
Journal of Artificial Intelligence Research 77 (2023) 1637-1696 Submitted 07/2022; published 08/2023

Automatically Finding the Right Probabilities
in Bayesian Networks

Bahare Salmani salmani@cs.rwth-aachen.de

Joost-Pieter Katoen katoen@cs.rwth-aachen.de

RWTH Aachen University

Aachen, Germany

Abstract

This paper presents alternative techniques for inference on classical Bayesian networks
in which all probabilities are fixed, and for synthesis problems when conditional proba-
bility tables (CPTs) in such networks contain symbolic parameters rather than concrete
probabilities. The key idea is to exploit probabilistic model checking as well as its recent
extension to parameter synthesis techniques for parametric Markov chains. To enable this,
the Bayesian networks are transformed into Markov chains and their objectives are mapped
onto probabilistic temporal logic formulas.

For exact inference, we compare probabilistic model checking to weighted model count-
ing on various Bayesian network benchmarks. We contrast symbolic model checking using
multi-terminal binary (aka: algebraic) decision diagrams to symbolic inference using proba-
bilistic sentential decision diagrams, symbolic data structures that are tailored to Bayesian
networks.

For the parametric setting, we describe how our techniques can be used for various syn-
thesis problems such as computing sensitivity functions (and values), simple and difference
parameter tuning and ratio parameter tuning. Our parameter synthesis techniques are
applicable to arbitrarily many, possibly dependent, parameters that may occur in multiple
CPTs. This lifts restrictions, e.g., on the number of parametrized CPTs, or on parameter
dependencies between several CPTs, that exist in the literature. Experiments on several
benchmarks show that our parameter synthesis techniques can treat parameter synthesis
for Bayesian networks (with hundreds of unknown parameters) that are out of reach for
existing techniques.

1. Introduction

Bayesian networks (BNs, Darwiche, 2009) are a popular model in AI and decision making.
Their graphical nature makes them relatively easy to comprehend and enables the usage of
efficient graph algorithms, e.g., for determining conditional (in)dependencies between (sets
of) random variables. Moreover, they provide a succinct representation of complex joint
probability distribution functions. Efficient algorithms e.g., (Darwiche, 2002; Sang et al.,
2005; Chavira & Darwiche, 2005, 2006, 2008; Bart et al., 2016) have been developed to
analyse BNs, most notably to perform inference, a problem whose theoretical complexity
is PP-complete (Cooper, 1990; Dagum & Luby, 1993). Dedicated data structures such as
variants of decision diagrams (Fujita et al., 1997; Bahar et al., 1997; Sanner & McAllester,
2005; Kisa et al., 2014) can compactly represent BNs enabling fast inference. Conditional

©2023 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Salmani & Katoen

probability tables (CPTs) in BNs define a probability distribution over the possible values
of a random variable conditioned on the values of its parents in the graph structure.

Variants of BNs have been considered where CPT entries are symbolic expressions over
a fixed set of parameters (such as p, 1−p, and 1−p−q, etc. with 0 < p, q < 1) rather
than constants. Such parametric BNs are very useful in situations where probabilities are
unknown, or partially known. They received a lot of attention, see e.g., (Coupé & Van der
Gaag, 1998; Coupé et al., 2000; Druzdzel & Van der Gaag, 2000; Jensen, 1999; Laskey,
1995; Castillo et al., 1995, 1996, 1997a; Kjærulff & Van der Gaag, 2000; Chan & Darwiche,
2002, 2004; Coupé & Van der Gaag, 2002; Renooij, 2014; Bolt & Van der Gaag, 2015).
Important objectives on parametric BNs are e.g., to provide a symbolic expression in terms
of the model parameters p and q for inference queries, sensitivity analysis, or determining
whether there exists a concrete set of parameter values such that a given threshold on an
inference query holds. A relevant objective is parameter tuning: find the minimal change of
parameters such that some constraint, e.g., Pr(H=h | E=e) > q holds (Chan & Darwiche,
2005; Laskey, 1995).

As sensitivity analysis and parameter synthesis are computationally hard in general (Laskey,
1995; Kjærulff & Van der Gaag, 2000; Kwisthout & Van der Gaag, 2008), many existing
techniques restrict the number of parameters per CPT (n-way for small n e.g., by Chan &
Darwiche, 2002; Coupé & Van der Gaag, 2002; Van der Gaag, Renooij, & Coupé, 2007),
forbid parameter dependencies in several CPTs (single CPT by Chan & Darwiche, 2004), or
consider specific structures such as join trees (Kjærulff & Van der Gaag, 2000) and require
all parameters to occur in the same clique of the junction tree.

This paper presents a new approach to analyze BNs and their parametric variant. The key
idea of our approach is to exploit techniques from the field of probabilistic model checking
(Baier & Katoen, 2008; Katoen, 2016; Baier, de Alfaro, Forejt, & Kwiatkowska, 2018).
Probabilistic model checking (PMC) is a fully automated verification technique for Markov
models that has been successfully applied in various application domains. It checks whether
a given property, expressed in temporal logic, holds with a given probability. Its core
problem is to compute reachability probabilities: is the probability to reach a certain set of
target states from the initial state below or above a certain threshold? Efficient algorithms
exist to compute such probabilities, and—similar to the case for BNs—variants of decision
diagrams have been used to compactly store Markov models and efficiently manipulate
them. Most modern PMC tools (Kwiatkowska et al., 2011; Dehnert et al., 2017) have a
mode in which they exploit such decision diagrams.

Significant progress has been recently made in the automated analysis of parametric Markov
models, models in which the transition probabilities are multivariate polynomials over a
fixed set of parameters such as p and 1−p. Substitution of these parameters by concrete
values induces a probability distribution over the state space of the MC. About 15 years
ago, the techniques focused on computing a rational function over the parameters expressing
the reachability probability of a given target state (Daws, 2004; Lanotte et al., 2007; Hahn
et al., 2011) and could handle only up to a handful of parameters. In recent years significant
progress has been made to check whether there exists a parameter valuation inducing an
MC that satisfies a given objective, or to partition the parameter space — the space of all

1638

Automatically Finding the Right Probabilities in Bayesian Networks

Figure 1: Overview of our framework for analyzing (parametric) Bayesian networks.

possible parameter values — into “good” and “bad” w.r.t. a given objective, e.g., is the
probability to reach some states below (or above) a given threshold λ? Due to algorithmic
improvements, nowadays Markov models with hundreds of thousands of states and tens or
hundreds of parameters are in reach (Dehnert et al., 2015; Quatmann et al., 2016; Gainer
et al., 2018; Fang et al., 2021; Heck et al., 2022); for a recent overview see (Junges et al.,
2019).

This paper applies state-of-the-art probabilistic model checking and parameter synthesis to
various analysis problems on (parametric) Bayesian networks. A bird eye’s view on our ap-
proach is provided in Fig. 1. (Parametric) BNs are mapped automatically onto (parametric)
Markov chains (MCs) and temporal logic formulas in PCTL (Hansson & Jonsson, 1994) are
associated to the objectives at hand on (p)BNs. PMC and parameter synthesis techniques
are then employed to obtain various sorts of information on the (p)BNs such as probabilities
for inference queries, sensitivity functions for a given evidence in terms of the parameters,
parameter instantiations that make certain constraints true, or even partitioning of the
entire (in the figure a two-dimensional) parameter space.

Organization and contributions of the paper. This paper provides details on all
ingredients of our approach. We start off in Section 2 by describing the models of interest:
parametric BNs and parametric MCs. This is complemented by treating symbolic tech-
niques on both models: probabilistic sentential decision diagrams (PSDDs) (Choi, Kisa, &
Darwiche, 2013; Kisa et al., 2014), a symbolic data structure tailored to BN analysis, and
multi-terminal (aka: algebraic) decision diagrams (MTBBDs) (Fujita et al., 1997; Bahar
et al., 1997) that are used in e.g., symbolic PMC (Baier, Clarke, Hartonas-Garmhausen,
Kwiatkowska, & Ryan, 1997) as well as in Bayesian inference (Sanner & McAllester, 2005).

Section 3 defines a variety of objectives on BN, ranging from classical threshold inference
problems to more advanced parameter tuning objectives. This is complemented by several
objectives on parametric MCs.

Section 4 presents two techniques for mapping a BN onto a corresponding MC: a general
translation that is applicable to all objectives on BNs, and a translation that takes the

1639

Salmani & Katoen

evidence of the BN query into account and tailors the MC to this specific query. For a
range of objectives on (parametric) BNs, the corresponding temporal logic formulas are
provided.

Section 5 surveys the main PMC algorithms and relevant model reduction techniques. We
then report on various experiments for analyzing classical, i.e., non-parametric BNs in Sec-
tion 6. An extensive experimental validation using a prototypical implementation on top
of the Storm model checker (Dehnert et al., 2017) compares the efficiency of probabilistic
inference using explicit-state PMC techniques to Ace, a tool that carries out inference on
BNs using compilation into arithmetic circuits. In addition, symbolic probabilistic infer-
ence using MTBDD-based PMC is compared to PSDD-based inference on BNs. We also
investigate the effect of the evidence-tailored translation from BNs onto MCs.

Section 7 surveys algorithms for various parameter synthesis objectives on MCs, such as
computing solution functions, feasibility checking (find a parameter instantiation, if any,
such that a given constraint holds), parameter space partitioning (divide the parameter
space into accepting and refuting regions), and region verification (does a given constraint
hold for a given set of parameter instantiations?). All algorithms in this paper are de-
scribed at an intuitive level, and some are illustrated with examples; references to detailed
descriptions of the algorithms are provided.

Section 8 reports on the experimental validation of our approach using a tool-chain built on
top of the Storm model checker as well as the parameter synthesis tool Prophesy (Dehnert
et al., 2015). The tools Bayesserver and SamIam are used as baseline tools for evaluating
parametric BNs. The experiments focus on the following issues:

• Can we perform sensitivity analysis on parametric BNs fast and with arbitrary pa-
rameter dependencies?

• What are the decisive factors in the computation time of pBN sensitivity functions
using PMC techniques?

• How effective are the parametric MC feasibility checking techniques for analyzing
parametric BNs?

• How do the number of parameters influence the feasibility analysis time?

• How does the coverage affect the parameter space partitioning time for pBNs?

Section 9 discusses related work that has not yet been discussed in the rest of the paper
and Section 10 concludes the paper and provides some pointers to future work. Appendix
A contains the proofs of the main theoretical results.

This paper extends the conference papers (Salmani & Katoen, 2020, 2021). It has thor-
oughly been rewritten and has been extended with a more detailed description of the ob-
jectives on pBNs and pMCs, and with a complete description of all relevant algorithms
for PMC and parameter synthesis. All experiments have been newly conducted, are more
extensive, and include new techniques for feasibility checking using gradient descent as well
as a comparison between three algorithms for feasibility checking.

1640

Automatically Finding the Right Probabilities in Bayesian Networks

The main findings of this paper. In a nutshell, our main findings are:

• Inference queries on (p)BNs correspond to reachability probabilities in (p)MCs.

• Temporal logic yields a flexible technique for formalizing inference queries.

• Probabilistic inference using model checking is competitive except if many probability
values frequently occur in CPTs.

• Inference using PSDD outperforms inference using MTBDD-based model checking.

• Evidence-tailored compilation can reduce the size of decision diagrams by up to one
order of magnitude.

• Current techniques for computing solution functions in PMC scale much better than
existing techniques for parametric BNs: pBNs with hundreds of parameters can be
analysed in reasonable time.

• Parameter synthesis technique from PMC can deal with multiple parameters within
a BN, possibly occurring in different CPTs.

• Gradient descent is mostly the favorable technique for finding a suitable parameter
instantiation and can deal with parametric BNs with up to hundreds of parameters.
For parametric BNs with many (more than 200) parameters, convex programming
techniques are more efficient.

• Parameter space partitioning is very effective for parameter tuning for parametric
BNs with up to ten parameters.

2. Parametric Probabilistic Models

After providing some preliminaries on parameters and their valuations, this section for-
malises the notions of parametric Bayesian networks and parametric Markov chains. It
finishes with describing two symbolic data structures to obtain succinct representations of
probabilistic models: multi-terminal binary (aka algebraic) decision diagrams, and proba-
bilistic sentential decision diagrams.

Variables. Let V be a set of m random variables. We fix a total order on the random
variables in V by letting V = {v1, . . . , vm}. Let Dvi denote the domain of variable vi. Let
Eval(V) = Dv1× . . .×Dvi , i.e., the Cartesian product of the domains, represents all possible
ways to assign a joint valuation to the random variables. For convenience, each variable
valuation η ∈ Eval(V) will be represented as a map η : V → Dv1 ∪ . . . ∪Dvm . For example,
let V = {U,B} with DU = DB = {neg, pos}. The set of variable valuations is Eval(V) =
{(neg, neg), (neg, pos), (pos, neg), (pos, pos)}. Parameters. Let X be a set of n real-valued
parameters x1, . . . , xn and let Q[X] denote the set of multivariate polynomials with rational
coefficients over X. A parameter instantiation is a function u : X → R. We often consider u
as a vector ~u ∈ Rn by ordering the set of variables X = {x1, . . . , xn} and setting ui = u(xi).
We assume all parameters are bounded; i.e., lbi ≤ u(xi) ≤ ubi for each parameter xi. Let
Ii = [lbi, ubi] denote the interval for the possible values of parameter xi. The parameter

1641

Salmani & Katoen

Pregnancy

Blood TestUrine Test

Pregnancy

no yes

0.13 0.87

Urine Test

Pregnancy neg pos

no 0.893 0.107
yes 0.36 0.64

Blood Test

Pregnancy neg pos

no 0.893 0.107
yes 0.27 0.73

Figure 2: An example BN - Pregnancy tests.

space of X, denoted by U ⊆ Rn, is the set of all possible parameter values, i.e., the hyper-
rectangle spanned by the intervals [lbi, ubi] for all i. A set R ⊆ U is called a region. A
polynomial f can be seen as a function f : Rn → R where f(u) is obtained by substituting
every occurrence of xi in f by u(xi); e.g., for f = 2x2

1 + x2, u(x1) = 3 and u(x2) = 2,
we have f(u) = 20. From now on, we write f [u] instead of f(u) to make it clear when
substitution occurs. Let Distr(D) denote the set of parametric probability distributions
over the finite domain D, i.e., the set of functions µ : D → Q[X]. We thus consider
finite-support parametric distributions that are (point-wise) multivariate polynomials with
rational coefficients over the parameters. For all well-defined instantiations u, we have
0 ≤ µ(d)[u] ≤ 1 and Σd∈D µ(d)[u] = 1. For example, let µ be the parametric probability
distribution over the parameters X = {x} and the domain D = {d, d′, d′′} defined by
µ(d) = x and µ(d′) = 1−x, and µ(d′′) = 0. For all instantiations u with 0 ≤ u(x) ≤ 1, µ[u]
is a distribution, e.g., for u(x) = 1/4, µ[u](d) = 1/4 and µ[u](d′) = 3/4.

2.1 Parametric Bayesian Networks

A parametric Bayesian network is a Bayesian network in which some or all the entries in
the conditional probability tables (CPTs) are polynomials over the parameters in X.

Definition 1. A parametric BN (pBN) B is a tuple (V,W,X,Θ), where V = {v1, . . . , vm}
is a set of discrete random variables, G = (V,W) is a directed acyclic graph over the random
variables V and the edges W ⊆ V × V , X = {x1, . . . , xn} is a finite set of real-valued
parameters, and Θ = {Θvi | vi ∈ V } is a set of parametric conditional probability tables for
the random variables in V .

Let parents(vi) denote the set of parents for the node vi in G. The CPT for variable
vi is the function Θvi : Eval(parents(vi)) → Distr(Dvi) that maps each evaluation par ∈
Eval(parents(vi)) to a parametric probability distribution Θvi(par) over Dvi . The CPT
entry Θvi(par)(di) denotes the probability of vi = di given the parents evaluation par.

A pBN without parameters, i.e., X = ∅, is an ordinary BN, provided that the CPTs Θ yield
probability distributions over the domains of the vertices, i.e., if Θvi(par)[u] ∈ Distr(Dvi)
for each vi ∈ V and parent evaluation par ∈ Eval(parents(vi)). Let B[u] be obtained by
replacing every parameter xi in B by its value u(xi) where u : X → R. The parameter
instantiation u is well-defined if B[u] is an ordinary BN. In the sequel, we assume u to be

1642

Automatically Finding the Right Probabilities in Bayesian Networks

Pregnancy

Blood TestUrine Test

Pregnancy

no yes

0.13 0.87

Urine Test

Pregnancy neg pos

no 0.893 0.107
yes p 1−p

Blood Test

Pregnancy neg pos

no 0.893 0.107
yes q 1−q

Figure 3: An example parametric BN - Pregnancy tests.

well-defined. A pBN defines a parametric joint probability distribution function (pdf) over
V ; similarly, the BN B[∅] defines a joint pdf over V .

Example 1. Figure 2 depicts an ordinary BN example adopted from (Darwiche, 2009). The
BN models the pregnancy of cows on a farm. The pregnancy can be tested by two types
of tests: a urine test and a blood test. Figure 3 indicates a parametric version over the
parameters X = {p, q}, where the false negative probabilities of both tests are unknown.
The parameters p and q represent the false negative probability of the urine test and the
blood test, respectively. The BN in Fig. 2 is obtained from the pBN in Fig. 3 by the
well-defined instantiation u with u(p) = 0.36 and u(q) = 0.27.

Classes of parametric BNs. We define some classes of pBNs that are covered in existing
sensitivity analysis techniques and tools. They constrain the number of parameters as well
as the number of CPTs and the number of separate rows in a CPT containing parameters.
Let B be a pBN over the set X of parameters. Let c(xi) be the number of CPTs in B
in which xi occurs and r(xi) denote the total number of rows that xi occurs in across all
CPTs.

• B ∈ p1c1r1 if and only if B contains one parameter, which only occurs in a single row
of a single CPT, i.e., X = {x1}, c(x1) = r(x1) = 1.

• B ∈ p2c≤2r1 if and only if B involves two parameters occurring only in a single row of
two (or one) CPTs, i.e., X = {x1, x2}, c(xi) ∈ {1, 2}, and r(xi) = 1 for i = 1, 2.

• B ∈ p∗c1r1 if and only if B allows arbitrarily many parameters, provided each param-
eter occurs in a single row of a single CPT, i.e., r(xi) = 1, c(xi) = 1 for each xi. Each
parameter xi occurs in a separate row of the same CPT.

The class p1c1r1 is used in one-way, p2c≤2r1 in two-way sensitivity analysis (Chan & Dar-
wiche, 2002; Coupé & Van der Gaag, 2002; Van der Gaag et al., 2007), and the class p∗c1r1

in single CPT (Chan & Darwiche, 2004). As we will see later on, our parameter synthesis
techniques are applicable to the class p∗c∗r∗, i.e., pBNs with arbitrarily many parame-
ters that can occur everywhere in the CPTs. Note that the definition also allows multiple
distinct parameters to occur in the same CPT row and/or the same CPT entry.

Example 2. The pBN in Fig. 3 belongs to the class p2c2r1 as it involves two parameters
occurring in a single row in two CPTs. A variant of this example is depicted in Fig. 14(a)

1643

Salmani & Katoen

init

P=no P=yes

P=no
U=pos

P=no
U=neg

P=yes
U=neg

P=yes
U=pos

B=neg B=pos

0.
13

0.87

0.107
0.8

93 p 1−p
0.

89
3

0.107

0.893

0.107

q

1−
q

q

1−
q

1 1

(a) A pMC with unknown probabilities.

init

P=no P=yes

P=no
U=pos

P=no
U=neg

P=yes
U=neg

P=yes
U=pos

B=neg B=pos

0.
13

0.87

0.1070.8
93

0.36
0.64

0.
89

3

0.107

0.893

0.107

0.2
7

0.73

0.27

0.
73

1 1

(b) An MC with fixed probabilities.

Figure 4: The parametric MC (a) and the MC (b) of the pregnancy example.

(page 1665) where the urine test is used twice for each cow to detect pregnancy. This pBN
is in class p2c2r2: parameter p occurs in two different rows of two different CPTs. This is
an example with parameter dependencies as a parameter occurs in several CPTs.

2.2 Parametric Markov Chains

Whereas pBNs generalize BNs by allowing polynomials over parameters in CPTs, paramet-
ric Markov chains allow such polynomials as transition labels. Formally,

Definition 2. A parametric Markov chain (pMC) M is a tuple (S, sI , X,P) where S is
a finite set of states, sI ∈ S is the initial state, X is a finite set of real-valued parameters,
and P : S × S → Q[X] is a transition function over the states.

The parametric transition probability of going from state s to t is given by P(s, t). Intu-
itively, instead of a concrete probability, a transition is equipped with a polynomial over the
parameters X. A pMC with X = ∅ and P : S×S → Distr(S) is a Markov chain (MC). Ap-
plying the instantiation u : X → R to the pMCM yieldsM[u] by replacing each transition
function f ∈ Q[X] inM by f [u]. An instantiation u is well-defined (forM) if the transition
function induced by u yields probability distributions, i.e., if P(s, .)[u] ∈ Distr(S), for each
s ∈ S. For the well-defined instantiation u, M[u] is an MC. We assume in the rest of the
paper that all instantiations are well-defined. In general, a pMC defines an uncountably
infinite family of MCs, where each family member is obtained by a parameter instantiation.
(In a similar way, a pBN defines an uncountably infinite set of BNs.)

Example 3. Figure 4(b) depicts an acyclic MC with nine states and initial state init. It
models our running pregnancy example: initially, there is a possibility of being pregnant
(with probability 0.87), or not (with probability 0.13); then, a urine test and a blood
test are carried out. Figure 4(a) indicates the parametric version where the false-negative
probabilities for the urine test and the blood test are unknown and modeled as parameters

1644

Automatically Finding the Right Probabilities in Bayesian Networks

p and q, respectively. The parameter instantiation u with u(p) = 0.36, and u(q) = 0.27
yields the MC in Fig. 4(b). Let e.g., {u : X → R | 0 ≤ u(p), u(q) ≤ 0.1} denote intervals
of probability values for the parameters p and q that are related to relatively-precise tests.
Such intervals for parameters values are referred to as regions later on.

2.3 Symbolic Probabilistic Data Structures

Models such as BNs and MCs can be compactly represented by symbolic data structures
such as decision diagrams. We consider two such data structures: multi-terminal binary
decision diagrams (MTBDDs) and probabilistic sentential decision diagrams (PSDDs). We
consider Binary decision diagrams as the reference to define MTBDDs. The concepts of
vtrees, strongly deterministic decomposition, and sentential decision diagrams (SDDs) are
introduced as preliminaries to defining PSDD. This section is relevant only to support the
experiments in Section 6.2. The definitions are taken from the literature and are only
tailored to our notations. The readers who are familiar with MTBDDs and/or PSDDs can
skip reading the detailed formal definitions.

Reduced Ordered Binary Decision Diagrams (ROBDDs). ROBDDs, or simply BDDs, rep-
resent boolean functions. They result from compacting binary decision trees by eliminating
don’t care nodes and isomorphic subtrees. The essential characteristic of BDDs is that they
are canonical for a given boolean function and a given variable ordering (Bryant, 2018).
The size of the BDD strongly depends on the variable ordering. Optimal variable orderings
can yield very succinct BDDs. Although finding the optimal variable ordering is NP-hard
(Bollig & Wegener, 1996) and mostly is not achieved, BDDs can be very compact in practice
(Chaki & Gurfinkel, 2018).

Syntax. Let ℘ = (z1, . . . , zm) be a (total) variable ordering for Var = {z1, . . . , zm}. We
also write z1 <℘ . . . <℘ zm. The ℘-BDD B consists of a finite set V of nodes, partitioned
into inner VI and terminal nodes VT , and root node v0 ∈ VI . The successor functions
succ0, succ1 : VI → V assign a zero-successor and a one-successor to each inner node. The
labelling functions var : VI → Var and val : VT → {0, 1} satisfy the following constraint for
v ∈ VI and w ∈ {succ0(v), succ1(v)}:

(var(v) = zi ∧ w ∈ VI) ⇒ var(w) = zj with zi <℘ zj .

Every inner node v represents a variable zi and terminal nodes represent 0 or 1.

Semantics. The semantics of ℘-BDD B is the boolean function fB where fB([z1 =
b1, . . . , zm = bm]) is determined by the value of the resulting leaf obtained by traversing the
BDD starting from the root v0 and branching according to the valuation [z1 = b1, . . . , zm =
bm]. For terminal v, fv represents the constant function fv with value val(v). For inner
node v, fv is defined by the Shannon expansion fv = (¬z ∧ fsucc0(v))∨(z ∧ fsucc1(v)), where
z=var(v). Thus, if b=0, v’s next node with var(v) = z is succ0(v); otherwise succ1(v). A
℘-BDD B is reduced if for every pair (v, w) of nodes in B, v 6= w implies fv 6= fw. A BDD
can be reduced by recursively applying two reduction rules: eliminating don’t care vertices
and eliminating isomorphic subtrees.

1645

Salmani & Katoen

Figure 5: MTBDD of pregnancy example for the variable ordering P < U < B.

Multi-Terminal Binary Decision Diagrams. While BDDs represent boolean func-
tions, MTBDDs (Fujita et al., 1997) represent real-valued functions —also known as pseudo-
boolean functions. Their terminal values are thus real (or rational) numbers. They are also
known as algebraic decision diagrams (Bahar et al., 1997; Sanner & McAllester, 2005).
Their semantics is defined analogously to that of BDDs. Let Var and ℘ be as before. An
MTBDD M has the same structure as a BDD except that (in our setting) the value function
val is defined as val : VT → [0, 1] assigning each terminal node v a probability val(v).

Example 4. Figure 5 shows the MTBDD for the MC in Fig. 4(b) with variable ordering
x0 < x1 < x2, where the variables correspond to the random variables Pregnancy, Urine
Test, and Blood Test. The edges represent the valuation of the variables x0 through x2 to
0 (dashed) and 1 (solid). The leaves store the probabilities of the joint pdf. Consider the

leftmost path in the MTBDD: x0
0−→ x1

0−→ x2
0−→ 0.103 The value—which is obtained

by traversing from the root based on the valuation of each variable—denotes the joint
probability of not being pregnant while both the urine and the blood test are negative:
0.10366837 = 0.13 · 0.893 · 0.893. The second terminal node is shared.

Sentential Decision Diagrams (Darwiche, 2011) represent propositional knowledge bases.
They are inspired by two concepts: strongly deterministic decomposition: a generalisation of
Shannon decomposition (Pipatsrisawat & Darwiche, 2010), and structured decomposability
(Pipatsrisawat & Darwiche, 2008) that is based on vtrees.

A vtree (Pipatsrisawat & Darwiche, 2008) for variables Var is a full (but not necessarily
complete) binary tree whose leaves are in one-to-one correspondence with the variables in
Var. For the vtree node t, let tl and tr denote the left and the right child of t, respectively.
Let var(t) denote the variables in the leaves of the subtree rooted at node t 1. The boolean
function2 f respects vtree T if for every term α∧β in f , var(α) ⊆ var(tl) and var(β) ⊆ var(tr)
for some node t in T .

1. For the vtree node t, the subtree rooted at node t is also often denoted by t.
2. in Decomposable Negation Normal Form.

1646

Automatically Finding the Right Probabilities in Bayesian Networks

Example 5. Figure 6(a) depicts a vtree for the random variables P,U, and B from the
pregnancy example. We have var(2) = {P,U,B}, var(4) = {U,B}, and var(3) = {U}. For
instance, the boolean function f = (U ∧ ¬B) respects this vtree.

Strongly deterministic decomposition generalizes Shannon decomposition. Let f be a boolean
function over variables Z. For variable z ∈ Z, let f |z and f |¬z denote the subfunctions
that are obtained by setting variable z to true or false in f , respectively. A function f
essentially depends on variable z iff f |z 6= f |¬z. We write f(Z) to denote that function
f only essentially depends on the variables in Z. Let X and Y be a partition of Z. If
f = (p1(X) ∧ s1(Y)) ∨ . . . ∨ (pn(X) ∧ sn(Y)), then {(p1, s1), . . . , (pn, sn)} is an (X,Y)-
decomposition of f in terms of boolean functions pi and si on X and Y . The functions pi
are called primes and the functions si are called subs. An (X,Y)-decomposition of function
f is strongly deterministic on X if pi ∧ pj = false for all i 6= j. If, in addition, the primes
form a partition3 of X, then it is called an X−partition of f . Whereas BDDs are based on
the Shannon decomposition of a function f as a x−partitioning of f for the single variable
x, SDDs are based on X−partition of f for some set X of variables.

The SDD node v is associated with (normalized 4 for) (Darwiche, 2011) the vtree node t
according to the following rules :

• If v is a terminal node, then t is a leaf node which contains var(v) (if any).

• If v is a decision node, then its primes (subs) are normalized for the left (right) child
of t, i.e., tl and tr.

• If v is the root SDD node, then t is the root vtree node.

Semantics. Let v be an SDD node that is associated with vtree t. The semantics of v is
defined by the boolean function fv as follows.

• If v is a terminal node and t is its associated leaf node with var(t) = z, then

– for v = ⊥, fv = false and for v = >, fv = true, and

– for v = z, fv = z and for v = ¬z, fv = ¬z.

• If v = {(p1, s1), . . . , (pn, sn)} is a root or an internal decision node, t is its associated
vtree node, p1, . . . , pn are SDDs that are associated with tl, and s1, . . . , sn are SDDs
that are associated with tr, where fp1 , . . . , fpn partition var(tl). The semantics of v is

then given by fv =
n∨
i=1

(fpi ∧ fsi).

SDDs are thus a recursive X-partitioning of a boolean function with respect to a given
vtree. An SDD is compressed if all its subs are distinct. It is trimmed if it does not contain
any decomposition of the form {(>,S)} or {(S,>), (¬S,⊥)}. SDDs that are compressed
and trimmed are canonical given a vtree (Darwiche, 2011).

3. Each prime is consistent (i.e., is satisfiable by some evaluation), every pair of distinct primes is mutually
exclusive, and the disjunction of all primes holds.

4. As PSDDs are defined based on normalized SDDs, we focus the definition on normalized SDDs.

1647

Salmani & Katoen

(a) vtree. (b) PSDD.

Figure 6: A (a) vtree and (b) the PSDD respecting it for the pregnancy example.

Probabilistic Sentential Decision Diagrams. PSDDs (Kisa et al., 2014) extend (nor-
malized) SDDs to represent probability distributions. They are complete in the sense that
every distribution with finite support can be induced by a PSDD. They are canonical as in-
herited from SDDs: for a given probability distribution and a given vtree, there is a unique
trimmed and compressed PSDD. Computing the probability of a term can be done in time
linear in the PSDD size (Kisa et al., 2014).

Syntax. A PSDD decision node (p1, s1, θ1), . . . , (pk, sk, θk) is an SDD decision node (pi, si),
. . . , (pk, sk), where every prime pi is equipped with a probability θi. We have θ1+. . .+θk = 1
and θi = 0 iff si = ⊥. Each terminal node > is equipped with probability θ where 0 < θ < 1.
For the internal decision nodes, probability θi labels the incoming edge to (pi, si). For the
terminal nodes, it is denoted by z: θ, where z is the variable of the vtree leaf node that > is
normalized for. Other terminal nodes (⊥, z, and ¬z) have fixed pre-defined probabilities.

Semantics. Let v be a PSDD node that is associated with vtree node t. The semantics of v
is defined as the probability distribution Prv over the variables in var(t) as follows.

• If v is a terminal node and var(t) = z, then

– for v = z: θ, Prv(z) := θ and Prv(¬z) := 1− θ,

– for v = ⊥, Prv(z) := 0 and Prv(¬z) := 0,

• If v is a decision node (p1, s1, θ1), . . . , (pk, sk, θk) that is normalized for the vtree node
t with var(tl) = X and var(tr) = Y , then Prv(X,Y) := Prpi(X) · Prsi(Y) · θi, for i
with X |= pi. Here, X ∈ Eval(X) is a joint evaluation for variables in X. Note that,
by the definition of strongly deterministic decomposition, the condition X |= pi holds
on exactly one of the primes: primes are mutually exclusive.

Example 6. Figure 6 (b) indicates the PSDD for the pregnancy example (from Fig.
2) that is associated with the vtree in Fig. 6 (a). Circles denote decision nodes and
rectangles denote prime-sub pairs (pi, si). The decision nodes are linked to the prime-

1648

Automatically Finding the Right Probabilities in Bayesian Networks

sub pairs by the edges that are labeled with probability values (θi). The inner node 4 is,
e.g., an (X,Y)-decomposition for X={U} and Y={B}. By PSDD semantics, we obtain
Pr(P = no ∧U = neg ∧ B = neg) = 0.13 · 0.893 · (1−0.107) = 0.10366837.

3. Objectives for Parametric Models

Whereas the previous section introduced the probabilistic models relevant to this paper,
we now present some objectives on (parametric) Bayesian networks and parametric Markov
chains. These objectives indicate what the synthesis problems are that we focus on. The
typical perspective is that a requirement is given and that we are interested in finding some
(or all) parameter values that fulfill this requirement, or that no parameter value can fulfill
the requirement.

3.1 Objectives for Parametric Bayesian Networks

We discuss four synthesis problems for pBNs by considering their corresponding decision
problems (Kwisthout & Van der Gaag, 2008). We took the objectives explicitly from the
BN literature (Castillo et al., 1997a; Coupé & Van der Gaag, 2002; Kwisthout & Van der
Gaag, 2008) and tailored them to our notation. In the sequel, let PrB denote the parametric
joint distribution function induced by pBN B = (V,E,X,Θ) and PrB[u] the joint probability
distribution of BN B[u] at well-defined instantiation u : X → R. Let E ⊆ V be the evidence,
H ⊆ V the hypothesis, and λ ∈ Q ∩ [0, 1] a rational threshold. Let e, e′ ∈ Eval(E) and
h, h′ ∈ Eval(H) be some joint evaluations for the variable in E and H. We start off with a
well-known objective for classical BNs.

Threshold inference. Threshold inference for classical BN B amounts to check whether
PrB(H = h | E = e) ∼ λ for threshold λ and comparison operator ∼ ∈ {≤,≥}. A simplified
version is obtained by only considering an evidence, i.e., whether PrB(E = e) ∼ λ. The
objective is concerned with determining the function that describes PrB.

Sensitivity function. For the evidence E=e and hypothesis H=h5, determine the sen-
sitivity function fPrB(H=h|E=e), such that for every instantiation u : X → R

fPrB(H=h|E=e)[u] = Pr
B[u]

(H = h | E = e).

Due to the presence of parameters, the function fPrB is a rational function over X, i.e.,
a fraction g/h with g, h ∈ Q[X]. This function reduces to a probability distribution for
well-defined instantiation u. In a similar way, the function fPrB(E=e) is defined.

Example 7. Consider the pBN B for our running example (Fig. 3) and assume that we
are interested in the probability of a cow being pregnant given that both tests are negative.
The sensitivity function for this objective is:

fPrB(Pregnancy=yes|UrineTest=neg∧BloodTest=neg) =
87000000·p·q

87000000·p·q + 10366837
. (1)

5. As E and H are sets of vertices, both e and h are in fact vectors of values.

1649

Salmani & Katoen

Parameter tuning. For pBN B, a natural objective is to find an instantiation u with
PrB[u](H = h | E = e) ∼ λ or report that such an instantiation does not exist.

Example 8. Consider again the pBN of our running example (Fig. 3) and assume that
the farmer requires that the probability of a cow being pregnant given that both tests are
negative to be below 1/5. By equation (1), this yields p · q ≤ 0.027.

The next two objectives capture the change if the hypothesis H=h is adapted to H=h′.

Hypothesis ratio parameter tuning. Given the hypotheses H=h, H=h′, and λ ∈ Q+

for evidence E=e, find an instantiation u such that:

PrB[u](H = h′ | E = e)

PrB[u](H = h | E = e)
∼ λ i.e.,

PrB[u](H = h′ ∧ E = e)

PrB[u](H = h ∧ E = e)
∼ λ. (2)

Example 9. For the pBN of our running example (Fig. 3), assume that the farmer intend
to ensure the following constraint:

PrB(UrineTest=pos ∧ BloodTest=pos | Pregnancy=yes)

PrB(UrineTest=neg ∧ BloodTest=neg | Pregnancy=yes)
≥ 9,

which can be simplified to the following equation:

PrB(UrineTest=pos ∧ BloodTest=pos ∧ Pregnancy=yes)

PrB(UrineTest=neg ∧ BloodTest=neg ∧ Pregnancy=yes)
≥ 9.

This yields 1− p− q− 8 · p · q ≥ 0. The equation does not hold for the the original values of
p and q in the original BN (Fig. 2). Tuning the parameters to the parameter instantiation
u with u(p) = 0.3 and u(q) = 0.2 satisfies the constraint.

Hypothesis difference parameter tuning. Given the hypotheses H=h and H=h′ for
evidence E=e, find an instantiation u such that:

Pr
B

[u](H = h | E = e) − Pr
B

[u](H = h′ | E = e) ∼ λ.

The difference and ratio problems can analogously be defined for varying evidences rather
than varying hypotheses. The evidence tuning problems are defined for values e and e′ for
E, given a fixed value h for H.

3.2 Objectives on Parametric Markov Chains

Let D = (S, sI , X,P) with X = ∅ be a classical non-parametric MC. Let Paths(s) denote the
set of all infinite paths in D starting from s, i.e., all infinite sequences of the form s1s2s3 . . .
with s1 = s and P(si, si+1) > 0. A probability measure PrD is defined on measurable sets of
infinite paths using a standard cylinder construction; for details, see, e.g., (Baier & Katoen,
2008, Ch. 10).

1650

Automatically Finding the Right Probabilities in Bayesian Networks

init

P=no P=yes

P=no
U=neg

P=yes
U=neg

P=no
B=neg

P=yes
B=neg

0.
13

0.87

0.893

0.
10

7

0.36

0.64

0.893

0.
10

7

0.27

0.73

1 1

(a) MC.

s0

s1 s2

s3 s4

s5 s6

0.
13

0.87

0.893

0.
10

7

0.36

0.64

0.893

0.
10

7

0.27

0.73
1 1

(b) MC - abstracted.

s0

s1 s2

s3 s4

s5 s6

0.
13

0.87

0.893

0.
10

7

p

1−
p

0.893

0.
10

7

q

1−
q

1 1

(c) pMC - abstracted.

Figure 7: The MC (a,b) and pMC (c) for pregnancy example tailored to the evidence Urine

Test = neg and Blood Test = neg. (b) and (c) are abstracted from variable-valuations.

Reachability probabilities. For D and s ∈ S, the reachability probability of the set
G ⊆ S of goal (target) states, denoted using standard notation from temporal logic by
PrD(♦G), is defined as the probability to eventually reach some state in G from s:

Pr
D

(♦G) = Pr
D
{ s1s2s3 . . . ∈ Paths(s) | ∃i. si ∈ G }. (3)

We are often interested in the reachability probability from the initial state sI in D. From
now on, s = sI when not explicitly mentioned otherwise. Reachability probabilities can be
obtained as the unique solution of a linear equation system (Baier & Katoen, 2008) whose
size is proportional to the number of states in D.

Example 10. Consider the MC D in Fig. 7(b). We refer to Sec. 4 on how the MC is
obtained. Let psi denote the probability of reaching target state s6 from state si and assume
we are interested in eventually reaching s6 from the initial state s0 with a probability below
the threshold λ = 1/5, i.e., Pr(♦s6) ≤ 1/5. We refer to this as the specification ϕ. The
reachability probability Pr(♦s6) is obtained by solving the linear equation system:

ps0 = 0.13 · ps1 + 0.87 · ps2
ps1 = 0.893 · ps3 + 0.107 · ps0
ps2 = 0.36 · ps4 + 0.64 · ps0

ps3 = 0.893 · ps5 + 0.107 · ps0
ps4 = 0.27 · ps6 + 0.73 · ps0
ps5 = 0, and ps6 = 1.

Verifying the specification ϕ is equivalent to checking whether ps0 ≤ 1/5. Solving the
equation system yields ps0 = 0.4925323. Thus MC D refutes ϕ.

Solution functions. The solution function PrM(♦G) for pMC M is a rational function
over the parameters in X such that for every instantiation u it holds that (Daws, 2004):

Pr
M

(♦G)[u] = Pr
D

(♦G) where MC D =M[u].

1651

Salmani & Katoen

Example 11. Consider the pMCM in Fig. 7(c). The rational function Pr(♦s6) is obtained
by solving the non-linear equation system that differs from the above linear equation only
for the two parametric states s2 and s4:

ps2 = p · ps4 + (1−p) · ps0 ps4 = q · ps6 + (1−q) · ps0
The unique solution for state s0 of this equation system is the required solution function:

Pr(♦s6) = ps0 =
87000000·p·q

87000000·p·q + 10366837
. (4)

Notice that this is exactly the function obtained in Example 7. We will see later that such
correspondence holds in general.

Let pMC M = (S, sI , X,P) with goal states G ⊆ S, λ ∈ Q ∩ [0, 1] a threshold, and
∼ ∈ {≤,≥} be a comparison operator. Assume the specification objective is to reach a
state in G ⊆ S with a probability that meets the constraint ∼ λ. Formally, the fact that
pMC M satisfies the specification ϕ for the parameter instantiation u : X → R, denoted
M[u] |= ϕ, is defined by:

M[u] |= ϕ if and only if Pr
M[u]

(♦G) ∼ λ.

Mostly, we are not interested in one specific instantiation u but rather in an entire set of
such instantiations—such set is called a region. Let R ⊆ Rn be a region, where n is the
number of parameters in M, i.e., n = |X| and let

M, R |= ϕ if and only if ∀u ∈ R.M[u] |= ϕ.

Feasibility problem. Find an instantiation u such that M[u] |= ϕ or report that such
an instantiation does not exist.6

Example 12. For the example pMC in Fig. 7(c) and the constraint Pr(♦s6) ≤ 1/5, the
feasibility problem is equivalent to finding a solution to the formula:

∃ ps0 , . . . , ps6 , p, q ∈ R such that

ps0 ≤ 1/5

∧ 0 < p < 1 ∧ 0 < q < 1

∧ ps0 = 0.13 · ps1 + 0.87 · ps2
∧ ps1 = 0.893 · ps3 + 0.107 · ps0

∧ ps2 = p · ps4 + (1−p) · ps0
∧ ps3 = 0.893 · ps5 + 0.107 · ps0
∧ ps4 = q · ps6 + (1−q) · ps0
∧ ps5 = 0, ∧ ps6 = 1.

This is a formula in the existential theory of reals (ETR for short)7. The above ETR-formula
reduces to:

∃p, q ∈ R. 0 < p, q < 1 ∧ 87000000·p·q
87000000·p·q + 10366837

≤ 1/5. (5)

6. The optimal feasibility problem is to find an instantiation u that maximises (or dually minimises) the
probability to satisfy ϕ.

7. Each feasibility problem on pMCs can be encoded as ETR-formula. In addition, each ETR-formula ψ
can be encoded as a reachability constraint ϕ on an pMC M (that depends on ψ) such that ψ has a
solution if and only ifM |= ϕ. The feasibility problem for pMCs is thus ETR-complete (Junges, Katoen,
Pérez, & Winkler, 2021). ETR is a complexity class that lies in between NP and PSPACE.

1652

Automatically Finding the Right Probabilities in Bayesian Networks

Parameter space partitioning. The aim is to partition region R into R+, R−, and R?

such that:

R+ ⊆ {u ∈ R | M[u] |= ϕ}︸ ︷︷ ︸
satisfying instantiations

and R− ⊆ {u ∈ R | M[u] |= ¬ϕ}︸ ︷︷ ︸
refuting instantiations

and R? = R\ (R+∪R−) with ||R?|| ≤ (1−η)·||R|| for some given coverage factor 0 ≤ η ≤ 1.
The sub-region R? denotes the fragment of R that is inconclusive for ϕ. It is required
that this fragment covers at most a factor 1−η of the size of R. An exact parameter space
partitioning is obtained when η=1, i.e., if:

R+ = {u ∈ R | M[u] |= ϕ}, R− = {u ∈ R | M[u] |= ¬ϕ}, and R? = ∅.

Thus, then all instantiations satisfying (and refuting) ϕ are determined.

A problem naturally coming up for partitioning is the region verification problem, which for
Rsub ⊆ R is to check whether:

M, Rsub |= ϕ︸ ︷︷ ︸
Rsub is accepting

or M, Rsub |= ¬ϕ︸ ︷︷ ︸
Rsub is rejecting

or M, Rsub 6|= ϕ ∧ M, Rsub 6|= ¬ϕ︸ ︷︷ ︸
Rsub is inconclusive

.

Example 13. Consider our running example from Fig. 7(c) with the solution function
f(p, q) = Pr(♦s6) as obtained in equation (4). Let 0 < p, q < 1 and R be the two-
dimensional hyper-rectangle [0, 1]× [0, 1]. For the specification Pr(♦s6) ≤ 1/5, we have:

R+ = {u | f [u] ≤ 1/5} and R− = R \R+ = {u | f [u] > 1/5}.

In terms of p and q, R+ coincides with the solution space of p · q ≤ 0.027; see Example 8.

4. From Bayesian Networks to Markov Chains

The key of our approach to tackle various synthesis and inference problems on (p)BNs
is to exploit model-checking techniques on MCs (Baier & Katoen, 2008; Katoen, 2016;
Baier et al., 2018) and synthesis techniques (Junges et al., 2019) on pMCs. To that end, we
transform a (p)BN into a (p)MC. We first introduce a transformation that is applicable to all
objectives on pBNs. This evidence-agnostic transformation models the possible valuations of
the random variables in the BN as MC states. We then propose a second transformation that
is tailored to the evidence in an inference query. The latter evidence-tailored transformation
is inspired by (Baier, Klein, Klüppelholz, & Märcker, 2014). We intuitively explain the
transformations through an example and and refer the reader to the Appendix A for further
details and proofs.

Evidence-agnostic transformation. This mapping takes the (p)BN B = (V,W,X,Θ) and a
topological ordering % on the DAG (V,W), and constructs the (p)MC M%

B = (S, s0, X,P)
over the same set of parameters X. The transition probability functions in the pMC are in

1653

Salmani & Katoen

correspondence with the CPT entries, while the states correspond to the possible valuations
of the vertices in the pBN. We illustrate this through an example.

Example 14. Figure 4(a) indicates the pMC for the pBN of our running example for
the topological ordering % = P <% U <% B. For simplicity, the variables are denoted by
their first letters and the don’t care evaluations of variables are omitted. The initial state
represents that all variables are don’t care. It has two outgoing transitions to the states
Pregnancy = yes and Pregnancy = no with probabilities 0.87 and 0.13 as given by the CPT
entries of vertex Pregnancy in the pBN, the first variable in the topological order %. In
general, at “level” i of the MC, the outgoing transitions are determined by the CPT of the
i+1-st variable in the topological order.

The transformation possesses the property that inference objectives on (p)BN B can be
reduced to corresponding reachability queries on the (p)MC M%

B. Let E and H be logical
formulas over the propositions (v = d) with v ∈ V and d ∈ Dv.

Proposition 1. The evidence-agnostic pMC M%
B of pBN B satisfies:

Pr
B

(E) = 1− Pr
M%
B

(♦¬E) and Pr
B

(H | E) =
1− PrM%

B
(♦ (¬H ∨ ¬E))

1− PrM%
B
(♦¬E)

,

where the latter equality requires PrM%
B
(♦¬E) < 1. See the proof in Appendix A.

Thus, exact inference on pBNs is reduced to computing reachability probabilities on the
corresponding pMC.

Evidence-tailored transformation. This mapping aims at obtaining more compact pMCs by
exploiting the evidence at hand. Let pBN B and % be a topological order on its set V of
vertices. Let E = (vE1=dE1)∧ · · · ∧ (vEk=dEk) be the evidence with vE1 <% . . . <% vEk and
vars(E) = {vE1 , . . . , vEk}. In the sequel, we denote Ek as Elast. The E-tailored pMCM%

B,E
is obtained by the following two amendments to the evidence-agnostic pMC M%

B:

1. Propagation operation: Let vj ∈ V with vj 6∈ vars(E) and vj <% vElast . We propagate
the value of vj until the level %(vElast).

2. Redirection operation : Let S¬E denote the states in MB that violate the evidence
E. We delete the incoming transitions to every state in S¬E and redirect them to the
initial state.

Example 15. Figure 7(a) on page 17 is the E-tailored MC obtained for the pregnancy
BN and the evidence E = U=neg ∧ B=neg. The MC reduces the MC in Fig. 4(b) by (1)
propagating the values of P up to the last evidence level and (2) deleting the edges leading
to U=pos or B=pos and redirecting them to the initial state. Unreachable states are sub-
sequently deleted.

Intuitively speaking, the transitions towards the evidence-violating states are in the evidence-
tailored pMC redirected to the initial state.

1654

Automatically Finding the Right Probabilities in Bayesian Networks

Figure 8: Evidence-tailored general sketch.

Let H be a logical formula over the atomic propositions (vHi = dHi) that is decomposable
to the sub-formulas Hbefore and Hafter, such that the variables appearing in Hbefore all occur
before vElast in the topological order % and the variables involved in Hafter all occur after
vElast . Without loss of generality, let H = (vH1=dH1) ∧ · · · ∧ (vHl=dHl) be the hypothe-

sis. Let Hbefore =
∧b
i=1(vHi=dHi) with vHi ≤% vElast and let Hafter =

∧l
i=a(vHi=dHi) with

vHi >% vElast , such that H = Hbefore ∧Hafter.

Proposition 2. The evidence-tailored pMC M%
B,E of pBN B ensures that

Pr
B

(H | E) = 1− Pr
M%
B,E

(
♦
(

(¬Hbefore ∧ Elast) ∨ ¬Hafter

))
.

Example 16. Consider the evidence-tailored MC in Fig. 7(a). We have by Proposition
2, PrB(P=yes |U=neg ∧ B=neg) = 1 − PrMB,E (♦(P=no ∧ B=neg)) = 1 − Pr(♦s5) that
amounts to Pr(♦s6) in this example with a single hypothesis node.

The key to Proposition 2 is that the goal states occur after the last redirection edge, see Fig.
8. This is ensured by the propagation operation. The redirection operation ensures that
for such goal states the obtained probability distribution is normalized by the probability
of the evidence. We refer to App. A for the detailed proofs.

Again, exact inference on pBNs is reduced to reachability probabilities in pMC. This result
facilitates using the algorithms for pMC analysis for pBN parameter tuning. The next
section surveys the main state-of-the-art algorithms for analysing parametric MCs.

5. Probabilistic Model-Checking Algorithms

Probabilistic model checking (PMC) is a fully automated technique to analyse quantitative
properties of Markov chains and extensions thereof (with non-determinism) such as Markov
decision processes. The properties are usually formalised using probabilistic temporal logic
such as Probabilistic Computation Tree Logic (PCTL) (Hansson & Jonsson, 1994). PCTL
is a very flexible and expressive language to describe a wide range of properties. The key
procedure to verify an MC against a temporal logic formula is to compute reachability
probabilities. As illustrated in Example 10 (page 1651), computing reachability probabil-
ities amounts to computing the unique solution of a linear equation system whose size is

1655

Salmani & Katoen

linear in the number of states in the MC. Thus, reachability probabilities can be computed
in polynomial time in the size of the MC. Reachability properties are the central notion
used in this paper. Model-checking results include (1) quantitative results such as the prob-
abilities to reach the states of interest (from each state in the MC), (2) qualitative results:
whether the threshold is met or not, and (3) a counterexample, i.e., a sub-MC—possibly
provided as syntactical description—that refutes the property, in case the threshold is vio-
lated (Wimmer, Jansen, Vorpahl, Ábrahám, Katoen, & Becker, 2015).

Like any state-based analysis technique, the state explosion problem—how to treat models
with a large number of states?—is a challenge naturally rising in (probabilistic) model
checking. Two leading techniques to overcome this challenge are symbolic model checking
and bisimulation minimization. These approaches are originally exploited in classical model
checking and have been carried over to the probabilistic and the parametric setting. The
key to symbolic model checking is to represent the MC as an MTBDD (see Section 2.3)
that captures the symmetries and redundancies in the model. The usage of MTBDDs in
probabilistic model checking originates from (Baier et al., 1997) and is nowadays supported
by the key probabilistic model checking tools such as PRISM (Kwiatkowska et al., 2011)
and Storm (Dehnert et al., 2017).

The idea of bisimulation minimization is to merge the states that have equal transition
probabilities to all the equivalent classes that are defined with respect to an equivalence
relation on the state space. Bisimulation preserves the validity of all formulas that can
be expressed in PCTL which makes it an attractive minimization technique. In addition,
the bisimulation quotient, i.e., the aggregated state space, (a) can be obtained efficiently
(Valmari & Franceschinis, 2010)8, and (b) is the coarsest partitioning of the state space that
preserves the validity of the property of interest (Baier & Katoen, 2008, Ch. 10). That is to
say, any coarser partitioning has to abstract from some information such that the validity of
the property of interest cannot be ensured anymore. The use of bisimulation minimization
leads to a substantial efficiency gain (Katoen, Kemna, Zapreev, & Jansen, 2007).

6. Experimental Results: The Non-Parametric Setting

We have developed a prototypical tool on top of Storm (Dehnert et al., 2017), the probabilis-
tic model checker that dominated the last and only two model-checking competitions, see
qcomp.org. Our tool implements both the evidence-agnostic and evidence-tailored (p)BN
to (p)MC transformations as described in Section 4. The (p)BNs are expressed in the
bif format and the (p)MCs are either encoded in Jani (Budde et al., 2017) or in the ex-
plicit drn format. As Jani is an intermediate language, other probabilistic model-checking
tools such as mcsta (Hartmanns & Hermanns, 2014), EPMC (Fu et al., 2022) and PRISM
(Kwiatkowska et al., 2011) can be used as backend verifiers too. We used Storm because of
its efficiency, its modularity and its python interface enabling fast prototyping while using
various of the modules within Storm.

8. The complexity is in O(m· logn) where n is the number of states in the MC and m the number of
transitions.

1656

Automatically Finding the Right Probabilities in Bayesian Networks

network #nodes #edges Dmax AMB

cancer 5 4 2 2.00
earthquake 5 4 2 2.00
asia 8 8 2 2.5
survey 6 6 3 2.67
child 20 25 6 3.00
sachs 11 17 3 3.09
alarm 37 46 4 3.51
hailfinder 56 66 11 3.54
pathfinder 135 200 63 3.81
hepar2 70 123 4 4.51
mildew 35 46 100 4.57
insurance 27 52 5 5.19
barley 48 84 67 5.25
andes 223 338 2 5.61
win95pts 76 112 2 5.92
water 32 66 4 7.69

Table 1: Statistics on the BN benchmarks taken from bnlearn.

We took the BN benchmarks from the bnlearn repository (Scutari, 2019) and conducted
our experiments on a 2.3 GHz Intel Core i5 processor with 16 GB RAM. We focused our
experiments on various research questions. Table 1 overviews the benchmarks we have
used for our experiments. The first column refers to the name of the BN, the second and
the third indicate the number of BN nodes and the number of BN edges. The fourth column
refers to the maximum domain of the BN variables. The last column shows the average
Markov blanket; a metric that shows the degree of dependency between the BN variables
and is an indicator of the practical complexity of inference in BNs.

This section covers the experimental results for the non-parametric setting, which includes
probabilistic inference, symbolic probabilistic inference, and evaluating the evidence-tailored
translation.

6.1 Probabilistic Inference

Baseline. To evaluate our PMC-based tool for performing probabilistic inference on BNs, we
took the state-of-the-art BN inference tool Ace as baseline. Ace9 is developed by Darwiche’s
group that is the state-of-the-art for probabilistic inference on Bayesian networks; see the
recent study (Agrawal, Pote, & Meel, 2021). It takes a BN as input and compiles it into an
arithmetic circuit (AC). The generated AC is used to compute multiple inference queries;
the so-called online inference. The circuit represents the BN marginals as polynomials
over BN variables and CPT entries. The leaves of the AC store the inference indicators
(for each BN variable valuation) as well as the CPT entries; the intermediate nodes store
the arithmetic operators: summations and multiplications. This allows to directly and

9. http://reasoning.cs.ucla.edu/ace/

1657

Salmani & Katoen

Storm Ace

computing prior and posterior marginals

computing most probable explanation

supporting evidence-tailored compilation

efficient inference on some very large networks 7

supporting arbitrary formulas for evidence and hypothesis 7

Table 2: Capabilities of Storm and Ace.

efficiently compute the probability of the evidence; i.e., Pr(E=e) on the root as well as
the marginal probabilities of individual BN variable-valuations along the path from the
leaves to the root; i.e., Pr(H=h | E=e), when H only contains one variable. Being mainly
specific to these queries and taking context-specific independence into account makes the
AC-based approach quite efficient. Ace however lacks support for posing more general forms
of queries on the compiled AC, e.g., it does not support hypotheses involving (disjunctions
and conjunctions over) multiple random variables. In our experiments, we therefore consider
unary hypotheses and the more general case separately. Its capabilities and restrictions are
summarized in Table 2. The first three experiments consider the simple translation from
BNs to MCs, i.e., the evidence-agnostic mapping. The fourth experiment focuses on the
effects of the evidence-tailored mapping.

RQ1: How does PMC-based inference compare to Ace, for classical queries with unary
hypothesis?

We performed a series of experiments to investigate how the performance of BN inference
via model checking MCs compares to Ace. The considered benchmarks are taken from the
set of small, medium, large, and very large networks in the bnlearn repository. Figure 9(a)
indicates our results in a log-log scale plot. Each point represents the time (in seconds) to
compute the marginal probabilities for every valuation of every random variable of the BN
at hand. The x-axis indicates the total model-checking time for computing the marginals
by Storm, and the y-axis indicates the corresponding total inference time by Ace. The pre-
processing and compilation times for both approaches are excluded. Err denotes a run-time
error and TO indicates a time-out (of 15 min).

The results indicate that for most of the benchmarks Storm has the same or slightly less
inference time as Ace. For the very large network pathfinder, Ace threw a run-time
error; Storm computed the marginals in 0.014s. For the networks andes, mildew, and
barley, Ace outperformed Storm. This is very likely related to the so-called context-specific
independence in these benchmarks: more than 95% of the total 540, 150 CPT entries of
mildew are repeated probability values and—to a more extreme extent—only 19 distinct
probability values occur in totally 1157 CPT entries of andes. A similar characteristic can
be observed in barley: barley has a random variable with an exceptionally large domain
(67), yet all the CPT entries of this node are equal. Our (p)BN to (p)MC translation is not
optimized for inference with multiple occurrences of probability values in the CPTs, while
in the AC-based approach the CPT entries are stored in the leaves and are shared.

1658

Automatically Finding the Right Probabilities in Bayesian Networks

RQ2: How does PMC-based inference compare to Ace, for hypotheses involving multiple
BN variables?

We now consider queries of the form Pr(H | E) where H (and E) involve arbitrarily many
variables, and conjunctions and/or disjunctions thereof such as e.g., Pr((v1=d1) ∨ · · · ∨
(vk=dk)) or Pr((v1=d1∨v1=d′1)∧· · ·∧(vk=dk∨vk=d′k∨vk=d′′k)). Such queries can be directly
translated into corresponding reachability queries for model checking and do not require any
special treatment. In order to handle such queries in Ace, one has to extend the BN with
an auxiliary variable for the entire hypothesis, e.g., for the formula (v1=d1)∨ · · · ∨ (vk=dk),
and define its CPT accordingly 10. Treating such queries thus does come at the expense
of enlarging the BN at hand. Figure 9(b) shows the results for hypotheses involving the

10 −
3

10 −
2

10 −
1

10
0

10
1

10−3

10−2

10−1

100

101

T
O

E
rr

TO
Err

andes
mildew

pathfinder

barley

Storm

A
c
e

(a) unary hypothesis

2 4 6 8 16

10−3

10−2

10−1

100

101

102

TO

Size of the hypothesis

T
im

e
[s

]

(b) n-ary hypothesis

win95pts-storm
win95pts-ace

hailfinder-storm
hailfinder-ace
mildew-storm

mildew-ace

Figure 9: Storm vs. Ace: probabilistic inference for (a) |H|=1 and (b) |H|=n.

disjunction of multiple variables for the benchmarks win95pts, hailfinder, and mildew.
We varied the number of variables in the disjunction from one to 16. The x-axis indicates the
hypothesis size in terms of the number of BN nodes. The y-axis (in log-scale) indicates the
inference time in seconds. TO indicates a time-out of 15 minutes. The pre-processing time
for adding the auxiliary variable and recompiling the network for Ace is not incorporated.
Storm’s performance is not influenced by increasing the hypothesis size. On the contrary,
the inference time for Ace increases as the BN size increases when enlarging the hypothesis.
Adding a new auxiliary node to the BN can be quite expensive: the auxiliary node’s CPT is
exponential in the number of hypothesis nodes, and also the tree-width of the BN increases.
These lead to an adverse effect on the inference time for Ace.

6.2 Symbolic Probabilistic Inference

For the first two research questions, we used Storm’s regular engine which performs model
checking on a sparse-matrix representation of the MC generated from the BN. We now con-
sider symbolic MTBDD-based model checking and compare this to state-of-the-art symbolic
inference techniques on BNs.

10. One could alternatively add the hypothesis to the CNF formula as new clauses.

1659

Salmani & Katoen

Construction time (in s) Inference time (in s)

andes - Storm, bisimulation 154.66 0.583

andes - Storm, MTBDD 303.15 avg: 3.298

andes - PSDD, minfill vtree 4.724 3.423

win95pts - Storm, bisimulation 0.149 0.002

win95pts - Storm, MTBDD 15.740 avg: 0.077

win95pts - PSDD, minfill vtree 0.047 0.017

Table 3: Symbolic MTBDD-based model checking vs. symbolic PSDD-based inference.

Baseline. As baseline, we use BN tools that use probabilistic sentential decision diagrams
(PSDD) (Kisa et al., 2014), as described in Section 2.3. PSDDs are supported by two
software packages; psdd nips takes binary-valued BNs in uai format and compiles them
into vtree and PSDD representations11. The inference is done on the psdd and vtree files
using the psdd package12. Both packages were developed in Darwiche’s group at UCLA.

RQ3: How do bisimulation minimization techniques and symbolic model checking approach
compare to PSDD-based inference?

We performed a series of experiments to compute BN marginals using Storm’s symbolic
and bisimulation minimization techniques and using the PSDD packages. Since the PSDD
packages are restricted to binary random variables, we considered the binary BNs win95pts
and andes. Table 3 indicates the compilation and inference time (in seconds) for these
benchmarks. We compiled the PSDD for all available vtree methods; i.e., fixed branching
factor, random branching factor, and minfill. The table reports the timing for the minfill
vtree that had the best performance. The inference time for bisimulation and for PSDD
refers to the time for computing the marginal probabilities for all the variable valuations
of the BNs, while for MTBDD the timing refers to the average time for computing all
the probabilities. This is because computing all the MC state reachability probabilities in a
single model-checking run is supported by Storm for the regular engine, but not (yet) for the
MTBDD-based engine. Compiling the reduced MTBDD and computing the bisimulation
quotients are performed by the built-in generic algorithms in Storm for MCs, this is not a
BN-specific algorithm.

PSDDs are in general more succinct than MTBDDs (Bova, 2016) as they do not contain the
multiplications of variable valuations, see Fig. 5 and 6. However, inference using Storm can
be about one order of magnitude faster than PSDD using bisimulation. We refer to (Salmani
& Katoen, 2020) for our more detailed experimental results. It is worthwhile to mention
that Storm supports hypotheses involving multiple variables and arbitrary first-order logic
formulas also for the symbolic and bisimulation engines. PSDD is—like Ace—restricted to
hypotheses of single variables.

11. https://github.com/hahaXD/psdd_nips

12. https://github.com/hahaXD/psdd

1660

Automatically Finding the Right Probabilities in Bayesian Networks

6.3 Evidence-tailored Translation

All our experiments so far used the evidence-agnostic generation of MCs from BNs. We
now consider MC generation that is tailored to the evidence, cf. Section 4.

RQ4: What is the efficiency gain for evidence-tailored analysis?

The implementation of the evidence-tailored translation prunes the BN with respect to the
evidence and compiles the obtained sub-BN into a MC. This MC is analysed using symbolic
model checking with MTBDDs. We conducted a series of experiments to investigate how
the performance of inference is affected compared to the evidence-agnostic MC generation.
We took the same topological order for both the evidence-tailored and the evidence-agnostic
translation. The evidence nodes were randomly picked. To understand the influence of the
evidence size (in terms of the number of BN nodes), we varied the fraction of BN nodes in
the evidence.

10 2

10 3

10 4

10 5

10 6

102

103

104

105

106

E-tailored

E
-a

gn
os

ti
c

1%

10%

30%

(a) # MTBDD nodes

1
0 −

1

1
0 0

1
0 1

1
0 2

10−1

100

101

102

E-tailored

E
-a

gn
os

ti
c

1%

10%

30%

(b) Compilation time [s]

1
0 −

2

1
0 −

1

1
0 0

1
0 1

10−2

10−1

100

101

E-tailored
E

-a
gn

os
ti

c

1%

10%

30%

(c) Inference time [s]

Figure 10: Evidence-tailored vs. evidence-agnostic BN2MTBDD.

Figure 10(a) indicates the number of MTBDD nodes for the evidence-tailored versus the
evidence-agnostic translation, (b) the MTBDD compilation time for both translations, and
(c) the model-checking time for different number of evidence nodes (as fraction of the
total number of BN nodes). All plots are log-log scale with the benchmarks from Table 1.
The legend (e.g., 10%) indicates the ratio of the evidence size to the total number of BN
nodes. The dots above the solid line indicate the evidence-tailored method outperforming
the evidence-agnostic. The dashed-line indicates 1 magnitude difference. We observe that
tailoring to the evidence gains up to about one order of magnitude if the fraction of BN
nodes in the evidence is relatively low. This effect diminishes on increasing the size of the
evidence. We expect that tailoring the topological order with respect to the evidence could
yield a further improvement.

7. Parameter Synthesis Algorithms

We now consider algorithmic techniques to determine the objectives on parametric MCs
as described in Section 3.2: computing solution functions, feasibility checking, region ver-
ification, and parameter space partitioning. pMC parameter synthesis algorithms often
exploit probabilistic model-checking techniques, e.g., verifying candidate instantiations in
feasibility checking amounts to verify whether an MC satisfies a threshold on a reachability

1661

Salmani & Katoen

probability—a typical instance of probabilistic model checking. Another example is verify-
ing the Markov decision process that is obtained from the relaxation of pMCs in parameter
lifting (see below), an abstraction technique towards parameter partitioning.

7.1 Computing Solution Functions

One of the first problems considered for pMCs is to compute closed-form solutions, i.e.,
rational functions in the parameters. These functions map parameter values onto the
reachability probabilities of interest. Let the state variable ps denote the probability of
reaching the target state t from the state s. The solution functions are obtained by solving
an equation system in terms of the state variables and the parameters. Due to the occur-
rence of their products in the equations, the equation system is non-linear. Mathematically,
the rational functions can be obtained by Gaussian elimination over the field of rational
functions. Practically, an iterative state elimination procedure (Daws, 2004) is used that
simplifies the pMC into a form with a single source state and the various target states
of the reachability objective. This procedure is similar to computing regular expressions
from non-deterministic finite automata (NFA) (Hopcroft, Motwani, & Ullman, 2003) and
the performance similarly depends on the order in which the states are eliminated (Han,
2013). The key operations in pMC state elimination are eliminating self-loops and adding
shortcuts, see Fig. 11(a) and (b), respectively. The former eliminates a self-loop at state s
by re-scaling all its outgoing transitions. The latter replaces the transitions from s to t and
from t to s′ by a direct shortcut from s to s′.

s

r
p1

p2

q1

q2

s

p1

p2

q1
1−r

q2
1−r

(a) Elimination of self-loop.

s

p1

p2

q1

q2

p1q1

p2q1 p1q2

p2q2

(b) Elimination of states without self-loops.

Figure 11: State elimination in Markov chains.

7.2 Feasibility

For pMCM with parameters X and the constraint ϕ, the feasibility problem aims at finding
an instantiation u for the parameters—if any—such that M[u] |= ϕ13. Checking whether
M[u] |= ϕ is possible by performing model checking on the obtained Markov chain, i.e.,
M[u] against the constraint ϕ or by instantiating the solution function fM,ϕ with u. What
remains is how to pick the candidate instantiations. There are different techniques for that.

Particle Swarm Optimization (PSO). PSO is a sampling-based technique that attempts to
solve a mathematical problem by iteratively selecting a candidate solution and moving in the
search space towards the final answer. Applying PSO to feasibility analysis of pMCs includes

13. In this work we are more concretely interested in feasibility analysis for pMC reachability probabilities.
Let G be the set of goal states in M. Let λ > 0 be a probability threshold, and ∼∈ {≤,≥}. The
feasibility probability for reachability on pMCs is defined as follows: finding the instantiation u for the
parameters, such that PrM[u](♦G) ∼ λ.

1662

Automatically Finding the Right Probabilities in Bayesian Networks

Figure 12: Overview on the practical approaches for the feasibility problem.

guessing an instantiation u (i.e., sampling), verifying whether M[u] |= ϕ, and continuing
the search until an accepting instantiation is found. The drawback is that the number of
required iterations can easily get out of hand, and that the model structure of M is not
exploited. Instead of taking the sampling-based approach to the feasibility problem, one
can exploit SMT (Satisfiability Modulo Theory, where the theory is non-linear arithmetic
over the reals) solvers to check the satisfiability of the corresponding ETR-formula, but
such an approach can be very costly as solving ETR-formulas is in PSPACE.

Quadratically-Constrained Quadratic Program (QCQP). QCQP is a mathematical optimiza-
tion problem that is exploited in pMC feasibility analysis (Cubuktepe et al., 2018) as a
compromise between the pure sampling-based methods (PSO) and the exact, but com-
putationally intensive—satisfiability methods. The idea is to initially guess a parameter
instantiation, and then try to optimize around this guess in the parameter space, such that
the objective function of interest—a reachability probability in our setting—is improved at
each iteration. Such improvement aims at reducing the total number of iterations needed
to find the accepting instantiation. However, it remains to ensure that each optimization
step is computationally tractable and yields a correct solution. The key to this is to relax
the ETR-formula and solve this, rather than solving the original formula. When all the
transition probabilities are linear in the parameters—which is the case in the standard pa-
rameterization schema of BNs (Kjærulff & Van der Gaag, 2000)—the ETR-formula reduces
to a QCQP (Boyd & Vandenberghe, 2004), an optimization problem with a quadratic ob-
jective and quadratic constraints. The software tool Prophesy (Dehnert et al., 2015) solves
these problems by adopting a sequential-convex-optimisation (SCP) approach: it iteratively
solves LPs (linear programs that relax the QCQP) to either find a solution of the QCQP
(Chen et al., 2013; Puterman, 2014; Yuan, 2015) or find out that such solution does not
exist. For further details, see Cubuktepe et al. (2018, 2022).

Figure 12 compares the sampling-based methods such as PSO, the SCP-based methods such
as QCQP, and the exact SMT-based techniques. While the latter provides exact solutions,
it is not salable to more than a handful of parameters. PSO and QCQP, on the other hand,
may take several iterations to find the solution, but each of the iterations is computationally

1663

Salmani & Katoen

inexpensive. As QCQP directly exploits the model structure, it allows tackling pMC models
with up to several hundreds of parameters.

Stochastic Gradient-Descent (GD). GD is a first-order optimization method that maximizes
an objective function by updating the parameters in the direction of its gradient. The term
“first order” refers to the fact that the method works based on the first derivative of a
function, and does not take the higher derivatives into account. GD has been recently
successfully adopted for the feasibility problem (Heck et al., 2022). The main idea is to
use the gradient of the reachability objective with respect to a parameter p, say, at some
(initially guessed) instantiation u, and then apply the hill-climbing property of stochastic
GD techniques to find a feasible instantiation. The key step to enable GD methods is
to efficiently compute the gradient. Various GD update methods—including Plain GD,
Momentum GD (McClelland et al., 1986), Nesterov accelerated GD (Sutskever et al., 2013),
RMSProp (Sutskever et al., 2013), Adam (Kingma & Ba, 2015), and RAdam (Liu et al.,
2020)—are taken to tackle the feasibility problem (Heck et al., 2022). Since Adam has
been experimentally shown to be one of the most efficient methods in pMC feasibility
analysis (Heck et al., 2022), we took that as the basis.

7.3 Parameter Space Partitioning

Let M be a pMC over the set X of parameters, ϕ a constraint, R ⊆ Rn a region, and u a
parameter instantiation of X. Recall that for a coverage factor 0 ≤ η ≤ 1, the parameter
space partitioning problem aims at partitioning the region R into an accepting fragment
R+, a rejecting fragment R−, such that the remaining inconclusive fragment R? covers at
most 1−η of the size of R. The partitioning is exact if η=1, i.e., R? = ∅.

The approach to tackle the parameter space partitioning problem is inspired by the principle
of counter-example guided abstraction refinement (CEGAR) (Clarke, Grumberg, Jha, Lu,
& Veith, 2000), a successful technique in model checking. In our setting, the region R is
successively divided into accepting and rejecting (rectangular or quads) regions. The idea is
to compute a sequence of rectangular accepting regions that successively extend each other.
Similarly, at each iteration, the sequence of rejecting regions is extended. Let

(
Ri+
)

denote
the sequence of accepting regions and

(
Ri−
)

denote the sequence of rejecting regions. At the
i-th iteration, Ri = Ri−∪Ri+. The iterative procedure halts when Ri covers at least 100·η%
of R. A solution to the exact synthesis problem is obtained in the limit as limi→∞R

i
+ = R+

and limi→∞R
i
− = R−.

Picking region candidates. An essential issue for parameter space partitioning is how to pick
good region candidates. One strategy is to initially start with the entire region R, but that
is typically large and inconclusive. An alternative is to first do some sampling and split
the region accordingly. Sampling refers to picking an instantiation u and verifying using
probabilistic model checking whetherM[u] |= ϕ. Splitting the regions at each iteration can
be done according to different strategies. Examples are splitting the regions uniformly into
equally-sized regions or starting with smaller regions and gradually moving towards larger
candidates. In practice, the regions are initially preferred when the verification seems less
costly: candidate regions that are seemingly accepting (according to the sampling results)

1664

Automatically Finding the Right Probabilities in Bayesian Networks

(a) Uniform Sampling. (b) Verifying subregions. (c) Preliminary result.

Figure 13: Parameter space partitioning in progress.

and are far from rejecting samples or regions that are preferred over those regions which
have rejecting samples or are close to rejecting regions.

The process is illustrated in Fig. 13. Partitioning starts with (a) uniformly sampling the
entire parameter space, e.g., at grid points. Guided by the sampling results, (b) the region
candidates are picked and verified. The procedure iteratively continues: the inconclusive
regions are refined and gradually become smaller. Figure 13(c) depicts an intermediate
result of the iterative partitioning. The white areas in the middle are still inconclusive:
they contain both accepting instantiations (green) and rejecting ones (red).

Pregnancy

Urine Test1

Urine Test2

Blood Test

Pregnancy

no yes

0.13 0.87

Urine Test1

Pregnancy neg pos

no 0.893 0.107
yes p 1−p

Urine Test2

Pregnancy neg pos

no 0.893 0.107
yes p 1−p

Blood Test

Pregnancy neg pos

no 0.893 0.107
yes q 1−q

(a) The pBN with unknown probabilities. (b) Parameter space partitioning.

Figure 14: An example pBN with parameter dependencies - Pregnancy tests.

Example 17. Figure 14(a) depicts a variant of our running example with param-
eter dependencies: the farmer uses the urine test twice for each cow to detect preg-
nancy; parameter p occurs in two different rows of two different CPTs. Figure 14(b) in-
dicates the result of approximate parameter partitioning for η=0.99 and the specification
Pr(Pregnancy = yes | Urine Test1 = neg ∧ Urine Test2 = neg ∧ Blood Test = neg) ≤ 1/5.
The green areas denote the satisfying regions and the red areas depict the rejecting regions.
The black areas in the middle represent the inconclusive regions and occupy at most 1% of
the entire parameter space.

1665

Salmani & Katoen

P=yes

P=yes
U1=neg

P=yes
U1=pos

P=yes
U2=neg

P=yes
U2=pos

B=neg B=pos

p
1−p

p
1−p

q
1−q

1 1

á

(a) The original (sub-)pMC.
0.26 ≤ p ≤ 0.46, 0.17 ≤ q ≤ 0.37.

P=yes

P=yes
U1=neg

P=yes
U1=pos

P=yes
U2=neg

P=yes
U2=pos

B=neg B=pos

p
1−p

p′
1−p′

q
1−q

1 1

á

(b) The pMC with no
parameter dependencies.

P=yes

P=yes
U1=neg

P=yes
U1=pos

P=yes
U2=neg

P=yes
U2=pos

B=neg B=pos

0.
46

0.54

0.
26

0.74

0.46

0.54

0.26

0.74

0.
46

0.74

0.
26

0.54

0.37

0.63

0.17

0.83

0.
3
7

0.83

0
.1

7

0.63

1 1

(c) Non-parametric MDP.

Figure 15: Parameter lifting algorithm (PLA) steps: (a) the parameteric MC
relaxation−−−−−−→ (b)

the pMC with no parameter dependencies
substitution−−−−−−−→ (c) non-paramertric MDP.

7.4 Region Verification

A key step to (approximately) partition the parameter space R is to verify the sub-regions
of R against the constraint ϕ. An exact approach is to compute the ETR-formula and
exploit an SMT checker (for non-linear real arithmetic) to check whether the ETR-formula
conjuncted with the region formula (e.g., 3/10 < p < 6/10) is satisfiable. Such an approach
is exact but costly. Parameter lifting (Quatmann et al., 2016) is an over-approximation
method to region verification. It reduces the region verification problem on a pMC to
model checking queries on a relaxed non-parametric Markov Decision Process.

Definition 3. A Markov decision process (MDP) is a tuple M = (S, sI ,Act,P) with
a finite set S of states, an initial state sI ∈ S, a finite set Act of actions, and a (partial)
transition probability function P : S ×Act→ Distr(S).

The relaxation is done by first eliminating the parameter dependencies in the pMC and
then replacing the transition probabilities with the extremal (maximal and minimal) values
of the parameter interval. The obtained MDP over(under)-approximates the reachability
probabilities of the original pMC: if the MDP satisfies the constraint for all the schedulers,
the region is accepting for the original pMC. If the MDP satisfies the negation of the con-
straint, the region is rejecting. This enables solving the region verification as a probabilistic
model-checking problem.

Example 18. Figure 15 demonstrates the parameter lifting steps. The (a) pMC is from
the evidence-agnostic pMC of our pBN example with two urine tests; see Example 17,
Fig. 14 (a). We show only a subpart of the pMC that is relevant to demonstrate param-
eter lifting algorithm. Parameter p is repeated in the outgoing transitions of two distinct
states. The relaxation step equips the second state (P=yes, U1 = pos) with a fresh pa-

1666

Automatically Finding the Right Probabilities in Bayesian Networks

rameter, yielding a pMC free of parameter dependencies; see Fig. 15(b). What remains
is to compute the extremal values for each parametric function. Consider the region Rsub
with p ∈ [0.26, 46], q ∈ [0.17, 0.37]. The extremal (minimal and maximal) values for e.g.,
parameter p are 0.26 and 0.46 for the function p (and p′) and 0.54 and 0.74 for the function
1 − p (and 1 − p′). In the substitution phase, the local parametric choices at each state
are replaced by a non-deterministic choice between these extremal values. This yields a
parameter-free MDP, see Fig. 15(c).

Ratio and difference parameter tuning. Let us describe how parameter lifting can be ex-
ploited to the ratio and difference parameter tuning problems on parametric BNs. We
explain this for ∼=≥; the approach can easily be adapted for ≤. The ratio problem on
pBN B reduces to finding an instantiation u in the pMC M%

B,E such that:

ϕratio : Pr
M%
B,E

[u](♦num) ≥ λ · Pr
M%
B,E

[u](♦denom), (6)

where Pr(♦num) stands for 1− Pr[u](♦(H = ¬h′ ∨ E = ¬e)) and Pr(♦denom) abbreviates
1 − Pr[u](♦(H = ¬h ∨ E = ¬e)). Note that ϕratio is obtained from equation (2) and
Proposition 1. The ratio problem can then be solved using parameter lifting in the following
way: let region R ⊆ Rn≥0 where n is the number of parameters in the pBN. We perform
parameter lifting for reaching num and reaching denom on MB,E , respectively. This gives
upper (UBnum, UBdenom) and lower bounds (LBnum, LBdenom) for the probabilities on the
left- and the right-hand side of equation (6). Verifying region R against constraint ϕratio

reduces to checking whether [LBnum, UBnum] ≥ λ · [LBdenom, UBdenom]:

• If LBnum ≥ λ · UBdenom, the region R is accepting for the ratio property.

• If UBnum ≤ λ · LBdenom, the region R is rejecting for the ratio property.

• Otherwise, refine the region R.

For difference parameter tuning, we adopt the above recipe by replacing equation (6) by:

Pr
M%
B,E

[u](♦num) ≥ λ+ Pr
M%
B,E

[u](♦denom).

8. Experimental Results: The Parametric Setting

Our pBN tool-chain (see Fig. 1 on page 1639) implements the pBNs to pMC transformation
and imposes pBN objectives as PCTL formulas on pMCs. We use both the tools Storm
and Prophesy (Dehnert et al., 2015). The pBNs are expressed in an extended version of
the bif format and the pMCs are either encoded in Jani or drn. Our tool also supports
transforming non-parametric BNs into MCs and parametrizes the MC with respect to the
BN CPT entries. This enables performing sensitivity analysis and parameter synthesis
on pBNs using pMC techniques. Our tool uses Storm to compute the pBN sensitivity
functions. For parameter tuning of pBNs, it exploits parameter lifting to partition the
parameter space into satisfying, refuting, and inconclusive areas. The size of the unknown
area depends on the approximation factor η (see Section 5). Storm and Prophesy are

1667

Salmani & Katoen

SamIam Bayesserver Storm-Prophesy

computing sensitivity function 7 p≤2c≤2r1 p∗c∗r∗
computing sensitivity value 7 p≤2c≤2r1 p1c∗r∗
simple parameter tuning p∗c1r1 p1c1r1 p∗c∗r∗
difference parameter tuning p∗c1r1 p1c1r1 p∗c∗r∗
ratio parameter tuning p∗c1r1 p1c1r1 p∗c∗r∗

Table 4: Overview of the capabilities of the pBN synthesis tools.

exploited for feasibility checking: finding a parameter instance that satisfies an inference
query. We have pursued the following different techniques for feasibility analysis: (1) particle
swarm optimization (PSO), (2) mathematical optimisation using quadratically-constrained
quadratic programming (QCQP), and (3) stochastic gradient-descent (GD). The first two
techniques are supported by Prophesy, the last one by Storm. For QCQP experiments, we
used the latest package on top of Prophesy that offers recent techniques to solve QCQP for
parametric Markov chains (Cubuktepe et al., 2022). Our tool-chain supports pBNs of the
p∗c∗r∗ class, that is no restrictions are imposed on the number of parameters nor on the
number of CPTs in which they occur.

Baseline. For the evaluation of our tool to analyze pBNs, we used as baseline two synthesis
tools for parametric BNs: Bayesserver14 and SamIam15. Bayesserver is a commercial tool
that offers sensitivity analysis and parameter tuning of pBNs. For sensitivity analysis, it
computes the sensitivity function and sensitivity value. It also performs minimal-change
parameter tuning for conditional, hypothesis ratio, and hypothesis difference constraints.
Bayesserver is restricted to the pBN subclasses p1c1r1 and p2c≤2r1 for sensitivity analysis
and to the subclass p1c1r1 for parameter tuning. SamIam is a tool for the sensitivity analysis
on pBNs, developed at Darwiche’s group. It allows for the specification of conditional,
hypothesis ratio, and hypothesis difference constraints as described in Section 3.1. SamIam
aims to identify minimal parameter changes that are necessary to satisfy the specified
constraints. It supports the pBN classes p1c1r1 and p∗c1r1. Table 4 summarises the features
of all tools used for pBNs in our experiments and indicates for which classes of pBNs their
features are supported.

8.1 Computing Sensitivity Functions

RQ5: Can we perform sensitivity analysis on pBNs faster than Bayesserver and scale to
pBNs with more parameters and arbitrary parameter dependencies?

One of the pivotal tasks for sensitivity analysis on pBNs is to compute the sensitivity
functions. For this task, we performed a series of experiments on various benchmarks. The
experiments are categorized for the pBN subclasses p1, p2, and pn for n > 2, where the
subscript denotes the number of parameters in the pBN.

14. https://www.bayesserver.com

15. http://reasoning.cs.ucla.edu/samiam

1668

Automatically Finding the Right Probabilities in Bayesian Networks

Figure 16 presents the results in a log-log scale plot with timings in seconds. The blue
and the red (triangle and diamond) points correspond to the experiments with one and two
parameters: the same pBN and the same query were taken and the corresponding sensitivity
function was computed by Storm—using the bisimulation minimization technique applied to
pMCs—and by Bayesserver. The results indicate that for most of the cases, Storm computes
the solution functions faster (up to one order of magnitude) than Bayesserver. The pentagon
points denote the experiments for the p∗ subclass; i.e.; the pBNs with multiple parameters
and the parameters occurring in multiple CPTs. Bayesserver does not support p∗ instances;
see the top-most horizontal NS (not supported) line in the plot. Storm computed the
sensitivity functions for the p∗ instances up to 200 and 380 parameters respectively for
large pBNs such as win95pts and hailfinder in about 400 and 30 minutes, respectively.

10 −
3

10 −
2

10 −
1

10 0

10 1

10 2

10−3

10−2

10−1

100

101

102

N
S

NS

Storm

B
a
y
e
ss
e
r
v
e
r

p1
p2
p10+
p50+
p100+
p200+
p300+

Figure 16: Computing sensitivity functions - Storm vs. Bayesserver.

Computing solution functions is a computationally hard problem. It is exponential in the
number of parameters, and polynomial in the number of pMC states and the maximal
degree of the polynomial transition probability functions (Hutschenreiter, Baier, & Klein,
2017; Baier, Hensel, Hutschenreiter, Junges, Katoen, & Klein, 2020)16. Our next research
question is aimed to investigate the practical complexity of pBN sensitivity analysis using
pMC techniques.

RQ6: What are the decisive factors in the computation time of pBN sensitivity functions
using PMC techniques?

To address this question, we computed sensitivity functions for a set of bnlearn benchmarks
and analyzed the obtained functions. For a given BN and a given query, we incrementally
increased (in steps of five) the number of parameters in the ancestors of query nodes, and
calculated the sensitivity function for the resulting pBN.

Table 5 lists our experimental results with the maximal number of handled parameters for
each pBN. The columns refer to the name of the pBN, its number of parameters, the time

16. Our pBNs are parameterized according to the standard schema for BN parameterization that keeps the
linear ratio of the original probability entries in each CPT row. Hence, the degree of the transition
probability functions in the pMCs is one.

1669

Salmani & Katoen

network #params time [s] #states #transitions degree #summands

child 60 269 587 1,909 13 6,529,728
alarm 85 201 1,118 3,174 10 651,937
hepar2 135 173 11,698 32,289 12 3,855,904
insurance 140 83 22,740 71,074 7 2,780,076
win95pts 200 437 9,947 17,948 16 7,529,772
water 255 247 37,569 72,778 9 273,011
hailfinder 380 33 20,304 55,976 3 9,943

Table 5: The statistics on computing pBN sensitivity functions.

for computing the sensitivity function (in seconds), and the number of states and transitions
of its pMC. The last two columns refer to the degree of the obtained sensitivity function
and the total number of summands in its numerator and denominator. The rows are sorted
by the number of parameters and the minimum and maximum numbers in each column are
highlighted in boldface. The results suggest a strong correlation between the computation
time and the characteristics of the sensitivity function; e.g., win95pts and hailfinder are
the networks with the highest and lowest computation times and this directly correlates to
their degree and number of summands.

This effect is also visualized in Figure 17. The x-axis lists the pBN benchmarks, the left
y-axis indicates the computation time in seconds, and the right y-axis indicates sensitivity
function characteristics such as the degree of the sensitivity function and the (logarithm of
the) number of summands. The benchmarks along the x-axis are sorted by their number
of parameters; nevertheless, the computation time fluctuates. The most strongly correlated
factor to the computation time seems to be the degree of the obtained sensitivity function.

child-p60

alarm
-p85

hepar2-p135

insurance-p140

w
in95pts-p200

w
ater-p255

hailfinder-p380

0

50

100

150

200

250

300

350

400

450

T
im

e
 [
s
]

2

4

6

8

10

12

14

16

S
e
n
s
it
iv

it
y
 f
u
n
c
ti
o
n
 c

h
a
ra

c
te

ri
s
ti
c
s

Computation time

Degree of sensitivity function

Log (#summands of sensitivity function)

Figure 17: Characteristics of the pBN sensitivity functions and their computation time.

1670

Automatically Finding the Right Probabilities in Bayesian Networks

From the pBN perspective, this degree is related to the number of CPTs that are parame-
terized; in the hailfinder benchmarks the parameters occur in only three different CPTs
with many entries; in win95pts, 22 CPTs contain parameters. Parameters occurring in
many dependent CPTs yield a large number of monomials. This leads to the worst-case
complexity of the problem that is exponential in the number of parameters (Hutschenreiter
et al., 2017; Baier et al., 2020).

Our experiments indicate that Storm computes pBN sensitivity functions mostly faster than
the baseline tool Bayesserver and for a substantially larger class of pBNs: there is no limit
on the number of parameters, how often a parameter occurs in a CPT, nor on the number
of parameterized CPTs. We extended our experiments to measure the characteristics of the
obtained sensitivity function. While the number of pMC states has a linear influence on
the computation time, the most correlated factor is the degree of the obtained sensitivity
function that is related to the number of parameterized CPTs.

8.2 Feasibility Analysis

Parametrization and setup. We took various BN benchmarks from the bnlearn repository
and considered for each benchmark various parametric instances. We gradually increased
the number of parameters in each BN, starting from the hypothesis nodes and continuing
to their parents and ancestors. The parameters in the (i+1)-st instance extend those in the
i-the instance. The hypothesis in the objective is the disjunction of the variable valuations
of all BN leave nodes. This is aimed at queries that are sensitive to many CPT entries.
Since the probability of such disjunctions of multiple variable valuations tends to be large,
we used ≤ as the comparison operator in the query. Note that the satisfying instantiation
u found for the threshold λ1 also respects any threshold λ2 ≥ λ1. We therefore aimed at
finding restrictive constraints and did so by computing the minimal values for each pBN
instance using GD while using a 10% relaxation of the minimal probability as the threshold.

GD Setup. Various GD update methods—including Plain GD, Momentum GD (McClelland
et al., 1986), Nesterov accelerated GD (Sutskever et al., 2013), RMSProp (Sutskever et al.,
2013), Adam (Kingma & Ba, 2015), and RAdam (Liu et al., 2020)—are implemented in
Storm (Heck et al., 2022). Since Adam has been experimentally shown to be one of the
most efficient methods in pMC feasibility analysis (Heck et al., 2022), we took that as the
update method for our feasibility experiments. Adam is an adaptive algorithm in which the
learning rate changes over time and each parameter has its own learning rate; parameters
with larger gradients have smaller learning rates than the ones with smaller gradients. The
following GD constants in Storm are set according to the standard settings in the literature
(Kingma & Ba, 2015; Ruder, 2016; Liu et al., 2020): the batch size is 32, the average decay
is 0.9, and the squared average decay is 0.999.

QCQP Setup. For QCQP experiments, we used the latest package 17 on top of Prophesy that
supports both convexification methods to solve QCQP: Sequential Convex Programming
(SCP) (Cubuktepe et al., 2022) and Convex Concave Procedure (CCP) (Cubuktepe et al.,
2018).

17. https://zenodo.org/record/5745851#.Y_9XKuzMK3I

1671

Salmani & Katoen

10 −
3

10 −
2

10 −
1

10 0

10 1

10 2

10 3

10−3

10−2

10−1

100

101

102

103

T
O

TO

GD-Adam

P
S

O

(a)

hailfinder
hepar2

win95pts
alarm
sachs

10 −
3

10 −
2

10 −
1

10 0

10 1

10 2

10 3

10−3

10−2

10−1

100

101

102

103

T
O

TO

GD-Adam

Q
C

Q
P

-S
C

P

(b)

hailfinder
hepar2

win95pts
alarm
sachs

Figure 18: Feasibility analysis on pBNs: GD vs. PSO (a) and QCQP (b).

RQ8: How effective are the pMC feasibility checking techniques for pBN analysis?

We exploited three pMC feasibility checking methods on the pBN benchmarks: GD-Adam,
QCQP, and PSO. The aim is to find a parameter instantiation u for pBN B such that the
BN B[u] satisfies the given constraint, i.e., the inference query ϕ, the comparison operator
∼, and the threshold λ. Figure 18(a) displays the results of PSO vs. GD-Adam, while
Fig. 18(b) displays QCQP vs. GD-Adam for various instances of each network. We did
not separately plot the results of QCQP-SCP and QCQP-CCP as the they were mostly
overlapping 18. The plots are in log-log scale and each axis indicates the feasibility analysis
time (in seconds) taken by the corresponding method. The time-out is 15 minutes.

We observe that QCQP is more effective than PSO: QCQP encountered a time-out in five
cases, while PSO encountered a time-out in 34 cases. All cases, except for one instance
of win95pts, were handled by GD within 100-200 seconds. In general, the experimental
results indicate that GD substantially outperforms both PSO and QCQP, often by one or
two orders of magnitude. However, in several cases QCQP is faster than GD in finding a
feasible instantiation. This occurs for pBN instances with many (more than 200) unknown
parameters. See RQ9 and Tab. 6.

RQ9: How do the number of parameters influence the feasibility analysis time?

We investigated how the number of unknown parameters in the pBN instances affects the
feasibility analysis time. Figure 19 indicates the results of the feasibility analysis experi-
ments for four of our benchmarks in detail using a log-log plot. The x-axis indicates the
number of parameters, whereas the y-axis indicates the time in seconds. The feasibility
checking techniques scale up to 853 parameters for hailfinder, our pBN benchmark with
the highest number of parameters. The analysis time in general grows on increasing the
number of parameters. Gradient-descent is, however, the most sensitive to the number of

18. We distinguish QCQP-CCP and QCQP-SP in Table. 6

1672

Automatically Finding the Right Probabilities in Bayesian Networks

102 103
10−1

100

101

102

103

TO

#Parameters

T
im

e
[s

]

GD-Adam
QCQP-SCP

PSO

(a) hailfinder

100 101 102

10−1
100
101
102
103

TO

#Parameters

T
im

e
[s

]

GD-Adam
QCQP-SCP

PSO

(b) hepar2

100 101 102

10−1
100
101
102
103

TO

#Parameters

T
im

e
[s

]

GD-Adam
QCQP-SCP

PSO

(c) sachs

100 101 102

10−1
100
101
102
103

TO

#Parameters

T
im

e
[s

]

GD-Adam
QCQP-SCP

PSO

(d) alarm

Figure 19: Feasibility analysis on pBNs using pMC methods PSO, QCQP, and GD-Adam:
the analysis time as the number of unknown parameters in the network is increased.

parameters. This comes from the fact that GD has to compute the gradient for each pa-
rameter, while QCQP techniques benefit from the iterations of sampling, convexifying, and
model checking, and are not highly affected by the number of parameters.

Table 6 gives a more detailed overview on the instances with more than 200 parameters.
The first two columns show the information on parametric BN: the name of the BN and the
number of unknown parameters. The two successive columns indicate the pMC info includ-
ing the number of states and the number of transitions. The table reports the feasibility
checking time (in seconds) for PSO, QCQP, and GD. For QCQP, we report the results from
both CCP and SCP Convexification methods. For each method, the time (in seconds) and
the number of iterations is indicated. The best result in each row is highlighted in boldface.

We observe for the pBN instances with a high number of parameters that QCQP beats GD:
gradient-descent solves the problems within ∼ 200 seconds, while QCQP techniques handle
them within ∼ 100 seconds.

1673

Salmani & Katoen

pBN info pMC info PSO QCQP GD

SCP CCP Adam
network # par. # stat. # trans. t[s] t[s] iter t[s] iter t[s]

alarm 210 1118 3174 TO 6.42 3 4.01 0 6.03
win95pts 256 9947 17948 TO 21.9 2 27.3 4 19.1
win95pts 326 9947 17948 TO 29.0 3 46.4 7 35.6
hepar2 256 11698 32289 TO 25.4 2 18.5 0 20.8
hailfinder 256 20304 55976 TO 25.3 2 23.5 0 13.8
hailfinder 512 20304 55976 TO 75.8 0 89.7 3 80.9
hailfinder 853 20304 55976 TO 83.8 1 83.8 1 185.8

Table 6: Detailed feasibility results: #parameters > 200.

8.3 Parameter Space Partitioning

Our tool-chain adopts Storm’s approximate parameter space partitioning for the task of
parameter tuning on pBNs. Figure 20 visualizes the results on the alarm network with
two parameters repeatedly occurring in 26 rows of three distinct CPTs. The left figure
indicates the parameter space partitioning using Storm using parameter lifting algorithm
with coverage η = 0.99. The green areas correspond to the regions satisfying the constraint,
the red areas are the regions violating the constraint, and the black areas in the middle
are the inconclusive regions. The right figure indicates the visualization of the solution
function, where the vertical axis denotes the value of the solution function. The figures
indicate that the parameter tuning problem on pBNs does not necessarily yield rectangular
solution spaces. In other words, the simple single instantiations or simple inequalities do
not provide the complete solution for pBN tuning constraints in the general case.

Figure 20: Parameter space partitioning for alarm-p2c3r26.

RQ10: How does the coverage affect the parameter space partitioning time for pBNs?
We performed a series of experiments on multiple pBNs including three pBN instances
from the benchmarks win95pts, hailfinder, and hepar2, where each pBN included eight
parameters. The parameters were in the CPT of the constraint hypothesis node. For
our experiments, we incremented the coverage factor (η) in steps of 0.1 and measured the
partitioning time as well as the fraction of the inconclusive area. Figure 21 (in log-log

1674

Automatically Finding the Right Probabilities in Bayesian Networks

1% 10% 100%

10−2

10−1

100

101

102

103

coverage

T
im

e
[s

]

win95pts-p8
hailfinder-p8

hepar2-p8

Figure 21: Parameter lifting on an 8-dimensional parameter space.

scale) indicates the results. The x-axis indicates the coverage percentage that is 100 · η,
while the y-axis refers to total analysis time (in seconds). The time-out was 15 minutes.

Storm was able to cover 65% of the parameter space for win95pts-p8 in 780.64 seconds,
74% of the parameter space for hepar2-p8 in 1157.9 seconds, and 85% of the parameter
space for hailfinder-p8 in 762.26 seconds. The analysis time significantly drops when
compromising on the coverage: 64% of the parameter space for win95pts-p8 was covered
in 71.07 seconds, 73% of the parameter space for hepar2-p8 was covered in 53.45 seconds,
and 84% of the parameter space for hailfinder-p8 was covered in 33.66 seconds.

Table 7 gives the detailed results for win95pts-p8. The first column indicates the coverage
factor; the next three columns list the percentage of accepting areas, rejecting areas, and
the unknown areas respectively. The fifth column refers to the number of verified regions
and the last two columns indicate the analysis time (in seconds) and the peak memory usage
(in Mb). At η=1/2, half of the parameter space is covered and is rejecting. As the coverage
factor increases, the analysis time increases, yielding a larger fragment of accepting and
rejecting regions to be found. The parameter space partitioning time is tightly correlated
with the number of regions to be verified. The Pearson correlation coefficient between the
number of regions and time for win95pts-p8 is 0.993.

Comparison to SamIam. Parameter space partitioning is a feature that seems not
directly supported by existing tools for parametric BNs. SamIam can handle single parame-
ters; it provides its solutions in form of single parameter suggestions (as simple inequalities,
such as p ≥ 0.273) and single-CPT parameter suggestions (as single instantiation points for
the CPT entries). Parameter space partitioning, on the other hand, aims at partitioning
the entire parameter space. It provides a set of accepting areas for a given constraint and
provides more analysis information. A direct comparison between Storm and SamIam is
thus not practicable. However, we ran SamIam on win95pts network to investigate where
the reported CPT instantiation by SamIam lies within our partitioning results. The cor-
responding entry is highlighted in green in Tab. 20. Storm’s accepting area (R+) includes
the instantiation suggested by SamIam for η=0.52, i.e., after covering 52% of the parameter
space and only having determined 15% of the accepting area that a 65% coverage (last row)
reveals.

1675

Salmani & Katoen

coverage accepting(%) rejecting(%) unknown(%) #regions time mem

0.50 0 50 50 32896 0.4 95
0.51 0.92 50.08 49 432,991 5.1 641
0.52 1.47 50.53 48 808,606 9.2 1170
0.53 2.24 50.76 47 1,309,681 15.2 1908
0.54 2.85 51.15 46 1,705,186 21.2 2422
0.55 3.57 51.43 45 2,118,796 26.6 3133
0.56 4.29 51.71 44 2,560,456 31.5 3669
0.57 4.83 52.17 43 3,004,156 34.4 4202
0.58 5.67 52.33 42 3,397,366 39.4 4681
0.59 6.22 52.78 41 3,788,026 44.5 5158
0.60 7.02 52.98 40 4,264,621 49.5 6085
0.61 7.63 53.37 39 4,640,236 55.7 6516
0.62 8.32 53.68 38 5,083,936 63.7 6898
0.63 9.04 53.96 37 5,478,421 67.0 7387
0.64 9.64 54.36 36 5,968,531 71.1 8140
0.65 9.93 55.07 35 33,408,826 780.6 10991

Table 7: Some detailed results of parameter space partitioning for win95pts-p8.

9. Related Work

Bayesian network analysis using verification. As BNs are in some sense a simple
form of (acyclic) probabilistic programs, in principle verification and other formal analysis
techniques for probabilistic programs can be exploited to analyze BNs.

Claret et al. (2013), e.g., use data-flow analysis for exact inference of BNs and claim a
higher precision than BN techniques.

Batz et al. (2018) map BNs with a given inference query onto probabilistic programs under
a rejection sampling semantics. By exploiting specific properties of the resulting looping
programs, they provide a closed-form solution for exact inference as well as for determining
the expected run-time of the program until generating an i.i.d.-sample. This enables e.g., to
automatically determine whether the expected sampling time is infinite due to conditioning
on zero-probability evidences.

Bartocci et al. (2020, 2022) take a similar approach and encode their programs as prob-
solvable loops. They obtain linear recurrences over statistical moments from the programs
and use them to analyze BN objectives such as exact inference, sensitivity analysis, and fil-
tering using algebraic reasoning. The sensitivity analysis boils down to computing symbolic
functions similar to the solution functions in this paper. Parameter synthesis problems such
as feasibility, tuning, and parameter space partitioning are not covered.

Deininger et al. (2016) apply MTBDD-based PMC to the analysis of factored probabilistic
graphical models such as dynamic BNs. Their evaluation concludes that MTBDD-based
model checking is in general not beneficial as the MTBDD size also depends on the number

1676

Automatically Finding the Right Probabilities in Bayesian Networks

of different terminals they have (which influences sharing) and this is not reduced in factored
representations. This is in line with our findings on comparing MTBDD versus PSDD.

Shih et al. (2018) take a different approach and directly use BDD-based techniques to
formally verify BN classifiers. Holtzen et al. (2021) take a reverse approach: they inves-
tigate to what extent recent advances in probabilistic inference can be used to accelerate
PMC of finite-horizon objectives (i.e., reachability within a given number of steps). They
symbolically represent all horizon-length paths through the Markov chain and show better
scalability compared to PMC tools on selected benchmarks.

We are unaware of any works on pursuing MC parameter synthesis algorithms for parametric
BNs.

Bayesian inference using model counting. Weighted model counting (WMC) is
an established method for probabilistic inference; see (Darwiche, 2002; Sang et al., 2005;
Chavira & Darwiche, 2005, 2006, 2008; Bart et al., 2016; Sharma et al., 2019). More re-
cently, Dilkas and Belle (2021) reflected on the existing encoding techniques for WMC and
proposed a new method to encode conditional weights on literals corresponding to condi-
tional probabilities. While this improves the performance is several instances compared to
the previous encoding techniques, they conclude that the efficiency of the encoding mainly
depends on the properties of the Bayesian networks at hand. Jerrum et al. (1986) originally
addressed the theoretical foundations for approximate model counting for approximate in-
ference. This direction was later followed by e.g., Emron et al. (2013, 2014), Achim et al.
(2016), Chakraborty et al. (2013, 2016) and others. The techniques rely on (a) projecting
high-dimensional probability distributions into lower dimensional spaces and (b) using hash-
ing functions. Chakraborty et al. (2016) et al. e.g., exploit word-level hashing functions
that enable using sophisticated SMT solvers.

Parametric Bayesian networks. Castillo et al. (1995) have originally investigated
parametric BNs. They adapted numerical propagation algorithms for symbolic computa-
tions and noted that the symbolic part of the computations exponentially grows with the
number of parameters. This work was followed by (Castillo et al., 1996, 1997a), where
the authors focused on computing the query-relevant parameters and used the sensitivity
functions to get upper and lower bounds for the marginals. (Castillo, Gutiérrez, Hadi, &
Solares, 1997b) extended those methods to Gaussian BNs.

Chan & Darwiche (2000) proposed a counterpart method for BN sensitivity analysis. The
method is inherently based on the joint-tree algorithm and was driven in two directions:
one-way analysis, addressing the effect of single parameters, and n-way analysis, addressing
the joint effect of n parameters. They focused n-way analysis on the case where all the
parameters happen in the same clique of the junction tree.

Later in (2002), the same authors considered the task of one-way sensitivity analysis and
parameter tuning in BNs. They extended the technique to multiple parameters in (2004),
where the main focus was on the parameters all occurring in the same CPT. Such restriction
was shown to make the problem computationally easier than the general n-way sensitivity
analysis, keeping it equally hard as one-way for their proposed method. They proposed a

1677

Salmani & Katoen

distance measure in (2005) with the aim for bounding the deviation from the original values
of the parameters in the network when tuning the parameters.

Laskey (1995) introduced a measurement to quantify the effect of changing parameters on
the probability of interest. Van der Gaag & Renooij (2001) proposed another measurement
to preserve the most likely outcome of the network. They indicate the effectiveness of their
analysis method on a moderately sized real-life network. To reduce the computational load,
Coupé & van der Gaag (2002) and van der Gaag et al. (2007) focus on obtaining the general
form and general properties of sensitivity functions in one-way sensitivity analysis, where
the parametric BNs only have one parameter. The latter additionally provides application
insights in the context of robustness analysis and threshold decision making. Kwisthout
& van der Gaag (2008) studied the theoretical complexity of tuning problems. Renooji
(2014) studied the properties of the co-variation schemes for parametrization of BNs. Bolt
& van der Gaag (2015, 2016, 2017) proposed balanced and combined tuning heuristics for
parametrization that are interesting for future work.

More recently, Leonelli (2019) looked at pBNs with nonlinear sensitivity functions for sin-
gle parameter pBNs. Ballester-Ripoll & Leonelli (2022) proposed a method to efficiently
compute the derivatives of sensitivity functions (sensitivity values) and thus select the most
relevant parameters to a query. They (a) limit to single parameter pBNs and (b) do not
extend to synthesize the parameters.

Credal and constrained networks. Bolt et al. (2016) applied the BN sensitivity func-
tions to improve inference on Credal networks (Cozman, 2000), BNs with imprecise rather
than point probabilities. Some tool support for inference and sensitivity analysis on Credal
networks is given by Tolo et al. (2018). The investigation of Credal network techniques
and tools is left for future work; in particular, the connection to recent works on verifying
uncertain Markov chains (Badings et al., 2021) would be of interest. Beaumont & Huth
(2017) investigated constrained BNs. These networks are similarly defined as the paramet-
ric BNs in this paper. We are unaware of specific analysis algorithms for constrained BNs.

Structure learning. The connection to structure learning and parameter learning
(Heckerman, Geiger, & Chickering, 1995; Heckerman, 2008; Grüttemeier & Komusiewicz,
2022) is of interest. Structure learning techniques e.g., Friedman & Koller (2003) and
Cussens et al. (2017) aim at learning the structure of the BN from data. We focused on
fine-tuning the parameters of a BN, where the dependency structure as a DAG is known.

Poon & Domingos (2011) introduced sum-product networks (SPNs) that are trending prob-
abilistic graphical models. SPNs are tractable for several problems including inference.
Zhao et al. (2015) investigated the connection of BNs and SPNs: they proved that every
SPN converts into a BN in linear time and space in terms of the network size. There are
several studies e.g., (Gens & Domingos, 2013; Trapp et al., 2019) on learning the structure
and parameters of SPNs. In the context of sensitivity analysis, Conaty et al. (2019) con-
sider the robustness of the decisions: they consider hierarchical SPNs. The idea is to carry
over the classification task to another model, when the current SPN is sensitive to small
perturbations of the parameters.

1678

Automatically Finding the Right Probabilities in Bayesian Networks

10. Epilogue

This paper treated several analysis problems for Bayesian networks that contain symbolic
expressions (over a fixed set of parameters) in the conditional probability tables. We have
shown how these analysis problems can be tackled in a fully automated manner using state-
of-the-art parameter synthesis techniques from the field of probabilistic verification. This is
enabled by a simple translation from Bayesian networks into Markov chains. A prototypical
tool-chain that is publicly available19 supports all reported capabilities.

Classical Bayesian networks. We started off by considering the classical setting without pa-
rameters and experimentally compared explicit-state as well as decision diagram techniques.
In general, symbolic inference using PSDDs, a decision diagram tailored to inference, out-
performs analysing the Markov chains using probabilistic model checking using MTBDDs
(aka: algebraic decision diagrams). When MTBDDs are combined with model reduction
techniques such as bisimulation minimization, model checking can outperform PSDD anal-
ysis. In addition, the use of temporal logic provides a flexible way to specify objectives
including first-order combinations of random variables in the network.

Parametric Bayesian networks. For the parametric setting, we focused on three different
objectives: (a) computing symbolic expressions (in terms of the model parameters) for in-
ference, (b) feasibility (find a parameter valuation satisfying a threshold on the inference
query), (c) partitioning the parameter space into accepting and rejecting regions. Our ex-
perimental results show that ideas and techniques for parameter synthesis in Markov models
yield competitive methods for parametric Bayesian networks. We consider two aspects of
importance. On the one hand, parameter space partitioning seems a new and potentially
useful technique for analysing parametric Bayesian networks. On the other hand, the use of
parameter synthesis techniques is (in theory) neither restricted to the number of parameters
occurring in the network nor to where (i.e., in which conditional probability tables) these
parameters occur. In particular, non-trivial parameter dependencies where parameters oc-
cur in multiple probability tables can be treated naturally. Our experiments indicate that
our parameter synthesis techniques have the potential to scale rather well: symbolic func-
tions for large networks with hundreds of parameters can be computed in a few minutes,
feasibility for involved objectives and networks with hundreds of parameters is possible in a
matter of a few hundred seconds, and parameter partitioning for up to about ten parameters
works well.

Future work. Several directions are of interest. This includes investigating specific pa-
rameter synthesis algorithms for specific graph structures in networks, considering other
classes such as dynamic (Palaniappan & Thiagarajan, 2012) and recursive Bayesian net-
works (Jaeger, 2001; Williamson & Gabbay, 2005). It would also be of interest to investigate
checking the monotonicity (Van der Gaag, Bodlaender, & Feelders, 2004) of parameters at
the network level can accelerate synthesis; first studies for parametric Markov chains show
promising results (Spel, Junges, & Katoen, 2019). Recent fragmentation techniques to
compute solution functions could also be of interest for Bayesian networks (Fang et al.,
2021).

19. https://github.com/baharSlmn/storm-bn

1679

Salmani & Katoen

Acknowledgments

This research is funded by the ERC AdG Project FRAPPANT (Grant Nr. 787914). The
authors thank Robin Drahovsky, Caroline Jabs, and Hans Vrapi for their implementation
efforts. We also kindly thank Tim Quatmann, Sebastian Junges, Linus Heck, and Arthur
Choi for their support and discussions.

A. Inference Query Correspondence

Here, we provide the proofs for Proposition 1 and Proposition 2. The results are formalized
for non-parametric MCs of BNs and carry over to pMCs and pBNs in a straightforward
manner.

Preliminaries and notations. Let M = (S, s0, P) be a MC, Paths(M) be the set of
paths in M that start in the initial state s0, and Paths∗(M) the set of their finite prefixes.

For the path π = s0 . . . sn ∈ Paths∗(M), let P (π) =
n−1∏
i=0

P (si, si+1). For infinite paths,

a probability measure Pr is defined using a standard cylinder set construction (Baier &
Katoen, 2008, Ch. 10). Let pre(s) be the direct predecessors of s and pre∗(s) be its reflexive
and transitive closure. Let G ⊆ S be the set of goal states in M and ♦G denote the set of
paths in M that eventually reach G, i.e., ♦G = {π ∈ Paths(M) | ∃i ∈ N . π(i) ∈ G}. Let
Paths(M,♦G) = Paths(M) ∩ (S \G)∗G, and

Pr
M

(♦G) =
∑

s0...sn∈Paths(M,♦G)

P (s0 . . . sn). (7)

For each MC, Pr(♦G) is measurable. Let variable ps = PrM(s |= ♦G) denote the probability
to reach G from state s. It follows that

• if G is not reachable from s, then ps = 0,

• if s ∈ G, then ps = 1, and

• For any state s ∈ pre∗(G) \G,

ps =
∑
t∈S\G

P (s, t) · pt︸ ︷︷ ︸
reaching G via state t

+
∑
u∈G

P (s, u)︸ ︷︷ ︸
reaching G in one step

. (8)

This yields a system of linear equations with unique solution PrM(♦G) = ps0 .

Let �G denote the set of paths in M that always satisfy G, i.e.,

�G ≡ ¬♦¬G. Thus (9)

Pr(�G) = 1− Pr(♦¬G). (10)

1680

Automatically Finding the Right Probabilities in Bayesian Networks

Evidence-agnostic translation. To prove Proposition 1, we start off by formalizing
the definition of the evidence-agnostic MC.

Let % = (v1, . . . , vm) be a topological order over the variables in V with respect to the DAG
G and %(v) denote the index of variable v in the order. Let E = E1 ∧ . . . ∧ Ek be the
evidence, where Ei is in the form vEi = dEi with vEi ∈ V and

vE1 <% vE2 <% . . . <% vEk i.e., %(vE1) < %(vE2) < . . . < %(vEk).

In the sequel, we often denote Ek as Elast.

The hypothesis H can be any arbitrary logical formula over the atomic propositions vi = di.
W.l.o.g, let H = H1 ∧ . . . ∧Hl be the hypothesis, where Hi is in the form vHi = dHi and
%(vHi) < %(vHi+1). For the logical formula A, let vars(A) denote the set of variables that
appear in A. Let ∗ denote the don’t care value. For the variable vi ∈ V , let D∗vi = Dvi ∪{∗}.
A variable state is a function s : D∗v1 × . . .×D

∗
vm that maps each variable vi ∈ V either to

some di or to the don’t care value. Intuitively speaking, vi = ∗ if the value of variable v ∈ V
is either not yet determined or not needed any more. Let States(V) denote the set of all
variable states. Let s ∈ States(V).

• We write s |= (vi = di) iff s(vi) = di with di ∈ Dvi .

• We have s |= (vi = s(vi) ∧ . . . ∧ vm = s(vm)).

• For V ′ ⊆ V and s′ ∈ Eval(V ′), we write

s |= s′ iff
∧
v∈V ′

s(vi) = s′(vi).

• For the logical formula α over the atomic propositions (vi = di), we write

s |= α iff (vi = s(vi) ∧ . . . ∧ vm = s(vm)) =⇒ α.

Given the pBN B = (V,W,X,Θ), the topological order % on V , and the state s ∈ States(V),
let s[vi=di] = s∗, where

• s∗ ∈ States(V),

• s∗(vi) = di,

• s∗(v) = s(v) for v 6= vi satisfying

%(v) < %(vi) and ∃c ∈ children(v) . %(c) > %(vi), and

• s∗(v) = ∗ for all other variables.

Definition 4. Evidence-agnostic pMC of pBN Let B = (V,W,X,Θ) be a pBN and
% = (v1, . . . , vm) be a topological order over V . The pMC of B is M%

B = (S, s0, X, P),
where:

1681

Salmani & Katoen

• s0 = (v1 = ∗, . . . , vm = ∗) is the initial state,

• S ⊆ States(V) is the set of states defined as follows:

– S =
⋃

0≤i≤m
Si

– S0 = {s0}

– Si+1 = {si[vi+1=di+1] | for si ∈ Si and di+1 ∈ Dvi+1} for 0 ≤ i < m, and

• P : S×S → [0, 1] is the transition probability functions defined by the following rules.

1. Let 0 ≤ i < m, par ∈ Eval(parents(vi+1)), and si+1 = si[vi+1=di+1] ∈ Si+1. For each
si ∈ Si and di+1 ∈ Dvi+1 ,

P (si, si+1) = Θ(par)(di+1) iff si |= par.

2. P (sm, sm) = 1 for each sm ∈ Sm.

3. P (si, sj) = 0, otherwise.

Definition 4 ensures that:

∀0 ≤ i < m,∀si ∈ Si · ∃! par ∈ Eval(parents(vi+1)) such that si |= par.

Query correspondence for the evidence-agnostic MC. We prove Proposition 1 by
indicating the strong correspondence between the paths of the evidence-agnostic MC of B
and the tree-like MC (Salmani & Katoen, 2020) of B. Let M%

B = (S, s0,P) be the tree-like
MC of B given the topological order %. The construction of M%

B (Salmani & Katoen, 2020)
is similar to that of M%

B in Def. 4 and only deviates in the following. Let si−1 be a state
at the i−1’th level of M%

B. The successor states of si−1 are obtained for each di ∈ Dvi by
si−1[vi = di] = s, where

• s(vi) = di and

• s(v) = si−1(v) for v 6= vi.

The transition probabilities are determined analogously to that of M%
B. This tree-like MC

is thus obtained by considering all possible valuations of the variables in BN B adhering to
the topological order %. Inference on the BN B can be reduced to computing reachability
probabilities on the tree-like MC M%

B, as

Pr
B

(E) = Pr
M%

B

(♦E) and Pr
B

(H ∧ E) = Pr
M%

B

(♦ (H ∧ E)). (11)

This is formally shown in (Salmani & Katoen, 2020).

Let A ⊆ V be a subset of BN variables and η ∈ Eval(A) be an evaluation of variables in A.
Let Paths(M%

B,♦ η) = s0s1 . . . ∈ Paths(M%
B) such that ∃sk with sk(v)=η(v) for all v∈A.

Let Paths(M%
B,� η∗) = s0s1 . . . ∈ Paths(M%

B) such that for each si and each v∈A, si(v)= ∗
or si(v)=η(v).

1682

Automatically Finding the Right Probabilities in Bayesian Networks

Lemma A.1 Path π = s0s1 . . . ∈ Paths(M%
B,� η∗) if and only if there is the corresponding

path π = s0s1 . . . ∈ Paths(M%
B,♦η) such that for each i ∈ N,

P (si, si+1) = P (si, si+1).

Proof. We indicate the correspondence between the paths in one direction. The proof
is analogous for the other direction. Let π = s0s1 . . . ∈ Paths(M%

B,♦η). By the definition
of M%

B,

• s0 is the initial state,

• for 1 ≤ i ≤ m, si ∈ Si is state at the i’th level of M%
B, and

• for each si ∈ Si, ∃! di ∈ Dvi such that si |= (vi = di)
20.

Let valsπ = d1d2 · · · dm be the sequence of the values for BN variables along the path π,
where valsπ(i) = di ∈ Dvi iff si |= (vi = di). The corresponding path π ∈ Paths(M%

B,�η
∗)

is then obtained as follows.

Let 0 ≤ i < m and si ∈ Si be a state at the i’th level of M%
B. Def. 4 ensures that

- for each di+1 ∈ Dvi+1 , ∃! si+1 ∈ succ(si) such that si+1 |= (vi+1 = di+1).

Given valsπ, the path π = s0s1 · · · ∈ Paths(M%
B) is then obtained, where

• s0 is the initial state of M%
B,

• for 0 ≤ i < m, si+1 is the unique state in succ(si) with

si+1 |= (vi+1 = valsπ(i+1)),

• and for i ≥ m, si+1 = sm.

Note that for 0 ≤ i < m, P (si, si+1) = P (si, si+1) = Θ(par)(valsπ(i+1)) for the parent
valuation par ∈ Eval(parents(vi+1)) with si |= par. For i ≥ m, P (si, si+1) = P (si, si+1) =
1.

It remains to show that π ∈ Paths(M%
B,�η

∗):

(a) Path π = s0s1 · · · ∈ Paths(M%
B,♦η). Thus, ∃k such that sk(v) = η(v) for all the

variables v ∈ A.

(b) The BN variable v is not assigned to two distinct values in Dv along a given path in
Paths(M%

B), i.e., for d ∈ Dv,

sk(v) = d =⇒ si(v) = d ∨ si(v) = ∗ for i < k and i > k.

(c) Let si ∈ Si be a state at the i’th level of M%
B and vi be the i’th variable in the

topological order. Then by the definition of M%
B, si(vi) 6= ∗.

It follows by (a), (b), and (c) that si(vi) = valsπ(i) = η(vi) for vi ∈ A. Moreover, similarly
to argument (b), it holds that for di ∈ Dvi ,

si(vi) = di =⇒ sj(vi) = di ∨ sj(vi) = ∗ for j < i and j > i.

20. Note that vi is the i’th variable in the topological order %.

1683

Salmani & Katoen

It thus yields π ∈ Paths(M%
B,�η

∗). This ends the proof for Lemma A.1. �

For the evidence E =
k∧
i=1

(vi = di), let E∗ =
k∧
i=1

(vi = di∨ vi = ∗).21 The following equations

are obtained by considering η := E and η := E ∧H in Lemma A.1.

Pr
M%

B

(♦E) = Pr
M%
B

(�E∗) and Pr
M%

B

(♦ (H ∧ E)) = Pr
M%
B

(� (H∗ ∧ E∗)). (12)

Proposition 1. For the pMC M%
B,

Pr
B

(E) = 1− Pr
M%
B

(♦¬E) and Pr
B

(H | E) =
1− PrM%

B
(♦ (¬H ∨ ¬E))

1− PrM%
B
(♦¬E)

,

where the latter equality requires PrM%
B
(♦¬E) < 1.

Proof. It follows from equations (11) and (12) that

Pr
B

(E) = Pr
M%
B

(�E∗) and Pr
B

(H ∧ E) = Pr
M%
B

(� (H∗ ∧ E∗)). (13)

Without loss of generality, assume that the BN variables in V are binary-valued with Dvi =
{di,¬di}. Definition 4 ensures that for all s ∈ S, s |= (vi = di) ∨ (vi = ¬di) ∨ (vi = ∗). Let
¬E =

∨k
i=1(vi = ¬di). It follows that

¬(E∗) ≡ ¬E, thus

Pr
M%
B

(�E∗) = 1− Pr
M%
B

(♦¬(E∗)) = 1− Pr
M%
B

(♦¬E). (14)

Since E allows the conjunction of multiple variables, equation (14) is analogously valid for
(E ∧H), i.e.,

Pr
M%
B

(� (H∗ ∧ E∗)) = 1− Pr
M%
B

(♦ (¬H ∨ ¬E)). (15)

We can then derive:

Pr
B

(H | E)

=
PrB(H ∧ E)

PrB(E)

(13)
=

PrM%
B

(
� (H∗ ∧ E∗)

)
PrM%

B
(�E∗)

(14) and (15)
=

1− PrM%
B
(♦ (¬H ∨ ¬E))

1− PrM%
B
(♦¬E)

.

This finalizes the proof for Proposition 1. �

21. H∗ is defined analogously.

1684

Automatically Finding the Right Probabilities in Bayesian Networks

Evidence-tailored translation. We now proceed towards the proof of Proposition
2 by first formalizing the two operations to construct the evidence-tailored MC of BN:
propagation and redirection.

Definition 5. (Propagation) Let M%
B be the evidence-agnostic MC of BN B for the

topological order %. Applying the propagation operation on M%
B yields the MC M%↓

B =

(S↓, s↓0, P
↓), where

– s↓0 = s0 is the initial state.

– S↓ =
m⋃
i=0

S↓i is the set of states defined as follows:

– For i=0 and i > %(vElast),

S↓i = Si, where Si is the set of states at level i of M%
B.

– For 0 < i ≤ %Elast ,
S↓i = {s↓i−1[vi=di]︸ ︷︷ ︸

short s↓

| for s↓i−1 ∈ S
↓
i−1 and di ∈ Dvi}, with

• s↓(vi) = di,

• s↓(v) = s↓i−1(v) for v 6= vi iff either

(I) %(v) < %(vi) and ∃c ∈ children(v) . %(c) > %(vi) or

(II) v 6∈ vars(E),

• and s↓(v) = ∗, otherwise.

– P ↓ is defined analogously to P .

The MC M%↓
B differs from M%

B for 0 < i ≤ %(vElast) as imposed by constraint (II).

Lemma A.2 The propagation operation ensures that

Pr
B

(H|E) =
PrM%↓

B
(�(H∗ ∧ E∗))

PrM%↓
B

(�E∗)
. (16)

Proof 22. Definition 5 ensures a strong correspondence between the paths in M%
B and

M%↓
B : π↓ = s↓0s

↓
1 . . . ∈ Paths(M%↓

B ,♦E) if and only if there is the unique path π = s0s1 . . . ∈
Paths(M%

B,�E
∗) such that for each i ∈ N,

P ↓(s↓i , s
↓
i+1) = P (si, si+1).

22. The proof is analogous to Lemma A.1.

1685

Salmani & Katoen

It follows that

Pr
M%
B

(�E∗) = Pr
M%↓
B

(�E∗) (17)

and analogously for H ∧ E,

Pr
M%
B

(�(H∗ ∧ E∗)) = Pr
M%↓
B

(�(H∗ ∧ E∗)). (18)

Equation (16) derives from the equations (17) and (18), and Proposition 1. �

We now proceed by formalizing the redirection operation for an arbitrary MC. Let M =
(S, s0, P) be a MC and AP = {ai | i ∈ N} be a set of atomic propositions. Let L : S → 2AP

be a labelling function that maps each state ofM to a finite subset of atomic propositions.

Let φ =
k∧
i=1

ai and S¬φ denote the set of states that violate φ, i.e.,

S¬φ = {s ∈ S | s |= ¬ai for some 1 ≤ i ≤ k}.

The redirection operation reroutes the direct transitions to the states in S¬φ to the initial
state s0 and deletes the states in S¬φ.

Definition 6. (Redirection) Applying the redirection operation to the MC M with
respect to φ yields the MC (M)φ = (S \ S¬φ, s0, Pφ), where for s ∈ S \ S¬φ Pφ(s, s0) = P (s, s0) +

∑
s¬∈S¬φ

P (s, s¬) and

Pφ(s, s′) = P (s, s′) for s′ ∈ S \ S¬φ with s′ 6= s0.

Let G be a set of target states in (M)φ. Recall that variable ps denotes the probability to

reach G from state s. Let succ(s) denote the set of direct successors of s in the MC M. It
follows by equation (8) and Def. 6 that for the state s ∈ S \ S¬φ,

ps =
∑

s′∈succ(s)\S¬φ

P (s, s′) · ps′ +
∑

s¬∈succ(s)∩S¬φ

P (s, s¬) · ps0 .︸ ︷︷ ︸
redirection to the initial state

(19)

Query correspondence for the evidence-tailored MC. The evidence-tailored MC
M%
B,E = (S↓ \ S↓¬E , s

↓
0, PE) is obtained by applying the redirection operation to the MC

M%↓
B with respect to φ = E, i.e., M%

B,E = (M%↓
B)E . Let SE =

m⋃
i=%(vElast)

S↓i be the set of

states in M%
B,E that only occurs at the level of the last evidence node and afterwards, i.e.,

the set of states that occur after the last redirection edge, see Fig. 8.

Lemma A.3 For G ⊆ SE, it holds that

Pr
M%
B,E

(♦G) =
PrM%↓

B
(♦G ∧�E∗)

PrM%↓
B

(�E∗)
.

1686

Automatically Finding the Right Probabilities in Bayesian Networks

Proof. We prove the above lemma by rewriting equation (19) for M%
B,E . First, let

G ⊆ S↓ be arbitrary. Recall that S↓i denotes the set of states at the i-th level of M%↓
B .23

• For each s↓i ∈ S
↓
i ∩ pre∗(G),

p
s↓i

=
∑

s↓i+1∈S
↓
i+1\S

↓
¬E

P ↓(s↓i , s
↓
i+1) · p

s↓i+1
+

∑
t↓i+1∈S

↓
i+1∩S

↓
¬E

P ↓(s↓i , t
↓
i+1) · p

s↓0
,

• for each s↓i 6∈ pre∗(G), p
s↓i

= 0,

• and for each s↓i ∈ G, p
s↓i

= 1.

Let ¬E1...j =

%(vEj)⋃
i=1

S↓i ∩S
↓
¬E specify the states that violate E1 up to Ej . The above equation

system yields the following.

For G ⊆
m⋃

i=%(vEj)

S↓i ,

p
s↓0

=
∑

π∈Paths
(
M%↓
B ,♦G

)
\Paths

(
M%↓
B ,♦¬E1...j

)Pr(π) + p
s↓0
·
∑

π′∈Paths
(
M%↓
B ,♦¬E1...j

)Pr(π′)

and for G ⊆
m⋃

i=%(vElast)

S↓i ,

p
s↓0

=
∑

π∈Paths
(
M%↓
B ,♦G

)
\Paths

(
M%↓
B ,♦¬E

)Pr(π) + p
s↓0
·
∑

π′∈Paths
(
M%↓
B ,♦¬E

)Pr(π′) . (20)

We have ¬(♦¬E) ≡ �E∗ (Equations (9) and (14)). Moreover, note that A \ B = A ∩ ¬B.
We can thus rewrite equation (20) as

Pr
M%
B,E

(♦G) = p
s↓0

= Pr
M%↓
B

(♦G ∧�E∗) + p
s↓0
· Pr
M%↓
B

(♦¬E).

Thus:

p
s↓0

= Pr
M%
B,E

(♦G) =
PrM%↓

B
(♦G ∧�E∗)

1− PrM%↓
B

(♦¬E)
.

Note that 1− PrM%↓
B

(♦¬E) = PrM%↓
B

(�E∗). This ends the proof. �

Proposition 2. For the evidence-tailored pMC M%
B,E of pBN B, we have:

Pr
B

(H | E) = 1− Pr
M%
B,E

(
♦
(

(¬Hbefore ∧ Elast) ∨ ¬Hafter

))
.

23. Note that by Def. 5, for every s↓i ∈ S
↓
i , succ(s↓i) ⊆ S

↓
i+1.

1687

Salmani & Katoen

Proof. We apply Lemma A.3 to the evidence-tailored MCM%
B,E . Let G =

(
(¬Hbefore ∧

Elast) ∨ ¬Hafter)
)
. Recall that SE is the set of states at the levels i with i ≥ %(vElast). We

have G ⊆ SE : the term ¬Hbefore ∧ Elast can first be satisfied at level i with i ≥ %(vElast).
The term Hafter can also first be satisfied at levels i with i > %(vElast) by the definition of
Hafter.

It then follows by Lemma A.3 that

1− Pr
M%
B,E

(
♦G
)

=
PrM%↓

B
(�E∗

)
− PrM%↓

B

(
♦G ∧�E∗

)
PrM%↓

B
(�E∗

)
Pr(a)−Pr(a∧b)=Pr(a∧¬b)

=
PrM%↓

B

(
�E∗ ∧ ¬♦G

)
PrM%↓

B
(�E∗

)
¬♦a≡�¬a

=
PrM%↓

B

(
�E∗ ∧ �¬G

)
PrM%↓

B
(�E∗

)
�¬(a∨b)≡�¬a∧�¬b

=
PrM%↓

B

(
�E∗ ∧ �¬ (¬Hbefore ∧ Elast) ∧ ¬(¬Hafter)

)
PrM%↓

B
(�E∗

)
¬(¬H)≡H∗

=
PrM%↓

B

(
�E∗ ∧ �(H∗before ∨ ¬Elast) ∧�H∗after

)
PrM%↓

B
(�E∗

)
�a∧�b≡∧�(a∧b)

=
PrM%↓

B

(
�(E∗ ∧ (H∗before ∨ ¬Elast)) ∧�H∗after

)
PrM%↓

B
(�E∗

)

=
PrM%↓

B

(
�((E∗ ∧H∗before) ∨ (E∗ ∧ ¬Elast)) ∧�H∗after

)
PrM%↓

B
(�E∗

)

E∗∧¬Elast≡false=
PrM%↓

B

(
�(E∗ ∧H∗before ∧H∗after)

)
PrM%↓

B
(�E∗

)
H∗
before

∧H∗
after

≡H∗

=
PrM%↓

B

(
�(E∗ ∧H∗)

)
PrM%↓

B
(�E∗

) .

It then follows by Lemma A.2 that

1− Pr
M%
B,E

(
♦
(

(¬Hbefore ∧ Elast) ∨ ¬Hafter

))
= Pr

B
(H | E),

which finalizes the proof for Proposition 2. �

1688

Automatically Finding the Right Probabilities in Bayesian Networks

References

Achim, T., Sabharwal, A., & Ermon, S. (2016). Beyond parity constraints: Fourier analysis
of hash functions for inference. In ICML, Vol. 48 of JMLR Workshop and Conference
Proceedings, pp. 2254–2262. JMLR.org.

Agrawal, D., Pote, Y., & Meel, K. S. (2021). Partition function estimation: A quantitative
study. In IJCAI, pp. 4276–4285. ijcai.org.

Badings, T. S., Cubuktepe, M., Jansen, N., Junges, S., Katoen, J., & Topcu, U. (2021).
Scenario-based verification of uncertain parametric MDPs. CoRR, abs/2112.13020.

Bahar, R. I., Frohm, E. A., Gaona, C. M., Hachtel, G. D., Macii, E., Pardo, A., & Somenzi,
F. (1997). Algebraic decision diagrams and their applications. Formal Methods Syst.
Des., 10 (2/3), 171–206.

Baier, C., Clarke, E. M., Hartonas-Garmhausen, V., Kwiatkowska, M. Z., & Ryan, M.
(1997). Symbolic model checking for probabilistic processes. In ICALP, Vol. 1256 of
Lecture Notes in Computer Science, pp. 430–440. Springer.

Baier, C., de Alfaro, L., Forejt, V., & Kwiatkowska, M. (2018). Model checking probabilistic
systems. In Handbook of Model Checking, pp. 963–999. Springer.

Baier, C., Hensel, C., Hutschenreiter, L., Junges, S., Katoen, J.-P., & Klein, J. (2020).
Parametric Markov chains: PCTL complexity and fraction-free Gaussian elimination.
Inf. Comput., 272, 104504.

Baier, C., & Katoen, J.-P. (2008). Principles of Model Checking. MIT Press.

Baier, C., Klein, J., Klüppelholz, S., & Märcker, S. (2014). Computing conditional prob-
abilities in Markovian models efficiently. In TACAS, Vol. 8413 of Lecture Notes in
Computer Science, pp. 515–530. Springer.

Ballester-Ripoll, R., & Leonelli, M. (2022). You only derive once (YODO): automatic
differentiation for efficient sensitivity analysis in Bayesian networks. In PGM, Vol.
186 of Proceedings of Machine Learning Research, pp. 169–180. PMLR.

Bart, A., Koriche, F., Lagniez, J., & Marquis, P. (2016). An improved CNF encoding scheme
for probabilistic inference. In ECAI, Vol. 285 of Frontiers in Artificial Intelligence and
Applications, pp. 613–621. IOS Press.

Bartocci, E., Kovács, L., & Stankovic, M. (2020). Analysis of Bayesian networks via prob-
solvable loops. In ICTAC, Vol. 12545 of Lecture Notes in Computer Science, pp.
221–241. Springer.

Batz, K., Kaminski, B. L., Katoen, J.-P., & Matheja, C. (2018). How long, O Bayesian
network, will I sample thee? - A program analysis perspective on expected sampling
times. In ESOP, Vol. 10801 of Lecture Notes in Computer Science, pp. 186–213.
Springer.

Beaumont, P., & Huth, M. (2017). Constrained Bayesian networks: Theory, optimization,
and applications. CoRR, abs/1705.05326.

1689

Salmani & Katoen

Bollig, B., & Wegener, I. (1996). Improving the variable ordering of OBDDs is NP-complete.
IEEE Trans. Computers, 45 (9), 993–1002.

Bolt, J. H. (2016). Bayesian networks: a combined tuning heuristic. In PGM, Vol. 52 of
JMLR Workshop and Conference Proceedings, pp. 37–49. JMLR.org.

Bolt, J. H., Bock, J. D., & Renooij, S. (2016). Exploiting Bayesian network sensitivity
functions for inference in Credal networks. In ECAI, Vol. 285 of Frontiers in Artificial
Intelligence and Applications, pp. 646–654. IOS Press.

Bolt, J. H., & Van der Gaag, L. C. (2015). Balanced tuning of multi-dimensional Bayesian
network classifiers. In ECSQARU, Vol. 9161 of Lecture Notes in Computer Science,
pp. 210–220. Springer.

Bolt, J. H., & van der Gaag, L. C. (2017). Balanced sensitivity functions for tuning multi-
dimensional Bayesian network classifiers. Int. J. Approx. Reason., 80, 361–376.

Bova, S. (2016). SDDs are exponentially more succinct than OBDDs. In AAAI, pp. 929–935.
AAAI Press.

Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.

Bryant, R. E. (2018). Binary decision diagrams. In Handbook of Model Checking, pp.
191–217. Springer.

Budde, C. E., Dehnert, C., Hahn, E. M., Hartmanns, A., Junges, S., & Turrini, A. (2017).
JANI: quantitative model and tool interaction. In TACAS (2), Vol. 10206 of Lecture
Notes in Computer Science, pp. 151–168.

Castillo, E. F., Gutiérrez, J. M., & Hadi, A. S. (1995). Parametric structure of probabilities
in Bayesian networks. In ECSQARU, Vol. 946 of Lecture Notes in Computer Science,
pp. 89–98. Springer.

Castillo, E. F., Gutiérrez, J. M., & Hadi, A. S. (1996). Goal oriented symbolic propagation
in Bayesian networks. In AAAI/IAAI, Vol. 2, pp. 1263–1268. AAAI Press / The MIT
Press.

Castillo, E. F., Gutiérrez, J. M., & Hadi, A. S. (1997a). Sensitivity analysis in discrete
Bayesian networks. IEEE Trans. Syst. Man Cybern. Part A, 27 (4), 412–423.

Castillo, E. F., Gutiérrez, J. M., Hadi, A. S., & Solares, C. (1997b). Symbolic propagation
and sensitivity analysis in Gaussian Bayesian networks with application to damage
assessment. Artif. Intell. Eng., 11 (2), 173–181.

Chaki, S., & Gurfinkel, A. (2018). BDD-based symbolic model checking. In Handbook of
Model Checking, pp. 219–245. Springer.

Chakraborty, S., Meel, K. S., Mistry, R., & Vardi, M. Y. (2016). Approximate probabilistic
inference via word-level counting. In AAAI, pp. 3218–3224. AAAI Press.

Chakraborty, S., Meel, K. S., & Vardi, M. Y. (2013). A scalable approximate model counter.
In CP, Vol. 8124 of Lecture Notes in Computer Science, pp. 200–216. Springer.

1690

Automatically Finding the Right Probabilities in Bayesian Networks

Chan, H., & Darwiche, A. (2002). When do numbers really matter?. J. Artif. Intell. Res.,
17, 265–287.

Chan, H., & Darwiche, A. (2004). Sensitivity analysis in Bayesian networks: From single to
multiple parameters. In UAI, pp. 67–75. AUAI Press.

Chan, H., & Darwiche, A. (2005). A distance measure for bounding probabilistic belief
change. Int. J. Approx. Reason., 38 (2), 149–174.

Chavira, M., & Darwiche, A. (2005). Compiling Bayesian networks with local structure. In
IJCAI, pp. 1306–1312. Professional Book Center.

Chavira, M., & Darwiche, A. (2006). Encoding CNFs to empower component analysis. In
SAT, Vol. 4121 of Lecture Notes in Computer Science, pp. 61–74. Springer.

Chavira, M., & Darwiche, A. (2008). On probabilistic inference by weighted model counting.
Artif. Intell., 172 (6-7), 772–799.

Chen, X., Niu, L., & Yuan, Y. (2013). Optimality conditions and a smoothing trust region
Newton method for non-Lipschitz optimization. SIAM J. Optim., 23 (3), 1528–1552.

Choi, A., Kisa, D., & Darwiche, A. (2013). Compiling probabilistic graphical models using
sentential decision diagrams. In ECSQARU, Vol. 7958 of Lecture Notes in Computer
Science, pp. 121–132. Springer.

Claret, G., Rajamani, S. K., Nori, A. V., Gordon, A. D., & Borgström, J. (2013). Bayesian
inference using data flow analysis. In ESEC/SIGSOFT FSE, pp. 92–102. ACM.

Clarke, E. M., Grumberg, O., Jha, S., Lu, Y., & Veith, H. (2000). Counterexample-guided
abstraction refinement. In CAV, Vol. 1855 of Lecture Notes in Computer Science, pp.
154–169. Springer.

Conaty, D., del Rincón, J. M., & de Campos, C. P. (2019). A hierarchy of sum-product
networks using robustness. Int. J. Approx. Reason., 113, 245–255.

Cooper, G. F. (1990). The computational complexity of probabilistic inference using
Bayesian belief networks. Artif. Intell., 42 (2-3), 393–405.

Coupé, V. M. H., & Van der Gaag, L. C. (2002). Properties of sensitivity analysis of
Bayesian belief networks. Ann. Math. Artif. Intell., 36 (4), 323–356.

Coupé, V. M., & Van der Gaag, L. C. (1998). Practicable sensitivity analysis of Bayesian
belief networks, Vol. 1998. Utrecht University: Information and Computing Sciences.

Coupé, V. M., Van der Gaag, L. C., & Habbema, J. D. F. (2000). Sensitivity analysis:
an aid for belief-network quantification. The Knowledge Engineering Review, 15 (3),
215–232.

Cozman, F. G. (2000). Credal networks. Artif. Intell., 120 (2), 199–233.

Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.-P., & Topcu, U. (2018). Synthesis in
pMDPs: A tale of 1001 parameters. In ATVA, Vol. 11138 of Lecture Notes in Computer
Science, pp. 160–176. Springer.

1691

Salmani & Katoen

Cubuktepe, M., Jansen, N., Junges, S., Katoen, J., & Topcu, U. (2022). Convex optimization
for parameter synthesis in mdps. IEEE Trans. Autom. Control., 67 (12), 6333–6348.

Cussens, J., Järvisalo, M., Korhonen, J. H., & Bartlett, M. (2017). Bayesian network
structure learning with integer programming: Polytopes, facets and complexity. J.
Artif. Intell. Res., 58, 185–229.

Dagum, P., & Luby, M. (1993). Approximating probabilistic inference in Bayesian belief
networks is np-hard. Artif. Intell., 60 (1), 141–153.

Darwiche, A. (2002). A logical approach to factoring belief networks. In KR, pp. 409–420.
Morgan Kaufmann.

Darwiche, A. (2009). Modeling and Reasoning with Bayesian Networks. Cambridge Univer-
sity Press.

Darwiche, A. (2011). SDD: A new canonical representation of propositional knowledge
bases. In IJCAI, pp. 819–826. IJCAI/AAAI.

Daws, C. (2004). Symbolic and parametric model checking of discrete-time Markov chains.
In ICTAC, Vol. 3407 of Lecture Notes in Computer Science, pp. 280–294. Springer.

Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen, J.-P.,
& Ábrahám, E. (2015). Prophesy: A probabilistic parameter synthesis tool. In CAV
(1), Vol. 9206 of Lecture Notes in Computer Science, pp. 214–231. Springer.

Dehnert, C., Junges, S., Katoen, J.-P., & Volk, M. (2017). A storm is coming: A modern
probabilistic model checker. In CAV (2), Vol. 10427 of Lecture Notes in Computer
Science, pp. 592–600. Springer.

Deininger, D., Dimitrova, R., & Majumdar, R. (2016). Symbolic model checking for factored
probabilistic models. In ATVA, Vol. 9938 of Lecture Notes in Computer Science, pp.
444–460.

Dilkas, P., & Belle, V. (2021). Weighted model counting with conditional weights for
Bayesian networks. In UAI, Vol. 161 of Proceedings of Machine Learning Research,
pp. 386–396. AUAI Press.

Druzdzel, M. J., & Van der Gaag, L. C. (2000). Building probabilistic networks:” where do
the numbers come from?”. IEEE Trans. Knowl. Data Eng., 12 (4), 481–486.

Ermon, S., Gomes, C. P., Sabharwal, A., & Selman, B. (2013). Embed and project: Discrete
sampling with universal hashing. In NIPS, pp. 2085–2093.

Ermon, S., Gomes, C. P., Sabharwal, A., & Selman, B. (2014). Low-density parity con-
straints for hashing-based discrete integration. In ICML, Vol. 32 of JMLR Workshop
and Conference Proceedings, pp. 271–279. JMLR.org.

Fang, X., Calinescu, R., Gerasimou, S., & Alhwikem, F. (2021). Fast parametric model
checking through model fragmentation. In ICSE, pp. 835–846. IEEE.

1692

Automatically Finding the Right Probabilities in Bayesian Networks

Friedman, N., & Koller, D. (2003). Being Bayesian about network structure. A Bayesian
approach to structure discovery in Bayesian networks. Mach. Learn., 50 (1-2), 95–125.

Fu, C., Hahn, E. M., Li, Y., Schewe, S., Sun, M., Turrini, A., & Zhang, L. (2022). EPMC
gets knowledge in multi-agent systems. In VMCAI, Vol. 13182 of Lecture Notes in
Computer Science, pp. 93–107. Springer.

Fujita, M., McGeer, P. C., & Yang, J. C. (1997). Multi-terminal binary decision diagrams:
An efficient data structure for matrix representation. Formal Methods Syst. Des.,
10 (2/3), 149–169.

Gainer, P., Hahn, E. M., & Schewe, S. (2018). Accelerated model checking of parametric
Markov chains. In ATVA, Vol. 11138 of Lecture Notes in Computer Science, pp.
300–316. Springer.

Gens, R., & Domingos, P. M. (2013). Learning the structure of sum-product networks.
In ICML (3), Vol. 28 of JMLR Workshop and Conference Proceedings, pp. 873–880.
JMLR.org.

Grüttemeier, N., & Komusiewicz, C. (2022). Learning Bayesian networks under sparsity
constraints: A parameterized complexity analysis. J. Artif. Intell. Res., 74, 1225–1267.

Hahn, E. M., Hermanns, H., & Zhang, L. (2011). Probabilistic reachability for parametric
Markov models. Int. J. Softw. Tools Technol. Transf., 13 (1), 3–19.

Han, Y. (2013). State elimination heuristics for short regular expressions. Fundam. Infor-
maticae, 128 (4), 445–462.

Hansson, H., & Jonsson, B. (1994). A logic for reasoning about time and reliability. Formal
Aspects Comput., 6 (5), 512–535.

Hartmanns, A., & Hermanns, H. (2014). The modest toolset: An integrated environment
for quantitative modelling and verification. In TACAS, Vol. 8413 of Lecture Notes in
Computer Science, pp. 593–598. Springer.

Heck, L., Spel, J., Junges, S., Moerman, J., & Katoen, J.-P. (2022). Gradient-descent for
randomized controllers under partial observability. In VMCAI, Vol. 13182 of Lecture
Notes in Computer Science, pp. 127–150. Springer.

Heckerman, D. (2008). A tutorial on learning with Bayesian networks. In Innovations
in Bayesian Networks, Vol. 156 of Studies in Computational Intelligence, pp. 33–82.
Springer.

Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The
combination of knowledge and statistical data. Mach. Learn., 20 (3), 197–243.

Holtzen, S., Junges, S., Vazquez-Chanlatte, M., Millstein, T. D., Seshia, S. A., & Van den
Broeck, G. (2021). Model checking finite-horizon Markov chains with probabilistic
inference. In CAV (2), Vol. 12760 of Lecture Notes in Computer Science, pp. 577–601.
Springer.

1693

Salmani & Katoen

Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2003). Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley.

Hutschenreiter, L., Baier, C., & Klein, J. (2017). Parametric Markov chains: PCTL com-
plexity and fraction-free Gaussian elimination. In GandALF, Vol. 256 of EPTCS, pp.
16–30.

Jaeger, M. (2001). Complex probabilistic modeling with recursive relational Bayesian net-
works. Ann. Math. Artif. Intell., 32 (1-4), 179–220.

Jensen, F. V. (1999). Gradient descent training of Bayesian networks. In ESCQARU, Vol.
1638 of Lecture Notes in Computer Science, pp. 190–200. Springer.

Jerrum, M., Valiant, L. G., & Vazirani, V. V. (1986). Random generation of combinatorial
structures from a uniform distribution. Theor. Comput. Sci., 43, 169–188.

Junges, S., Ábrahám, E., Hensel, C., Jansen, N., Katoen, J.-P., Quatmann, T., & Volk, M.
(2019). Parameter synthesis for Markov models. CoRR, abs/1903.07993.

Junges, S., Katoen, J.-P., Pérez, G. A., & Winkler, T. (2021). The complexity of reachability
in parametric Markov decision processes. J. Comput. Syst. Sci., 119, 183–210.

Katoen, J.-P. (2016). The probabilistic model checking landscape. In LICS, pp. 31–45.
ACM.

Katoen, J.-P., Kemna, T., Zapreev, I. S., & Jansen, D. N. (2007). Bisimulation minimisation
mostly speeds up probabilistic model checking. In TACAS, Vol. 4424 of Lecture Notes
in Computer Science, pp. 87–101. Springer.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In ICLR
(Poster).

Kisa, D., Van den Broeck, G., Choi, A., & Darwiche, A. (2014). Probabilistic sentential
decision diagrams. In KR. AAAI Press.

Kjærulff, U., & Van der Gaag, L. C. (2000). Making sensitivity analysis computationally
efficient. In UAI, pp. 317–325. Morgan Kaufmann.

Kwiatkowska, M. Z., Norman, G., & Parker, D. (2011). PRISM 4.0: Verification of proba-
bilistic real-time systems. In CAV, Vol. 6806 of Lecture Notes in Computer Science,
pp. 585–591. Springer.

Kwisthout, J., & Van der Gaag, L. C. (2008). The computational complexity of sensitivity
analysis and parameter tuning. In UAI, pp. 349–356. AUAI Press.

Lanotte, R., Maggiolo-Schettini, A., & Troina, A. (2007). Parametric probabilistic transition
systems for system design and analysis. Formal Aspects Comput., 19 (1), 93–109.

Laskey, K. B. (1995). Sensitivity analysis for probability assessments in Bayesian networks.
IEEE Trans. Syst. Man Cybern., 25 (6), 901–909.

Leonelli, M. (2019). Sensitivity analysis beyond linearity. Int. J. Approx. Reason., 113,
106–118.

1694

Automatically Finding the Right Probabilities in Bayesian Networks

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., & Han, J. (2020). On the variance of
the adaptive learning rate and beyond. In ICLR. OpenReview.net.

McClelland, J. L., Rumelhart, D. E., Group, P. R., et al. (1986). Parallel Distributed
Processing, Vol. 2. MIT Press.

Palaniappan, S. K., & Thiagarajan, P. S. (2012). Dynamic Bayesian networks: A factored
model of probabilistic dynamics. In ATVA, Vol. 7561 of Lecture Notes in Computer
Science, pp. 17–25. Springer.

Pipatsrisawat, K., & Darwiche, A. (2008). New compilation languages based on structured
decomposability. In AAAI, pp. 517–522. AAAI Press.

Pipatsrisawat, T., & Darwiche, A. (2010). A lower bound on the size of decomposable
negation normal form. In AAAI. AAAI Press.

Poon, H., & Domingos, P. M. (2011). Sum-product networks: A new deep architecture. In
UAI, pp. 337–346. AUAI Press.

Puterman, M. L. (2014). Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons.

Quatmann, T., Dehnert, C., Jansen, N., Junges, S., & Katoen, J.-P. (2016). Parameter
synthesis for Markov models: Faster than ever. In ATVA, Vol. 9938 of Lecture Notes
in Computer Science, pp. 50–67.

Renooij, S. (2014). Co-variation for sensitivity analysis in Bayesian networks: Properties,
consequences and alternatives. Int. J. Approx. Reason., 55 (4), 1022–1042.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. CoRR,
abs/1609.04747.

Salmani, B., & Katoen, J.-P. (2020). Bayesian inference by symbolic model checking. In
QEST, Vol. 12289 of Lecture Notes in Computer Science, pp. 115–133. Springer.

Salmani, B., & Katoen, J.-P. (2021). Fine-tuning the odds in Bayesian networks. In EC-
SQARU, Vol. 12897 of Lecture Notes in Computer Science, pp. 268–283. Springer.

Sang, T., Beame, P., & Kautz, H. A. (2005). Performing Bayesian inference by weighted
model counting. In AAAI, pp. 475–482. AAAI Press / The MIT Press.

Sanner, S., & McAllester, D. A. (2005). Affine algebraic decision diagrams (aadds) and
their application to structured probabilistic inference. In IJCAI, pp. 1384–1390. Pro-
fessional Book Center.

Scutari, M. (2019). Bayesian network repository. https://www.bnlearn.com. Accessed:
2019.

Sharma, S., Roy, S., Soos, M., & Meel, K. S. (2019). GANAK: A scalable probabilistic exact
model counter. In IJCAI, pp. 1169–1176. ijcai.org.

1695

Salmani & Katoen

Shih, A., Choi, A., & Darwiche, A. (2018). Formal verification of Bayesian network clas-
sifiers. In PGM, Vol. 72 of Proceedings of Machine Learning Research, pp. 427–438.
PMLR.

Spel, J., Junges, S., & Katoen, J.-P. (2019). Are parametric Markov chains monotonic?. In
ATVA, Vol. 11781 of Lecture Notes in Computer Science, pp. 479–496. Springer.

Stankovic, M., Bartocci, E., & Kovács, L. (2022). Moment-based analysis of Bayesian
network properties. Theor. Comput. Sci., 903, 113–133.

Sutskever, I., Martens, J., Dahl, G. E., & Hinton, G. E. (2013). On the importance of ini-
tialization and momentum in deep learning. In ICML (3), Vol. 28 of JMLR Workshop
and Conference Proceedings, pp. 1139–1147. JMLR.org.

Tolo, S., Patelli, E., & Beer, M. (2018). An open toolbox for the reduction, inference
computation and sensitivity analysis of Credal networks. Adv. Eng. Softw., 115, 126–
148.

Trapp, M., Peharz, R., Ge, H., Pernkopf, F., & Ghahramani, Z. (2019). Bayesian learning
of Sum-Product Networks. In NeurIPS, pp. 6344–6355.

Valmari, A., & Franceschinis, G. (2010). Simple O(m logn) time Markov chain lumping.
In TACAS, Vol. 6015 of Lecture Notes in Computer Science, pp. 38–52. Springer.

Van der Gaag, L. C., Bodlaender, H. L., & Feelders, A. J. (2004). Monotonicity in Bayesian
networks. In UAI, pp. 569–576. AUAI Press.

Van der Gaag, L. C., & Renooij, S. (2001). Analysing sensitivity data from probabilistic
networks. In UAI, pp. 530–537. Morgan Kaufmann.

Van der Gaag, L. C., Renooij, S., & Coupé, V. M. (2007). Sensitivity analysis of probabilistic
networks. In Advances in Probabilistic Graphical Models, pp. 103–124. Springer.

Williamson, J., & Gabbay, D. (2005). Recursive causality in bayesian networks and self-
fibring networks. Laws and models in the sciences, 173–221.

Wimmer, R., Jansen, N., Vorpahl, A., Ábrahám, E., Katoen, J.-P., & Becker, B. (2015).
High-level counterexamples for probabilistic automata. Log. Methods Comput. Sci.,
11 (1).

Yuan, Y. (2015). Recent advances in trust region algorithms. Math. Prog., 151 (1), 249–281.

Zhao, H., Melibari, M., & Poupart, P. (2015). On the relationship between Sum-Product
Networks and Bayesian networks. In ICML, Vol. 37 of JMLR Workshop and Confer-
ence Proceedings, pp. 116–124. JMLR.org.

1696

