the front of the center of the goal are generally
regarded as good locations to shoot from. Intuitively, this makes sense because when a
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player attempts a forward central pass from this location, the receiving player almost always
needs to turn before being able to shoot. Thus, immediately shooting is a better choice
than a pass followed by a subsequent shot. Additionally, locations a bit further out and to
the left/right of the penalty arc can also be spotted as good shooting locations for some
teams. For example, for Everton, this could be due to their inverted winger Yannick Bolasie,
who can cut infield to get the ball on his dominant foot, which facilitates shooting. When
increasing the number of required move actions prior to shooting, the benefit of moving
decreases (see middle row in Figure 9). Hence, in some zones shooting is now preferable
whereas moving was better in the one-move scenario. This is most clearly visible at the
border of the penalty box. In these states, performing more move actions increases the odds
of losing the ball and consequently missing out on the chance of scoring. Concretely, it is
preferable to take an available shot in these zones, unless you can move directly (i.e., in one
step) to a player who will be able to shoot.

Next, we further restrict the second movement scenario by requiring that the first action
in the sequence must move the ball to one of the flanks, which are defined as the gray-
shaded regions in Figure 8. Often the flanks are used to open up space in the hopes of
generating a better shot later in the possession sequence. This analysis also highlights
the power and flexibility of probabilistic model checking to incorporate and reason about
various constraints on an MDP. The bottom row in Figure 9 visualizes the difference in xG
between this scenario and directly shooting for the same six teams. Imposing the additional
restriction of first moving the ball to the flank decreases the chance of generating a goal
later on and hence makes shooting more advantageous in many areas.

These types of analyses and the insights that they provide can aid teams in several ways.
Offensively, it can help teams provide concrete advice to players about the desired decisions
to make in a particular part of the pitch when specific situations arise. Defensively, it gives
teams an indication of how an opponent should behave, which they can use to help craft
a plan to disrupt them. For example, when deciding upon the line-up for a game, a team
playing against Everton might want to use a holding defensive midfielder with the aim of
clogging the area to the left of the penalty arc in order to force them to move the ball to
the flank instead of allowing them to shoot.

8.2 Probability of Generating a Better Shot Later in the Possession

To complement the analysis in the prior section, we look further into the future and answer
the question: “For a specific location, what is the probability of ever generating a better
shot than the one they have when outside the box?”. To answer this question, we apply
the techniques of Section 5.1 and calculate, for each long-distance state s, the probability
of generating a shot with a higher xG value than the one associated with shooting from s.

Figure 10 shows these probabilities for the same six teams as in the previous analyses.
Our method identifies various regions with higher and lower odds of generating a better shot,
which mostly correspond to the same areas identified in the previous analyses. Interestingly,
there are many locations where teams are very unlikely to ever generate a better shot. In
fact, the probability of ever generating a better shot can be as low as 5% for some locations.
An example of such a location for Chelsea and Schalke is the region to the right of the
penalty arc. Similarly, when a team is on the edge of the penalty box, directly in front
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Figure 10: The probability of ever generating a better shot in the same possession sequence
for Everton, Hoffenheim, Liverpool, Schalke, Sevilla, and Valencia. The regions with the
lowest probabilities correspond to the zones where shooting was preferable to moving in the
previous analyses. The magnitudes of these probabilities vary by team.

of goal, the chances of generating a better shot are only between 5% and 10%. In other
locations, like Sevilla’s left side of attack, the probabilities can be quite high, at around 35%.
The magnitude of the probabilities can vary substantially from team to team. For example,
Hoffenheim is almost always more likely to generate a better shot, whereas Everton clearly
has a large region from which immediately shooting would be preferred.

8.3 Uniformly Shooting More or Less From Distance

Practitioners often wonder what would happen if players decided to alter their shot volume
during games. To answer such questions we use the reasoning techniques outlined in Sec-
tion 6.2. Specifically, we explore the effect of increasing and decreasing the frequency of
shooting from long-distance by 5%, 10%, and 20%.

Figure 11 shows the change in the expected number of goals each of the 20 considered
teams would score over the course of a season as a result of altering the frequency of shooting
from distance. For most teams, we see that shooting less from distance leads to a decrease
in the number of goals a team would be expected to score. Uniformly increasing the number
of long-distance shots would yield more goals for half of the teams. In each league, there
are some exceptions that would see the opposite happening. For example, the previous
analyses identified Hoffenheim as a team that almost always is more likely to generate a
better shot later on in the possession. Thus, increasing the number of shots they take from
long-distance is counterproductive. Other teams like Atlético, Bayern, and Chelsea can
be identified as the teams that can expect bigger increases. All three teams have or had
players with a good long-distance shot (e.g., Correa and Koke with Atlético, Lewandowski
and Gnabry with Bayern, and Hazard with Chelsea).
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Figure 11: Effect on the expected number of goals a team would score when uniformly
increasing or decreasing the frequency of shooting from the long-distance region shown in
Figure 8 by 5%, 10%, and 20% for all 20 considered teams in the English Premier League,
Spanish LaLiga, and German Bundesliga. Most teams see an increase in the number of
goals with an increase in shooting from distance. Some exceptions, like Manchester City
and Newcastle, would see a decrease.

8.4 Targeted Increases of Shots From Distance

The previous analysis evaluated the effect of uniformly increasing a team’s propensity to
shoot from all the considered long-distance locations. However, the first and second analyses
clearly illustrate that there are a limited number of team-specific long-distance zones where
it may be fruitful to consider shooting more often. Therefore, in this analysis we explore
the effect of each team shooting 5%, 10%, or 20% more often but only from those locations
where shooting was deemed to be the better choice than moving for the team.

Figure 12 shows the change in the expected number of goals each of the 20 considered
teams would score over the course of a season. This more targeted approach now yields
increases in the expected number of goals scored for almost all teams. Shooting 20% more
often from long-distance tends to yield a gain of almost one extra goal for half of the teams.
Figure 13 shows that every goal scored during a season equates to roughly one point in the
table. Thus, scoring an extra goal is possibly very important as for the bottom teams it
could mean the difference between being relegated or staying up. Relegation is a catastrophe
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Figure 12: Effect on the expected number of goals a team would score when performing
a targeted increase in the frequency of shooting from the long-distance region shown in
Figure 8 by 5%, 10%, and 20% for all 20 considered teams in the English Premier League,
Spanish LaLiga, and German Bundesliga. Half of the teams would score almost an extra
goal. Interestingly, Mönchengladbach would still see a decrease.

with a cost that can be estimated at around $250 million.11 For the top teams, an extra
goal could mean the difference between qualifying for the Champions League or not.

9. Use Case: Reasoning About Defensive Strategies

In this use case, we reason about the efficacy of various defensive strategies in terms of
forcing teams to avoid states from which they create dangerous situations. Specifically, we
address the following three questions:

1. Which states should a team be forced to avoid to decrease the number of shots they
take?

11. https://www.firstpost.com/sports/premier-league-250m-at-stake-as-aston-villa-
bournemouth-and-watford-fight-to-avoid-relegation-on-final-day-8641391.html
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Figure 13: Points in the final table as a function of the goals scored. The image visualizes
the data of ten seasons of the English Premier League (i.e., 2010/11 until 2019/20). Every
goal scored equates to one point in the final table.

2. Which defensive and midfield states should the defensive game plan suppress move-
ment to in order to decrease the general danger created by the attacking team during
the build-up phase?

3. How effective does the identified movement suppression tactic remain after the oppos-
ing team adapts to it?

For these analyses, we use the custom grid (Figure 6) as transient states.

9.1 Shot Suppression

In this first analysis, we will use the methodology outlined in Section 5.2 to identify which
states a defending team should pay attention to in order to directly and indirectly decrease
their opponents’ shots.

Figure 14 visualizes the percent decrease in the probability of taking a shot from and
reaching the favored shot locations (see Figure 4) for each state and for each of the four
considered teams. For Chelsea, when directly suppressing their shots, the most important
states lie centrally with a slightly higher decrease on their left side versus their right side.
Their most important states shift entirely to their left side when focused on indirectly sup-
pressing their shots. An opponent that prevents them from entering their most important
state would decrease Chelsea’s chance of shooting by almost 10% and their chance of reach-
ing the favored shot locations by almost 17%. A similar tendency in terms of locations
can be found for Real Madrid. Both teams predominantly tend to use the left flank to
get the ball centrally and create chances. An opponent that prevents Real Madrid from
entering their most important state would decrease their chance of shooting by a little over
9% and their chance of reaching the favored shot locations by almost 17%. One possible
explanation for this similar tendency in favored locations for both teams is Eden Hazard
who played as a left-winger for both teams during the two considered seasons (i.e., during
the 2018/19 season he played for Chelsea, he transferred to Real Madrid for the 2019/20
season). He is known for his impeccable ball-handling skills which allow him to pass many
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Figure 14: The percent decrease in shooting from (top row) and reaching (bottom row) the
common shot locations for Chelsea, Dortmund, Manchester City, and Real Madrid. Yellow
shading indicates states that result in a large decrease when the given team is forced to
avoid them. Dark blue shading indicates states that result in a smaller decrease. The top
three states with the largest impact are labeled in each figure.

defenders and create danger on his left side of the pitch. For Dortmund, their most impor-
tant states lie centrally when focused on directly suppressing their shots, but on either flank
when focused on indirectly suppressing their shots. This is most likely due to their wingers
Thorgan Hazard and Jadon Sancho who provide width on the flanks and are very adept
at creating assists. An opponent that can prevent them from entering their most impor-
tant state would decrease Dortmund’s chance of shooting by almost 8% and their chance
of reaching the favored shot locations by almost 15%. Finally, for Manchester City, their
most important states lie centrally in both cases, with the flanks having a smaller effect for
them. This indicates that they predominantly use the center to create chances, whereas the
other teams tend to use the flanks more. Tactically, Manchester City is a possession-based
team that gradually builds up their attack. Their creative midfielders Silva and De Bruyne,
who are very adept at reading and steering the game, can often be found in the center of
the pitch. If an opponent can prevent them from entering their most important states, we
see the biggest decreases of all four teams (i.e., a decrease of almost 11% in the chance of
shooting and a decrease of almost 22% in the chance of reaching the favored shot locations).

9.2 Movement Suppression

As a second analysis, we take a step back and analyze which sets of states the defending
team should force the opponent to avoid in order to decrease the danger created by the
opponent during their build-up phase. Doing so will essentially restrict their movement
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Figure 15: Illustrates for Barcelona, Bayern Munich, Chelsea, and Real Madrid, two areas
(blue) to prevent them from reaching in order to decrease their chances of scoring in each
final third entry state by at least 10% and in each middle third state by at least 1%.

with the ball and will decrease the danger created by the attacking team. Here, we will
use the methodology outlined in Section 5.2 and focus on decreasing the attacking team’s
danger in the final third entry and middle third regions of the pitch.

Figure 15 shows the results for Barcelona, Bayern Munich, Chelsea, and Real Madrid.
To reduce Barcelona’s chance of scoring from each of the final third entry states by at least
10%, a crucial area to avoid lies around the center-right of the pitch which is where play-
makers Ivan Rakitić and Frenkie de Jong, and winger-stringer Lionel Messi often operate.
Decreasing their chance of scoring by at least 1% in each state in the middle third of the
field can also be done by forcing them to avoid the center-right of their defensive third.
Similarly, for Bayern, it is also best to force them to avoid the center of the pitch in both
cases. In the defensive part of the pitch, this is the playing field of Jérôme Boateng and
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Table 4: Percent decrease in each team’s probability of scoring when it is forced to avoid its
respective region in the top row of Figure 15. The results are shown both before and after
adapting to the defensive strategy, and for both approaches of adapting the policy (PR =
proportional approach, SA = same aggressiveness approach).

Team Without adapting PR SA

Barcelona 15.7 2.8 3.5
Bayern Munich 7.7 1.5 1.9
Chelsea 12.1 4.2 3.2
Real Madrid 12.2 4.1 3.4

David Alaba, who both have good ball-handling skills and can act as playmakers. In the
offensive part of the field, this is the area of midfielder Thiago Alcântara, who is involved in
most of Bayern’s possession sequences. To reduce Chelsea’s chance of scoring from each of
the final third entry states by at least 10%, a crucial area to avoid lies to their left side of the
pitch. This area corresponds to the best locations for indirectly suppressing their shots, and
a similar observation can be made for Real Madrid. When looking at their defensive half,
the similarities between the two teams disappear. Decreasing Chelsea’s chance of scoring
by at least 1% in each state in the middle third can be done by forcing them to avoid the
center region of the defensive third. On the other hand, for Real Madrid, it is better to
force them to avoid the right side of their defensive third.

9.3 Effect of Defensive Strategies Once Team Adapts

Until now, we have explored the effect of forcing a team to avoid certain regions (area)
on its chance of scoring. In practice, if an opponent enacts such a strategy, a team will
eventually react and adapt their old policy π towards a new one π′. The new policy π′

will stop trying to reach locations in area, so π′(move to(s′) | s) = 0 for all s′ ∈ area.
The lost probability mass will then be redistributed using either the proportional or same
aggressiveness approach (Section 6.1). We illustrate the results of both approaches for
Barcelona, Bayern Munich, Chelsea, and Real Madrid when they are forced to avoid their
respective area in the top row of Figure 15.

Table 4 shows the resulting decrease in each team’s chances of scoring before and after
adapting using both approaches. If the team does not adapt, the incurred decrease in the
chances of scoring can be quite large, depending on the size of the region. For example,
forcing Barcelona to avoid their respective region in the middle of the field decreases their
probability of scoring by 15.7%, which is almost double the decrease that Bayern Munich
incurs. On the other hand, forcing Chelsea and Real Madrid to avoid their similar regions
on the left side of the field incurs a similar decrease for both teams. When the teams adapt,
using either strategy, the reduction becomes much smaller. Interestingly, for Barcelona and
Bayern Munich, adjusting their policy using the proportional approach results in the least
decrease, whereas for Chelsea and Real Madrid, using the same aggressiveness approach is
best. This possibly indicates that for Barcelona and Bayern Munich it might be best to also
move the ball backward to later find other ways of reaching a goal, whereas for Chelsea and
Real Madrid, moving the ball not through the left side and more through the middle and
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right side is also quite effective. While the decrease is less impressive when teams adapt, it
still represents a reasonable reduction, certainly given that adapting one’s strategy is hard.

10. Related Work

Markov models and reinforcement learning paradigms have been widely used for analyzing
sports such as soccer (Fernández et al., 2021; Hirotsu & Wright, 2002; Liu & Hohmann,
2013; Rudd, 2011; Singh, 2019; Van Roy, Robberechts, Decroos, & Davis, 2020; Yam, 2019),
American football (Goldman & Rao, 2014), basketball (Cervone et al., 2016; Sandholtz &
Bornn, 2018, 2020; Wang, Fox, Skaza, Linck, Singh, & Wiens, 2018), table tennis (Pfeiffer
et al., 2010; Wenninger & Lames, 2016), and ice hockey (Routley & Schulte, 2015; Schulte,
Khademi, Gholami, Zhao, Javan, & Desaulniers, 2017). The most prominent use case of
these techniques is to objectively quantify a player’s contributions during a match. The
intuition is that Markov models and reinforcement learning techniques enable assessing
how much a player’s action increases his team’s chance of scoring in the near future. Such
techniques have begun to have a significant impact in professional soccer, where clubs (e.g.,
Liverpool12, Barcelona (Fernández et al., 2021)) and companies are employing them to help
in areas such as player acquisition and match analysis.

There has been less attention on using these models and techniques for reasoning about
the strategies teams (could) employ to obtain insights and aid their in-game decision-
making. Some examples of existing works in this setting are the analysis of set-pieces
such as corners, free-kicks, and throw-ins (Rudd, 2011), identifying where teams create
value from by using the values of players’ actions (Fernández et al., 2021; Singh, 2019),
analyzing the performance relevance of certain actions (Liu & Hohmann, 2013; Pfeiffer
et al., 2010; Wenninger & Lames, 2016), and the analysis of the optimal or an alternative
policy (Sandholtz & Bornn, 2018, 2020; Wang et al., 2018).

Our proposed methods also correspond to this setting, with the most closely related
work being that of Sandholtz and Bornn (2018, 2020) for basketball. There are several
differences with our work, beyond looking at different sports. First, we consider a more
expansive action space that allows us to model the intended end location of each action
and reason about changes to the movement policy, whereas their methods cannot alter the
movement policy and transition function separately. Second, when analysing the effects of
modifying a team’s shot policy, we adjust both the frequency and efficiency of shots whereas
their work did not take the frequency-efficiency trade-off into account. We also compute
the expected number of goals teams would score via the MDP’s fundamental matrix as
opposed to simulating the season by sampling from the various distributions. The idea of
using the fundamental matrix to compute the probability of a sequence resulting in a goal
has also been used by Yam (2019). Third, we analyze event data and focus on the analysis
of teams, whereas Sandholtz and Bornn have access to tracking data which allows them
to build a more fine-grained model in terms of player analysis. Finally, we propose to use
probabilistic model checking techniques to reason about the merits of both offensive and
defensive strategies. Applying model checking techniques to sports models has not been
extensively explored. Dong et al. (2015) have applied probabilistic model checking to a
tennis MDP to predict the win probability and identify a player’s best action to improve.

12. https://freakonomics.com/podcast/london-live/
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To the best of our knowledge, the use of probabilistic model checking to compare the chances
of scoring for different action sequences and assess the effect of defensive strategies is novel
within sports analytics.

In contrast to real-life soccer, MDP’s have been extensively used in research on strategic
reasoning and planning in (simulated) robot and humanoid soccer. For example, an ap-
proach for providing coaching advice in simulated robot soccer has been developed by Riley
and Veloso (2004) and uses Q-learning to reason about a learned MDP. Liu et al. (2022)
make use of multi-agent reinforcement learning in combination with imitation learning to
train teams of physically simulated humanoids to play soccer. To train the humanoids,
they specify multiple training tasks corresponding to soccer drills, which they model as
stochastic games. Additionally, Ahmadi and Stone (2008) and Bai et al. (2012) investi-
gate different automated action planning strategies for in-game decision-making. However,
such automated planning strategies cannot immediately be used in real-life soccer as it
is compounded by high stakes and the incredibly short tenure of most managers, which
discourages experimentation. In addition, removing the randomness from a team’s behav-
ior would make it very predictable for an opponent. Thus, instead of finding the optimal
plan, our setting uses passive model-based reinforcement learning, where we aim to analyze
a team’s current and counterfactual strategies to propose possible improvements and aid
their tactical planning. The use of reinforcement learning for this task was also recently
mentioned by Tuyls et al. (2021) in which they provide an overview of how the integration
of reinforcement learning and statistical learning could in the future aid soccer teams in
their decision-making.

Regarding addressing sparsity issues in Markovian sports models, various approaches
have been employed in the literature. While including fine-grained location and context
information would allow for a more detailed analysis, it also increases the sparsity of the
data. Therefore, most approaches trade off usefulness and sparsity by applying a hand-
crafted grid over the field and only sometimes include context such as players (Goldner,
2012; Luo, Schulte, & Poupart, 2020; Routley & Schulte, 2015; Rudd, 2011; Schulte et al.,
2017; Singh, 2019; Van Roy, Robberechts, Yang, De Raedt, & Davis, 2021; Yam, 2019).
Recent work in basketball goes one step further and applies Bayesian approaches on top of
a fine-grained and contextualized state space to estimate the transition probabilities and
thereby mitigates any remaining sparsity issues (Cervone et al., 2016; Sandholtz & Bornn,
2018, 2020). This approach has also been proposed in soccer, but without any validation on
real-life data and with a rudimentary model containing only four states (Hirotsu & Wright,
2002). To the best of our knowledge, these approaches have not been applied to a more
fine-grained Markov model for soccer in order to resolve sparsity issues.

Lastly, evaluation and validation of these models is often not straightforward and the ap-
proach taken typically depends on the use case (Davis, Bransen, Devos, Meert, Robberechts,
Van Haaren, & Van Roy, 2022). In the case of valuing player actions, some approaches val-
idate their ratings against other metrics such as salaries, goals, and assists (Liu & Schulte,
2018; Liu, Luo, Schulte, & Kharrat, 2020; Luo et al., 2020; Routley & Schulte, 2015; Schulte
et al., 2017). While correlation with these metrics might indicate correctness, a perfect cor-
relation indicates that the proposed approaches do not provide any new insights. As there
are no ground truth labels available, it is hard to quantitatively validate the correctness and
usefulness of these metrics and one often resorts to domain knowledge. In the case of vali-
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dating the learned playing style, validation against the team’s actual playing style is equally
challenging and mainly done with visual inspection or against domain knowledge (Schulte
et al., 2017; Singh, 2019). Quantitative validation of the complete Markov model is often
left out. However, in the case of intermediate models (e.g., Bayesian approaches), evalua-
tion of those is often done to yield insight into the correctness of the final model (Cervone
et al., 2016; Fernández et al., 2021; Sandholtz & Bornn, 2018, 2020).

11. Conclusion

This paper proposed a novel framework to learn and reason about the strategies used in pro-
fessional soccer by combining techniques from machine learning and artificial intelligence.
The proposed framework combines (1) learning a Markov decision process of a team’s offen-
sive behavior from their observed data with (2) probabilistic model checking techniques to
reason about the modeled policies. In order to learn the model, we showed how the missing
intended end locations of failed actions can be learned using a combination of predictive
modeling and domain knowledge. Second, we showed that a hierarchical Bayesian approach
to learning the transition model can be used to mitigate sparsity issues. Third, we showed
how the framework can be used to reason about both the current and counterfactual policies
of teams. For this, we proposed (1) approaches to reason about the effect of both offensive
and defensive strategies using probabilistic model checking, and (2) approaches to alter the
policy of a team in a principled manner and evaluate its effects. This work is a successful
illustration of how learning and reasoning can be combined.

We applied this framework to two use cases. First, we evaluated the current shot policy
of teams and the effects of employing a different long-distance shot policy. We found that
there are several team-specific areas where shooting is better than attempting to move the
ball in the hope of generating a better shot down the line. If teams were to increase their
frequency of shooting from distance from a limited number of specific areas, they would be
expected to score about one additional goal over the course of a season. Given that each
goal roughly equates to one point in the final league table, this could have very important
implications regarding relegation from the league or qualification for the Champions League.
Second, we analyzed the current offensive strategies of teams to optimize a defending team’s
game plan. For each team, we found specific areas an opposing team should force them to
avoid in order to decrease the opponent’s chances of conceding a goal, even if the attacking
team were to adapt to this.

While there are no strong guarantees about the model’s correctness as would be required
in a verification context, it clearly supports reasoning about strategies and policies in the
complex dynamic environment of professional soccer. Furthermore, visualizing the results
of the queries can help human soccer experts better understand the effects of potential
strategies, which in turn contributes to trustworthy AI. From an application perspective,
the proposed approaches can form a basis for future tactical analysis in soccer. The resulting
insights can be used to better coach players during training sessions, when preparing for a
specific opponent, or when setting a team’s tactics. We believe that our approach is also
applicable to other environments and other sports. While using domain knowledge is clearly
an important factor for successfully constructing the models, we believe the dependence on
this domain knowledge is not a problem when transferring it to other sports as such domain
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knowledge does exist in most other team sports (e.g., the various lines of research in the
field of sports science).

Currently, our approach contains some limitations. The MDP is currently agnostic over
its opponent, which means the resulting insights are quite general for each team. To obtain
specialized insights when two specific teams play each other, the behavior of each team
should be explicitly modeled (e.g., by using a stochastic game). Additionally, if the data
allows, the MDP’s state space could be expanded to more contextual and realistic states,
which would allow for a more in-depth team or player analysis. Finally, the approaches to
evaluate the effects of alternative policies could be expanded by altering the assumption
that the initial distribution of possession sequences remains unchanged. However, how to
accurately estimate how this distribution should change in relation to the alterations in the
policy remains an open question.
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Appendix A. Experimental Setup

In this section, we provide all details of our experimental setup. All experiments in this
paper were performed using Python v3.9.

A.1 Gradient Boosted Trees Ensembles

To train the XGBoost models, the training data of each action type (i.e., all successful
examples of passes or crosses) was split into a train and test set using a 70-30 split. We
performed 5-fold cross-validation randomized search on each action type’s train set to opti-
mize the hyperparameters of the XGBoost models. Therefore, 50 parameter settings were
sampled from the following distributions:

‘max_depth’: random integer [2, 10],

‘min_child_weight’: random integer [1,11],

‘gamma’: uniform [0,1],

‘reg_alpha’: uniform [0,1],

‘reg_lambda’: uniform [0,10],

‘base_score’: uniform [0.1,1],

‘subsample’: uniform [0.5,1],

‘colsample_bytree’: uniform [0.5,1],

‘colsample_bylevel’: uniform [0.5,1]
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Table 5: Training time for the transition function and policy models averaged over all 20
teams that were considered. The results are shown for each considered state space (OFF =
offensive grid, CUSTOM = custom grid).

State Space Model Time (h)

OFF Transition 6.3
Policy 2.9

CUSTOM Transition 1.5
Policy 0.6

All other hyperparameters were set to their default values.

The final models were trained on a computing server running Ubuntu 20.04 with 16GB
RAM and an Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz. Training the ensembles for both
passes and crosses for one team takes on average three minutes when using the offensive
grid and one minute when using the custom grid.

A.2 Hierarchical Bayesian Models

All parameters were set to their default values, except the number of iterations needed to
fit and sample the models, as explained in the main part of this paper.

The models were trained on a computing server running Ubuntu 20.04 with 32GB RAM
and an Intel(R) Xeon(R) CPU E3-1225 v3 @ 3.20GHz. The models were sampled on a
computing server running Ubuntu 20.04 with 128GB RAM and an Intel(R) Xeon(R) Silver
4214 CPU @ 2.20GHz. Table 5 shows the training time needed for each of the considered
state spaces and models.

Appendix B. Policy Modifications

In this section, we provide the additional formulas for altering the movement policy and an
evaluation of the approach for estimating the expected number of goals.

B.1 Decreasing the Movement Probability

Suppose that, given a start state s, the objective is to move to a set of states area x percent
less than the team normally would. Decreasing the probability of moving from state s to
each state s′ ∈ area by x percent can be done as follows:

π′(move to(s′) | s) = (1− x) ∗ π(move to(s′) | s) (28)

To maintain a probability distribution, the probability of moving from s to all other states
s′′ ∈ L \ area must increase.

Using the proportional approach, this is done as follows:

π′(move to(s′′) | s) = π(move to(s′′) | s)
total other

∗ (total other + x ∗ total area) (29)

556



Markov Framework for Learning and Reasoning in Soccer

Using the same aggressiveness approach, the probability of choosing to move from s
to s′′ /∈ area is increased using the following approach. If s′ ∈ area is a state that lies
higher up the pitch than state s, the lost probability of choosing to move from s to s′ is
redistributed over all states s′′ ∈ sh ⊆ L \ area that also lie higher up the pitch than state
s as follow:

π′(move to(s′′) | s) = π(move to(s′′) | s)
total

∗ (total + x ∗ π(move to(s′) | s)) (30)

with total defined as:
total =

∑
s′′∈sh

π(move to(s′′) | s) (31)

For all other states s′′ ∈ L \ area, the policy remains unchanged. Similarly, if s′ ∈ area
lies at an equal height or lower on the pitch than state s, the lost probability of choosing
to move from s to s′ is redistributed over all other states s′′ ∈ sl ⊂ L \ area that also lie
at an equal height or lower on the pitch than state s using the same formulas. To keep the
probability of moving forward equal, the policy of moving to the other states (i.e., higher
up the pitch) then remains unchanged.

B.2 Estimating the Expected Number of Goals

To assess the accuracy of our estimated expected number of goals, we calculate the relative
error between (1) the estimated number of goals scored over a season according to our
approach of Section 6 using the observed policy and (2) the actual average number of goals
recorded per season in the event stream data of each team. The resulting average relative
error over all constructed models using the 2018/19 and 2019/20 English Premier League,
German Bundesliga, and Spanish LaLiga data is 14.02%. Given that an average team scores
around 45 goals per season, this corresponds to roughly six goals. This indicates that our
method produces fairly good estimates of the number of goals for the observed policy.

Appendix C. Ablation Study

In this section, we provide an ablation study on the features used to predict the intended
end location of actions. Therefore, we assess whether each feature provides an improve-
ment on the proposed model’s performance. Specifically, the ablation models are created
by removing one feature at a time, yielding four variations: (1) start state, direction, body
part, start states of the three preceding actions (ALL); (2) start state, direction, body
part (NO HISTORY); (3) start state, direction, start states of the three preceding actions
(NO BODYPART); (4) start state, body part, start states of the three preceding actions
(NO DIRECTION).

We train the models for all teams that played in both the 2018/19 and 2019/20 German
Bundesliga using the same experimental setup as in Appendix A.1. We do not include the
domain knowledge step and report the performance of the raw XGBoost models in order to
assess the importance of each feature. Table 6 reports the average AUC and Brier scores.
When removing the history features, the models incur a performance drop, especially when
using the offensive state space. These features seem to be less important when using the
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Table 6: AUROC and Brier scores for the ablation study on the end location prediction
models. Results are averaged (± 1 std) over all teams that played during both 2018/19
and 2019/20 seasons in the German Bundesliga and shown for each state space (OFF =
offensive grid, CUSTOM = custom grid).

State Space Action Ablation Model AUROC Brier Score

OFF Pass ALL 0.714 (± 0.033) 0.535 (± 0.036)
NO HISTORY 0.683 (± 0.069) 0.594 (± 0.157)
NO BODYPART 0.711 (± 0.030) 0.534 (± 0.037)
NO DIRECTION 0.537 (± 0.019) 0.891 (± 0.119)

Cross ALL 0.511 (± 0.025) 0.961 (± 0.040)
NO HISTORY 0.510 (± 0.043) 0.965 (± 0.034)
NO BODYPART 0.521 (± 0.020) 0.969 (± 0.039)
NO DIRECTION 0.515 (± 0.026) 0.966 (± 0.037)

CUSTOM Pass ALL 0.925 (± 0.011) 0.799 (± 0.019)
NO HISTORY 0.922 (± 0.010) 0.785 (± 0.017)
NO BODYPART 0.926 (± 0.011) 0.800 (± 0.019)
NO DIRECTION 0.840 (± 0.019) 0.945 (± 0.006)

Cross ALL 0.511 (± 0.039) 0.882 (± 0.027)
NO HISTORY 0.516 (± 0.025) 0.867 (± 0.023)
NO BODYPART 0.514 (± 0.037) 0.878 (± 0.023)
NO DIRECTION 0.502 (± 0.022) 0.889 (± 0.038)

custom state space. Most likely, the historical information is useful when trying to pinpoint
a fine-grained location which is necessary when using the offensive state space. The direction
of the action seems to be especially important for passes, regardless of the state space. As
all crosses typically end within a similar region in front of the goal, the direction information
is less important. Finally, using the body part as a feature seems to have no pronounced
effect. This is likely due to the fact that most actions are executed with a player’s feet
and only a small number are executed with another body part. Overall, we find that the
relative importance of the features depends on the type of action and state space. To cover
most of the situations, we have used all features for all models in this paper.
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