
Journal of Artificial Intelligence Research 76 (2023) 471–521 Submitted 07/2022; published 01/2023

Finite Materialisability of Datalog Programs with
Metric Temporal Operators

Przemysław Andrzej Wałęga przemyslaw.walega@cs.ox.ac.uk
Michał Zawidzki michal.zawidzki@cs.ox.ac.uk
Bernardo Cuenca Grau bernardo.cuenca.grau@cs.ox.ac.uk
Department of Computer Science
University of Oxford
Parks Rd, Oxford, OX1 3QD, UK

Abstract
DatalogMTL is an extension of Datalog with metric temporal operators that has re-

cently found applications in stream reasoning and temporal ontology-based data access.
In contrast to plain Datalog, where materialisation (a.k.a. forward chaining) naturally ter-
minates in finitely many steps, reaching a fixpoint in DatalogMTL may require infinitely
many rounds of rule applications. As a result, existing reasoning systems resort to other
approaches, such as constructing large Büchi automata, whose implementations turn out
to be highly inefficient in practice.

In this paper, we propose and study finitely materialisable DatalogMTL programs, for
which forward chaining reasoning is guaranteed to terminate. We consider a data-dependent
notion of finite materialisability of a program, where termination is guaranteed for a given
dataset, as well as a data-independent notion, where termination is guaranteed regardless
of the dataset. We show that, for bounded programs (a natural DatalogMTL fragment for
which reasoning is as hard as in the full language), checking data-dependent finite mate-
rialisability is ExpSpace-complete in combined complexity and PSpace-complete in data
complexity; furthermore, we propose a practical materialisation-based decision procedure
that works in doubly exponential time. We show that checking data-independent finite ma-
terialisability for bounded progams is computationally easier, namely ExpTime-complete;
moreover, we propose sufficient conditions for data-indenpendent finite materialisability
that can be efficiently checked. We provide also the complexity landscape of fact entail-
ment for different classes of finitely materialisable programs; surprisingly, we could identify
a large class of finitely materialisable programs, called MTL-acyclic programs, for which
fact entailment has exactly the same data and combined complexity as in plain Datalog,
which makes this fragment especially well suited for big-scale applications.

1. Introduction

DatalogMTL is a temporal extension of Datalog where atoms in rules may include operators
from metric temporal logic (MTL) interpreted over the rational timeline (Brandt et al.,
2018). DatalogMTL is a powerful temporal rule language, which has found applications in
stream reasoning (Wałęga et al., 2019) and temporal ontology-based data access (Artale
et al., 2017; Kikot et al., 2018), amongst others (Nissl & Sallinger, 2022; Mori et al., 2022).

To give a flavour of DatalogMTL as a Knowledge Representation language, we next il-
lustrate its use with an example modeling immunity acquisition against COVID-19 resulting
from vaccination or a previous infection.

©2023 AI Access Foundation. All rights reserved.



Wałęga, Zawidzki, & Cuenca Grau

Example 1. There is growing evidence that individuals develop COVID-19 immunity for
at least 3 months if they got vaccinated and remained without symptoms (or displayed a
negative test result) within 3 to 4 weeks following vaccination, or if they were infected within
the last 6 months (discounting the last ten days when they had no symptoms) (Feikin et al.,
2022). Furthermore, individuals with immunity for at least 5 days display a negative test
result. These conditions can be captured by a DatalogMTL program Πex with the rules:

⊞[0,90]Immune(x)← NoSympt(x)S[21,28]Vaccinated(x), (1)

⊞[0,90]Immune(x)← NegTest(x) ∧x[21,28]Vaccinated(x), (2)

Immune(x)← x(10,183]Infected(x) ∧ ⊟[0,10]NoSympt(x), (3)

NegTest(x)← ⊟[0,5]Immune(x). (4)

In particular, Rules (1)–(3) represent the aforementioned conditions for acquiring 3-month-
long immunity. Rule (1) checks whether an individual remained without symptoms between
21 and 28 days since receiving vaccination (using the ‘since’ operator S[21,28]); Rule (2)
checks whether they received a negative test and got vaccinated at some point in the last 21
to 28 days (using the ‘diamond past’ operator x[21,28]); in turn, Rule (3) checks whether an
individual infected at some point in the last six months excluding the last 10 days (operator
x(10,183]) remained continuously without symptoms in the last 10 days (using the ‘box past’
operator ⊟[0,10]).

Assume also that historical data is stored in the form of facts stamped with validity
intervals, where the first day of the year is given by the interval (0, 1], the second day by
(1, 2], and so on. Ben got vaccinated at 4 p.m. on July 19 (represented as 1992

3). Moreover,
Ben had no symptoms since midnight on July 1 (i.e., 181) until noon on August 30 (i.e.,
2421

2). This is represented by a dataset Dex with the following facts:

Vaccinated(Ben)@1992
3 , NoSympt(Ben)@(181, 3201

2 ].

DatalogMTL is an expressive language and standard reasoning tasks such as consis-
tency and fact entailment are of high complexity, namely ExpSpace-complete in combined
complexity (Brandt et al., 2018) and PSpace-complete in data complexity (Wałęga et al.,
2019). Furthermore, worst-case optimal algorithms have comparable best-case and worst-
case running times and involve either the construction of large Büchi automata or exponen-
tial translations to Linear Temporal Logic (LTL), which makes efficient implementation in
data-intensive applications challenging.

In contrast, scalable Datalog implementations often materialise—that is, precompute
using forward chaining via multiple rounds of rule applications until a fixpoint is reached—
all facts entailed by an input program and dataset (Bry et al., 2007; Motik et al., 2014;
Carral et al., 2019; Bellomarini et al., 2018). Once a fixpoint has been reached, the facts in
the materialisation provide a representation of the canonical, least model of the input over
which all queries can be directly answered (Abiteboul et al., 1995; Motik et al., 2019).

As in plain Datalog, each satisfiable pair of a DatalogMTL program and dataset admits
also a canonical model defined as the least fixpoint of an immediate consequence operator
capturing a single round of rule applications (Brandt et al., 2018; Wałęga et al., 2019). The
use of metric temporal operators in rules, however, introduces a number of challenges for

472



Finite Materialisability of Datalog Programs with Metric Temporal Operators

materialisation-based reasoning. In particular, in contrast to Datalog, where materialisation
naturally terminates, in DatalogMTL a fixpoint may only be reachable after infinitely many
rounds of rule applications.

Example 2. Consider a program consisting of a rule ⊞365Bday(x )← Bday(x ), which states
that anyone having their birthday at a time point t will also be having their birthday at the
same time the following year (for simplicity we assume that a year has 365 days). Let us now
consider a dataset with a single fact saying that Alan Turing was having his first birthday
during the 23rd of June 1913. In the corresponding canonical model, atom Bday(Turing)
holds at each time within June 23rd of each year from 1913 onwards; the first application
of the rule makes Bday(Turing) true during the 23rd of June 1914, and each subsequent
application makes it true on the same day the year after.

In our recent work (Wang et al., 2022), we proposed a practical reasoning algorithm
for DatalogMTL combining a materialisation-based procedure optimised for efficient rule
application with the construction of Büchi automata to ensure completeness and termina-
tion. We implemented this approach in the MeTeoR reasoner, which is designed to minimise
the use of automata-based techniques in favour of materialisation. In some cases, however,
using automata-based techniques was necessary, leading to a performance reduction of or-
ders of magnitude. Thus, identifying fragments of DatalogMTL for which materialisation is
guaranteed to terminate can be instrumental for ensuring better scalability and robustness
in practice. Furthermore, the fact that materialisation requires infinitely many rounds of
rule applications to complete may indicate a modeling error; indeed, the description of an
application domain does not typically require unbounded propagation of information along
the infinite timeline.

Therefore, in this paper, we propose and study finitely materialisable DatalogMTL pro-
grams, for which forward chaining is guaranteed to construct a materialisation in a finite
number of steps. On the one hand, finitely materialisable programs are naturally well suited
for materialisation-based reasoning, which paves the way to the development of efficient
implementations; on the other hand, they constitute a natural class of programs sufficiently
expressive for many applications of DatalogMTL. Finitely materialisable programs extend
both plain Datalog, where programs may be recursive but do not contain metric operators
(Abiteboul et al., 1995), and non-recursive DatalogMTL, where the use of metric opera-
tors is unrestricted but there are no cyclic dependencies between predicates (Brandt et al.,
2018). Hence, finite materialisability can be seen as a safe form of temporal recursion. In
particular, we will see that the program in Example 1 is finitely materialisable regardless
of the dataset despite involving recursion via temporal operators. In contrast, the program
from Example 2 is not finitely materialisable, as the repeated application of its immediate
consequence operator will infinitely propagate fact Bday(Turing) towards the future.

The main decision problems that we consider in this paper are as follows.

– Data-dependent finite materialisability, which is to check whether materialisation of a
given DatalogMTL program and dataset will terminate in a finite number of steps,

– Data-independent finite materialisability, which is to check if a given DatalogMTL
program is finitely materialisable regardless of the dataset, and

473



Wałęga, Zawidzki, & Cuenca Grau

– Fact entailment, which is to check whether a (finitely materialisable) DatalogMTL
program and a given dataset entail a given fact.

Many of our technical results will be applicable to the fragment of DatalogMTL where
all intervals in programs and in datasets are bounded—that is, where −∞ and ∞ are not
mentioned as interval endpoints in either the rules or the data. We refer to such programs
and datasets as bounded ; in particular, the programs and datasets in Examples 1 and 2 are
bounded. Finitely materialisable bounded DatalogMTL programs can be used to describe
temporal phenomena that have a finite starting and ending point, even if the rules that
describe them involve a form of temporal recursion as in the case of Example 1. Thus, such
programs are a natural choice for many practical scenarios.

Our contributions in this paper are as follows.

– After recapitulating in Section 2 the relevant background on DatalogMTL, in Section 3
we present the data-dependent and data-independent notions of finite materialisability.

– In Section 4 we study the data-dependent variant of finite materialisability for bounded
programs and datasets. We first provide a characterisation of finite materialisability,
and then show that each finitely materialisable program and dataset can only entail
facts that hold within a specific bounded interval whose length depends on the size of
the program and the data. This suggests a materialisation-based decision procedure
for checking finite materialisability that works in doubly exponential time. Although
this algorithm is well suited for implementation, it is not worst-case optimal, and in
Section 4 we provide tight complexity bounds for the problem.

– In Section 5 we study the data-independent variant of finite materialisability for
bounded programs. We first show that it reduces to the data-dependent case by
considering a single critical dataset, which is reminiscent of techniques used for decid-
ing universal termination of variants of the chase procedure for various extensions of
Datalog (Gogacz & Marcinkowski, 2014; Cuenca Grau et al., 2013; Marnette & Geerts,
2010), as well as techniques for verifying strong or weak safety of temporal programs
(Chomicki & Imielinski, 1988; Chomicki, 1990, 1995). This reduction implies that
the materialisation algorithm in Section 4 working in doubly exponential time can be
adapted to the data-independent setting. We then show that this procedure can be
further refined to work in singly exponential time. By establishing a matching lower
bound for the problem, we show optimality of our algorithm.

– In Section 6 we propose two incomparable fragments of DatalogMTL, which allow for a
limited form of temporal recursion while at the same time ensuring (data-independent)
finite materialisability. The fragment of EDB-guarded programs requires each rule to
contain at least one body atom involving only EDB predicates (i.e., not mentioned in
rule heads of the program); in turn, MTL-acyclic programs require that (a generalisa-
tion of) the program’s dependency graph does not contain certain types of cycles.

– In Section 7 we turn our attention to fact entailment. We first consider bounded
DatalogMTL programs and datasets and show that reasoning is as hard as for arbi-
trary DatalogMTL in both combined and data complexity. We then focus on programs

474



Finite Materialisability of Datalog Programs with Metric Temporal Operators

that are finitely materialisable in the data-independent setting and analyse whether
fact entailment becomes computationally easier as a result. We show that fact en-
tailment remains PSpace-complete in data complexity, whereas combined complexity
drops from ExpSpace-completeness to ExpTime-completeness; furthermore, the same
bounds hold already for EDB-guarded programs. Surprisingly, however, fact entail-
ment over MTL-acyclic programs is P-complete in data complexity and ExpTime-
complete in combined complexity; thus, it has exactly the same complexity as plain
Datalog despite allowing for all types of metric operators in rules and supporting a
limited form of temporal recursion. The panorama of complexity and expressivity re-
lations among different fragments of bounded DatalogMTL stemming from the results
included in this section is presented in Figure 1.

ExpTime-complete

ExpSpace-complete

PSpace-complete
for data complexity

P-complete for
data complexity

MTL-acyclic

finitely materialisable
for bounded datasets

DatalogMTL

Datalog

EDB-guarded

⊊

⊊ ⊊

⊊

Figure 1: Fragments of bounded DatalogMTL

This paper constitutes a significant extension of our previous conference publication
(Wałęga et al., 2021b).

2. Preliminaries

In this section, we recapitulate the syntax and semantics of DatalogMTL (Brandt et al., 2018;
Wałęga et al., 2019), introduce the standard reasoning tasks, and describe a generic (possibly
non-terminating) materialisation procedure for reasoning over DatalogMTL programs and
datasets. We focus on the rational timeline, as opposed to the integer timeline (Wałęga
et al., 2020a), and on the standard continuous semantics, as opposed to the alternative
pointwise semantics (Ryzhikov et al., 2019).

2.1 Time and Intervals

The (rational) timeline is the set Q of rational numbers; each element of the timeline con-
stitutes a time point. We consider binary representations of integers, and represent each

475



Wałęga, Zawidzki, & Cuenca Grau

rational number as a fraction with an integer numerator and a positive integer denomina-
tor. An interval ϱ is a non-empty subset of Q satisfying the following properties: (i) for all
t1, t2, t3 ∈ Q with t1 < t2 < t3 and t1, t3 ∈ ϱ, it is the case that t2 ∈ ϱ, and (ii) both the
greatest lower bound ϱ− and the least upper bound ϱ+ of ϱ belong to Q ∪ {−∞,∞}. The
bounds ϱ− and ϱ+ are called the left and right endpoints of ϱ, respectively, and ϱ+ − ϱ− is
the length of ϱ. An interval ϱ is punctual if it contains exactly one number, it is positive if it
does not contain negative numbers, and it is bounded if both its left and right endpoints are
rational numbers. We use the standard representation ⟨ϱ−, ϱ+⟩ for interval ϱ, where the left
bracket ⟨ is either [ or (, the right bracket ⟩ is either ] or ), and ϱ− and ϱ+ are representations
of the left and right endpoints of ϱ, respectively. As usual, brackets [ and ] indicate that the
corresponding endpoints are included in the interval, whereas ( and ) indicate that they are
not included. We abbreviate a punctual interval [t, t] as t. Since different intervals cannot
have the same representation, we often abuse notation and identify an interval representa-
tion with the interval it represents. Finally, for intervals ϱ and ϱ′ we define the operators
ϱ+ ϱ′ = {t+ t′ | t ∈ ϱ and t′ ∈ ϱ′}, ϱ− ϱ′ = {t− t′ | t ∈ ϱ and t′ ∈ ϱ′}, and −ϱ = [0, 0]− ϱ.

2.2 Syntax of DatalogMTL

We consider a function-free first-order signature. A relational atom is a first-order atom of
the form P (s), with P an n-ary predicate and s an n-ary tuple of terms (i.e., constants and
variables). A metric atom is an expression given by the following grammar, where P (s)
ranges over relational atoms and ϱ over positive non-empty intervals:

M ::= ⊤ | ⊥ | P (s) | xϱM | |ϱM | ⊟ϱM | ⊞ϱM | MSϱM | MUϱM.

A rule is an expression of the form

M ′ ←M1 ∧ · · · ∧Mn, for n ≥ 1, (5)

where each Mi is a metric atom and M ′ is generated by the following grammar:1

M ′ ::= ⊤ | P (s) | ⊟ϱM ′ | ⊞ϱM ′.

The conjunction M1 ∧ · · · ∧Mn in Expression (5) is the rule’s body, each Mi is a body atom,
and M ′ is the rule’s head. A rule is safe if each variable mentioned in the head occurs also
in its body, and this occurrence is not in a left operand of S or U . A rule is propositional if
all its predicates are nullary and bounded if so are all the intervals it mentions and ⊤ does
not occur in the body.2 The depth of rule r, written as depth(r), is the sum of the right
endpoints in all intervals occurring in r (or 0 if r mentions no intervals)

A program is a finite set of safe rules. A program Π is propositional (resp. bounded) if
so are all its rules. The depth of Π, written as depth(Π), is the maximum depth of its rules;
hence, bounded programs have finite depth. We let pred(Π) be the number of predicates
mentioned in Π, and we let tΠ be the greatest number mentioned in Π (or 1 if Π mentions
no numbers). The dependency graph of Π is a directed graph with a vertex vP for each

1. For presentational simplicity, we disallow ⊥ in rule heads, which ensures consistency and allows us to
focus on fact entailment.

2. We disallow ⊤ in rule bodies as a rule P ← ⊤ simulates a fact P@(−∞,∞) over an unbounded interval.

476



Finite Materialisability of Datalog Programs with Metric Temporal Operators

I, t |= ⊤ for each t

I, t |= ⊥ for no t

I, t |= xϱM iff I, t′ |= M for some t′ with t− t′ ∈ ϱ

I, t |= |ϱM iff I, t′ |= M for some t′ with t′ − t ∈ ϱ

I, t |= ⊟ϱM iff I, t′ |= M for all t′ with t− t′ ∈ ϱ

I, t |= ⊞ϱM iff I, t′ |= M for all t′ with t′ − t ∈ ϱ

I, t |= M1SϱM2 iff I, t′ |= M2 for some t′ with t− t′ ∈ ϱ and I, t′′ |= M1 for all t′′ ∈ (t′, t)

I, t |= M1UϱM2 iff I, t′ |= M2 for some t′ with t′ − t ∈ ϱ and I, t′′ |= M1 for all t′′ ∈ (t, t′)

Table 1: Semantics of ground metric atoms

predicate P in Π and an edge (vQ, vR) if there is a rule mentioning Q in its body and R in
its head. A program is recursive if its dependency graph is cyclic.

An expression (metric atom, rule, or program) is ground if it mentions no variables.
A metric fact over an interval ϱ is an expression M@ϱ, with M a ground metric atom; it is
relational if so is M and bounded if so is ϱ. A dataset is a finite set of relational facts; it
is bounded if so is each of its facts. For a dataset D, we let tmin

D and tmax
D be the minimal

and maximal numbers mentioned as interval endpoints in D (if D does not mention any
numbers, we let both tmin

D and tmax
D be 0).

The grounding of a program Π, written as ground(Π), is the set of ground rules obtained
by assigning constants in the signature to variables in Π. The grounding of Π with respect
to a dataset D, written as ground(Π,D), is the restriction of ground(Π) to ground rules
containing only constants from Π and D.

2.3 Semantics of DatalogMTL

An interpretation I is a function which specifies, for each ground relational atom P (s) and
each time point t, whether P (s) is satisfied at t, in which case we write I, t |= P (s). This
notion extends to other ground metric atoms as given in Table 1.

Example 3. Consider an interpretation I represented by the dataset Dex from Example 1,
that is, I, 1992

3 |= Vaccinated(Ben) and I, t |= NoSympt(Ben), for all t ∈ (181, 3201
2 ]. By

the semantics of metric operators in Table 1, the following hold (as depicted in the figure
below):

– I, t |= x[21,28]Vaccinated(Ben) for all t ∈ [2202
3 , 227

2
3 ], since for each of these time

points t, Vaccinated(Ben) holds in some time point within the interval [t− 28, t− 21].

– I, t |= ⊟[0,10]NoSympt(Ben) for all t ∈ (191, 3201
2 ], as for any such t, NoSympt(Ben)

holds continuously in the interval [t− 10, t− 0].

– I, t |= NoSympt(Ben)S[21,28]Vaccinated(Ben) for all t ∈ [2202
3 , 227

2
3 ], as for all these t,

Vaccinated(Ben) holds in some time point in [t − 28, t − 21] such that NoSympt(Ben)
holds continuously between this time point and t.

477



Wałęga, Zawidzki, & Cuenca Grau

181 191 1992
3

2202
3

2272
3

3201
2

NoSympt(Ben)V accinated(Ben)

NoSympt(Ben)S[21,28]V accinated(Ben)

x[21,28]V accinated(Ben)

⊟[0,10]NoSympt(Ben)

An interpretation I satisfies a metric fact M@ϱ, written I |= M@ϱ, if I, t |= M for all
t ∈ ϱ. Moreover, I satisfies a ground rule r if, whenever I satisfies each body atom of r at
a time point t, then I also satisfies the head of r at t. Furthermore, I satisfies a rule r if
it satisfies each rule in ground({r}). We say that I is a model of a program Π if I satisfies
each rule in Π. An interpretation I is a model of a set of metric facts if it satisfies each of
these facts. A setM of metric facts entails a metric fact M@ϱ if each model ofM is also a
model of M@ϱ. A program Π and a set M of metric facts entail a set M′ of metric facts,
written (Π,M) |=M′, if each model of both Π andM is also a model ofM′; we will often
write M |=M′ instead of (∅,M) |=M′. If M or M′ is a singleton, say {M@ϱ}, then we
may omit curly brackets and write M@ϱ |=M′ andM |= M@ϱ, respectively.

An interpretation I contains an interpretation I′, written I′ ⊆ I, if I′, t |= P (s) implies
I, t |= P (s), for each ground relational atom P (s) and each time point t. We say that I
is the least interpretation in a set X of interpretations if I ⊆ I′, for every I′ ∈ X. Each
dataset D admits the least interpretation ID among all models of D; we say that a dataset
D represents an interpretation I if I = ID. Furthermore, for an interpretation I and an
interval ϱ, we let the projection of I over ϱ, written I |ϱ, be the interpretation that coincides
with I over ϱ and does not satisfy any relational atoms outside ϱ.

The immediate consequence operator TΠ, for a program Π, is a function mapping an
interpretation I to the least interpretation containing I and satisfying the following property
for each r ∈ ground(Π): whenever I satisfies each body atom of r at a time point t, then
TΠ(I) satisfies the head of r at t. The successive application of TΠ to ID defines a transfinite
sequence of interpretations Tα

Π(ID), for ordinals α, as follows:

T 0
Π(ID) = ID,

Tα
Π(ID) = TΠ

(
Tα−1
Π (ID)

)
, for α a successor ordinal,

Tα
Π(ID) =

⋃
β<α

T β
Π(ID), for α a limit ordinal.

The canonical interpretation CΠ,D of Π and D is the interpretation Tω1
Π (ID), where ω1 is the

first uncountable ordinal. Since we do not allow ⊥ in rule heads, CΠ,D is the least model of
Π and D (Brandt et al., 2017).

Example 4. Consider the program Πex and dataset Dex from Example 1. The interpretations
Tα
Πex

(IDex) are represented by the following datasets:

478



Finite Materialisability of Datalog Programs with Metric Temporal Operators

T 0
Πex

(IDex): Vaccinated(Ben)@1992
3 , NoSympt(Ben)@(181, 3201

2 ]

T 1
Πex

(IDex):
Vaccinated(Ben)@1992

3 , NoSympt(Ben)@(181, 3201
2 ],

Immune(Ben)@[2202
3 , 317

2
3 ]

Vaccinated(Ben)@1992
3 , NoSympt(Ben)@(181, 3201

2 ],T 2
Πex

(IDex): Immune(Ben)@[2202
3 , 317

2
3 ], NegTest(Ben)@[2252

3 , 317
2
3 ]

T 3
Πex

(IDex): same facts as in T 2
Πex

(IDex)

Since T 2
Πex

(IDex) = T 3
Πex

(IDex), we obtain that T 2
Πex

(IDex) = Tα
Πex

(IDex), for any ordinal α ≥ 2,
and so, T 2

Πex
(IDex) = CΠex,Dex.

The canonical interpretation CΠ,D is regular (Wałęga et al., 2019), as described next.
We let the (Π,D)-ruler be the set of all time points of the form t + i · div(Π), for t a time
point mentioned in D (as an endpoint of some interval), i ∈ Z, and div(Π) = 1

k , where k
is the product of all denominators occurring in the representation of the rational endpoints
of the intervals mentioned in Π (if Π has no intervals with rational endpoints, then k = 1,
and hence, div(Π) = 1). A (Π,D)-interval is either a punctual interval over a time point
on the (Π,D)-ruler, or an interval of the form (t1, t2), where t1 and t2 are consecutive time
points on the (Π,D)-ruler. Then, we say than an interpretation I is a (Π,D)-interpretation
if, for every relational fact M@t, it holds that I |= M@t implies I |= M@ϱ, where ϱ is the
(Π,D)-interval containing t. The canonical interpretation CΠ,D, as well the interpretations
Tα
Π(ID) for any ordinal α, are (Π,D)-interpretations (Wałęga et al., 2019).

Example 5. Consider program Πex and the dataset Dex from Example 1. Since all rational
numbers occurring in Πex are integers, div(Πex) = 1. Furthermore, as 181, 1992

3 , and 3201
2

are the only numbers occurring in Dex, the (Πex,Dex)-ruler consists of all rational numbers
of the form i, 1

2+i, and 2
3+i, for any integer i. Hence, (Πex,Dex)-intervals are, for example,

[0, 0], (0, 12), [
1
2 ,

1
2 ], and (12 ,

2
3), as depicted below.

(Πex,Dex)-ruler:
0 1 2 31 1

2
1 2
3

2 1
2
2 2
3

1
2

2
3

(Πex,Dex)-intervals:

2.4 Reasoning Problems and Complexity of Reasoning

In this paper, we focus on fact entailment, which is the problem of checking whether a
relational fact is entailed by a program and a dataset. We consider both combined and
data complexity of this problem. In combined complexity, we treat as inputs all among the
dataset, program, and query fact. In data complexity, only the dataset is considered as
input, whereas the program and query fact are considered fixed.

Fact entailment in DatalogMTL is of high complexity; it is ExpSpace-complete (Brandt
et al., 2018) and PSpace-complete in data complexity (Wałęga et al., 2019). Furthermore,
PSpace-hardness in data complexity holds for the core fragment (Wałęga et al., 2020b),
where rules are restricted to contain a single atom in the body. Lower complexity fragments
have also been identified. In particular, for non-recursive programs fact entailment is PSpace-
complete in combined complexity and in AC0 for data complexity (Brandt et al., 2017);
tractability in data complexity can also be achieved by disallowing certain metric operators
in linear and core fragments (Wałęga et al., 2020b).

479



Wałęga, Zawidzki, & Cuenca Grau

Algorithm 1: ApplyRules
Input: A program Π and a dataset D
Output: A dataset representing TΠ(ID)

1 N := ∅; // initialise set N of newly derived facts
2 for each rule r ∈ ground(Π,D) do
3 M1, . . . ,Mn := the body atoms of r;
4 M ′ := the head of r;
5 P (c) := the relational atom in M ′;
6 for each i ∈ {1, . . . , n} do IMi

:=
{
⊆ -maximal ϱ | D |= Mi@ϱ

}
;

7 IM ′ :=
{
⊆ -maximal ϱ | ϱ ⊆ (ϱ1 ∩ · · · ∩ ϱn), for some ϱ1 ∈ IM1 , . . . , ϱn ∈ IMn

}
;

8 IP (c) :=
{
⊆ -maximal ϱ |M ′@ϱ′ |= P (c)@ϱ, for some ϱ′ ∈ IM ′

}
;

9 N := N ∪
{
P (c)@ϱ | ϱ ∈ IP (c)

}
; // update the set N

10 return D ∪N ;

2.5 Materialisation-based Reasoning

Materialisation-based reasoning is the most common technique of choice implemented in
scalable Datalog reasoners (Bry et al., 2007; Motik et al., 2014; Carral et al., 2019; Bel-
lomarini et al., 2018). Facts entailed by a program and a dataset are derived in successive
rounds of rule applications until a fixpoint is reached and a full materialisation has been
computed. At this point, queries can be answered directly over the computed materialisation
and rules do not need to be considered any further.

In this section, we formulate a (possibly non-terminating) generic reasoning procedure
for DatalogMTL based on materialisation. An instantiation of this procedure has been
implemented, for instance, in the MeTeoR system (Wang et al., 2022).

Rules are applied by first identifying maximal intervals in which ground body atoms
hold simultaneously, and then determining maximal intervals in which the head atoms can
be derived. Details are presented in Algorithm 1, which performs a single round of rule
applications for a given input program and dataset.

Example 6. Given the program Πex and dataset Dex from Example 1, Algorithm 1 ap-
plies Rule (1) by first identifying ϱ = [2202

3 , 227
2
3 ] as the maximal interval such that we

have Dex |= NoSympt(x)S[21,28]Vaccinated(x)@ϱ. Hence, the application of the rule derives
Immune(Ben)@[2202

3 , 317
2
3 ], as shown in the table from Example 4.

The result of applying Algorithm 1 to Π and D is always a dataset (i.e., a finite object),
and the following proposition establishes that this dataset represents the infinite interpreta-
tion obtained by a single application of the immediate consequence operator associated to
Π to the dataset D. Thus, Algorithm 1 provides a syntactic counterpart to the application
of the immediate consequence operator.

Proposition 7. On input Π and D, Algorithm 1 outputs a dataset representing TΠ(ID).

Proof. In each iteration of the loop, Algorithm 1 extends (in Line 9) the dataset N with{
P (c)@ϱ | ϱ ∈ IP (c)

}
. Thus, to prove that the output D ∪ N of Algorithm 1 represents

480



Finite Materialisability of Datalog Programs with Metric Temporal Operators

Procedure 2: Materialisation-based reasoning
Input: A program Π and a dataset D
Output: A dataset representing CΠ,D

1 Dnew := D; // initialise Dnew

2 repeat
3 Dold := Dnew; // copy Dnew before applying rules
4 Dnew := ApplyRules(Π,Dnew);
5 until IDold

= IDnew ;
6 return Dnew;

TΠ(ID), it suffices to show that, after performing one iteration of the loop (Lines 3–9) for a
rule r ∈ ground(Π,D), the dataset D ∪

{
P (c)@ϱ | ϱ ∈ IP (c)

}
represents T{r}(ID).

Indeed, for each body atom Mi of r, set IMi (computed in Line 6) consists of intervals
containing exactly those time points for which Mi holds in ID. Thus, IM ′ (computed in
Line 7) consists of intervals containing exactly those time points in which all the body
atoms of r simultaneously hold in ID. Then intervals in IP (c) (computed in Line 8) contain
exactly those time points for which the head atom P (c) of r is entailed by M ′ holding in
intervals from IM ′ . Therefore, D∪

{
P (c)@ϱ | ϱ ∈ IP (c)

}
represents T{r}(ID), as required.

We next introduce Procedure 2 which, given a program Π and a dataset D as input,
performs materialisation by iteratively calling Algorithm 1 to compute a sequence D0,D1, . . .
of datasets, where each Di represents the interpretation T i

Π(ID). Indeed, the following
Proposition 8 is a direct consequence of Proposition 7.

Proposition 8. After k ∈ N iterations of the loop from Algorithm 2 on input Π and D, the
dataset Dnew represents T k

Π(ID).

If Di = Di+1 at some point in the sequence D0,D1, . . . computed by Procedure 2, then
Procedure 2 outputs Di. In particular, if we consider program Πex and dataset Dex from
Example 1 as input, Procedure 2 will stop after three iterations and return the dataset
representing T 2

Πex
(IDex), as shown in Example 4.

In general, however, the procedure may not terminate. Indeed, for some programs and
datasets, the construction of the canonical interpretation requires infinitely many applica-
tions of the immediate consequence operator.

Example 9. Consider a program Π = {⊞[0,1]P ← P} and a dataset D = {P@[0, 1]}. If the
proposition P holds at some time point t, then Π ensures that P holds also in the interval
[t, t + 1]. It follows that T i

Π(ID) |= P@[i, i + 1], for each i ∈ N, and that the canonical
interpretation CΠ,D is reached only after ω applications of TΠ to ID.

The main research question investigated in this paper is to determine for which programs
and datasets application of the immediate consequence operator reaches a fixpoint in finitely
many steps; that is, when Procedure 2 is guaranteed to terminate. In such cases, the
procedure computes a full materialisation and becomes a decision procedure that can be
used for checking entailment of arbitrary facts.

481



Wałęga, Zawidzki, & Cuenca Grau

3. Finitely Materialisable DatalogMTL Programs

In this section, we introduce the notion of finitely materialisable DatalogMTL programs.
Although our definition is based on the semantics of the immediate consequence operator and
the canonical interpretation, Proposition 8 ensures that it admits an equivalent formulation
based on the termination of the generic materialisation procedure in Section 2.5.

Definition 10. Let Π be a program and α an ordinal number. We say that the immediate
consequence operator TΠ converges for a dataset D in α steps if Tα

Π(ID) = CΠ,D. Program
Π is finitely materialisable for a dataset D if TΠ converges for D in some finite number of
steps (or, equivalently, if Procedure 2 terminates on input Π and D).

It follows from Proposition 8 that, for each program Π that is finitely materialisable
for a dataset D, there exists a dataset representing the canonical interpretation CΠ,D. The
converse, however, does not hold: the canonical interpretation of a program Π and a dataset
D may admit a finite representation, but Π may be not finitely materialisable for D.

Example 11. As shown in Example 4, program Πex is finitely materialisable for dataset
Dex, and the dataset representing T 2

Πex
(IDex) also represents the canonical interpretation. In

contrast, if we consider program Π = {⊞[0,1]P ← P} and dataset D = {P@[0, 1]} from
Example 9, we can observe that the canonical interpretation can be represented by a single
fact P@[0,∞), whereas the operator TΠ does not converge for D in a finite number of steps.

The notion of finite materialisability in Definition 10 is data dependent, in that a given
program could be finitely materialisable for a given dataset, but perhaps not for a different
dataset. We next provide a data-independent notion of finite materialisability which is
parametrised by a class of datasets, where natural instantiations include the classes of all
datasets or all bounded datasets.

Definition 12. A program Π is finitely materialisable for a class of datasets if Π is finitely
materialisable for each dataset in this class.

A natural example of DatalogMTL programs that are guaranteed to be finitely materi-
alisable for every dataset are non-recursive programs. Indeed, divergence of the immediate
consequence operator is always due to the presence of recursion involving metric atoms.
This follows immediately from the following proposition, which also establishes a bound on
the number of applications of the immediate consequence operator required to compute the
canonical interpretation.

Proposition 13. For any non-recursive program Π and for any dataset D, it holds that
T
pred(Π)−1
Π (ID) = CΠ,D.

Proof. For each predicate P in Π or D, we let d(P ) be the length of a longest path in the
dependency graph of Π, which ends in vP (or 0 if no such path exists). Note that since Π
is non-recursive, its dependency graph has no cycles, and so, d(P ) ≤ pred(Π) − 1, for each
P . Thus, it suffices to show that, for each relational fact P (c)@t, if CΠ,D |= P (c)@t, then
T
d(P )
Π (ID) |= P (c)@t. We proceed by induction on d(P ).

482



Finite Materialisability of Datalog Programs with Metric Temporal Operators

For the base case, assume that CΠ,D |= P (c)@t, for some P with d(P ) = 0. Since
d(P ) = 0, either P does not occur in Π, or P occurs in Π and vP has no incoming edges. In
both cases CΠ,D |= P (c)@t implies that ID |= P (c)@t, and so, T 0

Π(ID) |= P (c)@t.
For the inductive step, assume that CΠ,D |= P (c)@t, where d(P ) > 0. If ID |= P (c)@t,

then T 0
Π(ID) |= P (c)@t, and so, T d(P )

Π (ID) |= P (c)@t. Otherwise, there exists a rule r in
ground(Π,D) and a time point t′ such that all the body atoms of r are satisfied at t′ and
the head of r being satisfied at t′ entails P (c)@t. By the definition of the dependency
graph, we have d(Q) < d(P ) for each predicate Q occurring in the body of r. Therefore, by
the inductive assumption, all the body atoms of r must be satisfied at t′ in T

d(P )−1
Π (ID).

Consequently, T{r}

(
T
d(P )−1
Π (ID)

)
|= P (c)@t, and so, T d(P )

Π (ID) |= P (c)@t.

Moreover, the following example shows that the bound on the number of applications of
the immediate consequence operator in Proposition 13 is optimal.

Example 14. Consider an arbitrary n ∈ N and a program Πn comprising the rules

⊞1P1 ← P0, ⊞1P2 ← P1, ⊞1P3 ← P2, . . . , ⊞1Pn ← Pn−1.

Clearly, Πn is non-recursive and pred(Π) − 1 = n. Now, consider a dataset D = {P0@0}.
We obtain that, for each i ≤ n, the interpretation T i

Πn
(ID) entails {Pj@j | j ≤ i}. Thus,

Tn
Πn

(ID) = CΠn,D, so the bound on the number of rounds of rule application to materialise
a non-recursive program, established in Proposition 13, cannot be decreased.

The presence of recursion via metric atoms is, however, not always harmful, and many
recursive programs are finitely materialisable. For instance, program Πex from Example 1 is
recursive, as its dependency graph has a cycle induced by Rules (2) and (4); however, TΠex

converges in at most two iterations for any dataset.
In the remainder of this paper, we study the main decision problems in our setting. In

Section 4, we study finite materialisability of a bounded program with respect to a single
bounded dataset; furthermore, in Section 5, we extend our study to consider the problem
of checking whether a given bounded program is finitely materialisable for the class of all
bounded datasets. Finally, in Section 7.2 we study the complexity of checking fact entailment
over finitely materialisable bounded programs and datasets.

4. Data-dependent Finite Materialisability

In this section, we study the problem of deciding whether a given bounded program Π is
finitely materialisable for a given bounded dataset D.

In Section 4.1, we provide a characterisation of finite materialisability in terms of the
number of facts (over (Π,D)-intervals) entailed by Π and D, which allows us to focus our
attention on analysing the kinds of temporal facts that can be entailed by a finitely mate-
rialisable program and dataset. In Section 4.2 we show that, if Π is finitely materialisable
for D, then all facts entailed by Π and D hold within a specific bounded interval ϱ, and we
provide a bound on the length of ϱ in terms of the size of Π and D. This result suggests a
materialisation-based decision procedure for checking finite materialisability, where materi-
alisation is performed until a fixpoint is reached (in which case Π is finitely materialisable

483



Wałęga, Zawidzki, & Cuenca Grau

for D) or until we derive a fact with an interval not contained within ϱ (in which case, Π is
not finitely materialisable for D). We formulate such algorithm in Section 4.3 and show that
it works in doubly exponential time in both the sizes of Π and D. This algorithm, though
well suited for implementation, is not worst-case optimal and in Section 4.4 we establish
tight combined and data complexity bounds for our problem.

4.1 Characterising Data-dependent Finite Materialisability

We now provide our characterisation of data-dependent finite materialisability. To this
end, we start by showing that rule application in DatalogMTL is temporally localised; in
particular, a relational fact at a time point t can only be derived in a single round of rule
applications from facts that hold within the interval [t− depth(Π), t+ depth(Π)], where we
recall that bounded programs are of finite depth (c.f. Section 2.2) and hence the application
of a rule cannot derive a fact that is ‘too far away’ on the timeline.

Lemma 15. Assume that TΠ(I) |= M@t, for a program Π, an interpretation I, and a
relational fact M@t. Then TΠ(I

′) |= M@t, where I′ is the projection of I over the interval
[t− depth(Π), t+ depth(Π)].

Proof. Assume that TΠ(I) |= M@t. We will consider separately the cases when I |= M@t
and I ̸|= M@t. First, assume that I |= M@t. Hence I′, t |= M@t, due to the fact that
t ∈ [t− depth(Π), t+ depth(Π)] and I′ is projection of I over [t− depth(Π), t+ depth(Π)].

Second, assume that I ̸|= M@t. Since TΠ(I) |= M@t, there exist a rule r ∈ ground(Π,D)
and a time point t′ such that the application of r to I at t′ derives M@t; that is, all body
atoms of r are satisfied in I at t′ and M ′@t′ |= M@t, where M ′ is the head of r. Let M
be any subset-minimal set of relational facts over punctual intervals which guarantees that
all the body atoms of r are satisfied at t′. Moreover, let dB and dH be the sums of all right
endpoints of intervals mentioned in the body and in the head of r, respectively. Then, by the
semantics of metric temporal operators, all the facts in M are over time points located no
further than dB from t′. Similarly, the distance between t′ and t cannot exceed dH . Hence,
all the facts in M are over time points located no further than dB + dH from t. Now, by
the definition of depth, we obtain that dB + dH ≤ depth(Π), so I′ must satisfy all facts in
M. This means that T{r}(I

′) |= M@t, and thus, TΠ(I
′) |= M@t.

We can now exploit Lemma 15 to establish our characterisation of finite materialisability.

Theorem 16. A bounded program Π is finitely materialisable for a bounded dataset D if
and only if Π and D entail finitely many relational facts over (Π,D)-intervals.

Proof. For the forward direction, assume that Π is finitely materialisable for D, so there
exists k ∈ N such that T k

Π(ID) = CΠ,D. We show inductively on i ∈ N that each interpreta-
tion T i

Π(ID) entails finitely many relational facts over (Π,D)-intervals. This will imply that
CΠ,D also entails finitely many relational facts over (Π,D)-intervals.

In the base case, we have T 0
Π(ID) = ID and ID entails finitely many relational facts over

(Π,D)-intervals since D is bounded. For the inductive step, assume that T i
Π(ID) entails

finitely many relational facts over (Π,D)-intervals. Hence, there exists a bounded interval ϱ
such that all the relational facts entailed by T i

Π(ID) are over intervals contained in ϱ. Since
each bounded interval contains a finite number of (Π,D)-intervals, it suffices to show that

484



Finite Materialisability of Datalog Programs with Metric Temporal Operators

all the relational facts entailed by T i+1
Π (ID) lie within a bounded interval. In particular,

we show that they lie within [ϱ− − depth(Π), ϱ+ + depth(Π)]. To this end, assume that
T i+1
Π (ID) entails a relational fact M@t. Hence, by Lemma 15, we obtain that TΠ(I

′) |= M@t,
where I′ is the projection of T i

Π(ID) over [t− depth(Π), t+ depth(Π)]. Next, we show that
[t− depth(Π), t+ depth(Π)] must overlap with ϱ. Indeed, if this was not the case, then I′

would be an empty interpretation, so TΠ(I
′) would not entail M@t (nor any other relational

fact), which contradicts our assumption. Hence, t+ depth(Π) ≥ ϱ− and t− depth(Π) ≤ ϱ+.
Thus, t ≥ ϱ−−depth(Π) and t ≤ ϱ++depth(Π), that is, t ∈ [ϱ−−depth(Π), ϱ++depth(Π)].

For the converse direction, assume that Π and D entail k ∈ N relational facts over
(Π,D)-intervals. We show that T k+1

Π (ID) = T k
Π(ID). Assume, towards a contradiction, that

T k+1
Π (ID) ̸= T k

Π(ID). Hence T i+1
Π (ID) ̸= T i

Π(ID), for each i ∈ {0, . . . , k}. As each T i
Π(ID)

is a (Π,D)-interpretation (Wałęga et al., 2019), we obtain that each T i+1
Π (ID) satisfies at

least one more relational fact over a (Π,D)-interval than T i
Π(ID). Thus, T k+1

Π (ID) entails
at least k + 1 such facts, and so does Π and D, which raises a contradiction.

4.2 Identifying the Relevant Segment of the Timeline

In this section, we show that all facts entailed by a finitely materialisable bounded program
and a specific dataset hold within a single bounded interval.

We start by showing that facts entailed by an arbitrary (i.e., not necessarily finitely
materialisable) bounded program Π and datasetD can be determined by considering (instead
of D) any dataset Dϱ representing the projection of CΠ,D over a ‘short’ interval ϱ satisfying
certain properties. This property is established by the following technical lemma.

Lemma 17. Let Π and D be bounded, and let Dϱ be a dataset representing the projection
of CΠ,D over a closed interval ϱ of length depth(Π). The following hold:

1. If ϱ+ ≥ tmax
D then, for each relational fact M@t such that t ≥ ϱ−, it holds that

(Π,D) |= M@t if and only if (Π,Dϱ) |= M@t,

2. If ϱ− ≤ tmin
D then, for each relational fact M@t such that t ≤ ϱ+, it holds that

(Π,D) |= M@t if and only if (Π,Dϱ) |= M@t.

Proof. To show Statement 1, assume that ϱ+ ≥ tmax
D and that M@t is a relational fact with

t ≥ ϱ−. If t ∈ ϱ, then the statement follows from the fact that Dϱ is a dataset representation
of the projection of CΠ,D over ϱ. Next, assume that t > ϱ+. As (Π,D) |= Dϱ, we immediately
obtain that (Π,Dϱ) |= M@t implies (Π,D) |= M@t. For the other implication it suffices
to show that Tα

Π(ID) |= M ′@t′ implies Tα
Π(IDϱ) |= M ′@t′, for every ordinal α and every

relational fact M ′@t′ with t′ > ϱ+. We proceed by a transfinite induction on ordinals α.
For the base case, we observe that T 0

Π(ID) = ID and ϱ+ ≥ tmax
D . Since D is bounded

and tmax
D is the largest number mentioned in D, no fact of the form M ′@t′ with t′ > ϱ+ (and

so, with t′ > tmax
D ) can be satisfied in T 0

Π(ID); therefore the implication holds trivially.
For the inductive step with a successor ordinal α, we assume that Tα

Π(ID) |= M ′@t′,
where M ′@t′ is a relational fact with t′ > ϱ+. Let I = Tα−1

Π (ID), so TΠ(I) |= M ′@t′. Hence,
by Lemma 15, TΠ(I |ϱ′) |= M ′@t′, where ϱ′ = [t′ − depth(Π), t′ + depth(Π)]. Since we need
to show that Tα

Π(IDϱ) |= M ′@t′, it suffices to prove that I |ϱ′⊆ Tα−1
Π (IDϱ). In particular,

we will show that I |ϱ′⊆ I′ |ϱ′ , where I′ = Tα−1
Π (IDϱ). Observe that Dϱ represents CΠ,D |ϱ,

485



Wałęga, Zawidzki, & Cuenca Grau

so CΠ,D |ϱ= IDϱ |ϱ. Moreover, I ⊆ CΠ,D and IDϱ ⊆ I′, so I |ϱ⊆ I′ |ϱ. By the inductive
assumption, I |(ϱ+,∞)⊆ I′ |(ϱ+,∞), so I |[ϱ−,∞)⊆ I′ |[ϱ−,∞). Recall now that t′ > ϱ+ and
ϱ+−ϱ− = depth(Π), so t′−depth(Π) > ϱ−. As t′−depth(Π) = (ϱ′)−, we obtain (ϱ′)− > ϱ−,
and so ϱ′ ⊆ [ϱ−,∞). Thus, I |[ϱ−,∞)⊆ I′ |[ϱ−,∞) implies I |ϱ′⊆ I′ |ϱ′ , as required.

Now, consider the inductive step for a limit ordinal α. If Tα
Π(ID) |= M ′@t′ then, by the

fact that Tα
Π(ID) =

⋃
β<α T

β
Π(ID), we obtain that T β

Π(ID) |= M ′@t′ for some β < α. Thus,
by the inductive assumption, we obtain that T β

Π(IDϱ) |= M ′@t′, and so Tα
Π(IDϱ) |= M ′@t′.

The proof for Statement 2 is analogous; in particular, we proceed by a transfinite in-
duction on ordinals α to show that Tα

Π(ID) |= M ′@t′ implies Tα
Π(IDϱ) |= M ′@t′, for every

relational fact M ′@t′ with t′ < ϱ−.

We next exploit the result in Lemma 17 to establish a sufficient condition for non-finite
materialisability. In particular, given a bounded program Π and a dataset D, if we can find
two different intervals of a given length for which Π and D entail exactly the same atoms,
then we can ensure that the contents of these intervals will also be entailed repeatedly
throughout the infinite timeline. As a result, Π cannot be finitely materialisable for D.

Lemma 18. Let Π be a bounded program, let D be a bounded dataset, let ϱ1, ϱ2 be closed
intervals of length depth(Π) such that ϱ+1 < ϱ+2 , and let q = ϱ+2 − ϱ+1 . Assume also that
CΠ,D |= M@t if and only if CΠ,D |= M@t+q, for each relational fact M@t with t ∈ ϱ1.
Then, the following statements hold:

1. If ϱ+1 ≥ tmax
D , then, for each relational fact M@t with t ≥ ϱ−1 , we have (Π,D) |= M@t

if and only if (Π,D) |= M@t+q.

2. If ϱ−2 ≤ tmin
D , then, for each relational fact M@t with t ≤ ϱ+2 , we have (Π,D) |= M@t

if and only if (Π,D) |= M@t−q.
Proof. We focus on Statement 1 since the proof of the second statement is analogous. Hence,
assume that ϱ+1 ≥ tmax

D , and thus, ϱ+2 > tmax
D . Let Dϱ1 and Dϱ2 be datasets representing

CΠ,D |ϱ1 and CΠ,D |ϱ2 . Hence, Dϱ1 |= M@t if and only if Dϱ2 |= M@t+q, for each relational
fact M@t. By Lemma 17, CΠ,D |[ϱ−1 ,∞)= CΠ,Dϱ1

|[ϱ−1 ,∞) and CΠ,D |[ϱ−2 ,∞)= CΠ,Dϱ2
|[ϱ−2 ,∞).

Therefore, the following six statements are equivalent for any metric atom M@t with t ≥ ϱ−1 :

(Π,D) |= M@t, CΠ,D |[ϱ−1 ,∞) |= M@t, CΠ,Dϱ1
|[ϱ−1 ,∞) |= M@t,

CΠ,Dϱ2
|[ϱ−2 ,∞) |= M@t+q, CΠ,D |[ϱ−2 ,∞) |= M@t+q, (Π,D) |= M@t+ q.

The first equivalence follows from the assumption that t ≥ ϱ−1 . The second and the fourth
equivalence are a consequence of applying Lemma 17, whereas the third one results from
Dϱ2 being a shift of Dϱ1 . The last equivalence holds since t + q ≥ ϱ−2 . The equivalence of
the first and the last statement proves Statement 1.

We are now ready to identify the segment of the timeline over which facts can be entailed
if the program and dataset of interest are finitely materialisable.

Theorem 19. Let Π be a bounded program which is finitely materialisable for a bounded
dataset D, and let offset(Π,D) = 2A·B · depth(Π) for A the number of relational atoms in
ground(Π,D) and B the number of (Π,D)-intervals within [tmax

D , tmax
D + depth(Π)]. Then,

t ∈ [tmin
D − offset(Π,D), tmax

D + offset(Π,D)] for any relational fact M@t entailed by Π and D.

486



Finite Materialisability of Datalog Programs with Metric Temporal Operators

Proof. Towards a contradiction, let us assume that Π and D entail a fact M@t such that
t /∈ [tmin

D − offset(Π,D), tmax
D + offset(Π,D)]. We assume that t > tmax

D + offset(Π,D), as
the proof for t < tmin

D − offset(Π,D) is analogous. We obtain a contradiction by showing
that Π and D entail infinitely many relational facts over (Π,D)-intervals. To this end, by
Lemma 18, it suffices to show that there exist closed intervals ϱi, ϱj of length depth(Π)
such that tmax

D ≤ ϱ+i < ϱ+j , CΠ,D |= M ′@t′ if and only if CΠ,D |= M ′@t′+(ϱ+j −ϱ
+
i ), for each

relational fact M ′@t′ with t′ ∈ ϱi, and such that CΠ,D |ϱi is non-empty.
We claim that the required ϱi and ϱj must occur in the sequence ϱ1, . . . , ϱ2A·B of closed

intervals of length depth(Π) such that ϱ−1 = tmax
D and ϱ+k = ϱ−k+1, for all k ∈ {1, . . . , 2A·B−1}.

We start by observing that CΠ,D |ϱk is non-empty, for each ϱk. Otherwise, by Lemma 17,
CΠ,D |[ϱ−k ,∞) is empty, which raises a contradiction as ϱ+

2A·B = tmax
D +offset(Π,D), so t > ϱ+

2A·B ,
and hence, CΠ,D ̸|= M@t. To finish the proof, we show that there exist ϱi, ϱj in our
sequence of intervals such that CΠ,D |= M ′@t′ if and only if CΠ,D |= M ′@t′+(ϱ+j −ϱ

+
i ), for

each relational fact M ′@t′ with t′ ∈ ϱi. First, observe that, by the definitions of the (Π,D)-
ruler and depth(Π), the nth (Π,D)-interval in ϱi has the same length as the nth (Π,D)-
interval in ϱj , for each n ≤ B and i, j ≤ 2A·B. Moreover, as each ϱk in our sequence contains
B (Π,D)-intervals and, in each of these (Π,D)-intervals, Π and D entail one of 2A sets of
relational atoms, over each ϱk in the sequence Π and D entail one of 2A·B combinations of
sets of relational atoms. However, as we have shown, within each ϱk some fact must hold, so
the longest sequence of intervals in which required ϱi, ϱj do not occur has 2A·B−1 elements.
Our sequence has 2A·B elements, so the required pair of intervals must exist.

4.3 A Materialisation-based Algorithm for Checking Finite Materialisability

The result in Theorem 19 suggests the decision procedure for checking finite materialisabil-
ity specified by Algorithm 3; when given a bounded program Π and a bounded dataset
D as input, the algorithm performs materialisation in the usual way (c.f. Algorithm 2)
until a fixpoint is reached, in which case a full materialisation has been computed and
thus Π is finitely materialisable for D, or until some fact is derived outside the interval
ϱ = t ∈ [tmin

D − offset(Π,D), tmax
D + offset(Π,D)]. In the latter case, Theorem 19 ensures that

Π is not finitely materialisable for D.
The running time of Algorithm 3 is determined by the number of facts that can be derived

via rule application, which also bounds the number of iterations of the main loop. We show
that the algorithm can derive at most a doubly exponential number of facts before stopping;
in particular, the number of derived facts is proportional to the size of the grounding of Π
with respect to D (of exponential size) and the number of (Π,D)-intervals in ϱ (which is of
doubly exponential size given that the length of ϱ is also doubly exponential).

Theorem 20. Algorithm 3 returns true if the input program Π is finitely materialisable for
the input dataset D, and it returns false otherwise. Moreover, Algorithm 3 works in doubly
exponential time in the size of Π and D.

Proof. Correctness of the algorithm follows from Theorem 19. To show that it terminates
in doubly exponential time in the size of Π and D given as input, we will first show that the
number of iterations of the loop in Lines 3–7 is at most doubly exponential and, secondly,
that each iteration is feasible in doubly exponential time.

487



Wałęga, Zawidzki, & Cuenca Grau

Algorithm 3: Checking finite materialisability for a single dataset
Input: A bounded program Π and a bounded dataset D
Output: A boolean value true if Π is finitely materialisable for D, false otherwise

1 Dnew := D;
2 ϱ := [tmin

D − offset(Π,D), tmax
D + offset(Π,D)];

3 repeat
4 Dold := Dnew;
5 Dnew := ApplyRules(Π,Dold);
6 if there is M@ϱ′ ∈ Dnew with ϱ′ ̸⊆ ϱ then return false;
7 until IDold

= IDnew ;
8 return true;

The stopping conditions in Lines 6 and 7 ensure that the number of iterations of the
loop from Lines 3–7 is bounded by the maximal number of facts that are stored in Dold in
the run of the algorithm. Since Dold represents T i

Π(ID), for some i ∈ N, we obtain that each
M@ϱ′ ∈ Dold is such that M occurs in ground(Π,D) and the endpoints of ϱ′ belong to the
(Π,D)-ruler, as shown by Wałęga et al. (2019, Lemma 4). Moreover, the stopping condition
from Line 6 ensures that ϱ′ ⊆ ϱ, and since Dold is constructed by calling (i times) ApplyRules,
all facts in Dold are coalesced. Thus the number of facts in Dold is bounded by A · C,
where A is the number of relational atoms in ground(Π,D) and C is the number of (Π,D)-
intervals contained in ϱ. Clearly, A is exponentially large (in the size of the representations
of Π and D). Next, we show that C is doubly exponential. To this end, observe that
ϱ = [tmin

D − offset(Π,D), tmax
D + offset(Π,D)], and offset(Π,D) = 2A·B · depth(Π), for B the

number of (Π,D)-intervals in [tmax
D , tmax

D + depth(Π)]. Thus, C ≤ 2 · (2A·B · (B − 1)) + E,
where E is the number of (Π,D)-intervals contained in [tmin

D , tmax
D ]. We can observe that

B ≤ 2 · |D| · depth(Π)
div(Π) + 1, as [t, t + div(Π)) (for any t on the (Π,D)-ruler) contains at most

2 · |D| (Π,D)-intervals. Due to the binary encoding of numbers in Π, both the value of
depth(Π) and the value of 1

div(Π) are at most exponentially large, and so is B. Moreover,

E is also exponential, as E ≤ 2 · |D| ·
⌈
tmax
D −tmin

D
div(Π)

⌉
+ 1. Consequently, C is at most doubly

exponentially large, and so, the number of iterations of the loop from Lines 3–7 is at most
doubly exponential.

Next, we show that each iteration of the loop is feasible in doubly exponential time. To
this end, we observe that Dold not only has doubly exponentially many facts but also that all
intervals mentioned in Dold are doubly exponentially representable (this is so because they
have endpoints on the (Π,D)-ruler and are contained in ϱ). Hence, the construction in Line 5
of a dataset representing TΠ(IDold

), is performed by ApplyRules from Algorithm 1 in doubly
exponential time. Indeed, the loop in Lines 2–9 of Algorithm 1 is traversed at most as many
times as there are rules in ground(Π,Dold), which coincides with ground(Π,D). The number
of these rules is exponentially bounded; moreover, since Dold is doubly exponentially large,
each iteration of the loop in Lines 2–9 is computed in doubly exponential time. Finally, we
observe that the stopping conditions in Lines 6 and 7 of Algorithm 3 can also be checked
within doubly exponential time.

488



Finite Materialisability of Datalog Programs with Metric Temporal Operators

4.4 Complexity of Checking Data-dependent Finite Materialisability

Algorithm 3 can be easily incorporated into existing DatalogMTL reasoners with a mate-
rialisation component, such as MeTeoR (Wang et al., 2022). Algorithm 3 is, however, not
worst-case optimal, as we show in this section. In particular, we show that the problem of
checking whether a given bounded program is finitely materialisable for a given bounded
dataset is ExpSpace-complete for combined complexity and PSpace-complete for data com-
plexity; thus, it is no harder than fact entailment for the bounded fragment of DatalogMTL
(c.f. Theorems 46 and 47). Our upper bounds do not immediately lead to a practical al-
gorithm since they rely on reductions to fact entailment in DatalogMTL extended with
stratified negation-as-failure, for which all known decision procedures are automata-based
(Tena Cucala et al., 2021).

Theorem 21. Checking if a bounded program is finitely materialisable for a given bounded
dataset is PSpace-complete for data complexity.

Proof. For the upper bound, we will reduce our problem to fact entailment in stratifiable
DatalogMTL¬ programs, which is known to be PSpace-complete in data complexity (Tena
Cucala et al., 2021, Theorem 19). Stratifiable programs allow for negation-as-failure in rule
bodies, denoted with not, while satisfying standard stratification conditions. We construct a
stratifiable program Π′ by extending Π in a data-independent way with the following rules,
where R, L, and G are fresh predicates:

R← x[0,∞)P (x), for every predicate P occurring in Π

L← |[0,∞)P (x), for every predicate P occurring in Π

G← not ⊟[0,∞) R ∧ not ⊞[0,∞) L.

We show that, for each dataset D, program Π is finitely materialisable for D if and only if
Π′ and D entail G@0. To this end, let ϱ be the minimal interval containing all the time
points over which Π and D entail some relational fact with a predicate occurring in Π. By
the first two types of the new rules in Π′, we obtain that R holds at all t > ϱ− and L
holds at all t < ϱ+, respectively. Hence, by the last rule, G holds at each time point on the
timeline, including 0, if there exists a time point in which R does not hold and a time point
in which L does not hold, that is, if ϱ is bounded from the left and from the right; otherwise
G does not hold at any time point. Of course, if ϱ is bounded, there are finitely many
(Π,D)-intervals contained in ϱ, and so, only finitely many relational facts can be entailed by
Π and D over such intervals. By the assumption, Π and D do not entail any facts outside
ϱ, therefore, the boundedness of ϱ implies that Π and D entail finitely many relational facts
over (Π,D)-intervals. Consequently, the following statements are equivalent:

1. Π′ and D entail G@0,

2. there exist time points t ≤ t′ such that (Π′,D) ̸|= R@t and (Π′,D) ̸|= L@t′,

3. there exist time points t ≤ t′ such that ϱ ⊆ [t, t′],

4. Π and D entail finitely many relational facts over (Π,D)-intervals.

489



Wałęga, Zawidzki, & Cuenca Grau

To complete the proof it suffices to observe that, by Theorem 16, Statement 4 is equivalent
to the fact that Π is finitely materialisable for D.

For the lower bound, we provide a reduction from the acceptance problem for a deter-
ministic Turing machine running in polynomial space. Let M = (Σ,Q, δ, qinit, qacc, qrej) be
such a machine with alphabet Σ, states Q including an initial state qinit, accepting state qacc,
and rejecting state qrej, and transitions δ : Σ⊔ × (Q \ {qacc, qrej}) 7→ Σ⊔ ×Q× {L,R} where
Σ⊔ is alphabet Σ augmented with the blank symbol ⊔. We let p be a polynomial such that,
for every input word w, machine M uses at most p(|w|) cells for computations.

We now define a bounded program ΠM and construct in logarithmic space a dataset Dw

from a word w, so that M accepts w if and only if ΠM is not finitely materialisable for Dw.
The main idea is to encode the ith configuration of M on w using facts holding at the time
point i. These facts will use constants c1, . . . , cp(|w|) representing tape cells, three types of
unary predicates, namely, Head , NoHead , and Conts, for s ∈ Σ⊔, as well as propositions
Stateq , for q ∈ Q. These predicates describe the position of the head, the contents of the
tape, and the state of the machine in consecutive configurations. We will also use binary
predicates Next and Neq to state that pairs of cells are adjacent or distinct, respectively.
Furthermore, we employ the nullary predicate Tape to delimit the segment of the timeline
that simulates the machine’s computations. Finally, we use a proposition G to indicate that
the machine has entered the accepting state.

We define ΠM as a bounded program consisting of the following rules, where X ∈ {L,R}
indicates direction of M’s head movement:

⊞1Conts′(x)←Conts(x)∧Stateq∧Head(x)∧Tape, for each δ(s, q)=(s′, q′, X),

⊞1Stateq′←Conts(x)∧Stateq∧Head(x)∧Tape, for each δ(s, q)=(s′, q′, X),

⊞1Head(y)←Conts(x)∧Stateq∧Head(x)∧Next(y, x)∧Tape, for each δ(s, q)=(s′, q′, L),

⊞1Head(y)←Conts(x)∧Stateq∧Head(x)∧Next(x, y)∧Tape, for each δ(s, q)=(s′, q′,R),

⊞1Conts(x)←Conts(x)∧NoHead(x)∧Tape, for each s∈Σ⊔,

NoHead(y)←Head(x)∧Neq(x, y)∧Tape,
G←Stateqacc∧Tape,

⊟1G←G.

The first four types of rules simulate transitions of the machine. Rules of the fifth type
capture inertia and copy over the contents of cells not affected by a transition (i.e., such
that the head is not located over them), whereas the sixth rule states that NoHead(c) holds
for those cells c for which Head(c) does not hold. The last two rules allow us to derive G
when the accepting state is reached, and then, propagate G to all preceding integer time
points (in particular, to the time point 1).

Next, we show how to construct a dataset Dw based on an input word w = s1 . . . sn.
To this end, we let m = |Σ⊔|p(n) · |Q| · p(n) be the number of possible configurations of M.

490



Finite Materialisability of Datalog Programs with Metric Temporal Operators

Then, Dw consists of the following facts:

Contsi(ci)@1, for each i ∈ {1, . . . , n},
Cont⊔(ci)@1, for each i ∈ {n+ 1, . . . , p(n)},
Stateqinit@1,

Head(c1)@1,

Next(ci, ci+1)@[1,m], for each i ∈ {1, . . . , p(n)− 1},
Neq(ci, cj)@[1,m], for all i, j ∈ {1, . . . , p(n)} such that i ̸= j,

Tape@[1,m].

We observe that Dw can be computed in logarithmic space; in particular, the number
m = |Σ⊔|p(n) · |Q| · p(n), occurring as an endpoint of some intervals in Dw, can be computed
in TC0 because powering binary numbers is feasible in TC0 (Reif & Tate, 1992; Immerman
& Landau, 1989).

First we show that the canonical interpretation CΠM,Dw encodes the computation of M on
w. In particular, by induction on computation steps t ∈ {1, . . . ,m} in the run, we can simul-
taneously prove that the following statements hold for every cell number i ∈ {1, . . . , p(n)},
for every symbol s ∈ Σ⊔, and for every state q ∈ Q:

– CΠM,Dw |= Conts(ci)@t if and only if s is the content of the ith cell at the step t,

– CΠM,Dw |= Stateq@t if and only if q is the state at the step t,

– CΠM,Dw |= Head(ci)@t if and only if the head is over the ith cell at the step t,

– CΠM,Dw |= NoHead(ci)@t if and only if the head is not over the ith cell at the step t.

Next, we use the above properties to show that M accepts a word w if and only if ΠM

is not finitely materialisable for Dw. For the forward direction observe that the following
statements are equivalent:

1. M enters the accepting state in the run on w,

2. CΠM,Dw |= Stateqacc@t, for some t ∈ {1, . . . ,m},

3. CΠM,Dw |= G@t′, for all t′ ≤ t and some t ∈ {1, . . . ,m}.

Note also that Statement 3 implies, by Theorem 16, that ΠM is not finitely materialisable
for DM, as required.

For the opposite direction, assume that M does not accept w. To prove that ΠM is
finitely materialisable for Dw, it suffices to show that ΠM and Dw entail finitely many facts
over (ΠM,Dw)-intervals. To this end, we will show that if ΠM and Dw entail a relational
fact M@t, then t ∈ [1,m + 1]. First, observe that M cannot be G; indeed, since M does
not accept w, for all t′, we have CΠM,Dw ̸|= Stateqacc@t′ and CΠM,Dw ̸|= G@t′. Next, observe
that all facts in Dw are over intervals contained in [1,m] and all rules of ΠM which do not
mention G in the head have a body atom Tape. Since Tape holds only in [1,m] and the
only temporal operator occurring in heads of those rules in ΠM which do not mention G is
⊞1, we get t ∈ [1,m+ 1]. Hence PSpace-hardness follows.

491



Wałęga, Zawidzki, & Cuenca Grau

Next we provide tight bounds for combined complexity.

Theorem 22. Checking if a bounded program is finitely materialisable for a given bounded
dataset is ExpSpace-complete for combined complexity.

Proof. For the upper bound, we observe that fact entailment in stratifiable DatalogMTL¬ is
ExpSpace-complete for combined complexity (Tena Cucala et al., 2021, Theorem 20). Hence,
we can use the exact same reduction as in the proof of the upper bound in Theorem 21,
which immediately yields the ExpSpace upper bound.

For the lower bound, we modify the reduction of halting of deterministic Turing machines
with an exponentially long tape, provided by Brandt et al. (2018, Theorem 8). Given a
Turing machine M and an input word w, they constructed a program Π and a dataset D
such that M halts on w if and only if Π and D are inconsistent. In particular, they used
rules ⊥ ← Hqh,a to obtain inconsistency whenever the machine enters the halting state qh
and the head of the machine is over a cell with some tape symbol a.

The dataset D constructed by Brandt et al. is bounded, but their program Π includes
rules with ⊥ in the head as well as a rule mentioning unbounded interval, both of which are
disallowed in bounded programs. Thus we start by constructing a bounded program Π′ which
behaves similarly to Π. To this end, we delete from Π all rules ⊥ ← Hqh,a. We observe that
the only remaining non-bounded rule in Π is of the form ⊞1N# ← N# ∧|(0,∞)N

<
# . This

rule, together with the facts N#@[m + 1,m + 1] and N<
#@[2n, 2n] in D, is responsible for

entailing N# in all integer time points between m+ 1 and 2n. We obtain the same behaviour
by replacing this rule with a bounded rule ⊞1N# ← N# ∧|(0,2n)N

<
# , which finalises our

construction of Π′. Similarly to the reduction of Brandt et al., we obtain that M halts on
w if and only if Π′ and D entail Hqh,a@t, for some a and t.

Our goal however is to provide a reduction to finite materialisability and not to fact
entailment. Thus, we further modify Π′ in two steps to obtain the final program Π′′. First,
for every rule r in Π′ and every pair consisting of a non-halting state q and an alphabet
symbol a, we add an atom x[0,2n+1]Hq,a to the body of r. It guarantees that if the halting
state qh is reached by the Turing machine—and so Hqh,a@t is entailed, for some a and
t—then no rule of the program can be applied at time points greater than t + 2n + 1.
Furthermore, by the form of the program and the dataset, no facts can be entailed in time
points smaller than 1. Thus, our so-far constructed program is finitely materialisable for D.
To construct the final program Π′′, however, we also add rules ⊞[0,1] ⊟[0,1] Hqh,a ← Hqh,a,
for any alphabet symbol a, which recursively propagate Hqh,a to all time points. Thus, we
obtain that Π′′ and D entail infinitely many facts over (Π′′,D)-intervals (and so, Π′′ is not
finitely materialisable for D) if and only if (Π,D) |= Hqh,a@t, for some a and t, which is
equivalent to halting of M on w.

Therefore, we have reduced non-halting of a deterministic Turing machine with an expo-
nential tape to finite materialisability. Importantly, our transformation of Π to Π′′ is poly-
nomial; in particular, the number 2n occurring in one of the new rules in Π′′ is polynomially
representable since numbers in DatalogMTL programs are encoded in binary. As ExpSpace
is closed under the complement, we obtained the required ExpSpace lower bound.

492



Finite Materialisability of Datalog Programs with Metric Temporal Operators

5. Data-independent Finite Materialisability

In this section, we study the data-independent notion of finite materialisability. In particular,
given a bounded program as input, our aim is to check whether the program is finitely
materialisable for every bounded dataset.

To this end, we start by showing in Section 5.1 that it suffices to check finite mate-
rialisability of the input program for a single critical dataset. The idea of constructing a
critical dataset has been exploited to establish both decidability and undecidability results
for a number of data-independent reasoning problems in Database Theory, such as that
of deciding universal termination of variants of the chase procedure for various extensions
of Datalog (Gogacz & Marcinkowski, 2014; Cuenca Grau et al., 2013; Marnette & Geerts,
2010). These, as well as other related works, will be discussed in more detail in Section 8.

As a result, data-independent finite materialisability reduces to its data-dependent coun-
terpart studied in Section 4. In particular, the materialisation-based algorithm in Section 4.3
can still be applied to the data-independent setting by replacing the input dataset of the
algorithm with the critical dataset, which is dependent only on the input program. This
approach, however, yields a decision procedure for the data-independent problem that is
still doubly exponential in the size of the input program. In Section 5.2, we show that
the relevant segment of the timeline identified in Section 4.2 for programs that are finitely
materialisable for a given dataset can be further refined if we additionally know that the
input program is finitely materialisable for all bounded datasets.

Based on this result, we propose in Section 5.3 a refined materialisation-based algorithm
that solves the data-independent version of finite materialisability in singly exponential time.
This upper bound is tight and hence we conclude that the problem has the same complexity
as fact entailment in standard (non-temporal) Datalog and our algorithm for solving the
problem is worst-case optimal.

5.1 The Critical Dataset

In this section, we show that the data-independent version of the finite materialisability
problem for bounded programs can be solved by focusing on a specific critical dataset. The
non-temporal part of the critical dataset for a bounded program Π follows the standard
construction used in Database Theory for showing universal termination of the chase in
the context of extensions of Datalog with existential quantification in the head of rules; in
particular, we consider all relational facts that can be constructed with constants occurring
in Π plus a single fresh constant. For the temporal part, the critical dataset uses a single
interval of length depth(Π) for all facts in the dataset.

Definition 23. The critical dataset DΠ for a bounded program Π is the set of all relational
facts P (s)@[0, depth(Π)] such that P is a predicate mentioned in Π and each term in s is
either a constant mentioned in Π or a single fresh constant cΠ.

The choice of the interval [0, depth(Π)] is justified by the characterisation of finite ma-
terialisability in Theorem 16 and the statements in Lemma 17, which show that if Π and
a dataset D entail infinitely many relational facts over (Π,D)-intervals, then so do Π and
any dataset D′ representing a projection of the canonical interpretation over some interval

493



Wałęga, Zawidzki, & Cuenca Grau

of length depth(Π); thus, it suffices to include in the critical dataset facts over any interval
of length depth(Π), and we chose [0, depth(Π)] as such an interval.

Theorem 24. A bounded program Π is finitely materialisable for the class of bounded
datasets if and only if Π is finitely materialisable for DΠ.

Proof. The forward direction holds trivially as DΠ is a bounded dataset. We show the
opposite direction by contraposition. Assume that there is a bounded dataset D for which
Π is not finitely materialisable. By Theorem 16, Π and D entail infinitely many relational
facts over (Π,D)-intervals. Hence, either Π and D entail infinitely many relational facts
over (Π,D)-intervals located to the right of tmax

D , or infinitely many such facts to the left of
tmin
D . We focus on the first case, as the second one is proved analogously. We transform D

to obtain datasets defined as follows, where we let M [cΠ] be an atom obtained from M by
replacing all constants not occurring in Π with a single fresh constant cΠ:

D1 = {M@ϱ |M@ϱ ∈ D and the predicate occurring in M is mentioned in Π},
D2 = {M@ϱ | CΠ,D |= M@ϱ,M is a relational atom in ground(Π,D), and

ϱ ⊆ [tmax
D − depth(Π), tmax

D ] is a (Π,D)-interval},
D3 = {M@[tmax

D − depth(Π), tmax
D ] |M is a relational atom in ground(Π,D)} ,

D4 = {M@[0, depth(Π)] |M is a relational atom in ground(Π,D)} ,
D5 = {M [cΠ]@ϱ |M@ϱ ∈ D4} .

We will show that Π and each Di entail infinitely many relational facts over (Π,D)-intervals.
This completes the proof since D5 = DΠ, and so, Π and DΠ entail infinitely many relational
facts over (Π,DΠ)-intervals, implying that Π is not finitely materialisable for DΠ.

We start by observing that since Π and D entail infinitely many relational facts over
(Π,D)-intervals, then so do Π and D1, because facts in D with predicates not mentioned
in Π cannot be used to derive any new facts. By our previous assumption, these infinitely
many facts are entailed to the right of tmax

D , so the same holds for Π and D1. Hence,
CΠ,D1 |[tmax

D −depth(Π),∞) also satisfies infinitely many relational facts over (Π,D)-intervals.
We observe that D2 represents the projection of CΠ,D1 over [tmax

D − depth(Π), tmax
D ]. Thus,

CΠ,D1 |[tmax
D −depth(Π),∞)= CΠ,D2 |[tmax

D −depth(Π),∞) by Statement 1 in Lemma 17. Therefore,
Π and D2 also entail infinitely many relational facts over (Π,D)-intervals. Next, observe
that D3 |= D2 and hence Π and D3 must also entail infinitely many relational facts over
(Π,D)-intervals. The same holds also for D4, which is obtained by shifting all facts in D3

by −tmax
D +depth(Π). To prove our claim for D5, it suffices to show that, for every ordinal α

and for every relational fact M@t, if Tα
Π(ID4) |= M@t, then Tα

Π(ID5) |= M [cΠ]@t. We show
this by transfinite induction on ordinals α.

The base case holds trivially since ID4 |= M@t implies ID5 |= M [cΠ]@t directly by
the definition of D5. Assume now that Tα

Π(ID4) |= M@t, for α a successor ordinal. If
Tα−1
Π (ID4) |= M@t, then, by the inductive assumption, Tα−1

Π (ID5) |= M [cΠ]@t, and so,
Tα
Π(ID5) |= M [cΠ]@t. Next assume that Tα−1

Π (ID4) ̸|= M@t, so there must exist a rule
r ∈ ground(Π,D), say of the form M ′ ← M1 ∧ · · · ∧ Mn, and a time point t′ such that
all the atoms M1, . . . ,Mn are satisfied in Tα−1

Π (ID4) at t′, and moreover, M ′@t′ |= M@t.
By the inductive assumption, M1[cΠ], . . . ,Mn[cΠ] need to be satisfied in Tα−1

Π (ID5) at t′.

494



Finite Materialisability of Datalog Programs with Metric Temporal Operators

Hence, a single application of TΠ to Tα−1
Π (ID5), allows us to derive M ′[cΠ]@t′, that is,

Tα
Π(ID5) |= M ′[cΠ]@t′. However, M ′@t′ |= M@t implies that M ′[cΠ]@t′ |= M [cΠ]@t, and

so, Tα
Π(ID5) |= M [cΠ]@t. Finally, assume Tα

Π(ID4) |= M@t, for α a limit ordinal. Since
Tα
Π(ID4) =

⋃
β<α T

β
Π(ID4), there exists β < α such that T β

Π(ID4) |= M@t. Then, by the
inductive assumption, we obtain that T β

Π(ID5) |= M [cΠ]@t, and so Tα
Π(ID5) |= M [cΠ]@t.

5.2 Revising the Relevant Segment of the Timeline

In Section 4.2, we showed that all facts entailed by a bounded program Π and dataset D
must hold within a single interval ϱ of a given length if Π is finitely materialisable for D. In
this section, we show that interval ϱ can be further refined if we additionally know that Π
is finitely materialisable for all bounded datasets, and not just for D.

We start by showing a technical lemma stating that, if a dataset D′ entails all atoms in
the grounding ground(Π,D) over a sufficiently long interval, then the facts entailed by D′

and Π outside [tmin
D′ , tmax

D′ ] do not depend on the identity of constants; that is, such a fact of
the form P (s)@ϱ is entailed if and only if so is every other fact of the form P (s′)@ϱ.

Lemma 25. For a program Π, a dataset D, and two time points t1 and t2 on the (Π,D)-ruler
such that t2 − t1 ≥ depth(Π), we define a dataset

D′ = {M ′@ϱ′ |M ′ is a relational atom mentioned in ground(Π,D) and
ϱ′ is a (Π,D)-interval contained in [t1, t2]}.

The following two statements hold. If (Π,D′) |= P (s)@t, for some relational fact P (s)@t
with t > t2, then (Π,D′) |= P (s′)@[t1, t] for any tuple s′ (with arity matching s) of constants
from Π or D. Similarly, if t < t1, then (Π,D′) |= P (s′)@[t, t2].

Proof. We focus on proving the first statement from the lemma, as the second is symmetric.
To this end, we show, inductively on ordinals α, that, if Tα

Π(ID′) |= P (s)@t and t > t2, then
Tα
Π(ID′) |= P (s′)@[t1, t], for each tuple s′ (with arity matching s) of constants from Π or D.

The base case holds vacuously, as T 0
Π(ID′) = ID′ and t > t2 imply that (Π,D′) ̸|= P (s)@t.

In the inductive step for a successor ordinal α, we assume that Tα
Π(ID′) |= P (s)@t.

By Lemma 15, TΠ(I
′) |= P (s)@t, where I′ is the projection of Tα−1

Π (ID′) over the interval
[t− depth(Π), t+ depth(Π)]. We need to show that Tα

Π(ID′) |= P (s′)@t′, for each t′ ∈ [t1, t].
If t′ ∈ [t1, t2], then Tα

Π(ID′) |= P (s′)@t′, by the construction of D′. Assume now that
t′ ∈ (t2, t], let q = t− t′, and let I′−q be obtained from I′ by shifting all its facts by q to the
left (that is, I′−q satisfies a relational fact M@t′′−q whenever I′ satisfies M@t′′).

We first argue that Tα
Π(ID′) |= P (s)@t′, and then show that Tα

Π(ID′) |= P (s′)@t′. Since
TΠ(I

′) |= P (s)@t, we obtain that TΠ(I
′
−q) |= P (s)@t−q. Therefore, to prove that we have

Tα
Π(ID′) |= P (s)@t′, it is sufficient to show that I′−q ⊆ Tα−1

Π (ID′). Indeed, assume that
I′−q |= M@t′′, for some relational fact M@t′′. Hence, I′ |= M@t′′+q, and therefore,
Tα−1
Π (ID′) |= M@t′′+q. By the definition of I′−q we know that t′′ > t1. If t′′+q ≤ t2, then, by

the definition of D′, ID′ |= M@[t1, t
′′+q], and thus, Tα−1

Π (ID′) |= M@[t1, t
′′+q]. Otherwise,

if t′′ + q > t2, we use the inductive assumption to obtain Tα−1
Π (ID′) |= M@[t1, t

′′+q].
It remains to show that t′′ ∈ [t1, t

′′+q], more specifically, that t′′ ≥ t1. For this, we
observe that all the relational facts that are satisfied in I′−q (in particular M@t′′) are over

495



Wałęga, Zawidzki, & Cuenca Grau

time points contained in the interval [t′ − depth(Π), t′ + depth(Π)], and so, t′′ ≥ t′−depth(Π).
This, by the fact that t′ > t2 and t2 − t1 ≥ depth(Π), implies that t′′ ≥ t1.

Now, by the inductive assumption, if I′ satisfies some relational fact, then, by replacing
the constants in this fact with any constants mentioned in Π and D, we obtain a fact that
is also satisfied in I′. Thus, TΠ(I

′) |= P (s)@t implies TΠ(I
′) |= P (s′)@t, and so, it implies

also Tα
Π(ID′) |= P (s′)@t′.

In the inductive step for a limit ordinal α, we assume that Tα
Π(ID′) |= P (s)@t. Recall that

Tα
Π(ID′) =

⋃
β<α T

β
Π(ID′), so T β

Π(ID′) |= P (s)@t, for some β < α. Thus, by the inductive
assumption, T β

Π(ID′) |= P (s′)@[t1, t], so Tα
Π(ID′) |= P (s′)@[t1, t]. This completes the proof

of the first statement in the lemma, while the second statement is proved analogously.

Lemma 25 can now be exploited to identify the relevant—and optimal—segment of the
timeline containing all facts entailed by a bounded program Π and dataset D, provided that
Π is finitely materialisable for the class of all bounded datasets.

Theorem 26. Let Π be a bounded program which is finitely materialisable for all bounded
datasets, and let D be a bounded dataset. For each relational fact M@t entailed by Π and D,
we have t ∈ [tmin

D − offset(Π), tmax
D + offset(Π)], where offset(Π) = (pred(Π)− 1) · depth(Π).

Proof. Assume that (Π,D) |= M@t and (without loss of generality) that all predicates in D
are mentioned in Π. We need to show that t ≤ tmax

D + offset(Π) and t ≥ tmin
D − offset(Π); we

will focus on showing the first inequality, as the second one has an analogous proof. To this
end let D′ be the following dataset, where tL = min{tmin

D , tmax
D − depth(Π)}:

D′ = {M ′@ϱ′ |M ′ is a relational atom mentioned in ground(Π,D) and
ϱ′ is a (Π,D)-interval contained in [tL, t

max
D ]}.

Clearly, tL ≤ tmin
D , and so, D′ entails D. Thus, it suffices to show that (Π,D′) |= M ′@t′

implies t′ ≤ tmax
D′ + offset(Π), for each relational fact M ′@t′. Notice that tmax

D′ = tmax
D , so

we will confine ourselves to using the latter symbol. For this, we partition the timeline
into an infinite sequence . . . , ϱ−1, ϱ0, ϱ1, . . . of consecutive (Π,D′)-intervals, where ϱ0 is the
punctual interval containing tmax

D . Moreover, we define a sequence . . . ,R−1,R0,R1, . . . such
that Ri is the set of relational atoms entailed by Π and D′ over the interval ϱi. Let d be
the number of (Π,D′)-intervals contained in (tmax

D , tmax
D + depth(Π)], which is even since

(tmax
D , tmax

D + depth(Π)] contains as many open as punctual (Π,D′)-intervals. By definition,
ϱ(pred(Π)−1)·d is the punctual interval containing the time point tmax

D + offset(Π). Thus, we
need to show that Ri is empty, for all i > (pred(Π)− 1) · d. To this end, we first prove the
following statements:

1. It holds that R0 ⊇ R1 ⊇ . . . .

2. If Ri = Ri+1 = · · · = Rj ̸= ∅, for some odd i > −d and j > i, then j < i+ d.

3. If Ri = Ri+1 = · · · = Rj ̸= ∅, for some even i ≥ −d and j > i, then j < i+ d+ 1.

4. There are at most pred(Π)− 1 non-empty distinct sets among R1,R2, . . . .

496



Finite Materialisability of Datalog Programs with Metric Temporal Operators

To prove Statement 1, observe that tmin
D′ = tL and tmax

D − tmin
D′ ≥ depth(Π). We can thus

apply Lemma 25 to D′, which implies that R0 ⊇ R1 ⊇ . . . .
For Statement 2, suppose towards a contradiction that there exists an odd number

i > −d such that Ri = · · · = Ri+d. Let ϱ = ϱi ∪ · · · ∪ ϱi+d. Since ϱ0 = [tmax
D , tmax

D ] is a
punctual interval, every interval ϱk with even k is also punctual, whereas each ϱk with odd
k is open (on both ends). Hence, as i is odd and d is even, both ϱi and ϱi+d are open.
Consequently, ϱ is an open interval of length greater than depth(Π). Moreover, as 0 < i+ d,
we have ϱ+0 < ϱ+i+d, and so, tmax

D < ϱ+. Therefore, there exist two closed intervals ϱ1 and
ϱ2 contained in ϱ′ and of length depth(Π), such that tmax

D ≤ ϱ+1 < ϱ+2 . Moreover, Π and D′

entail the same non-empty set of relational atoms in all time points belonging to ϱ1 and ϱ2,
because both of these intervals are contained in ϱ = ϱi∪· · ·∪ϱi+d and Ri = · · · = Ri+d ̸= ∅.
Thus, by Statement 1 from Lemma 18, Π and D′ entail infinitely many relational facts
over (Π,D′)-intervals. Consequently, Π is not finitely materialisable for D′, which raises a
contradiction. Statement 3 is proved analogously.

We now show Statement 4. By Lemma 25, if P (s) ∈ Ri, then Ri contains also all atoms
P (s′), where s′ is any tuple of constants from Π or D of the same arity as s. Hence, there are
at most as many non-empty distinct sets among R0,R1, . . . as the number pred(Π) of pred-
icates in Π. By Statement 1, it remains to show that R0 ̸= R1. Suppose towards a contra-
diction that R0 = R1. Then, by the definition of D′, we obtain that R−d = · · · = R0 = R1.
Since −d is even, this contradicts Statement 3.

We next exploit Statements 1–4 to show that Ri is empty, for all i > (pred(Π) − 1) · d.
For this, we divide the sequence R1,R2, . . . into the set R of maximal subsequences which
mention, repeatedly, only one non-empty set. By Statements 1 and 4, R has at most
pred(Π)− 1 sequences. Hence, it remains to show that, on average, each of the sequences in
R has at most d elements. By Statements 2 and 3, each sequence in R has at most d + 1
elements, so it suffices to show that each sequence in R of length d+ 1 can be paired with
a distinct sequence in R, of length at most d − 1. To this end, assume that Ri, . . . ,Ri+d,
for some i ≥ 1, is a sequence of length d + 1 in R. By Statement 2, i needs to be an even
number. Now, let j < i be the greatest integer such that Rj−d = · · · = Rj , so j ≥ 0.
We claim that Rj+1, . . . ,Ri−1 must contain a sequence of length at most d − 1 belonging
to R. Towards a contradiction suppose that it is not the case, so Rj+1, . . . ,Ri−1 can be
partitioned into the sequences

Rj+1, . . . ,Rj+d, Rj+d+1, . . . ,Rj+2d, . . . , Ri−d, . . . ,Ri−1,

all of which belong to R and are of length d. Since j and d are even, we obtain that the
indices of the last elements of these sequences, namely j + d, j + 2d, . . . , i − 1, are even
numbers. Hence, i is odd, which raises a contradiction.

The following example shows that the bound from Theorem 26 on the length of the
relevant segment of the timeline is optimal.

Example 27. Consider a dataset D = {P0@0} and a program Πn, for any n ∈ N, consisting
of the following rules:

⊞1P1 ← P0, ⊞1P2 ← P1, ⊞1P3 ← P2, . . . , ⊞1Pn ← Pn−1,

⊟1P1 ← P0, ⊟1P2 ← P1, ⊟1P3 ← P2, . . . , ⊟1Pn ← Pn−1.

497



Wałęga, Zawidzki, & Cuenca Grau

Algorithm 4: Checking finite materialisability for all bounded datasets
Input: A bounded program Π
Output: A boolean value true if Π is finitely materialisable for all bounded

datasets, false otherwise
1 Dnew := DΠ;
2 ϱ := [tmin

DΠ
− offset(Π), tmax

DΠ
+ offset(Π)];

3 repeat
4 Dold := Dnew;
5 Dnew := ApplyRules(Π,Dold);
6 if there is M@ϱ′ ∈ Dnew with ϱ′ ̸⊆ ϱ then return false;
7 until IDold

= IDnew ;
8 return true;

Since Πn is non-recursive, by Proposition 13, it is finitely materialisable for any dataset.
Thus, by Theorem 26, Πn and D entail facts only in

[
tmin
D − offset(Πn), t

max
D + offset(Πn)

]
.

We will show that they entail facts both in the left and in the right endpoints of this range.
Indeed, we start by observing that pred(Πn) = n+ 1 and depth(Πn) = 1, so offset(Π) = n.

Thus, [−n, n] =
[
tmin
D − offset(Πn), t

max
D + offset(Πn)

]
, as tmin

D = tmax
D = 0. Moreover, Πn

and D entail facts both at −n and n, namely they entail Pn@−n and Pn@n.

5.3 Checking Data-independent Finite Materialisability

The results in Theorems 24 and 26 suggest that a variant of Algorithm 3 can be used
for deciding finite materialisability in the data-independent setting. In particular, we let
Algorithm 4 be obtained from Algorithm 3 by dispensing with the input dataset D, replacing
D in Lines 1 and 2 with the critical dataset DΠ as suggested by Theorem 24, and replacing
offset(Π,D) in Line 2 with the more refined bound offset(Π) from Theorem 26.

The correctness of Algorithm 4 follows directly from Theorems 24 and 26. As shown
next, however, its running time is much more favourable than that of Algorithm 3.

Theorem 28. Algorithm 4 returns true if the input program Π is finitely materialisable for
the class of all bounded datasets, and it returns false otherwise. Moreover, Algorithm 4 runs
in exponential time in the size of Π.

Proof. The correctness of the algorithm is an immediate consequence of Theorems 24 and 26.
We next show that the algorithm runs in singly exponential time. As in the analysis of
Algorithm 3 in the proof of Theorem 20, we observe that the number of iterations of the
main loop in Algorithm 4 is bounded by the maximal number of facts in Dold, which is A ·C,
for A the number of atoms in ground(Π,DΠ) and C the number of (Π,DΠ)-intervals contained
in ϱ. As A is clearly exponential in the size of Π, we next show that C is also exponential.
Note that ϱ = [−offset(Π), depth(Π)+offset(Π)], where offset(Π) = (pred(Π)− 1) · depth(Π).
Hence, the length of ϱ is (2 · pred(Π)− 1) · depth(Π). Clearly, pred(Π) is polynomial and the
number of (Π,DΠ)-intervals contained in a closed interval of length depth(Π) is 2· depth(Π)

div(Π) +1,
which is exponentially large. Thus, C is exponential, and so is the number A · C of loop
iterations. Moreover, each iteration of the loop is feasible in exponential time; indeed the

498



Finite Materialisability of Datalog Programs with Metric Temporal Operators

main part of each iteration consists of running Algorithm 1, whose main loop is traversed
at most as many times as there are rules in ground(Π,Dold), which is an exponentially large
number. Thus, Algorithm 4 runs in exponential time.

Theorem 28 shows that checking finite materialisability for all bounded datasets is no
harder than standard reasoning in vanilla (non-temporal) Datalog. The following theorem
shows that this upper bound is tight.

Theorem 29. Checking whether a bounded program is finitely materialisable for the class
of bounded datasets is ExpTime-complete.

Proof. The upper bound is provided by Theorem 28. To show the matching lower bound
we reduce fact entailment in Datalog, which is ExpTime-hard even if ⊥ is disallowed in
rule heads (Dantsin et al., 2001). Assume that we want to check if a Datalog program
Π consisting of a set ΠF of facts and a set ΠR of non-fact rules—that do not mention ⊥
in heads—entail a fact M . Note that, syntactically, ΠR is a DatalogMTL program and
any Datalog fact is a DatalogMTL relational atom. Hence, we can construct a bounded
DatalogMTL program Π′ = ΠR ∪ {MF ← x1M |MF ∈ ΠF }. We will show that Π entails
M if and only if Π′ is not finitely materialisable for some bounded dataset.

First, we assume that Π entails M . We show that Π′ is not finitely materialisable for a
bounded dataset D′ = {MF@0 |MF ∈ ΠF }, namely, that Π′ and D′ entail infinitely many
facts over (Π′,D′)-intervals. Indeed, we show inductively on t ∈ N that (Π′,D′) |= M@t. For
the basis, it suffices to observe that since ΠR∪ΠF entails (in Datalog) M , by the construction
of D′, we obtain that (ΠR,D′) |= M@0, and so, (Π′,D′) |= M@0. In the inductive step, we
assume that (Π′,D′) |= M@t, for some t ∈ N. Hence, by the rules of the form MF ← x1M
in Π′, we have (Π′,D′) |= MF@t+1, for each MF ∈ ΠF . Then, by an analogous argument
to the one we used to show the induction basis, we obtain (Π′,D′) |= M@t+1, as required.

Second, assume that Π does not entail M . By Theorem 24, it suffices to show that Π′

and the critical dataset DΠ′ entail finitely many relational facts over (Π′,D′)-intervals, or
equivalently, that Tω1

Π′ (IDΠ′ ) does so. By the definition, DΠ′ consists of all relational facts
P (s)@[0, 1] such that P occurs in Π′ and s mentions only constants from Π′ and cΠ′ . Hence,
as Π does not mention metric operators, we obtain that TΠ(IDΠ′ ) = IDΠ′ . If, additionally,
M@[0, 1] /∈ DΠ′ (which happens if M mentions some predicate or constant not occurring
in DΠ′), then rules of the form MF ← x1M in Π′ do not apply, so TΠ′(IDΠ′ ) = IDΠ′ .
Hence Tω1

Π′ (IDΠ′ ) = IDΠ′ , and thus, Tω1
Π′ (IDΠ′ ) entails finitely many relational facts over

(Π′,D′)-intervals. Next, we consider the case when M@[0, 1] ∈ DΠ′ . Then, an applica-
tion of rules of the form MF ← x1M to DΠ′ derives facts D1 = {MF@(1, 2] |MF ∈ ΠF },
that is, TΠ′(IDΠ′ ) = IDΠ′∪D1 . Since Π′ propagates facts only toward the future, no further
applications of TΠ′ allow us to derive facts over time points belonging to (−∞, 1], thus
Tω1
Π′ (IDΠ′ ) is the union of IDΠ′ and Tω1

Π′ (ID1). To finish the proof, it suffices to show that
Tω1
Π′ (ID1) entails finitely many relational facts over (Π′,D′)-intervals. By the form of D1,

successive applications of TΠ′ to ID1 derive a relational fact mentioning M if and only if
Π entails M . By the assumption, the latter is false, so no relational fact mentioning M
occurs in Tω1

Π′ (ID1). Thus, rules of the form MF ← x1M will not allow us to add new
facts when constructing Tω1

Π′ (ID1), therefore Tω1
Π′ (ID1) = Tω1

Π (ID1). Finally, since Π is a
Datalog program, it is finitely materialisable, and so, Tω1

Π (ID1) entails finitely many facts
over (Π′,D′)-intervals.

499



Wałęga, Zawidzki, & Cuenca Grau

6. Sufficient Conditions for Data-independent Finite Materialisability

When we first introduced the notion of finite materialisability in Section 3, we argued that
temporal recursion is the main reason why materialisation may not terminate. In particular,
we showed that by focusing on non-recursive DatalogMTL programs (and thus by precluding
recursion altogether) we can guarantee finite materialisability for all datasets.

In this section, we propose two incomparable fragments of DatalogMTL which allow for
a limited form of temporal recursion while at the same time ensuring data-independent finite
materialisability.

– In Section 6.1 we introduce EDB-guarded programs, where the body of each rule
contains at least one atom involving only EDB predicates (as usual in Databases,
these are predicates not mentioned in the head of any rule in the program).

– In Section 6.2 we propose MTL-acyclic programs, whose definition is based on a gen-
eralisation of the acyclicity condition on the dependency graph used to define non-
recursive programs.

As we will show, membership in these fragments can be checked efficiently. Furthermore,
while EDB-guardedness ensures finite materialisability of bounded programs for the class
of bounded datasets, MTL-acyclicity provides guarantees for possibly unbounded programs
and the class of all datasets.

6.1 EDB-guarded Programs

We next introduce EDB-guarded DatalogMTL programs where, as usual in the Database
literature, we say that a predicate is extensional (EDB) in a program Π if this predicate
does not occur in the head of any rule of Π.

Definition 30. A metric atom is extensional (EDB) in a program Π, if all the predicates
mentioned in this atom are EDB in Π. Moreover, Π is EDB-guarded if each rule of Π has
at least one EDB body atom.

Example 31. Consider our program Πex from Example 1. We can observe that predicates
NoSympt, Vaccinated, and Infected are EDB; however, predicates Immune and NegTest are
not EDB as they occur in the heads of rules. Hence, although Rules (1), (2) and (3) are
EDB-guarded, Rule (4) is not, as it does not contain an EDB atom in the body.

The next lemma shows that an EDB-guarded bounded program Π cannot entail facts
that are ‘far away’ from the data; in particular, all facts must lie within an interval containing
the data and extending at most depth(Π) beyond it towards the future and towards the past.
This is so because, for a rule to be applicable, the EDB atom(s) in its body must be matched
directly to the explicitly given data.

Lemma 32. Let Π be a bounded EDB-guarded program and D a bounded dataset. Then,
t ∈ [tmin

D − depth(Π), tmax
D + depth(Π)], for each relational fact M@t entailed by Π and D.

Proof. Assume that Π and D entail M@t, so there exists the least ordinal α such that
Tα
Π(ID) |= M@t. If α = 0, then t ∈ [tmin

D , tmax
D ], so t ∈ [tmin

D − depth(Π), tmax
D + depth(Π)].

500



Finite Materialisability of Datalog Programs with Metric Temporal Operators

Next, assume that α > 0, so α is a successor ordinal and Tα−1
Π (ID) ̸|= M@t. By Lemma 15,

TΠ(I
′) |= M@t, for I′ the projection of Tα−1

Π (ID) over [t− depth(Π), t+ depth(Π)]. Now,
since Π is EDB-guarded, each of its rules has at least one EDB metric atom in the body.
Thus, the fact that TΠ(I

′) |= M@t yet I′ ̸|= M@t, implies that I′ satisfies at least one
relational fact M ′@t′ with an EDB atom M ′. Since M ′ is EDB, it cannot occur in the head
of any rule in ground(Π,D). Thus, by the fact that Tα−1

Π (ID) |= M ′@t′ (as I′ |= M ′@t′ and
I′ ⊆ Tα−1

Π (ID)), we obtain that ID |= M ′@t′, and so, t′ ∈ [tmin
D , tmax

D ]. Observe that we have
t′ ∈ [t− depth(Π), t+ depth(Π)], and so, t ∈ [tmin

D − depth(Π), tmax
D + depth(Π)].

Lemma 32 immediately ensures finite materialisability of EDB-guarded bounded pro-
grams for the class of bounded datasets since the identified interval contains finitely many
(Π,D)-intervals.

Corollary 33. If a bounded program is EDB-guarded, then it is finitely materialisable for
the class of bounded datasets.

We conclude this section with the observation that the EDB-guardedness condition does
not ensure finite materialisability for unbounded programs or unbounded datasets.

Example 34. Consider a program Π = {Q ← P, ⊞1Q ← x[0,∞)P ∧ Q}. Even though
Π is EDB-guarded it is not finitely materialisable for bounded datasets, since the program
is unbounded. Indeed, TΠ is not finitely materialisable for the dataset D = {P@1}; for
every natural number k ≥ 1, the interpretation T k

Π(ID) entails a new fact Q@k, and so, TΠ

converges for D in ω steps.
Next, we consider a program Π′ = {Q ← P ∧ R, ⊞1Q ← P ∧ Q}. Although Π′ is

EDB-guarded and bounded, it does not finitely materialise for some unbounded datasets. In
particular, TΠ′ does not converge in finitely many steps for the following unbounded dataset
D′ = {R@1, P@[1,∞)}. For every natural number k ≥ 1, the interpretation T k

Π′(ID′) entails
a new fact Q@k, and thus, TΠ′ converges for D′ in ω steps.

6.2 MTL-acyclic Programs

In this section, we propose an acyclicity condition based on an extension of the dependency
graph of a DatalogMTL program (see Section 2) to a metric dependency graph, where edges
representing dependencies between predicates are now labelled with intervals. Our condition
precludes certain types of cycles on the metric dependency graph of the program, and will be
sufficient to ensure finite materialisability of any (possibly unbounded) program satisfying
the condition for the class of all datasets. Thus, in contrast to EBD-guardedness which is
restricted to the bounded setting, MTL-acyclicity is generally applicable.

The construction of the metric dependency graph for a program Π proceeds in two steps.
First, we annotate the parse tree TM of each metric atom M occurring in Π by assigning
to each node v corresponding to a sub-atom M ′ an interval range(v, TM ) describing how
the satisfaction of M can be ‘affected’ by that of its sub-atom M ′. Second, we construct
the dependency graph for Π as usual, but annotate all edges with an interval obtained from
those computed in the previous step.

The notion of a parse tree for a metric atom is the standard one in logic; in our case it
is based on the grammar for metric atoms given in Section 2. For convenience, however, we

501



Wałęga, Zawidzki, & Cuenca Grau

will additionally say that an edge (u, v) in a parse tree is a left edge if u has two children in
the tree and v is the left child. An example is given below for clarity.

Example 35. Consider a metric atom M = (x1P (a, b))S[0.5,1]
(
Q(x) U[1,2](⊞[0,1]R)

)
; the

parse tree TM of M is as follows, where left edges are indicated explicitly:

(x1P (a, b))S[0.5,1]
(
Q(x) U[1,2](⊞[0,1]R)

)

x1P (a, b) Q(x)U[1,2](⊞[0,1]R)

P (a, b) Q(x) ⊞[0,1]R

R

left

left

We next show how to assign an interval range(v, TM ) to each node v representing a
sub-atom of M ′ of M in the parse tree TM . The intuition is that range(v, TM ) describes
an interval within which satisfaction of M ′ can affect satisfaction of M . In particular,
satisfaction of M at t can be affected by M ′ satisfied within t+ range(v, TM ).

Definition 36. The range, range(v, TM ), of a vertex v in a parse tree TM for a metric atom
M is the interval [0, 0] + ϱ1 + · · ·+ ϱn, where v0, . . . , vn is the path from the root v0 of TM

to v = vn, and ϱi are defined as follows:

– ϱi = ϱ, if vi is labelled with |ϱM
′, ⊞ϱM ′, or M ′UϱM ′′ and (vi, vi+1) is not a left edge,

– ϱi = (0, ϱ+), if vi is labelled with M ′UϱM ′′ and (vi, vi+1) is a left edge,

– ϱi = −ϱ, if vi is labelled with xϱM
′,⊟ϱM

′, or M ′SϱM ′′ and (vi, vi+1) is not left edge,

– ϱi = −(0, ϱ+), if vi is labelled with M ′SϱM ′′ and (vi, vi+1) is a left edge.

Consider again the metric atom M from Example 35 and its parse tree TM . For the vertex
v labelled with P (a, b) we obtain range(v, TM ) = [0, 0] − (0, 1) − 1 = (−2, 0). This means
that satisfaction of M at t can be affected by satisfaction of P (a, b) within (t− 2, t).

The following lemma formalises the intuition behind Definition 36.

Lemma 37. Assume that T i
Π(ID) ̸|= M@t and T i+1

Π (ID) |= M@t, for a program Π, dataset
D, relational fact M@t, and i ∈ N. Then, there exists a relational fact M ′@t′ such that

1. T i
Π(ID) |= M ′@t′, but T j

Π(ID) ̸|= M ′@t′, for all j < i, and

2. there exists a rule r ∈ ground(Π,D) with head H and a body atom B such that
t− t′ ∈ (range(v, TH)− range(v′, TB)), where v is (the single) leaf of TH labelled with
M and v′ is some leaf of TB labelled with M ′.

502



Finite Materialisability of Datalog Programs with Metric Temporal Operators

Proof. We first prove Item 1 from the lemma. As T i
Π(ID) ̸|= M@t and T i+1

Π (ID) |= M@t,
there exists r ∈ ground(Π,D) whose application at some time point tr derives M@t, namely,
the body of r holds at tr in T i

Π(ID) and the head H of r holding at tr entails M@t, but the
body of r does not hold at tr in any T j

Π(ID), with j < i. Hence, some body atom B of r
does not hold at tr in any such T j

Π(ID).
Assume that B′@tB′ is a metric fact such that T i

Π(ID) |= B′@tB′ and T j
Π(ID) ̸|= B′@tB′ ,

for all j < i, where B′ is the label of some non-leaf vertex vB′ in the parse tree TB (so B′ is a
sub-atom of B). We show that there is a metric fact B′′@tB′′ such that T i

Π(ID) |= B′′@tB′′ ,
and T j

Π(ID) ̸|= B′′@tB′′ , for all j < i, where B′′ is the label of some child vB′′ of vB′ in TB

and tB′′ − tB′ ∈ range(vB′′ , TB′).
Indeed, if B′ is of the form |ϱN or ⊞ϱN , then T i

Π(ID) |= B′@tB′ and T j
Π(ID) ̸|= B′@tB′ ,

imply that T i
Π(ID) |= N@tN and T j

Π(ID) ̸|= N@tN , for some tN such that tN − tB′ ∈ ϱ.
Observe that N is the label of the single child vN of B′ in TB, and range(vN , TB′) = ϱ, so
N@tN witnesses the required B′′@tB′′ .

If B′ is of the form N1UϱN2, then the argument is similar, however, we obtain that
T i
Π(ID) |= N@tN and T j

Π(ID) ̸|= N@tN either for N = N2 and tN − tB′ ∈ ϱ or for N = N1

and tN ∈ (tB′ , tB′ + ϱ+). Atoms N1 and N2 label the left vN1 and the right vN2 children
of vB′ , respectively, so range(vN1 , TB′) = (0, ϱ+) and range(vN2 , TB′) = ϱ. Hence, N@tN
witnesses the required B′′@tB′′ .

The remaining cases, with B′ of the forms xϱN , ⊟ϱN , and N1UϱN2, are proved analo-
gously.

This implies that there are metric facts B1@tB1 , . . . , Bn@tBn , all of which hold in T i
Π(ID)

but not in any T j
Π(ID) with j < i, and such that B1@tB1 = B@tr, Bn has no metric

operators, and tBn − tr ∈ range(v′, TB), where v′ is some leaf of TB labelled by Bn. Hence,
M ′@t′ = Bn@tBn satisfies Item 1 in the lemma.

It remains to show that M ′@t′ satisfies Item 2. As H is a head atom, it can mention
only ⊟ and ⊞ among metric operators. Thus, as H@tr entails M@t, by the definition of
range, t − tr ∈ range(v, TH), where v is the single leaf of TH (labelled by M). Recall that
t′ − tr ∈ range(v′, TB), so t− t′ ∈ (range(v, TH)− range(v′, TB)), as required in Item 2.

We are ready to define metric dependency graphs.

Definition 38. The metric dependency graph GΠ of a program Π is a directed multigraph
with edges labelled with intervals, which contains:

– a vertex vP , for each predicate P mentioned in Π,

– an edge (vP , vP ′) labelled with an interval ϱ, whenever there is a rule r in Π which
has a body atom B with a relational atom P (s) and the head H with a relational atom
P ′(s′) such that ϱ = range(v′, TH)− range(v, TB), where v′ is (the single) leaf of TH

labelled with P ′(s′) and v is some leaf of TB labelled with P (s).

The interval weight of a path in GΠ is [0, 0] + ϱ1 + · · ·+ ϱn, where ϱ1, . . . , ϱn are the inter-
vals labelling the edges on this path.

Intuitively, graph GΠ has an edge from vP to vP ′ labelled with ϱ if there is a rule r in
Π such that, whenever some relational atom with predicate P holds at a time point t, then

503



Wałęga, Zawidzki, & Cuenca Grau

the application of r may derive some relational fact mentioning P ′ at a time point t′ such
that t′ − t ∈ ϱ. Note also that by removing all interval labels from edges (and then deleting
repeated unlabelled edges) from GΠ we obtain the standard dependency graph.

We now define MTL-acyclic programs as those whose dependency graph does not contain
certain types of cycles.

Definition 39. We say that a program Π is MTL-acyclic if its metric dependency graph GΠ

does not contain a cycle with interval weight different from [0, 0].

Non-recursive DatalogMTL programs, as well as all plain Datalog programs, are triv-
ially MTL-acyclic. Furthermore, programs that exhibit ‘safe’ temporal recursion are also
MTL-acyclic, as illustrated in the following example.

Example 40. It is believed that individuals who have been neither vaccinated in the last
year nor infected for the last half a year are susceptible to COVID-19. Usually, a susceptible
individual who takes off their mask and remains in contact with an infected person for 2
hours gets infected. Individuals over 65 develop first symptoms 5 days after getting infected.
It is also estimated that for individuals who develop first symptoms of COVID-19, the source
of infection should be looked for on the 5th day preceding the current one. A DatalogMTL
program representing these dependencies consists of the following rules:

Susc(x)← ⊟[0,365]NotVacc(x) ∧ ⊟[0,183]NotInf(x),

GetsInf(x)← ContInf(x, y)S 1
12

NoMask(x) ∧ Susc(x),

FirstSympt(x)← ⊟5GetsInf(x) ∧Over65(x),
⊟5GetsInf(x)← FirstSympt(x).

The metric dependency graph of this program is given below:

vSusc

vNotInf

vNotVacc

vGetsInfvFirstSymptvOver65

vNoMask

vContInf

0
[0,

183
]

[0, 365]1
12

(0, 1
12

)
−5

5

0

The graph has one simple cycle and its weight is [0, 0], so the program is MTL-acyclic.

The following theorem shows that MTL-acyclicity is a sufficient condition for finite mate-
rialisability for all datasets. More precisely, MTL-acyclicity ensures that the materialisation
of a (possibly unbounded) program Π for a (possibly unbounded) dataset D will terminate
after a number of rounds of rule applications bounded by the (exponentially large) number
of relational facts mentioned in the grounding of Π with respect to D.

Theorem 41. For every MTL-acyclic program Π and for every dataset D, it holds that
CΠ,D = T k−1

Π (ID), where k is the number of relational atoms mentioned in ground(Π,D).

Proof. Suppose towards a contradiction that CΠ,D ̸= T k−1
Π (ID), so T 0

Π(ID) ̸= . . . ̸= T k
Π(ID).

Therefore, by Lemma 37, there exists a sequence M0@t0, . . . ,Mk@tk of relational facts ob-
tained by subsequently applying, not necessarily distinct, rules r0, . . . , rk−1 ∈ ground(Π,D);
that is, the following properties hold for each i ∈ {0, . . . , k}:

504



Finite Materialisability of Datalog Programs with Metric Temporal Operators

1. T i
Π(ID) |= Mi@ti, but T j

Π(ID) ̸|= Mi@ti for all j < i, and

2. ti+1 − ti ∈ range(vMi+1 , THi) − range(vMi , TBi), for i < k, where Hi is the head of ri,
Bi is some body atom of ri, vMi+1 is (the single) leaf of THi labelled with Mi+1, and
vMi is some leaf of TBi labelled with Mi.

Since each of M0, . . . ,Mk is mentioned in ground(Π,D) and the number of relational atoms
in ground(Π,D) is k, there exist j and ℓ such that j < ℓ ≤ k and Mℓ = Mj . We will show
that tℓ = tj , and thus, T j

Π(ID) |= Mℓ@tℓ. Since j < ℓ, it will contradict Item 1 above.
Let Π′ be the propositional program obtained from ground(Π,D) by replacing each

ground relational atom M with a fresh proposition PM . Hence, GΠ′ has k vertices. More-
over, by Definition 38, for each i ∈ {j, . . . , ℓ − 1} graph GΠ′ has an edge from vPMi

to
vPMi+1

labelled with range(vMi+1 , THi)− range(vMi , TBi). Thus, GΠ′ has a path p from vPMj

to vPMℓ
, of interval weight

∑ℓ−1
i=j

(
range(vMi+1 , THi)− range(vMi , TBi)

)
. As Mℓ = Mj , this

path is a cycle. Moreover, we can show that the interval weight of p is [0, 0]. Indeed, re-
call that vPMj

, . . . , vPMℓ
are the vertices of p and assume towards a contradiction that the

interval weight of p is not [0, 0]. Let Qj , . . . , Qℓ be the predicates mentioned in Mj , . . . ,Mℓ,
respectively. For each i ∈ {j, . . . , ℓ − 1}, if GΠ′ has an edge from vPMi

to vPMi+1
labelled

with ϱ, then GΠ has an edge from vQi to vQi+1 labelled with the same interval ϱ. Hence, GΠ

has a cycle vQj , . . . , vQℓ
of interval weight different than [0, 0], raising a contradiction, as Π is

MTL-acyclic. Thus, we have shown that
∑ℓ−1

i=j

(
range(vMi+1 , THi)− range(vMi , TBi)

)
= [0, 0].

However, by Item 2, tℓ − tj ∈
∑ℓ−1

i=j

(
range(vMi+1 , THi)− range(vMi , TBi)

)
, so tℓ = tj .

Corollary 42. MTL-acyclic programs are finitely materialisable for the class of all datasets.

Example 43. Observe that the program Πex from Example 1 is not MTL-acyclic, since its
metric dependency graph has a cycle of non-0 weight:

vImmune

vNoSympt

vVaccinated

vInfected

vNegTest

[0, 5]

[0, 118] [0, 10]

(10,
183

]

[21, 118]

0

We observe that even though Πex is not MTL-acyclic, it is finitely materialisable for the
class of all datasets (the immediate consequence operator converges in at most 2 steps).
This shows that MTL-acyclicity is not a necessary condition for finite materialisability.

When restricted to bounded programs and bounded datasets, MTL acyclicity also refines
the relevant segment of the timeline over which facts can be entailed. In particular, the
interval bounds established in Theorem 26 can be further reduced as shown next.

Theorem 44. Let Π be a bounded MTL-acyclic program and D a bounded dataset. Then,
t ∈ [tmin

D −maxpath(Π), tmax
D +maxpath(Π)] for each relational fact M@t entailed by Π and

D, where maxpath(Π) is the maximal absolute value of an endpoint of interval weights in
simple paths of GΠ.

505



Wałęga, Zawidzki, & Cuenca Grau

Proof. Assume that M@t is a relational fact entailed by Π and D. Then, by Theorem 41,
there exists ℓ ≤ k− 1, where k is the number of relational atoms occurring in ground(Π,D),
such that T ℓ

Π(ID) |= M@t, but T j
Π(ID) ̸|= M@t, for all j < ℓ. Hence, by Lemma 37,

there is a sequence M0@t0, . . . ,Mℓ@tℓ of relational facts—with Mℓ@tℓ = M@t—obtained by
subsequently applying, not necessarily distinct, rules r0, . . . , rℓ−1 belonging to ground(Π,D);
that is, such that Items 1 and 2 from the proof of Theorem 41 hold for each i ∈ {0, . . . , ℓ}.

It remains to show that tℓ ∈ [t0 −maxpath(Π), t0 +maxpath(Π)]; indeed, this will imply
that t ∈ [tmin

D −maxpath(Π), tmax
D +maxpath(Π)], as tℓ = t and t0 ∈ [tmin

D , tmax
D ]. To this

end, let ϱ =
∑ℓ−1

i=0

(
range(vMi+1 , THi)− range(vMi , TBi)

)
, where Hi and Bi are as stated in

Item 2 from the proof of Theorem 41. Hence, by Item 2, ti+1 − ti ∈ range(vMi+1 , THi) −
range(vMi , TBi), for each i ∈ {0, . . . , ℓ− 1}, and therefore, tℓ − t0 ∈ ϱ. Let P1, . . . , Pℓ be the
predicates occurring in M1, . . . ,Mℓ, respectively. By the definition of metric dependency
graph, for each i ∈ {0, . . . , ℓ− 1}, there exists in GΠ an edge from vPi to vPi+1 with interval
weight range(vMi+1 , THi) − range(vMi , TBi). Consequently, the interval weight of the path
p = vP0 , . . . , vPℓ

is equal to ϱ. Now, let p′ be any simple path obtained from p by removing all
cycles. Since Π is MTL-acyclic, each deleted cycle has interval weight [0, 0], so the interval
weight of p′ is the same as of p, that is, ϱ. Since p′ is a simple path, by the definition of
maxpath(Π), we get that −maxpath(Π) ≤ ϱ− and ϱ+ ≤ maxpath(Π). Thus, tℓ − t0 ∈ ϱ
implies tℓ ∈ [t0 −maxpath(Π), t0 +maxpath(Π)].

We conclude this section by showing that MTL acyclicity can be checked efficiently.

Theorem 45. Checking whether a program is MTL-acyclic is NL-complete.

Proof. For the lower bound we provide a reduction from reachability in directed graphs.
To check if a vertex t is reachable from a vertex s in a directed graph G, we construct a
bounded program Π mentioning propositions Pv for all vertices v in G, such that, if there is
an edge in G from v to v′, then Π has a rule Pv′ ← Pv. Moreover, Π has an additional rule
Ps ← x1Pt. Then, t is reachable from s in G if and only if there is a simple cycle in the
metric dependency graph GΠ of interval weight different from [0, 0], which, in turn, holds if
and only if Π is not MTL-acyclic. Since NL = coNL, the required NL-hardness follows.

For the upper bound, we provide a logarithmic space reduction from the complement
of our problem to the problem of checking whether a simple cycle of non-0 weight exists
in a directed graph where edges are weighted with (potentially negative) rational numbers
given in binary or with −∞ or ∞ (we assume that ∞−∞ = ∞). The latter is feasible in
NL by guessing the required non-0 weight cycle edge by edge. Note that we cannot keep in
logarithmic memory the weight of the so-far guessed path, due to the binary representation
of edge labels. Instead, we can keep in memory this value modulo a previously guessed
prime number which does not divide any denominator of a label occurring in the cycle. This
result is discussed in the Appendix.

For the reduction we construct a graph G by modifying the metric dependency graph
GΠ as follows. For each vertex v in GΠ, the graph G has a pair of vertices v− and v+.
Moreover, for each edge e in GΠ from v to u of interval weight ϱ, the graph G has an edge
e− from v− to u− of weight ϱ− and an edge e+ from v+ to u+ and of weight ϱ+. We will
show that Π is not MTL-acyclic—that is, GΠ has a simple cycle of interval weight different
from [0, 0]—if and only if G has a simple cycle whose weight is different from 0.

506



Finite Materialisability of Datalog Programs with Metric Temporal Operators

For the forward direction, assume that GΠ has a simple cycle whose edges e1, . . . , en have
interval weights ϱ1, . . . , ϱn, respectively, and ϱ = ϱ1 + · · · + ϱn is not [0, 0]. Hence, ϱ− ̸= 0
or ϱ+ ̸= 0. If ϱ− ̸= 0, then ϱ−1 + · · ·+ ϱ−n ̸= 0, and since edges e−1 , . . . , e

−
n in G have weights

ϱ−1 , . . . , ϱ
−
n , respectively, they form a simple cycle of weight ϱ− ̸= 0. If ϱ+ ̸= 0, we obtain,

analogously, that e+1 , . . . , e
+
n constitute a simple cycle in G of weight ϱ+ ̸= 0.

For the opposite direction, assume that G has a simple cycle whose edges ex1
1 , . . . , exn

n ,
for xi ∈ {−,+}, have weights w1, . . . , wn, respectively, and w1 + · · · + wn ̸= 0. By the
construction of G, there is a simple cycle e1, . . . , en in GΠ whose edges have some interval
weights ϱ1, . . . , ϱn. The construction of G implies also that either all x1, . . . , xn are −, or
all of them are +. If all x1, . . . , xn are −, then wi = ϱ−i for each i ∈ {1, . . . , n}, and so,
ϱ−1 + · · ·+ ϱ−n ̸= 0. Similarly, if all x1, . . . , xn are +, then ϱ+1 + · · ·+ ϱ+n ̸= 0. Thus, in both
cases ϱ1 + · · ·+ ϱn ̸= [0, 0], as required.

Finally, we observe that the reduction is feasible in logarithmic space. In particular,
constructing GΠ boils down to adding binary numbers, which is required to compute intervals
labelling edges, and is feasible in logarithmic space. The transformation of GΠ to G is also
clearly feasible in logarithmic space.

7. Fact Entailment

We now turn our attention to fact entailment. We first consider bounded programs and
datasets and show that reasoning is as hard as for arbitrary DatalogMTL in both combined
and data complexity. We then focus on fact entailment over finitely materialisable programs
in the data-independent setting, and consider also the particular cases of EDB-guarded
programs and MTL-acyclic programs.

7.1 Fact Entailment in Bounded DatalogMTL

Many of our technical results in this paper apply to bounded DatalogMTL programs and
datasets; although the complexity of DatalogMTL and its fragments has received significant
attention in recent years (Brandt et al., 2018; Wałęga et al., 2019, 2020b), the computational
properties of bounded programs have not yet been explored. In this section, we establish
the complexity of fact entailment in this fragment and show that reasoning is as hard as in
the unrestricted language both in combined and in data complexity. We start by showing
the data complexity bounds.

Theorem 46. Checking whether a bounded program and a bounded dataset entail a bounded
fact is PSpace-complete for data complexity.

Proof. The upper bound is immediate, since fact entailment for arbitrary (not necessarily
bounded) programs and datasets is PSpace-complete (Wałęga et al., 2019, Theorem 13).

We establish the matching lower bound by employing the reduction from the proof of
Theorem 21, where, given a deterministic Turing machine M using polynomially many tape
cells and a word w, we constructed a bounded program ΠM and a bounded dataset Dw such
that M accepts w if and only if ΠM is not finitely materialisable for Dw. Now we observe
that, by the equivalence of Statements 1–3 in the proof of Theorem 21, if M accepts w, then
ΠM and Dw entail G@1. If, on the other hand, M does not accept w, then ΠM and Dw

do not entail G@t, for any time point t, and so, they do not entail G@1. Thus, we obtain

507



Wałęga, Zawidzki, & Cuenca Grau

a reduction to fact entailment, where only the dataset depends on the input word for the
machine. Hence, PSpace-hardness for data complexity follows.

We next establish the combined complexity bounds.

Theorem 47. Checking whether a bounded program and a bounded dataset entail a bounded
fact is ExpSpace-complete for combined complexity.

Proof. The upper bound is inherited from reasoning with arbitrary DatalogMTL programs
and datasets (Brandt et al., 2018, Theorem 8 and Proposition 3).

For the lower bound, we modify the reduction from the proof of Theorem 22, where
given a deterministic Turing machine M with an exponentially long tape and a word w, we
constructed a bounded program Π′′ and a bounded dataset D such that M halts on w if
and only if Π′′ and D entail Hqh,a@(−∞,∞), for some tape symbol a. Now, we construct a
program Π′′′ by adding to Π′′ rules Halt ← Hqh,a, for all tape symbols a. Thus, M halts on
w if and only if Π′′′ and D entail the fact Halt@0.

7.2 Fact Entailment in Finitely Materialisable Programs

In Section 7.1, we showed that fact entailment for bounded programs and datasets is PSpace-
complete in data complexity and ExpSpace-complete for combined complexity, and hence,
as hard as for arbitrary DatalogMTL programs and datasets.

We now focus our attention on programs that are finitely materialisable—either seman-
tically or perhaps because they satisfy one of the sufficient conditions in Section 6—and
analyse whether fact entailment becomes computationally easier as a result.

We start by providing complexity upper bounds for bounded programs that are finitely
materialisable for the class of all bounded datasets. The PSpace upper bound transfers
seamlessly from full DatalogMTL. Regarding the combined complexity, we show that it
drops from ExpSpace for full DatalogMTL to ExpTime, which is the combined complexity
of fact entailment for plain Datalog.

Theorem 48. Checking whether a bounded program which is finitely materialisable for all
bounded datasets and a bounded dataset entail a fact is in ExpTime for combined complexity
and in PSpace for data complexity.

Proof. The upper bound for data complexity follows trivially from PSpace-completeness
of fact entailment for arbitrary DatalogMTL programs and datasets (Wałęga et al., 2019,
Theorem 13). To show the ExpTime bound for combined complexity, assume that we
want to check if (Π,D) |= M@ϱ. To this end, we use Algorithm 2 to construct a dataset
D′ representing CΠ,D and check if D′ |= M@ϱ. By Theorem 26, all relational facts en-
tailed by CΠ,D lie within the interval [tmin

D − offset(Π), tmax
D + offset(Π)], where we recall

that offset(Π) = (pred(Π)− 1) · depth(Π), so the fact that [tmin
D , tmax

D ], as well as each inter-
val of length depth(Π), has at most exponentially many (Π,D)-intervals (see the proof of
Theorem 20), implies that the same holds for [tmin

D − offset(Π), tmax
D + offset(Π)]. This, as we

argued in the proof of Theorem 29, implies that Algorithm 2 works in exponential time.

The matching lower bounds hold already for EDB-guarded programs, as we show next.

508



Finite Materialisability of Datalog Programs with Metric Temporal Operators

Theorem 49. Checking whether an EDB-guarded bounded program and a bounded dataset
entail a fact is ExpTime-hard for combined complexity and PSpace-hard for data complexity.

Proof. To show PSpace-hardness for data complexity, we will slightly modify the reduction
from the proof of Theorem 21, where, given a deterministic Turing machine M using polyno-
mially many tape cells and a word w, we constructed a bounded program ΠM and a bounded
dataset Dw such that M accepts w if and only if ΠM is not fintely materialisable for Dw.
Now, we use the same Dw, but we construct a new program Π′

M by replacing in ΠM the rule
⊟1G← G with ⊟1G← G∧Tape. As a result, all the rules in Π′

M have an EDB-atom Tape in
bodies, and so, ΠM is EDB-guarded. Moreover, as in the case of unmodified ΠM, we obtain
that M accepts w if and only if Π′

M and Dw entail G@1, which yields PSpace-hardness.
To show the ExpTime lower bound for combined complexity, we reduce fact entail-

ment in plain Datalog, which is ExpTime-complete (Dantsin et al., 2001). Assume that
we want to check if a Datalog program Π consisting of a set ΠF of facts and a set ΠR

of non-fact rules—that do not mention ⊥ in heads—entail a fact M . We construct an
EDB-guarded bounded DatalogMTL program Π′ obtained by adding a fresh (and so, EDB
in Π′) body atom P to each rule in Π. Moreover, we construct a bounded DatalogMTL
dataset D′ = {MF@0 |MF ∈ ΠF } ∪ {P@0}. It is straightforward to check that Π entails
M if and only if Π′ and D′ entail M@0.

Observe, however, that Theorems 48 and 49 do not provide tight complexity bounds
for MTL-acyclic programs, which are incomparable with EDB-guarded programs. We con-
clude this section by showing that fact entailment over MTL-acyclic programs and arbitrary
datasets has exactly the same combined and data complexity as fact entailment in plain
Datalog; in particular, this implies tractability in data complexity. This is a surprising re-
sult since the class of MTL-acyclic programs significantly extends plain Datalog by allowing
all types of metric operators in rules and supporting a limited form of temporal recursion.

Theorem 50. Checking whether an MTL-acyclic program and a dataset entail a fact is
ExpTime-complete for combined complexity and P-complete for data complexity.

Proof. For the lower bounds it suffices to observe that each Datalog program is MTL-acyclic,
and fact entailment in Datalog is ExpTime-complete in combined and P-complete in data
complexity (Dantsin et al., 2001).

For the matching upper bounds we exploit Theorem 41, which states that it suffices to
apply the immediate consequence operator k times to obtain the canonical interpretation
of an MTL-acyclic program Π and a dataset D, where k is the number of relational atoms
mentioned in ground(Π,D). Hence, we use Algorithm 2 on inputs Π and D to construct a
dataset D′ representing the canonical interpretation of Π and D. The algorithm terminates
after iterating its main loop at most k times. Each iteration of the loop involves running
ApplyRules, that is, Algorithm 1, which, in turn, performs its main loop as many times as
there are rules in ground(Π,D). We observe that ground(Π,D) (and so, k) is exponential
in combined and polynomial in data complexity. Thus, Algorithm 2 does not exceed the
computational resources stated in the theorem. Finally, we use the dataset D′ constructed
by Algorithm 2 to check if D′ |= M@ϱ. To this end, it suffices to verify if there are facts
M@ϱ1, . . . ,M@ϱk in D′ such that ϱ ⊆ (ϱ1∪· · ·∪ϱk), which is feasible in polynomial time.

509



Wałęga, Zawidzki, & Cuenca Grau

The results in this section provide a full picture of the complexity of reasoning over
finitely materialisable programs.

8. Related Work

In this section, we review the relevant literature on temporal reasoning and discuss reasoning
problems in Knowledge Representation and Databases related to finite materialisability.

8.1 Languages for Temporal Reasoning

DatalogMTL was first introduced by Brandt et al. (2017) under the continuous semantics
and over the rational timeline. The complexity of standard reasoning tasks in DatalogMTL
and its fragments was further investigated by Brandt et al. (2018), Wałęga et al. (2019,
2020b), Bellomarini, Nissl, and Sallinger (2021). DatalogMTL has also been studied over
the integer timeline (Wałęga et al., 2020a) and under the event-based semantics (Ryzhikov
et al., 2019). A language similar to DatalogMTL was first introduced by Brzoska (1998),
who also proposed a reasoning algorithm based on solving linear inequalities. DatalogMTL
has recently been extended with negation-as-failure under the stable model semantics, first
for stratified programs (Tena Cucala et al., 2021) and subsequently for the general case
(Wałęga et al., 2021a). MeTeoR (Wang et al., 2022) is the first reasoner to support the full
DatalogMTL language by combining materialisation-based and automata-based techniques,
and has been successfully applied for solving stream reasoning tasks (Schneider et al., 2022).
Earlier systems with DatalogMTL support, such as the Ontop platform (Kalayci et al., 2019),
performed reasoning via rewriting into SQL and were restricted to non-recursive programs.
DatalogMTL has proved useful for temporal stream reasoning (Wałęga et al., 2019; Schneider
et al., 2022), temporal ontology-based data access (Brandt et al., 2017), specification and
verification of banking agreements (Nissl & Sallinger, 2022), fact-checking economic claims
(Mori et al., 2022), and for describing dance movements (Raheb et al., 2017), among others.

There have been numerous other proposals for extending Datalog with temporal con-
structs, and we next discuss those that are most relevant to our work. Datalog1S (Chomicki
& Imielinski, 1988) extends Datalog by allowing terms of an additional temporal sort and
a single successor operator over this sort. Datalog1S is expressively equivalent to TempLog,
which augments plain Datalog with linear temporal logic (LTL) operators (Abadi & Manna,
1989; Baudinet, 1989); both of these languages are interpreted over the integer timeline and
can be seen as strict subsets of DatalogMTL. A similar language to Datalog1S , called Tem-
poral Datalog, was studied and applied by Ronca, Kaminski, Cuenca Grau, and Horrocks
(2022) to stream reasoning. Temporal Datalog is very similar to Datalog1S , but it allows
for binary encoding of time points. Another extension of Datalog1S , known as DatalognS ,
allows for a limited use of n-ary functions for the temporal sort (Chomicki, 1995). There is
a number of other extensions of Datalog with operators from LTL (Artale et al., 2015) and
from the Halpern-Shoham logic of intervals (Kontchakov et al., 2016).

Extensions of DatalogMTL with non-monotonic negation are closely related to temporal
extensions of answer set programming (ASP) (Aguado et al., 2021). Particularly relevant is
a recently introduced extension of ASP with MTL operators (Cabalar et al., 2020). Previ-
ously, ASP was also extended with LTL operators, giving rise to temporal equilibrium logic
TEL (Cabalar & Pérez Vega, 2007; Diéguez, 2012; Cabalar, 2022), which has been imple-

510



Finite Materialisability of Datalog Programs with Metric Temporal Operators

mented in the Telingo system (Cabalar et al., 2019). Additionally, LARS (Beck et al., 2018)
combines ASP and MTL operators for reasoning over data streams. It is worth observing
that, unlike DatalogMTL, all these temporal extensions of ASP are interpreted over the in-
teger timeline. Bidirectional ASP programs provide another related extension of ASP with
functional symbols—they allow for modeling the integer timeline while ensuring decidability
of reasoning (Eiter & Simkus, 2009, 2010).

Operators from MTL have also been exploited in temporal extensions of description
logics (DLs) (Gutiérrez-Basulto et al., 2016c; Baader et al., 2017; Thost, 2018; Artale &
Franconi, 1998). Other temporal DLs rely on LTL operators or interval operators from
the Halpern-Shoham logic, among others (Ozaki et al., 2018; Kovtunova, 2017; Artale &
Franconi, 2000; Artale et al., 2014; Ryzhikov et al., 2020; Artale et al., 2014, 2015a, 2015b;
Gutiérrez-Basulto et al., 2016b).

8.2 Related Problems and Techniques

Our data-dependent and data-independent notions of finite materialisability are respectively
related to checking finiteness of the canonical model for a given dataset (known as weak
safety), and checking finiteness for all datasets (strong safety). These problems were studied
by Chomicki and Imielinski (1988) in the context of Datalog1S , who showed that weak safety
is in PSpace for data complexity whereas strong safety is in ExpTime. It is worth observing,
however, that finite materialisability and finiteness of the canonical model do not coincide
in the context of DatalogMTL; in particular, since we study DatalogMTL over the rational
timeline, its canonical model may satisfy infinitely many rational facts even if the model is
constructed in a finite number of materialisation steps.

Finite materialisability is also related to the termination of chase procedures in (non-
temporal) Datalog with existential rules (also known as Datalog∃, Datalog±, or tuple gen-
erating dependencies) (Fagin et al., 2005; Cuenca Grau et al., 2013; Marnette & Geerts,
2010; Krötzsch et al., 2019; Baget et al., 2014). Deutsch, Nash, and Remmel (2008, Theo-
rems 6 and 7) showed that termination of the core chase is undecidable for a given dataset,
whereas Grahne and Onet (2018, Theorem 5.14) proved that universal termination—that
is, termination for all datasets—is also undecidable. Undecidability of universal termination
was established also for the oblivious chase (Gogacz & Marcinkowski, 2014, Theorem 1),
and even for signatures consisting of only unary and binary predicates (Bednarczyk et al.,
2020, Theorem 1.1). In contrast, as we showed in this paper, both data-dependent and
data-independent finite materialisability checking are decidable for DatalogMTL.

A standard technique for checking universal termination of a chase is based on reducing
the problem to checking termination for a single critical dataset (Marnette, 2009; Calautti
et al., 2015; Calautti & Pieris, 2021; Bednarczyk et al., 2020). Depending on the type of
chase, this technique may require specific modifications (Gogacz et al., 2020; Karimi et al.,
2021). In the case of temporal extensions of Datalog, such as Datalog1S , critical datasets
need to be further modified to capture the temporal dimension of models (Chomicki &
Imielinski, 1988). This is especially challenging in the case of DatalogMTL, where the
density of the timeline as well as the form of metric temporal operators occurring in a
program must be taken into account.

511



Wałęga, Zawidzki, & Cuenca Grau

Our notion of an MTL-acyclic program from Section 6.2 is based on a specific acyclicity
notion of metric dependency graphs. Although the concept of acyclicity we proposed, as
well as our metric dependency graphs, are specific to DatalogMTL, it is worth noting that
numerous types of acyclicity of dependency graphs are commonly used in Datalog research.
In particular, the standard notion of acyclicity is used to define non-recursive Datalog pro-
grams and more relaxed notions of acyclicity, such as weak acyclicity, super-weak acyclicity,
model-summarising acyclicity, and model-faithful acyclicity are used to guarantee chase ter-
mination in Datalog∃ (Grahne & Onet, 2011; Fagin et al., 2003; Marnette, 2009; Cuenca
Grau et al., 2013; Calautti et al., 2015). Furthermore, the acyclicity condition we used
to define MTL-acyclic programs is also conceptually related to the techniques used to de-
fine temporally acyclic TBoxes in temporalised description logics (Gutiérrez-Basulto et al.,
2016a, 2016b), which guarantee that answering atomic queries is feasible in polynomial
time.

9. Conclusions and Future Work

In this paper we have proposed and studied finitely materialisable DatalogMTL programs,
which are naturally amenable to materialisation-based reasoning via scalable forward chain-
ing techniques. We have studied both data-dependent and data-independent notions of finite
materialisability, provided tight complexity bounds and practical materialisation-based algo-
rithms for finite materialisability checking, and proposed two efficiently verifiable sufficient
conditions for finite materialisability in the data-independent setting. Finally, we have also
shown that fact entailment over finitely materialisable programs is computationally easier
than in the general case; in particular, for MTL-acyclic programs, fact entailment has exactly
the same complexity as in plain Datalog.

We see many avenues for future work. From a theoretical standpoint we aim to extend
our results to include also unbounded programs and datasets. Since most essential results
rely on the assumptions that: a program’s depth is bounded (e.g., Theorem 24 and Theo-
rem 26), the interval over which a dataset spans is bounded (e.g., Theorem 19, Lemma 32),
or materialisation terminates after at most ω steps (e.g., Lemma 37), which all fail in the
unbounded case, they cannot be straightforwardly lifted. From a practical perspective, al-
though we have already extended the MeTeoR reasoner with a prototype implementation
of our materialisation-based algorithms for finite materialisability checking, evaluation is
currently challenging, as there is a lack of real-world DatalogMTL programs that we could
use for testing. We will be working with our industrial partners at the SIRIUS Centre for
Scalable Data Access to design DatalogMTL programs well-suited for their applications.

Acknowledgements

We are grateful for a fruitful discussion with Michał Pilipczuk on an NL algorithm for
checking existence of non-0 weight cycles in weighted graphs, which we used in the proof of
Theorem 45 (see also the Appendix).

Our work has been supported by the EPSRC projects OASIS (EP/S032347/1), AnaLOG
(EP/P025943/1), and UK FIRES (EP/S019111/1), the SIRIUS Centre for Scalable Data
Access, and Samsung Research UK. For the purpose of Open Access, the authors have

512



Finite Materialisability of Datalog Programs with Metric Temporal Operators

applied a CC BY public copyright licence to any Author Accepted Manuscript (AAM)
version arising from this submission.

References

Abadi, M., & Manna, Z. (1989). Temporal logic programming. Journal of Symbolic Com-
putation, 8 (3), 277–295.

Abiteboul, S., Hull, R., & Vianu, V. (1995). Foundations of Databases. Addison-Wesley.

Aguado, F., Cabalar, P., Diéguez, M., Pérez, G., Schaub, T., Schuhmann, A., & Vidal, C.
(2021). Linear-time temporal answer set programming. Theory and Practice of Logic
Programming, published online, 1–55.

Artale, A., Kontchakov, R., Kovtunova, A., Ryzhikov, V., Wolter, F., & Zakharyaschev, M.
(2015). First-order rewritability of temporal ontology-mediated queries. In Yang, Q., &
Wooldridge, M. J. (Eds.), Proceedings of the Twenty-Fourth International Joint Con-
ference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25–31,
2015, pp. 2706–2712. International Joint Conferences on Artificial Intelligence Orga-
nization.

Artale, A., Bresolin, D., Montanari, A., Sciavicco, G., & Ryzhikov, V. (2014). DL-Lite and in-
terval temporal logics: a marriage proposal. In Schaub, T., Friedrich, G., & O’Sullivan,
B. (Eds.), ECAI 2014 – 21st European Conference on Artificial Intelligence, 18–22 Au-
gust 2014, Prague, Czech Republic – Including Prestigious Applications of Intelligent
Systems (PAIS 2014), Vol. 263 of Frontiers in Artificial Intelligence and Applications,
pp. 957–958. IOS Press.

Artale, A., & Franconi, E. (1998). A temporal description logic for reasoning about actions
and plans. Journal of Artificial Intelligence Research, 9, 463–506.

Artale, A., & Franconi, E. (2000). A survey of temporal extensions of description logics.
Annals of Mathematics and Artificial Intelligence, 30 (1), 171–210.

Artale, A., Kontchakov, R., Kovtunova, A., Ryzhikov, V., Wolter, F., & Zakharyaschev, M.
(2017). Ontology-mediated query answering over temporal data: A survey (invited
talk). In Schewe, S., Schneider, T., & Wijsen, J. (Eds.), 24th International Symposium
on Temporal Representation and Reasoning, TIME 2017, October 16–18, 2017, Mons,
Belgium, Vol. 90 of LIPIcs, pp. 1:1–1:37. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik.

Artale, A., Kontchakov, R., Ryzhikov, V., & Zakharyaschev, M. (2014). A cookbook for
temporal conceptual data modelling with description logics. ACM Transactions on
Computational Logic, 15 (3), 1–50.

Artale, A., Kontchakov, R., Ryzhikov, V., & Zakharyaschev, M. (2015a). Interval temporal
description logics. In Calvanese, D., & Konev, B. (Eds.), Proceedings of the 28th
International Workshop on Description Logics, Athens,Greece, June 7–10, 2015, Vol.
1350 of CEUR Workshop Proceedings. CEUR-WS.org.

Artale, A., Kontchakov, R., Ryzhikov, V., & Zakharyaschev, M. (2015b). Tractable interval
temporal propositional and description logics. In Bonet, B., & Koenig, S. (Eds.),

513



Wałęga, Zawidzki, & Cuenca Grau

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January
25–30, 2015, Austin, Texas, USA, pp. 1417–1423. AAAI Press.

Baader, F., Borgwardt, S., Koopmann, P., Ozaki, A., & Thost, V. (2017). Metric temporal
description logics with interval-rigid names. In Dixon, C., & Finger, M. (Eds.), Fron-
tiers of Combining Systems – 11th International Symposium, FroCoS 2017, Brasília,
Brazil, September 27–29, 2017, Proceedings, Vol. 10483 of Lecture Notes in Computer
Science, pp. 60–76. Springer.

Baget, J., Garreau, F., Mugnier, M., & Rocher, S. (2014). Extending acyclicity notions for
existential rules. In Schaub, T., Friedrich, G., & O’Sullivan, B. (Eds.), ECAI 2014 -
21st European Conference on Artificial Intelligence, 18-22 August 2014, Prague, Czech
Republic - Including Prestigious Applications of Intelligent Systems (PAIS 2014), Vol.
263 of Frontiers in Artificial Intelligence and Applications, pp. 39–44. IOS Press.

Baudinet, M. (1989). Temporal logic programming is complete and expressive. In Proceed-
ings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’89, pp. 267–280, New York, NY, USA. Association for Computing
Machinery.

Beck, H., Dao-Tran, M., Eiter, T., & Folie, C. (2018). Stream reasoning with LARS. KI -
Künstliche Intelligenz, 32 (2), 193–195.

Bednarczyk, B., Ferens, R., & Ostropolski-Nalewaja, P. (2020). All-instances oblivious chase
termination is undecidable for single-head binary tgds. In Bessiere, C. (Ed.), Proceed-
ings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,
IJCAI-20, pp. 1719–1725. International Joint Conferences on Artificial Intelligence
Organization.

Bellomarini, L., Nissl, M., & Sallinger, E. (2021). Query evaluation in DatalogMTL – taming
infinite query results. CoRR, abs/2109.10691.

Bellomarini, L., Sallinger, E., & Gottlob, G. (2018). The Vadalog system: Datalog-based
reasoning for knowledge graphs. Proceedings of the VLDB Endowment, 11 (9), 975–987.

Brandt, S., Kalayci, E. G., Kontchakov, R., Ryzhikov, V., Xiao, G., & Zakharyaschev, M.
(2017). Ontology-based data access with a Horn fragment of metric temporal logic. In
Singh, S., & Markovitch, S. (Eds.), Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, February 4–9, 2017, San Francisco, California, USA, pp.
1070–1076. AAAI Press.

Brandt, S., Kalaycı, E. G., Ryzhikov, V., Xiao, G., & Zakharyaschev, M. (2018). Querying
log data with metric temporal logic. Journal of Artificial Intelligence Research, 62,
829–877.

Bry, F., Eisinger, N., Eiter, T., Furche, T., Gottlob, G., Ley, C., Linse, B., Pichler, R., & Wei,
F. (2007). Foundations of rule-based query answering. In Antoniou, G., Aßmann, U.,
Baroglio, C., Decker, S., Henze, N., Patranjan, P., & Tolksdorf, R. (Eds.), Reasoning
Web, Third International Summer School 2007, Dresden, Germany, September 3–7,
2007, Tutorial Lectures, Vol. 4636 of Lecture Notes in Computer Science, pp. 1–153.
Springer.

514



Finite Materialisability of Datalog Programs with Metric Temporal Operators

Brzoska, C. (1998). Programming in metric temporal logic. Theorertical Computer Science,
202 (1-2), 55–125.

Cabalar, P. (2022). Temporal ASP: From logical foundations to practical use with telingo. In
Šimkus, M., & Varzinczak, I. (Eds.), Reasoning Web. Declarative Artificial Intelligence,
pp. 94–114, Cham. Springer International Publishing.

Cabalar, P., Diéguez, M., Schaub, T., & Schuhmann, A. (2020). Towards metric temporal
answer set programming. Theory and Practice of Logic Programming, 20 (5), 783–798.

Cabalar, P., Kaminski, R., Morkisch, P., & Schaub, T. (2019). telingo = asp + time. In Bal-
duccini, M., Lierler, Y., & Woltran, S. (Eds.), Logic Programming and Nonmonotonic
Reasoning, pp. 256–269, Cham. Springer International Publishing.

Cabalar, P., & Pérez Vega, G. (2007). Temporal equilibrium logic: A first approach. In
Moreno Díaz, R., Pichler, F., & Quesada Arencibia, A. (Eds.), Computer Aided Systems
Theory – EUROCAST 2007, pp. 241–248, Berlin, Heidelberg. Springer.

Calautti, M., Gottlob, G., & Pieris, A. (2015). Chase termination for guarded existential
rules. In Proceedings of the 34th ACM SIGMOD-SIGACT-SIGAI Symposium on Prin-
ciples of Database Systems, PODS ’15, pp. 91–103, New York, NY, USA. Association
for Computing Machinery.

Calautti, M., & Pieris, A. (2021). Semi-oblivious chase termination: The sticky case. Theory
of Computing Systems, 65 (1), 84–121. Database Theory.

Carral, D., Dragoste, I., González, L., Jacobs, C. J. H., Krötzsch, M., & Urbani, J. (2019).
Vlog: A rule engine for knowledge graphs. In Ghidini, C., Hartig, O., Maleshkova, M.,
Svátek, V., Cruz, I. F., Hogan, A., Song, J., Lefrançois, M., & Gandon, F. (Eds.), The
Semantic Web - ISWC 2019 - 18th International Semantic Web Conference, Auckland,
New Zealand, October 26–30, 2019, Proceedings, Part II, Vol. 11779 of Lecture Notes
in Computer Science, pp. 19–35. Springer.

Chomicki, J. (1990). Polynomial time query processing in temporal deductive databases.
In Rosenkrantz, D. J., & Sagiv, Y. (Eds.), Proceedings of the Ninth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, April 2–4, 1990,
Nashville, Tennessee, USA, pp. 379–391. Association for Computing Machinery.

Chomicki, J. (1995). Depth-bounded bottom-up evaluation of logic programs. Journal of
Logic Programming, 25 (1), 1–31.

Chomicki, J., & Imielinski, T. (1988). Temporal deductive databases and infinite objects. In
Edmondson-Yurkanan, C., & Yannakakis, M. (Eds.), Proceedings of the Seventh ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, March
21–23, 1988, Austin, Texas, USA, pp. 61–73. Association for Computing Machinery.

Cuenca Grau, B., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D., Motik, B., & Wang, Z.
(2013). Acyclicity notions for existential rules and their application to query answering
in ontologies. Journal of Artificial Intelligence Research, 47, 741–808.

Dantsin, E., Eiter, T., Gottlob, G., & Voronkov, A. (2001). Complexity and expressive power
of logic programming. ACM Computing Surveys, 33 (3), 374–425.

515



Wałęga, Zawidzki, & Cuenca Grau

Deutsch, A., Nash, A., & Remmel, J. B. (2008). The chase revisited. In Lenzerini, M.,
& Lembo, D. (Eds.), Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2008, June 9–11, 2008,
Vancouver, BC, Canada, pp. 149–158. Association for Computing Machinery.

Diéguez, M. (2012). Temporal answer set programming. In Dovier, A., & Costa, V. S.
(Eds.), Technical Communications of the 28th International Conference on Logic Pro-
gramming, ICLP 2012, September 4–8, 2012, Budapest, Hungary, Vol. 17 of LIPIcs,
pp. 445–450. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Eiter, T., & Simkus, M. (2009). Bidirectional answer set programs with function symbols. In
Boutilier, C. (Ed.), IJCAI 2009, Proceedings of the 21st International Joint Conference
on Artificial Intelligence, Pasadena, California, USA, July 11–17, 2009, pp. 765–771.
International Joint Conferences on Artificial Intelligence Organization.

Eiter, T., & Simkus, M. (2010). FDNC: decidable nonmonotonic disjunctive logic programs
with function symbols. ACM Transactions on Computational Logic, 11 (2), 14:1–14:50.

Fagin, R., Kolaitis, P. G., Miller, R. J., & Popa, L. (2003). Data exchange: Semantics and
query answering. In Calvanese, D., Lenzerini, M., & Motwani, R. (Eds.), Database
Theory – ICDT 2003, 9th International Conference, Siena, Italy, January 8–10, 2003,
Proceedings, Vol. 2572 of Lecture Notes in Computer Science, pp. 207–224. Springer.

Fagin, R., Kolaitis, P. G., Miller, R. J., & Popa, L. (2005). Data exchange: Semantics and
query answering. Theoretical Computer Science, 336 (1), 89–124.

Feikin, D. R., Higdon, M. M., Abu-Raddad, L. J., Andrews, N., Araos, R., Goldberg, Y.,
Groome, M. J., Huppert, A., O’Brien, K. L., Smith, P. G., Wilder-Smith, A., Zeger,
S., Deloria Knoll, M., & Patel, M. K. (2022). Duration of effectiveness of vaccines
against sars-cov-2 infection and covid-19 disease: Results of a systematic review and
meta-regression. The Lancet, 399 (10328), 924–944.

Gogacz, T., & Marcinkowski, J. (2014). All-instances termination of chase is undecidable.
In Esparza, J., Fraigniaud, P., Husfeldt, T., & Koutsoupias, E. (Eds.), Automata,
Languages, and Programming - 41st International Colloquium, ICALP 2014, Copen-
hagen, Denmark, July 8–11, 2014, Proceedings, Part II, Vol. 8573 of Lecture Notes in
Computer Science, pp. 293–304. Springer.

Gogacz, T., Marcinkowski, J., & Pieris, A. (2020). All-instances restricted chase termination.
In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS’20, pp. 245–258, New York, NY, USA. Association for
Computing Machinery.

Grahne, G., & Onet, A. (2011). On conditional chase termination. In Barceló, P., & Tannen,
V. (Eds.), Proceedings of the 5th Alberto Mendelzon International Workshop on Foun-
dations of Data Management, Santiago, Chile, May 9–12, 2011, Vol. 749 of CEUR
Workshop Proceedings. CEUR-WS.org.

Grahne, G., & Onet, A. (2018). Anatomy of the chase. Fundamenta Informaticae, 157 (3),
221–270.

Gutiérrez-Basulto, V., Jung, J. C., & Kontchakov, R. (2016a). On decidability and tractabil-
ity of querying in temporal EL. In Lenzerini, M., & Peñaloza, R. (Eds.), Proceedings

516



Finite Materialisability of Datalog Programs with Metric Temporal Operators

of the 29th International Workshop on Description Logics, Cape Town, South Africa,
April 22–25, 2016, Vol. 1577 of CEUR Workshop Proceedings. CEUR-WS.org.

Gutiérrez-Basulto, V., Jung, J. C., & Kontchakov, R. (2016b). Temporalized EL ontolo-
gies for accessing temporal data: Complexity of atomic queries. In Kambhampati,
S. (Ed.), Proceedings of the Twenty-Fifth International Joint Conference on Artifi-
cial Intelligence, IJCAI 2016, New York, NY, USA, 9–15 July 2016, pp. 1102–1108.
International Joint Conferences on Artificial Intelligence Organization.

Gutiérrez-Basulto, V., Jung, J. C., & Ozaki, A. (2016c). On metric temporal description
logics. In Kaminka, G. A., Fox, M., Bouquet, P., Hüllermeier, E., Dignum, V., Dignum,
F., & van Harmelen, F. (Eds.), ECAI 2016 - 22nd European Conference on Artificial
Intelligence, 29 August-2 September 2016, The Hague, The Netherlands - Including
Prestigious Applications of Artificial Intelligence (PAIS 2016), Vol. 285 of Frontiers
in Artificial Intelligence and Applications, pp. 837–845. IOS Press.

Immerman, N., & Landau, S. (1989). The complexity of iterated multiplication. In Proceed-
ings: Fourth Annual Structure in Complexity Theory Conference, University of Oregon,
Eugene, Oregon, USA, June 19–22, 1989, pp. 104–111. IEEE Computer Society.

Kalayci, E. G., Brandt, S., Calvanese, D., Ryzhikov, V., Xiao, G., & Zakharyaschev, M.
(2019). Ontology–based access to temporal data with Ontop: A framework proposal.
International Journal of Applied Mathematics and Computer Science, 29 (1), 17–30.

Karimi, A., Zhang, H., & You, J.-H. (2021). Restricted chase termination for existential
rules: A hierarchical approach and experimentation. Theory and Practice of Logic
Programming, 21 (1), 4–50.

Kikot, S., Ryzhikov, V., Wałęga, P. A., & Zakharyaschev, M. (2018). On the data complex-
ity of ontology-mediated queries with MTL operators over timed words. In Ortiz, M.,
& Schneider, T. (Eds.), Proceedings of the 31st International Workshop on Descrip-
tion Logics co-located with 16th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2018), Tempe, Arizona, US, October 27–29, 2018,
Vol. 2211 of CEUR Workshop Proceedings. CEUR-WS.org.

Kontchakov, R., Pandolfo, L., Pulina, L., Ryzhikov, V., & Zakharyaschev, M. (2016). Tem-
poral and spatial OBDA with many-dimensional Halpern-Shoham logic. In Proceedings
of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI
2016, New York, NY, USA, 9–15 July 2016, pp. 1160–1166. International Joint Con-
ferences on Artificial Intelligence Organization.

Kovtunova, A. (2017). Ontology-mediated query answering with lightweight temporal descrip-
tion logics. Ph.D. thesis, Free University of Bozen-Bolzano.

Krötzsch, M., Marx, M., & Rudolph, S. (2019). The power of the terminating chase (invited
talk). In Barceló, P., & Calautti, M. (Eds.), 22nd International Conference on Database
Theory, ICDT 2019, March 26–28, 2019, Lisbon, Portugal, Vol. 127 of LIPIcs, pp. 3:1–
3:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Marnette, B. (2009). Generalized schema-mappings: From termination to tractability. In
Proceedings of the Twenty-Eighth ACM SIGMOD-SIGACT-SIGART Symposium on

517



Wałęga, Zawidzki, & Cuenca Grau

Principles of Database Systems, PODS ’09, pp. 13–22, New York, NY, USA. Associa-
tion for Computing Machinery.

Marnette, B., & Geerts, F. (2010). Static analysis of schema-mappings ensuring oblivi-
ous termination. In Segoufin, L. (Ed.), Database Theory – ICDT 2010, 13th Inter-
national Conference, Lausanne, Switzerland, March 23–25, 2010, Proceedings, ACM
International Conference Proceeding Series, pp. 183–195. Association for Computing
Machinery.

Mori, M., Papotti, P., Bellomarini, L., & Giudice, O. (2022). Neural machine translation
for fact-checking temporal claims. In Aly, R., Christodoulopoulos, C., Cocarascu, O.,
Guo, Z., Mittal, A., Schlichtkrull, M., Thorne, J., & Vlachos, A. (Eds.), Proceedings of
the Fifth Fact Extraction and VERification Workshop (FEVER), pp. 78–82, Dublin,
Ireland. Association for Computational Linguistics.

Motik, B., Nenov, Y., Piro, R., & Horrocks, I. (2019). Maintenance of Datalog materialisa-
tions revisited. Artificial Intelligence, 269, 76–136.

Motik, B., Nenov, Y., Piro, R., Horrocks, I., & Olteanu, D. (2014). Parallel materialisation
of Datalog programs in centralised, main-memory RDF systems. In Brodley, C. E., &
Stone, P. (Eds.), Proceedings of the Twenty-Eighth AAAI Conference on Artificial In-
telligence, July 27–31, 2014, Québec City, Québec, Canada, pp. 129–137. AAAI Press.

Nissl, M., & Sallinger, E. (2022). Modelling smart contracts with DatalogMTL. In Ra-
manath, M., & Palpanas, T. (Eds.), Proceedings of the Workshops of the EDBT/ICDT,
Vol. 3135 of CEUR. CEUR-WS.org.

Ozaki, A., Krötzsch, M., & Rudolph, S. (2018). Happy ever after: Temporally attributed
description logics. In Ortiz, M., & Schneider, T. (Eds.), Proceedings of the 31st In-
ternational Workshop on Description Logics co-located with 16th International Con-
ference on Principles of Knowledge Representation and Reasoning (KR 2018), Tempe,
Arizona, US, October 27–29, 2018, Vol. 2211 of CEUR Workshop Proceedings. CEUR-
WS.org.

Raheb, K. E., Mailis, T., Ryzhikov, V., Papapetrou, N., & Ioannidis, Y. E. (2017). Balonse:
Temporal aspects of dance movement and its ontological representation. In Blomqvist,
E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., & Hartig, O. (Eds.), The Se-
mantic Web - 14th International Conference, ESWC 2017, Portorož, Slovenia, May
28–June 1, 2017, Proceedings, Part II, Vol. 10250 of Lecture Notes in Computer Sci-
ence, pp. 49–64.

Reif, J. H., & Tate, S. R. (1992). On threshold circuits and polynomial computation. SIAM
Journal on Computing, 21 (5), 896–908.

Ronca, A., Kaminski, M., Cuenca Grau, B., & Horrocks, I. (2022). The delay and window
size problems in rule-based stream reasoning. Artificial Intelligence, 306, 103668.

Rosser, J. B., & Schoenfeld, L. (1962). Approximate formulas for some functions of prime
numbers. Illinois Journal of Mathematics, 6 (1), 64–94.

Ryzhikov, V., Wałęga, P. A., & Zakharyaschev, M. (2019). Data complexity and rewritability
of ontology-mediated queries in metric temporal logic under the event-based semantics.
In Kraus, S. (Ed.), Proceedings of the Twenty-Eighth International Joint Conference

518



Finite Materialisability of Datalog Programs with Metric Temporal Operators

on Artificial Intelligence, IJCAI 2019, Macao, China, August 10–16, 2019, pp. 1851–
1857. International Joint Conferences on Artificial Intelligence Organization.

Ryzhikov, V., Wałęga, P. A., & Zakharyaschev, M. (2020). Temporal ontology-mediated
queries and first-order rewritability: A short course. In Manna, M., & Pieris, A. (Eds.),
Reasoning Web. Declarative Artificial Intelligence - 16th International Summer School
2020, Oslo, Norway, June 24–26, 2020, Tutorial Lectures, Vol. 12258 of Lecture Notes
in Computer Science, pp. 109–148. Springer.

Schneider, P., Alvarez-Coello, D., Le-Tuan, A., Nguyen-Duc, M., & Le-Phuoc, D. (2022).
Stream reasoning playground. In The Semantic Web: 19th International Conference,
ESWC 2022, Hersonissos, Crete, Greece, May 29–June 2, 2022, Proceedings, pp. 406–
424, Berlin, Heidelberg. Springer-Verlag.

Tena Cucala, D. J., Wałęga, P. A., Cuenca Grau, B., & Kostylev, E. V. (2021). Stratified
negation in Datalog with metric temporal operators. In Thirty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Appli-
cations of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational
Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2–9, 2021,
pp. 6488–6495. AAAI Press.

Thost, V. (2018). Metric temporal extensions of DL-Lite and interval-rigid names. In
Thielscher, M., Toni, F., & Wolter, F. (Eds.), Principles of Knowledge Representa-
tion and Reasoning: Proceedings of the Sixteenth International Conference, KR 2018,
Tempe, Arizona, October 30–November 2, 2018, pp. 665–666. AAAI Press.

Wałęga, P. A., Cuenca Grau, B., Kaminski, M., & Kostylev, E. V. (2019). DatalogMTL:
Computational complexity and expressive power. In Kraus, S. (Ed.), Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019,
Macao, China, August 10–16, 2019, pp. 1886–1892. International Joint Conferences
on Artificial Intelligence Organization.

Wałęga, P. A., Cuenca Grau, B., Kaminski, M., & Kostylev, E. V. (2020a). DatalogMTL over
the integer timeline. In Calvanese, D., Erdem, E., & Thielscher, M. (Eds.), Proceedings
of the 17th International Conference on Principles of Knowledge Representation and
Reasoning, KR 2020, Rhodes, Greece, September 12–18, 2020, pp. 768–777.

Wałęga, P. A., Cuenca Grau, B., Kaminski, M., & Kostylev, E. V. (2020b). Tractable frag-
ments of Datalog with metric temporal operators. In Bessiere, C. (Ed.), Proceedings
of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI
2020, pp. 1919–1925. International Joint Conferences on Artificial Intelligence Orga-
nization.

Wałęga, P. A., Kaminski, M., & Cuenca Grau, B. (2019). Reasoning over streaming data in
metric temporal Datalog. In The Thirty-Third AAAI Conference on Artificial Intelli-
gence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27–February 1,
2019, pp. 3092–3099. AAAI Press.

Wałęga, P. A., Tena Cucala, D. J., Kostylev, E. V., & Cuenca Grau, B. (2021a). DatalogMTL
with negation under stable models semantics. In Bienvenu, M., Lakemeyer, G., &

519



Wałęga, Zawidzki, & Cuenca Grau

Erdem, E. (Eds.), Proceedings of the 18th International Conference on Principles of
Knowledge Representation and Reasoning, KR 2021, Online event, November 3-12,
2021, pp. 609–618.

Wałęga, P. A., Zawidzki, M., & Cuenca Grau, B. (2021b). Finitely materialisable Datalog
programs with metric temporal operators. In Bienvenu, M., Lakemeyer, G., & Erdem,
E. (Eds.), Proceedings of the 18th International Conference on Principles of Knowledge
Representation and Reasoning, KR 2021, Online event, November 3–12, 2021, pp. 619–
628.

Wang, D., Hu, P., Wałęga, P. A., & Cuenca Grau, B. (2022). MeTeoR: Practical reasoning
in Datalog with metric temporal operators. CoRR, abs/2201.04596.

Appendix A. Proof Details

Lemma. Checking if there is a simple cycle of non-0 weight in a directed graph whose edges
are weighted with rational numbers encoded in binary, or with −∞ or ∞ is feasible in NL
(assuming that ∞−∞ =∞).

Proof. Let G be the input graph and let n be the size of its representation (we assume that
n > 1, as otherwise G has no edges). We observe that G has a non-0 weight simple cycle
if and only if G has a non-0 weight cycle of length at most n. We will show how to check
in NL the latter statement, which does not require verifying that the cycle is simple. If a
cycle of G has at least one edge of weight ∞ or −∞, then this cycle has a non-0 weight;
clearly, such a cycle can be guessed edge by edge in NL. Thus, we can focus on detecting
a cycle whose all edges are weighted with rational numbers. We will guess such a cycle
edge by edge, but now we need a more sophisticated approach for verifying that this cycle
has a non-0 weight. Note that, while guessing the cycle, we cannot keep its partial weight
in memory, since it is not feasible in logarithmic space. Instead, our procedure keeps in
memory the (representation of) a partial weight modulo a prime number p that is guessed
in NL (so p can be kept in logarithmic memory). More precisely, for a partial weight x

y , our
procedure keeps in memory its representation in the field Fp of order p. With a slight abuse
of notation we denote such a representation by x ·y−1 (where · and −1 are the multiplication
and multiplicative inverse operators in Fp, respectively, and x and y are taken modulo p).
Then, we claim that it suffices to verify that the final value in Fp that we keep in memory
is non-0. In particular, we claim that checking existence of a non-0 (rational) weight simple
cycle in G reduces to checking existence of a prime number p ∈ {1, . . . , 4n4} and a cycle in
G of length at most n satisfying the following conditions:

(i) none of the denominators of weights in G is divisible by p and

(ii) the representation in Fp of the weight of the guessed cycle is not 0.

Observe that Condition (i) guarantees that, for each edge weight x
y in G, the representation

of y in Fp does not equal 0, and therefore, y−1 is well defined in Fp. Moreover, as adding
the representations of two fractions in Fp yields the representation of their sum in Fp, the
representation mentioned in Condition (ii) is well defined in Fp. Showing the above reduction
will end the proof since the problem to which we reduce can be solved in NL; indeed, p can

520



Finite Materialisability of Datalog Programs with Metric Temporal Operators

be guessed in NL, and so can the cycle (edge by edge); moreover, checking Condition (i) is
feasible in logarithmic space, and so is checking Condition (ii), as operations in Fp can be
performed in logarithmic space.

To show that the reduction is correct, assume first that there exist a prime number p
and a cycle σ in G for which Conditions (i) and (ii) hold. Let a

b be the weight of σ, so we
need to show that a ̸= 0. Recall that, by Condition (i), a · b−1 is well defined in Fp; we
obtain also that b−1 ̸= 0. By Condition (ii), a · b−1 ̸= 0 in Fp, and so, a is not 0 in Fp.
Therefore, a is non-0, and so is the weight a

b .
For the opposite direction assume that G has a simple cycle σ of some non-0 weight a

b
and length at most n. We will show existence of a prime number p ∈ {1, . . . , 4n4} such
that neither a nor any of the denominators of weights in G is divisible by p. Each of these
denominators uses at most n bits in binary representation, so each denominator has a value
bounded by 2n and at most n prime divisors (as each such prime divisor is at least 2). As
there are at most n denominators, the total number of their prime divisors is at most n2.
Since a is the sum of at most n components whose values are bounded by 2n, the value of a
is bounded by n · 2n, and so, a has at most log2(n) +n prime divisors. Thus, the number of
primes that divide a or any of the denominators in G is bounded by 2n2. It is known that
for any x ≥ 17, we have π(x) > x

log2(x)
, where π(x) is the number of primes not larger than

x (Rosser & Schoenfeld, 1962, Corollary 1). We observe that 4n4 > 17 (since n > 1), so
π(4n4) > 4n4

log2(4n
4)

. As log2(4n
4) <

√
4n4 (since 4n4 > 16), we have 4n4

log2(4n
4)

> 4n4
√
4n4

= 2n2.
We obtain that π(4n4) > 2n2, so there must exist a prime number p ∈ {1, . . . , 4n4} that
divides neither a nor any denominator in G. Note that we have shown that our p satisfies
Condition (i), so it remains to show that p and σ satisfy also Condition (ii). Since neither
a nor any of the denominators of weights in G is divisible by p, we have a ̸= 0 and b−1 ̸= 0
in Fp. Consequently, a · b−1 ̸= 0 in Fp, so Condition (ii) holds.

521


