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Abstract

Selecting the best features in a data set improves accuracy and efficiency of classifiers
in a learning process. Data sets generally have more features than necessary, some of
them being irrelevant or redundant to others. For this reason, numerous feature selection
methods have been developed, in which different evaluation functions and measures are
applied. This paper proposes the systematic application of individual feature evaluation
methods to initialize search-based feature subset selection methods. An exhaustive review
of the starting methods used by genetic algorithms from 2014 to 2020 has been carried out.
Subsequently, an in-depth empirical study has been carried out evaluating the proposal for
different search-based feature selection methods (Sequential forward and backward selec-
tion, Las Vegas filter and wrapper, Simulated Annealing and Genetic Algorithms). Since
the computation time is reduced and the classification accuracy with the selected features
is improved, the initialization of feature selection proposed in this work is proved to be
worth considering while designing any feature selection algorithms.

1. Introduction

Inside the field of Pattern Recognition, the task of a classifier is to use a feature vector to
assign an object to a category (Duda, Hart, & Stork, 2000). A supervised classification
learning algorithm generates classifiers from a table of training vectors whose category is
known. However, sometimes these vectors have more features than those really needed.
Feature selection (or attribute reduction) is a technique used to choose a subset of the
available features that allows us to obtain acceptable results, sometimes even better results.
This speeds up the learning process by using less features.

Theoretically, if we knew the complete statistical distribution, the more features used
the better results would be obtained. However, in practical learning scenarios, it might
be better to use a feature subset (Kohavi & John, 1997). The process of feature selection
in any classification problem is crucial since it allows us to eliminate: those features that
may mislead us (the so-called noise features), those features that do not provide much
information (irrelevant features) and those that include repeated information (redundant
features)(Tang, Alelyani, & Liu, 2014).

Sometimes, if we have a large number of initial features to analyze, the algorithms that
carry out the learning process may have memory or time consumption problems. They can
even turn to be inapplicable. Besides, the use of feature selection functions may improve
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intelligibility and reduce the data acquisition and handling costs. Due to all these advan-
tages, feature selection has become a widely used technique in classification. As a result of
this, several methods have been developed (Jović, Brkić, & Bogunović, 2015; Thangavel &
Pethalakshmi, 2009), with diverse recent applications, for example, in intrusion detection
system (Aljawarneh, Aldwairi, & Yassein, 2018), in urban short-term travel speed predic-
tion (Chen, Wang, Zhang, Wei, Xu, Huang, & Cai, 2018) or in text classification problems
(Labani, Moradi, Ahmadizar, & Jalili, 2018).

The problem of feature selection may be seen as a search problem in the power set of
available features set (Blum & Langley, 1997)(Kohavi, 1994). The aim is to find a feature
subset that allows us to improve a learning process in any way. In order to characterize all
feature selection methods, we can distinguish their building blocks using the modularization
shown in figure 1 (Arauzo-Azofra, Benitez, & Castro, 2008). This modularization allows to
create new methods by combination and to focus research on a specific module. This paper
focus on the initialization part of the search method.

Figure 1: Feature selection modularized.

Feature selection algorithms can be divided in two main types. The first one is formed
by those methods that are based on a search strategy over the search space of all possible
feature sets together with a feature set evaluation measure, which are commonly named
feature subset selection methods (to emphasize that they are working with sets). The
other type is formed by the methods that evaluate all features individually and then apply
some cutting criteria to decide which features are selected and which are not. On the one
hand, feature subset selection methods are superior to those based on individual evaluation
because, as they can consider inter-dependencies among features, they achieve better results.
On the other hand, individual feature selection methods are much faster and easier to
configure (Schiffner, Bischl, Lang, Richter, Jones, Probst, Pfisterer, Gallo, Kirchhoff, Kühn,
et al., 2016). These are probably the reasons why they are so widely used.

Feature subset selection methods are slower because the search space is large (2n, being
n the number of features). For this reason, any improvement on the search can be profitable.
Focusing on the selection of starting feature set block, this paper explores the hybridization
of both types of feature selection methods, by using individual feature selection methods
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as a starting point for the search strategy of feature subset selection methods. Similar
hybridizations have been proposed in several papers (Hsu, Hsieh, & Lu, 2011; Oreski &
Oreski, 2014; Jadhav, He, & Jenkins, 2018; Singh & Selvakumar, 2015) without the modular
view. However, by using this modular view, this paper presents many novel hybridizations
by combination and it empirically evaluates them to obtain more general conclusions.

With the hypothesis that these combined methods can perform faster —as they may
avoid exploring some parts of the space— and provide better features —by being focused
on a more concrete area of the space—, we compare traditional methods and the ones
implementing the starting strategy. This study helps us to assess how suitable individual
evaluation methods are to start feature subset selection methods.

This paper is organized as follows. In section 2, some feature selection methods are
described by their building blocks. Section 3 reviews initialization strategies recently used
in genetic algorithms. Section 4 describes in detail the proposed starting methods. Sec-
tion 5 describes the empirical methodology proposed. Finally, Sections 6 and 7 describe,
respectively, the results and the conclusions obtained.

2. Feature Selection Methods

From the two approaches to feature selection that we propose to hybridize, first, we revise
those methods that evaluate the features individually. Next, we study the methods that
use feature set evaluation.

2.1 Individual Feature Selection Methods

Individual feature selection methods are composed of two parts that are run sequentially.
The first part is a measure that assigns an assessment of its relevance to each feature. The
second part is analogous to a direct search. It decides which set of features is selected by
just using those individual feature evaluations. Usually this is performed with a cutting
criterion as a limit for the number of features included. We describe here the commonly
used proposals for each part that will be used later in the proposed hybridization.

The main advantage of these methods is that, by using simple measures, the assessment
speed of the relevant features is rapid. On the contrary, as the main disadvantage, they
cannot properly consider the redundancy between features, so there may be two relevant
features selected while excluding another that is more relevant.

2.1.1 Measures of Individual Feature Utility

The following five individual measures are usually considered to score the features in these
methods:

• Mutual Information (info) measures the quantity of information that one feature
gives about the class, based on Shannon’s information theory (Vergara & Estévez,
2014).

I(F,C) = H(C)−H(C|F ) (1)

• Gain Ratio (gain) is defined as the ratio between information gain and the entropy
of the feature. In this way, this measure avoids favoring features with more values.
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This measure is also used inside C4.5 algorithm (Quinlan, 1993).

Gain ratio =
I(F,C)

H(F )
(2)

• Gini index (gini) can be seen as the probability of two randomly chosen instances
having a different class. It was used by Breiman to generate classification trees (Breiman,
Friedman, Olshen, & Stone, 2017).

Gini index =
∑

i,j∈C;i 6=j
p(i|F )p(j|F ) (3)

• Relief-F (reli) is an extension of Relief (Kononenko, 1994). It can handle discrete
and continuous attributes, as well as null values. Despite evaluating individual fea-
tures, Relief takes into account the relation among features. This is probably the
reason behind Relief-F great performance and why it has become very well known
and commonly used in feature selection.

• Relevance (rele) is a measure that discriminates between attributes on the basis of
their potential value in the formation of decision rules (Demšar, Curk, Erjavec, Črt
Gorup, Hočevar, Milutinovič, Možina, Polajnar, Toplak, Starič, Štajdohar, Umek,
Žagar, Žbontar, Žitnik, & Zupan, 2013).

2.1.2 Cutting Criteria

In this paper, the previous measures are combined with the following two typical cutting
criteria:

• Fixed number (n) simply selects a given number of a features. Obviously, the
selected features will be the ones with the greater evaluation.

• Fraction (p) selects a fraction, given as a percentage, of the total number of available
features.

2.2 Feature Subset Selection Methods

Feature subset selection methods employ measures that evaluate complete sets of features.
With the information provided by evaluating sets, we can handle the interrelations between
features, thus avoiding the redundancy. This is impossible to do by using only individual
feature measurements. These methods usually provide more accurate results. However,
their main drawback is that assessing all possible subsets of features is usually not feasible
or very expensive. For this reason, heuristic searches applied in these methods lead only to
sub-optimal results.

2.2.1 Measures of Feature Set Utility

Feature set measures are functions that, given a training data set (T ∈ >, where > is the set
of every possible training set) and a feature subset S ⊂ P (F ) (P (F ) denotes the powerset
of F , being F the set of all features), return a valuation of the relevance of those features.
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Evaluation function : P (F )×> → R (4)

Three well known feature set measures are:

• Inconsistent examples measure uses an inconsistency rate that is computed by
grouping all examples (patterns) with the same values in all the selected features. For
each group, assuming that the class with the largest number of examples is the correct
class of each group, the number of examples with a different class is counted (these
are the inconsistent examples) (Arauzo-Azofra et al., 2008). The rate is computed
dividing the sum of these counts by the number of examples in the data set, as seen
in the equation:

Inconsistency =
Number of inconsistent examples

Number of examples
(5)

In order to establish the relation between the consistency and inconsistency and since
each one is defined in the interval [0,1], we define the consistency as:

Consistency = 1− Inconsistency (6)

• Mutual information, as the individual mutual information measure, identifies the
difference between the class entropy and the class entropy conditioned to the knowl-
edge provided by, in this case, the whole set of features to evaluate (Vergara & Estévez,
2014):

I(C, S) = H(C)−H(C|S) (7)

The ideal scenario would be finding the smallest set of features that fully determines
C, this means I(C,S) = H(C), but it is not always possible.

• Wrapper approach measure uses the learning algorithm to evaluate whether a fea-
ture set is good (Kohavi & John, 1997). It uses a quality measure of the learning
algorithm performance with the selected features. One of the advantages of this mea-
sure is that the feature selection algorithm performs the feature evaluation in the same
context in which it will be applied and thus it takes into account the possible bias of
the learning algorithm.

2.2.2 Search Methods

The search strategies for feature sets are diverse. In this paper, several different search
strategies are selected to show the effect of initialization in diverse contexts: sequential,
probabilistic and meta-heuristic searches.

The feature selection search space can be represented in a Hasse diagram. For example,
a five feature (a, b, c, d, e) space is illustrated in figure 2. Each level represents all the
feature sets of a given size and the lines connect sets that only differ in one feature (adding
a feature downwards and removing upwards). The path followed by an example execution
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of the search method is represented in colors. We use a light background colour to represent
all evaluated sets. They are numerated in the evaluation order. The arrows and borders
with the same darker colour represent the sets that are selected as the following state.

As representative of the sequential searches, the Sequential Forward Selection (SFS)
and Sequential Backward Selection (SBS) methods (Pudil, Novovičová, & Kittler, 1994)
are selected (they are also known as Step Forward/Backward Selection). The former starts
from an empty set of features and it adds the feature that improves the selection the most.
The later conducts the search in the opposite direction, removing the feature that improves
or reduces the least.

In figure 2 (red lines), the example run of SFS evaluates all the feature sets ({a}, {b},
{c}, {d} and {e}), choosing the set that obtains the best result ({c}). Then it evaluates all
the feature sets including one more feature ({a, c}, {b, c}, {c, d} and {c, e}). This process
is repeated until the established stopping criterion is reached, in the example, up to the
final set {a, b, c, e}.

Figure 2: Example of search with: in red, classic SFS (Sequential Fordward Selection)
algorithm; in blue, SFSwS (with Start).

Algorithm 1 shows the pseudo-code of SFS. Let J(S) be an evaluation measure to be
optimized (maximized in these algorithms) and J its supremum value. For clarity, in all
pseudo-codes, we omit the code to keep, update and return the best set (the one with the
maximum J(S) value and less features in case of tie) found in the search.
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Algorithm 1 SFS (Sequential Forward Selection)

1: S0 ← ∅ ; k ← 0 . Start with the empty set
2: while Sk 6= F and J(Sk) < J do
3: x+ ← argmax

x/∈Sk

J(Sk ∪ {x}) . Select the next best feature

4: Sk+1 ← Sk ∪ {x+} ; k ← k + 1 . Update

In the opposite direction, SBS (Algorithm 2) starts from a set with all the features
and eliminates those that improve or less degrade the valuation provided by the evaluation
function. An example run is shown in figure 3.

Algorithm 2 SBS (Sequential Backward Selection)

1: S0 ← F ; k ← 0 . Start with the full set of features
2: while Sk 6= ∅ do
3: x− ← argmax

x∈Sk

J(Sk − {x}) . Find the least contributing selected feature

4: Sk+1 ← Sk − {x−} ; k ← k + 1 . Update

Figure 3: Example of search with: in red, classic SBS (Sequential Backward Selection)
algorithm; in blue, SBSwS (with Start).
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Probabilistic search algorithms follow some criterion that depends on a random compo-
nent. As representatives of probabilistic algorithms, we have chosen Las Vegas Filter (LVF),
which is a filter probabilistic feature selection algorithm designed for monotonic evaluation
measures (Nandi, 2011); and Las Vegas Wrapper (LVW), which is similar but useful with
non-monotonic measures, as when applying the wrapper approach (Liu & Setiono, 1996).

Algorithm 3 LVF (Las Vegas Filter)

1: S0 ← F . Start with the full set of features
2: for k ← 0 to iterations do
3: C ← randomSubset(F,maxSize = |Sk|)
4: if J(C) > J(Sk) or (J(C) > threshold and |C| < |Sk|) then
5: Sk+1 ← C

LVF (Algorithm 3) consists of randomly exploring sets with the same or smaller number
of features than the best one found so far, finishing after a given number of iterations. It
starts with all the features and the goal is to find the smallest subset with an evaluation
over a given threshold.

Algorithm 4 LVW (Las Vegas Wrapper)

1: for k ← 0 to iterations do
2: Sk ← randomSubset(F ) . Start with a random set of features

LVW (Algorithm 4) randomly evaluates sets of features and it simply obtains the one
with the best value.

As a representation of the meta-heuristic algorithms, we have used Simulated Annealing
(SA) (Kirkpatrick, Gelatt, & Vecchi, 1983) and Genetic Algorithm (GA) (Tan, Fu, Zhang,
& Bourgeois, 2008).

Algorithm 5 SA (Simulated Annealing)

1: t← t0 . Initial temperature
2: S0 ← randomSubset(F ) ; k ← 0
3: while t >= tf do . tf , final temperature
4: for i← 0 to n do . n, number of neighbours
5: C ← generateRandomNeighbour (Sk)
6: λ← J(C)− J(Sk)
7: if λ > 0 or U(0, 1) > e−λ/t then . U(0, 1), uniform random number in [0, 1[
8: Sk+1 ← C ; k ← k + 1

9: t← t0/(k + 1) . Cauchy Annealing

SA (Algorithm 5) starts with a random set of features obtained from the complete set
and at each step the algorithm generates a neighbour of the current set. The neighbour
will be a set where the state of a random feature is swapped (selected if non selected and
vice-versa). The transition to the new state is carried out according to the following rules:
if the generated set is better than the current best one, it is directly accepted, otherwise, the
generated set would be accepted with a certain probability. This probability is a function
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of the difference of evaluation measures (energy of the states) and the temperature. The
higher the temperature the more likely to accept solutions and explore. It is repeated until
a certain established computational time is reached.

Algorithm 6 GA (Genetic Algorithm)

1: Initialize P0 . P is a list of feature sets {S0, . . . , Si, . . .}
2: for k ← 0 to generations do
3: Evaluate Pk
4: Select Pk+1 from Pk
5: Cross and mutate Pk+1

GA (Algorithm 6) starts from a population of feature sets, randomly generated, and
evolves towards the best one. In each generation, each feature set (chromosome) of the
current population is evaluated (using an objective function) and those with better results
are reproduced and relatively bad solutions die to be replaced by others, which present
features of good solutions in the new population. Finally, the chromosomes selected to be
part of the new population are altered using crossover and mutation operators.

3. Initialization Strategies Used in Genetic Algorithms for Feature
Selection

In the genetic algorithms (GAs), the initialization is more relevant than in other search
methods because, instead of one, several start points are chosen when the population is
initialized. For this reason, in order to get an idea of which are the most used methods,
this section revises the initialization strategies used in recent proposals of GAs for feature
selection.

The methodology followed, in order to have a wide and representative review, was to
carry out a bibliographic search in Google-scholar starting from 2014 until 2020 with the
following search criteria: allintitle: "Feature Selection" "Genetic Algorithm".
Subsequently, to guarantee a minimum level of quality, the obtained documents have been
filtered to consider only those published in journals included in Scimago or in CORE-level
conferences. After this filtering, 216 papers have been analyzed.

We have excluded 38 publications for falling in one of these categories:

• Undefined: Some publications focus on the application area and do not fully describe
the FS algorithm applied.

• Off-topic: Feature selection is performed outside of the GA.

• Spam: Despite having filtered by research publisher, we have found publications that
are either nonsense text that mimic real contributions or very poor automatic trans-
lations that become unintelligible.

• Without access: A few publications to which we did not have access as they exceeded
a reasonable budget for this review. The authors of these publications were contacted
through Researchgate but no replies were received.
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178

Figure 4: Literature review results classified in categories

In Figure 4, the distribution of the analyzed papers can be seen. The pie chart shows the
percentage of the reviewed papers and the categorization of the excluded papers whereas
the bar graphic provides the distribution of the reviewed ones according to its initializing
strategy.

The discovered initialization methods can be divided into the following categories:

• Random: the individuals of the initial population are generated by some stochastic
process. No other information is considered, thus all the features are equally likely
to be chosen. However, the size of the feature sets selected depend on the sampling
mechanism applied. The search space representing all possible feature sets have a
much higher density of intermediate set sizes. Figure 5 shows this distribution illus-
trated with red circles and the size distribution of the sets sampled by each random
initialization. Considering this, the motivation for using each sampling mechanism is
commented below.

The great bulk of the revised proposals (163 articles) belong to this category. We
have subdivided it into several subcategories related to the different used probability
distributions:

– Given probability: each feature has a certain probability to be included in
the initialization solution. It can be given as a parameter or established in the
proposal. The population uses binary encoding feature sets as individuals (strings
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of 0 or 1 values are generated, where a 1 represents a selected feature). For each
feature, a 1 gets assigned with the given probability.

Only five papers from our review have explicitly applied this generic approach (Jing,
2014; Anirudha, Kannan, & Patil, 2014; Szenkovits, Meszlényi, Buza, Gaskó,
Lung, & Suciu, 2017; Gupta & Purohit, 2017; Ahn & Hur, 2020).

The given probability regulates the number of features selected in the initial
individuals. This allows to tune it according to the knowledge domain of each
learning scenario. For example, a lower p allows to search for smaller sets of
features, more adequate for a specific learning algorithm. The size of the feature
sets generated with this method follows the binomial distribution B(n, p) (a
discrete probability distribution that counts the number of successes in a sequence
of n independent Bernoulli trials with a fixed probability p of success). With this
distribution, the expected average size of feature sets is p · n, being n the total
number of features. Figure 5 shows two examples (for p = 0.1 and 0.5) of the
distribution of feature set sizes.

– Even probability: a special case of the given probability category in which the
probability of including a feature is the same as not including it (p = 0.5). It
was named Bitstring-uniform procedure by (Kallel & Schoenauer, 1997).

As this is the direct interpretation of choosing a bit randomly, most of the revised
papers (163) use this approach. We have included, in this category, several papers
which do not explicitly state the probability but, they either use binary coding
and initialize randomly, such as (Raman, Somu, Kirthivasan, Liscano, & Sriram,
2017), or they implement a standard GA. As clear examples, Shukla, Singh, and
Vardhan (2019) and Ge, Zhang, Liu, and Sun (2019) describe the initialization
in detail.

Using even probability mimics the search space, so this is the method that sam-
ples all the sets in the whole search space with the same probability.

– Given number: the initial population gets filled with random sets of a specific
number of features. Our review has found only two proposals using this approach.
Vieira, Garcia, Pabón, Cota, de Souza, Ueyama, and Pessin (2020) test three
options: initializing with sets containing the 20% of all available features, the
same with the 80%, and the even probability strategy. In their specific problem,
the 20% strategy provides significantly better results. In addition, Sahu, Dehuri,
and Jagadev (2017) group the features in k clusters and randomly take one from
each cluster. In this way, they reduce redundancy among the selected features.

Using a given number of features focuses on a much reduced search space. Thus
the adequate size can be chosen for each learning algorithm.

– Normal: the size of initial feature sets follows a normal distribution N(µ, σ2).

Ma and Xia (2017a) and Ma and Xia (2017b) explore the space using a tribe.
Each tribe is a GA initialized with individuals whose size follows the Normal
distribution. In this way, each GA explores a part of the search space.

In the given probability strategy, when reducing probability, the size gets reduced
but there is a strong peak with most sets getting near the expected size (see
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figure 5). However, by using the Normal strategy the same reduction can be
attained while controlling the dispersion at the same time.

– Uniform: all feature set sizes have the same probability. Named uniform cover-
ing procedure (Kallel & Schoenauer, 1997), it first gets a random density of 1’s
(uniformly in [0, 1]) for each bit string, then it chooses each bit to be 1 with this
specific probability. Therefore, it leads to a continuous probability distribution
of set sizes.

Only two proposals have applied this initialization: (Priya & Sivaraj, 2017) and
(Rahmadani, Dongoran, Zarlis, et al., 2018).

Uniform method samples the space in a way that may fit well to the goal of
detecting how many features should be used.

– Homogeneous block: creates blocks of contiguous 1’s (Kallel & Schoenauer,
1997). It might be useful in problems where the features were sorted in some
way where adjacent features provide complementary information. No papers
have been found using this approach in our review.

– Special coverings: initialize covering parts of the search space with the initial
population in some pseudo-randomized way.

Two interesting ideas have been found in our review. One is running cellular
automata, one automaton for each feature, in parallel, to create one individual
in each state (Das, Pati, & Ghosh, 2020). The other applies chaos maps to as-
sign a probability (real number in [0, 1]) to each gen representing a feature and,
then, uses a random generator to select the feature with that chaotic probabil-
ity (Tahir, Tubaishat, Al-Obeidat, Shah, Halim, & Waqas, 2020). Both proposals
lack of a clear explanation about the motivation for the specific covering proce-
dure designed. Nevertheless, they seem good ideas that provide good results and
probably deserve deeper research.

• Measure: this category includes all methods using some measure over individual
features to initialize the population.

The most versatile approach of this category assigns a probability, depending on
the measure, to each feature to generate individuals randomly. For example, Jiang,
Chin, Wang, Qu, and Tsui (2017) randomly generate excellent initial individuals by
selecting features using the probability from a t-test over the multiple linear regression
coefficients. One third of the population is generated in this way and the rest uses
an even probability. Likewise, Park, Park, Kim, and Lee (2020) create clusters of
features which are assigned to different populations. Each population gets initialized
with individuals whose features are selected with a probability proportional to their
entropy in its cluster. Finally, Wang, Zhang, Bai, and Mao (2018) apply F-score,
Gain ratio and the Pearson correlation coefficient to rank features and, then, as cut-
off method, they add the features to a learning algorithm until it stops improving. This
leads to three selected feature sets, which are included in the initial population. The
rest of the individuals are generated with a probability for each feature proportional
to the results of the first phase.
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Figure 5: Distribution of feature set size for each random initialization identified (in a search
space with 50 features)

In contrast, another approach is to use the measures just to set one individual. Mao,
Zhang, and Fan (2016) use a filter approach with F-score, Relief and Gain ratio as
measures to generate the first individual of the initial population (we understand that
using the union of all features selected) and the rest are randomly generated (even
probability considered by default).

Another interesting idea is to fixate the selection of some important features. (Bai,
Fan, Zhang, Xu, & Zhang, 2017) use T-test as a measure to rank features. Then
they force the selection of the top features (according to a parameter) in all initial
individuals. The rest of the features are randomly selected in each individual.

The following three proposals perform a previous filter reducing the features that will
be considered. In this way, the initial population and the whole GA only use those
reduced feature set. They are not exactly initialization strategies and they could
also fit well in the next category (hybrids) but we mention them in this category
because well-known individual measures are used in the initialization. To begin with,
Oreski and Oreski (2014) take the union of the top features evaluated by Information
Gain, Gain Ratio, Gini Index and Correlation measures, together with some features
selected by an expert. Then the initial population is generated randomly with a given
probability. Similarly, Jadhav et al. (2018) apply the Information Gain measure to
rank the features of the initial data set and subsequently use only those top features.
In the case of (Singh & Selvakumar, 2015), they use the measures Information Gain,
OneR attribute evaluation, Gain Ratio, Chi-square and Relief.
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• Hybrids: in this category, other optimization methods are used to start the candidate
population of the GA.

For example, Bian, Peng, Wang, and Zhang (2016) use a Tent map from chaos theory
to perform a previous search to initialize the population. Another approaches propose
to generate the initial population of the GA by combining the SFS and SBS search
methods to select the best initial features (Homsapaya & Sornil, 2017, 2018). Finally,
a remarkable approach (Lin, Wang, Xiao, Huang, & Wang, 2015) uses the groups
created by Fast Correlation Based Filter (FCBF). Each individual contains one ran-
domly chosen feature from each group. In this way, the initial solutions contain less
redundant features.

• Predetermined: some methods set the selection of features without conditions or
randomness.

Chen, Lin, Tang, and Xia (2016) initialize all individuals with all features selected
(all bits set to 1 in the binary coding). It seems reasonable because it optimizes
other learning parameters encoded in the individuals at the same time (individuals
are varied). Similarly, Nguyen, Liew, Tran, Pham, and Nguyen (2014) initialize just
one individual to ensure that the option of selecting all features is evaluated. The
remaining individuals are initialized randomly.

• Expert knowledge: an expert in the problem domain creates an initial population
with crucial features.

For example, the intrusion detection system proposed in (Gharaee & Hosseinvand,
2016) generates the initial population from the results of previous investigations in
each type of attack, using the most important features in each chromosome for each
class of attack.

4. Proposed Modular Selection of Starting Feature Sets

The proposal is to evaluate the use of individual feature selection methods embedded in
search based feature subset selection methods. This is defining a general hybrid approach
combining two concrete types of feature selection methods, so it fits in the hybrid category
of the previous classification. Individual methods implement an evaluation function that
analyzes all the features and afterwards, a number of them are selected according to some
established criterion. These selected features will be used as the feature set to start the
search based feature selection.

Most of the search methods in conventional feature selection start with a given set. For
example, the empty set in SFS (Sequential Forward Selection), the set of all features in SBS
(Sequential Backward Selection), or a set of random features in SA (Simulated Annealing).
See table 1.

For all the search methods that start with a single feature set, the size is determined
by the cutting criterion. The two cutting criteria considered in this paper make it fixed as
in Given number methods. In the case of the GA, where several sets are needed, there is a
random sampling from two sets with an effect similar to the methods in Given probability.
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Method Efficiency Start Set

SFS O(n2) ∅
SBS O(n2) The set with all features
LVF O(k) The set with all features
LVW O(k) A random feature set
SA O(n ∗ k) A random feature set
GA O(k) A set of random feature sets

Table 1: Properties of the well known search methods in feature selection

The proposal can reduce the computing time by setting the search on a shorter path (as
an example, see figure 2). Moreover, the accuracy of feature selection and the reduction (in
terms of a lower number of selected features) may improve, by placing the search method
in a more interesting point of the search space.

Figure 6, shows an schema of how the starting method works inside the modularization
given by figure 1. Each of the features in {a, b, c, d, e} gets evaluated with an evaluation
function of individual features. Subsequently, the features that have exceeded the cutting
criterion are preselected ({a, c, d}). With these features, the search method initiates the
search process. It is not a filtering process, the search method can also use the features
initially dismissed by the starting method.

a b c d e

a c d

Start set →  S
0

Search method

Generation of 
the next 

feature set

Stopping 
criterion

Feature set
evaluation function

Threshold

Feature
evaluation function

S
k

J(S
k
)

a  b
c   d

e

F

Eval(f
i
)

f
i

Features 
selected

c d
e

S

Figure 6: Starting method inside modularized feature selection

The flexibility of the modularized proposal allows any FS method to be used as a starting
method. This paper focuses on individual feature selection methods because they are the
fastest and, as a result, the most suitable for this hybridization.

In the following sections we will discuss the implications of fixing a starting set for each
method.
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4.1 Sequential Search with Start (SFSwS and SBSwS)

The classic SFS and SBS algorithms start from the empty set or the complete set of features
and they add or remove features, respectively. Their respective hybrid FS methods with
the start module will be denoted as SFSwS and SBSwS henceforth. See figures 2 and 3 for
an illustration of an example search.

Since these proposed methods are reducing the search path and, as a result, they are
reducing the number of feature set evaluations, a reduction of the computing time is ex-
pected. We expect the number of features selected with SFSwS to increase because it starts
with a minimum, while we expect a reduction with SBSwS for the opposite reason. As both
of them preselect a series of good features, they may match or improve the accuracy.

4.2 Probabilistic Search with Start (LVFwS and LVWwS)

The version of the probabilistic algorithms with the starting approach are denoted LVFwS
and LVWwS. Figure 7 shows an example run of LVF. Note that it moves randomly exploring
ignoring any relation among sets but it cannot increase the size of the current feature set.

Figure 7: Example of search LVF algorithm with Start (Las Vegas Filter with Start).

Since, in both probabilistic algorithms, the number of evaluations is established by a
parameter and kept the same with the a priori start method, our hypothesis is that: a)
running time will be similar; b) the number of features will get reduced in LVFwS, as it
imposes a maximum size, and kept equal for LVWwS; c) the accuracy will improve.

4.3 Simulated Annealing with Start (SAwS)

Tough not illustrated, an example search is easy to be imagined over figure 3. SAwS moves
finding neighbours (adding or removing features) following relation lines as SFS and SBS
do but randomly and in both senses.
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As the probabilistic methods, SA has a fixed number of evaluations thus running time
will be similar. We expect the start method to reduce the number of features selected or
the accuracy achieved with the start method.

4.4 Genetic Algorithm with Start (GAwS)

To improve the classical algorithm, our proposal applies the start method to the initial-
ization of the population. In contrast to other proposals, GAwS follows the modularized
approach, so that any FS method can be used to initialize the population, not only those
based on individual measures. In order to ensure that the initial population is diverse, the
initial sets take features from the preselected features (Q) and the non-preselected (Q), if
necessary. Therefore, we have applied a probability to the pre-selected Q as well as the
non-preselected features. These probabilities are assigned as shown in figure 8. The pa-
rameter Pdesired establishes the probability that regulates the expected number of features
to be selected. Equally important, Pmax regulates when to start taking features from the
non-preselected to ensure diversity.

Q← Preselected(F )

Q← F −Q

|Q| ∗ Pmax < |F | ∗ Pdesired

P (S|Q)← |F | ∗ Pdesired

|Q|

P (S|Q)← 0

P (S|Q)← Pmax

P (S|Q)← |F | ∗ Pdesired − Pmax ∗ |Q|
|Q|

Q

Q

F

S1

S2

..
.

Sn

Initial population

P (S|Q)

P (S|Q)

yes

no

Figure 8: Initialization of the genetic algorithm population with the starting modularized
approach (GAwS)

In this approach, since the number evaluations is fixed, we expect a similar running
time as in a genetic algorithm with a simple random start. However, since we are doing a
pre-selection of good features, we expect to obtain better results in reduction and accuracy.

5. Materials and Methods

In this section, we provide a detailed description of the experimental methodology.
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5.1 Experimental Design

The aim is to compare each classic feature subset selection method presented with its
corresponding method started using individual feature selection.

The dependent variables to evaluate the results of feature selection are:

• The accuracy rate of classification (Acc). The data sets we have chosen are mostly
balanced, which means the number of cases in each class is approximately the same.
In this case, we choose accuracy as the metric to measure the performance due to its
simplicity.

• The number of selected features (Nof ).

• The time spent in feature selection (FSTime).

In order to get a reliable estimate of these variables, every experiment has been per-
formed using 10-fold stratified cross-validation. For each experiment, we have taken the
mean and standard deviation of the ten folds.

In these experiments, there are several factors:

1. A starting method, with sub-factors:

• Cutting criterion

• Evaluation function of individual features

2. A feature subset selection method, with sub-factors:

• A search method

• Evaluation function of a set of features

3. A learning algorithm that generates the classifier.

4. A classification problem represented in a data set (Data set).

The design of the global experiment is complete, in order to subsequently be able to study
the interactions of all factors, alone or together. This means that all the possible combina-
tions among the factors are tested. However, there are some exceptions with the Wrapper
measure. It has not been tested with the largest data sets (taking the size as the product of
the number of features by the number of examples): Adult, Anneal, Audiology, Car, Iono-
sphere, led24, Mushrooms, Soybean, Splice, Vehicle, Wdbc, Yeast, and Yeast-class-RPR.

5.2 Data Sets

In order to include a wide range of classification problems, the following publicly available
repositories were explored seeking for representative problems with diverse properties (dis-
crete and continuous data, different number of classes, features, examples, and unknown
values): UCI (Newman & Merz, 1998), OPENML (Demšar et al., 2013) and a dataset called
Parity3+3 generated artificially. Finally, 27 data sets were chosen. They are listed along
with their main properties in Table 2:
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• Data set column shows the name by which data sets are known.

• Ex. is the number of examples (tuples) in the data set.

• Feat. is the number of features.

• Type of features: Discr. (all are discrete), Cont. (all are continuous) or Mixed (both
types).

• Cl. is the number of classes.

Data set Examples Feat. Type Cl. Source

Appendicitis 106 7 Continuous 2 OpenML
Australian 690 14 Continuous 2 UCI
Bands 365 19 Continuous 2 UCI
Breast-cancer 286 9 Mixed 2 UCI
Cleveland (Heart Dis.) 297 13 Continuous 5 UCI

Contraceptive 1473 9 Continuous 3 UCI
Echocardiogram 131 10 Mixed 2 UCI
Glass 214 9 Continuous 6 UCI
Statlog Heart 270 13 Continuous 2 UCI
Hepatitis 155 19 Continuous 2 UCI

Horse-colic 368 26 Mixed 2 UCI
House-votes84 435 16 Discrete 2 UCI
Ionosphere 351 32 Continuous 2 UCI
Labor-relations 57 16 Mixed 2 UCI
Lung-cancer 32 56 Discrete 3 UCI

Parity3+3 500 12 Discrete 2 Artificial
Pima 768 8 Continuous 2 UCI
Primary-tumor 339 17 Discrete 21 UCI
Promoters 106 57 Discrete 2 UCI
SAheart 462 9 Mixed 2 OpenML

Soybean 307 35 Discrete 19 UCI
Tic-tac-toe Endgame 958 9 Discrete 2 UCI
Vowel 990 10 Continuous 11 OpenML
Wine 178 13 Continuous 3 UCI
Wisconsin 683 9 Continuous 2 UCI

Yeast 1484 8 Continuous 10 UCI
Zoo 101 16 Discrete 7 UCI

Table 2: Data sets used in the experimentation
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5.3 Classifiers

In order to estimate the quality of the feature selection process executed by each method,
the experiments are performed in a full learning environment for classification problems.

A set of well known methods have been considered. These methods have been chosen
to cover each category to which the most used methods belong. They are: Naive Bayes
(NBayes), a simple probabilistic classifier; the K Nearest Neighbor (kNN), an algorithm
based on the assumption that closer examples belong to the same class; C4.5 (C45), a deci-
sion tree based classification; Multi-Layer Perceptron (ANN), an artificial neural network;
and Support Vector Machines (SVM).

5.4 Development and Running Environment

The feature selection methods have been programmed in Python. The software used for
learning methods has been Orange (Demšar et al., 2013) component-based data mining
software, except for artificial neural networks, where SNNS (U. of Stuttgart,1995) was
used, integrated in Orange with OrangeSNNS package.

Experiments have run on a cluster of 8 nodes with Intel Xeon E5420 CPU 2.50GHz pro-
cessor and 2 nodes with Intel Xeon E5630 CPU 2.53GHz, under Ubuntu 16.04 GNU/Linux
operating system.

5.5 Parameters and Data Transformations

All evaluation functions are parameter free except Relief-F. For this measure, the number
of neighbours to search was set to 6, and the number of instances to sample was set to 100.

Some of the learning algorithms require parameter fitting. In the case of kNN, k was
set to 15 after testing that this value worked reasonably well on all data sets used. The
multi-layer perceptron used has one layer trained during 250 cycles with a propagation value
of 0.1. For SVM we used Orange.SVMLearnerEasy method to fit parameters to each case
automatically.

Besides, consistency and information measures require discrete valued features. For this
reason, after some preliminary tests with equal frequency and equal width discretization
methods, the later with six intervals was chosen. This is only applied for feature selection.
Then learning algorithms get the features with the original data.

5.5.1 Parameters of the Search Methods

The SFS and SBS search methods are completely determined and, therefore, have no pa-
rameters to set. The two probabilistic algorithms of the Las Vegas type are similar. Its
main parameter is the number of limit assessments, which in both has been set to 1000
feature sets. LVF needs to limit the reduction allowed for the relevance of the features and
it has been set at 1%.

In metauristic methods (SA and GA) the first restriction we have used in their param-
eters is that they perform 1000 evaluations.

In SA it is necessary to set:
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• Initial temperature: We use T0 = (−v/ − ln(φ))(S0), which allows a probability φ
of accepting a solution that is v by one worse than the initial solution S0. We take
v = 0.3, and φ = 0.3.

• Generation of neighbours: The generation of new neighbours is done by adding or
eliminating features of the current set. 20 neighbours are generated in each cooling,
that is, for each temperature value.

• Cooling scheme: We have used the Cauchy one (T = T0/(1 + i)). 50 coolings are
carried out.

In GA it is necessary to set:

• A generational type, with a population of 40 individuals and 50 generations.

• Simple one point crossover, on the binary representation of the set of selected features.
Crossover probability: 0.6.

• The mutation adds or removes one feature. Mutation probability: 0.001.

• For the initialization method, to calculate the probability of preselecting features in
the GA, after conducting some preliminary experiments, the parameters that obtained
good results are the following:

– Pdesired = 0.5

– Pmax = 0.8

6. Experimental Results

This section presents the results divided into two sections. First, the best starting method
(an individual measure with a cutting criterion) and its parameters are established for
each FS search. Then, the results comparing the classical search methods with its started
versions are examined.

6.1 Starting Method Setup

The starting method has two parts:

• The evaluation function of individual features.

• The cutting criterion. To carry out a selection of the chosen parameters, we have
taken into account the best results obtained in (Arauzo-Azofra, Aznarte, & Beńıtez,
2011). The parameters tested in each of the cutting criteria are as follows:

– Fixed number (denoted as n-n) n ∈ {9, 13, 17}

– Fraction (denoted as p-p) p ∈ 0.2, 0.5, 0.8}
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As we have five individual measures and six cutting criterion possibilities, there are a
total of thirty options. Table 3 shows the best performing starting method for each feature
selection method. In order to obtain this, we have used 3 independent data sets from the
rest of the selected sets for experimentation. One of a small size (appendicitis), another of
a medium size (lung-cancer) and another of a large size (horse-colic) as shown in the table
2. The best parameter and measure combination is chosen according to its classification
accuracy in the average ranking among the three data sets.

Table 3: Best parameter and individual measure for each search method

Search Parameters Individual measure

SFSwS n-9 reli
SBSwS n-9 gain
LVFwS n-9 info
LVWwS n-9 info
SAwS p-0.2 reli
GAwS n-13 gini

6.2 Comparisons Between Classical Methods and Started Methods

Our goal is to test the hypothesis that using the started search methods proposed is better
in some scenarios. In order to compare the performance of selected features, a classification
learning algorithm needs to be trained and evaluated. All these comparisons use the average
of ten fold cross-validation to get an stable and confident result. As an example, figure 4
details the first comparison using SFS search with IE measure and evaluated with ANN.
The Wilcoxon test will determine if the differences found are significant and this is what
the following tables summarize.

This section deals with a series of comparisons between the classical and the started
methods, as described above. The effectiveness of feature selection is evaluated with five
classifiers (ANN, C4.5., KNN, Naive-Bayes and SVM). The search methods are combined
with the three set measures described in section 2.2: Inconsistent examples (IE), Mutual
Information (Inf) and Wrapper (Wra). Therefore, for each search, there are a total of fif-
teen possible scenarios to evaluate the started approach in three aspects: the accuracy, the
reduction in the number of selected features and feature selection time. Feature selection
reductions and feature selection times do not vary with the classifier, except for the wrap-
per measure. This leaves us with tables 5-10 that show the results of all Wilcoxon test
confronting classical versus started search methods. The tables indicate which is better,
the classical method or the method with a starting set, for each aspect: the best accuracy,
highest reduction and fastest computing. The differences are indicated if they are intuitive
(p-value < 0.2) and boldfaced if significant (p-value < 0.1).

These results lead to the following diagnosis. First, for the SFS algorithms (table 5), as
expected (see section 4.1), the started method is faster but it increases the number of selected
features. The started methods improve their counterparts in classification accuracy when
using the faster set measures (IE and Inf) but not with the wrapper approach. However,
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SFS SFSwS

Dataset Acc NoF FSTime(s) Acc NoF FSTime(s)

Australian 0.845 8.6 1.127 0.864 11.0 0.174
Bands 0.603 6.2 0.661 0.661 9.2 0.040
Breast-cancer 0.633 8.0 0.609 0.674 9.0 0.022
Cleveland (Heart Disease) 0.576 7.0 0.312 0.566 10.9 0.051

Contraceptive 0.555 9.0 0.905 0.555 9.0 0.080
Echocardiogram 0.908 4.1 0.208 0.900 9.0 0.010
Glass 0.585 5.9 0.157 0.560 9.0 0.011
Statlog Heart 0.781 7.1 0.278 0.833 10.0 0.031

Hepatitis 0.812 5.2 0.810 0.736 10.2 0.049
House-votes84 0.952 10.1 1.048 0.947 12.4 0.188
Ionosphere 0.917 5.1 2.727 0.889 9.2 0.064
Labor-relations 0.873 3.5 0.154 0.917 9.0 0.007

Parity3+3 1.000 4.5 0.160 1.000 9.0 0.037
Pima 0.768 7.5 0.403 0.767 8.0 0.037
Primary-tumor 0.439 15.8 0.592 0.439 15.8 0.295
Promoters 0.802 4.1 0.227 0.895 9.0 0.025

SAheart 0.684 6.2 0.527 0.736 9.0 0.027
Soybean 0.814 10.2 1.049 0.886 15.9 1.022
Tic-tac-toe Endgame 0.952 8.0 0.651 0.984 9.0 0.039
Vowel 0.656 7.2 2.104 0.688 9.1 0.092

Wine 0.944 4.0 0.381 0.978 9.0 0.022
Wisconsin 0.963 5.1 0.395 0.972 9.0 0.037
Yeast 0.578 7.7 1.463 0.586 8.0 0.089
Zoo 0.940 4.9 0.056 0.950 9.8 0.009

Table 4: Comparison of SFS search without and with start method, selecting
the best IE measure value and evaluating the feature selection cross-
validating with an ANN (summarized in the first line of Table 5)
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Table 5: Wilcoxon test comparing SFS and SFS started

Meas. Cla. Best Acc. p-value Hightest Reduc. p-value Fastest p-value

IE ANN started 0.027
IE C4.5 started 0.110
IE KNN started 0.042 classic 0.000 started 0.000
IE NBayes — 0.615
IE SVM started 0.004

Inf ANN started 0.108
Inf C4.5 started 0.003
Inf KNN — 0.926 classic 0.001 started 0.000
Inf NBayes — 0.896
Inf SVM started 0.014

Wra ANN — 0.555 started 0.001
Wra C4.5 — 0.961 started 0.000
Wra KNN — 0.251 classic 0.000 started 0.000
Wra NBayes classic 0.008 started 0.000
Wra SVM started 0.177 started 0.000

Table 6: Wilcoxon test comparing SBS and SBS started

Meas. Cla. Best Acc. p-value Hightest Reduc. p-value Fastest p-value

IE ANN — 0.476
IE C4.5 — 0.676
IE KNN classic 0.116 — 0.395 started 0.000
IE NBayes — 0.281
IE SVM — 0.856

Inf ANN — 0.339
Inf C4.5 — 0.639
Inf KNN classic 0.117 — 0.500 started 0.000
Inf NBayes — 0.259
Inf SVM —- 0.810

Wra ANN classic 0.042 started 0.001 started 0.000
Wra C4.5 — 0.910 started 0.000 started 0.000
Wra KNN — 0.751 started 0.001 started 0.000
Wra NBayes classic 0.053 started 0.000 started 0.000
Wra SVM — 0.685 started 0.004 started 0.001
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Table 7: Wilcoxon test comparing LVF and LVF started

Meas. Cla. Best Acc. p-value Hightest Reduc. p-value Fastest p-value

IE ANN — 0.615
IE C4.5 — 0.465
IE KNN — 0.751 classic 0.192 started 0.000
IE NBayes — 0.751
IE SVM — 0.931

Inf ANN started 0.185
Inf C4.5 classic 0.024
Inf KNN — 0.587 — 0.937 started 0.000
Inf NBayes — 0.986
Inf SVM — 0.951

Table 8: Wilcoxon test comparing LVW and LVW started

Meas. Cla. Best Acc. p-value Hightest Reduc. p-value Fastest p-value

Wra ANN started 0.009 — 0.531 started 0.037
Wra C4.5 — 0.276 — 0.772 started 0.137
Wra KNN — 0.543 — 0.738 started 0.092
Wra NBayes — 0.444 started 0.166 — 0.360
Wra SVM — 0.614 classic 0.065 — 0.931

Table 9: Wilcoxon test comparing SA and SA started

Meas. Cla. Best Acc. p-value Hightest Reduc. p-value Fastest p-value

IE ANN — 0.983
IE C4.5 started 0.036
IE KNN — 0.227 — 0.246 started 0.000
IE NBayes — 0.422
IE SVM — 0.681

Inf ANN — 0.906
Inf C4.5 — 0.896
Inf KNN — 0.867 — 0.894 started 0.000
Inf NBayes — 0.401
Inf SVM — 0.904

Wra ANN — 0.931 — 0.135
Wra C4.5 — 0.944 classic 0.039
Wra KNN — 0.594 classic 0.118 started 0.000
Wra NBayes — 0.396 — 0.975
Wra SVM — 0.538 — 0.904
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Table 10: Wilcoxon test comparing GA and GA started

Meas. Cla. Best Acc. p-value Hightest Reduc. p-value Fastest p-value

IE ANN — 0.267
IE C4.5 started 0.199
IE KNN — 0.615 classic 0.003 classic 0.000
IE NBayes started 0.025
IE SVM started 0.181

Inf ANN started 0.073
Inf C4.5 started 0.809
Inf KNN started 0.013 classic 0.000 classic 0.000
Inf NBayes — 0.717
Inf SVM — 0.485

Wra ANN started 0.019 classic 0.001 — 0.330
Wra C4.5 — 0.689 classic 0.002 — 0.670
Wra KNN — 0.478 classic 0.003 — 0.808
Wra NBayes — 0.751 classic 0.001 classic 0.144
Wra SVM started 0.110 classic 0.001 classic 0.064

except for the advantage of the classic method with naive Bayes, no significant differences
have been found using the wrapper measure.

In the case of the SBS algorithm (table 6), contrary to SFS, the started version does
not improve classification accuracy. Nevertheless, this has happened by applying greater
reductions in a faster process, as expected.

As far as the LVF and LVW algorithms are concerned (tables 7 and 8), the results
contradict our hypotheses. We expected a similar computing time (see section 4.2) but the
started version of LVF has proved significantly faster. This may be because, although the
number of feature sets evaluated is the same, by starting with a good smaller set, the average
size of sets evaluated is smaller and the evaluation of smaller sets is faster. In reduction,
we expected it to be greater for the started method. However, it seems that the search
process avoids reducing the sets more and the results are very similar. About accuracy,
there are disparities in results and only a few scenarios have shown significant differences.
In the wrapper approach with the artificial neural network, the started approach has been
significantly better, while the opposite happened with the mutual information measure in
a C4.5 learning process.

As for the SA algorithm (table 9), the accuracy has improved only in one scenario but
the started method has been faster in all cases. On the contrary, it has not improved the
reduction of features. Since the parameter of the starting method used is a percentage of
20% of the number of features (table 3), it may be difficult to improve the reduction with
respect to the classical methods with a such a small percentage of features selected with
the start method.

In the case of the GA algorithm (table 10), at the cost of an inferior reduction and
slower computation, the started method has beaten to its classical counterpart in accuracy.
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Considering the results with all search methods, the starting methods do not excel when
they are requested to prune features to select. This happens in SBS and LVF where the
direction of the search is towards the reduction of features. However, they seem to work
well selecting an initial set to grow, like SFS and GA do.

Finally, these results support thinking that the starting methods are an interesting ap-
proach to include in the feature selection toolbox of machine learning classification because
they have been proven to provide advantages in several scenarios. Tables 5-10 may serve as
a guide to know when to use an starting method.

7. Conclusions and Future Work

The context of search based feature selection for classification problems has been revised
and structured in a modular definition of the process. Inside this modular structure, we
have focused on the initialization. This paper characterizes all the initialization methods
by their semantics and their distribution of the feature set size.

After revising the most relevant papers from 2014 to 2020 that deal with the initializa-
tion of genetic algorithms for feature selection, we have identified the relative use of each
initialization strategy in literature. This has revealed that the most used methods are just
the simplest ones and little attention has been set on the performance of the initialization.
It can be concluded that most studies uses inferior performance initiation strategies.

This paper proposed the use of individual feature selection methods as the starting
method for the search involved in feature subset selection methods. It has been systemati-
cally tested over several well known feature selection methods (SFS, SBS, LVF, LVW, SA
and GA) on 27 classification problems and evaluated with five learning algorithms.

After the evaluation, we can conclude that the accuracy achieved has clearly improved in
most of the scenarios using SFS and GA, while computing time spent is reduced when using
the starting methods. In contrast, the results on the reduction of the number of features
selected are mixed, when using inconsistent example measures, the number of features
seems to grow using started methods, while when using wrapper and mutual information
measures, the largest reduction of selected features is often carried out by some started
search methods.

We hope that this paper will open new opportunities for researching improvements on
the initialization of feature selection methods. The modularized proposal allows to use any
feature selection method as the starting mechanism of a feature search. We believe this
may lead to many different proposals in a well organized development frame that eases
comparison.
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