
Journal of Artificial Intelligence Research 80 (2024) 1099-1137 Submitted 7/2022; published 7/2024

Symbolic Task Inference in Deep Reinforcement Learning

Hosein Hasanbeig hosein.hasanbeig@microsoft.com
Microsoft Research

Natasha Yogananda Jeppu natasha.jeppu@gmail.com
Department of Computer Science, University of Oxford

Alessandro Abate alessandro.abate@cs.ox.ac.uk
Department of Computer Science, University of Oxford

Tom Melham tom.melham@cs.ox.ac.uk
Department of Computer Science, University of Oxford

Daniel Kroening daniel.kroening@magd.ox.ac.uk

Amazon

Abstract

This paper proposes DeepSynth, a method for effective training of deep reinforcement
learning agents when the reward is sparse or non-Markovian, but at the same time progress
towards the reward requires achieving an unknown sequence of high-level objectives. Our
method employs a novel algorithm for synthesis of compact finite state automata to uncover
this sequential structure automatically. We synthesise a human-interpretable automaton
from trace data collected by exploring the environment. The state space of the environment
is then enriched with the synthesised automaton, so that the generation of a control policy by
deep reinforcement learning is guided by the discovered structure encoded in the automaton.
The proposed approach is able to cope with both high-dimensional, low-level features and
unknown sparse or non-Markovian rewards. We have evaluated DeepSynth’s performance
in a set of experiments that includes the Atari game Montezuma’s Revenge, known to be
challenging. Compared to approaches that rely solely on deep reinforcement learning, we
obtain a reduction of two orders of magnitude in the iterations required for policy synthesis,
and a significant improvement in scalability.

1. Introduction

Reinforcement Learning (RL) is the key enabling technique for a variety of applications of
artificial intelligence, including advanced robotics (Polydoros & Nalpantidis, 2017), resource
and traffic management (Mao et al., 2016; Sadigh et al., 2014), drone control (Abbeel et
al., 2007), and chemical engineering (Zhou et al., 2017). While RL is a general learning
approach, many advances in the last decade have been achieved using specific instances
that employ deep neural networks to synthesise approximate optimal policies. A deep
RL algorithm, AlphaGo, by Silver et al. (2016), played moves in the game of Go that
were initially considered glitches by human experts, but secured victory against the world
champion. Similarly, AlphaStar, by Vinyals et al. (2019), was able to defeat the world’s best
players at the real-time strategy game StarCraft II, and to reach top 0.2% in scoreboards
with an “unimaginably unusual” playing style.

While deep RL can autonomously solve problems in many complex environments, tasks
that feature sparse, non-Markovian rewards or other long-term sequential structures are often

©2024 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Hasanbeig, Jeppu, Abate, Melham & Kroening

difficult or impossible to solve by unaided learning methods. A well-known example is the
Atari game Montezuma’s Revenge, in which Deep Q-Network (DQN) failed to score (Mnih
et al., 2015). Interestingly, Montezuma’s Revenge and other hard problems often require
learning a strategy that can accomplish, possibly in a specific sequence, a set of high-level
objectives to obtain the reward. These objectives can often be identified with passing
through designated and semantically distinguished states of the system. This insight can
be leveraged to obtain a manageable, high-level model of the system’s behaviour and its
dynamics.

Contributions In this paper we extend upon DeepSynth (Hasanbeig et al., 2021a), a
new algorithm that automatically infers unknown sequential dependencies of a reward on
high-level objectives and exploits this to guide a deep RL agent when the reward signal is
history-dependent and significantly delayed, as is the case, among others, in Montezuma’s
Revenge. We assume that these sequential dependencies have a regular nature, in formal
language theory sense (Gulwani, 2012). The identification of dependency on achieving a
sequence of high-level objectives is the key to breaking down a complex task into a series of
less sparse Markovian ones. In our work, we use automata expressed in terms of high-level
objectives to orchestrate sequencing of low-level actions in deep RL and to guide the learning
towards sparse rewards. Furthermore, the automaton representation allows a human observer
to interpret the solution computed by deep RL in a high-level manner, and to gain more
insight into that solution.

At the heart of DeepSynth is a model-free deep RL algorithm that is synchronised in a
closed-loop fashion with an automaton inference algorithm, enabling our method to learn a
policy that discovers and follows high-level sparse-reward structures. The synchronisation is
achieved by a product construction that creates a hybrid architecture for deep RL. This
architecture combines neural networks and logic to leverage the strengths of both learning
and symbolic reasoning techniques to solve complex problems in RL. Neural-network-based
solutions are known for their capabilities in pattern recognition, learning from raw data, and
generalizing to new situations; symbolic reasoning and logic-based solutions excel in handling
structured knowledge, explicit reasoning, and providing human-readable explanations. The
combination of these two approaches can result in algorithms that can learn, reason, and
generalize better than either approach alone.

We evaluate the performance of DeepSynth on a wide range of benchmarks with un-
known sequential high-level structures. These experiments show that DeepSynth is able
to automatically discover and formalise unknown, sparse, and non-Markovian high-level
reward structures, and then to efficiently synthesise successful policies in a broad variety
of application domains where other related approaches fail. DeepSynth represents a better
integration of deep RL and formal automata synthesis than previous approaches, making
learning for sparse (and potentially non-Markovian) rewards more scalable. It is worth
noting that regardless of whether the reward is Markovian or not, DeepSynth can have
an advantage over conventional algorithms whenever progress towards the reward requires
achieving an unknown sequence of high-level objectives.

Outline The rest of this paper is organised as follows. We first review the related
work in Section 2. We then provide a primer on reinforcement learning in Section 3 and
an introduction to automata synthesis in Section 4. The details of DeepSynth are then

1100

Symbolic Task Inference in Deep Reinforcement Learning

presented in Section 5, where we illustrate our method with Montezuma’s Revenge as a
running example. Finally, Section 6 presents an evaluation of the performance of DeepSynth
on a set of experiments, including Montezuma’s Revenge.

2. Related Work

Our research employs formal methods to deal with sparse reward problems in RL. In the
RL literature, the dependency of rewards on objectives is often tackled with options (Sutton
& Barto, 1998), or, in general, the dependencies are structured hierarchically. Current
approaches to Hierarchical Reinforcement Learning (HRL) very much depend on state
representations and whether they are structured enough for a suitable reward signal to be
effectively engineered manually. Therefore, HRL often requires detailed supervision in the
form of explicitly specified high-level actions or intermediate supervisory signals (Precup,
2001; Kearns & Singh, 2002; Daniel et al., 2012; Kulkarni et al., 2016; A. Vezhnevets et
al., 2016; Bacon et al., 2017). A key difference between our approach and HRL is that
our method produces a modular, human-interpretable and succinct graph to represent the
sequence of tasks, as opposed to complex and comparatively sample-inefficient structures,
e.g., RNNs.

The closest line of work to ours, which aims to avoid HRL requirements, are model-
based (Fu & Topcu, 2014; Sadigh et al., 2014; Littman et al., 2017; Fulton & Platzer, 2018;
Cai et al., 2021; Brunke et al., 2021) or model-free RL approaches that constrain the agent
with a temporal logic property (Hasanbeig et al., 2018; Toro Icarte et al., 2018; Camacho
et al., 2019; Hasanbeig, Kantaros, et al., 2019; Yuan et al., 2019; De Giacomo et al., 2019,
2020; Hasanbeig, Abate, & Kroening, 2019; Hasanbeig, Kroening, & Abate, 2023; Hasanbeig,
Abate, & Kroening, 2020; Cai et al., 2021; Hasanbeig, Kroening, & Abate, 2020a, 2020b;
Lavaei et al., 2020; Cai & Vasile, 2021; Jiang et al., 2021; Giacobbe et al., 2021; Alur et al.,
2022; Hasanbeig et al., 2022; Mitta et al., 2022; Nejati et al., 2023; Wang et al., 2023; Mitta
et al., 2024). These approaches are either limited to finite-state systems, or more importantly
require the temporal logic formula to be known a priori. The latter assumption is relaxed
in (Toro Icarte et al., 2019; Rens et al., 2020; Rens & Raskin, 2020; Furelos-Blanco et al.,
2020; Gaon & Brafman, 2020; Xu et al., 2020; Abate et al., 2023), by inferring automata
from exploration traces.

The automata inference by Toro Icarte et al. (2019) uses a local-search algorithm, Tabu
search (Glover & Laguna, 1998). The automata inference algorithm that we employ uses SAT,
where the underlying search algorithm is a backtracking search method called DPLL (Davis
& Putnam, 1960). In comparison with Tabu search, the DPLL algorithm is complete and
explores the entire search space efficiently (Cook & Mitchell, 1996), producing more accurate
representations of the trace sets. A detailed comparison of the two approaches is provided in
Section 6.5. The Answer Set Programming (ASP) based algorithm used to learn automata
by Furelos-Blanco et al. (2020) also uses DPLL but assumes a known upper bound for the
maximum finite distance between automaton states. We further relax this restriction and
assume that the task and its automaton are entirely unknown.

A classic automata learning technique is the L* algorithm by Angluin (1987). This is
used to infer automata in (Rens et al., 2020; Rens & Raskin, 2020; Gaon & Brafman, 2020;
Chockler et al., 2020). It employs a series of equivalence and membership queries from an

1101

Hasanbeig, Jeppu, Abate, Melham & Kroening

oracle, the results of which are used to construct the automaton. The absence of an oracle
in our setting prevents the use of L* in our method.

Another common approach for synthesising automata from traces is state-merge (Biermann
& Feldman, 1972). Variants of the state-merge algorithm, e.g., Evidence-Driven State Merge
(EDSM) by Lang et al. (1998), use both positive and negative instances of behaviour
to determine equivalence of states to be merged based on statistical evidence. To avoid
over-generalisation in the absence of labelled data, the EDSM algorithm was improved to
incorporate inherent temporal behaviour (Walkinshaw et al., 2007; Walkinshaw & Bogdanov,
2008), which needs to be known a priori. State-merge and some of its variants (Lang et al.,
1998; Walkinshaw et al., 2007), however, do not always produce the most succinct automaton
but generate an approximation that conforms to the trace (Ulyantsev et al., 2018). The
comparative succinctness of our inferred automaton allows DeepSynth to be applied to large
high-dimensional problems, including Montezuma’s Revenge. A detailed comparison of these
approaches can be found in Section 6.4.

A number of approaches combine SAT with state-merge to generate minimal automata
from traces (Ulyantsev & Tsarev, 2011; Heule & Verwer, 2013; Ulyantsev et al., 2018;
Buzhinsky & Vyatkin, 2017; Buzhinsky & Vyatkin, 2017). A similar SAT based algorithm is
employed by (Xu et al., 2020; Neider et al., 2021; Xu et al., 2021) to generate reward machines.
Although this approach generates succinct automata that accurately capture a rewarding
sequence of events, it is not ideal for hard exploration problems such as Montezuma’s
Revenge where reaching a rewarding state, e.g., collecting the key, requires the agent to
follow a sequence of non-rewarding steps that are difficult to discover via exploration. The
automata learning algorithm we use is able to capture these non-rewarding sequences and
leverage them to guide exploration towards the rewarding states. Inferred automata have
been also used to learn strategies for infinite two-person games in which strategies are a
function of previously visited states. The construction of chain automata for these games
provides a means to implement memory-less strategies (Krishnan et al., 1995). However,
these chain automata have a disproportionally large number of states when compared to the
size of the actual automaton the game is played on.

Further related work is policy sketching by Andreas et al. (2017), which learns feasible
tasks first and then stitches them together to accomplish a complex task. The key difference
to our work is that their method assumes policy sketches, i.e., temporal instructions, to
be available to the agent. Memarian et al. (2021) proposed a self-supervised method to
infer and encode sparse reward signals as a neural network. Furthermore, it is worth
noting that learning optimal policies for infinite-horizon temporal instructions in a probably
approximately correct Markov decision process framework is theoretically intractable (Yang
et al., 2021). There is also recent work on learning underlying non-Markovian objectives
when an optimal policy or human demonstration is available (Koul et al., 2019; Ringstrom
et al., 2020; Memarian et al., 2020). A recent, statistical approach to learn Task Automata
is presented by Abate et al. (2023) which, however, is not directly comparable to ours, in
view of its different nature and the absence of an interleaved policy synthesis part. Recently,
the zero-shot planning and logical reasoning capabilities of large language models (LLMs),
specifically within the context of latent relational automata underlying reinforcement learning
tasks (Momennejad et al., 2017), have been investigated by Momennejad et al. (2024). The
authors highlight the importance of symbolic task inference in control policy synthesis using

1102

Symbolic Task Inference in Deep Reinforcement Learning

LLMs as it enables the extraction and formulation of task goals and constraints from natural
language descriptions. As shown by Hasanbeig, Sharma, et al. (2023), this integration, which
in its simplest form can be achieved via iterative in-context-learning, aids in aligning LLMs
with specific tasks, enhancing their reasoning capabilities to generate context-aware actions.

3. Background on Reinforcement Learning

We consider a conventional RL setup, consisting of an agent interacting with an environment,
which is modelled as a black box Markov Decision Process (MDP), defined next.

Definition 1 (MDP) The tuple M = (S,A, s0, P,Σ, L,R) is an MDP over a set of
continuous states S, where A is a finite set of actions and s0 ∈ S is the initial state.
P : B(S)× S×A→ [0, 1] is a Borel-measurable conditional transition kernel that assigns to
any pair of state s ∈ S and action a ∈ A a probability measure P (·|s, a) on the Borel space
(S,B(S)), where B(S) is the Borel σ-algebra on the state space (Bertsekas & Shreve, 2004).
The set Σ is called the vocabulary and it is a finite set of atomic propositions. Ths labelling
function L : S→ 2Σ that assigns to each state s ∈ S a set of atomic propositions L(s) ∈ 2Σ.
Further, a random variable R(s, a) ∼ Υ (·|s, a) ∈ P(R) is defined over the MDP M, to
represent the Markovian reward obtained when action a is taken in a given state s, where
P(R) is the set of probability distributions on subsets of R, and Υ is the reward distribution.
A possible realisation of R at time step n is denoted by rn.

Definition 2 (Path) In an MDP M, an infinite path ρ starting at s0 is an infinite sequence

of state transitions s0
a0−→ s1

a1−→ ... such that every transition si
ai−→ si+1 is possible in

M. I.e., si+1 belongs to the smallest Borel set B such that P (B|si, ai) = 1. Similarly, a

finite path is a finite sequence of state transitions ρn = s0
a0−→ s1

a1−→ ...
an−1−−−→ sn. The set of

infinite paths is (S×A)ω and the set of finite paths is (S×A)∗ × S.

Similar to a Markovian reward, a non-Markovian reward R̂ : (S × A)∗ × S → R is a
mapping from the set of finite paths to real numbers, and a realisation of R̂ at time step n
is denoted by r̂n. At each state s ∈ S, an agent action is determined by a policy π, which is
a mapping from states to a probability distribution over the actions. That is, π : S→ P(A).

Definition 3 (Expected Discounted Return) For a policy π on an MDP M, the ex-
pected discounted return for a Markovian reward R is defined as (Sutton & Barto, 1998):

V π(s) = Eπ[

∞∑
n=0

γn rn|s0 = s], (1)

where Eπ[·] denotes the expected value given that the agent follows policy π, and γ ∈ [0, 1)
(γ ∈ [0, 1] when episodic) is a discount factor.

The expected return is also known as the value function in the literature. For any
state-action pair (s, a) we can also define an action-value function that assigns a quantitative
measure Qπ : S ×A→ R as follows:

Qπ(s, a) = Eπ[

∞∑
n=0

γn rn|s0 = s, a0 = a]. (2)

1103

Hasanbeig, Jeppu, Abate, Melham & Kroening

Q-Learning (QL) by Watkins and Dayan (1992) uses the action-value function and updates
state-action pair values upon visitation. QL is off-policy, which means that π has no effect
on the convergence of the Q-function, as long as every state-action pair is visited infinitely
many times. Thus, for simplicity, we may drop the superscript π in (2), and update the
Q-function as

Q(s, a)← Q(s, a) + α[R(s, a) + γmax
a′∈A

(Q(s′, a′))−Q(s, a)], (3)

where 0 < α ≤ 1 is the learning rate, γ is the discount factor, and s′ is the state reached after
performing action a. The learning rate and discount factor in general can be state-dependent.
Under mild assumptions, QL converges to a unique limit Q∗, as long as every state action
pair is visited infinitely many times (Watkins & Dayan, 1992). Once QL converges, an
optimal policy can be distilled from the action-value function:

π∗(s) = argmax
a∈A

Q∗(s, a),

where π∗ is the same optimal policy that can be alternatively generated with Bellman
iterations (Bertsekas & Tsitsiklis, 1996) if the MDP was fully known, maximising the
expected return in (1) at any given state. Thus, the main goal is to synthesise π∗ when the
MDP is essentially a black box. We denote a non-Markovian optimal policy by π̂∗, which
optimises a memory-dependent Q-function Q̂∗.

In many problems, the MDP can have a continuous or large state space, and thus the
recursion in (3) has to be approximated by parameterising Q using a parameter set θQ. The
parameters are updated by minimizing the following loss function (Riedmiller, 2005):

L(θQ) = Es∼prβ [(Q(s, a|θQ)− y)2], (4)

where prβ is the probability distribution of state visit over S under an arbitrary stochastic
policy β, and

y = R(s, a) + γmax
a′

Q(s′, a′|θQ).

The function Q can then be approximated via a deep neural network architecture where the
parameter set θQ represents the weights of the neural network.

4. Background on Automata Synthesis

This section describes the fundamentals of the algorithm used for automatic symbolic infer-
ence of unknown high-level sequential structures as automata. We use an automata synthesis
algorithm that extracts information from trace sequences over finite paths (Definition 2) in
order to construct a succinct automaton that represents the behaviour exemplified by these
traces. Here, a trace is defined as follows:

Definition 4 (Trace) In an MDP M, and over a finite path ρn = s0
a0−→ s1

a1−→ . . .
an−1−−−→ sn,

a trace σ is defined as a sequence of labels σ = v1, v2, . . . , vn, where vi = L(si) is referred to
as a trace event.

1104

Symbolic Task Inference in Deep Reinforcement Learning

The automata synthesis algorithm used in this work (Jeppu et al., 2020) is an instance
of the general synthesis from examples approach (Gulwani, 2012). It is a scalable method
for learning a finite-state automaton from positive trace data only. A positive trace, in the
literature, means a sequence of labels exhibiting behaviour that can be produced by the
underlying system; a negative trace refers to a sequence of labels that can never be produced
by the underlying system. The algorithm aims to produce abstract, concise models. It takes
as input a set of positive traces and generates an automaton that conforms to the input
trace set.

The automaton being constructed is represented symbolically as a set of transition
templates. Each transition template is a triple (q, p, q′) comprising symbolic variables
q, p and q′ for the state from which the transition occurs, the corresponding transition
predicate and the next state, respectively. Boolean constraints defined over these symbolic
variables encode the sequence of trace events in each input trace as transition sequences
in the automaton. An upper bound on the number of automaton states N is enforced by
constraining the symbolic variables q and q′ to take values between 1 and N . The Boolean
formula obtained as the conjunction of all constraints is then fed to a SAT solver, which
looks for a satisfying assignment.

Starting with N = 1, the algorithm searches for a satisfying assignment, incrementing N
by one each time the search fails. This ensures that the smallest automaton conforming to
the input trace is generated. We note, however, that a trivial solution to the encoded SAT
problem is a single state automaton that accepts all traces defined over the set of trace events.
Our automaton synthesis algorithm generates models using only positive trace samples, and
it therefore runs the risk of overgeneralisation. In order to address overgeneralisation and
consequently to control the precision of the learned automaton, the algorithm introduces a
tuneable parameter l. Once a candidate automaton is generated, the algorithm performs
a compliance check of the automaton against the input trace to eliminate any trace event
sequences of length l that are admitted by the generated model but do not appear in the
input trace. The identified trace event sequences are used to encode blocking constraints on
the automaton. These are constraints that restrict the automaton from representing the
corresponding sequential behaviour. The search is then repeated. A higher value for l yields
more exact representations of the trace. Further details are provided by Jeppu et al. (2020).

For long traces, the Boolean formula encoding all automaton constraints becomes very
large, thereby increasing algorithm runtime. To enable the algorithm to scale to long traces,
the automaton synthesis method introduces trace segmentation as an optimisation. It
leverages the presence of patterns in a trace to reduce a large SAT instance to multiple
smaller SAT instances with manageable runtime. Here, a pattern or trace segment is any
sequence of labels that are consecutive in the trace. Each such pattern exemplifies sequential
behaviour that we wish to capture in the automaton.

With trace segmentation, the constraints for automaton construction are relaxed such
that the algorithm learns an automaton that captures all label correlations exemplified by
patterns of a specified length w, rather than the entire trace. To this end, the automaton
synthesis algorithm uses a sliding window to extract all unique segments of length w from
the trace. The segments are used to define Boolean constraints as before, such that the
corresponding sequential behaviour is captured by the learned automaton. Experimental

1105

Hasanbeig, Jeppu, Abate, Melham & Kroening

evidence indicates a linear growth in runtime for increasing trace length with the optimisation,
as compared to exponential growth without the optimisation (Jeppu et al., 2020).

Note that with trace segmentation, the constraints on the automaton do not suffice to
guarantee that the generated automaton accepts the input trace. Therefore, once a model
is generated the algorithm checks if the learned automaton accepts the input trace. If the
check fails, missing trace data is incrementally added to refine the generated model, until the
check passes. To this end, the algorithm identifies the smallest trace prefix from the input
trace set that is not accepted by the learned automaton. Note that the trace prefix could be
longer than w. The prefix is used to encode additional constraints on the automaton such
that the sequential behaviours exemplified by the trace prefix are additionally represented
by the automaton. The constraints ensure that in each iteration of this incremental learning
approach, the algorithm generates an automaton whose behaviours are a superset of the
behaviours represented by the automaton learned in the previous iteration. The above
incremental learning approach can also be applied to the setting where given an automaton
and a set of positive traces, we wish to augment the automaton with behaviours exemplified
by the traces.

Given a set of traces, our incremental, SAT-based algorithm learns succinct models that
are guaranteed to be correct using only trace data. Here, an automaton is said to be correct if
it accepts all input traces. The values of the parameters w and l do not affect the correctness
of the generated automaton, but merely affect algorithm runtime and the succinctness of
the generated models. In this work, we use an open source implementation (Jeppu, 2020) of
the automata synthesis algorithm to infer unknown high-level dependencies of the reward.
We use the default tool setting of w = 3 and l = 2 to generate our models. Further details
on trace generation and the integration of automaton synthesis with deep RL are given in
the next section.

5. DeepSynth

5.1 Overview of the Algorithm and Running Example

A schematic of the DeepSynth algorithm is provided in Figure 1. The algorithm comprises
three steps, and we will give details of each step in a separate subsection. We will illus-
trate the workings of each step using a running example, the first level of Montezuma’s
Revenge (Figure 2).

Unlike other Atari games in which the primary goal is limited to avoiding obstacles or
collecting items in no particular order, Montezuma’s Revenge requires the agent to perform
a long, complex sequence of actions before receiving any reward (Bellemare et al., 2013).
The agent must find a key and open either door in Figure 2.a. To this end, the agent has to
climb down the middle ladder, jump on the rope, climb down the ladder on the right, and
jump over a skull to reach the key. The reward given by the Atari emulator for collecting
the key is 100 and the reward for opening one of the doors is another 300. Owing to the
sparsity of the rewards, the existing deep RL algorithms either fail to learn a policy that can
even reach the key, e.g., DQN (Mnih et al., 2015), or the learning process is computationally
heavy and sample inefficient, e.g., FeUdal by A. S. Vezhnevets et al. (2017) and Go-Explore
by Ecoffet et al. (2021).

1106

Symbolic Task Inference in Deep Reinforcement Learning

σ

Program
Synthesizer

MDP

Reward Function
 rT v = L(s’)

Buffer
ε ={(s,a,s’,rT,v)}

a
s

s’

Exploration(!")
) a

Verifier
DFA

Counter

rT

Synthesised DFA

εq1 Bq1
εq2

v

 …

εqn

Example

Bq2

Bqn

Synth

Deep
 q

Tracing Step 1

Step 2

Step 3

 Q#

!"(s) = argmax
a�$

 Q#(s,a)
Policy Synthesis

Σ

!"

ε

Synchronize

ꕕ
,

ꕕ

ꕕꕕ

Figure 1: The DeepSynth Algorithm

1107

Hasanbeig, Jeppu, Abate, Melham & Kroening

(a) (b)

Figure 2: (a) the first level of Atari 2600 Montezuma’s Revenge; (b) pixel overlap of two
segmented objects.

Existing techniques to solve this problem mostly hinge on intrinsic motivation and object-
driven guidance. Unsupervised object detection (or unsupervised semantic segmentation)
from raw image input has seen substantial progress in recent years, and became comparable to
its supervised counterpart (Liu et al., 2019; Ji et al., 2019; Hwang et al., 2019; Zheng & Yang,
2021). In this work, we assume that an off-the-shelf image segmentation or object detection
algorithm can provide plausible object candidates that are semantically distinguishable,
e.g., Liu et al. (2019). Exploring image segmentation or object detection methods is very
domain-specific and is outside of the scope of this work.

The key to solving a complex task of the type exemplified by Montezuma’s Revenge is to
find the semantic correlation between the objects in the scene. When a human player tries
to solve this game, the semantic correlations, such as “keys open doors”, are partially known
a priori and the player’s behaviour is driven by these known correlations when exploring
unknown objects. This drive to explore unknown objects has been a subject of study in
psychology, where animals and humans seem to have general motivations (often referred
to as intrinsic motivations) that push them to explore and manipulate their environment,
encouraging curiosity and cognitive growth (Berlyne, 1960; Csikszentmihalyi, 1990; Ryan &
Deci, 2000).

As explained later, DeepSynth encodes these correlations as an automaton, which is an
intuitive and modular structure, and guides the exploration so that by exploiting learned
(or known) correlations, previously unknown correlations are gradually discovered. This
exploration scheme imitates cognitive growth in biological organisms, but in a formal and
explainable way. The exploration is driven by an intrinsic motivation to discover as many
objects as possible in order to find the optimal sequence of extrinsically-rewarding high-level
objectives. To showcase the full potential of DeepSynth, in all the experiments and examples
in this paper, we assume that the agent is unaware of any semantic correlation. The agent

1108

Symbolic Task Inference in Deep Reinforcement Learning

starts with no prior knowledge of the sparse reward task or the correlation of the high-level
objects.

5.2 Tracing (Step 1 in Figure 1)

The purpose of tracing is to gather execution sequences from the model, and associate a
reward to them. The task is unknown initially and the extrinsic reward is extremely sparse
(and potentially non-Markovian1). The agent receives a reward R̂ : (S×A)∗ × S→ R only
when a correct sequence of state-action pairs and their associated object correlations are
visited. (Note that a Markovian reward is a special case here.) In order to guide the agent
to find the optimal sequence, DeepSynth uses the following reward transformation:

rT = r̂ + µ ri, (5)

where r̂ is the extrinsic reward (which can be Markovian), µ > 0 is a positive regulatory
coefficient, and ri is the intrinsic reward. The role of the intrinsic reward is to guide the
exploration and also to drive the exploration towards the discovery of unknown object
correlations. The underlying mechanism of intrinsic rewards depends on the inferred
automaton and is explained in detail later.

Using the labelling function (Definition 1), Tracing (Step 1) records the label trace
L(si)L(si+1) . . . as the agent explores the environment. All transitions with their correspond-
ing labels and rewards are stored and the set of traces is denoted by T. The tracing scheme
is the Tracing box in Figure 1.

Application to Running Example The only extrinsic rewards in Montezuma’s Revenge
are the reward for reaching the key r̂key and for reaching one of the doors r̂door . As we will
argue in Section 6, the lack of intrinsic motivation prevents other methods, e.g., (Toro Icarte
et al., 2019; Rens et al., 2020; Gaon & Brafman, 2020; Xu et al., 2020), to succeed in
extremely-spare reward, high-dimensional and large problems such as Montezuma’s Revenge.

In Montezuma’s Revenge, the agent observes raw pixel images, and the input state
is a stack of four consecutive frames 84 × 84 × 4 that are preprocessed to reduce the
dimensionality (Mnih et al., 2015). As mentioned above, we use unsupervised object
detection on the raw image output from the simulator. Let us write Σ for the set of detected
objects. Note that the semantics of the names for individual objects is of no relevance to the
algorithm and Σ can thus contain any distinct identifiers, e.g., Σ = {obj1, obj2, . . .}. But
for the sake of exposition we name the objects according to their appearance in Figure 2.a,
i.e., Σ = { red character, middle ladder, rope, right ladder, left ladder, key, door}.
Note that there can be any number of detected objects, as long as the input image is
segmented into enough objects whose correlation can guide the agent to achieve the task. We

1. Note that in the case of Montezuma’s Revenge, it remains uncertain whether the reward system is
truly Markovian or not, primarily due to the lack of access to the internal state of the game’s emulator.
Recall that a Markovian reward structure is dependent only on the current state and action, independent
of previous states or actions, while a non-Markovian reward structure depends on sequences of states
or actions, not solely on the current state or action. As Montezuma’s Revenge is frequently used as
a benchmark for evaluating the performance of AI agents, it is crucial to acknowledge the potential
non-Markovian nature of its reward and the implications it may have on the development and assessment
of reinforcement learning techniques.

1109

Hasanbeig, Jeppu, Abate, Melham & Kroening

remark that agent interaction with the skull results in death and episode termination. Thus,
reading the label skull or falling from the ladders, or any action that results in terminating
the game run, is not useful for driving exploration towards rewarding states. Hence, for the
sake of simplicity we have omitted the label skull from Σ.

The labelling function employs the object vocabulary set Σ to detect object pixel overlap
in a particular state frame. For example, if the pixels of red character collide with the
pixels of rope in any of the stacked frames, the labelling function for that particular state
s is L(s)={red character, rope} (Figure 2.b). In this specific example, the only moving
object is the character. So for sake of succinctness, we omit the character from the label set,
i.e., the above label is L(s) = {rope}.

Given this labelling function, the Tracing step records the sequence of detected objects
L(si)L(si+1) . . . as the agent explores the game. We would like to stress that the labels
considered in this work are general and not particularly dependent on object collisions. The
labelling function, as per Definition 1, is a mapping from the state space to the power set of
objects in the vocabulary L : S→ 2Σ and thus, the label of a state could be the empty set
or any set of objects from Σ.

5.3 Synth (Step 2 in Figure 1)

The automata synthesis algorithm described in Section 4 is used to generate an automaton
that conforms to the trace sequences generated by Tracing (Step 1). Given a trace sequence
σ = v1, v2, . . . , vn, the labels vi serve as transition predicates in the generated automaton.
The synthesis algorithm further constrains the construction of the automaton so that no
two transitions from a given state in the generated automaton have the same predicates.
The automaton obtained by the synthesis algorithm is thus deterministic.

The learned automaton follows the standard definition of a Deterministic Finite Automa-
ton (DFA). The alphabet is ΣA, containing symbols v ∈ ΣA given by the labelling function
L : S→ 2Σ defined earlier. Thus, for a trace sequence σ = v1, v2, . . . , vn over a finite path

ρn = s0
a0−→ s1

a1−→ . . .
an−1−−−→ sn in the decision process, the symbol vi ∈ ΣA is given by

vi = L(si).

Definition 5 (Deterministic Finite Automaton) A DFA A = (Q, q0,ΣA, F, δ) is a 5-
tuple, where Q is a finite set of states, q0 ∈ Q is the initial state, ΣA is the alphabet, F ⊂ Q

is the set of accepting states, and δ : Q× ΣA → Q is the transition function.

Let Σ∗
A be the set of all finite words over ΣA. A finite word w = v1, v2, . . . , vm ∈ Σ∗

A

is accepted by a DFA A if there exists a finite run ϑ ∈ Q∗ starting from ϑ0 = q0, where
ϑi+1 = δ(ϑi, vi+1) for i ≥ 0 and ϑm ∈ F . Given the collected traces T we construct a DFA
using the method described in Section 4.

The generated automaton provides deep insight into the correlation of the objects
detected in Step 1 and shapes the intrinsic reward. The output of this stage is a DFA, which
is updated iteratively as the agent explores and gathers more trace sequences.

Application to Running Example Figure 3 illustrates the evolution of the synthesised
automata for Montezuma’s Revenge. Most of the deep RL approaches are able to reach the
states that correspond to the DFA up to state q4 in Figure 3 via random exploration. But

1110

Symbolic Task Inference in Deep Reinforcement Learning

q1start

q2

q3 q4 q5 q6 q7

middle
ladder

rope

ro
pe

mi
dd
le
la
dd
er

right ladder

left ladder

right ladder key

left ladder

door

∅

∅∨ middle ladder

∅∨ rope

∅∨ right ladder ∅∨ left ladder ∅

Figure 3: Illustration of the evolution of the automaton synthesised for Montezuma’s Revenge
(extrinsically-rewarding states are in green). The right ladder is often discovered by random
exploration (state q4). Note that the agent found a short-cut to reach the key by skipping
the middle ladder and directly jumping over the rope, which is not obvious even to a human
player (state q1 to q3). Such observations are difficult to extract from other hierarchy
representations, e.g., LSTMs. The key is found with an extrinsic reward of r̂key = +100
(state q6) and the door is unlocked with an extrinsic reward of r̂door = +300 (state q7).

reaching the key and further the doors is challenging and is achieved by DeepSynth using a
hierarchical curiosity-driven learning method described next.

In the following, in order to explain the core ideas underpinning the algorithm, we
temporarily assume that the MDP structure and the associated transition probabilities
are fully known. Later we relax these assumptions, and we stress that the algorithm can
be run model-free over any black-box MDP environment. Specifically, we relate the black-
box MDP and the automaton by synchronising them on-the-fly to create a new structure
that breaks down a sparse and potentially non-Markovian task into a set of Markovian,
history-independent sub-goals.

Definition 6 (Product MDP) Given an MDP M = (S,A, s0, P,Σ, L,R) and a DFA A =
(Q, q0,ΣA, F, δ), the product MDP is defined as (M⊗A) = MA = (S⊗,A, s⊗0 , P

⊗,Σ⊗, F⊗, L,
R), where S⊗ = S× Q, s⊗0 = (s0, q0), Σ

⊗ = Q, and F⊗ = S× F . The transition kernel P⊗

is such that given the current state (si, qi) and action a, the new state (sj , qj) is given by
sj ∼ P (·|si, a) and qj = δ(qi, L(sj)).

By synchronising the MDP states with the DFA states by means of the product MDP, we
can quantify the degree of satisfaction of the associated high-level task. Most importantly, as
shown by Brafman et al. (2018), for any MDP M with finite-horizon non-Markovian reward,
there exists a Markov reward MDP M′ = (S,A, s0, P,Σ, L,R) that is equivalent to M such
that the states of M can be mapped into those of M′. The corresponding states yield the
same transition probabilities, and corresponding traces have the same rewards. Based on
this result, De Giacomo et al. (2019) showed that the product MDP MA is M′ defined above.
Therefore, by synchronising the DFA with the original MDP the non-Markovian extrinsic
reward becomes Markovian. Secondly, the DFA succinctly expresses the history of the state
labels (i.e., traces) that have been discovered by the agent.

1111

Hasanbeig, Jeppu, Abate, Melham & Kroening

Qq(s,a)

Semantic
Segmentation DFA v

Q!(s,a)

Figure 4: DeepSynth for Montezuma’s Revenge: each DQN module is forced by the DFA to
focus on the correlation of semantically distinct objects. The input to the first layer of the
DQN modules is the input image which is convolved by 32 filters of 8× 8 with stride 4 and
a ReLU. The second hidden layer convolves 64 filters of 4× 4 with stride 2, followed by a
ReLU. This is followed by another convolutional layer that convolves 64 filters of 3× 3 with
stride 1 followed by a rectifier. The final hidden layer is fully connected and consists of 512
ReLUs and the output layer is a fully-connected linear layer with a single output for each
action.

Note that the DFA transitions can be taken just by observing the labels of the visited
states, which makes the agent aware of the automaton state without explicitly constructing
the product MDP. This means that the proposed approach can run model-free, and as such
it does not require a priori knowledge about the MDP.

5.4 Deep Temporal Neural Fitted RL (Step 3 in Figure 1)

Each state of the DFA in the synchronised product MDP divides the general sequential task
so that each transition between the states represents an achievable Markovian sub-task. Thus,
given a synthesised DFA A = (Q, q0,ΣA, F, δ), we propose a hybrid architecture of n = |Q|
separate deep RL modules (Figure 4 and box Deep in Figure 1). For each state in the DFA,
there is a dedicated deep RL module, where each deep RL module is an instance of a deep
RL algorithm with distinct neural networks and replay buffers. A general replay buffer E
stores all the gathered samples as 5-tuples ⟨s⊗, a, s⊗′

, rT , L(s′)⟩, where s⊗ is the current
product state, a is the executed action, s⊗

′
is the resulting product state, rT is the total

reward received after performing action a at state s⊗, and L(s′) is the label corresponding to
the set of atomic propositions in Σ that hold in state s′, where s⊗

′
= (s′, q′). The modules

are interconnected, in the sense that the modules act as a global hybrid deep RL architecture
to approximate the Q-function in the product MDP. As described next, this allows the agent

1112

Symbolic Task Inference in Deep Reinforcement Learning

to jump from one sub-task to another by just switching between these modules as prescribed
by the DFA.

The specifics of Step 3 depend on the input to the agent provided by the environment.
For high-dimensional inputs, such as raw images, we propose an architecture that is based
on deep-RL and is inspired by DQN (Mnih et al., 2015). When instead the input is low
dimensional and in vector form, our algorithm is based on Neural Fitted Q-iteration. For
both setups, DeepSynth synthesises a policy whose traces are accepted by the DFA and it
encourages the agent, through intrinsic motivation, to explore the environment under the
guidance of the DFA. More importantly, under this guidance the agent is encouraged to
expand the DFA itself, as described in the following.

In the running example (Montezuma’s Revenge), the Atari emulator provides the number
of lives left in the game, which is used to reset QE ⊆ Q\N, where QE is the set of automaton
states that are visited so far in the learning episode, and N is the set of non-accepting sink
states in the automaton. Upon losing a life in the running example, or generally upon
episode termination, QE is reset to q0, marking the start of a new learning episode.

At each time step during the learning episode, given the constructed DFA, if a new DFA
state is observed during exploration, the intrinsic reward in (5) becomes positive. Namely,

Ri(s⊗, a) =

{
η if q′ /∈ QE ,
0 otherwise,

(6)

where η is an arbitrarily finite and positive reward that is strictly less than the extrinsic
reward r̂, and QE is the set of automaton states that the agent has observed in the current
learning episode. Further, once a new label that does not belong to ΣA is observed during
exploration (Step 1) it is then passed to the automaton synthesis step (Step 2). The
automaton synthesis algorithm then synthesises a new DFA that complies with the new
label.

In the running example (Montezuma’s Revenge), the agent receives a positive intrinsic
reward every time it reaches the middle ladder for the first time within each learning episode.
Specifically, the intrinsic reward is used to motivate exploration, expand the DFA, and to
discover new objects. The overall task is initially unknown, thus bad high-level actions
cannot be inferred solely from the labels. Note that whenever the agent is intrinsically
rewarded towards a bad behaviour, the contribution from the extrinsic reward is much
higher than that from the intrinsic reward (adjusted by µ in (6)). Thus, the agent is able to
escape local intrinsic reward optima and back-propagate the extrinsic reward to rule out
bad behaviours and find the extrinsic optimal policy.

Pre-training Our algorithm does not rely on any a-priori knowledge about the task, and
thus is bootstrapped using a two-step training procedure. In the first step, the agent explores
randomly, and a single DQN module is set up. The experience samples that are gathered
via random exploration are recorded with their associated labels. This pre-training phase
ends when the set of experience samples reaches a pre-defined size. The traces gathered in
the pre-training phase are used by the automata synthesis module to construct an initial
DFA, which captures what the agent has discovered by random exploration. Once the initial
DFA is constructed, we set up a separate DQN module and a separate replay buffer for each
state of the DFA.

1113

Hasanbeig, Jeppu, Abate, Melham & Kroening

Algorithm 1: An Episode of Temporal DQN in DeepSynth

input : automaton A from the Synth step
output : approximate Q-function

1 t = 0
2 initialise the state to (s0, q0)
3 repeat
4 at = argmaxaBqt with ϵ-greedy
5 execute action at and observe the total reward rTt
6 observe the next image xt+1

7 semantic segmentation outputs L(xt+1)
8 preprocess images xt and xt+1

9 store transition (xt, at, xt+1, r
T
t , L(xt+1)) in Eqt

10 sample minibatch from Eqt

11 target value from target network: Pqt = {(input l, target l), l = 1, ..., |Eqt |)}
12 input l = (sl, al)

13 target l = rTl + γmax
a′

Q(sl+1, a
′|θB̂ql+1)

14 Bqt ← RMSprop(Pqt)

15 every TC steps clone the current network Bqi to B̂qt

16 update automaton state from qt to qt+1 (call Synth if a new trace is observed to
update the automaton A)

17 t = t+ 1

18 until end of trial

Algorithm 2: An Episode of Temporal NFQ in DeepSynth

input : automaton A from the Synth step
output : approximate Q-function

1 t = 0
2 initialise the state to (s0, q0)
3 repeat
4 at = argmaxaBqt with ϵ-greedy
5 execute action at and observe the total reward rTt
6 observe the next state st+1

7 observe the next state label L(st+1)
8 store transition (st, at, st+1, r

T
t , L(st+1)) in Eqt

9 target value from target network: Pqt = {(input l, target l), l = 1, ..., |Eqt |)}
10 input l = (sl, al)

11 target l = rTl + γmax
a′

Q(sl+1, a
′|θB̂ql+1)

12 Bqt ← Adam (Pqt)
13 update automaton state from qt to qt+1 (call Synth if a new trace is observed to

update the automaton A)
14 t = t+ 1

15 until end of trial

1114

Symbolic Task Inference in Deep Reinforcement Learning

In the main training phase, we then train these DQN modules together and apply
automata synthesis to further improve the DFA. Whenever the automata synthesis adds
a new state to the DFA, a new DQN module is added correspondingly, along with a new
replay buffer.

When the state is in vector form and no convolutional layer is in use, we resort to
NFQ-based deep-RL modules, instead of DQN modules, and the pre-training step might not
be required. Similar to DQN, NFQ uses experience replay in order to efficiently approximate
the Q-function in MDPs with continuous state spaces as in Algorithm 2. The only major
difference is that in the Temporal NFQ, we do not maintain two instances of the same
networks for periodic updates due to the simpler neural construction.

Application to Running Example In the running example, the agent exploration
scheme is ϵ-greedy with diminishing ϵ where the rate of decrease also depends on the DFA
state so that each module has enough chance to explore. For each automaton state qi ∈ Q

in the the product MDP, the associated deep RL module is called Bqi(s, a). Once the
agent is at state s⊗ = (s, qi), the neural net Bqi is active and explores the MDP. Note that
the modules are interconnected, as discussed above. For example, assume that by taking
action a in state s⊗ = (s, qi) the label v = L(s′) has been observed and as a result the
agent is moved to state s⊗

′
= (s′, qj), where qi ̸= qj . By minimising the loss function L the

network parameters of Bqi are updated such that Bqi(s, a) has minimum possible error to
RT (s, a)+γmaxa′ Bqj (s

′, a′) while Bqi ̸= Bqj . As such, the output of Bqj directly affects Bqi

when the automaton state is changed. This allows the extrinsic reward to back-propagate
efficiently, e.g., from modules Bq7 and Bq6 associated with q7 and q6 in Figure 3, to the
initial module Bq1 . An overview of the algorithm is presented as Algorithm 1.

Define Eqi as the projection of the general replay buffer E onto qi. The size of the replay
buffer for each module is limited and in the case of our running example |Eqi | = 15000.
This includes the most recent frames that are observed when the product MDP state was
s⊗ = (s, qi). In the running example we used RMSProp for each module with uniformly
sampled mini-batches of size 32.

In DeepSynth, each state of the automaton divides the general sequential task so that
each transition between the automaton states represents an achievable Markovian sub-task.
This allows the agent to jump from one sub-task to another by just switching between these
modules as prescribed by the automaton. Thus, when employing neural networks, each
network is a highly-specialized (sub-) agent that can efficiently achieve a particular sub-task.
We remark that the sub-agents can potentially be used in transfer learning scenarios.

Input Embeddings We have experimented with a variety of different input embeddings,
such as the one-hot encoding (Harris & Harris, 2010) and the integer encoding, in order
to approximate the global Q-function with a single network. However, we have observed
poor performance with all setups of this kind. We hypothesize that these encodings allow
the network to assume an ordinal relationship between the states of the automaton. This
means that by assigning integer numbers or one-hot codes, the automaton states are given
a ranking. This disrupts Q-function generalisation since some states in the product MDP
(the synchronised structure between the MDP and the automaton) are closer to each other.
Consequently, we have turned to the use of n separate networks, which work together in

1115

Hasanbeig, Jeppu, Abate, Melham & Kroening

Task Sequence

Task1 Σ∗ wood Σ∗ craft table

Task2 Σ∗ grass Σ∗ craft table

Task3 Σ∗ wood Σ∗ grass Σ∗ iron Σ∗ craft table

Task4 Σ∗ wood Σ∗ smith table

Task5 Σ∗ grass Σ∗ smith table

Task6 Σ∗ iron Σ∗ wood Σ∗ smith table

Task7 Σ∗ wood Σ∗ iron Σ∗ craft table Σ∗ gold

Table 1: High-level sequence for each task in the Minecraft environment, where Σ∗ indicates
that any other finite sequence of labels from the set Σ.

a hybrid fashion, meaning that the agent can switch between these neural networks as it
jumps from one automaton state to another.

6. Experimental Results

6.1 Benchmarks and Setup

We evaluate the performance of DeepSynth on a comprehensive set of benchmarks, given
in Table 3. The Minecraft environment (minecraft-tX) taken from Andreas et al. (2017)
requires solving challenging low-level control tasks, and features sequential high-level goals.
The two mars-rover benchmarks are taken from Hasanbeig (2020), and the models have
uncountably infinite state spaces. Similarly, we treat Montezuma’s Revenge (montezuma)
as an infinite state experiment owing to its large and high-dimensional state space. The
example robot-surve is adopted from Sadigh et al. (2014), and the task is to visit two
regions in sequence. Models slp-easy and slp-hard are inspired by the noisy MDPs of
Chapter 6 in (Sutton & Barto, 1998). The goal in slp-easy is to reach a particular region
of the MDP and the goal in slp-hard is to visit four distinct regions sequentially in proper
order. The frozen-lake benchmarks are similar: the first three are simple reachability
problems and the last three require sequential visits of four regions, except that now there
exist unsafe regions as well. The frozen-lake MDPs are stochastic and are adopted from
the OpenAI Gym (Brockman et al., 2016).

All simulations have been carried out on a machine with an Intel Xeon 3.5GHz processor,
Nvidia Tesla V100 GPU and 16GB of RAM, running Ubuntu 18. Full instructions on how to
run DeepSynth are provided on a GitHub page that accompanies the distribution (Hasanbeig
et al., 2021b):

www.github.com/grockious/deepsynth (@018e606)

In the following, we further elaborate on the Minecraft and Montezuma’s Revenge experi-
ments.

1116

Symbolic Task Inference in Deep Reinforcement Learning

Figure 5: Example policy learnt by DeepSynth for Task 3 of the Minecraft environment
with given vocabulary Σ = {wood, grass, iron, craft-table, smith-table, gold}.

6.2 Implementation Details

6.2.1 Minecraft

The Minecraft environment consists of 7 crafting tasks taken from (Andreas et al., 2017)
that require the agent to execute optimal low-level actions in order to accomplish high-level
objectives in proper order. The extrinsic reward of +1 is given to the agent only when the
whole task is achieved and the tasks are fully unknown at the beginning. A few tasks include
a long sequence of high-level objectives, and thus the associated reward is extremely sparse
and non-Markovian (Table 1).

In this example, the agent location in the grid (Figure 5) is the MDP state s ∈ S. At
each state s ∈ S the agent has a set of actions A = {left , right , up, down} by which it is able
to move to a neighbouring location s′ ∈ S unless stopped by the boundary or by an obstacle.
Obstacle locations are the blue cells and represent a river in the game. We assume the
elements of the vocabulary set Σ = {wood, grass, iron, craft-table, smith-table, gold}
to be known.

Recall that the reward in this game is generally sparse and non-Markovian: the agent
will receive a positive extrinsic reward only when a correct sequence is performed in each
(high-level) task. Namely, the reward R̂ : (S × A)∗ × S → R is a function over the set of
finite paths. A trace-dependent reward is associated to the accomplishment of a given task:
for example, performing a high-level task

Task 1: wood → grass → craft-table

1117

Hasanbeig, Jeppu, Abate, Melham & Kroening

results in an extrinsic reward R̂1, and for another high-level task, such as

Task 4: grass → wood → iron → smith-table

the extrinsic reward is R̂4. Further, these temporal orderings are initially unknown, and
unlike in the work of Andreas et al. (2017) the agent is not equipped with any instructions
to accomplish them. In these scenarios, existing exploration schemes fail, and prior work
such as (Sadigh et al., 2014; Hasanbeig, Abate, & Kroening, 2019) requires the temporal
ordering to be known in advance.

As mentioned in Section 5, for experiments where the state is already in vector form we
employ NFQ modules instead of DQN ones. Similar to DQN, NFQ uses experience replay
in order to efficiently approximate the Q-function in MDPs with continuous state spaces.
Let qi ∈ Q be a state in the DFA A. Then define Eqi as the projection of E onto qi. Each
NFQ module Bqi is trained by its associated experience set Eqi . At each iteration a pattern
set Pqi is generated based on Eqi :

Pqi = {(input l, target l), l = 1, ..., |Eqi |)},

where
inputl = (sl, al),

and
target l = rT + γmax

a′∈A
Q(sl

′, a′),

such that ⟨sl, al, sl′, rT , L(s′l)⟩. This pattern set is then used to train the neural net Bqi as
in Algorithm 2.

We use the Adam optimiser (Kingma & Ba, 2015) to update the network parameters in
each module (line 12). Similar to the DQN modules, the back-propagation of the reward in
NFQ modules starts from ones that are associated with extrinsically-rewarding states of the
automaton, and eventually moves backward until it reaches the networks that are associated
to the initial states. In this way we back-propagate the Q-value through the networks one
by one. Through the extrinsic reward back-propagation those automaton paths that are
not optimal with respect to the expected reward are eventually not chosen by the agent.
This naturally leads to discovery of the high-level optimal paths, similar to the discovery
of low-level action policies via RL. Once the Q-value has converged, the optimal policy is
synthesised by maximising over this value at any given state.

6.2.2 Montezuma’s Revenge

In Montezuma’s Revenge, the emulator’s internal state is not visible to the agent. The
agent only observes an image, which is a matrix of pixel values that represent the current
screen. Inspired by Mnih et al. (2015), we apply a basic preprocessing step to the Atari 2600
frames, designed to reduce the dimensionality of the input. We extract the image brightness
and luminance from the RGB frame and rescale it to 84 × 84. Further, a grey-scaling
pre-processing is applied and then the four most recent frames are stacked together to form
the input to a DQN module.

The agent selects and executes actions according to an ϵ-greedy policy. Similar to the NFQ,
the DQN module also uses experience replay, which averages the behaviour distribution over

1118

Symbolic Task Inference in Deep Reinforcement Learning

Hyperparameter Value Description

minibatch size 32 Number of training cases over which each
Stochastic Gradient Descent (SGD) update is
computed

replay memory size 150000 SGD updates are sampled from this number of
most recent frames.

agent history length 4 The number of most recent frames observed by
the agent that are given as input to the Q net-
work

target network update
frequency (TC)

10000 The frequency (measured in the number of pa-
rameter updates) with which the target network
is updated

discount factor 0.99 Discount factor gamma used in the Q-learning
update

learning rate 0.00025 The learning rate used by RMSProp

initial exploration par 1 Initial value of ϵ in ϵ-greedy exploration

final exploration par 0.1 Final value of ϵ in ϵ-greedy exploration

final exploration frame 150,000 The number of frames over which the initial value
of ϵ is linearly annealed to its final value

replay start size 8000 A uniform random policy is run for this number
of frames before learning starts and the resulting
experience is used to populate the replay mem-
ory.

no-op max 30 Maximum number of “do nothing” actions to
be performed by the agent at the start of an
episode.

Table 2: Hyper-parameters of the DQN Modules for Montezuma’s Revenge.

many of the previous states, smoothing out learning and avoiding oscillations or divergence
in the parameters (Riedmiller, 2005; Mnih et al., 2015). Each DQN module stores a finite
number of last experience tuples in the replay memory, and samples minibatches uniformly
at random. Further, to improve the stability of the deep nets, we use a separate network in
each module for generating the target y values in (4). Specifically, after a finite number of
steps we clone the module network to obtain a target network, which is used to generate
the Q-learning targets y. This modification makes the algorithm more stable compared to
standard Q-Learning and NFQ updates (Mnih et al., 2015).

An overview of the algorithm is presented as Algorithm 1. The values and descriptions
of all the hyper-parameters are provided in Table 2.

6.3 Results

Column three in Table 3 gives the number of states in the automaton that can be generated
from the high-level objective sequences of the ground-truth task. Column four gives the

1119

Hasanbeig, Jeppu, Abate, Melham & Kroening

Figure 6: Average episode reward progress (over 5 runs) and its variance in Montezuma’s
Revenge with DeepSynth, h-DQN (Kulkarni et al., 2016), DQN (Mnih et al., 2015), FeUdal-
LSTM (A. S. Vezhnevets et al., 2017), Option-Critic (OC) (Bacon et al., 2017), Learning
Reward Machines (LRM) (Toro Icarte et al., 2019) and DeepSynth with No Intrinsic
reward (DeepSynth-NI). h-DQN opens a door but only after 2M steps. FeUdal and LSTM
open a door after 100M and 200M steps, respectively. DQN, OC, LRM and DeepSynth-NI
remain flat.

number of states of the automaton synthesised by DeepSynth2, and column product MDP
gives the number of states in the resulting product MDP (Definition 6). Finally, max
sat. prob. at s0 is the maximum probability of achieving the extrinsic reward from the
initial state. In all experiments the high-level objective sequences are initially unknown to
the agent. Furthermore, the extrinsic reward is only given when completing the task and
reaching the objectives in the correct order.

For each task in the Minecraft environment, as shown in Table 1, we construct a DFA
from trace sequences gathered by intrinsically-motivated exploration. The generated DFAs
are presented in Figure 7a–7f and Figure 8, where the green state denotes task satisfaction.

The training progress for Montezuma’s Revenge, and also Task 1 and Task 3 in Minecraft
is plotted in Figure 6 and Figure 9, respectively. In Figure 6, we compare DeepSynth’s average
episode reward with several well-known baselines. In order to showcase the importance of
the proposed intrinsic reward in (6), we test the performance of DeepSynth without any
intrinsic reward. Namely, we set µ = 0 in (5), and we call this special instance “DeepSynth
with No Intrinsic reward (DeepSynth-NI)”. It is interesting to observe that DeepSynth-NI
was not able to obtain the key or open a door in Montezuma’s revenge, highlighting the
significant effect of the intrinsic reward on the performance of DeepSynth. Another interesting

2. The difference between the size of synthesised DFAs and ground-truth DFAs is due to the assumption
that the tasks are unknown to the agent and have to be uncovered via exploration. Specifically, from the
agent’s perspective, all the observed labels before a rewarding state is achieved are required to accomplish
the task. Thus, synthesised DFAs can be larger than the ground-truth DFAs.

1120

Symbolic Task Inference in Deep Reinforcement Learning

q1start q2

q4q5

q6

q3

iron

grass

grass

wo
od

wood

crafttable

smithtable

crafttable

∅ ∅

∅∅

∅

(a) Task 1

q1start q2

q5

q6 q4 q3

smithtable,
iron

wood

sm
it
ht
ab
le

wood

sm
it
ht
ab
le

iron

grass
grass

gra
ss

crafttable

gr
as
s

∅ ∅

∅∅

∅

(b) Task 2

q1start q2

q4 q3q5

wood

grass

iron

crafttable

∅ ∅

∅∅

(c) Task 3

q1start q2 q3
wood smithtable

∅ ∅

(d) Task 4

q1start q2

q5

q6

q4 q3

iron

smithta
ble

wood iron

woodir
on

grass

grass

smithtable

grass

grass

cra
ftt

abl
e

smithtable

∅ ∅

∅∅

∅

(e) Task 5

q1start q2

q3

q5 q4

grass

woodir
on

iron

smi
tht

abl
e

wood

iron

∅ ∅

∅∅

(f) Task 6

Figure 7: Automata generated for the Minecraft Tasks 1 to 6.

1121

Hasanbeig, Jeppu, Abate, Melham & Kroening

q5 q4

q3q6

q1start q2

q7

smithtable

wo
odwood

crafttable
smithtable

smithtable

cr
af
tt
ab
leiron

wood

grass

iron

grass
wood

gra
ss

go
ld

gold

gold

∅ ∅

∅

∅∅

∅

Figure 8: Automaton generated for the Minecraft Task 7.

observation is that, compared to other methods that are able to solve Montezuma’s Revenge,
DeepSynth proved to be much more sample efficient. Specifically, DeepSynth obtained
a reduction of two orders of magnitude in the number of iterations required for policy
synthesis. An important contributing factor to this efficiency is the explicit modelling of
the high-level objectives and their semantic correlations in an automaton. Therefore, no
matter how rare the required sequence of actions, they can still be delineated abstractly in
terms of an automaton over high-level objectives that can guide the agent throughout the
environment. These semantic correlations are implicitly learned in other methods by a much
deeper network, hence the requirement for more samples.

Figure 10 presents the evolution of the loss functions in the Minecraft experiment for
Task 1 and Task 3. For instance, in Figure 10.b, the orange line gives the loss for the
very first deep net associated to the initial state of the DFA, the red and blue ones are
of the intermediate states in the DFA and the green line is associated to the final state.
This demonstrates an efficient back-propagation of the extrinsic reward from the final
high-level state to the initial state. Once the last deep net converges, the expected reward
is back-propagated to the second and so on. Each NFQ module has two hidden layers
and 128 ReLUs. Note that the synthesised DFAs are guaranteed to encode all sequential
label dependencies that are exemplified by the exploration traces (Jeppu et al., 2020). So,
there may be a number of ways to accomplish a particular task in the synthesised DFAs.
This, however, causes no harm since when the extrinsic reward is back-propagated, the
non-optimal options fall out.

The crafting environment outputs a reward for Task 1 when the agent brings “wood” to
the “craft table”. Figure 9.a illustrates the results of training for Task 1. Note that with
the very same training set E of 4500 training samples DeepSynth is able to converge while
NFQ fails. Task 3 has a more complicated sequential structure, as given in Table 1. An

1122

Symbolic Task Inference in Deep Reinforcement Learning

experiment |S| # DFA states product max sat. # episodes to convergence
task synth. MDP prob. at s0 DeepSynth DQN

minecraft-t1 100 3 6 600 1 25 40
minecraft-t2 100 3 6 600 1 30 45
minecraft-t3 100 5 5 500 1 40 t/o
minecraft-t4 100 3 3 300 1 30 50
minecraft-t5 100 3 6 600 1 20 35
minecraft-t6 100 4 5 500 1 40 t/o
minecraft-t7 100 5 7 800 1 70 t/o
mars-rover-1 ∞ 3 3 ∞ n/a 40 50
mars-rover-2 ∞ 4 4 ∞ n/a 40 t/o
montezuma ∞ 6 7 ∞ n/a 300e3 t/o
robot-surve 25 3 3 75 1 10 10
slp-easy-sml 120 2 2 240 1 10 10
slp-easy-med 400 2 2 800 1 20 20
slp-easy-lrg 1600 2 2 3200 1 30 30
slp-hard-sml 120 5 5 600 1 80 t/o
slp-hard-med 400 5 5 2000 1 100 t/o
slp-hard-lrg 1600 5 5 8000 1 120 t/o
frozen-lake-1 120 3 3 360 0.9983 100 120
frozen-lake-2 400 3 3 1200 0.9982 150 150
frozen-lake-3 1600 3 3 4800 0.9720 150 150
frozen-lake-4 120 6 6 720 0.9728 300 t/o
frozen-lake-5 400 6 6 2400 0.9722 400 t/o
frozen-lake-6 1600 6 6 9600 0.9467 450 t/o

Table 3: Comparison between DeepSynth and DQN.

example policy learnt by DeepSynth for Task 3 is provided in Figure 5. Figure 9.b gives the
result of training for Task 3 using DeepSynth and DQN where the training set E has 6000
training samples. However, for Task 3, NFQ failed to converge even after we increased the
training set by an order of magnitude to 60000.

Lastly, we present the automata (Figure 11–15) that DeepSynth synthesised for the rest
of the benchmarks in Table 3.

6.4 SAT-based Automata Synthesis vs. State Merge

We compare the automata synthesis algorithm we use to algorithms based on state merging.
State merge is the established approach for model generation from traces. Traces are first
converted into a Prefix Tree Acceptor (PTA). Model inference techniques are then used to
identify pairs of equivalent states to be merged in the hypothesis model. Starting from the
traditional kTails algorithm for state merging by Biermann and Feldman (1972), several
alternatives to determine state equivalence have been proposed over the years (Walkinshaw
& Bogdanov, 2008). For our experiment we used the MINT (Model INference Technique)
tool by Walkinshaw (2018), which implements different variants of the state merge algorithm,
including data classifiers (Walkinshaw et al., 2016) to check state equivalence for merging.

We generated models using MINT for all seven tasks for the Minecraft environment
and explored different tool configurations to generate a model that best fits the input trace.

1123

Hasanbeig, Jeppu, Abate, Melham & Kroening

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Epoch Number

E
x
p
ec
te
d
D
is
co
u
n
te
d
R
ew

a
rd DeepSynth

NFQ
optimal

(a)

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Steps

E
x
p
ec
te
d
D
is
co
u
n
te
d
R
ew

ar
d DeepSynth

NFQ
Optimal

(b)

Figure 9: Training progress with DeepSynth and NFQ on the same training set E in the
Minecraft Experiment for (a) Task 1 and (b) Task 3. The expected return is over state
s0 = [4, 4] with origin being the bottom left corner cell.

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Epoch Number

L
os
s

q1
q2
q4

(a) Task1

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Steps

L
os
s

q1
q2
q3
q4

(b) Task3

Figure 10: Training progress for Tasks 1 and 3 with three and four active hybrid deep NFQ
modules coupled together, respectively.

We observed that although MINT is faster, the automata generated by the tool are either
too big (meaning they have a large number of states) or are over-generalised (in extreme
cases they only have a single state), depending on the tool configurations. For instance, the
smallest model that best fits the traces for Task 5 includes 49 states (Figure 16), and 14
states for Task 6 (Figure 17). Here, the ‘start’ label signifies the beginning of a new trace

1124

Symbolic Task Inference in Deep Reinforcement Learning

q1start q2

q3

t

∅

u

u

q1start q2

q3q4

∅

t1

∅

t2
u u

u

Figure 11: Automata synthesised for mars-rover-1 and mars-rover-2.

q1start q2 q3

∅

A

∅

B

Figure 12: Automaton synthesised for robot-surve.

q1start

q2

obj1

∅

q1start

q2

q5 q4

q3

ob
j3

obj2

obj3

obj1obj2

obj4

obj4

obj3

obj1∅

∅ ∅

∅

Figure 13: Automata synthesised for slp-easy and slp-hard.

obtained from another instance of random exploration. DeepSynth requires automata that
are succinct and accurately represent sequential behaviour observed in the exploration trace
to ensure fast and efficient learning. Since state merge algorithms do not produce the most
succinct model that fits a given trace, we prefer using the automata synthesis algorithm
described in Section 4.

6.5 Comparison with Tabu Search

The line of work presented by Toro Icarte et al. (2019), referred to as LRM here, uses
reward machines learnt from trace data. It is important to note that the decision process
considered in Toro Icarte et al. (2019) is partially observable. In particular, the task of the
learned machines is to record what to remember so that there is Markovian predictability

1125

Hasanbeig, Jeppu, Abate, Melham & Kroening

q1start q2

q3

obj1

∅

u

u

Figure 14: Automaton synthesised for frozen-lake-1,2,3.

q1start q2

q5 q4

q3 q6
obj3

obj2

obj3

obj1obj2

obj4

obj4

obj3

obj1

u

u

u

u

∅ ∅ ∅

∅

u

Figure 15: Automaton synthesised for frozen-lake-4,5,6.

from the observations and the reward machine state. Hence, the function of the generated
automata is different from the function of the learned automata in this paper. Having this
functional difference in mind, our interest persisted in comparing the two approaches and in
the following we compare the two automata-learning methodologies.

The automata synthesis algorithm (Synth) used in this paper implements online learning.
Synth converts the model learning problem into a Boolean Satisfiability (SAT) problem
and uses a SAT solver to generate models. SAT solvers, in turn, use a backtracking search
algorithm, DPLL (Davis & Putnam, 1960), to look for a satisfying assignment to the variables
in the Boolean formula. LRM, on the other hand, uses Tabu search to explore and find
reward machines from trace data. DPLL is complete and explores the entire search space,
as opposed to Tabu search, which is local (Cook & Mitchell, 1996). Model completeness and
accuracy is important in DeepSynth as the agent relies on the automaton to guide learning.
The automata generated by Synth are complete in the sense that they capture all sequential
behaviours seen in the trace.

1126

Symbolic Task Inference in Deep Reinforcement Learning

Figure 16: Best fit model for Task 5 generated by the MINT tool.

Figure 17: Best fit model for Task 6 generated by the MINT tool.

DeepSynth uses traces from random exploration to generate an automaton. Note that
DeepSynth uses positive trace samples only. This allows us to add new traces incrementally
to the existing automaton. In each episode sequential behaviours observed over iterations
of exploration are incorporated into the automaton without changing the structure of the
automaton inferred in previous episodes. More specifically, when the automaton is updated,
it will always be a superset of the previous automaton. Consequently, the Q-networks can
continue to be used and updated after an automaton is updated. Namely, the only required
change is that more Q-networks need to be added; the old Q networks can be reused. This is
not the case in LRM where Q-networks must be reset and relearned from scratch each time
the automaton changes. Also, in contrast to LRM, Synth does not require an initial model.

For empirical evaluation, we applied Synth to generate automata from traces for the
three examples used to benchmark the LRM approach—Cookie Domain, 2-Keys Domain
and Symbol Domain. Details on the benchmarks can be found in (Toro Icarte et al., 2019).

q1start q2

q3

q4

<o/w,0>

<3B,0>
<o/w,0>

<0
c,
0>
;

<2
,0
>

<3
B,
0>

<2c,0>

<0,0>;

<3B,0>

<0C,1>

<2C,1>

<o/w,0>

<o/w,0>

Figure 18: Perfect reward machine for Cookie domain (Toro Icarte et al., 2019).

1127

Hasanbeig, Jeppu, Abate, Melham & Kroening

Traces for each benchmark are obtained by executing the implementation of the LRM
algorithm taken from (Icarte, 2020), where each trace is a sequence of (label, reward) pairs.

q1start q2

q5

q7

q6

q8

q3 q4

∅

(1,0)

(2,0),(0,0)

∅

(3b,0)

(1,0)

(3B,0)

(3b,0)

(0
c,
0)

(1
,0
)

(0C,1)

(2c,0)
(1,0)

(2C,1)

(0,0)

(2,0)

∅

∅

∅ ∅

Figure 19: Automaton synthesised for Cookie domain.

q1start

q2

q4q3

q5

∅

(1,0)(3as,0),(3a,0),(3bs,0),(3cn,0),(3an,0),
(3cs,0),(3b,0),(3c,0),(3bn,0)

∅

(0
ab
c,
0)

(1
,0
)

(0Abc,-1),(0aBc,-1),(0abC,-1),
(0Abc,1),(0aBc,1),(0abC,1),

(2Abc,-1),(2aBc,-1),(2abC,-1),
(2Abc,1),(2aBc,1),(2abC,1),

(2abc,0)(1,0)

∅ ∅

Figure 20: Automaton synthesised for Symbol domain.

1128

Symbolic Task Inference in Deep Reinforcement Learning

q1start

q2

q5q4q3 q6

q7

q8

q9 q10 q11

q12

∅

(1,0)
(3ddg,0),(3dg,0)

(0,0),(2,0),

∅

(0k
k,0

)

(1,
0) (0k,0)

(1,0)

(2kk,0)

(1,0)

(2
k,
0)(1

,0
)

∅

∅ ∅

∅(0*k,0)

(2*,0) (0
*,
0)

(2*
k,0

)

(1*,0)(2*k,0),(2*,0),
(0*,0),(0*k,0)

(3*
ddg

,0)

(1*
,0)

(3*dg,0)

(1*,0)

(3g,0)

(3G,1)

(3
dg
,0
) (1,0)

(3g,0)

∅

∅

∅ ∅

∅

∅

Figure 21: Automaton synthesised for 2-Keys domain.

Here we compare the automaton generated by Synth for the Cookie Domain (Figure 19)
with its perfect reward machine (Figure 18) obtained from Toro Icarte et al. (2019).

The Cookie Domain consists of three rooms labelled 0, 2 and 3 connected by a hallway
labelled 1. There is a button b in room 3 that, when pressed, causes a cookie c to randomly
appear in either room 0 or room 2. Note that there is no cookie present at the beginning of
an episode. In the trace, the button press is indicated by B while C indicates that the agent
has eaten the cookie. The agent receives a reward of 1 for eating the cookie and 0 otherwise,

1129

Hasanbeig, Jeppu, Abate, Melham & Kroening

0 2,000 4,000 6,000 8,000
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

Trace Length

R
u
n
ti
m
e
(m

in
)

Synth LRM

(a) Cookie Domain

0 2,000 4,000 6,000
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

Trace Length

R
u
n
ti
m
e
(m

in
)

Synth LRM

(b) Symbol Domain

0 2,000 4,000 6,000 8,000
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

Trace Length

R
u
n
ti
m
e
(m

in
)

Synth LRM

(c) 2-Keys Domain

Figure 22: Runtime comparison of Tabu search vs. the Synth algorithm.

as captured by the perfect reward machine in Figure 18. The automaton generated by
Synth in Figure 19 accurately captures this behaviour—while the path q1 → q2 → q3 → q4
captures the agent discovering and pressing the button in room 3, paths q2 → q5 → q6 and
q2 → q7 → q8 capture the agent discovering the cookie and eating it in either room 0 or
room 2 respectively. The automata generated by Synth for the other two benchmarks are
provided in Figure 20–21.

For the sake of completeness, we also present the results of a runtime comparison of
Synth and the LRM algorithm. The plots in Figure 22 provide a runtime comparison for
increasing trace length on the three benchmarks. The plots show a linear increase in runtime
for LRM as trace length increases. The runtime for Synth, on the other hand, saturates
after an initial increase in runtime, and is much lower compared to LRM.

Given a set of observed traces, Synth generates a model from the first trace in the set,
then incrementally adds any new behaviour seen in subsequent traces. For smaller trace sets,
we see new behaviours being added to the model with each trace sequence in the set, but for
larger trace sets subsequent trace sequences do not exhibit any new behaviours that are not
already captured by the automaton. Therefore, the runtime saturates once all behaviours
are captured by the generated automaton. The minimal noise observed in the runtime plots
can be attributed to trace processing and plotting the generated automaton.

Increasing the parameters w and l for Synth can result in longer algorithm runtime. For
w, the effect on runtime will depend on the nature of the label sequences, specifically the
frequency of repeating patterns. Increasing l values instead leads to tighter constraints and
a more complex SAT problem to solve.

7. Conclusions and Future Work

We have proposed a fully-unsupervised approach for training deep RL agents when the
reward is extremely sparse or non-Markovian. We automatically infer a high-level structure
from observed exploration traces using automata synthesis. The inferred automaton is a
formal, un-grounded, human-interpretable representation of a complex task and its steps.
We showed that we are able to efficiently learn policies that achieve complex high-level
objectives using fewer training samples as compared to alternative algorithms.

1130

Symbolic Task Inference in Deep Reinforcement Learning

Owing to the modular structure of the automaton, the overall task can be segmented
into easier Markovian sub-tasks. Therefore, any segment of the proposed network that is
associated with a sub-task can be used as a separate trained module in transfer learning. An
advantage of the proposed method is that in problems where domain knowledge is available,
this knowledge can be easily encoded as an automaton to guide learning. This enables the
agent to solve complex tasks and saves the agent from an exhaustive exploration in the
beginning. In particular, if the task DFA is known or even just partially known a priori,
then our Synth step can exploit this partial automaton by incrementally adding any new
labels or subtask sequences discovered during exploration. As an example, if the automaton
in the second stage of Figure 3 is given initially, the agent is able to utilise the semantic
correlation of the objects to facilitate its explorations and find the key faster.

An interesting direction to explore is the integration of widely-used automata synthesis
methods such as MINT with the DeepSynth reward and deep RL architecture. A performance
comparison could quantify the benefit of particular synthesis methods.

Another interesting research direction is to compare DQN with augmented input. For
instance, the input to the DNN could include the segmented objects and their locations in
the frame to determine whether the agent is able to learn an implicit correlation between
the high-level objects.

Finally, wherever applicable, comparing the performance of DeepSynth with other
methods that integrate automata learning and RL is an interesting direction to pursue.

Acknowledgments

The authors would like to thank Hadrien Pouget for interesting discussions and the anonymous
reviewers for their insightful suggestions. This work was supported by a grant from the UK
NCSC, and the Balliol College, Jason Hu scholarship. The work reported in this paper was
done while Hosein Hasanbeig and Daniel Kroening were at the University of Oxford.

References

Abate, A., Almulla, Y., Fox, J., Hyland, D., & Wooldridge, M. (2023). Learning task
automata for RL using hidden Markov models. In European Conference on AI.

Abbeel, P., Coates, A., Quigley, M., & Ng, A. Y. (2007). An application of reinforcement
learning to aerobatic helicopter flight. In NeurIPS (pp. 1–8). MIT Press.

Alur, R., Bansal, S., Bastani, O., & Jothimurugan, K. (2022). A framework for transforming
specifications in reinforcement learning. , 604–624.

Andreas, J., Klein, D., & Levine, S. (2017). Modular multitask reinforcement learning with
policy sketches. In ICML (Vol. 70, pp. 166–175).

Angluin, D. (1987). Learning regular sets from queries and counterexamples. Inf. Comput.,
75 (2), 87–106.

Bacon, P.-L., Harb, J., & Precup, D. (2017). The option-critic architecture. In AAAI.

Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. (2013). The Arcade learning
environment: An evaluation platform for general agents. Artificial Intelligence Research,
47 , 253–279.

1131

Hasanbeig, Jeppu, Abate, Melham & Kroening

Berlyne, D. E. (1960). Conflict, arousal, and curiosity. McGraw-Hill Book Company.

Bertsekas, D. P., & Shreve, S. (2004). Stochastic optimal control: The discrete-time case.
Athena Scientific.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-dynamic programming (Vol. 1). Athena
Scientific.

Biermann, A. W., & Feldman, J. A. (1972). On the synthesis of finite-state machines from
samples of their behavior. IEEE Trans. Comput., 21 (6), 592–597.

Brafman, R. I., De Giacomo, G., & Patrizi, F. (2018). LTLf/LDLf non-Markovian rewards.
In AAAI.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba,
W. (2016). OpenAI gym. arXiv , 1606.01540 .

Brunke, L., Greeff, M., Hall, A. W., Yuan, Z., Zhou, S., Panerati, J., & Schoellig, A. P.
(2021). Safe learning in robotics: From learning-based control to safe reinforcement
learning. arXiv preprint arXiv:2108.06266 .

Buzhinsky, I., & Vyatkin, V. (2017). Automatic inference of finite-state plant models from
traces and temporal properties. IEEE Trans. Ind. Informat., 13 (4), 1521–1530.

Buzhinsky, I., & Vyatkin, V. (2017). Modular plant model synthesis from behavior traces
and temporal properties. In Emerging Technologies and Factory Automation (pp. 1–7).
IEEE.

Cai, M., Hasanbeig, H., Xiao, S., Abate, A., & Kan, Z. (2021). Modular deep reinforcement
learning for continuous motion planning with temporal logic. In International Confer-
ence on Intelligent Robots and Systems (IROS) and IEEE Robotics and Automation
Letters (RAL).

Cai, M., Peng, H., Li, Z., Gao, H., & Kan, Z. (2021). Receding horizon control-based motion
planning with partially infeasible LTL constraints. IEEE Control Systems Letters,
5 (4), 1279–1284.

Cai, M., & Vasile, C.-I. (2021). Safe-critical modular deep reinforcement learning with
temporal logic through Gaussian processes and control barrier functions. arXiv preprint
arXiv:2109.02791 .

Camacho, A., Toro Icarte, R., Klassen, T. Q., Valenzano, R., & McIlraith, S. A. (2019).
LTL and beyond: Formal languages for reward function specification in reinforcement
learning. In IJCAI (pp. 6065–6073).

Chockler, H., Kesseli, P., Kroening, D., & Strichman, O. (2020). Learning the language of
software errors. Artificial Intelligence Research, 67 , 881–903.

Cook, S., & Mitchell, D. (1996). Finding hard instances of the satisfiability problem:
A survey. In Satisfiability problem: Theory and applications.

Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. Harper & Row
New York.

Daniel, C., Neumann, G., & Peters, J. (2012). Hierarchical relative entropy policy search.
In Artificial Intelligence and Statistics (pp. 273–281).

Davis, M., & Putnam, H. (1960). A computing procedure for quantification theory. J. ACM ,
7 (3), 201–215.

De Giacomo, G., Favorito, M., Iocchi, L., & Patrizi, F. (2020). Imitation learning over
heterogeneous agents with restraining bolts. In International Conference on Automated
Planning and Scheduling (pp. 517–521).

1132

Symbolic Task Inference in Deep Reinforcement Learning

De Giacomo, G., Iocchi, L., Favorito, M., & Patrizi, F. (2019). Foundations for restraining
bolts: Reinforcement learning with LTLf/LDLf restraining specifications. In Interna-
tional Conference on Automated Planning and Scheduling (Vol. 29, pp. 128–136).

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., & Clune, J. (2021, Feb 01). First
return, then explore. Nature, 590 (7847), 580-586.

Fu, J., & Topcu, U. (2014). Probably approximately correct MDP learning and control with
temporal logic constraints. In Robotics: Science and Systems X.

Fulton, N., & Platzer, A. (2018). Safe reinforcement learning via formal methods: Toward
safe control through proof and learning. In AAAI (pp. 6485–6492).

Furelos-Blanco, D., Law, M., Russo, A., Broda, K., & Jonsson, A. (2020). Induction of
subgoal automata for reinforcement learning. In AAAI (pp. 3890–3897).

Gaon, M., & Brafman, R. (2020). Reinforcement learning with non-Markovian rewards. In
Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, pp. 3980–3987).

Giacobbe, M., Hasanbeig, H., Kroening, D., & Wijk, H. (2021). Shielding Atari games with
bounded prescience. In Autonomous Agents and Multiagent Systems (pp. 1507–1509).

Glover, F., & Laguna, M. (1998). Tabu search. In Handbook of Combinatorial Optimization
(Vols. 1–3, pp. 2093–2229). Springer.

Gulwani, S. (2012). Synthesis from examples. In WAMBSE.

Harris, D., & Harris, S. (2010). Digital design and computer architecture. Morgan Kaufmann.

Hasanbeig, H. (2020). Safe and certified reinforcement learning with logical constraints (PhD
Dissertation). University of Oxford.

Hasanbeig, H., Abate, A., & Kroening, D. (2018). Logically-constrained reinforcement
learning. arXiv , 1801.08099 .

Hasanbeig, H., Abate, A., & Kroening, D. (2019). Logically-constrained neural fitted
Q-iteration. In Autonomous Agents and Multiagent Systems (pp. 2012–2014).

Hasanbeig, H., Abate, A., & Kroening, D. (2020). Cautious reinforcement learning with
logical constraints. In Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems (pp. 483–491).

Hasanbeig, H., Jeppu, N. Y., Abate, A., Melham, T., & Kroening, D. (2021a). DeepSynth:
Automata synthesis for automatic task segmentation in deep reinforcement learning. In
Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, pp. 7647–7656).

Hasanbeig, H., Jeppu, N. Y., Abate, A., Melham, T., & Kroening, D. (2021b). DeepSynth:
Automata synthesis for automatic task segmentation in deep reinforcement learning
code repository. https://github.com/grockious/deepsynth. GitHub.

Hasanbeig, H., Kantaros, Y., Abate, A., Kroening, D., Pappas, G. J., & Lee, I. (2019). Re-
inforcement learning for temporal logic control synthesis with probabilistic satisfaction
guarantees. In CDC (pp. 5338–5343).

Hasanbeig, H., Kroening, D., & Abate, A. (2020a). Deep reinforcement learning with
temporal logics. In Formal Modeling and Analysis of Timed Systems (Vol. 12288, pp.
1–22).

Hasanbeig, H., Kroening, D., & Abate, A. (2020b). Towards verifiable and safe model-free
reinforcement learning. In Workshop on Artificial Intelligence and Formal Verification,
Logics, Automata and Synthesis (OVERLAY).

Hasanbeig, H., Kroening, D., & Abate, A. (2022). LCRL: Certified policy synthesis via
logically-constrained reinforcement learning. In International Conference on Quantita-

1133

Hasanbeig, Jeppu, Abate, Melham & Kroening

tive Evaluation of SysTems.

Hasanbeig, H., Kroening, D., & Abate, A. (2023). Certified reinforcement learn-
ing with logic guidance. Artificial Intelligence, 103949. Retrieved from
https://www.sciencedirect.com/science/article/pii/S0004370223000954

Hasanbeig, H., Sharma, H., Betthauser, L., Frujeri, F. V., & Momennejad, I. (2023).
ALLURE: A systematic protocol for auditing and improving LLM-based evaluation of
text using iterative in-context-learning. arXiv preprint arXiv:2309.13701 .

Heule, M. J. H., & Verwer, S. (2013). Software model synthesis using satisfiability solvers.
Empirical Software Engineering , 18 (4), 825–856.

Hwang, J.-J., Yu, S. X., Shi, J., Collins, M. D., Yang, T.-J., Zhang, X., & Chen, L.-C.
(2019). SegSort: Segmentation by discriminative sorting of segments. In ICCV (pp.
7334–7344).

Icarte, T. (2020). LRM Learning reward machines for partially observable reinforcement
learning. https://bitbucket.org/RToroIcarte/lrm/src/master/. Bitbucket.

Jeppu, N. Y. (2020). Trace2model code repository. https://github.com/natasha-
jeppu/Trace2Model.

Jeppu, N. Y., Melham, T., Kroening, D., & O’Leary, J. (2020). Learning concise models
from long execution traces. In Design Automation Conference (pp. 1–6). ACM/IEEE.

Ji, X., Henriques, J. F., & Vedaldi, A. (2019). Invariant information clustering for unsuper-
vised image classification and segmentation. In ICCV (pp. 9865–9874).

Jiang, Y., Bharadwaj, S., Wu, B., Shah, R., Topcu, U., & Stone, P. (2021). Temporal-logic-
based reward shaping for continuing learning tasks. , 35 (9), 7995–8003.

Kearns, M., & Singh, S. (2002). Near-optimal reinforcement learning in polynomial time.
Machine Learning , 49 (2-3), 209–232.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In
International Conference on Learning Representations.

Koul, A., Fern, A., & Greydanus, S. (2019). Learning finite state representations of recurrent
policy networks. In International Conference on Learning Representations.

Krishnan, S. C., Puri, A., Brayton, R. K., & Varaiya, P. P. (1995). The Rabin index
and chain automata, with applications to automata and games. In Computer-Aided
Verification (CAV) (pp. 253–266). Springer.

Kulkarni, T. D., Narasimhan, K., Saeedi, A., & Tenenbaum, J. (2016). Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. In
NeurIPS (pp. 3675–3683).

Lang, K. J., Pearlmutter, B. A., & Price, R. A. (1998). Results of the Abbadingo One
DFA learning competition and a new evidence-driven state merging algorithm. In
Grammatical Inference (Vol. 1433, pp. 1–12). Springer.

Lavaei, A., Somenzi, F., Soudjani, S., Trivedi, A., & Zamani, M. (2020). Formal con-
troller synthesis for continuous-space MDPs via model-free reinforcement learning. In
International Conference on Cyber-Physical Systems (pp. 98–107).

Littman, M. L., Topcu, U., Fu, J., Isbell, C., Wen, M., & MacGlashan, J.
(2017). Environment-independent task specifications via GLTL. arXiv preprint
arXiv:1704.04341 .

Liu, W., Wei, L., Sharpnack, J., & Owens, J. D. (2019). Unsupervised object segmentation
with explicit localization module. arXiv , 1911.09228 .

1134

Symbolic Task Inference in Deep Reinforcement Learning

Mao, H., Alizadeh, M., Menache, I., & Kandula, S. (2016). Resource management with
deep reinforcement learning. In ACM Workshop on Networks (pp. 50–56).

Memarian, F., Goo, W., Lioutikov, R., Topcu, U., & Niekum, S. (2021). Self-supervised online
reward shaping in sparse-reward environments. arXiv preprint arXiv:2103.04529 .

Memarian, F., Xu, Z., Wu, B., Wen, M., & Topcu, U. (2020). Active task-inference-guided
deep inverse reinforcement learning. In Conference on Decision and Control, CDC
(pp. 1932–1938). IEEE.

Mitta, R., Hasanbeig, H., Kroening, D., & Abate, A. (2022). Risk-aware Bayesian reinforce-
ment learning for cautious exploration. In NeurIPS 2022 MLSW.

Mitta, R., Hasanbeig, H., Wang, J., Kroening, D., Kantaros, Y., & Abate, A. (2024).
Safeguarded progress in reinforcement learning: Safe Bayesian exploration for control
policy synthesis. In Proceedings of the aaai conference on artificial intelligence (Vol. 38,
pp. 21412–21419).

Mnih, V., et al. (2015). Human-level control through deep reinforcement learning. Nature,
518 (7540), 529–533.

Momennejad, I., Hasanbeig, H., Vieira Frujeri, F., Sharma, H., Jojic, N., Palangi, H., . . .
Larson, J. (2024). Evaluating cognitive maps and planning in large language models
with CogEval. Advances in Neural Information Processing Systems, 36 .

Momennejad, I., Russek, E., Cheong, J., Botvinick, M., Daw, N., & Gershman, S. (2017). The
successor representation in human reinforcement learning. Nature Human Behaviour ,
1 (9), 680–692.

Neider, D., Gaglione, J.-R., Gavran, I., Topcu, U., Wu, B., & Xu, Z. (2021). Advice-guided
reinforcement learning in a non-Markovian environment. In Proceedings of the AAAI
Conference on Artificial Intelligence (Vol. 35, pp. 9073–9080).

Nejati, A., Lavaei, A., Jagtap, P., Soudjani, S., & Zamani, M. (2023). Formal verification
of unknown discrete-and continuous-time systems: A data-driven approach. IEEE
Transactions on Automatic Control .

Polydoros, A. S., & Nalpantidis, L. (2017). Survey of model-based reinforcement learning:
Applications on robotics. Journal of Intelligent & Robotic Systems, 86 (2), 153–173.

Precup, D. (2001). Temporal abstraction in reinforcement learning (PhD Dissertation).
University of Massachusetts Amherst.

Rens, G., & Raskin, J.-F. (2020). Learning non-Markovian reward models in MDPs. arXiv ,
2001.09293 .

Rens, G., Raskin, J.-F., Reynouad, R., & Marra, G. (2020). Online learning of non-Markovian
reward models. arXiv , 2009.12600 .

Riedmiller, M. (2005). Neural fitted Q iteration – first experiences with a data efficient
neural reinforcement learning method. In ECML (Vol. 3720, pp. 317–328). Springer.

Ringstrom, T. J., Hasanbeig, H., & Abate, A. (2020). Jump operator planning: Goal-
conditioned policy ensembles and zero-shot transfer. arXiv preprint arXiv:2007.02527 .

Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions
and new directions. Contemporary Educational Psychology , 25 (1), 54–67.

Sadigh, D., Kim, E. S., Coogan, S., Sastry, S. S., & Seshia, S. A. (2014). A learning based
approach to control synthesis of Markov decision processes for linear temporal logic
specifications. In Conference on Decision and Control (pp. 1091–1096).

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., . . .

1135

Hasanbeig, Jeppu, Abate, Melham & Kroening

Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree
search. Nature, 529 , 484–503.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (Vol. 1).
MIT Press Cambridge.

Toro Icarte, R., Klassen, T. Q., Valenzano, R., & McIlraith, S. A. (2018). Teaching multiple
tasks to an RL agent using LTL. In Autonomous Agents and Multiagent Systems (pp.
452–461).

Toro Icarte, R., Waldie, E., Klassen, T., Valenzano, R., Castro, M., & McIlraith, S. (2019).
Learning reward machines for partially observable reinforcement learning. In NeurIPS
(pp. 15497–15508).

Ulyantsev, V., Buzhinsky, I., & Shalyto, A. (2018, Feb 01). Exact finite-state machine
identification from scenarios and temporal properties. International Journal on Software
Tools for Technology Transfer , 20 (1), 35–55.

Ulyantsev, V., & Tsarev, F. (2011). Extended finite-state machine induction using SAT-solver.
In International Conference on Machine Learning and Applications and Workshops
(pp. 346–349).

Vezhnevets, A., Mnih, V., Osindero, S., Graves, A., Vinyals, O., Agapiou, J., et al. (2016).
Strategic attentive writer for learning macro-actions. In NeurIPS (pp. 3486–3494).

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Silver, D., &
Kavukcuoglu, K. (2017). FeUdal networks for hierarchical reinforcement learning. In
International Conference on Machine Learning (p. 3540–3549).

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., . . .
Silver, D. (2019). Grandmaster level in StarCraft II using multi-agent reinforcement
learning. Nature, 1–5.

Walkinshaw, N. (2018). MINT framework code repository.
https://github.com/neilwalkinshaw/mintframework.

Walkinshaw, N., & Bogdanov, K. (2008). Inferring finite-state models with temporal
constraints. In Automated Software Engineering (p. 248-257). IEEE.

Walkinshaw, N., Bogdanov, K., Holcombe, M., & Salahuddin, S. (2007). Reverse engineering
state machines by interactive grammar inference. In Working Conference on Reverse
Engineering (pp. 209–218). IEEE.

Walkinshaw, N., Taylor, R., & Derrick, J. (2016). Inferring extended finite state machine
models from software executions. Empirical Software Engineering , 21 (3), 811–853.

Wang, J., Hasanbeig, H., Tan, K., Sun, Z., & Kantaros, Y. (2023). Mission-driven exploration
for accelerated deep reinforcement learning with temporal logic task specifications.
arXiv preprint arXiv:2311.17059 .

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine Learning , 8 (3-4), 279–292.

Xu, Z., Gavran, I., Ahmad, Y., Majumdar, R., Neider, D., Topcu, U., & Wu, B. (2020).
Joint inference of reward machines and policies for reinforcement learning. In AAAI
(Vol. 30, pp. 590–598).

Xu, Z., Wu, B., Ojha, A., Neider, D., & Topcu, U. (2021). Active finite reward automaton
inference and reinforcement learning using queries and counterexamples. In Interna-
tional Cross-domain Conference for Machine Learning and Knowledge Extraction (pp.
115–135).

1136

Symbolic Task Inference in Deep Reinforcement Learning

Yang, C., Littman, M., & Carbin, M. (2021). Reinforcement learning for general LTL
objectives is intractable. arXiv preprint arXiv:2111.12679 .

Yuan, L. Z., Hasanbeig, H., Abate, A., & Kroening, D. (2019). Modular deep reinforcement
learning with temporal logic specifications. arXiv , 1909.11591 .

Zheng, Z., & Yang, Y. (2021). Rectifying pseudo label learning via uncertainty estimation for
domain adaptive semantic segmentation. International Journal of Computer Vision,
129 , 1106—1120.

Zhou, Z., et al. (2017). Optimizing chemical reactions with deep reinforcement learning.
ACS Central Science, 3 (12), 1337–1344.

1137

