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Abstract

Domain-specific heuristics are an essential technique for solving combinatorial problems
efficiently. Current approaches to integrate domain-specific heuristics with Answer Set
Programming (ASP) are unsatisfactory when dealing with heuristics that are specified
non-monotonically on the basis of partial assignments. Such heuristics frequently occur in
practice, for example, when picking an item that has not yet been placed in bin packing.
Therefore, we present novel syntax and semantics for declarative specifications of domain-
specific heuristics in ASP. Our approach supports heuristic statements that depend on
the partial assignment maintained during solving, which has not been possible before.
We provide an implementation in Alpha that makes Alpha the first lazy-grounding ASP
system to support declaratively specified domain-specific heuristics. Two practical example
domains are used to demonstrate the benefits of our proposal. Additionally, we use our
approach to implement informed search with A*, which is tackled within ASP for the
first time. A* is applied to two further search problems. The experiments confirm that
combining lazy-grounding ASP solving and our novel heuristics can be vital for solving
industrial-size problems.

1. Introduction

Answer Set Programming (ASP) (Baral, 2003; Gebser et al., 2012; Gelfond & Kahl, 2014;
Lifschitz, 2019) is a declarative knowledge representation formalism that has been applied
successfully in a variety of industrial and scientific applications (Erdem et al., 2016; Falkner
et al., 2018) such as configuration (Falkner et al., 2016), team building (Ricca et al., 2012),
routing (Gebser et al., 2018), or scheduling (Dodaro et al., 2019).

The ground-and-solve approach is the predominant method employed by state-of-the-art
ASP solvers. In ground-and-solve, solvers first instantiate the given non-ground program
and then apply various strategies to find answer sets of the obtained ground program (Gebser
et al., 2018). Ground-and-solve is applied by systems such as clingo (Gebser et al., 2019),
dlv (Adrian et al., 2018; Leone et al., 2006), or dlv2 (Alviano et al., 2017).

However, modern applications manifested two issues with the ground-and-solve ap-
proach. The first issue is the so-called grounding bottleneck : Large problem instances in
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industrial applications often cannot be grounded by modern grounders like gringo (Gebser
et al., 2011) or I-DLV (Calimeri et al., 2017) in acceptable time and space (Eiter et al.,
2007). The second issue is that, even if the problem can be grounded, computation of an-
swer sets might take considerable time, as indicated by ASP Competition reports (Calimeri
et al., 2016; Gebser et al., 2017, 2020).

Both issues were recently adressed by many researchers. First, to overcome the ground-
ing bottleneck, lazy-grounding ASP systems interleave grounding and solving to instantiate
and store only relevant parts of the ground program in memory. Lazy grounding is im-
plemented by systems such as gasp (Palù et al., 2009), ASPeRiX (Lefèvre et al., 2017),
OMiGA (Dao-Tran et al., 2012), and Alpha (Weinzierl, 2017). The second performance-
related issue is tackled by modern solvers using various techniques among which domain-
specific heuristics play a central role. Examples of such approaches include both declarative
and procedural approaches. A seamless and declarative integration of heuristics into ASP
encodings has been proposed by Gebser et al. (2013), whereas an approach using procedural
heuristics that interact directly with the internal decision-making procedures is discussed
by Dodaro et al. (2016).

However, there is no ASP system that addresses both issues simultaneously. That
is, previous research has not addressed declarative heuristics for the lazy-grounding case.
In addition, the existing integrations of domain-specific heuristics with ASP solving are
unsatisfactory: Procedural heuristics counteract the declarative nature of ASP, and the
existing declarative approach makes it quite tedious and counter-intuitive to model dynamic
heuristics for reasoning about partial assignments, which is an essential feature for practical
applications. For example, heuristics in product configuration or for bin packing may need
to compute the amount of space left after placing a component or an item. So far, such
dynamic reasoning has been supported by the existing procedural approach, but not by the
declarative one.

We tackle the challenge of finding a satisfying solution addressing both the grounding
bottleneck and the runtime performance issue. To this end, we extend the existing declar-
ative approach by Gebser et al. (2013) with dynamic heuristics while at the same time
keeping the language simple and easy to use. Second, we integrate our approach into a
lazy-grounding system, which requires non-trivial adaptations due to the different solving
mechanisms in effect.

1.1 Contributions

In this work, we present a novel approach to dynamic declarative domain-specific heuristics
for ASP. We combine this approach with lazy grounding to facilitate the solving of large
and complex problems. In summary, our work provides the following contributions:

• We present novel semantics that make declarative specifications of domain-specific
heuristics more intuitive by allowing heuristics to depend non-monotonically on the
partial assignment maintained during solving (i.e., heuristics may be applicable in one
partial assignment and cease to be applicable at a later stage).

• We propose a language for declarative specifications of domain-specific heuristics
within answer-set programs that can be seen as a variant of the one introduced by
Gebser et al. (2013), and we formally define the language by an EBNF grammar.
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• We show how to integrate our language into a lazy-grounding ASP system and provide
a reference implementation within the well-known lazy-grounding system Alpha.

• We demonstrate how to use our approach to model domain-specific heuristics for
two practical example domains: the House Reconfiguration Problem (HRP) and the
Partner Units Problem (PUP). Additionally, we use our approach to implement state-
space search with A*, which is tackled within ASP for the first time.1 Integrating A*
and ASP allows, on the one hand, the declarative specification of states and their
successor states employing ASP and, on the other hand, the application of informed
search strategies exploiting heuristic functions. We apply A* to two further search
problems.

• Finally, we demonstrate how solving performance can profit from our approach by
presenting experimental results in these practical domains.

1.2 Organization

Preliminaries are covered by Section 2, before Section 3 outlines the state of the art in
domain-specific heuristics. On this basis, we introduce our novel semantics in Section 4.
Section 5 explains how to integrate our approach into a lazy-grounding ASP system. Ap-
plications and experimental results are presented in Section 6, and Section 7 concludes the
article.

2. Preliminaries

Answer Set Programming (ASP) (Baral, 2003; Gebser et al., 2012; Gelfond & Kahl, 2014;
Lifschitz, 2019) is an approach to declarative programming. Instead of stating how to solve a
problem, the programmer formulates the problem as a logic program specifying the search
space and the properties of valid solutions. An ASP solver then finds models (so-called
answer sets) for this logic program, which correspond to solutions for the original problem.

2.1 Syntax

ASP offers a rich input language, of which we introduce only the core concepts needed
in this paper. For a comprehensive definition of ASP’s syntax and semantics, we refer to
Calimeri et al. (2020).

Let ⟨V, C,F ,P⟩ define a first-order language, where V is a set of variable symbols, C is a
set of constant symbols, F is a set of function symbols, and P is a set of predicate symbols.

A classical atom is of the form p(t1, . . . , tn), where p ∈ P is a predicate symbol and
t1, . . . , tn are terms. Each variable v ∈ V and each constant c ∈ C is a term. Furthermore,
for f ∈ F , f(t1, . . . , tn) is a function term.

An answer-set program P is a finite set of (disjunctive) rules of the form

h1 ∨ · · · ∨ hk ← b1, . . . , bm, not bm+1, . . . , not bn. ⟨1 ⟩

1. Cabalar et al. (2019) present an A* algorithm which employs ASP through repeated calls to an ASP
solver for computing states and their successors.
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where h1, . . . , hk and b1, . . . , bn are atoms and not is negation as failure (a.k.a. default
negation), which refers to the absence of information, i.e., an atom is assumed to be false
as long as it is not derived by some rule. A literal is either an atom a or its negation not a.
Given a rule r of the form ⟨1⟩, head(r) = {h1, . . . , hk} is called the head of r, and body(r) =
{b1, . . . , bm, not bm+1, . . . , not bn} is called the body of r. By body+(r) = {b1, . . . , bm} and
body−(r) = {bm+1, . . . , bn} we denote the positive and negative atoms in the body of r,
respectively. A rule r where head(r) = ∅, e.g., ← b., is called integrity constraint, or simply
constraint. A rule r where body(r) = ∅, e.g., h← ., is called fact. A rule is ground if all its
atoms are variable-free. A ground program comprises only ground rules.

2.2 Semantics

Given a program P , the Herbrand universe of P , denoted by UP , consists of all integers and
of all ground terms constructible from constant symbols and function symbols appearing in
P . The Herbrand base of P , denoted by BP , is the set of all ground classical atoms that
can be built by combining predicates appearing in P with terms from UP as arguments
(Calimeri et al., 2020).

A substitution σ is a mapping from variables V to elements of the Herbrand universe
UP of a program P . Let O be a rule, an atom, or a literal, then by Oσ we denote a rule,
atom, or literal obtained by replacing each variable v ∈ vars(O) by σ(v). The function
vars maps any rule, atom, literal, or any other object containing variables to the set of
variables it contains. For instance, vars(a(X)) = {X} and for a rule r1 : a(X) ← b(X,Y).,
vars(r1) = {X,Y}.

As usual, we assume rules to be safe, which is the case for a rule r if vars(r) ⊆⋃
a∈body+(r) vars(a).

The (ground) instantiation of a rule r equals rσ for some substitution σ, which maps
all variables in r to ground terms. The (ground) instantiation grd(P ) of a program P is
the set of all possible instantiations of the rules in P (Calimeri et al., 2020; Faber et al.,
2011). Function symbols may cause the Herbrand base and the full grounding of a program
to be infinite (Alviano et al., 2011). By restricted usage of function symbols, answer-set
programs can be designed in a way that reasoning is decidable.

An Herbrand interpretation for a program P is a set of ground classical atoms I ⊆ BP .
A ground classical atom a is true w.r.t. an interpretation I, denoted I |= a, iff a ∈ I. A
ground literal not a is true w.r.t. an interpretation I, denoted I |= not a, iff I ⊭ a. A rule r
is satisfied w.r.t. I, denoted I |= r, if some head atom is true w.r.t. I (∃h ∈ head(r) : I |= h)
whenever all body literals are true w.r.t. I (∀b ∈ body(r) : I |= b). An interpretation I is a
model of P , denoted I |= P , if I |= r for all rules r ∈ grd(P ) (Faber et al., 2011).

Given a ground program P and an interpretation I, let P I denote the transformed
program obtained from P by deleting rules in which a body literal is false w.r.t. I: P I =
{r | r ∈ P,∀b ∈ body(r) : I |= b} (Faber et al., 2011).

An interpretation I of a program P is an answer set of P if it is a subset-minimal model
of grd(P )I , i.e., I is a model of grd(P )I and there exists no I ′ ⊊ I that is a model of grd(P )I

(Faber et al., 2011).
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2.3 Notation

In this section, we introduce some notation that will be used later in the article.

An assignment A over BP is a set of signed literals T a, F a, or M a, where T a
and F a express that an atom a is true and false, respectively, and M a indicates that a
“must-be-true”. M means that an atom must eventually become true by derivation in a
correct solution extending the current partial assignment, but no derivation has yet been
found that would make the atom true. Intuitively, T b ∈ A means that b is true and
justified, i.e., derived by a rule that fires under A, while M b ∈ A only indicates that b is
true but potentially not derived. Let As = {a | s a ∈ A} for s ∈ {F,M,T} denote the
set of atoms occurring with a specific sign in assignment A. We assume assignments to be
consistent, i.e., no negative literal may also occur positively (AF ∩ (AM ∪ AT) = ∅), and
every positive literal must also occur with must-be-true (AT ⊆ AM). The latter condition
ensures that assignments are monotonically growing (w.r.t. set inclusion) in case an atom
that was must-be-true becomes justified by a rule deriving it and hence changes to true.

An assignment A is complete if every atom in the Herbrand base is assigned true or false
(∀a ∈ BP : a ∈ AF ∪AT). An assignment that is not complete is partial.

The function truthA : BP → {T,M,F,U} for a (partial) assignment A maps an atom
to the truth value that the atom is currently assigned in the given assignment, or to U if
the atom is currently unassigned:

truthA(a) =


F a ∈ AF,

M a ∈ AM \AT,

T a ∈ AT,

U otherwise.

For example, if A = {M a,T a,M b}, then AF = ∅, AM = {a, b}, AT = {a}, truthA(a) = T,
and truthA(b) = M.

Note that historically, the concept of a truth value “must-be-true” was introduced to
ASP solving by the DLV solver for efficiency (Eiter et al., 2003; Faber et al., 1999). The
same efficiency was later realized without needing “must-be-true” by use of so-called source
pointers, together with unfounded-set checks, and completion (Gebser et al., 2012). These
techniques ensure that in a final assignment A, all atoms assigned true are derived by a rule
that fires in A. The distinction between an atom being true or must-be-true, however, is
still present in most modern ASP solvers. The only difference to our approach is that other
solvers represent must-be-true implicitly via the internal state of source-pointers and the
result of unfounded-set propagation, while we chose to represent “must-be-true” explicitly
as a truth value.

Expressing “must-be-true” explicitly also allows for more fine-grained domain-specific
heuristics, as they may now distinguish between whether a goal g has been reached in an
assignment A by being assigned true (i.e., truthA(g) = T) or still must be reached (i.e.,
truthA(g) = M). The former case may indicate that a rule checking the goal condition fired
and derived g, while the latter may arise from a constraint ← not g., which states that
the goal must be met in any answer set. Our approach to domain-specific heuristics allows
heuristics to distinguish both cases.
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Many useful language constructs have been introduced to extend the basic language of
ASP defined in Sections 2.1 and 2.2. We discuss such extensions only briefly and refer to
Calimeri et al. (2020) and Gebser et al. (2019) for full details.

A cardinality atom is of the form lb {a1 : l11 , . . . , lm1 ; . . . ; an : l1n , . . . , lmn} ub, where,
for 1 ≤ i ≤ n, ai : l1i , . . . , lmi represents a conditional literal in which ai (the head of the
conditional literal) is a classical atom and all lji are literals, and lb and ub are integer terms
indicating a lower and an upper bound, respectively. If one or both of the bounds are not
given, their defaults are used, i.e., 0 for lb and ∞ for ub. A cardinality atom is satisfied
if lb ≤ |C| ≤ ub holds, where C is the set of head atoms in the cardinality atom that are
satisfied together with their conditions (e.g., l1i , . . . , lmi for ai).

A choice rule is a rule r with head(r) consisting of a cardinality atom. For example,
consider the choice rule 1 {a; b} 2 ←. A program consisting only of this rule has three
answer sets: {a}, {b}, and {a,b}. Subset minimality usually required by answer sets is here
circumvented by a rewriting; for details, see Calimeri et al. (2020).

As an extension of cardinality atoms, ASP also supports aggregate atoms that apply
aggregate functions like max , min or sum to sets of literals. An aggregate atom is satisfied if
the value computed by the aggregate function respects the given bounds, e.g., 1 = #sum{1 :
a; 2 : b} is satisfied if a but not b is true.

Built-in predicates with a fixed meaning, such as =, ̸=,≤,≥, <,>, and arithmetic op-
erations such as +,−,×, /, and \ (modulo) are also used in infix notation, and |t| denotes
the absolute value of an integer term t.

2.4 Lazy Grounding

The grounding bottleneck is a well-known issue of traditional ASP solving, where the input
program is grounded first before the ground, i.e., variable-free, program is solved. There
have been many attempts to mitigate this issue with more optimised and clever grounding
procedures (see, for example, Kaufmann et al., 2016; Calimeri et al., 2017; Gebser et al.,
2011; Faber et al., 2012) or through formulations of answer sets in formalisms that do not
need grounding per se, e.g., query-driven evaluation (cf. Cat et al., 2015; Marple et al.,
2017; Arias et al., 2018) or circumscriptions (cf. Ferraris, Lee, & Lifschitz, 2011).

Lazy grounding is an approach that interleaves the solving and grounding phases, such
that computations are guaranteed to yield all answer sets. The foundation for lazy ground-
ing is known as the computation sequence and has been developed by Liu et al. (2007).
A computation sequence S = ⟨S0, S1, . . . Sn⟩ is a sequence of partial assignments that is
monotonically growing (w.r.t. set inclusion). Every element Si of the sequence represents
the state of the computation at step i. The first element of the sequence is empty (S0 = ∅),
and every other element Si contains the signed literals that can be derived from the pre-
ceding partial assignment Si−1 in the program P .

Since each element of a computation sequence is a partial assignment containing signed
literals, and the sequence is monotonically growing, each Si contains atoms assigned T that
will remain true in all extensions of Si, and atoms assigned F that will definitely remain
false in all extensions of Si.

A rule r is said to be applicable in Si if {T a | a ∈ body+(r)} ⊆ Si and {M a | a ∈
body−(r)} ∩ Si = ∅, i.e., if the positive body is satisfied and Si does not contradict the
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negative body. An applicable rule is said to fire when its negative body is chosen to be false
by the solver’s search procedure. Firing a rule allows deriving its head. For each applicable
rule the computation sequence may split in two, one Si+1 where the rule is assumed to fire
and one S′

i+1 where the rule does not fire. This property allows capturing the guessing
mechanism of ASP.

Based on the fact that the computation sequence only needs to know those ground
rules that are applicable, lazy-grounding ASP solvers can ground a rule lazily whenever the
ground instance becomes applicable. Thus, only those rules are grounded, whose positive
body holds in the current partial assignment.

The first lazy-grounding ASP solvers based on the computation sequence principle were
gasp by Palù et al. (2009) and ASPeRiX by Lefèvre and Nicolas (2009), Lefèvre et al.
(2017). Later Dao-Tran et al. (2012) built the OMiGA solver that uses a RETE network for
efficient grounding. Unfortunately, all these solvers suffered from a lack of efficient solving
techniques widely used in traditional ground-and-solve systems.

Efficient ground-and-solve systems for ASP usually employ a technique called conflict-
driven clause-learning (CDCL) or a closely related variant called conflict-driven nogood-
learning (CDNL). This is employed in most SAT solvers (Silva et al., 2009; Zhang et al.,
2001) and modern ASP solvers like clingo (Gebser et al., 2012) or dlv2 (Alviano et al.,
2017). As CDCL works on clauses, a given ASP program is first transformed into an
equivalent set of clauses. Then the models of these clauses are computed using a DPLL-
style algorithm, which at its core gains insight into the given problem by learning new
clauses from conflicts that are encountered during search. Note that CDNL only differs
from CDCL by using the dual form of clauses, which are called nogoods. More details
about CDNL and nogood representations are given in Section 5, where the implementation
of our domain-specific heuristics is presented.

The Alpha system by Weinzierl (2017) has combined the most important technique
for efficient solving, CDNL, with lazy grounding. It is the most recent lazy-grounding ASP
system available.

Computation sequences require a normal logic program as input (i.e., rules of the form
⟨1⟩ without disjunction, cardinality atoms, and aggregate atoms, (cf. Liu et al., 2007; Lefèvre
et al., 2017; Weinzierl, 2017). Hence lazy-grounding systems usually only accept normal
logic programs or, in the case of Alpha, rewrite enhanced ASP constructs like aggregates
or choice rules into normal rules. Disjunctive heads can only be rewritten if they are head-
cycle-free (Ben-Eliyahu & Dechter, 1994). Therefore, in our examples, each rule contains
at most one head atom. Although this appears to be rather limiting, Alpha is close to
supporting the full range of the ASP-Core-2 language through program transformations,
including aggregates, choice rules, and integer arithmetics, which are very useful constructs
in practical applications. In many cases, program transformations result in first-order en-
codings, which a lazy-grounding system only needs to instantiate for those ground instances
actually encountered during search. So these transformations enable significant performance
benefits in some cases (Bomanson, Janhunen, & Weinzierl, 2019).

Furthermore, restricting the input to head-cycle-free programs is not really limiting, as
programs containing disjunction with head-cycles are usually employed only when problems
on the second level of the polynomial hierarchy, i.e., in ΣP

2 , are to be solved. The worst-
case complexity of normal logic programs without disjunction but with variables, however,
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is already well beyond ΣP
2 and PSPACE, in fact it is at least NEXPTIME-hard in the

worst-case as shown by Dantsin, Eiter, Gottlob, and Voronkov (1997). Hence, problems in
ΣP

2 can be tackled with Alpha.

3. State of the Art in Domain-Specific Heuristics

State-of-the-art ASP solvers are well suited to solve a wide range of problems, as shown
in ASP competitions, experiments, and (industrial) applications reported in the literature
(Gebser et al., 2020; Erdem et al., 2016; Falkner et al., 2018; Leone & Ricca, 2015). How-
ever, applying general ASP solvers to large instances of industrial problems often requires
sophisticated encodings or solver tuning methods, e.g., portfolio solvers like claspfolio
(Hoos et al., 2014) or me-asp (Maratea et al., 2015), to achieve satisfactory performance.

Depending on the problem and instances, tuning of search parameters and encodings
may not be sufficient to meet runtime requirements. Domain-specific heuristics were needed
to achieve breakthroughs in solving industrial configuration problems with ASP. Several
approaches have implemented embedding heuristic knowledge into the ASP solving process.

hwasp (Dodaro et al., 2016) extends wasp (Alviano et al., 2019) by facilitating external
procedural heuristics that are consulted at specific points during the solving process via an
API. As a result, hwasp can find solutions for all published instances of the Partner Units
Problem (PUP) by exploiting external heuristics formulated in C++.

A declarative approach to formulating domain-specific heuristics in ASP was suggested
by Gebser et al. (2013). The clingo system supports #heuristic directives described
in detail by Gebser et al. (2019). Heuristic directives extend the ASP language to enable
declarative specification of weights determining atom and sign orders in the corresponding
internal decision heuristics of a solver. An atom’s weight influences the order in which atoms
are considered by the solver when making a decision. A sign modifier instructs whether the
selected atom must be assigned true or false. Atoms with a higher weight are assigned a
value before atoms with a lower weight.

The following (non-ground) meta-statement defines domain-specific heuristics in clingo,
where ha is an atom, hB is a conjunction of literals representing the heuristic body, and w,
p, and m are terms (Gebser et al., 2019).

#heuristic ha : hB . [w@p,m] ⟨2 ⟩

The optional term p gives a preference between heuristic values for the same atom (preferring
those with higher p). The term m specifies the type of heuristic information and can take
the following values: sign, level, true, false, init and factor. For instance, heuristics
for m=init and m=factor allow modifying initial and actual atom scores evaluated by
the solver’s decision heuristics (e.g., VSIDS). The m=sign modifier forces the decision
heuristics to assign an atom ha a required sign, i.e., T or F, and m=level allows for the
definition of an order in which the atoms are assigned—the larger the value of w, the earlier
an atom must be assigned. Finally, m=true specifies that ha should be mapped to T, i.e.,
truthA(ha) = T, with weight w if hB is satisfied, m=false is the analogue heuristics that
maps ha to F.

Gebser et al. (2013) provide a formal specification of a heuristic predicate and the effects
of heuristic atoms on the selection of unassigned atoms and their truth assignment in the
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search process. Gebser et al. (2019) present syntax and semantics for heuristic directives.
However, the implementation of heuristic directives in clingo (v. 5.3) might result in a
counter-intuitive interpretation of the default negation in heuristic directives since for an
assignment A, a heuristic statement h of the form ⟨2 ⟩ is applicable and affects solving iff
body(h) = {b1, . . . , bm, not bm+1, . . . , not bn} is assigned true, i.e., truthA(bi) = T for
1 ≤ i ≤ m and truthA(bj) = F for m + 1 ≤ j ≤ n. That is, the literal not bi is not
evaluated to true in the absence of a truth assignment to bi (as one would expect for default
negation). Instead, the literal is evaluated to a truth-value iff bi is assigned to a truth-value.
We illustrate this issue in the following example:

Example 1. Consider the following program containing two heuristic directives:

{ a(2) ; a(4) ; a(6) ; a(8) ; a(5) } ← .

← #sum { X : a(X) } = S, S\2 ̸= 0.

#heuristic a(5). [1, true]

#heuristic a(4) : not a(5). [2, true]

The program guesses a subset of {2, 4, 6, 8, 5}, the sum of which must be even, i.e., a(5) must
not be chosen. The heuristic statements specify that a(5) shall be set to true with weight 1,
and that a(4) shall be set to true if not a(5) is true with weight 2.

In solving the program in the preceding example, clingo (v. 5.3) first assigns a(5) to
true in our experiments, although a(4) has a higher weight and a(5) is not known to be
true in the beginning. Next, a(8) is chosen to be false,2 the solver backtracks and only
a(5) stays assigned. Finally, a(8) is chosen to be true, and a conflict is learned that makes
a(5) false after backtracking. Now that not a(5) is satisfied, the second heuristic chooses
a(4) to be true, and we obtain the answer set {a(4), a(8)} after a few more guesses on the
yet unassigned atoms. The second heuristic becomes active only later because not a(5) is
evaluated as true only if a(5) is assigned false.

Heuristics evaluated over partial assignments appear quite often in practice. For ex-
ample, in configuring technical systems, we might prefer to assign, in the current search
state, the most relevant yet unplaced electronic component to a free slot of a motherboard.
In scheduling, we might prefer the assignment of lots to machines that are not assigned in
the current search state and whose delivery deadline is most urgent. clingo’s semantics
for heuristic directives allows one to model heuristics over partial assignments as in Exam-
ple 1 using priorities. However, modelling of prioritized directives can be tedious and an
automatised translation might require introducing unnecessary auxiliary variables.

To overcome this issue we propose, in the following section, to evaluate negation as
failure (i.e., not) in heuristic statements w.r.t. the current partial assignment in the solver.
This partial assignment represents the search state. As a consequence, not X is true if X
is false or unassigned during the search. The following example shows the application of
default negation to formulate a well-known heuristic for pathfinding.

Example 2. Let Pathfinding be the problem of finding a path from one square to another
on a rectangular grid by moving horizontally and vertically and avoiding obstacles. For

2. Choices not determined by the heuristic directives may vary from one implementation to another.
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Figure 1: A sample Pathfinding instance

example, in Figure 1, there are two shortest paths from the start (S) to the goal (G), both
of length 4.

This instance is specified by the following self-explanatory facts:

xmin(0). ymin(0). start(4, 2). obstacle(3, 3).
xmax(5). ymax(4). goal(1, 3). obstacle(2, 1).

Assume adequate definitions of the following predicates:

• at(X,Y,T) means the agent’s position is (X,Y ) at time T ;

• neighbour(X1, Y1, X2, Y2) signifies that the agent can move from (X1 ,Y1 ) to
(X2 ,Y2 ) and vice versa;

• and max time(MaxT) gives the time horizon.

Then, the following program encodes the problem:

at(X,Y, 0) ← start(X,Y).
reached goal(T) ← goal(X,Y), at(X,Y,T).
1 { move(X,Y,T) : neighbour(AtX,AtY,X,Y),not obstacle(X,Y) } 1

← at(AtX,AtY,T),not reached goal(T),
max time(MaxT),T < MaxT.

at(X,Y,T+ 1) ← move(X,Y,T).
moved(T) ← move(X,Y,T).

visited(X,Y) ← at(X,Y,T).

A heuristic preferring to move to squares with the least Manhattan distance to the goal
(“greedy best-first search”, cf. Russell & Norvig, 2010; Pearl, 1984) can be encoded by the
following heuristic directive, following clingo’s syntax given in ⟨2⟩:

#heuristic move(X,Y,T) : at(AtX,AtY,T), neighbour(AtX,AtY,X,Y),

not obstacle(X,Y), goal(GoalX,GoalY),max time(MaxT).

[MaxT− (|X−GoalX|+ |Y −GoalY|), true]

But how to restrict suggestions by this heuristic to move only at time T if the agent has
not already moved at time T , or to move only to squares not already visited? We would
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expect to achieve such a restriction by adding one or both of the following literals to the
heuristic’s body:

not moved(T), not visited(X,Y)

However, the heuristic is rendered unusable if either of the two literals is added. The reason
is that clingo does not interpret not within bodies of heuristics w.r.t. the current partial
assignment, and thus the heuristic is not applicable unless all atoms within negative literals
are assigned false.

4. A Novel Semantics for Declarative Domain-Specific Heuristics

Declaratively specifying domain-specific heuristics in ASP plays a vital role in enabling
ASP to solve large-scale industrial problems. clingo has been the only ASP system to
support such heuristics so far. Although language and semantics of heuristic directives in
clingo have shown to be beneficial in many cases, dynamic aspects of negation as failure
in heuristic conditions have not been addressed satisfactorily.

We present novel syntax and semantics for heuristic directives in ASP that improve
this situation. We assume that the underlying solver can assign one of three values to any
atom: true (denoted with T), false (F), and must-be-true (M) (cf. Weinzierl, 2017). The
following definitions can be used without modification for solvers that do not use the third
truth value M. The set of atoms assigned must-be-true will be empty in this case.

Definition 1 (Heuristic Directive). A heuristic directive is of the form ⟨3⟩, where hai (0 ≤
i ≤ n) are heuristic atoms of the form si ai, in which s0 ∈ {{F}, {T}} and si ⊆ {F,M,T}
are sets of sign symbols and ai is an atom, and w and l are integer terms.

#heuristic ha0 : ha1, . . . , hak, not hak+1, . . . ,not han. [w@l] ⟨3 ⟩

The heuristics’ head is given by ha0 and its condition by {ha1, . . . , hak, not hak+1, . . . ,
not han}, which is similar to a rule body.

Where the meaning is clear from the context, we may omit all symbols except sign
symbols themselves in a set of sign symbols, e.g., we write TM instead of {T,M}.

Similarly to a rule (cf. Section 2.2), a heuristic directive can contain variables and must
be safe. Since the exact definition of safety of a heuristic directive depends on implementa-
tion matters, we will address it in more detail in Section 5.4.

The textual syntax of a heuristic directive to be used in answer-set programs is defined
by the following EBNF grammar, where ⟨classical atom⟩ stands for a classical atom, and
⟨term⟩ stands for a term as defined in Section 2.1:

⟨heuristic directive⟩ ::= ‘#heuristic’ ⟨head atom⟩ [ ⟨body⟩ ] ‘.’ [ ⟨annotation⟩ ]

⟨head atom⟩ ::= [ ⟨head sign⟩ ] ⟨classical atom⟩

⟨head sign⟩ ::= ‘T’ | ‘F’

⟨body⟩ ::= ‘:’ ⟨body literals list⟩
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⟨body literals list⟩ ::= ⟨body literal⟩ [ ‘,’ ⟨body literals list⟩ ]

⟨body literal⟩ ::= [ ‘not’ ] ⟨body atom⟩

⟨body atom⟩ ::= ([ ⟨body sign list⟩ ] ⟨classical atom⟩)

⟨body sign list⟩ ::= [ ‘T’ ] [ ‘M’ ] [ ‘F’ ]

⟨annotation⟩ ::= ‘[’ ⟨weight⟩ [ ‘@’ ⟨level⟩ ] ‘]’

⟨weight⟩ ::= ⟨term⟩

⟨level⟩ ::= ⟨term⟩

Note that the definition of ⟨body sign list⟩ imposes a specific order in which heuristic signs
have to appear (firstT, thenM, and finally F). However, we assume that an implementation
allows heuristic signs to appear in any order (e.g., FT).

Example 3. Consider the following heuristic directive d:

#heuristic F a : TM b,T c, not TMF e.

This directive means that the atom a shall be assigned F if b is assigned T or M, c is
assigned T, and e is not assigned.

We now introduce some notation that will be used in further definitions. The func-
tion atom maps a heuristic atom hai of the form si ai to ai by removing the sign, and
a set of heuristic atoms to the set of atoms occurring in them (e.g., atom(M a) = a,
atom({M a,T b}) = {a, b}). The function signs maps a heuristic atom hai to si by remov-
ing the atom (e.g., signs(M a) = {M}).

The head of a heuristic directive d of the form ⟨3 ⟩ is denoted by head(d) = ha0, its weight
by weight(d) = w if given, else 0, and its level by level(d) = l if given, else 0. The (heuristic)
condition of a heuristic directive d is denoted by cond(d) := {ha1, . . . , hak, not hak+1, . . . ,
not han}, the positive condition is cond+(d) := {ha1, . . . , hak} and the negative condition
is cond−(d) := {hak+1, . . . , han}.

Let HA be a set of heuristic atoms. Then, for s ⊆ {F,M,T}, HA|s = {a | s a ∈ HA}
denotes the set of atoms in HA whose set of sign symbols equals s.

Example 4. Consider the heuristic directive d from Example 3 again:

#heuristic F a : TM b,T c,not TMF e.

Here, cond+(d)|MT = {b}; cond+(d)|T = {c}; and cond+(d)|F = ∅.
Furthermore, cond−(d)|FMT = {d}; note that the order of sign symbols does not matter due
to set semantics.

Our proposal differs from clingo’s in the following ways, apart from the syntactic
differences between ⟨2 ⟩ and ⟨3 ⟩:
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• Each heuristic atom contains a set of sign symbols. Each sign symbol represents one
of the truth values F (false), T (true), and M (must-be-true).

• In the condition, sign symbols provide a richer way of controlling when the condition
is satisfied. A positive literal in the condition is satisfied if the truth value currently
assigned to its atom is contained in its set of sign symbols (which is {M,T} by default
if not explicitly given). A negative literal in the condition is satisfied if the truth value
currently assigned to its atom is not contained in its set of sign symbols or if its atom
is currently not assigned any truth value.

• In the heuristic head, the sign symbol is used to determine the truth value to be
chosen by the heuristic. If s0 is T or empty, the heuristics makes the solver guess a0
to be true; if s0 is F, a0 will be made false.3 We do not use the modifier m.

• Instead of weight w and tie-breaking priority p, we use terms w and l denoting weight
and level as familiar from optimise-statements in ASP-Core-2 (Calimeri et al., 2020)
or weak constraints in DLV (Leone et al., 2006). The level is more important than
the weight; both default to 0, and together they are called priority.

We now describe our semantics more formally, beginning with the condition under which
a heuristic atom is satisfied.

Definition 2 (Satisfying a Heuristic Atom). Given a ground heuristic atom ha and a partial
assignment A, ha is satisfied w.r.t. A iff: truthA(atom(ha)) ∈ signs(ha), i.e., if its atom is
assigned a truth value that is included in the heuristic atom’s sign set.4

Whether a heuristic directive is satisfied depends on whether the atoms occurring in the
directive are satisfied.

Definition 3 (Satisfying a Heuristic Directive). Given a ground heuristic directive d and a
partial assignment A, cond(d) is satisfied w.r.t. A iff: every ha ∈ cond+(d) is satisfied and
no ha ∈ cond−(d) is satisfied.

Intuitively, a heuristic condition is satisfied iff its positive part is fully satisfied and none
of its default-negated literals is contradicted.

Definition 4 (Applicability of a Heuristic Directive – Semantics). A ground heuristic di-
rective d is applicable w.r.t. a partial assignment A and a ground program P iff: cond(d)
is satisfied, ∃r ∈ P s.t. head(r) = atom(head(d)) and {T a | a ∈ body+(r)} ⊆ A and
{M a | a ∈ body−(r)} ∩A = ∅, and truthA(atom(head(d))) ∈ {U,M}.

Intuitively, a heuristic directive is applicable iff its condition is satisfied, there exists a
currently applicable rule that can derive the atom in the heuristic directive’s head, and the
atom in its head is assigned neither T nor F. If the atom in the head is assigned M, the

3. In the head, we only support truth values T and F because, from a user’s point of view, it does not
make sense to assign M to an atom heuristically.

4. Note that the function truth maps to only one truth value even though T a ∈ A implies M a ∈ A, so
truthA(a) = M iff M a ∈ A and T a /∈ A.
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heuristic directive may still be applicable, because any atom with the non-final truth value
M must be either T or F in any answer set.

Definitions 2 to 4 reveal the main difference between the semantics proposed here and
the one implemented by clingo: In our approach, heuristic signs composed of truth values
T, M, and F can be used in heuristic conditions to reason about atoms that are already
assigned specific truth values in a partial assignment. Furthermore, default negation can
be used to reason about atoms that are assigned or still unassigned. Our semantics truly
means default negation in the current partial assignment, while the one implemented by
clingo amounts to strong negation in the current search state and a sophisticated modelling
approach with priorities must be used to implement required heuristics. This difference is
crucial since reasoning about incomplete information is essential in many cases. An example
is a heuristic for a configuration problem that only applies to components not yet placed.

What remains to be defined is the semantics of weight and level. Given a set of applicable
heuristic directives, one directive with the highest weight will be chosen from the highest
level. Suppose there are several heuristic directives with the same maximum priority (i.e.,
weight and level). In that case, the solver can use domain-independent heuristics like VSIDS
(Moskewicz et al., 2001) as a fallback to break the tie.

Definition 5 (The Subset of Heuristics Eligible for Immediate Choice). Given a set D of
applicable ground heuristic directives, the subset eligible for immediate choice is defined as
maxpriority(D) in two steps:

maxlevel(D) := {d | d ∈ D and level(d) = max
d∈D

level(d)}

maxpriority(D) := {d | d ∈ maxlevel(D) and weight(d) = max
d∈maxlevel(D)

weight(d)}

After choosing a heuristic using maxpriority, a solver makes a decision on the direc-
tive’s head atom. Other solving procedures, e.g., deterministic propagation, are unaffected
by processing heuristics. In case no heuristic directive is applicable, the solver’s default
heuristic (e.g., VSIDS) makes a choice as usual.

Example 5. Consider the program given in Example 1. When converted to the syntax pro-
posed in Definition 1, its heuristic directives look like directives ⟨4⟩ and ⟨5⟩ in the following
program. Consider also the newly introduced directives ⟨6⟩ and ⟨7⟩ in this program.

#heuristic a(5). [1] ⟨4 ⟩
#heuristic a(4) : not a(5). [2] ⟨5 ⟩
#heuristic F a(5) : a(4). [2] ⟨6 ⟩
#heuristic a(6) : F a(5),T a(4). [2] ⟨7 ⟩

Intuitively, directive ⟨4⟩ unconditionally prefers to make a(5) T with weight 1. All other
directives have a higher weight, 2, but they become applicable at different times. Directive
⟨5⟩ prefers to make a(4) T if a(5) is neither T nor M, directive ⟨6⟩ prefers to make a(5) F
if a(4) is T or M, and ⟨7⟩ prefers to make a(6) T if a(5) is F and a(4) is T.

Let A0 = ∅ be the empty partial assignment before any decision has been made. W.r.t.
A0, ⟨4⟩ is applicable because its condition is empty and its head is still unassigned. Directive
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⟨5⟩ is also applicable because a(5) is still unassigned. Directives ⟨6⟩ and ⟨7⟩ are not applicable
w.r.t. A0. Directive ⟨5⟩ is chosen because it has the highest priority among applicable di-
rectives. Thus, a(4) is assigned T, updating our assignment to A1 = {M a(4),T a(4)}. This
makes ⟨6⟩ applicable, a(5) is assigned F and our assignment is A2 = {M a(4),T a(4),F a(5)}.
Note that the condition of ⟨5⟩ was still satisfied at this point, but it was not applicable be-
cause its head was already assigned. Now, ⟨4⟩ is also not applicable anymore, and the only
directive that remains is ⟨7⟩. Since ⟨7⟩ is applicable, a(6) is made T and added to the as-
signment. Next, the atoms that remained unassigned are guessed by the default heuristics
until an answer set is found.

Example 6. Continuing from Example 2, now using heuristic directives of the form ⟨3⟩, it
becomes possible to restrict the condition of the Pathfinding heuristics as desired.

#heuristic move(X,Y,T) : at(AtX,AtY,T), neighbour(AtX,AtY,X,Y),

not obstacle(X,Y), goal(GoalX,GoalY),max time(MaxT),

not T visited(X,Y),not T moved(T).

[(|X−GoalX|+ |Y −GoalY|) ∗ −1]

Compared to Example 2, now we can use the additional conditions not T visited(X,Y) and
not T moved(T) that relate to the current partial assignment. Through these conditions,
the heuristic only suggests moves that do not visit squares repeatedly, and it does not suggest
to move to several squares at the same time.

Note that the annotation looks different: Since negative weights make sense in our se-
mantics, we can use (|X−GoalX|+ |Y−GoalY|)∗−1 instead of MaxT−(|X−GoalX|+ |Y−
GoalY|). Thus, the higher the Manhattan score of a square, the lower (i.e., nearer to −∞)
is the heuristic weight, and the less attractive it will be to move to that square. Furthermore,
the modifier “true” has been dropped because we directly encode the heuristic’s polarity in
the directive’s head.

Distinguishing between TM and T facilitates fine-grained control of when a heuristic
is active. T is used when it is essential that the T assignment is already justified (or not
yet justified, in case default negation is used), and TM is used when this is not important,
as long as the atom must be true in a valid answer set. In Example 6, not T visited(X,Y)
is used to switch off the heuristic when the agent has moved to (X,Y ). The condition
not TM visited(X,Y), instead, would cause the heuristic to be switched off also when the
solver only knows that the agent needs to move to (X,Y ) at some point. This situation
can be caused by a constraint forcing the agent to move to a specific square (X,Y ) at some
point, because then the solver would propagate M to visited(X,Y). On the other hand, in
many cases we want the condition to cover both T and M. Section 6 will include many
cases where the sign set TM is used (recall that this is the default sign set used whenever
none is given).

5. Integration into a Lazy-Grounding ASP Solver

This section presents how the above domain-specific heuristics can be realised within a lazy-
grounding ASP system. We chose Alpha as the basis for the implementation as it currently
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is the most efficient lazy-grounding ASP system.5 The presentation, therefore, contains
parts specific to Alpha. Our declarative domain-specific heuristics may also be realised
in traditional ground-and-solve systems. Note, however, that traditional ground-and-solve
systems, in contrast to lazy-grounding systems, will have to instantiate all heuristic direc-
tives. This additional overhead may cause domain-specific heuristics to perform worse if
implemented on top of a ground-and-solve system.

5.1 Transforming Sign Sets

In order to simplify the implementation, heuristic atoms with certain sign sets are trans-
formed in a preprocessing step before grounding. Every heuristic directive of the form ⟨3 ⟩
is equivalent to a set of heuristic directives containing only sign sets F, T, and MT. Note
that every heuristic directive is also equivalent to a set of heuristic directives containing only
singleton sign sets F, M, and T; however, we are including MT instead of M to allow for a
more efficient implementation. Using MT instead of M is necessary for re-using Alpha’s
nogood propagation capabilities, which will be introduced in Sections 5.3 and 5.4.

Since heuristic directives can be reduced to directives using only sign sets F, T, MT, all
other sign sets (M, FM, FT, and FMT) can be transformed while retaining the semantics
of the whole set of heuristic directives in the program.

We define a helper function heuristic that constructs a heuristic directive by replacing
the positive and negative condition within a given heuristic directive: heuristic(d, c+, c−) 7→
d′, s.t. head(d′) = head(d), cond+(d′) = c+, cond−(d′) = c−,weight(d′) = weight(d), and
level(d′) = level(d).

We then define the function tf that transforms one heuristic directive into a set of
equivalent directives. The function non-deterministically picks and transforms one heuristic
atom with a sign set s ∈ {M,FM,FT,FMT}, or returns the unmodified input d if no such
atom exists.

tf(d) =



tf1(d, s, a) for some s a ∈ cond+(d) and s ∈ {FM,FT,FMT} ⟨8a⟩
tf2(d, s, a) for some s a ∈ cond−(d) and s ∈ {FM,FT,FMT} ⟨8b⟩
tf3(d, a) for some M a ∈ cond+(d) ⟨8c⟩
tf4(d, a) for some M a ∈ cond−(d) ⟨8d⟩
{d} if ∄ s a ∈ cond+(d) ∪ cond−(d) s.t. s ∈ {M,FM,FT,FMT}. ⟨8e⟩

tf1(d, s, a) = {heuristic(d, cond+(d) ∪ {s\F a} \ {s a}, cond−(d)),
heuristic(d, cond+(d) ∪ {F a} \ {s a}, cond−(d))}

tf2(d, s, a) = {heuristic(d, cond+(d), cond−(d) ∪ {s\F a,F a} \ {s a})}

tf3(d, a) = {heuristic(d, cond+(d) ∪ {MT a} \ {M a}, cond−(d) ∪ {T a}})}

tf4(d, a) = {heuristic(d, cond+(d) ∪ {FT a}, cond−(d) \ {M a}),
heuristic(d, cond+(d), cond−(d) ∪ {FMT a} \ {M a})}

5. Alpha sources and binaries can be found on https://github.com/alpha-asp/Alpha. Features described
in this section have been implemented on the domspec heuristics extended branch.

74



Domain-Specific Heuristics in Answer Set Programming

 not MT   8e  T  8e  MT   8e  not F   8e  not T  8e  F   8e 

 FT 

 8a   8a  

 FM 

 8a   M 

 8a  

 8c  8c 

 not FT 

 8b   8b  

 not M 

 8d  

 not FMT  

 8d  

 8b   8b  

 FMT  

 8a   8a  

 not FM 

 8b  

 8b  

Figure 2: Visualisation of the transformation steps done by tf (see also Lemma 1)

Recall that F is an abbreviation for {F}, thus s\F is the same as s\{F}.
Intuitively, the transformations work as follows:

⟨8a⟩ transforms one directive into two new directives. In this process, one sign set
containing F is split into two partitions, F and the remaining signs. The original directive
is satisfied iff one of the new directives is satisfied.

⟨8b⟩ transforms one directive into one new directive. This time, one heuristic atom in
the negative condition whose sign set contains F is split into two. The original heuristic
atom is satisfied iff one of the two new heuristic atoms is satisfied.

⟨8c⟩ represents the informal equivalence that “M” is the same as “M or T, but not T”,
while ⟨8d⟩ represents that “not M” is the same as “F or T or unassigned”.

Finally, due to ⟨8e⟩, a heuristic directive is unaffected by this transformation if it contains
only the sign sets F, T, and MT.

Figure 2 visualises all possible transformation steps done by tf. Every possible sign
set is represented by two nodes—one for positive and one for negative literals. Sign sets
unaffected by the transformation are shown as rectangular nodes, the others as ellipses.
Each arc corresponds to a transformation step and is labelled with a symbol corresponding
to one of the cases in ⟨8 ⟩.

Example 7. Consider the following heuristic directive:

#heuristic h : FMT a,not FT b.

Transformation ⟨8b⟩ replaces it by the following directive, removing FT in the negative
condition:

#heuristic h : FMT a,not F b, not T b.
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Then, transformation ⟨8a⟩ removes FMT in the positive condition and thus produces two
new directives:

#heuristic h : F a, not F b,not T b.

#heuristic h : MT a,not F b, not T b.

These two directives together are semantically equivalent to the original one.

Example 8. Consider the following heuristic directive containing M in its positive and
negative condition:

#heuristic h : M a, not M b.

Transforming M a by ⟨8c⟩ in the positive condition results in the following directive:

#heuristic h : MT a, not T a,not M b.

Transforming M b in the negative condition of the new directive, employing transformation
⟨8d⟩, yields two further directives:

#heuristic h : MT a,FT b,not T a.

#heuristic h : MT a,not T a, not FMT b.

Both these conditions need to be transformed further (by ⟨8a⟩ and ⟨8b⟩), thus obtaining three
directives in total:

#heuristic h : MT a,F b, not T a.

#heuristic h : MT a,T b, not T a.

#heuristic h : MT a, not T a,not F b,not MT b.

These three directives together are semantically equivalent to the original one.

Let D be a set of heuristic directives, and let D1 =
⋃

d∈D tf(d) denote the result of
replacing each heuristic directive by the result of heuristic directive transformation. Fur-
thermore, let Dn+1 =

⋃
d∈Dn tf(d) and D∗ = limn→∞Dn denote the result of the repeated

application of tf until a fixpoint is reached.

Lemma 1. For any set of heuristic directives D, D∗ contains only sign sets F, T, and
MT.

One can show that, no matter with which sign set and polarity the transformation
starts, it always ends up with one of the sign sets F, T, and MT. This is obvious from the
visualisation of the transformation steps in Figure 2.

Lemma 2. For any heuristic directive d, it holds that d is applicable w.r.t. a partial as-
signment A iff tf(d) contains a heuristic directive d′ that is applicable w.r.t. A.

A proof sketch for Lemma 2 can be found in Appendix A.
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5.2 Enhancing Heuristic Directives

Recall from Definition 4 that for a heuristic directive to be applicable it is necessary that
there exists an applicable rule that derives the atom in the heuristic directive’s head, which
enforces that atoms chosen by the heuristics have support. This condition can be im-
plemented by an additional transformation, also applied before grounding, that works as
follows:

The condition of every heuristic directive is enhanced by adding the body of the corre-
sponding rule. If there are several rules deriving the same head, one copy of the directive
is created for each of them. To ensure consistency of variable names, directive and rule are
first standardised apart (so that they do not share any variable names) and the unifier of
the two heads is applied to both the directive and the rule.

Since a rule is applicable if every positive body literal is assigned T and no atom in
the negative body is assigned M or T (cf. Section 2.4), sign set T is used when copying a
positive literal and sign set MT is used when copying a negative literal. Duplicate literals
are not added to the heuristic condition.

Example 9. Consider the following program:

h(X)← a(X),b(X),not c(X).

h(X)← a(X),b(X),not d(X).

#heuristic h(N) : T a(N).

The transformation described above results in the following modified program:

h(X)← a(X), b(X),not c(X).

h(X)← a(X), b(X),not d(X).

#heuristic h(N) : T a(N),T b(N), not MT c(N).

#heuristic h(N) : T a(N),T b(N), not MT d(N).

In this example, h(N) (the head of the heuristic directive) has been unified with h(X) (the
head of the deriving rules). The resulting unifier {X 7→ N} has been applied to the rules
before adding sign sets to their body literals and copying the resulting heuristic literals to
the heuristic conditions. Duplicate literals (in this case, a duplicate of T a(N)) have been
omitted during this process.

5.3 Lazy Grounding in the Alpha System

To understand how domain-specific heuristics are integrated into the Alpha system, we
recapitulate some of its inner workings first. The Alpha system at its core contains a
search loop similar to conflict-driven clause-learning (CDCL) employed in most SAT solvers
(Silva et al., 2009; Zhang et al., 2001) and modern ASP solvers like clingo (Gebser et al.,
2012) or dlv2 (Alviano et al., 2017). In SAT, the encoding of the problem usually is given
by clauses (a clause is a set of ground literals where at least one must be satisfied). ASP
uses nogoods instead (a nogood is a set of ground literals where all together must never be
satisfied). Note that nogoods are dual to clauses, and they can represent precisely the same
information.
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In CDCL solvers, the primary mode of propagation is unit propagation which works as
follows: Given a partial assignment A and a nogood g = {l1, . . . , ln} where each li, 1 ≤ i ≤ n
is a signed literal T a or F a with a being a ground atom, g is unit w.r.t. A if there exists
1 ≤ i ≤ n such that li = s b with truthA(b) = U and g \ {li} ⊆ A. Intuitively, a nogood g is
unit w.r.t. A if it is already violated except for one remaining literal li. To avoid violation of
the nogood g, the atom b of the remaining literal li = s b must be assigned to the opposite
truth value of li in the end. So, whenever g is unit, one can extend A with the negation of
li.

In addition to unit propagation, many ASP solvers also employ some form of unfounded-
set propagation and source pointers, which ensure that the assignment constructed by the
solver is also well-founded (that is, free of self-founding positive cycles). Alpha does not
use such propagation because Alpha’s computation sequence, like in other lazy-grounding
ASP solvers, already guarantees well-foundedness. Specifically, the solver can only guess
on an applicable rule whether it fires or not (cf. Section 2.4), and not guess the truth value
of an arbitrary unassigned atom. So, in Alpha, an atom b is only assigned T if there is a
well-founded rule firing whose head atom is b.

Moreover, the Alpha system uses a third truth value M, called must-be-true, which
Alpha can assign to atoms considered true but not yet justified (cf. Bogaerts & Weinzierl,
2018). This value allows further propagation in many circumstances and thus shrinks the
search space. For example, the constraint ← not d. states that any answer set must assign
true to the atom d, but it gives no justification why d should hold, i.e., d must-be-true. The
solver needs to distinguish between a fact and a constraint because a fact makes d true and
justifies it, while a constraint requires d to be true but does not justify it. To achieve this
distinction, the notion of a nogood is slightly enhanced in Alpha: One literal in a nogood
may be indicated as the nogood’s head.

Given an assignment A and a nogood g = {l1, . . . , ln}, we say that g is

• F-unit on li w.r.t. A if 1 ≤ i ≤ n, li = Tb, truthA(b) = U, and for all lj ∈ g with j ̸= i
holds Fc ∈ A if lj = Fc and Mc ∈ A if lj = Tc.

• M-unit on li w.r.t. A if 1 ≤ i ≤ n, li = Fb, truthA(b) = U, and for all lj ∈ g with
j ̸= i holds Fc ∈ A if lj = Fc and Mc ∈ A if lj = Tc.

• T-unit on li w.r.t. A if 1 ≤ i ≤ n, li = Fb is the indicated head of g, truthA(b) = U
or truthA(b) = M and for all lj ∈ g with j ̸= i holds Fc ∈ A if lj = Fc and Tc ∈ A if
lj = Tc.

Given an assignment A and a nogood g = {l1, . . . , ln}, we denote by prop(g,A) the truth
value assigned by unit propagation, that is:

prop(g,A) =


{Fb} if g is F-unit on li w.r.t. A and li = Tb,

{Mb} if g is M-unit but not T-unit on li w.r.t. A and li = Fb,

{Mb,Tb} if g is T-unit on li w.r.t. A and li = Fb,

{} otherwise.

Finally, given a set of nogoods ∆ and an assignmentA, we denote byA∆ = A∪
⋃

g∈∆ prop(g,A)
the assignment extended with all truth values that follow by unit propagation.
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Example 10. Consider the constraint ← not d., which is translated into the nogood g1 =
{F d}, and compare it with the fact d., which is translated into the nogood g2 = {F d}.
Here, g2 is a nogood where the first and only literal is indicated as the head, so if g2 is unit
(which it always is unless d is already assigned), then g2 will propagate the atom d to truth
value T. On the other hand, g1 does not have a head, so if g1 is unit, d is propagated only
to M as g1 does not justify that d is true but merely requires d to be derived by some rule.

While a constraint can be represented as one nogood, rules are represented using multiple
nogoods. Given a non-ground rule r and a grounding substitution σ for r (i.e., a substitution
that covers all variables in vars(r)), let

rσ = hσ ← b1σ, . . . , bmσ, not bm+1σ, . . . ,not bnσ.

be the rule where σ is applied to every atom. Similarly to clingo, the body of every
ground rule in Alpha is represented with a fresh atom, denoted β(r, σ). The set of nogoods
representing rσ then is:

{F β(r, σ),T b1σ, . . . ,T bmσ,F bm+1σ, . . . ,F bnσ} ⟨9 ⟩
{F hσ,T β(r, σ)} ⟨10 ⟩
{T β(r, σ),F b1σ}, . . . , {T β(r, σ),F bmσ} ⟨11 ⟩
{T β(r, σ),T bm+1σ}, . . . , {T β(r, σ),T bnσ} ⟨12 ⟩

Notice that ⟨9⟩ ensures that the atom β(r, σ) becomes true by unit propagation if the full
body of rσ is satisfied. If β(r, σ) holds, then the rule’s head also becomes true due to
unit propagation on ⟨10⟩. Finally, the nogoods of ⟨11⟩ and ⟨12⟩ ensure that the atom
representing the body of the rule, i.e., β(r, σ) is false whenever one literal in the body is
not satisfied.

According to the notion of a computation sequence, any rule whose negative body is non-
empty offers a choice point when becoming applicable. To aid in detecting this applicability
condition, such rules also yield the following nogoods:

{F ChoiceOn(r, σ),T b1, . . . ,T bm} ⟨13 ⟩
{F ChoiceOff(r, σ),T bm+1}, . . . , {F ChoiceOff(r, σ),T bn} ⟨14 ⟩

Intuitively, the nogood ⟨13⟩ makes ChoiceOn(r, σ) true whenever the positive body of
rσ is satisfied, and ChoiceOff(r, σ) is true whenever the current assignment contradicts
the negative body of rσ due to nogoods of ⟨14⟩. Whenever ChoiceOn(r, σ) is true, and
ChoiceOff(r, σ) is not true, the ground rule rσ is applicable. Using these nogoods, Alpha
can detect which ground rules are applicable, i.e., which choice points are allowed by the
computation sequence.

For a more detailed description of nogoods and propagation using nogoods with heads
in Alpha, we refer to Weinzierl (2017) and Leutgeb and Weinzierl (2017).

5.4 Generating Nogoods for Heuristic Directives

Similarly to normal rules, heuristic directives are represented using nogoods. To obtain
ground instances of heuristic directives, each heuristic directive is transformed into a specif-
ically marked rule such that the lazy-grounding procedures of Alpha generate all relevant
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ground instances of the marked rule. Since the rule is marked specifically, each ground
instance is not translated into nogoods like an ordinary rule but translated as follows.

To evaluate sign symbols correctly, the following fact is exploited: Alpha uses unit
propagation to assign a truth value to the head of the nogood—the head is always a negative
literal—when all other literals in the nogood are already satisfied. The head atom will be
assigned T if all positive literals in the nogood are assigned T, and M if some positive
literals are assigned M (cf. Section 5.3 for details).

Six solver-internal atoms are created for each ground heuristic directive. Let d be a
ground heuristic directive. Then, the following atoms are created to be used in nogoods as
described below: HeuOnT(d), HeuOnMT(d), HeuOnF(d), HeuOffT(d), HeuOffMT(d), and
HeuOffF(d). These atoms are used similarly to the atoms ChoiceOn(r, σ) and ChoiceOff(r, σ),
which are used to detect when an ordinary rule is applicable. Here, they serve the purpose
of detecting when a heuristic directive becomes active.

The following nogoods are generated:6

For . . . this nogood is generated.

{a1, . . . , an} = atom(cond+(d)|T) {F HeuOnT(d),T a1, . . . ,T an} ⟨15 ⟩
{an+1, . . . , am} = atom(cond+(d)|MT) {F HeuOnMT(d),T an+1, . . . ,T am} ⟨16 ⟩
{al+1, . . . , ak} = atom(cond+(d)|F) {F HeuOnF(d),F al+1, . . . ,F ak} ⟨17 ⟩

And for every . . . this nogood is generated.

T a ∈ cond−(d) {F HeuOffT(d),T a} ⟨18 ⟩
MT a ∈ cond−(d) {F HeuOffMT(d),T a} ⟨19 ⟩
F a ∈ cond−(d) {F HeuOffF(d),F a} ⟨20 ⟩

Propagation treats these nogoods just as any other nogood. For example, nogood ⟨15 ⟩
has the effect that HeuOnT(d) will propagate to T if all {a1, . . . , an} are assigned T because
a heuristic is potentially switched on if all atoms in positive literals with sign set T are true.

Likewise, nogood ⟨18 ⟩ has the effect that HeuOffT(d) will propagate to T if a is assigned
T because a heuristic is switched off if an atom occurring negatively with T is true.

To prove the correctness of the representation of heuristic directives using nogoods, we
introduce the notion of a nogood representation of a program P , which is denoted by ∆P and
defined as the set of all nogoods of the form ⟨9⟩ to ⟨20⟩ that can be obtained by grounding
all rules and heuristic directives of P . For readability of the argument, we assume that ∆P

is fully grounded while in a lazy-grounding system, such as Alpha, it is grounded lazily.
In the following, we also assume that any assignment A is compatible with the notion

of a computation sequence, i.e., there exists a computation sequence that yields A. Note
that any assignment that is not compatible cannot be an answer set (cf. Liu et al., 2007).

Lemma 3. Given a ground heuristic directive d, an assignment A, and an atom
h ∈ {HeuOnT(d),HeuOnMT(d),HeuOnF(d),HeuOffT(d),HeuOffMT(d),HeuOffF(d)}.
Then, truthA(h) = T, respectively truthA(h) = M, iff there is one nogood ng ∈ ∆P of the

6. Recall from Section 5.1 that we can assume heuristic directives to contain only sign sets F, T, MT.
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form ⟨15⟩-⟨20⟩ and ng is T-unit, respectively M-unit, on Fh w.r.t. A′ = A \ {Th,Mh},
i.e., prop(ng,A′) = {Th,Mh}, respectively prop(ng,A′) = {Mh}.

Lemma 3 is proven in Appendix A.

To be able to re-use existing grounding strategies (cf. Taupe, Weinzierl, & Friedrich,
2019b), we require every heuristic directive to be safe.

Definition 6 (Safety of a Heuristic Directive). A heuristic directive of the form ⟨3⟩ is safe
if every variable occurring in it also occurs in heuristic atoms inside its positive condition
whose set of sign symbols is either T or MT. More formally, a heuristic directive d is safe
if vars(d) ⊆ vars(cond+(d)|T ∪ cond+(d)|MT).

Since every variable must appear in a positive body literal that does not use sign F, the
safety of a heuristic directive is more restrictive than the safety of a rule (cf. Leone et al.,
2006). The reason for this restriction is that Alpha grounds heuristic directives using the
same techniques as when grounding normal rules. A rule must be grounded no later than
when all atoms in its positive body are assigned T or M because then the rule is potentially
applicable.7 Therefore, grounding of a rule is triggered when one of its positive body literals
becomes satisfied. Since Alpha does not trigger grounding when an atom is assigned false,
only literals without F can be used to bind variables. Systems that do not impose such a
restriction on when a rule is grounded may define heuristic directives’ safety more liberally.
A heuristic directive is grounded, at the latest, when all atoms in its positive body whose
sign set is T or MT are assigned T or M. This is necessary for information on heuristic
conditions to become known to the solver in time.

5.5 Evaluating Heuristics During Solving

To process heuristics, the solver needs to recognise when a heuristic d is applicable in the
current partial assignment A. To do this, the solver inspects the truth values of the HeuOn
and HeuOff atoms that are propagated using the nogoods introduced in Section 5.4.

Definition 7 (Satisfying a Heuristic Directive in Solving). A ground heuristic directive d
is solving-satisfied in a partial assignment A iff all of the following conditions hold:

truthA(HeuOnT(d)) = T, truthA(HeuOffT(d)) ̸= T,
truthA(HeuOnMT(d)) ∈ {M,T}, truthA(HeuOffMT(d)) /∈ {M,T},
truthA(HeuOnF(d)) = T, truthA(HeuOffF(d)) ̸= T.

Intuitively, a heuristic directive is satisfied if it is enabled by all HeuOn atoms and not
disabled by any HeuOff atom.

For the following correctness statements, we need the notion of an assignment that is
deductively closed and consistent with a given program: Let P be a ground program, an
assignment A is deductively consistent with P if for every rule r ∈ P such that the body of
r is satisfied w.r.t. A it holds that the head of r is satisfied w.r.t. A. Note that this also
implies that A does not violate any constraint of P .

7. A rule may also be grounded earlier (cf. Taupe et al., 2019b).
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Lemma 4. Given a ground program P and its nogood representation ∆P , let d be a ground
heuristic directive of P and A be an assignment deductively consistent with P . Then, cond(d)
is satisfied w.r.t. A iff d is solving-satisfied w.r.t. A∆P , the assignment extended with all
truth values that follow by unit propagation from ∆P .

Lemma 4 is proven in Appendix A.

Definition 8 (Applicability of a Heuristic Directive in Solving). A ground heuristic directive
d is solving-applicable w.r.t. an assignment A iff d is solving-satisfied and
truthA(atom(head(d))) ∈ {U,M}.

Intuitively, a heuristic directive is applicable if it is satisfied and the atom in its head is
not yet assigned T or F. Note the similarity to Definitions 3 and 4, where the semantics of
a heuristic directive are defined in terms of a directive being satisfied and applicable. The
existence of a currently applicable rule that derives the atom in the heuristic directive’s
head is not required here because this condition is already enforced by the transformation
described in Section 5.2.

Theorem 1. Given a ground program P and its nogood representation ∆P . Let d be
a ground heuristic directive of P and A be an assignment deductively consistent with P .
Then, d is applicable w.r.t. A and P iff d is solving-applicable w.r.t. A∆P .

Proof. “⇒”: Let d be applicable w.r.t. A, i.e., (i) cond(d) is satisfied, (ii) ∃r ∈ P s.t.
head(r) = atom(head(d)) and {T a | a ∈ body+(r)} ⊆ A and {M a | a ∈ body−(r)}∩A = ∅,
and (iii) truthA(atom(head(d))) ∈ {U,M}. From (i) and (ii) together with Lemma 4 we
directly conclude that d is solving-satisfied. Since truthA(atom(head(d))) ∈ {U,M} holds
due to (iii), it follows from Definition 8 that d is solving-applicable w.r.t. A∆P .

“⇐”: Let d be solving-applicable w.r.t. A∆P , i.e., d is solving-satisfied and
truthA(atom(head(d))) ∈ {U,M}. Being solving-satisfied implies by Lemma 4 that cond(d)
is satisfied w.r.t. A and P . Since the transformation described in Section 5.2 ensured that
∃r ∈ P s.t. head(r) = atom(head(d)) and {Ta | a ∈ body+(r)} ⊆ A and {Ma | a ∈
body−(r)} ∩ A = ∅ all hold, it follows from Definition 4 that d is applicable w.r.t. A and
P .

Recall that the solver determines information on weight, level, and head of a heuristic
directive d from weight(d), level(d), and head(d), respectively.

Finding the applicable heuristic directives with the highest priority is aided by efficient
data structures like a heap. When an applicable heuristic directive exists, the one with
the highest priority is fired, i.e., the solver uses it to make a choice. However, the atom in
the head of the heuristic directive cannot be directly chosen since Alpha cannot choose
arbitrary atoms but only guess applicable rules due to its reliance on computation sequences.
Therefore, an applicable rule that derives the atom in the head of the heuristic directive
must be identified. This rule is then guessed to fire or set to not fire, depending on the
heuristic sign.

Notice that there may be more than one applicable rule deriving the head of the heuristic
directive that was fired, so it may be ambiguous which rule should be picked. Instead of
picking a rule arbitrarily, we decided for our implementation to terminate with an error to
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disallow such occurrences where a firing heuristic directive finds multiple applicable rules
deriving the same head. Other solutions are also possible, including ones where, through
some rewriting, always at most one applicable rule is available. However, the occurrence of
this issue likely hints at some underlying problems with the heuristics; therefore, we think
it may be best to warn the user by raising an error dynamically.

Example 11. Consider the following program P :

x(1..2).

{a(X) : x(X)}.
b(X)← x(X), not c(X).

c(X)← x(X), not b(X).

#heuristic b(X) : x(X), not a(X). [X@2]

Since the positive body of every rule in P is satisfied, the full grounding of P is im-
mediately produced. Under the initial partial assignment consisting just of facts A0 =
{M x(1),T x(1),M x(2),T x(2)}, both ground heuristic directives are applicable since both
their positive bodies are satisfied and neither a(1) nor a(2) is assigned yet. The directive
in which X has been substituted by 2 has the higher weight, however. For this reason, it is
chosen, and the solver finds the only rule that can make the heuristic directive’s head b(2)
true: b(2) ← x(2),not c(2). The choice point representing the body of this rule is assigned
true and, after some propagation, the new partial assignment will contain T b(2) (amongst
other consequences of propagation).

6. Applications and Experimental Results

We tested our approach to declarative domain-specific heuristics by creating such heuristics
for several example domains and solving these problem domains using our implementation
in the Alpha system. Two concrete domains under investigation were the House Recon-
figuration Problem (HRP) and the Partner Units Problem (PUP), and state-space search
with A*. These two configuration problems are abstracted variants of typical configuration
problems experienced in more than 25 years of applying AI technology in the area of auto-
mated configuration of electronic systems (Falkner et al., 2016). For all these applications,
heuristics exist which allow the efficient generation of satisfying solutions. Furthermore, we
realised general state-space search in our approach, using the well-known informed search
method A*, by which we abstract from concrete domains. A* allows the incorporation of
a heuristic evaluation function. By integrating A* into ASP, we can show that, on the one
hand, we can exploit the power of informed (heuristic) search methods within ASP. On
the other hand, we can employ the knowledge representation capabilities of ASP to specify
states, actions, and their successor states declaratively. Depending on the quality of the
heuristic function an optimal solution is generated and the number of generated nodes is
reduced. We applied A* to two specific search problems. All these applications are pre-
sented in Sections 6.2 to 6.4 below, along with heuristics in the language proposed in this
work.

To put ASP systems under stress, we used problem encodings and instances of varying
sizes, where the larger instances were challenging to ground and solve. More precisely,
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traditional grounders excessively consumed space or time when grounding these instances,
and solving also was infeasible without the aid of domain-specific heuristics. Additionally,
for PUP, instances from the ASP competitions have been used, which are not challenging
to ground but hard to solve.

6.1 Experimental Setup

Encodings (including heuristics) and instances, and the Alpha binaries used for our exper-
iments, are available in the online appendix accompanying our article and on our website.8

Details on the sources of the encodings are mentioned in the sections describing the do-
mains. Optimisation statements were not used since Alpha does not support them yet.
However, heuristic directives can be written in a way that optimal or near-optimal solutions
are preferably found.9

Problem instances were selected by first defining an instance-generating algorithm and
then exploring instance sizes to find a set in which all systems could solve some instances
under consideration within a time limit of 15 minutes, and some instances could be solved by
none (or very few) of these systems. For PUP, competition instances were used additionally.

Taupe et al. (2019b) have introduced degrees of laziness in grounding, which vary the
conditions under which information about a ground rule is communicated from the grounder
to the solver. Traditionally in lazy grounding, rules are grounded when their positive body
is fully satisfied. In the concept of degrees of laziness, this is called strict grounding.
Permissive grounding, on the other hand, enables rules to be grounded if their positive
body is not fully satisfied, as long as all variables can be bound by positive body literals
that are already satisfied.

For example, consider the following non-ground constraint:

← a(X,Y), b(X).

Under the partial assignment A = {M a(1, 2),T a(1, 2)}, the ground constraint

← a(1, 2),b(1).

will only be produced if permissive grounding of constraints is enabled.
Due to experimental results (which did not consider domain-specific heuristics), Taupe

et al. (2019b) suggested grounding constraints permissively and other rules strictly by de-
fault.10 In our experiments, we investigated the performance of Alpha with both strict
and permissive grounding of constraints.

Furthermore, Alpha was used without justification analysis (Bogaerts & Weinzierl,
2018) and without support for negative integers in aggregates because we observed these
features to deteriorate performance in some cases. Apart from that, Alpha was used in its
default configuration. The JVM running Alpha was called with command-line parameters
-Xms1G -Xmx32G, thus initially allocating 1 GiB for Java’s heap and setting the maximum
heap size to 32 GiB.

8. https://ainf.aau.at/dynacon
9. However, for some problems, the optimum is unknown.

10. In Section 6.5 we address the question of whether this suggestion is also helpful in the presence of
domain-specific heuristics.
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For comparison, clingo11 (Gebser et al., 2019) was used in version 5.4.0 and dlv212

(Alviano et al., 2017) in version 2.1.0.

Each of the machines used to run the experiments was equipped with two Intel® Xeon®

E5-2650 v4 @ 2.20GHz CPUs with 12 cores. Furthermore, each machine had 251 GiB of
memory and ran Ubuntu 16.04.1 LTS Linux. Scheduling of benchmarks was done with
HTCondor™ together with the ABC Benchmarking System (Redl, 2016).13 Time and mem-
ory consumption were measured by pyrunlim,14 which was also used to limit time con-
sumption to 15 minutes per instance, memory to 40 GiB and swapping to 0. Care was
taken to avoid side effects between CPUs, e.g., by requesting exclusive access to an entire
machine for each benchmark from HTCondor.

All solvers were configured to search for the first answer set of each problem instance.
Finding one or only a few solutions is often sufficient in industrial use cases since solving
large instances can be challenging (Falkner et al., 2016). Therefore, the domain-specific
heuristics used in the experiments are designed to help the solver find one answer set that
is “good enough”, even though it may not be optimal.

6.2 Case Study 1: The House Reconfiguration Problem (HRP)

The House Reconfiguration Problem (HRP) (Friedrich et al., 2011) is an abstracted version
of industrial (re)configuration problems, e.g., rack configuration.

6.2.1 Problem Definition

Formally, HRP is defined as a modification of the House Configuration Problem (HCP).

Definition 9 (HCP). The input for the House Configuration Problem (HCP) is given by
four sets of constants P , T , C, and R representing persons, things, cabinets, and rooms,
respectively, and an ownership relation PT ⊆ P × T between persons and things.

The task is to find an assignment of things to cabinets TC ⊆ T × C and cabinets to
rooms CR ⊆ C ×R, such that: (1) each thing is stored in a cabinet; (2) a cabinet contains
at most five things; (3) every cabinet is placed in a room; (4) a room contains at most four
cabinets; and (5) a room may only contain cabinets storing things of one person.

Definition 10 (HRP). The input for the House Reconfiguration Problem (HRP) is given
by an HCP instance H = ⟨P, T,C,R, PT ⟩, a legacy configuration ⟨TC ′,CR′⟩, and a set of
things T ′ ⊆ T that are defined as “long” (all other things are “short”).

The task is then to find an assignment of things to cabinets TC ⊆ T × C and cabinets
to rooms CR ⊆ C ×R, that satisfies all requirements of HCP as well as the following ones:
(1) a cabinet is either small or high; (2) a long thing can only be put into a high cabinet;
(3) a small cabinet occupies 1 and a high cabinet 2 of 4 slots available in a room; (4) all
legacy cabinets are small.

11. https://potassco.org/clingo/
12. https://dlv.demacs.unical.it/
13. http://research.cs.wisc.edu/htcondor, https://github.com/credl/abcbenchmarking
14. https://alviano.com/software/pyrunlim/
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Figure 3: Sample HRP instance (left) and one of its solutions (right)

The sample HRP instance shown in Figure 3 comprises two cabinets, two rooms, five
things that belong to person p1, and one thing that belongs to person p2. A legacy con-
figuration is empty, and all things are small. In a solution, the first person’s things are
placed in cabinet c1 in the first room, and the thing of the second person is in cabinet c2 in
the second room. For this sample instance, a solution of HRP corresponds to a solution of
HCP.

6.2.2 Encodings and Instances

We adapted the original encoding by Friedrich et al. (2011) to conform to the current
capabilities of Alpha (i.e., restricted usage of aggregates, no optimisation).

The main two choice rules guessing the assignment of things to cabinets and the assign-
ment of cabinets to rooms look as follows:

{ cabinetTOthing(C,T) } ← cabinetDomain(C), thing(T).

{ roomTOcabinet(R,C) } ← roomDomain(R), cabinet(C).

Instances consist of facts over the following predicates:

• cabinetDomain/1 defines potential cabinets,

• roomDomain/1 defines potential rooms;

• thingLong/1 defines which things are long; and

• legacyConfig/1 defines all the other data in the legacy configuration, for example:

– legacyConfig(personTOthing(p1, t1)) defines that person p1 owns thing t1, and

– legacyConfig(roomTOcabinet(r1, c1)) specifies one tuple in the legacy assignment
of cabinets to rooms.

Instances for HRP were generated in the pattern of the original instances by Friedrich
et al. (2011). This pattern represents four different reconfiguration scenarios encountered
in practice, and the instances are abstracted real-world instances. Our instances are con-
siderably larger than the original ones, though (ranging up to 800 things, while the original
instances used at most 280 things).
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6.2.3 Heuristics

The domain-specific heuristic for HRP implemented in our novel approach works by (1) first
trying to re-use the legacy configuration; (2) then filling cabinets with things; (3) then
filling rooms with cabinets; (4) and finally closing remaining choices. Long things are
always assigned before short things.

By “closing remaining choices” we mean assigning F to choice points not yet assigned
by the heuristic. The purpose of this is to avoid the default heuristics (e.g., VSIDS) from
causing conflicts by choosing the wrong truth values.

We now present some selected heuristic directives. The directives use some intermediate
predicates whose meaning should become evident from their names. The full encoding is
available online.15

The following heuristics re-use the legacy assignment of cabinets to things and of rooms
to cabinets (1):

#heuristic reuse(cabinetTOthing(C,T)) :
legacyConfig(cabinetTOthing(C,T)), thingLong(T). [4@4]

#heuristic reuse(cabinetTOthing(C,T)) :
legacyConfig(cabinetTOthing(C,T)),not thingLong(T). [3@4]

#heuristic reuse(roomTOcabinet(R,C)) :
legacyConfig(roomTOcabinet(R,C)). [2@4]

The following heuristic assigns things to cabinets, preferring long over short things (2):

#heuristic cabinetTOthing(C,T) :
cabinetDomain(C),not fullCabinet(C),
not T assignedThing(T),personTOthing(P,T),
not otherPersonTOcabinet(P,C),
maxCabinet(MC), thingLong(T). [(MC−C)@3]

#heuristic cabinetTOthing(C,T) :
cabinetDomain(C), not fullCabinet(C),
not T assignedThing(T),personTOthing(P,T)
not otherPersonTOcabinet(P,C),
maxCabinet(MC), not thingLong(T). [(MC−C)@2]

The following heuristic assigns cabinets to rooms (3):

#heuristic roomTOcabinet(R,C) :
roomDomain(R), not fullRoom(R),
cabinet(C), not T assignedCabinet(C),
personTOcabinet(P,C),not otherPersonTOroom(P,R),
maxRoom(MR). [(MR−R)@1]

Finally, the following heuristics close choice points that are still unassigned (4):

15. https://ainf.aau.at/dynacon
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Figure 4: Resource consumption for solving each HRP instance

#heuristic F cabinetTOthing(C,T) :
not cabinetTOthing(C,T), cabinetDomain(C), thing(T).

#heuristic F roomTOcabinet(R,C) :
not roomTOcabinet(R,C), roomDomain(R), cabinet(C).

The heuristics we created for Alpha cannot be used with clingo due to the usage of
T and default negation.

An alternative encoding containing heuristic directives for clingo has also been created.
This encoding contains heuristic directives that have been faithfully adapted: by using sign
modifiers instead of sign symbols in heuristic heads; by adding (l−1) times the maximum
weight from the next lower level to w and omitting p; and by removing all literals from the
condition for which it only makes sense to evaluate them w.r.t. a partial assignment.

Furthermore, an Alpha encoding with heuristics without our novel features, compliant
with those employed by clingo, has been created.

6.2.4 Results

Figure 4 shows performance data for experiments with HRP. Cactus plots were created
in the usual way. In Figure 4c, the x-axis gives the number of instances solved within
real (i.e., wall-clock) time, given on the y-axis. Similarly, Figure 4b shows the number of
guesses needed and Figure 4d shows the memory consumed to solve the instances. In all
three plots, data points are sorted by y-values. Figure 4a contains a legend with all solver
configurations. The number of instances solved by each system is shown next to its name
(in parentheses).

One curve was drawn for each solver configuration: Alpha without domain-specific
heuristics, with strict (kco = 0) and permissive (kco =∞) grounding of constraints; Alpha
with domain-specific heuristics (h-alpha), with strict and permissive grounding of con-
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straints; Alpha with h-clingo-like domain-specific heuristics, with strict and permissive
grounding of constraints; clingo with (h-clingo) and without domain-specific heuristics;
and dlv2.

Substantial differences can be observed. The curves for h-alpha (kco = 0) reach farthest
to the right, meaning that Alpha with domain-specific heuristics solved the highest number
of instances (69 out of 94) when grounding constraints strictly. Surprisingly, with permissive
grounding of constraints, Alpha with domain-specific heuristics exhibited relatively low
time and space performance.

No curves are visible at all for Alpha without domain-specific heuristics because, in this
configuration, the system could not solve any instance. The other solvers’ performance was
somewhere in between the Alpha configurations at both ends of the spectrum. Notably,
h-clingo with domain-specific heuristics solved more instances in less time compared to
clingo without domain-specific heuristics. The largest instance solved by h-alpha con-
tained 675 things, which is almost 50% more than the size of the largest instance solved by
h-clingo (456). Recall that the time limit for solving each instance was 15 minutes.

While Figure 4c only reports overall solving time including grounding efforts, the dis-
tribution between grounding and solving time consumed by the ground-and-solve system
clingo has also been analysed. For each of the 37 instances solved by clingo, the system
spent between 27% and 84% of total solving time in grounding, on average 63%. When
using domain-specific heuristics, h-clingo solved 46 instances and spent between 92% and
97% in grounding, on average 96% of overall time. dlv2 solved 24 instances and spent
between 5% and 22% of total solving time in grounding, on average 10%.

6.3 Case Study 2: The Partner Units Problem (PUP)

Like HRP, the Partner Units Problem (PUP) (Teppan, 2016; Teppan, Friedrich, & Gottlob,
2016) is an abstracted version of industrial (re)configuration problems. In particular, PUP
deals with the configuration of parts of railway safety systems, where the development of
domain-specific heuristics was difficult.

6.3.1 Problem Definition

Definition 11 (PUP). The input to the Partner Units Problem (PUP) is given by a set
of units U and a bipartite graph G = (S,Z,E), where S is a set of sensors, Z is a set of
zones, and E is a relation between S and Z.

The task is to find a partition of vertices v ∈ S ∪ Z into bags ui ∈ U such that for each
bag the following requirements hold: (1) the bag contains at most UCAP vertices from S
and at most UCAP vertices from Z; and (2) the bag has at most IUCAP adjacent bags,
where the bags u1 and u2 are adjacent whenever vi ∈ u1 and vj ∈ u2 for some (vi, vj) ∈ E.

Figure 5 shows an example of a PUP instance. The bipartite graph comprises six sensors
and six zones. Each of the three units can be adjacent to at most two other units, and each
unit can contain at most two sensors and two zones. An assignment of sensors and zones
to units that satisfies all PUP requirements is also presented in Figure 5.
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s1 s2 s3 s4 s5 s6

z1 z123 z24 z35 z456 z6

u1
u2
u3

UCAP = 2

IUCAP = 2

s1 s2 s3 s4 s5 s6

z1 z123 z24 z35 z456 z6

u1 u2 u3

Figure 5: Sample PUP instance (left) and one of its solutions (right)

6.3.2 Encodings and Instances

PUP instances consist of atoms over the predicates

• comUnit/1 (specifying units U) and

• zone2sensor/2 (specifying the zone-to-sensor relation E).16

We used two different PUP encodings. The most efficient ASP encoding available for
PUP is the “new” encoding from the Fifth ASP competition17 (Calimeri et al., 2016). The
following rules constitute the main guessing part of the encoding:18

elem(z,Z)← zone2sensor(Z,S).

elem(s, S)← zone2sensor(Z,S).

{ gt(A,X,U) } ← elem(A,X), comUnit(U), comUnit(U1),U1 = U+ 1, rule(A),U < X.

{ gt(A,X,U) } ← elem(A,X), comUnit(U), comUnit(U1),U1 = U+ 1,not rule(A).

Other rules are used to derive unit2zone/2 and unit2sensor/2 under very specific conditions
from gt/3.

This encoding is written in such a way that heuristics are encoded in the form of rules
and symmetry-breaking constraints, forcing the solver into parts of the search space where
a solution can be expected. This goes at the cost of readability. Thus, the encoding does
not lend itself well to extension by heuristic directives interacting with the choice rules.

For this reason, a new encoding has been created for Alpha and extended by heuristic
directives. Since also in this encoding parts of the heuristics are encoded as rules, the
encoding is introduced in the next section.

All 18 instances from the ASP competitions (Calimeri, Ianni, & Ricca, 2014; Calimeri
et al., 2016) that are satisfiable, belong to the subclass of PUP instances that can be
polynomially decided, and in which the input graphs are connected have been used for our
experiments. Unsatisfiable and non-connected instances have not been used because our
heuristics are tailored towards generating valid configurations for connected instances.

Additionally, 100 instances were generated that exhibit the grounding bottleneck but
are easy to solve when using dedicated heuristics. Our motivation for using these instances
is that problems that humans can solve easily should also be easy for ASP solvers. The
generated instances share the characteristics that their sensor-zone graphs are acyclic and
that each pair of neighbouring zones shares one sensor.

16. In the instances used for our experiments, both UCAP and IUCAP are fixed at the value 2.
17. https://www.mat.unical.it/aspcomp2014/#Participants.2C_Encodings.2C_Instance_Sets
18. Symbols like D for “Door” have been replaced by S for “Sensor” to be consistent with Definition 11.
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The newly generated instances are significantly larger than the competition instances.
The largest generated instance contains 300 units, 300 zones, and 597 sensors. In contrast,
the largest competition instance under consideration contains 40 units, 60 zones, and 79
sensors.

6.3.3 Heuristics

QuickPup is a heuristic for PUP that successfully solves many hard problem instances
(Teppan, Friedrich, & Falkner, 2012). Our approach supports implementing large parts
of the originally procedural algorithm for QuickPup. Our encoding uses rules by Teppan
(2016) and Teppan and Friedrich (2016) to derive a topological order of the zones and
sensors. Heuristic directives subsequently use this topological order.

First, a start zone is determined and denoted by startZone/1. In our encoding, the start
zone is always the first one. QuickPup should actually try to use each zone as the start
zone one after the other and abort search after a certain amount of time has passed. This
part of the algorithm cannot currently be represented in our framework.

QuickPup assigns zones and sensors to units in a breadth-first-order, called “topological
order” because the graph is traversed level by level. First, the start zone is assigned, then
the sensors connected to the start zone, then the zones connected to those sensors and so
on. A helper predicate layer/3 is introduced to compute the topological order. In an atom
layer(T,X,L), T denotes the type of element (“s” for sensor and “z” for zone), X is the
element’s identifier, and L is its layer in the computed breadth-first order.

While experimenting with different encodings and heuristic directives, we found out
that Alpha greatly profits from encodings where the search space is expanded step-by-
step according to this topological order, instead of making all choice points available to
the solver at once. Therefore, in the encoding used with Alpha in our final experi-
ments, the topological order is represented by atoms of the elem n/3 predicate, e.g.,
elem n(T,X,N) means that element (T,X) has position N in the topological order. Fur-
thermore, elems assigned up to/1 denotes how many elements are already assigned to
units, e.g., elems assigned up to(N) means that the elements with positions 1 up to N
in the topological order have already been assigned. The choice of units is also restricted:
Since assigning an element to a previously unused unit does not need to differentiate be-
tween individual unused units, each unit only becomes assignable when the unit with the
next-lower number is already used.

elem(z,Z)← zone2sensor(Z,S).

elem(s, S)← zone2sensor(Z,S).

assignable unit(U)← comUnit(U), used(U−1).
assignable(U,T,X)← assignable unit(U), elem(T,X), elem n(T,X,N),

elems assigned up to(N−1).
{ assign(U,T,X) } ← assignable(U,T,X).

Due to these rules, elements are processed one after the other and can be assigned to any
of the units already used or to the unused unit with the lowest number. The selection among
these units is guided by heuristic directives, which encode parts of QuickPup. We tried
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many different representations of (parts of) QuickPup as heuristic directives and found out
that the overhead caused by a fully faithful representation in Alpha outweighs its benefits.
The resulting directives presented below are therefore a compromise between faithfulness to
the original heuristics and computational efficiency. The directives use some intermediate
predicates whose meaning should become evident from their names. The full encoding is
available online.19

First, already used units are tried in decreasing order:

#heuristic assign(U,T,X) : assignable(U,T,X),maxLayer(ML), layer(T,X,L),

not full(U,T), not T assigned(T,X),

T used(U). [U@(ML−L)]

A fresh unit is only touched if assignment to the preceding unit has failed:

#heuristic assign(U,T,X) : assignable(U,T,X),

maxLayer(ML), layer(T,X,L),

not full(U,T), not T assigned(T,X),

not T used(U), comUnit(U−1),T used(U−1),
F assign(U−1,T,X). [U@(ML−L)]

Note the condition F assign(U−1,T,X) in the last heuristic directive. Due to this
condition, the heuristic is only applicable if the same element could not be assigned to the
preceding unit U−1. This situation may be caused by backtracking or by the following
heuristic avoiding assignments to units that are already full:

#heuristic F assign(U,T,X) : assignable(U,T,X),

maxLayer(ML), full(U,T),

not assign(U,T,X). [1@ML]

Choice points not assigned by any of these heuristics are finally assigned false by a
dedicated heuristic directive, similarly as shown for HRP in Section 6.2.3.

The heuristics we created for Alpha cannot be used with clingo due to the usage
of T, F, and default negation. An alternative encoding containing heuristic directives for
clingo has been created in a similar way as for HRP. Furthermore, an Alpha encoding
with heuristics without our novel features, compliant with those employed by clingo, has
been created.

6.3.4 Results

In the experiments, Alpha used the encoding presented in Section 6.3.3; h-alpha addi-
tionally used the heuristics presented in Section 6.3.3; Alpha with h-clingo-like domain-
specific heuristics used the same encoding but different heuristics; h-clingo also used the
Alpha encoding but with different heuristics; and dlv2 and clingo used the new ASP
competition encoding mentioned in Section 6.3.2.

19. https://ainf.aau.at/dynacon
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Figure 6: Resource consumption for solving each generated PUP instance
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Figure 7: Resource consumption for solving each competition PUP instance

We evaluated these approaches on two sets of instances: (1) 100 newly generated in-
stances, and (2) 18 competition instances that are polynomially decidable, connected, and
satisfiable. Results obtained in both experiments are shown in cactus plots (Figures 6
and 7), which were generated in the same way as for HRP (cf. Section 6.2.4).

In the first experiment, Alpha with domain-specific heuristics again solved the highest
number of instances (all 100) when grounding constraints strictly, see Figure 6a. When
grounding constraints permissively, Alpha needed much fewer guesses but consumed more
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time and memory, as shown in Figures 6b to 6d. On the other extreme, Alpha without
domain-specific heuristics could solve only 7 of the 100 instances when grounding con-
straints strictly, and 9 instances when grounding constraints permissively. The systems
dlv2, clingo, and h-clingo performed somewhere in between those extremes. h-clingo
with domain-specific heuristics solved many more instances than clingo without domain-
specific heuristics.

The largest instance in our instance set contained 300 units. h-alpha was able to solve
all these instances. In contrast, the size of the largest instance that could be solved by any
other system, using the given encoding, was only 75. Recall that the time limit for solving
each instance was 15 minutes. For 28 instances, h-clingo returned an error: “Value too
large for defined data type: Id out of range”.

For each of the 13 instances solved by clingo, the system spent between 0% and 100%
of total solving time in grounding, on average 34%. When using domain-specific heuristics,
h-clingo solved 23 instances and spent between 63% and 100% in grounding, on average
85% of the overall time. dlv2 solved 10 instances and spent between 0% and 14% of total
solving time in grounding, on average 4%.

In the second experiment, all systems used the same encoding as in the experiment
above using the generated instances. The number of guesses needed to find the answer
set is significantly reduced by our heuristics (Figure 7b). The effect on time and memory
consumption is much lower, however (Figures 7c and 7d). Overall, clingo without domain-
specific heuristics outperforms all other systems and solves all 18 instances.

Again, domain-specific heuristics raised clingo’s grounding efforts: For each of the 18
instances solved by clingo, the system spent between 0% and 50% of total solving time
in grounding, on average 7%. When using domain-specific heuristics, h-clingo solved 16
instances and spent between 2% and 89% in grounding, on average 40% of the overall time.
dlv2 solved 15 instances and spent between 0% and 10% of total solving time in grounding,
on average 2%.

For comparison, we also ran clingo with Alpha’s encoding without domain-specific
heuristics. The results (which are not shown in the figures) revealed that clingo performed
very poorly with this encoding, solving only 5 of the generated and only 7 competition
instances.

6.4 Case Study 3: State-Space Search with A*

A* is a form of best-first search that searches a weighted graph for the optimal path from a
given start node to a given goal node. Best-first search strategies expand the most promising
among all the nodes encountered so far. The promise of a node n is estimated numerically
by a heuristic evaluation function, traditionally denoted f(n) (Hart, Nilsson, & Raphael,
1968; Russell & Norvig, 2010; Pearl, 1984).

A* evaluates nodes by combining g(n), the path-cost to reach node n from the start
node, and h(n), the estimated cost of the cheapest path from n to the goal (Russell &
Norvig, 2010):

f(n) = g(n) + h(n).
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Figure 8: A sample Pathfinding instance (repeated from Figure 1)

A* is complete on finite graphs with non-negative edge weights. The graph-search version
of A*, in which no state is explored repeatedly, is optimal if h is consistent. Heuristics
discussed in this section are consistent; for details, see Russell and Norvig (2010).

6.4.1 Problem Definition

The formal specification of search problems will now be discussed. The Pathfinding problem
introduced in Examples 2 and 6 will be used to give examples.20 We repeat Figure 1 in
Figure 8 for easier reference.

Definition 12 (Search Problem). A problem to be solved by a search algorithm like A* can
be defined formally by five components (Russell & Norvig, 2010):

• The initial state, e.g., at(4, 2).

• The actions available. Given a state s, actions(s) returns the set of actions that can
be executed in s.
For example, actions(at(4, 2)) = {move(4, 3),move(5, 2),move(4, 1),move(3, 2)}.

• The transition model specifying the results of each action.
For example, result(at(4, 2),move(3, 2)) = at(3, 2).
The state-space of the problem, the set of all states reachable from the initial state
by any sequence of actions, is implicitly defined by the initial state, the actions, and
the transition model. The state-space forms a graph in which the nodes are states, and
the edges are actions.

• The goal test, which determines whether a given state is a goal state. The set of
goal states can be defined implicitly or explicitly; in our example, it contains the single
element at(1, 3).

• A cost function that assigns a numerical cost to each edge in the graph. The step
cost of reaching state s′ from s by applying action a is denoted by c(s, a, s′). In our
example, the cost of each step is the same, e.g., c(at(4, 2),move(3, 2), at(3, 2)) = 1. In
practical routing problems, step cost might be defined as the length of a road or the
time needed to travel between two cities.

20. Note that we disregard time steps in the formulation of Pathfinding as a search problem.
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Algorithm 1: Graph Search with A* (adapted from Figures 3.7 and 3.14 by
Russell & Norvig, 2010)

Input: P , a problem defined by the components specified in Definition 12.
Output: A solution, or failure.

Initialize frontier F , a priority queue ordered by f(·), initially containing the initial
state of P

Initialize explored set E to be empty
while F is not empty do

Pop node n with least f(n) from F
if n contains a goal state then

return the corresponding solution

Add state of n to E
foreach action a available in the state of n do

Generate child node by applying action a on node n
if the child state is neither in F nor in E then

Insert the child node into F

else if the child state is already in F , but with a higher path cost then
Replace that node in F with child

return failure

A solution for the search problem is a path, representing a sequence of actions, from the
initial state to a goal state. An optimal solution is a solution with lowest path cost among
all solutions.

Algorithm 1 shows an informal specification of the A* algorithm based on graph-search
(adapted from Figures 3.7 and 3.14 by Russell & Norvig, 2010). For details, consult Hart
et al. (1968), Russell and Norvig (2010), Pearl (1984). Note that as opposed to tree-search,
graph-search maintains a set of explored states to avoid repeated work on states already
generated by applying an action.

6.4.2 Instances, Encodings, and Heuristics

We now present our ASP-based encoding of the A* search algorithm based on graph-search,
which is the first of its kind to the best of our knowledge. As we apply graph-search we
assume the heuristic evaluation function h(n) to be consistent. Moreover, we require that
actions are deterministic, i.e., the result of an action is exactly one successor state. To
facilitate using our encoding with different search problems, we distinguish between the
encoding of A* itself and a problem-specific encoding that can be used with different problem
instances. We will demonstrate the usage of our A* encoding with two search problems:
Pathfinding known from Example 2, and routing on a real-world street network. We will first
present A* with the Pathfinding problem and move from most specific (problem instances)
to most general (A* encoding). Afterwards, we will present the routing application. State-
based search, where the problem’s solution is a path, deals with pathfinding. Therefore we
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focus our evaluation on pathfinding and routing, showing the benefits of lazy grounding
combined with heuristic search.

Problem Instances for Pathfinding. Instances are defined as stated in Example 2, i.e.,
they consist of atoms over the following predicates:

• xmin/1,

• xmax/1,

• ymin/1,

• ymax/1,

• start/2,

• goal/2, and

• obstacle/2.

For our experiments, we have generated instances as follows. Each instance represents
a square plane of width w. For each w ∈ {5, 10, . . . , 500} there exists one instance, so there
are 100 instances in total. The start is located in the top-left corner, and the goal is located
in the bottom-right corner. Each square in the plane, except for the start and the goal, is
an obstacle with a probability of 0.2. Additionally, two long vertical walls cut through the
plane, one starting at the bottom and one at the top of the plane. The x-positions of these
walls, as well as their lengths, are randomly determined within reasonable ranges.

Problem-Specific Encoding for Pathfinding. The problem-specific encoding defines
some intermediate predicates:

• neighbour/4 defines which squares are adjacent to each other, and

• manhattan/3 defines the Manhattan distance from each square to the goal.

For example, neighbour(4, 2, 3, 2) denotes that (4, 2) is adjacent to (3, 2), and manhattan(3, 2, 3)
denotes that the Manhattan distance from (3, 2) to the goal at (1, 3) is 3.

As input to the problem-independent A* encoding, the following predicates have to be
defined:

• init/1 defines the initial state;

• goal/1 defines the goal state;

• c/4 defines the cost function; and

• h/2 defines the heuristic evaluation function h (which is here the Manhattan distance
to the goal).
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Actions and transition model need not be explicitly defined because this information is
implicitly contained in c/4.

The input to A* is realised in the problem-specific Pathfinding encoding by the following
rules:

init(at(X,Y))← start(X,Y).

goal(at(X,Y))← goal(X,Y).

c(at(AtX,AtY),move(X,Y), at(X,Y),StepCost)← neighbour(AtX,AtY,X,Y),

not obstacle(X,Y),

StepCost = 1.

h(at(X,Y),H)← manhattan(X,Y,H).

Problem-Independent A* Encoding. We will now present our ASP-based A* encod-
ing step by step. This problem-independent encoding stays the same for any search problem
to which A* is applied.

The first step is to retrieve the information on the actions and result functions from the
problem definition, implicitly contained in c/4.

result(ParentState,Action,ChildState)← c(ParentState,Action,ChildState, StepCost).

action(ParentState,Action)← result(ParentState,Action,ChildState).

The n/4 predicate is used to represent each node n in the searched graph by state S,
parent state PS (state where action A was applied), action A (applied to generate n), and
path cost G = g(n). There also exists an n/1 predicate that is used when only the state
of a node is needed. Recall that init/1 is defined in the problem-specific encoding. The
explore/2 predicate will be defined further below; it is used for state/action pairs that have
already been explored, i.e., the action applied in a state.

n(S,null, null, 0)← init(S).

n(S,PS,A,G)← result(PS,A,S), explore(PS,A), g(PS,A,G).

n(S)← n(S,PS,A,G).

Note that if h(n) is consistent, a property of graph-search is that nodes are only explored
if their smallest g-value was found (Russell & Norvig, 2010). Based on this property and
the determinism of actions it follows that PS and A are uniquely identifying a tuple of n/4.

The f -value for each node is the sum of the node’s g-value (cost from the initial state to
the node) and its h-value (heuristically estimated cost from the node to the nearest goal).
Recall that h/2 is defined in the problem-specific encoding.

g(S,G)← n(S,P,A,G).

f(S,G+H)← g(S,G),h(S,H).

Nodes are only generated in our approach when they are explored. However, f(n) is
already needed before n is explored to decide which nodes to explore. Therefore, we define
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f also for state/action pairs.

g(PS,A,ParentG + StepCost)← g(PS,ParentG), c(PS,A, S, StepCost).

h(PS,A,H)← result(PS,A, S),h(S,H).

f(S,A,G+H)← g(S,A,G),h(S,A,H).

Now we can encode elements of A* (cf. Algorithm 1) as rules. There is no one-to-one
correspondence between statements in the algorithm and rules in our ASP encodings, so we
present ASP rules in a logical order.

The union of frontier and explored set is represented by frontier and explored states/2.
The predicate consists of state/action pairs instead of nodes because nodes are not gener-
ated before they are explored. Since an atom’s truth value cannot change from true to false
without backtracking, atoms of the frontier and explored states/2 predicate also include
nodes that have already been removed from the frontier. These removed nodes are in the
explored set, i.e., nodes represented by n/4 were generated. The following rule adds an
explored node’s children to frontier and explored states/2:

frontier and explored states(S,A)← n(S), action(S,A),not goal(S).

The explored set E is already represented by predicates n/4 and n/1 because atoms
of these predicates represent nodes that are only generated when explored. However, to
avoid exploring the same state repeatedly, the explored by other step/3 predicate stores
actions that may not be used because the resulting children have already been explored.

explored by other step(S,PS,A)← n(S,PS′,A′,G), result(PS,A,S),PS′ ̸= PS.

explored by other step(S,PS,A)← n(S,PS′,A′,G), result(PS,A,S),A′ ̸= A.

When a child state is already explored, the corresponding state/action pair is still added
to the frontier but marked as suboptimal.

suboptimal step(PS,A)← frontier and explored states(PS,A), result(PS,A, S),

explored by other step(S,PS,A).

Similarly, when a cheaper path to a child state is discovered, the existing state/action
pair in the frontier is marked as suboptimal.

suboptimal step(PS,A)← frontier and explored states(PS,A), result(PS,A, S),

frontier and explored states(PS′,A′), result(PS′,A′, S),

f(PS,A,F), f(PS′,A′,F′),F > F′.

The following two rules are here to recognise when a goal state is explored.

goal found(S)← n(S), goal(S).

goal found← goal found(S).
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A found goal is not accepted if a node with a lower f -value is still on the frontier. This
restriction ensures optimality of found solutions even without heuristic directives.21

← goal found(S), explore(PS,A), result(PS,A,S), f(S,F),

frontier and explored states(S′,A′),

not explore(S′,A′),not suboptimal step(S′,A′),

f(S′,A′,F′),F′ < F.

The encoding contains a single choice rule, which realises choosing a leaf node from
the frontier. Without heuristic directives, which will be defined later, this rule does not
differentiate between nodes in the frontier.

{ explore(S,A) } ← frontier and explored states(S,A),not suboptimal step(S,A).

Note that by the consistency property of h(n) nodes in graph-search are only selected
for exploration if the minimum g-value for this node was found. We assure this property by
the heuristic formulated for explore/2 (see below). S,A tuples of the frontier with smallest
f -value are explored first. Consequently, if there are two distinct state/action pairs (s, a)
and (s′, a′) which were not explored and which lead to the same successor state, then our
heuristic will select the state/action pair for exploration which is on an optimal path.

Failure is derived when the frontier is empty, and no goal has been found. An atom of
frontier nonempty/0 can be derived if there is a state/action pair S,A that is not explored
and whose application is not suboptimal. Conversely, frontier nonempty/0 cannot be de-
rived if for all S,A pairs for which frontier and explored states/2 are true, these pairs are
suboptimal or explored. If there is an answer set where neither frontier nonempty/0 nor
goal found/0 can be derived then no solution for the search problem exists.

Our encoding of A* is always satisfiable. An answer set contains a solution if the search
problem has a solution, and an answer set contains the failure atom if there is no solution.
We have decided this way because the alternative, having a constraint that goal found
must be true in an answer set, makes solving performance deteriorate sharply for instances
without a solution.

frontier nonempty← frontier and explored states(S,A),

not suboptimal step(S,A),not explore(S,A).

failure← not frontier nonempty,not goal found.

← not failure,not goal found.

When the goal has been found, the path from the initial state to the goal state can be
computed along with corresponding path costs.

path to goal(PS,A, S)← explore(PS,A), result(PS,A,S), goal found(S).

path to goal(PS,A, S)← explore(PS,A), result(PS,A,S), path to goal(S,A′,S′).

cost to goal(G)← goal found(GoalState), g(GoalState,G).

21. Using the heuristics presented below, the problem can be solved without backtracking, which means that
constraints are not needed when using these heuristics. We still include constraints in the encoding to
render it a correct declarative problem specification when viewed without heuristics.
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This subsequent computation is necessary because A* may choose to apply more than
one action on the same state if one of those actions turns out to lead to a more costly
path to the goal. Our approach does not need backtracking, so the answer set includes all
explore/2 atoms tried, and we need to reconstruct the path that leads to the goal.

The result computed by A* is encoded by the predicates

• path to goal/3,

• cost to goal/1, and

• failure/0,

so an answer set solver can be instructed to display only atoms of those predicates in an
answer set. For Alpha, this can be done with the command-line arguments --filter

path to goal --filter cost to goal --filter failure.

Of course, our A* encoding also needs heuristic directives to work correctly. Without
heuristics, the encoding would just search arbitrarily through the state-space and ignore the
f -value of nodes. Therefore, our primary heuristic directive prefers to choose those nodes
from the frontier whose f -value is the lowest.

#heuristic explore(PS,A) : frontier and explored states(PS,A),

not suboptimal step(PS,A),

f(PS,A,PathCost),not T goal found. [−PathCost@3]

A second heuristic directive closes unassigned choice points when the goal is found.

#heuristic F explore(PS,A) : frontier and explored states(PS,A),

T goal found. [1@2]

The heuristics we created for Alpha cannot be used with clingo due to the usage of
T and default negation. To assess the performance of clingo, we have also created an
encoding omitting unsupported literals in heuristic conditions. Furthermore, an Alpha
encoding with heuristics without our novel features, compliant with those employed by
clingo, has been created.

Generating States on Demand. In many practical domains, the number of states is
vast, thus prohibiting the upfront generation of all states. For example, in the well-known
8-puzzle, 181, 440 distinct states are reachable. While this is a manageable number, the
corresponding number for the 15-puzzle is already about 1013 (Russell & Norvig, 2010).

Since only a small fraction of all states is usually explored by A* (depending on the
quality of the heuristic function), a crucial memory-saving feature is to generate only the
states that A* needs. Our approach can generate states on demand using the interface
between problem-specific encoding and A* encoding bidirectionally instead of just passing
information from the problem-specific encoding to A*.

As described above, predicates init/1, goal/1, c/4, and h/2 are defined in the problem-
specific encoding and accessed by the A* encoding. In the other direction, the problem-
specific encoding can access the frontier and explored states/2 predicate defined in the
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Figure 9: Vienna’s first district

problem-independent A* encoding to generate states on demand, for example, by introduc-
ing a new state/1 predicate:

state(InitState)← init(InitState).

state(GoalState)← goal(GoalState).

state(ChildState)← frontier and explored states(ParentState,Action),

result(ParentState,Action,ChildState).

This new state/1 predicate can then be used in the body of rules deriving c/4 and h/2
to derive also information on step cost and heuristic values only on-demand, utilising lazy
grounding. Deriving this information on-demand is not possible with ground-and-solve.

Real-World Routing. To test our A* encoding on real world routing problems, we
obtained a graph representation of the walkable street network for the first district of Vienna,
Austria, from OpenStreetMap,22 employing the OSMnx Python library (Boeing, 2017).23

We then pre-processed the graph by consolidating intersections (merging nodes located
within 15m of each other) and removing parallel edges. Figure 9 shows the resulting graph,
which contains 462 nodes and 1632 edges.

We have generated 100 instances, each consisting of the following atoms:

• 1632 atoms of the predicate edge/3, in which the first two arguments denote two
nodes connected by an edge and the third argument denotes the length of the edge in
meters,

22. https://www.openstreetmap.org
23. https://github.com/gboeing/osmnx

102



Domain-Specific Heuristics in Answer Set Programming

alpha (kco = 0) (13)

alpha (kco =∞) (12)

dlv2 (8)

h-alpha (kco = 0) (72)

h-alpha (kco =∞) (20)

h-alpha (with h-clingo heuristics, kco = 0) (69)

h-alpha (with h-clingo heuristics, kco =∞) (19)

clingo (8)

h-clingo (10)

(a) Solver configurations, with numbers of solved instances

0 8 16 24 32 40 48 56 64 72

Number of instances

100

101

102

103

104

105

106

N
u
m
b
er

of
gu

es
se
s

(b) Number of guesses

0 8 16 24 32 40 48 56 64 72

Number of instances

0

2

4

6

8

10

12

14

R
ea
l
ti
m
e
(m

in
u
te
s)

(c) Time consumption

0 8 16 24 32 40 48 56 64 72

Number of instances

0

4

8

12

16

20

24

28

32

36

M
em

or
y
(G

iB
)

(d) Memory consumption

Figure 10: Resource consumption for solving each Pathfinding instance with A*

• 106, 953 atoms24 of the predicate distance/3, in which the first two arguments denote
nodes and the third argument denotes the euclidean distance between them in meters,

• one atom of the predicate origin/1 denoting the origin node of the route to be com-
puted, and

• one atom of the predicate destination/1 denoting the destination node of the route to
be computed.

The set of edge/3 and distance/3 atoms encodes the street network graph and is the same
in each of the 100 instances. Origin and destination nodes, however, have been chosen
randomly for each instance.

The problem-specific encoding for street network routing then consists of only the fol-
lowing five rules:

init(at(N))← origin(N).

goal(at(N))← destination(N).

c(at(X),move(Y), at(Y),Length)← edge(X,Y,Length).

h(at(X),Distance)← destination(Y),distance(X,Y,Distance).

distance(Y,X,Distance)← distance(X,Y,Distance).

6.4.3 Results

Cactus plots for Pathfinding with A* (Figure 10) and Routing with A* (Figure 11) were
generated in the same way as for HRP (cf. Section 6.2.4).

24. Since the graph contains n = 462 nodes, there are n·(n+1)
2

= 106, 953 unique pairs of nodes including
reflexive pairs.
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Figure 11: Resource consumption for solving each Routing instance with A*

In the case of Pathfinding (Figure 10), Alpha with domain-specific heuristics (h-alpha)
solved the highest number of instances (72 out of 100). Like with HRP, this performance
could only be achieved when grounding constraints strictly (kco = 0), while permissive
grounding of constraints (kco =∞) resulted in lower performance, solving only 20 instances.
Performance of Alpha with h-clingo-like heuristics was a bit lower.

On the other extreme, Alpha without domain-specific heuristics could solve only 13 of
the 100 instances.

The systems dlv2, clingo, and h-clingo performed somewhere in between those ex-
tremes. Of the 72 instances solved by h-alpha, 18 are unsatisfiable, and of the 10 in-
stances solved by h-clingo, 9 are unsatisfiable. The largest instance solved by h-alpha
had a width of 400, and the largest instance for which h-clingo could derive failure had
a width of 470. Note that our heuristics are designed to find solutions, not to efficiently
prove unsatisfiability.

In the Routing domain (Figure 11), Alpha with domain-specific heuristics (h-alpha)
solved 99 of the 100 instances, while Alpha without domain-specific heuristics could solve
only two instances, and the other systems solved no instances at all. Alpha with h-clingo-
like heuristics solved the same number of instances as h-alpha, but consumed more time
and memory in doing so.

For each of the 8 Pathfinding instances solved by clingo, the system spent between 88%
and 100% of total solving time in grounding, on average 95%. When using domain-specific
heuristics, h-clingo solved 10 Pathfinding instances and spent between 96% and 100% in
grounding, on average more than 99% of overall time. dlv2 solved 8 instances and spent
between 15% and 55% of total solving time in grounding, on average 43%. Neither clingo
nor h-clingo nor dlv2 finished grounding for any of the Routing instances.
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Note some peculiarities in Figures 10 and 11: In Figure 10b, there is a vertical line for
clingo and dlv2. This is because for seven instances, these two systems were able to derive
failure without doing any guesses. Figure 11b, on the other hand, shows a horizontal line
for h-alpha with h-clingo heuristics. This is because these heuristics do not represent A*
correctly and try to visit all 461 non-start nodes in almost every instance. In Figure 11b,
all lines for kco = ∞ are hidden by their respective kco = 0 counterparts because numbers
of guesses coincide.

6.5 Discussion

Our results show that we have extended the application area of ASP. By combining our
novel approach to domain-specific heuristics with lazy-grounding answer set solving, we
could solve large-scale problem instances that are out of reach for conventional ASP systems.
This finding supports our initial hypothesis that both lazy grounding and domain-specific
heuristics are crucial for solving large-scale industrial problems.

Our approach extends the one by Gebser et al. (2013), the first extension of ASP’s
input language by a declarative framework for domain-specific heuristics. Gebser et al.
(2013) have provided the first experimental evidence that such an approach can improve
ASP solving performance and also reported grounding issues with some instances.

Our advancement consists of novel syntax and semantics for heuristic directives that
make it possible to reason about the current partial assignment, facilitating heuristics based
on what has or has not yet been decided by the solver. Although the approach by Gebser
et al. (2013) has worked very well on planning problems, it seems that more flexibility in
the definition of heuristics, supported by the novel features of our approach, is necessary to
represent heuristics for other kinds of problems.

Our results undeniably show that domain-specific heuristics improve solving perfor-
mance for the domains under consideration. This is not only true for Alpha but also for
clingo. However, domain-specific heuristics usually increase clingo’s memory consump-
tion, thus exacerbating the grounding bottleneck from which ground-and-solve systems such
as clingo are suffering. Domain-specific heuristics for dlv2 were out of scope because dlv2
does not support the declarative specification of heuristics.

However, we do not claim that heuristics based on partial assignments are always bene-
ficial. Our findings cannot reject the possibility that h-clingo might outperform h-alpha
when other encodings or other heuristics are used since there might be encoding optimisa-
tions that we have not thought of. We even observed this situation with most competition
instances of the Partner Units Problem in our experiments. Still, we are confident that
our approach’s novel features make the specification of practical heuristics more intuitive
and effortless. Furthermore, in our experiments, Alpha usually performed worse when
employing clingo-like heuristics without our novel features.

Results for HRP (Figure 4), PUP with generated instances (Figure 6), and A* (Fig-
ures 10 and 11) indicate that permissive grounding (cf. Taupe et al., 2019b), i.e., providing
the solver with more nogoods representing ground constraints than necessary, can be coun-
terproductive when domain-specific heuristics are used. We conjecture the reason for this to
be that suitable domain-specific heuristics can assist the solver even better than additional
constraints while avoiding the overhead of additional nogoods (in terms of space consump-
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tion and propagation efforts). This assumption is supported by the considerable increase in
Alpha’s memory consumption when grounding constraints permissively in those domains.

Closer investigation of this issue revealed that in both HRP and A*, one single constraint
was the source of the performance deterioration. In HRP, the full and very large grounding
for one specific constraint was produced before the solver had even made a single choice.
In A*, many ground nogoods were produced for one constraint not necessary to find the
optimal solution when domain-specific heuristics are used.

The Partner Units Problem (PUP) proved more challenging for our approach than the
other domains under consideration. While the combination of lazy grounding and domain-
specific heuristics was able to solve large instances that are out of reach of ground-and-
solve systems, hard competition instances can be solved by ground-and-solve systems even
without domain-specific heuristics. In these cases, domain-specific heuristics in Alpha did
more harm than good, because they caused a significant overhead and they are obviously
not effective when the full grounding and efficient solving techniques are available. However,
finding efficient encodings or heuristics for PUP is out of scope of this paper. Future work
should investigate whether another combination of encoding and heuristic directives can
help to solve instances that are both large and hard to solve.

To sum up, domain-specific heuristics implemented in our novel framework, combined
with strict lazy grounding by Alpha, outperformed all other tested systems when applied
to large instances of the House Reconfiguration Problem, the Partner Units Problem, and
A* used with two different search problems. Applications to other domains should be easy
to put into practice and belong to future work.

7. Conclusions and Future Work

We have proposed novel syntax and semantics for declarative domain-specific heuristics
in ASP that can depend non-monotonically on the partial assignment maintained during
solving. Furthermore, we have demonstrated how to integrate our approach in a lazy-
grounding ASP system and presented experimental results obtained with the lazy-grounding
solver Alpha.

Our semantics has proven beneficial for several practical application domains, advancing
the work by Gebser et al. (2013). In experiments, our implementation exhibited convincing
time and memory consumption behaviour. Thus, we extended the application area of ASP
by solving large problem instances that conventional ASP systems could not solve.

Our approach’s suitability to implement other practice-oriented heuristics should be
assessed by the community. Some real-world domain-specific heuristics will require ex-
tensions of our approach, such as by supporting randomness and restarts. Furthermore,
adopting ideas like init and factor modifiers from clingo, and investigating the special
role of aggregates in heuristic conditions should be addressed in future work. An adap-
tion to ground-and-solve systems like clingo (Gebser et al., 2019) or dlv2 (Alviano et al.,
2017) should be investigated, also addressing the question of how heuristics interact with
non-head-cycle-free disjunction.

Thinking more broadly, the question of how to generate domain-specific heuristics au-
tomatically is of great importance since, currently, such heuristics have to be invented by
humans familiar with the domain (and partly also with solving technology).
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Appendix A. Proofs

Proof sketch for Lemma 2. Since heads of heuristic directives are unaffected by the trans-
formation, it suffices to show that cond(d) is satisfied iff ∃d′ ∈ tf(d) s.t. cond(d′) is satisfied
(cf. Definitions 3 and 4). Furthermore, it suffices to consider the conditions under which
the affected heuristic atoms are satisfied (cf. Definition 2).

Case ⟨8e⟩ is trivial.
For ⟨8a⟩ and ⟨8d⟩, tf(d) maps d to two new directives, i.e., tf(d) = {d′, d′′} and d′ ̸= d′′.

Let s a be the heuristic atom in cond(d) affected by the transformation. In both cases, ⟨8a⟩
and ⟨8d⟩, s a is removed from cond(d), one atom is added to (the positive or negative part
of) cond(d′), and one atom is added to (the positive or negative part of) cond(d′′). Let us
call these new atoms s′ a and s′′ a.

For ⟨8a⟩, all atoms mentioned occur in the positive part of the condition, i.e., s a ∈
cond+(d), s′ a ∈ cond+(d′), and s′′ a ∈ cond+(d′′). So we now have to show that s a is
satisfied iff s′ a is satisfied or s′′ a is satisfied. For example, if s = FM, then s′ = M and
s′′ = F. Since a heuristic atom s a is satisfied w.r.t. an assignment A iff truthA(a) ∈ s (cf.
Definition 2), it is obvious that FM a is satisfied iff M a is satisfied or F a is satisfied.

The other cases can be shown in a similar way.

Proof of Lemma 3. “⇒”: Let truthA(h) = T, resp. truthA(h) = M, and recall that A is
compatible with the notion of a computation sequence, which means that any atom, except
those that represent an applicable rule, i.e., those atoms of the form β(r, σ) (cf. Section 5.3
and Weinzierl, 2017), are only assigned to T, respectively M, if they are propagated. Specif-
ically, this implies that the value assigned to h comes from propagation. Observe that all

25. See https://iktderzukunft.at/en/ for more information.
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nogoods from ⟨15⟩-⟨20⟩ are such that the heuristic atom only appears with negative polarity
in it, i.e., h appears as Fh ∈ ng. Furthermore, since there are no other nogoods that contain
h, the only way for truthA(h) = T, respectively truthA(h) = M, to hold is by ng being unit
in A′ = A \ {Th,Mh}.

Since the polarity of h is negative in all nogoods and A is compatible with the notion of a
computation sequence, it is impossible for ng to be involved in a conflict, as h is unassigned
until ng is unit and then h will be assigned such that ng is not violated and by that all
other nogoods containing h can no longer become violated. This implies that ng also is
never directly involved in the mechanics of conflict-driven learning, hence learning will not
create additional nogoods that contain h.

“⇐”: Let one nogood ng of the form ⟨15⟩-⟨20⟩ be unit w.r.t. A′ = A \ {Th,Mh},
then unit propagation on ng will lead to an extended assignment where h is assigned T,
respectively M, i.e., prop(ng,A′) = {T,M}, respectively prop(ng,A′) = {M}, and the
resulting assignment A is such that truthA(h) = T, respectively truthA(h) = M, holds.

Proof of Lemma 4. “⇒”: Let cond(d) be satisfied w.r.t. A, i.e., every ha ∈ cond+(d) is
satisfied and no ha ∈ cond−(d) is satisfied. We have to show that d is solving-satisfied
w.r.t. A∆P , i.e., all of the following hold:

(1) truthA∆P (HeuOnT(d)) = T,

(2) truthA∆P (HeuOnMT(d)) ∈ {M,T},

(3) truthA∆P (HeuOnF(d)) = T,

(4) truthA∆P (HeuOffT(d)) ̸= T,

(5) truthA∆P (HeuOffMT(d)) /∈ {M,T}, and

(6) truthA∆P (HeuOffF(d)) ̸= T.

(1) Since every ha ∈ cond+(d) is satisfied, it holds by Definition 2 that truthA(atom(ha))
∈ signs(ha). This specifically implies for every a ∈ atom(cond+(d)|T) that truthA(a) = T.
Hence, the nogood g of the form ⟨15⟩ is unit w.r.t. A, i.e., T HeuOnT(d) ∈ prop(g,A) and
consequently truthA∆P (HeuOnT(d)) = T.
(2) The proof is analogous to (1) relying on the nogood of the form ⟨16⟩ to show that
truthA∆P (HeuOnMT(d)) ∈ {M,T}.
(3) The proof is analogous to (1) relying on the nogood of the form ⟨17⟩ to show that
truthA∆P (HeuOnF(d)) = T.
(4) Since no ha ∈ cond−(d) is satisfied w.r.t. A, it holds for every Ta ∈ cond−(d) that
truthA(a) ̸= T. Consequently, no nogood of the form ⟨18⟩ is unit w.r.t. A. From Lemma 3
it then follows that truthA∆P (HeuOffT(d)) ̸= T.
(5) The proof is analogous to (4) relying on the nogood(s) of the form ⟨19⟩ and Lemma 3
to show that truthA∆P (HeuOffMT(d)) /∈ {M,T}.
(6) The proof is analogous to (4) relying on the nogood(s) of the form ⟨20⟩ and Lemma 3
to show that truthA∆P (HeuOffF(d)) ̸= T.

From the above follows that d is solving-satisfied w.r.t. A∆P .
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“⇐”: Let d be solving-satisfied w.r.t. A∆P , i.e., (1) truthA∆P (HeuOnT(d)) = T,
(2) truthA∆P (HeuOnMT(d)) ∈ {M,T}, (3) truthA∆P (HeuOnF(d)) = T,
(4) truthA∆P (HeuOffT(d)) ̸= T, (5) truthA∆P (HeuOffMT(d)) /∈ {M,T}, and
(6) truthA∆P (HeuOffF(d)) ̸= T. From Lemma 3 and truthA∆P (HeuOnT(d)) = T it directly
follows that the nogood of the form ⟨15⟩ is unit w.r.t. A. Since A is deductively consistent
with P it holds for every a ∈ atom(cond+(d)|T) that truthA(a) = T and consequently, that
every ha ∈ cond+(d)|T is satisfied w.r.t. A. By an analogous argument it also follows that
that every ha ∈ cond+(d)|MT is satisfied w.r.t. A and that every ha ∈ cond+(d)|F is satisfied
w.r.t. A.

Likewise, from truthA∆P (HeuOffT(d)) ̸= T, Lemma 3, and every nogood g of the form
⟨18⟩ it also follows that Ta ∈ cond−(d) is not assigned true w.r.t. A, i.e., truthA(a) ̸= T. By
Definition 2 it therefore follows that no a ∈ atom(cond−(d)|T) is satisfied w.r.t. A. By analo-
gous arguments it also follows that no a ∈ atom(cond−(d)|MT) and no a ∈ atom(cond−(d)|F)
is satisfied w.r.t. A, i.e., no ha ∈ atom(cond−(d)) is satisfied w.r.t. A.

Since every ha ∈ cond+(d) is satisfied w.r.t. A and no ha ∈ cond−(d) is satisfied w.r.t. A,
it follows that cond(d) is satisfied w.r.t. A.

References

Adrian, W. T., Alviano, M., Calimeri, F., Cuteri, B., Dodaro, C., Faber, W., Fuscà, D.,
Leone, N., Manna, M., Perri, S., Ricca, F., Veltri, P., & Zangari, J. (2018). The ASP
system DLV: advancements and applications. Künstliche Intell., 32 (2-3), 177–179.

Alviano, M., Amendola, G., Dodaro, C., Leone, N., Maratea, M., & Ricca, F. (2019). Eval-
uation of disjunctive programs in WASP. In Balduccini, M., Lierler, Y., & Woltran, S.
(Eds.), Logic Programming and Nonmonotonic Reasoning - 15th International Confer-
ence, LPNMR 2019, Philadelphia, PA, USA, June 3-7, 2019, Proceedings, Vol. 11481
of Lecture Notes in Computer Science, pp. 241–255. Springer.
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Calimeri, F., Fuscà, D., Perri, S., & Zangari, J. (2017). I-DLV: the new intelligent grounder
of DLV. Intelligenza Artificiale, 11 (1), 5–20.

Calimeri, F., Gebser, M., Maratea, M., & Ricca, F. (2016). Design and results of the fifth
answer set programming competition. Artif. Intell., 231, 151–181.

Calimeri, F., Ianni, G., & Ricca, F. (2014). The third open answer set programming com-
petition. Theory Pract. Log. Program., 14 (1), 117–135.

Cat, B. D., Denecker, M., Bruynooghe, M., & Stuckey, P. J. (2015). Lazy model expansion:
Interleaving grounding with search. J. Artif. Intell. Res., 52, 235–286.

Dantsin, E., Eiter, T., Gottlob, G., & Voronkov, A. (1997). Complexity and expressive
power of logic programming. In Computational Complexity Conference, pp. 82–101.
IEEE Computer Society.

Dao-Tran, M., Eiter, T., Fink, M., Weidinger, G., & Weinzierl, A. (2012). Omiga : An
open minded grounding on-the-fly answer set solver. In del Cerro, L. F., Herzig, A., &
Mengin, J. (Eds.), Logics in Artificial Intelligence - 13th European Conference, JELIA
2012, Toulouse, France, September 26-28, 2012. Proceedings, Vol. 7519 of Lecture
Notes in Computer Science, pp. 480–483. Springer.
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Falkner, A. A., Friedrich, G., Haselböck, A., Schenner, G., & Schreiner, H. (2016). Twenty-
five years of successful application of constraint technologies at Siemens. AI Magazine,
37 (4), 67–80.

Falkner, A. A., Friedrich, G., Schekotihin, K., Taupe, R., & Teppan, E. C. (2018). Industrial
applications of answer set programming. Künstliche Intell., 32 (2-3), 165–176.

Ferraris, P., Lee, J., & Lifschitz, V. (2011). Stable models and circumscription. Artif. Intell.,
175 (1), 236–263.

Friedrich, G., Ryabokon, A., Falkner, A. A., Haselböck, A., Schenner, G., & Schreiner, H.
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