
Journal of Artificial Intelligence Research 77 (2023) 39-70 Submitted 05/2022; published 05/2023

FlexiBERT: Are Current Transformer Architectures too
Homogeneous and Rigid?

Shikhar Tuli stuli@princeton.edu
Bhishma Dedhia bdedhia@princeton.edu
Dept. of Electrical & Computer Engineering, Princeton University
Princeton, NJ 08544 USA

Shreshth Tuli s.tuli20@imperial.ac.uk
Department of Computing, Imperial College London
London, SW7 2AZ UK

Niraj K. Jha jha@princeton.edu

Dept. of Electrical & Computer Engineering, Princeton University

Princeton, NJ 08544 USA

Abstract

The existence of a plethora of language models makes the problem of selecting the best
one for a custom task challenging. Most state-of-the-art methods leverage transformer-based
models (e.g., BERT) or their variants. However, training such models and exploring their
hyperparameter space is computationally expensive. Prior work proposes several neural
architecture search (NAS) methods that employ performance predictors (e.g., surrogate
models) to address this issue; however, such works limit analysis to homogeneous models that
use fixed dimensionality throughout the network. This leads to sub-optimal architectures.
To address this limitation, we propose a suite of heterogeneous and flexible models, namely
FlexiBERT, that have varied encoder layers with a diverse set of possible operations and
different hidden dimensions. For better-posed surrogate modeling in this expanded design
space, we propose a new graph-similarity-based embedding scheme. We also propose a novel
NAS policy, called BOSHNAS, that leverages this new scheme, Bayesian modeling, and
second-order optimization, to quickly train and use a neural surrogate model to converge
to the optimal architecture. A comprehensive set of experiments shows that the proposed
policy, when applied to the FlexiBERT design space, pushes the performance frontier
upwards compared to traditional models. FlexiBERT-Mini, one of our proposed models, has
3% fewer parameters than BERT-Mini and achieves 8.9% higher GLUE score. A FlexiBERT
model with equivalent performance as the best homogeneous model has 2.6× smaller size.
FlexiBERT-Large, another proposed model, attains state-of-the-art results, outperforming
the baseline models by at least 5.7% on the GLUE benchmark.

1. Introduction

In recent years, self-attention (SA)-based transformer models (Vaswani et al., 2017; Devlin
et al., 2019) have achieved state-of-the-art results on tasks that span the natural language
processing (NLP) domain. Large-scale pre-training datasets, increasing computational
power, and robust training techniques (Liu et al., 2019) drive this burgeoning success. A
challenge that remains is efficient optimal model selection for a specific task and a set of user
requirements. In this context, one should train only models with the maximum predicted

©2023 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Tuli, Dedhia, Tuli, & Jha

performance. This falls in the domain of neural architecture search (NAS) (Zoph & Le,
2017).

1.1 Challenges

The design space of transformer models is vast. Rigorous search has proposed several
models in the past. Popular models include BERT, XLM, XLNet, BART, ConvBERT, and
FNet (Devlin et al., 2019; Conneau & Lample, 2019; Yang et al., 2019; Lewis et al., 2020;
Jiang et al., 2020; Lee-Thorp et al., 2022). Transformer design involves a choice of several
hyperparameters, including the number of layers, size of hidden embeddings, number of
attention heads, and size of the hidden layer in the feed-forward network (Khetan & Karnin,
2020). This leads to an exponential increase in the design space, making a brute-force
approach to explore the design space computationally infeasible (Ying et al., 2019). The
aim is to converge to an optimal model as quickly as possible by testing the lowest possible
number of datapoints (Pham et al., 2018). Moreover, model performance may not be
deterministic, requiring heteroscedastic modeling (Ru et al., 2020).

1.2 Existing Solutions and Motivation

Recent NAS advancements use various techniques to explore and optimize different models
in the deep learning domain, from image recognition to speech recognition and machine
translation (Zoph & Le, 2017; Mazzawi et al., 2019). In the computer-vision domain,
various search approaches, such as genetic algorithms, reinforcement learning, and structure
adaptation, realize diverse convolutional neural network (CNN) architectures. Some even
introduce new basic operations (Zhang et al., 2018) to enhance performance on different
tasks. Many works leverage a performance predictor, often called a surrogate model, to
reliably predict model accuracy. One can train such a surrogate through active learning
by querying a few models from the design space and regressing their performance to the
remaining space (under some theoretical assumptions), thus significantly reducing search
times (Siems et al., 2020; White et al., 2021b).

Unlike CNN frameworks (Ying et al., 2019; Tan & Le, 2019), meant for vision tasks,
there is no universal framework for NLP that differentiates among transformer architectural
hyperparameters. Works that do compare different design decisions often do not consider
heterogeneity and flexibility in their search space and explore the space over a limited
hyperparameter set (Khetan & Karnin, 2020; Xu et al., 2021; Gao et al., 2022)1. For
instance, Primer (So et al., 2021) only adds depth-wise convolutions to the attention heads;
AutoBERT-Zero (Gao et al., 2022) lacks deep feed-forward stacks; AutoTinyBERT (Yin et al.,
2021) does not consider linear transforms (LTs) that outperform traditional SA operations
in terms of parameter efficiency; AdaBERT (Chen et al., 2021) only considers a design space
of convolution and pooling operations. Most works, in the field of NAS for transformers,
target model compression while trying to maintain the same performance (Chen et al., 2021;
Yin et al., 2021; Wang et al., 2020), which is orthogonal to our objectives in this work,
i.e., searching for novel architectures that push the performance frontier. In addition, all

1. Here, by heterogeneity, we mean that di�erent encoder layers can have distinct attention operations,
feed-forward stack depths, etc. By flexibility, we mean that the hidden dimensions for di�erent encoder
layers in a transformer architecture can be mismatched.

40

FlexiBERT: Are Current Transformer Architectures too Homogeneous and Rigid?

Framework
Self-Attention

Conv.
Lin. Transform Flexible no. of

attn. ops.
Flexible feed-
fwd. stacks

Flexible hidden dim. Search
technique

SDP WMA DFT DCT Ad. width Full flexibility

Primer
(So et al., 2021) X X ES
AdaBERT
(Chen et al., 2021) X DS
AutoTinyBERT
(Yin et al., 2021) X X X X ST
DynaBERT
(Hou et al., 2020) X X X X ST
NAS-BERT
(Xu et al., 2021) X X X ST
AutoBERT-Zero
(Gao et al., 2022) X X X ES

FlexiBERT (ours) X X X X X X X X X BOSHNAS

Table 1: Comparison of related works with different parameters (Xindicates that the corre-
sponding feature is present). Adaptive width refers to different architectures having
possibly different hidden dimensions (albeit each layer within the architecture
having the same hidden dimension). Full flexibility corresponds to each encoder
layer having, possibly, a different hidden dimension.

previous works only consider rigid architectures. For instance, DynaBERT (Hou et al., 2020)
only adapts the width of the network by varying the number of attention heads (and not the
hidden dimension of each head), which is only a simple extension to traditional architectures.
Further, their individual models still have the same hidden dimension throughout the network.
AutoTinyBERT (Yin et al., 2021) and HAT (Wang et al., 2020), among others, fix the input
and output dimensions for each encoder layer (see Appendix A.1 for a background on the
SA operation), which leads to rigid architectures.

Table 1 gives an overview of various baseline NAS frameworks for transformer archi-
tectures. It presents the aforementioned works and the respective features they include.
Primer (So et al., 2021) and AutoBERT-Zero (Gao et al., 2022) exploit evolutionary search
(ES), which faces various drawbacks that limit elitist algorithms (Dang et al., 2021; White
et al., 2021a; Siems et al., 2020). AdaBERT (Chen et al., 2021) leverages differentiable
architecture search (DS), a popular technique used in many CNN design spaces (Siems et al.,
2020). On the other hand, some recent works like AutoTinyBERT (Yin et al., 2021), Dyn-
aBERT (Hou et al., 2020), and NAS-BERT (Xu et al., 2021) leverage super-network training,
where they train one large transformer and search its sub-networks in a one-shot manner.
However, this technique is not amenable to diverse design spaces, as the super-network
size would drastically increase, limiting the gains from weight transfer to the relatively
minuscule sub-network. Moreover, previous works limit their search to either the standard
SA operation, i.e., the scaled dot-product (SDP), or the convolution operation. We extend
the basic attention operation to also include the weighted multiplicative attention (WMA).
Taking motivation from recent advances with LT-based transformer models (Lee-Thorp
et al., 2022), we also add discrete Fourier transform (DFT) and discrete cosine transform
(DCT) to our design space. AutoTinyBERT and DynaBERT also allow adaptive widths
in the transformer architectures in their design space. However, each instance still has
the same dimensionality throughout the network (in other words, every encoder layer has

41

Tuli, Dedhia, Tuli, & Jha

the same hidden dimension, as explained above). We mathematically detail why this is
inherently a limitation in traditional transformer architectures in Appendix A.1. FlexiBERT,
to the best of our knowledge, is the first framework to allow full flexibility – not only can
different transformer instances in the design space have distinct widths, but each encoder
layer within a transformer instance can also have different hidden dimensions. This results in
a massive design space with 3.32 billion transformer architectures. Searching this space via a
brute-force technique would be computationally infeasible. Hence, we leverage a novel NAS
technique, Bayesian Optimization using Second-Order Gradients and Heteroscedastic Models
for Neural Architecture Search (BOSHNAS), to search for the best-performing architecture
in this enormous design space.

1.3 Our Contributions

To address the limitations of homogeneous and rigid models, we make the following technical
contributions:

• We expand the design space of transformer hyperparameters to incorporate heteroge-
neous architectures that venture beyond simple SA by employing other operations like
convolutions and LTs.

• We propose novel projection layers and relative/trained positional encodings to make
hidden sizes flexible across layers – hence the name FlexiBERT.

• We propose Transformer2vec that uses similarity measures to compare computational
graphs of transformer models to obtain a dense embedding that captures model
similarity in a Euclidean space.

• We propose a novel NAS framework, namely, BOSHNAS. It uses a neural network
as a heteroscedastic surrogate model and second-order gradient-based optimization
using backpropagation to input (GOBI) (Tuli et al., 2021) to speed up search for the
next query in the exploration process. It leverages nearby trained models to transfer
weights in order to reduce the amortized search time for every query.

• Experiments on the GLUE benchmark (Wang et al., 2018) show that BOSHNAS
applied to the FlexiBERT design space results in a score improvement of 0.4% compared
to the baseline, i.e., NAS-BERT (Xu et al., 2021). The proposed model, FlexiBERT-
Mini, has 3% fewer parameters than BERT-Mini and achieves 8.9% higher GLUE
score. FlexiBERT also outperforms the best homogeneous architecture by 3%, while
requiring 2.6× fewer parameters. FlexiBERT-Large, our BERT-Large (Devlin et al.,
2019) counterpart, outperforms the state-of-the-art models by at least 5.7% average
accuracy on the first eight tasks in the GLUE benchmark (Wang et al., 2018)2.

We organize the rest of the paper as follows. Section 2 presents related work. Section 3
describes the set of steps and decisions that undergird the FlexiBERT framework. In

2. All the code for the FlexiBERT pipeline is available at https://github.com/jha-lab/txf_design-space.
The code for running BOSHNAS on any tabular dataset of deep learning architectures is available at
https://github.com/jha-lab/boshnas.

42

FlexiBERT: Are Current Transformer Architectures too Homogeneous and Rigid?

Section 4, we present the results of design space exploration experiments. Finally, Section 5
concludes the article.

2. Background and Related Work

We briefly describe related work next.

2.1 Transformer Design Space

Traditionally, transformers have primarily relied on the SA operation (Vaswani et al., 2017).
Nevertheless, several works have proposed various compute blocks to reduce the number of
model parameters and hence computational cost without compromising performance. For
instance, ConvBERT uses dynamic span-based convolutional operations that replace SA
heads to model local dependencies directly (Jiang et al., 2020). Recently, FNet improved
model efficiency using LTs instead (Lee-Thorp et al., 2022). MobileBERT, another recent
architecture, uses bottleneck structures and multiple feed-forward stacks to obtain smaller
and faster models while achieving competitive results on well-known benchmarks (Sun et al.,
2020). For completeness, we present other previously proposed advances to improve the
BERT model in Appendix A.2.

2.2 Neural Architecture Search

NAS is an important machine learning technique that algorithmically searches for new neural
network architectures within a pre-specified design space under a given objective (He et al.,
2021). Prior work implements NAS using various techniques, albeit limited to the CNN
design space. A popular approach is to use a reinforcement learning algorithm, REINFORCE,
that is superior to other tabular approaches (Williams, 1992). Other approaches include
Gaussian-Process-based Bayesian Optimization (GP-BO) (Snoek et al., 2012), ES (Real
et al., 2019; Lu et al., 2019), etc. However, these methods come with challenges that limit
their ability to reach state-of-the-art results in the CNN design space (White et al., 2021a).

Recently, NAS has also seen the application of surrogate models for performance pre-
diction in CNNs (Siems et al., 2020). This results in the training of much fewer models to
predict accuracy for the entire design space under some confidence constraints. However,
these predictors are computationally expensive to train. This leads to a bottleneck, especially
in large design spaces, in the training of subsequent models since we produce new queries
only after we train this predictor for every batch of trained models in the search space. Siems
et al. (2020) use a Graph Isomorphism Net (Xu et al., 2019) that regresses performance
values directly on the computational graphs formed for each CNN model.

Although previously restricted to CNNs (Zoph et al., 2018), NAS has recently seen
applications in the transformer space as well. So et al. (2019) use standard NAS techniques
to search for optimal transformer architectures. However, their method trains every new
model from scratch. Furthermore, they do not employ knowledge transfer, which transfers
weights from previously trained neighboring models to speed up subsequent training. This
is important in the transformer space since pre-training every model is computationally
expensive. Further, the attention heads in their model follow the same dimensionality, i.e.,
are not fully flexible.

43

Tuli, Dedhia, Tuli, & Jha

One of the state-of-the-art NAS techniques, BANANAS, implements Bayesian Opti-
mization (BO) over a neural network model and predicts performance uncertainty using
ensemble networks that are, however, too compute-heavy (White et al., 2021a). BANANAS
uses mutation/crossover on the current set of best-performing models and obtains the next
best-predicted model in this local space. Instead, we propose using GOBI (Tuli et al., 2021)
to efficiently search for the next query in the global space. Thanks to random cold restarts,
GOBI can search over diverse models in the architecture space. BANANAS also uses path
embeddings, which perform sub-optimally for search over a diverse space (Cheng et al.,
2021).

2.3 Graph Embeddings that Drive NAS

Many works on NAS for CNNs use graph embeddings to model their performance predictor.
Each computational graph has a corresponding embedding, representing a specific CNN
architecture in the design space. A popular approach to learning with graph-structured
data is to make use of graph kernel functions that measure similarity between graphs. A
recent work, NASGEM (Cheng et al., 2021), uses the Weisfeiler-Lehman (WL) sub-tree
kernel, which compares tree-like substructures of two computational graphs. This helps
distinguish between substructures that other kernels, like random walk, may deem identical
(Shervashidze et al., 2011). Also, the WL kernel has an attractive computational complexity.
This has made it one of the most widely used graph kernels. Graph-distance-driven NAS
often leads to enhanced representation capacity that yields optimal search results (Cheng
et al., 2021). However, the WL kernel only computes sub-graph similarities based on overlap
in graph nodes. It does not consider whether or not two nodes are inherently similar. For
example, a computational ‘block’ (or its respective graph node) for an SA head with h = 128
and o = SDP would be closer to another attention block with, say, h = 256 and o = WMA,
but would be farther from a block representing a feed-forward layer.

Once we have similarities computed between every possible graph pair in the design space,
we learn dense embeddings, the Euclidean distance for which should follow the similarity
function. These embeddings would be not only helpful in effective visualization of the design
space but also for fast computation of neighboring graphs in the active-learning loop. Further,
a dense embedding helps us practically train a finite-input surrogate function (as opposed
to the sparse path encodings used by White et al., 2021a). Many works have achieved this
using different techniques. Narayanan et al. (2017) train task-specific graph embeddings
using a skip-gram model and negative sampling, taking inspiration from word2vec (Mikolov
et al., 2013). In this work, we take inspiration from GloVe instead (Pennington et al.,
2014), by applying manifold learning to all distance pairs (Kruskal, 1964). Hence, using
global similarity distances built over domain knowledge and batched gradient-based training,
we obtain the proposed Transformer2vec embeddings that are superior to traditional
generalized graph embeddings.

We take motivation from NASGEM (Cheng et al., 2021), which showed that training a
WL kernel-guided encoder has advantages in scalable and flexible search. Thus, we train
a performance predictor on the Transformer2vec embeddings, which not only aid in the
transfer of weights between neighboring models but also support better-posed continuous

44

FlexiBERT: Are Current Transformer Architectures too Homogeneous and Rigid?

Design Space

Graph Library

Embedding Library

Best Architecture

BOSHNAS

Search query

Transfer
weights Train model

Train surrogate
function

Crossover with
neighbors

(a)

(b) (c)

(d)

(e)

Figure 1: Overview of the FlexiBERT pipeline.

performance approximation. More details on the computation of these embeddings are given
in Section 3.3.

3. Methodology

In this work, we train a heteroscedastic surrogate model that predicts the performance of a
transformer architecture and uses it to run second-order optimization in the design space.
We do this by decoupling the training procedure from pre-processing the embedding of every
model in the design space to speed up training. First, we train embeddings to map the
space of computational graphs to a Euclidean space (Transformer2vec) and then train the
surrogate model on the embeddings.

Our work involves exploring a vast and heterogeneous design space and searching for
optimal architectures with a given task. To this end, we (a) define a design space via a
flexible set of architectural choices (see Section 3.1), (b) generate possible computational
graphs (G; see Section 3.2), (c) learn an embedding for each point in the space using a
distance metric for graphs (∆; see Section 3.3), and (d) employ a novel search technique
(BOSHNAS) based on surrogate modeling of the performance and its uncertainty over the
continuous embedding space (see Section 3.4). In addition, to tackle the enormous design
space, we propose a hierarchical search technique that iteratively searches over finer-grained
models derived from (e) a crossover of the best models obtained in the current iteration and
their neighbors. Figure 1 gives a broad overview of the FlexiBERT pipeline, as explained
above. We show an unrolled version of this iterative flow below:

Design Space→ G1
T−→ ∆1

BOSHNAS−−−−−−−→ g�
cross-over−−−−−−→ G2

T−→ : : :

However, for simplicity of notation, we omit the iteration index in further references. We
now discuss the key elements of this pipeline in detail.

45

Tuli, Dedhia, Tuli, & Jha

Design Element Allowed Values

Number of encoder layers (l) {2; 4}
Type of attention operation used (oj) {SA, LT, DSC}
Number of operation heads (nj) {2; 4}
Hidden size (hj) {128; 256}
Feed-forward dimension (f j) {512; 1024}
Number of feed-forward stacks {1; 3}
Operation parameters (pj):

if oj = SA Self-attention type: {SDP, WMA}
else if oj = LT Linear transform type: {DFT , DCT}
else if oj = DSC Convolution kernel size: {5; 9}

Table 2: Design space description. Super-script (j) depicts the value for layer j.

3.1 FlexiBERT Design Space

We now describe the FlexiBERT design space, i.e., box (a) in Figure 1.

3.1.1 Set of Operations in FlexiBERT

The traditional BERT model comprises multiple layers, each containing a bidirectional
multi-headed SA module followed by a feed-forward module. Previous works propose several
modifications to the original encoder, primarily to the attention module. This gives rise to
a richer design space. We consider WMA-based SA in addition to SDP-based operations
(Luong et al., 2015).

We also incorporate LT-based attention in FNet (Lee-Thorp et al., 2022) and dynamic-
span-based convolution (DSC) in ConvBERT (Jiang et al., 2020), in place of the vanilla SA
mechanism. Whereas the original FNet implementation uses DFT, we also consider DCT.
The motivation behind using DCT is its widespread application in lossy data compression,
which we believe can lead to sparse weights, thus leaving room for optimizations with
sparsity-aware machine learning accelerators (Yu & Jha, 2022). Our design space allows
variable kernel sizes for convolution-based attention. Consolidating different attention
module types that vary in their computational costs into a single design space enables the
models to have inter-layer variance in expression capacity. Inspired by MobileBERT (Sun
et al., 2020), we also consider architectures with multiple feed-forward stacks. We summarize
the entire design space with the range of each operation type in Table 2. The ranges of
different hyperparameters are in accordance with the design space spanned by BERT-Tiny
to BERT-Mini (Turc et al., 2019), with additional modules included as discussed. We
call this the Tiny-to-Mini space. This restricts our curated testbed to models with up to
3:3× 107 trainable parameters. This curated parameter space allows us to perform extensive
experiments, comparing the proposed approach against various baselines.

We can express every model in the design space via a model card, a dictionary containing
the chosen value for each design decision. We represent BERT-Tiny (Turc et al., 2019) in
this formulation asn

l : 2; o : [SA;SA]; h : [128; 128]; n : [2; 2]; f : [[512]; [512]] ; p : [SDP; SDP]
o
;

46

FlexiBERT: Are Current Transformer Architectures too Homogeneous and Rigid?

where the length of the list for every entry in f denotes the size of the feed-forward stack.
We employ the model card to derive the computational graph of the model using smaller
modules inferred from the design choice (details in Section 3.2).

3.1.2 Flexible Hidden Dimensions

Traditional transformer architectures restrict the flow of information using a constant
embedding dimension across the network (a matrix of dimensions NT × h from one layer
to the next, where NT denotes the number of tokens and h the hidden dimension; more
details in Appendix A.1). Instead, we allow architectures in our design space to have flexible
dimensions across layers. This enables different layers to capture information of different
dimensions, as it learns more abstract features deeper into the network. For this, we make
the following modifications:

• Projection layers: We add an affine projection network between encoder layers with
dissimilar hidden sizes to transform encoding dimensionality.

• Relative positional encoding : The vanilla-BERT implementation uses an absolute
positional encoding at the input and propagates it ahead through residual connections.
Since we relax the restriction of a constant hidden size across layers, this does not
apply to many models in our design space (as the learned projections for absolute
encodings may not be one-to-one). Instead, we add a relative positional encoding at
each layer (Shaw et al., 2018; Huang et al., 2018; Yang et al., 2019). Such an encoding
can entirely replace absolute positional encodings with relative position representations
learned using the SA mechanism. Whereas the SA module implementation remains
the same as in previous works, for DSC-based and LT-based attention, we learn the
relative encodings separately using SA and add them to the output of the attention
module.

Formally, let Q and V denote the query and the value layers, respectively. Let R
denote the relative embedding tensor that the model needs to learn. Let Z and X
denote the output and the input tensors of the attention module, respectively. In
addition, let us define LT-based attention and DSC-based attention as LT(·) and
DSC(·), respectively. Then,

RelativeAttention(X) = softmax

QR>p
dQ

!
V (1)

ZLT = LT(X) + RelativeAttention(X) (2)

ZDSC = DSC(X) + RelativeAttention(X) (3)

One should note that the proposed approach would only be applicable when the positional
encodings are trained instead of being predetermined (Vaswani et al., 2017). The proposed
relative and trained positional encodings enable us to make the dimensionality of data flow
flexible across the network layers. This also means that each layer in the feed-forward stack
can have a distinct hidden dimension.

47

Tuli, Dedhia, Tuli, & Jha

Input Token
Embeddings

Encoder Layer

Encoder Layer

Fine-tuning Head

Output Probabilities

Input

Output

o1 - SA / h1 -
128 / p1 - SDP

o1 - SA / h1 -
128 / p1 - SDP

Add & Norm

f1 - 512

Add & Norm

Projection

Position
 Embeddings +

Figure 2: Block-level computation graph for BERT-Tiny in FlexiBERT. The projection layer
implements an identity function since the hidden sizes of the input and output
encoder layers are equal.

3.2 Graph Library

We now describe the graph library, i.e., box (b) in Figure 1.

3.2.1 Block-level Computational Graphs

To learn a lower-dimensional dense manifold of the given design space, characterized by a
large number of FlexiBERT models, we convert each model into a computational graph. We
formulate this graph based on the forward flow of connections for each compute block. For
our design space, we take all possible combinations of the compute blocks derived from the
design decisions presented in Table 2 (see Appendix B.1 for a list of possible compute blocks
supported in FlexiBERT). Using this design space and the set of compute blocks, we create
all possible computational graphs within the design space for every transformer model. We
then use recursive hashing as follows (Ying et al., 2019). For every node in this graph, we
concatenate the hash of its input, that node, and its output, and then take the hash of the
result. We use SHA256 as our hashing function. Doing this for all nodes and then hashing
the concatenated hashes gives us the resultant hash of a given computational graph. This
helps us detect isomorphic graphs and remove redundancy.

Figure 2 shows the block-level computational graph for BERT-Tiny. Using the connection
patterns for every possible block permutation, we can generate multiple graphs for the given
design space.

48

FlexiBERT: Are Current Transformer Architectures too Homogeneous and Rigid?

3.2.2 Levels of Hierarchy

The total number of possible graphs in the design space with heterogeneous feed-forward
hidden layers is ∼3.32 billion. This is substantially larger than any transformer design space
used in the past.

To make our approach tractable, we propose a hierarchical search method. We consider
each model in the design space to be composed of multiple stacks containing at least one
encoder layer. In the first step, we restrict each stack to s = 2 layers, where each layer in
a stack shares the same design configuration. Naturally, this limits the search space size
(we denote the set of all graphs in this space by G1). Hence, for instance, BERT-Tiny falls
under G1 since the two encoder layers have the same configuration. We learn embeddings
in this space and then run NAS to obtain the best-performing models. In the subsequent
step, we consider a design space constituted by a finer-grained neighborhood of these models.
We derive the neighborhood using pairwise crossover between the best-performing models
and their neighbors in a space where the number of layers per stack is s=2 = 1, denoted by
G2 (detailed explanation of the crossover operation in Appendix B.4). Finally, we include
heterogeneous feed-forward stacks (s = 1�) and denote the space by G3.

3.3 Transformer2vec

We now describe the Transformer2vec embedding and how we create an embedding library
from a graph library G, i.e., box (c) in Figure 1.

3.3.1 Graph Edit Distance

Taking inspiration from Cheng et al. (2021) and Pennington et al. (2014), we train dense
embeddings using global distance metrics, such as the Graph Edit Distance (GED) (Abu-
Aisheh et al., 2015). These embeddings enable fast derivation of neighboring graphs in the
active learning loop to facilitate the transfer of weights. We call them Transformer2vec

embeddings. Unlike other approaches like the WL kernel, GED bakes in domain knowledge
in graph comparisons, as explained in Section 2.3, by using a weighted sum of node insertion,
deletion, and substitution costs.

For the GED computation, we first sort all possible compute blocks in the order of their
computational complexity. Then, we weight the insertion and deletion cost for every block
based on its index in this sorted list and the substitution cost between two blocks based on
the difference in the indices in this sorted list. For computing the GED, we use a depth-first
algorithm that requires less memory than traditional methods (Abu-Aisheh et al., 2015).

3.3.2 Training Embeddings

Given that there are S graphs in G, we compute the GED for all possible computational graph
pairs. This gives us a dataset of N =

�
S
2

�
distances. To train the embedding, we minimize

the mean-square error as the loss function between the predicted Euclidean distance and
the corresponding GED. For the design space in consideration, we generate d-dimensional
embeddings for every level of the hierarchy. Concretely, to train embedding T , we minimize

49

Tuli, Dedhia, Tuli, & Jha

the loss

LT =
X

1�i�N;1�j�N;i6=j

�
d(T (gi); T (gj))−GED(gi; gj)

�2
; (4)

where d(·; ·) is the Euclidean distance and we calculate the GED for the corresponding
computational graphs gi, gj ∈ G.

3.3.3 Weight Transfer among Neighboring Models

Pre-training each model in the design space is computationally expensive. Hence, we rely
on weight sharing to initialize a query model in order to directly fine-tune it and minimize
exploration time (details in Appendix B.3). We generate k nearest neighbors of a graph in
the design space (we use k = 100 for our experiments). Then, naturally, we would like to
transfer weights from the corresponding fine-tuned neighbor that is closest to the query, as
such models intuitively have similar initial internal representations.

We calculate this similarity using a biased overlap measure that counts the number of
encoder layers from the input to the output that are common to the current graph (i.e., have
exactly the same hyperparameter values). We stop counting the overlap on encountering
different encoder layers, regardless of subsequent overlaps. In this ranking, there could be
more than one graph with the same biased overlap with the current graph. Since the learned
internal representations depend on the subsequent set of operations as well, we break ties
based on the embedding distance of these graphs with the current graph. This gives us a set
of neighbors, denoted by Nq for a model q, for every graph that are ranked based on both
the biased overlap and the embedding distance. It helps increase the probability of finding a
trained neighbor with high overlap.

As a hard constraint, we only consider transferring weights if the biased overlap fraction
(Of (q; n) = biased overlap=lq, where q is the query model, n ∈ Nq is the neighbor in
consideration, and lq is the number of layers in q) between the queried model and its
neighbor is above a threshold � . If the query-neighbor pair meets the constraint, we transfer
the weights of the shared part from the corresponding neighbor to the query and fine-tune it.
Otherwise, we pre-train the query. We denote the weight transfer operation by Wq ←Wn.

3.4 BOSHNAS

We now describe the BOSHNAS search policy, i.e., box (d) in Figure 1.

3.4.1 Uncertainty Types

To overcome the challenges of an unexplored design space, it is important to consider the
uncertainty in model predictions to guide the search process. Predicting model performance
deterministically is not enough to estimate the next most probably best-performing model.
We leverage the upper confidence bound (UCB) exploration on the predicted performance of
unexplored models (Russell & Norvig, 2010). This could arise from not only the approxima-
tions in the surrogate modeling process but also parameter initializations and variations in
model performance due to different training recipes. These are called epistemic and aleatoric
uncertainties, respectively. The former, also called reducible uncertainty, arises from a lack

50

FlexiBERT: Are Current Transformer Architectures too Homogeneous and Rigid?

of knowledge or information, and the latter, also called irreducible uncertainty, refers to the
inherent variation in the system to be modeled.

3.4.2 Surrogate Model

In BOSHNAS, we use Monte-Carlo (MC) dropout (Gal & Ghahramani, 2016) and a
Natural Parameter Network (NPN) (Wang et al., 2016) to model the epistemic and aleatoric
uncertainties, respectively. The NPN not only helps with a distinct prediction of aleatoric
uncertainty that we use for optimizing the training recipe once we are close to the optimal
architecture but also serves as a superior model to Gaussian Processes, Bayesian Neural
Networks (BNNs), and other Fully-Connected Neural Networks (FCNNs) (Tuli et al., 2021).
Consider the NPN network fS(x; �) with a transformer embedding x as input and parameters
�. The output of such a network is the pair (�; �) ← fS(x; �), where � is the predicted
mean performance and � is the aleatoric uncertainty. To model the epistemic uncertainty,
we use two deep surrogate models: (1) teacher (gS) and (2) student (hS) networks. It is
a surrogate for the performance of a transformer, using its embedding x as an input. The
teacher network is an FCNN with MC Dropout (parameters �0). To compute the epistemic
uncertainty, we generate n samples using gS(x; �0). The standard deviation of the sample
set is denoted by �. To run GOBI (Tuli et al., 2021) and avoid numerical gradients due to
their poor performance, we use a student network (FCNN with parameters �00) that directly
predicts the output �̂ ← hS(x; �00), a surrogate of � (Tuli et al., 2022).

3.4.3 Active Learning and Optimization

For a design space G, we first form an embedding space ∆ by transforming all graphs in G
using the Transformer2vec embedding. Assuming we have the three networks fS ; gS , and
hS for our surrogate model, we use the following UCB estimate:

UCB = �+ k1 · � + k2 · �̂ =
�
fS(x; �)[0] + k1 · fS(x; �)[1]

�
+ k2 · hS(x; �00); (5)

where x ∈ ∆, k1, and k2 are hyperparameters.
To generate the next transformer to test, we execute GOBI using neural network

inversion and the AdaHessian optimizer (Yao et al., 2021) that uses second-order updates to
x (∇2

xUCB) up till convergence. From this, we get a new query embedding, x0. We find the
nearest transformer architecture based on the Euclidean distance of all available transformer
architectures in the design space ∆, giving the next closest model x. We fine-tune this model
(or pre-train it if there is no nearby trained model with sufficient overlap; see Section 3.3) on
the required task to obtain the respective performance. Once we receive the new datapoint,
(x; o), we train the models using the loss functions on the updated corpus �0:

LNPN(fS ; x; o) =
X

(x;o)2�′

(�− o)2

2�2
+

1

2
ln�2;

LTeacher(gS ; x; o) =
X

(x;o)2�′
(gS(x; �0)− o)2;

LStudent(hS ; x) =
X

x;8(x;o)2�′
(hS(x; �00)− �)2;

(6)

51

Tuli, Dedhia, Tuli, & Jha

FCNN

FCNN

Sampling

NPN

UCB

GOBI

(MC Dropout)

Figure 3: Overview of the BOSHNAS pipeline.

where �; � = fS(x; �) and � is obtained by sampling gS(x; �0). The first is the aleatoric loss
to train the NPN model (Wang et al., 2016); the other two are squared-error loss functions.
We run multiple random cold restarts of GOBI to get multiple queries for the next step in
the search process.

Figure 3 shows different surrogate models in the BOSHNAS pipeline (fS ; gS , and hS) in
the order of flow. As explained in Section 3.4, the NPN network (fS) models the performance
and the aleatoric uncertainty, and the student network (hS) models the epistemic uncertainty
from the teacher network (gS).

Algorithm 1 summarizes the BOSHNAS workflow. Starting from an initial pre-trained
set � in the first level of the hierarchy G1, we run until convergence the following steps
in a multi-worker compute cluster. To trade off between exploration and exploitation, we
consider two probabilities: uncertainty-based exploration (�) and diversity-based exploration
(�). With probability 1− �− �, we run second-order GOBI using the surrogate model to
minimize UCB in Eq. (5). Adding the converged point (x; o) in �, we minimize the loss
values in Eq. (6) (line 6 in Algorithm 1). We then generate a new query point, transfer
weights from a neighboring model, and train it (lines 7-11). With � probability, we sample
the search space using the combination of aleatoric and epistemic uncertainties, k1 ·�+k2 · �̂,
to find a point where the performance estimate is uncertain (line 15). To avoid getting stuck
in a localized search subset, we also choose a random point with probability � (line 18).
Once we converge in the first level, we continue with the second and third levels, G2 and G3,
as described in Section 3.2.

4. Experimental Results

In this section, we show how the FlexiBERT model obtained from BOSHNAS outperforms
the baselines.

4.1 Setup

For our experiments, we set the number of layers in each stack to s = 2 for the first level
of the hierarchy, where models have the same configurations in every stack. In the second
level, we use s = 1. Finally, we also make the feed-forward stacks heterogeneous (s = 1�) in
the third level (details given in Section 3.2). For the range of design choices in Table 2 and

52

FlexiBERT: Are Current Transformer Architectures too Homogeneous and Rigid?

Algorithm 1: BOSHNAS

Result: best architecture
1 Initialize: overlap threshold (�), convergence criterion, uncertainty sampling prob.

(�), diversity sampling prob. (�), surrogate model (fS , gS , and hS) on initial
corpus �, design space g ∈ G ⇔ x ∈ ∆;

2 while convergence criterion not met do
3 wait till a worker is free
4 if prob ∼ U(0; 1) < 1− �− � then
5 � ← � ∪ {new performance point (x; o)};
6 fit(surrogate, �) using Eqn. (6);
7 x ← GOBI(fS , hS); /* Optimization step */

8 for n in Nx do
9 if n is trained & Of (x; n) ≥ � then

10 Wx ←Wn;
11 send x to worker;
12 break;

13 else
14 if 1− �− � ≤ prob. < 1− � then

15 x ← argmax(k1 · � + k2 · �̂); /* Uncertainty sampling */

16 send x to worker;

17 else
18 send random x to worker; /* Diversity sampling */

setting s = 2, we obtain 9312 unique graphs after removing isomorphic graphs. We set the
dimension of the Transformer2vec embedding to d = 16 after running a grid search. To
do this, we minimize the distance prediction error while keeping d small using knee-point
detection. We obtain the hyperparameter values in Algorithm 1 through grid search. We
use overlap threshold � = 80%, � = � = 0:1, and k1 = k2 = 0:5 in our experiments. The
convergence criterion is met in BOSHNAS when the change in performance is within 10�4

for five iterations. We give details of the model training process in Appendix B.2.

4.2 Pre-training and Fine-tuning Models

We adapt our pre-training recipe from the one used in RoBERTa, proposed by Liu et al.
(2019), with slight variations in order to reduce the training budget (details in Appendix B.2).

We initialize the architecture space with models adapted from equivalent models presented
in literature (Turc et al., 2019; Lee-Thorp et al., 2022; Jiang et al., 2020). The 12 initial
models used to initiate the search process are BERT-Tiny, BERT-2/256 (with two encoder
layers and a fixed hidden dimension of 256), BERT-4/128, BERT-Mini, FNet-Tiny, FNet-
2/256, FNet-4/128, FNet-Mini, ConvBERT-Tiny, ConvBERT-2/256, ConvBERT-4/128, and
ConvBERT-Mini (with pj = DFT for FNets and pj = 9 for ConvBERTs adapted from the
original models). These models form the initial set � in Algorithm 1.

53

Tuli, Dedhia, Tuli, & Jha

(a) (b) (c)

Figure 4: Bar plot comparing all NAS techniques with (a) naive embeddings and a design
space of homogeneous models, (b) naive embeddings and an expanded design
space of homogeneous and heterogeneous models, and (c) Transformer2vec (T2v)
embeddings with the expanded design space. Plotted with 90% confidence intervals.

4.3 Ablation Study

We compare BOSHNAS against other popular techniques from the CNN space, namely
Random Search (RS), ES, REINFORCE, GP-BO, and a recent state-of-the-art, BANANAS.
We present performance on the GLUE benchmark.

Figure 4 shows the best GLUE scores reached by respective baseline NAS techniques
along with BOSHNAS used with naive (i.e., feature-based one-hot) or Transformer2vec

embeddings on a representative design space. We use the space in the first level of the
hierarchy (i.e., with 9312 graphs, s = 2) and run all these algorithms in an active-learning
scenario (all targeted homogeneous models form a subset of this space) over 50 runs for
each algorithm. The plot highlights the fact that enhancing the richness of the design
space enables the algorithms to search for more accurate models (6% improvement averaged
across all models). We also see that Transformer2vec embeddings help NAS algorithms
reach better-performing architectures (9% average improvement). Overall, BOSHNAS with
the Transformer2vec embeddings performs the best in this representative design space,
outperforming the state-of-the-art (i.e., BANANAS on naive embeddings) by 13%.

Figure 5(a) shows the best GLUE score reached by each baseline NAS algorithm against
the number of models it trained. Again, we perform these runs on the representative
design space described above, using the Transformer2vec encodings. As observed in the
figure, BOSHNAS reaches the best GLUE score. Ablation analysis justifies the need for het-
eroscedastic modeling and second-order optimization (see Figure 5(b)). The heteroscedastic
model forces the optimization of the training recipe when the framework approaches optimal
architectural design decisions. Second-order gradients, on the other hand, help the search
avoid local optima and saddle points and also aid faster convergence.

54

FlexiBERT: Are Current Transformer Architectures too Homogeneous and Rigid?

Figure 5: Performance results: (a) best GLUE score with trained models for NAS baselines
and (b) ablation of BOSHNAS. Plotted with 90% con�dence intervals.

Model Parameters CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI Avg.

BERT-Mini (Turc et al., 2019) 16.6M 0 74.8 71.8 84.1 66.4 57.9 85.9 73.3 62.3 64.0
NAS-BERT 10 (Xu et al., 2021) 10M 27.8 76.0 81.5 86.3 88.4 66.6 88.6 84.8 53.7� 72.6

FlexiBERT-Mini (ours, w/o S.) 7.2M 16.7 72.3 72.9 81.7 76.9 64.1 80.9 77.0 65.3 67.5
FlexiBERT-Mini (ours, w/o H.) 20M 12.3 74.4 72.3 76.4 76.3 59.5 81.2 75.4 67.8 66.2
FlexiBERT-Mini y (ours) 13.8M 28.7 77.5 82.3 86.9 87.8 67.6 89.7 83.0 51.8 72.7
FlexiBERT-Mini (ours) 16.1M 23.8 76.1 82.4 87.1 88.7 69.0 81.0 78.9 69.3 72.9

Table 3: Comparison between FlexiBERT and baselines. We evaluate the models on the
development set of the GLUE benchmark. We use Matthews correlation for CoLA,
Spearman correlation for STS-B, and accuracy for other tasks. We report MNLI
on the matched set. We also include ablation models for BOSHNAS without
second-order gradients (w/o S.) and without using the heteroscedastic model (w/o
H.). Best (second-best) performance values are in boldface (underlined).� Xu et al.
(2021) do not report the performance of NAS-BERT10 on the WNLI dataset; we
obtained it using an equivalent model in our design space. The FlexiBERT-Miniy

model only optimizes performance on the �rst eight tasks for a fair comparison
with NAS-BERT.

Table 3 shows the scores of the ablation models on the GLUE benchmarking tasks. We
refer to the best model obtained from BOSHNAS in the Tiny-to-Mini space as FlexiBERT-
Mini. Once we get the best architecture from the search process (using the same, albeit limited
compute budget for feasible search times), we pre-train and �ne-tune it on a larger compute
budget (details in Appendix B.2). According to the table, FlexiBERT-Mini outperforms the
baseline, NAS-BERT (Xu et al., 2021), by 0.4% on the GLUE benchmark. Since NAS-BERT
�nds the higher-performing architecture while only considering the �rst eight GLUE tasks
(i.e., without the WNLI dataset), for a fair comparison, we �nd a neighboring model in the

55

Tuli, Dedhia, Tuli, & Jha

Figure 6: Performance frontiers of FlexiBERT on an expanded design space (under the
constraints de�ned in Table 2) and for traditional homogeneous models.

Model Parameters BoolQ CB COPA MultiRC WiC WSC Avg.

BERT-Mini (Turc et al., 2019) 16.6M 62.1 22.2 40.0 59.1 52.2 61.4 49.5
FlexiBERT-Mini (ours) 16.1M 62.2 47.4 45.0 63.2 54.3 63.5 55.9

Table 4: Comparison between BERT-Mini and FlexiBERT-Mini on the SuperGLUE bench-
mark. For CB we report macro-average F1. We report accuracy for other tasks.

FlexiBERT design space that only optimizes performance on the �rst eight tasks. We call
this model FlexiBERT-Mini y. We see that although FlexiBERT-Mini y does not have the
highest GLUE score, it generally outperforms NAS-BERT10 by signi�cant margins on the
�rst eight tasks.

Figure 6 demonstrates that FlexiBERT pushes to improve the performance frontier
relative to traditional homogeneous architectures. In other words, the best-performing
models in the expanded (Tiny-to-Mini) space outperform traditional models for the same
number of parameters. Here, the homogeneous models incorporate the same design decisions
for all encoder layers, even with the expanded set of operations (i.e., including convolutional
and LT-based attention operations). FlexiBERT-Mini has 3% fewer parameters than BERT-
Mini and achieves 8.9% higher GLUE score. FlexiBERT achieves 3% higher performance
than the best homogeneous model while the model with equivalent performance has 2.6�
smaller size.

Table 4 shows the performance of FlexiBERT-Mini on SuperGLUE (Wang et al., 2019),
which contains more challenging tasks relative to those in the GLUE benchmark. FlexiBERT-
Mini outperforms BERT-Mini on the tasks in SuperGLUE. We give details of the selected
set of training hyperparameters in Appendix B.2.

56

FlexiBERT: Are Current Transformer Architectures too Homogeneous and Rigid?

Model Parameters GLUE score

RoBERTa (Liu et al., 2019) 345M 88.5
FNet-Large (Lee-Thorp et al., 2022) 357M 81.9�

AutoTinyBERT (Yin et al., 2021) 85M 81.2 �

DynaBERT (Hou et al., 2020) 345M 81.6�

NAS-BERT 60 (Xu et al., 2021) 60M 83.2�

AutoBERT-Zero Large (Gao et al., 2022) 318M 84.5�

FlexiBERT-Large (ours) 319M 89.1/90.2 �

Table 5: Comparison between FlexiBERT-Large (outside of the constraints de�ned in Ta-
ble 2) and baselines on GLUE score. GLUE� scores reported do not consider the
WNLI dataset.

4.4 Best Architecture in the Design Space

After running BOSHNAS for each level of the hierarchy, we obtain the respective best-
performing models, whose model cards we present in Appendix B.5. From these best-
performing models, we can extract the following rules that lead to high-performing trans-
former architectures:

ˆ Models with DCT in the deeper layers are preferable for higher performance on the
GLUE benchmark. Shallower layers prefer the traditional SDP-based attention heads.

ˆ Models with more attention heads, but a smaller hidden dimension, are preferable
in the deeper layers. On the other hand, fewer attention heads with higher hidden
dimensions are preferable in shallower layers.

ˆ Feed-forward networks with larger widths, but a smaller depth, are preferable in the
deeper layers. Shallower layers prefer the opposite,i.e., smaller width and higher
depth.

Using these guidelines, we extrapolate the model card for FlexiBERT-Mini to get
the design decisions for FlexiBERT-Large, which is an equivalent counterpart of BERT-
Large (Devlin et al., 2019). Appendix B.5 presents the approach for extrapolation of
hyperparameter choices from FlexiBERT-Mini to obtain FlexiBERT-Large. We train
FlexiBERT-Large with the larger compute budget (see Appendix B.2) and show its GLUE
score in Table 5. FlexiBERT-Large outperforms the baseline RoBERTa by 0.6% on the
entire GLUE benchmarking suite and AutoBERT-Zero Large by 5.7% when only considering
the �rst eight tasks.

Just like FlexiBERT-Large is the BERT-Large counterpart of FlexiBERT-Mini, we
similarly form the BERT-Small and BERT-Base equivalents (Turc et al., 2019). Figure 7
presents the performance frontier of these FlexiBERT models with di�erent baseline works.
FlexiBERT consistently outperforms the baselines for di�erent constraints on model size,
thanks to its search in a vast,heterogeneous, and exible design space of architectures.

57

Tuli, Dedhia, Tuli, & Jha

Figure 7: Performance of FlexiBERT and other baseline methods on various GLUE tasks:
(a) SST-2, (b) QNLI, (c) MNLI (we plot accuracy of MNLI-m), and (d) CoLA.

5. Conclusion

In this work, we presented FlexiBERT, a suite of heterogeneousand exible transformer
models. We characterized the e�ects of this expanded design space and proposed a novel
Transformer2vec embedding scheme to train a surrogate model that searches the design
space for high-performance models. We described a novel NAS algorithm, BOSHNAS,
and showed that it outperforms the state-of-the-art by 13%. The FlexiBERT-Mini model
searched in this design space has a GLUE score that is 8.9% higher than BERT-Mini, while
requiring 3% fewer parameters. It also outperforms the baseline, NAS-BERT10 by 0.4%. A
FlexiBERT model with equivalent performance as the best homogeneous model achieves
2.6� smaller size. FlexiBERT-Large outperforms the state-of-the-art models by at least
5.7% average accuracy on the �rst eight tasks in the GLUE benchmark.

58

