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Abstract

We propose a logic of east and west (LEW ) for points in 1D Euclidean space. It for-
malises primitive direction relations: east (E), west (W ) and indeterminate east/west (Iew).
It has a parameter τ ∈ N>1, which is referred to as the level of indeterminacy in directions.
For every τ ∈ N>1, we provide a sound and complete axiomatisation of LEW , and prove
that its satisfiability problem is NP-complete. In addition, we show that the finite axioma-
tisability of LEW depends on τ : if τ = 2 or τ = 3, then there exists a finite sound and
complete axiomatisation; if τ > 3, then the logic is not finitely axiomatisable. LEW can be
easily extended to higher-dimensional Euclidean spaces. Extending LEW to 2D Euclidean
space makes it suitable for reasoning about not perfectly aligned representations of the
same spatial objects in different datasets, for example, in crowd-sourced digital maps.

1. Introduction

This work is motivated by the problem of matching spatial objects in different geospa-
tial datasets and verifying logical consistency of SameAs matching relations. Geospatial
datasets contain spatial information (e.g., geometries and coordinates) and semantic in-
formation (e.g., classifications, names, functions) of spatial objects. A matching relation
SameAs(a, b) states that two spatial objects a, b in different datasets refer to the same ob-
ject in the real world. It is challenging to verify logical consistency of SameAs matching
relations with respect to spatial information. One main reason is that the same real-world
object is often represented using different geometries or coordinates in different geospatial
datasets. To tolerate slight differences in geometric representations, a number of qualita-
tive distance logics have been proposed for reasoning about qualitative distances between
spatial objects from different datasets (Du et al., 2013; Du & Alechina, 2016). However,
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these spatial logics do not cover the direction aspect, which is an important dimension of
spatial information. In this work, we propose new qualitative direction logics for validating
matching relations with respect to qualitative directions between spatial objects.

Several qualitative spatial or temporal calculi have been developed for formalizing and
reasoning about direction or ordering relations (Aiello et al., 2007; Ligozat, 2012). These
include the point calculus (Vilain & Kautz, 1986) which defines three ordering relations
< (less than), > (greater than) and eq (equal) for points in 1D Euclidean space, Allen’s
calculus (Allen, 1983), the cardinal direction calculus which extends the point calculus to
2D Euclidean space (Ligozat, 1998), the rectangle algebra (Balbiani et al., 1998), the 2n-star
calculi which generalize the cardinal direction calculus by introducing a variable n referring
to the granularity for defining direction relations (Renz & Mitra, 2004), and the cardinal
direction relations between regions (Skiadopoulos & Koubarakis, 2004, 2005). Beside these
formalisms where directions are defined using binary relations, there exist several spatial
formalisms which define directions using ternary relations. These spatial formalisms include
the LR calculus (Scivos & Nebel, 2004), the flip-flop calculus (Ligozat, 1993), the double-
cross calculus (Freksa, 1992) and the 5-intersection calculus (Billen & Clementini, 2004),
where relations like left, right, after, between, before, are defined.

In this paper, we propose a logic of east and west (LEW ) for points in 1D Euclidean
space. LEW has three primitive direction relations: E (east), W (west) and Iew (inde-
terminate east/west). Based on the primitive relations, direction relations dE (definitely
east), sE (somewhat east), nEW (neither east nor west), sW (somewhat west) and dW
(definitely west) are defined. Every individual name a is interpreted as a point xa in 1D
Euclidean space (i.e., xa is a real number, as the x coordinate of a). The truth condition
of each LEW direction relation over individual names a and b is expressed using a linear
inequality over xa and xb.

Differing from the point calculus (Vilain & Kautz, 1986), the direction relations in LEW
are defined with respect to a margin of error σ ∈ R>0 for tolerating slight differences in
geometric representations in different geospatial datasets, and a level of indeterminacy in
directions τ ∈ N>1.

Differing from the work on disjunctive linear relations (Jonsson & Bäckström, 1998),
linear constraints (Koubarakis & Skiadopoulos, 2000; Ostuni et al., 2021) and the INDU
calculus (Pujari et al., 1999), we take an axiomatisation-based approach and explore the
existence of finite sound and complete axiomatisations of LEW , with the aim of developing
rule-based reasoners based on a complete set of axioms as was done by Du et al. (2015).

Over Euclidean spaces, there exist some sound and complete axiomatisations for spa-
tial formalisms (Tarski, 1959; Szczerba & Tarski, 1979; Tarski & Givant, 1999; Balbiani
et al., 2007; Trybus, 2010); however, none of them considers direction relations. Here, for
every level of indeterminacy τ ∈ N>1, we provide a sound and complete axiomatisation for
LEW . Some spatial logics, which can encode directions, are undecidable, e.g., the compass
logic (Marx & Reynolds, 1999) and SpPNL (Morales et al., 2007). The satisfiability prob-
lem of some spatial logics (e.g., Cone by Montanari et al., 2009 and SOSL by Walega and
Zawidzki, 2019) are PSPACE-complete. Here, for every level of indeterminacy τ ∈ N>1, we
show that the satisfiability problem of LEW is NP-complete. These results were presented
by Du, Alechina, and Cohn (2020) for a 2D extension of LEW , i.e., a logic of directions. In
this paper, we provide additional finite axiomatisability results. The finite axiomatisability
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of LEW depends on τ : if τ = 2 or τ = 3, then there exists a finite sound and complete
axiomatisation; if τ > 3, then it is not finitely axiomatisable.

The rest of this paper is structured as follows. Section 2 introduces the logic of east and
west (LEW ) and its higher-dimensional extensions. Section 3 presents the axiomatisations
of LEW . Sections 4-6 present the soundness and completeness, non-finite axiomatisability,
decidability and complexity results, respectively. Section 7 discusses this work in the wider
context of qualitative spatial and temporal reasoning. Section 8 summarises the main results
of this paper and directions for future work.

2. A Logic of East and West

We first present a logic of east and west (LEW ) for points in 1D Euclidean space, then
extend it to higher-dimensional Euclidean spaces.

2.1 Syntax and Semantics

LEW defines three primitive direction relations: east (E), west (W ) and indeterminate
east/west (Iew).

Definition 1 (The language of LEW ) Let Ind be a set of individual names. The lan-
guage L(LEW , Ind) (we omit Ind for brevity below) is defined inductively as follows:

φ := E (a, b) | W (a, b) | Iew (a, b) | ¬φ | φ ∧ ψ

where a, b ∈ Ind. We assume φ ∨ ψ =def ¬(¬φ ∧ ¬ψ), φ→ ψ =def ¬(φ ∧ ¬ψ), φ↔ ψ =def

(φ→ ψ) ∧ (ψ → φ), ⊥ =def φ ∧ ¬φ to be rewrite rules.

The lower case letters a, b, c, d, e and o, possibly with subscripts or superscripts, are
usually used to denote individual names in Ind . The language L(LEW ) is a subset of the
language of first-order logic (Brachman & Levesque, 2004). It does not include universal
quantifiers, existential quantifiers or function symbols. Its predicate symbols are restricted
to those for qualitative directions.

The language L(LEW ) is interpreted over 1D Euclidean models based on 1D Euclidean
space R. Figure 1 illustrates the primitive relations with respect to the point 0.

0
x

σ- σ τσ -τσ 

EW

Iew

Figure 1: primitive direction relations in LEW

Definition 2 (1D Euclidean τ-model) A 1D Euclidean τ -model M is a structure (I, σ, τ),
where I is an interpretation function which maps each individual name in Ind to a real num-
ber (e.g., a point in the x axis), σ ∈ R>0 is a margin of error, and τ ∈ N>1 refers to the
level of indeterminacy in directions.
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The parameter τ is defined as a natural number rather than a real. In practice, an
integer τ is always likely to be sufficiently expressive.

Definition 3 (Truth definition) A formula φ in L(LEW ) is true in the 1D Euclidean
τ -model M = (I, σ, τ) written M |=LEW φ in virtue of these inductive clauses, following
their syntax:

M |=LEW W (a, b) iff xa − xb < −σ;

M |=LEW E (a, b) iff xa − xb > σ;

M |=LEW Iew (a, b) iff −τσ ≤ xa − xb ≤ τσ;

M |=LEW ¬φ iff M 6|=LEW φ;

M |=LEW φ ∧ ψ iff M |=LEW φ and M |=LEW ψ,

where a, b ∈ Ind, I(a)= xa, I(b)= xb, φ, ψ are formulas in L(LEW ).

A formula in L(LEW ) is τ -satisfiable if it is true in some 1D Euclidean τ -model. A
formula φ in L(LEW ) is τ -valid if it is true in all 1D Euclidean τ -models (hence if its
negation is not τ -satisfiable). For every τ ∈ N>1, LEW is the set of all τ -valid formulas in
L(LEW ).

On a more general note, a logic in a given propositional language is the set of all formulas
in the language which are valid from a certain point of view (Chagrov & Zakharyaschev,
1997). A (first-order) theory is any set of first-order sentences (Balbiani et al., 2007). In
this sense, for every τ ∈ N>1, LEW is a theory.

As shown by Lemma 1 below, σ is a scaling factor.

Lemma 1 For every τ ∈ N>1, σ1, σ2 ∈ R>0, if a formula φ in L(LEW ) is true in a 1D
Euclidean τ -model M = (I, σ1, τ), then it is true in a 1D Euclidean τ -model M ′ = (I ′, σ2, τ)

provided that for every individual name a in Ind, I ′(a) = I(a)σ2
σ1

.

The proof is by straightforward verification of truth conditions in Definition 3.
We introduce the following definitions as ‘syntactic sugar’.

Definition 4 (Definitely, Somewhat, Neither-Nor)

definitely west dW (a,b)=def W (a,b)∧¬Iew(a,b)

somewhat west sW (a,b)=def W (a,b) ∧Iew (a,b)

neither east nor west nEW (a, b) =def ¬E (a, b)∧ ¬W (a, b)

somewhat east sE (a, b) =def E (a, b) ∧ Iew (a, b)

definitely east dE (a, b) =def E(a, b) ∧ ¬Iew(a, b)

As shown in Figure 2, these five relations are jointly exhaustive and pairwise disjoint. By
Definitions 3 and 4, M |=LEW dE (a, b) iff (xa − xb) ∈ (τσ,∞), where ∞ denotes infinity;
M |=LEW sE (a, b) iff (xa − xb) ∈ (σ, τσ]. We call (τσ,∞) the range of dE (a, b), (σ, τσ]
the range of sE (a, b). As τ decreases, the range of dE (a, b) becomes wider, the range of
sE (a, b) becomes narrower. If τ is allowed to be 1, then dE (a, b) becomes E(a, b) and
sE (a, b) becomes ⊥.
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σ- σ τσ -τσ 

sE dEsWdW
nEW

Figure 2: five jointly exhaustive and pairwise disjoint relations in LEW

2.2 Extensions of LEW

A logic of north and south (LNS ) is defined similarly over points in the vertical axis (i.e., y
axis). LNS is a variant of LEW , but over ‘vertical’ rather than ‘horizontal’ 1D Euclidean
space. Distinguishing ‘vertical’ and ‘horizontal’ 1D Euclidean space here enables more
intuitive definitions of direction relations. The primitive direction relations of LNS are
north (N), south (S) and indeterminate north/south (Ins). Similar to Definition 4, we
define ‘definitely north’ (dN ), ‘somewhat north’ (sN ), ‘neither north nor south’ (nNS ),
‘somewhat south’ (sS ) and ‘definitely south’ (dS ).

A logic over a higher-dimensional Euclidean space can be defined similarly. A logic of
directions (LD) is a 2D extension of LEW . It contains all the primitive direction relations
in LEW and LNS . As shown in Table 1, in LD , there exist 5 × 5 = 25 jointly exhaus-
tive and pairwise disjoint relations, each of which is a combination of one of the relations
dN , sN ,nNS , sS , dS and one of the relations dW , sW ,nEW , sE , dE . For example, for any
pair of individual names a, b, the formula dN dW (a, b) holds iff a is definitely to the north
and definitely to the west of b.

dW sW nEW sE dE

dN dN dW dN sW dN nEW dN sE dN dE
sN sN dW sN sW sN nEW sN sE sN dE

nNS nNSdW nNSsW nNSnEW nNSsE nNSdE
sS sSdW sSsW sSnEW sSsE sSdE
dS dSdW dSsW dSnEW dSsE dSdE

Table 1: 25 jointly exhaustive and pairwise disjoint direction relations in LD

In the following sections, we present the soundness and completeness, finite axiomatis-
ability, decidability and complexity results for LEW . The results for LNS and the higher-
dimensional extensions of LEW can be obtained similarly. The point calculus (Vilain &
Kautz, 1986) and the cardinal direction calculus (Ligozat, 1998) can be seen as a special
case of LEW and LD , respectively, if σ is allowed to be 0. There exist different (from LEW )
extensions of the point calculus and Allen’s calculus (Allen, 1983), for examples, INDU for
Allen’s intervals with a comparison of their lengths (Pujari et al., 1999) and an algebra of
granular temporal relations for both points and intervals (Cohen-Solal et al., 2015).
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3. Axiomatisations

This section presents sound and complete axiomatisations of LEW : LEW τ for every level
of indeterminacy τ ∈ N>1 (Section 3.1), LEW 2

fin for τ = 2 (Section 3.2), and LEW 3
fin for

τ = 3 (Section 3.3). Each of them contains a finite sound and complete axiomatisation of
the classical propositional logic (Giero, 2016). An axiomatisation is also referred to as a
calculus, an axiomatic system (Chagrov & Zakharyaschev, 1997) or a proof system (van
Benthem, 2010). It is sound, if it derives only the valid formulas; it is complete, if it derives
all the valid formulas. LEW 2

fin and LEW 3
fin both contain a finite number of axioms. The

development of finite sound and complete axiomatisations is useful for developing rule-based
reasoners and generating explanations for any detected logical contradiction.

3.1 LEW τ

For every level of indeterminacy τ ∈ N>1, the following calculus LEW τ is sound and
complete for LEW . Here a and b, sometimes with subscripts, are meta variables which
may be instantiated by any individual name in Ind . An instance of an axiom is a formula
in L(LEW ) obtained by instantiating every meta variable in the axiom by an individual
name in Ind . For example, by Axiom 1, for every individual name a in Ind , the formula
¬W (a, a) is an instance of Axiom 1 and it is τ -valid. AS 5 is an axiom schema, where n is
the number of conjuncts in the antecedent of an axiom, number(α) denotes the number of
occurrences of α in the sequence R1, . . . , Rn. Note that number(α) is not in L(LEW ) but
a meta-language notation introduced to compactly define axioms.

PL A finite sound and complete axiomatisation of classical propositional logic

Axiom 1 ¬W (a, a)

Axiom 2 E (a, b)↔W (b, a)

Axiom 3 Iew (a, b)→ Iew (b, a)

Axiom 4 W (a, b) ∨ E(a, b) ∨ Iew(a, b)

AS 5 For any n ∈ N>1, if for every integer i such that 1 ≤ i ≤ n, Ri ∈ {W, dW ,¬E,¬dE},
and number(W ) + τ ∗ number(dW ) ≥ number(¬E) + τ ∗ number(¬dE ), then
R1 (a0 , a1 ) ∧ · · · ∧ Rn(an−1 , a0 )→ ⊥ is an axiom.

MP Modus ponens: φ, φ→ ψ ` ψ

By AS 5, if number(W ), number(dW ), number(¬E) and number(¬dE ) are all equal to
one, then W (a0 , a1 ) ∧ ¬dE (a1 , a2 ) ∧ ¬E (a2 , a3 ) ∧ dW (a3 , a0 )→ ⊥ is an axiom, as shown
in Figure 3.

The notion of τ -derivability Γ `LEW τ φ in the LEW τ calculus is standard. A formula φ
in L(LEW ) is τ -derivable if `LEW τ φ. Γ is τ -inconsistent if for some formula φ it τ -derives
both φ and ¬φ (otherwise it is τ -consistent).
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Figure 3: An example axiom in AS 5

Though for every τ ∈ N>1, LEW τ is sound and complete, it contains infinitely many
axioms. The finite axiomatisability of LEW depends on τ : if τ = 2 or τ = 3, then it is
finitely axiomatisable; otherwise, it is not. Below we present two finite sound and complete
axiomatisations: LEW 2

fin for τ = 2 and LEW 3
fin for τ = 3.

3.2 LEW 2
fin

For τ = 2, the following finite calculus LEW 2
fin is sound and complete for LEW . It replaces

AS 5 in LEW 2 with Axioms 6-12.

PL, MP, Axioms 1-4

Axiom 6 W (a, b) ∧ ¬dE (b, c) ∧W (c, a)→ ⊥

Axiom 7 ¬E(a, b) ∧ dW (b, c) ∧ ¬E(c, a)→ ⊥

Axiom 8 W (a, b) ∧ ¬E(b, c) ∧W (c, d) ∧ ¬E(d, a)→ ⊥

Axiom 9 W (a, b) ∧ ¬E(b, c) ∧ ¬dE (c, d) ∧ dW (d, a)→ ⊥

Axiom 10 ¬E(a, b) ∧W (b, c) ∧ dW (c, d) ∧ ¬dE (d, a)→ ⊥

Axiom 11 dW (a, b) ∧ ¬dE (b, c) ∧ dW (c, d) ∧ ¬dE (d, a)→ ⊥

Axiom 12 dW (a, b) ∧ ¬dE (b, c) ∧ ¬dE (c, d) ∧ dW (d, a)→ ⊥

Axiom 6 above states that for every three individual names a, b, c in Ind , the formula
W (a, b)∧¬dE (b, c)∧W (c, a)→ ⊥ is 2-valid, as shown in Figure 4. By Definitions 3 and 4,
it is τ -valid for any τ ≤ 2. Axiom 7 states that for every three individual names a, b, c in
Ind , the formula ¬E(a, b) ∧ dW (b, c) ∧ ¬E(c, a) → ⊥ is 2-valid. By Definitions 3 and 4, it
is τ -valid for any τ ≥ 2. Any instance of any other axiom in LEW 2

fin is τ -valid for every
τ ∈ N>1.
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Figure 4: Axiom 6 in LEW 2
fin

3.3 LEW 3
fin

For τ = 3, the following finite calculus LEW 3
fin is sound and complete for LEW . It replaces

AS 5 in LEW 3 with Axioms 8-19.

PL, MP, Axioms 1-4, 8-12

Axiom 13 W (a, b) ∧W (b, c) ∧W (c, d) ∧ ¬dE (d, a)→ ⊥

Axiom 14 ¬E(a, b) ∧ ¬E(b, c) ∧ ¬E(c, d) ∧ dW (d, a)→ ⊥

Axiom 15 W (a, b) ∧W (b, c) ∧ ¬E(c, d) ∧ ¬E(d, a)→ ⊥

Axiom 16 ¬dE (a, b) ∧W (b, c) ∧ ¬E(c, d) ∧ dW (d, a)→ ⊥

Axiom 17 dW (a, b) ∧ ¬E(b, c) ∧W (c, d) ∧ ¬dE (d, a)→ ⊥

Axiom 18 W (a, b) ∧ dW (b, c) ∧ ¬E(c, d) ∧ ¬dE (d, a)→ ⊥

Axiom 19 W (a, b) ∧ ¬dE (b, c) ∧ ¬E(c, d) ∧ dW (d, a)→ ⊥

Figure 5: Axiom 13 in LEW 3
fin

Axiom 13 states that for every four individual names a, b, c, d, the formula W (a, b) ∧
W (b, c)∧W (c, d)∧¬dE (d, a)→ ⊥ is 3-valid, as shown in Figure 5. By Definitions 3 and 4,
it is τ -valid for any τ ≤ 3. Axiom 14 states that for every four individual names a, b, c, d,
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the formula ¬E(a, b) ∧ ¬E(b, c) ∧ ¬E(c, d) ∧ dW (d, a) → ⊥ is 3-valid. By Definitions 3
and 4, it is τ -valid for any τ ≥ 3. Any instance of any other axiom in LEW 3

fin is τ -valid for
every τ ∈ N>1.

LEW 2
fin and LEW 3

fin contain common axioms, e.g., 1-4, 8-12. Axiom 7 is not in LEW 3
fin ,

because any instance of Axiom 7 can be derived using Axioms 14, 1 and 2: by Axiom 14,
the formula ¬E(a, b) ∧ dW (b, c) ∧ ¬E(c, a) ∧ ¬E(a, a) → ⊥ is 3-valid; by Axioms 1 and 2,
¬E(a, a) is 3-valid; hence ¬E(a, b) ∧ dW (b, c) ∧ ¬E(c, a)→ ⊥ is 3-valid.

For every τ ∈ N>1, Axioms 8-12, 15-19 specify all the τ -valid formulas of the form
R1(a, b)∧R2(b, c)∧R3(c, d)∧R4(d, a)→ ⊥, where for every integer i such that 1 ≤ i ≤ 4, Ri
is in {W, dW ,¬E,¬dE}, number(W ) = number(¬E) and number(dW ) = number(¬dE ).
Axioms 15-19 are not in LEW 2

fin , because when τ = 2, any instance of them can be derived
using Axiom 6, then Definition 4, Axioms 2 and 3 together or Axiom 2 alone, then Axiom 7.

4. Soundness and Completeness

This section will show that LEW τ , LEW 2
fin and LEW 3

fin are sound and complete (i.e., every
derivable formula is valid and every valid formula is derivable):

Theorem 1 For every τ ∈ N>1, the LEW τ calculus is sound and complete for 1D Eu-
clidean τ -models.

Theorem 2 The LEW 2
fin calculus is sound and complete for 1D Euclidean 2-models.

Theorem 3 The LEW 3
fin calculus is sound and complete for 1D Euclidean 3-models.

4.1 Deciding Linear Inequalities by Computing Loop Residues

In our proofs, we use results on solving systems of linear inequalities over reals. To make
the presentation self-contained, we first recap the definitions from Shostak (1981). The
convention by Shostak (1981) is: the lower case letters x, y and v, possibly with subscripts
or superscripts, denote real variables; a, b and c, possibly with subscripts or superscripts,
denote real numbers. Let S be a set of linear inequalities of the form ax+by ≤ c, where x, y
are real variables, a, b, c are real numbers. If S has a solution which assigns each variable
in S a real number, then S is satisfiable. Without loss of generality, we assume one of the
variables in S, denoted as v0, is special, appearing only with coefficient zero. It is called
the ‘zero variable’. All other variables in S have nonzero coefficients.

Recall that in graph theory, a graph is a pair (V,E), where V is a set of vertices and E
is a set of edges. The graph G for S contains a vertex for each variable in S and an edge
for each inequality, where each vertex is labelled with its associated variable and each edge
is labelled with its associated inequality. For example, the edge labelled with ax + by ≤ c
connects the vertex labelled with x and the vertex labelled with y.

Let P be a path through G, given by a sequence v1, . . . , vn+1 of vertices and a sequence
e1, . . . , en of edges, where n ≥ 1. The triple sequence for P is

(a1, b1, c1), (a2, b2, c2), . . . , (an, bn, cn)

where for each integer i such that 1 ≤ i ≤ n, the inequality labelling ei is aivi+bivi+1 ≤ ci. A
path is a loop if its first and last vertices are the same. A loop is simple if its intermediate
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vertices are distinct. A path P is said to be admissible if for every integer i such that
1 ≤ i ≤ n − 1, bi and ai+1 have opposite signs (one is strictly positive and the other is
strictly negative). The definitions and results that follow apply to admissible paths.

The residue inequality of an admissible path P is defined as the inequality obtained
from P by applying transitivity to the inequalities labelling its edges. The residue rp of P
is defined as the triple (ap, bp, cp),

(ap, bp, cp) = (a1, b1, c1) ∗ (a2, b2, c2) ∗ · · · ∗ (an, bn, cn)

where (a1, b1, c1), . . . , (an, bn, cn) is the triple sequence for P and ∗ is the binary operation
on triples defined by

(a, b, c) ∗ (a′, b′, c′) = (kaa′,−kbb′, k(ca′ − c′b))

where k = a′/|a′|. The operation ∗ is associative. The residue inequality of P is the
inequality apx+bpy ≤ cp, where x, y are the first and last vertices of P . For example, if P is
a path over three vertices v1, v2, v3 and two edges labelled with v1− v2 ≤ 1 and v2− v3 ≤ 1,
respectively, then the residue inequality of P is v1 − v3 ≤ 2.

Lemma 2 (Shostak, 1981) Any assignment of real numbers to variables that satisfies the
inequalities labelling an admissible path P also satisfies the residue inequality of P .

Let P be an admissible loop with an initial vertex x. By Lemma 2, any assignment
satisfying the inequalities along P also satisfies apx + bpx ≤ cp. If ap + bp = 0 and cp < 0,
then the residue inequality of P is false, and P is called an infeasible loop.

Let G be the graph for S. The simple admissible loops of G are enumerated modulo
cyclic permutation and reversal1. A closure G′ of G is obtained by adding a new edge
labelled with the residue inequality for each simple admissible loop P of G. A graph is
closed if it is a closure of itself.

Theorem 4 (Shostak, 1981) Let S be a set of linear inequalities of the form ax+ by ≤ c,
where x, y are real variables, a, b, c are real numbers, a, b are not equal to zero at the same
time; G be a closed graph for S. Then S is satisfiable iff G has no infeasible simple loop.

Theorem 4 is for inequalities of the form ax + by ≤ c only. It was extended to include
both strict and non-strict inequalities (Shostak, 1981). We say an admissible path is strict
if at least one of its edges is labelled with a strict inequality, i.e., an inequality of the form
ax+ by < c. A strict admissible loop P with residue (ap, bp, cp) is infeasible, if ap + bp = 0
and cp ≤ 0. Lemma 3 and Corollary 1 are stated for any set of inequalities of the form
(x− y) ∼ c, where x, y are real variables, ∼ is ≤ or <, and c is a real number.

Lemma 3 (Shostak, 1981) Let S be a set of linear inequalities of the form (x − y) ∼ c,
where x, y are real variables, ∼ is ≤ or <, and c is a real number. Then the graph for S is
closed.

Corollary 1 (Litvintchouk & Pratt, 1977; Pratt, 1977; Shostak, 1981) Let S be a set of
linear inequalities of the form (x− y) ∼ c, where x, y are real variables, ∼ is ≤ or <, and
c is a real number; G be a graph for S. Then S is satisfiable iff G has no infeasible simple
loop.

1. If a loop P ′ is a permutation of a loop P , then there are paths Q and R such that P = QR and P ′ = RQ.
The reversal of a path v1, v2, . . . , vn+1 is a path vn+1, vn, . . . , v1.
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4.2 Soundness and Completeness of LEW τ

For every τ ∈ N>1, to prove the soundness of the LEW τ calculus, we show that every
τ -derivable L(LEW ) formula φ is τ -valid. The proof of soundness is by an easy induction
on the length of the derivation of φ. By Definitions 3 and 4, every instance of every axiom
in LEW τ is τ -valid and modus ponens preserves validity.

To prove completeness, we will show that for every τ ∈ N>1, if a finite set of L(LEW )
formulas Σ is τ -consistent, then there is a 1D Euclidean τ -model satisfying it. Any finite set
of formulas Σ can be rewritten as a formula ψ that is the conjunction of all the formulas in
Σ. The set Σ is τ -consistent iff ψ is τ -consistent iff its negation is not τ -derivable. If there
is a 1D Euclidean τ -model M satisfying Σ, then M satisfies ψ, hence its negation is not
τ -valid. Therefore, by showing that ‘if Σ is τ -consistent, then there exists a 1D Euclidean
τ -model satisfying it’, we show that ‘if ¬ψ is not τ -derivable, then ¬ψ is not τ -valid’. By
contraposition we get completeness.

Following Definition 5, the truth conditions of any set of formulas in L(LEW ) can be
expressed as sets of inequalities of the form (x1 − x2) ∼ c, where x1, x2 are real variables,
∼ is ≤ or <, and c is a real number.

Definition 5 (τ-σ-translation) The ‘τ -σ-translation’ function tr(τ, σ) is defined as fol-
lows:

tr(τ, σ)(W (a, b)) = (xa − xb < −σ);

tr(τ, σ)(E(a, b)) = (xb − xa < −σ);

tr(τ, σ)(dW (a, b)) = (xa − xb < −τσ);

tr(τ, σ)(dE (a, b)) = (xb − xa < −τσ);

tr(τ, σ)(¬φ) = ¬(tr(τ, σ)(φ)), where φ is a formula of one of the forms W (a, b), E(a, b),
dW (a, b) and dE (a, b); ¬(z1 − z2 < c) = (z2 − z1 ≤ −c).

Now we can state the proof of Theorem 1.

Proof. Take an arbitrary integer τ > 1. To prove completeness, we show that if a finite set
of formulas Σ in L(LEW ) is τ -consistent, then there is a 1D Euclidean τ -model satisfying
it.

The proof idea is as follows. We take a finite τ -consistent set of formulas Σ. We rewrite
it as a single formula in disjunctive normal form φ1 ∨ · · · ∨ φm, where m > 0. This formula
is τ -satisfiable, iff at least one of its disjuncts is τ -satisfiable. We proceed by contradiction.
Suppose all disjuncts φi are not τ -satisfiable. Take an arbitrary disjunct φi. Then φi is
not τ -satisfiable, iff the graph Gi of a set of linear inequalities Si has an infeasible simple
loop P . From P , we obtain L(LEW ) formulas as conjuncts in φi. Applying the axioms
and axiom schemas in the LEW τ calculus, we show ⊥ is τ -derivable from φi. Since ⊥ is
τ -derivable from every φi, then ⊥ is τ -derivable from Σ, which contradicts the assumption
that Σ is τ -consistent.

Now we work this idea out in detail. Suppose a finite set of formulas Σ in L(LEW ) is
τ -consistent. We obtain Σ′ by rewriting every Iew(a, b) in Σ as ¬dW (a, b) ∧ ¬dE (a, b). By
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Axiom 4 and Definition 4, Σ and Σ′ are logically equivalent. The set Σ′ can be rewritten
as a formula φ that is the conjunction of all the formulas in Σ′. We rewrite φ in disjunctive
normal form φ1 ∨ · · · ∨ φm, where m > 0 and every literal is of one of the forms: W (a, b),
E(a, b), dW (a, b), dE (a, b), and their negations. Then φ is τ -satisfiable, iff at least one of
its disjuncts is τ -satisfiable.

We proceed by contradiction. Suppose every disjunct φi of φ is not τ -satisfiable, where
1 ≤ i ≤ m. Take an arbitrary disjunct φi. A set of linear inequalities Si is obtained by
translating every literal in φi according to Definition 5. The inequalities in Si are of the
form (xa− xb) ∼ c, where xa, xb are real variables, ∼ is ≤ or <, and c is a real number. By
Corollary 1, the disjunct φi is not τ -satisfiable iff the graph Gi of Si has an infeasible simple
loop P . The loop P is either strict or non-strict. Let s denote the sum of the constants
around P . Based on the definition of infeasible loops, if P is strict, then s ≤ 0; otherwise,
s < 0. By Definition 5, if a strict inequality xa − xb < c is in Si, then c is −σ or −τσ; if a
non-strict inequality xa − xb ≤ c is in Si, then c is σ or τσ. Recall that τ and σ are both
positive numbers. If P is non-strict, then all the inequalities labelling it are of the form
xa − xb ≤ c, where c > 0, and the sum of all such c is positive. This contradicts the fact
that s < 0 for non-strict infeasible loops. Therefore P is strict and s ≤ 0. By the number
of vertices in P , there are two cases.

1. The loop P contains at least two vertices. Without loss of generality, let us assume
that P consists of vertices xa0 , xa1 , . . . , xan−1 , where n > 1. Since P is admissible, the
linear inequalities labelling P are of the form (xa0 − xa1 ) ∼ c1 , . . . , (xan−1 − xa0 ) ∼ cn ,
where ∼ is ≤ or <, and for every integer i such that 1 ≤ i ≤ n, ci is −σ, σ, −τσ or
τσ. We translate the linear inequalities labelling P to formulas as follows. We translate
every linear inequality of the form xa − xb < −σ to W (a, b); every xa − xb < −τσ to
dW (a, b); every xa − xb ≤ σ to ¬E(a, b); every xa − xb ≤ τσ to ¬dE (a, b). In this way,
from P we obtain a sequence of formulas of the form R1(a0, a1), . . . , Rn(an−1, a0), where
for every integer i such that 1 ≤ i ≤ n, Ri is in {W, dW ,¬E,¬dE}. Since s ≤ 0, we
have number(W ) + τ ∗ number(dW ) ≥ number(¬E) + τ ∗ number(¬dE ). By AS 5, we
have R1(a0, a1) ∧ · · · ∧Rn(an−1, a0)→ ⊥. By Definition 5, for every occurrence of W (a, b)
in R1(a0, a1) ∧ · · · ∧ Rn(an−1, a0), the formula W (a, b) or E(b, a) is a conjunct in φi; for
every occurrence of dW (a, b), the formula dW (a, b) or dE (b, a) is a conjunct in φi; for
every occurrence of ¬E(a, b), the formula ¬E(a, b) or ¬W (b, a) is a conjunct in φi; for every
occurrence of ¬dE (a, b), the formula ¬dE (a, b) or ¬dW (b, a) is a conjunct in φi. By Axiom 2,
we have W (a, b)↔ E(b, a). By Definition 4, Axioms 2 and 3, we have dW (a, b)↔ dE (b, a).
Therefore, ⊥ is τ -derivable from φi.

2. Otherwise, P contains a single vertex. Since s ≤ 0, the linear inequality labelling
P is of the form xa − xa < c, where c is −σ or −τσ. We translate any linear inequality
of the form xa − xa < −σ to W (a, a); any xa − xa < −τσ to dW (a, a). By Axiom 1 and
Definition 4, we have W (a, a) → ⊥ and dW (a, a) → ⊥. Following a similar argument as
above, ⊥ is τ -derivable from φi.

Therefore, in each case, ⊥ is τ -derivable from φi. Since ⊥ is τ -derivable from every
disjunct φi, the formula φ is not τ -consistent. This contradicts that Σ is τ -consistent. �
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4.3 Soundness and Completeness of LEW 2
fin

To prove the soundness of the LEW 2
fin calculus, we show that for every formula φ in

L(LEW ), if it is derivable using LEW 2
fin , then it is 2-valid. The proof of soundness is

by an induction on the length of the derivation of φ. By Definitions 3 and 4, every instance
of every axiom in LEW 2

fin is 2-valid and modus ponens preserves validity.

The proof of completeness (every 2-valid formula in L(LEW ) is derivable using LEW 2
fin)

is similar to the completeness proof for LEW τ in Section 4.2: let τ = 2; instead of referring
to AS 5, refer to Lemma 4. The proof of Lemma 4 is provided in Appendix A.

Lemma 4 For any n ∈ N>1, if for any integer i such that 1 ≤ i ≤ n, Ri ∈ {W, dW ,¬E,¬dE},
and number(W )+2∗number(dW ) ≥ number(¬E)+2∗number(¬dE ), then ⊥ can be derived
from R1 (a0 , a1 ) ∧ · · · ∧ Rn(an−1 , a0 ) using LEW 2

fin .

4.4 Soundness and Completeness of LEW 3
fin

To prove the soundness of the LEW 3
fin calculus, we show that for every formula φ in

L(LEW ), if it is derivable using LEW 3
fin , then it is 3-valid. The proof of soundness is

by an induction on the length of the derivation of φ. By Definitions 3 and 4, every instance
of every axiom in LEW 3

fin is 3-valid and modus ponens preserves validity.

The proof of completeness (every 3-valid formula in L(LEW ) is derivable using LEW 3
fin)

is similar to the completeness proof for LEW τ in Section 4.2: let τ = 3; instead of referring
to AS 5, refer to Lemma 5. Its detailed proof is in Appendix A.

Lemma 5 For any n ∈ N>1, if for any integer i such that 1 ≤ i ≤ n, Ri ∈ {W, dW ,¬E,¬dE},
and number(W )+3∗number(dW ) ≥ number(¬E)+3∗number(¬dE ), then ⊥ can be derived
from R1 (a0 , a1 ) ∧ · · · ∧ Rn(an−1 , a0 ) using LEW 3

fin .

5. Non-Finite Axiomatisability of LEW for τ > 3

Take an arbitrary integer τ > 3. We will show that LEW is not finitely axiomatisable over
1D Euclidean space. For every τ ∈ N>1, every n ∈ N>2, Lemma 6 below specifies an axiom
in the LEW τ calculus, under AS 5.

Lemma 6 For every τ ∈ N>1, every n ∈ N>2, the following expression An is an axiom in
the LEW τ calculus:

W (a0, a1)∧W (a1, a2)∧
∧

0≤i<n
dW (bi, bi+1) ∧¬E(c0, c1)∧¬E(c1, c2)∧

∧
0≤i<n

¬dE (di, di+1)→ ⊥

where a2 = b0, bn = c0, c2 = d0, dn = a0.

As shown in Figure 6, each edge in the graph represents a formula in L(LEW ). For
example, the edge from a0 to a1 represents the formula W (a0, a1), whose truth condition
is xa0 − xa1 < −σ by Definition 3. The axiom An states that, for every individual name
a0, a1, a2, b0, . . . , bn, c0, c1, c2, d0, . . . , dn in Ind , the formulas represented by all the edges in
Figure 6 cannot be true at the same time in any 1D Euclidean model. This is because the
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Figure 6: A graph illustration of An in Lemma 6

residue inequality of the loop over the sequence of the linear inequalities xa0 − xa1 < −σ,
xa1 − xb0 < −σ, xb0 − xb1 < −τσ, . . . , xbn−1 − xc0 < −τσ, xc0 − xc1 ≤ σ, xc1 − xd0 ≤ σ,
xd0 −xd1 ≤ τσ, . . . , xdn−1 −xa0 ≤ τσ is 0 < 0, i.e., this sequence has no solution over reals.

Definition 6 (Weighted directed graph model) A weighted directed graph model M
is a structure (V, E , I), where (V, E) is a graph whose edges are directed and have weights,
and I is an interpretation function which maps each individual name in Ind to a vertex in
V.

Definition 7 (Truth definition) By induction on the construction of a formula φ in
L(LEW ) and Definition 4, we define the notion of M |= φ which is read as ‘a formula
φ in L(LEW ) is true in the weighted directed graph model M ’ or ‘the weighted directed
graph model M satisfies a formula φ in L(LEW )’:

M |= dW (a, b) iff (I(a), I(b), wdw) ∈ E;

M |= sW (a, b) iff (I(a), I(b), wsw) ∈ E;

M |= nEW (a, b) iff (I(a), I(b), wnew) ∈ E;

M |= sE (a, b) iff (I(a), I(b), wse) ∈ E;

M |= dE (a, b) iff (I(a), I(b), wde) ∈ E;

M |= ¬φ iff M 6|= φ;

M |= φ ∧ ψ iff M |= φ and M |= ψ,

where a, b are individual names in Ind, φ, ψ are formulas in L(LEW ), wdw, wsw, wnew, wse
and wde are different real numbers.

The formula Fn in Lemma 7 below is the negation of an instance of An in Lemma 6.
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Lemma 7 For every τ ∈ N>3, every n ∈ N>2, there exists a weighted directed graph model
satisfying the formula Fn below:

W (a0, a1) ∧W (a1, a2) ∧
∧

0≤i<n
dW (bi, bi+1) ∧ ¬E(c0, c1) ∧ ¬E(c1, c2) ∧

∧
0≤i<n

¬dE (di, di+1)

where a2 = b0, bn = c0, c2 = d0, dn = a0.

Proof. Take arbitrary integers τ > 3, n > 2. We will construct a weighted directed graph
model M = (V, E , I) and show that M satisfies Fn.

Let V = {a0, a1, b0, . . . , bn−1, c0, c1, d0, . . . , dn−1}. Let a2 = b0, bn = c0, c2 = d0, and
dn = a0. For every integer i such that 0 ≤ i ≤ 2, let I(ai) = ai, I(ci) = ci. For every
integer i such that 0 ≤ i ≤ n, let I(bi) = bi, I(di) = di. For every individual name o in
Ind \ {a0, . . . , a2, b0, . . . , bn, c0, . . . , c2, d0, . . . , dn}, let I(o) = a0.

The set of edges E is constructed by the steps below. Initially, it is empty.

1. For every pair of integers i, j such that 0 ≤ i < j ≤ 2, add (ai, aj , wsw) and (aj , ai, wse)
to E .

2. For every pair of integers i, j such that 0 ≤ i < j ≤ n, add (bi, bj , wdw) and (bj , bi, wde)
to E .

3. For every integer i such that 0 ≤ i < 2, add (ci, ci+1, wnew) and (ci+1, ci, wnew) to E ;
add (c0, c2, wse) and (c2, c0, wsw) to E .

4. For every integer i such that 0 ≤ i < n, add (di, di+1, wse) and (di+1, di, wsw) to E .
For every pair of integers i, j such that 0 ≤ i < j ≤ n and j − i > 1, add (di, dj , wde)
and (dj , di, wdw) to E .

5. For every pair of integers i, j such that 0 ≤ i < 2 and 0 < j ≤ n, add (ai, bj , wdw) and
(bj , ai, wde) to E .

6. For every pair of integers i, j such that 0 ≤ i < 2 and 0 < j ≤ 2, add (ai, cj , wdw) and
(cj , ai, wde) to E .

7. For every integer j such that 0 < j < n − 1, add (a1, dj , wdw) and (dj , a1, wde) to E ;
add (a1, dn−1, wsw) and (dn−1, a1, wse) to E .

8. For every pair of integers i, j such that 0 ≤ i < n− 1 and 0 < j ≤ 2, add (bi, cj , wdw)
and (cj , bi, wde) to E . For every integer j such that 0 < j ≤ 2, add (bn−1, cj , wsw) and
(cj , bn−1, wse) to E .

9. For every pair of integers i, j such that 0 ≤ i < n and 0 < j < n, if n − i − j > 1,
then add (bi, dj , wdw) and (dj , bi, wde) to E ; if n − i − j = 1, then add (bi, dj , wsw)
and (dj , bi, wse) to E ; if n − i − j = 0, then add (bi, dj , wse) and (dj , bi, wsw) to E ; if
n− i− j < 0, then add (bi, dj , wde) and (dj , bi, wdw) to E .

10. For every pair of integers i, j such that 0 ≤ i < 2 and 0 < j < n, add (ci, dj , wde) and
(dj , ci, wdw) to E .
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11. For every vertex v ∈ V, add (v, v, wnew) to E .

By Definition 7, M satisfies every conjunct of Fn, hence it satisfies Fn. �

In the proof of Lemma 7, among all the steps taken to construct the set of edges E ,
Step 9 is the most complicated. The cases in Step 9 are specified by comparing the number
of dW and the number of ¬dE involved in the formula dW (bi, bi+1)∧ · · · ∧ dW (bn−1, bn)∧
¬E(c0, c1) ∧ ¬E(c1, c2) ∧ ¬dE (d0, d1) ∧ · · · ∧ ¬dE (dj−1, dj). The number of dW is n − i,
the number of ¬dE is j. By Definitions 3 and 4, we have xbi − xbi+1

< −τσ, . . . , xbn−1 −
xc0 < −τσ, xc0 − xc1 ≤ σ, xc1 − xd0 ≤ σ, xd0 − xd1 ≤ τσ, . . . , xdj−1

− xdj ≤ τσ; hence
xbi − xdj = (n− i)(−τσ) + 2σ+ jτσ = (n− i− j)(−τσ) + 2σ. Since τ > 3, if n− i− j > 1,
then xbi − xdj < −τσ, hence (bi, dj , wdw) is added to E . The other cases are similar.

The proof of Theorem 5 below is based on the intuition that an axiom over a small
number of meta variables cannot rule out invalid formulas over some larger number of
individual names. An axiom A1 entails an axiom A2, iff any model which satisfies all
instances of A1 satisfies all instances of A2.

Theorem 5 For every τ ∈ N>3, there exists no finite sound axiomatisation of LEW which
is complete for 1D Euclidean τ -models.

Proof. Take an arbitrary integer τ > 3. To show LEW is not finitely axiomatisable,
we show that there is no LEW axiom A which entails all the axioms An = (W (a0, a1) ∧
W (a1, a2) ∧

∧
0≤i<n dW (bi, bi+1) ∧ ¬E(c0, c1) ∧ ¬E(c1, c2) ∧

∧
0≤i<n ¬dE (di, di+1) → ⊥),

where n > 2, a2 = b0, bn = c0, c2 = d0, dn = a0. Suppose such an axiom A exists. Then A
is over some finite number of meta variables t. Counting ‘equal’ meta variables like a2 and
b0 as one, An is over 2n+ 4 meta variables.

In Step 1, we construct a weighted directed graph model M satisfying Fn, which is an
instance of ¬An for some 2n + 4 > t. The construction of M is described in the proof of
Lemma 7.

In Step 2, we show that any L(LEW ) formula over at most t individual names which is
true in M is also true in some 1D Euclidean τ -model. Hence all instances of A are true in
M , because otherwise their negations would have been true in some 1D Euclidean τ -model
(if an instance F of A is not true in M , then its negation ¬F is true in M . Since ¬F is
over t individual names, it is true in some 1D Euclidean τ -model. This contradicts that
every instance of A is τ -valid, i.e., true in all 1D Euclidean τ -models). Hence M satisfies all
instances of A and an instance of ¬An: a contradiction with the assumption that A entails
An.

Consider an arbitrary L(LEW ) formula φ over at most t individual names which is true
in M . Let names(Fn) denote the set of individual names involved in Fn. Clearly, names(Fn)
is of size 2n + 4. Since 2n + 4 > t, at least one individual name o in names(Fn) is not
involved in φ. Since φ is arbitrary, the individual name o could be any individual name in
names(Fn). By Definition 7 and the construction of M , for every pair of individual names
a, b in names(Fn), exactly one of dW (a, b), sW (a, b), nEW (a, b), sE (a, b) and dE (a, b)
is true in M . Let ψ(a, b) be a function which takes a pair of individual names a, b in
names(Fn), and returns one of dW (a, b), sW (a, b), nEW (a, b), sE (a, b) and dE (a, b) such
that the returned formula is true in M . By Definitions 3 and 4, the formula nEW (a, a) is
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τ -valid for every individual name a in Ind . By the construction of M , every individual name
in Ind \ names(Fn) has the same interpretation as a0. Hence, to show φ is true in some 1D
Euclidean τ -model, it is sufficient to show that there exists a 1D Euclidean τ -model ME

such that for every pair of different individual names a, b in names(Fn) \ {o}, the formula
ψ(a, b) is true in ME .

By Definitions 3 and 4, a set of linear inequalities S is constructed from ψ(a, b) for every
pair of different individual names a, b in names(Fn). Initially, S is empty. For every pair of
different individual names a, b in names(Fn),

1. if ψ(a, b) is dW (a, b), then add a− b < −τσ to S;

2. if ψ(a, b) is sW (a, b), then add −τσ ≤ a− b < −σ to S;

3. if ψ(a, b) is nEW (a, b), then add −σ ≤ a− b ≤ σ to S;

4. if ψ(a, b) is sE (a, b), then add σ < a− b ≤ τσ to S;

5. if ψ(a, b) is dE (a, b), then add τσ < a− b to S.

Since M satisfies Fn and Fn is not true in any 1D Euclidean model, the set S does not have
any solution over reals.

We obtain S≤ by replacing every < with ≤ for every linear inequality in S. Without
loss of generality, let σ = 1. Then the following assignment I1 provides a solution to
S≤: I1(a0) = 0, I1(a1) = 1, I1(a2) = I1(b0) = 2, I1(b1) = 2 + τ , I1(b2) = 2 + 2τ , . . . ,
I1(bn−1) = 2 + (n − 1)τ , I1(bn) = I1(c0) = 2 + nτ , I1(c1) = 1 + nτ , I1(c2) = I1(d0) = nτ ,
I1(d1) = (n− 1)τ , I1(d2) = (n− 2)τ , . . . , I1(dn−1) = τ , I1(dn) = I1(a0) = 0.

Take an arbitrary individual name o in names(Fn). We obtain So by removing o, as
well as all the linear inequalities involving it, from S. Below we construct an assignment
I2 which provides a solution to So. First, a function next is introduced: for every inte-
ger i such that 0 ≤ i ≤ 1, let next(ai) = ai+1, next(ci) = ci+1; for every integer i such
that 0 ≤ i ≤ n − 1, let next(bi) = bi+1, next(di) = di+1. The function rank is defined
as follows: let rank(o) = 0; for every individual name e in names(Fn), if next(e) is not o,
then let rank(next(e)) = (rank(e) + 1) mod (2n + 4). Let ri denote the individual name
in names(Fn) whose rank is i, where 0 ≤ i < 2n + 4. Then r0 is o. The assignment I2 is
defined inductively as follows, where ε is a very small positive real number less than one:
let I2(r1) = I1(r1); for every individual name ri such that 1 < i < 2n + 4, if ri is aj ,
where 0 < j ≤ 2, then let I2(ri) = I2(ri−1) + 1 + ε

2(i−1) ; if ri is bj , where 0 < j ≤ n, let
I2(ri) = I2(ri−1) + τ + ε

2(i−1) ; if ri is cj , where 0 < j ≤ 2, let I2(ri) = I2(ri−1)− 1; if ri is dj ,
where 0 < j ≤ n, let I2(ri) = I2(ri−1)− τ . By the definitions of I1 and I2, for every individ-
ual name ri such that 0 < i < 2n+4, we have 0 ≤ I2(ri)−I1(ri) ≤ ε

2 + ε
22

+. . . ε
22n+3 < ε < 1.

It is verified that I2 provides a solution to So (see Appendix B). Therefore, there exists a
1D Euclidean τ -model ME = (I2, σ, τ) such that for every pair of different individual names
a, b in names(Fn) \ {o}, the formula ψ(a, b) is true in ME . A contradiction. �
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6. Decidability and Complexity

We show that for every τ ∈ N>1, the satisfiability problem for a finite set of L(LEW )
formulas in a 1D Euclidean τ -model is NP-complete.

Lemma 8 For every τ ∈ N>1, let S be a set of linear inequalities obtained by applying the
‘τ -σ-translation’ function over L(LEW ) formulas as shown in Definition 5, where σ = 1;
let n > 0 be the number of variables in S. If S is satisfiable, then it has a solution where for
every variable, a rational number t ∈ [−nτ, nτ ] is assigned to it and the binary representation
size of t is in O(n).

The proof of Lemma 8 is provided in Appendix C.

Definition 8 Let φ be a formula in L(LEW ). Its size s(φ) is defined as follows:

• s(R(a, b)) = 3, where R is in {E,W, Iew};

• s(¬φ) = 1 + s(φ);

• s(φ ∧ ψ) = 1 + s(φ) + s(ψ),

where a, b ∈ Ind, φ, ψ are formulas in L(LEW ).

The combined size of L(LEW ) formulas in a set S is defined as the size of the conjunction
of all formulas in S.

Theorem 6 For every τ ∈ N>1, the satisfiability problem for a finite set of L(LEW )
formulas in a 1D Euclidean τ -model is NP-complete in the combined size of the formulas.

Proof. Take an arbitrary integer τ > 1. NP-hardness follows from that L(LEW ) includes
standard logical operators ¬ and ∧ in classical propositional logic and the propositional
satisfiability problem is NP-complete. To prove that the satisfiability problem for a finite
set of L(LEW ) formulas is in NP, we show that if a finite set of L(LEW ) formulas Σ is
τ -satisfiable, then we can guess a 1D Euclidean τ -model for Σ and verify that this model
satisfies Σ, both in time polynomial in the combined size of formulas in Σ. Let s denote
the combined size of formulas in Σ, and n denote the number of individual names in Σ. By
Definition 8, n < s. As σ is a scaling factor, if Σ is τ -satisfiable, then it is τ -satisfiable in a
model where σ = 1.

We obtain a set Σ′ by rewriting every Iew(a, b) in Σ as ¬dW (a, b)∧¬dE (a, b), obtain a
formula φ which is the conjunction of all L(LEW ) formulas in Σ′, then rewrite φ in disjunc-
tive normal form φ1∨· · ·∨φm, where m > 0 and every literal is of one of the forms: W (a, b),
E(a, b), dW (a, b), dE (a, b) and their negations. Then Σ is τ -satisfiable, iff at least one of
the disjuncts φi, where 1 ≤ i ≤ m, is τ -satisfiable. We obtain a set of linear inequalities Si
by translating every literal in a disjunct φi by Definition 5. Then Σ is τ -satisfiable, iff there
exists a set of linear inequalities Si which is satisfiable. By Lemma 8, if Si is satisfiable,
then it has a solution where for every variable, a rational number t ∈ [−nτ, nτ ] is assigned
to it and the representation size of t is in O(n). Hence, for every individual name in Σ,
we can guess such a rational number for it in O(n). Thus we can guess a 1D Euclidean
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τ -model M for Σ in O(n2). To verify that M satisfies Σ, we need to check every formula
in Σ. For any formula R(a, b), where R is in {E,W, Iew} and a, b are individual names in
Ind , checking that R(a, b) is true in M takes O(n) time by Definition 3 and applying bit
operations. Hence checking all formulas in Σ takes time polynomial in s. �

An alternative decidability and complexity proof could use reduction to a finite set of
disjunctive linear relations (DLRs) (Jonsson & Bäckström, 1998): the satisfiablity problem
for a set of DLRs is NP-complete.

It is possible to decide satisfiability of a special class of L(LEW ) formulas in polynomial
time. As defined by Koubarakis and Skiadopoulos (2000), a UTVPI 6= constraint is a linear
inequality of the form ±x ≤ c, ±x 6= c, ±x ± y ≤ c or ±x ± y 6= c, where x, y are rational
variables, c is a rational number. A disequation is of the form ±x 6= c or ±x ± y 6= c.
A linear inequality of the form x − y < c can be rewritten as x − y ≤ c and x − y 6= c.
Different from the linear inequalities studied in this paper, UTVPI 6= constraints are over
rationals rather than reals. The decidability and complexity results, as well as efficient
algorithms, were presented for UTVPI 6= constraints (Koubarakis & Skiadopoulos, 2000):
the satisfiability problem for a set of UTVPI 6= constraints (i.e., whether a set of UTVPI 6=

constraints has a solution in rationals) is decidable in O(n3 +d) time, where n is the number
of variables and d is the number of disequations in the set. By Lemma 8, these results are
applicable to the satisfiability problem for a set of linear inequalities over reals obtained by
applying the ‘τ -σ-translation’ function over L(LEW ) formulas as shown in Definition 5.

More recently, Ostuni et al. (2021) proposed a faster polynomial-time algorithm to solve
a finite set of inequalities of the form (x − y) ∼ c, where x, y are real variables, ∼ is ≤
or <, and c is a real number. The time complexity of the algorithm is O(nn′), where n
is the number of real variables and n′ is the number of inequalities in the finite set. This
result is also applicable to the satisfiability problem for a set of linear inequalities over reals
obtained by Definition 5.

Consider any L(LEW ) formula in disjunctive normal form φ1∨· · ·∨φm, where m > 0 and
every literal is of one of the forms: W (a, b), E(a, b), dW (a, b), dE (a, b) and their negations.
Then, by Koubarakis and Skiadopoulos (2000), the satisfiability problem for any disjunct
φi, where 1 ≤ i ≤ m, is decidable in O(n3) time; more precisely, by Ostuni et al. (2021), it
is in O(nn′), where n is the number of variables, n′ is the number of inequalities.

7. Discussion

All the soundness, completeness, non-finite axiomatisability, decidability and complexity
results for LEW are applicable to LNS (a logic of north and south), LD (a logic of directions)
and higher-dimensional extensions of LEW , since every primitive direction relation (e.g., E)
is defined with respect to one dimension only. For instance, the counterpart of Theorem 3
for LD would be stated as follows.

Theorem 7 Assume that LD3
fin is the calculus which contains the LEW 3

fin calculus and the

LNS 3
fin calculus. Then the LD3

fin calculus is sound and complete for 2D Euclidean 3-models.

Though L(LEW ) is a subset of the language of first-order logic, the non-finite axioma-
tisability theorem (Theorem 5) is not applicable to first-order logic.
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Different from the axiomatisation-based approach taken by this work, several qual-
itative spatial or temporal calculi have been studied by taking a relation-algebraic ap-
proach (Düntsch, Wang, & McCloskey, 2001; Ligozat, 2012; Hirsch, Jackson, & Kowalski,
2019), where the inverse and composition operations over relations are defined, and compo-
sition tables are constructed. Recall that if R and S are binary relations over a set U , then
their composition is R ◦ S =def {(x, y) ∈ U × U | ∃z ∈ U such that (x, z) ∈ R and (z, y) ∈
S}. Such a composition (represented as one cell in a composition table) can be translated
into an axiom over at most three meta variables. For example, for any τ ∈ N>1, the cor-
responding axiom of dW ◦ dW = dW is dW (a, b) ∧ dW (b, c) → dW (a, c). Though such a
composition can not be explicitly stated in any axiomatisation (LEW τ , LEW 2

fin or LEW 3
fin)

because the composition symbol ◦ is not in the language of LEW , any instance of its corre-
sponding axiom (as above not containing ◦) can be derived using the axiomatisation, since
LEW τ , LEW 2

fin and LEW 3
fin are complete. An additional difference between the composi-

tion tables and the axiomatisations LEW τ , LEW 2
fin and LEW 3

fin is that the axiomatisations
contain axioms over more than three meta variables, e.g., Axiom 8.

The development of finite sound and complete axiomatisations is useful for developing
rule-based reasoners (Du et al., 2015). The derivation process in an axiomatisation-based
consistency checking is integrated with a truth maintenance system (Forbus & de Kleer,
1993), such that minimal sets of formulas for deriving a logical contradiction can be gener-
ated as explanations. Such explanations are useful for understanding how a logical contra-
diction is derived, based on which, actions (e.g., remove or change formulas) can be taken
to restore the consistency. The source code of the reasoners based on LEW 2

fin and LEW 3
fin

is publicly available2, which will be presented in a separate publication.

Below we examine the relationship between LEW and the INDU calculus, which extends
Allen’s intervals with a comparison of their lengths (Pujari et al., 1999). In total, INDU
defines 25 atomic relations between two intervals. In the propositional closure of the INDU
calculus (Wolter & Lee, 2016), a formula is a Boolean combination of relations within the
INDU calculus. It is worth noting that the models of LEW use quantitative thresholds ±σ
and ±τσ, whilst the models of the propositional closure of the INDU calculus are scale-
invariant. Following the convention by Pujari et al. (1999), let Xb, Xe and Xd denote the
start point, the end point and the duration, respectively, of an interval X. We show that
the satisfiability problem for L(LEW ) can be translated to that of the INDU calculus.

Proposition 1 For any σ ∈ R>0, any τ ∈ N>1, the satisfiability problem for a finite set of
L(LEW ) formulas can be translated to the satisfiability problem for a finite set of formulas
in the propositional closure of the INDU calculus over 1D Euclidean space.

Proof. Take arbitrary σ ∈ R>0, τ ∈ N>1. By the truth definition of INDU relations (Pujari
et al., 1999), the ‘before and duration equal’ relation b=(X,Y ) holds in 1D Euclidean space,
iff Xb < Xe < Y b < Y e and Xd = Y d. Suppose that the durations of all intervals are
equal, and without loss of generality, they are equal to σ. Then, as shown in Figure 7,
the relation b=(X,Y ) holds in 1D Euclidean space, iff Xe − Y b < 0, iff Xb − Y b < −σ,
iff Xe − Y e < −σ. By Definition 3, W (Xb, Y b) and b=(X,Y ) are equisatisfiable over

2. https://github.com/Can-ZHOU/Spatial-Logic

546



A Logic of East and West

1D Euclidean space. By Definitions 3 and 4, dW (Xb
0, X

b
τ ) and

∧
0≤i<τ W (Xb

i , X
b
i+1) are

equisatisfiable over 1D Euclidean space.

Figure 7: The lengths of intervals X,Y are both σ. W (Xb, Y b) and b=(X,Y ) are equisat-
isfiable over 1D Euclidean space.

A finite set of L(LEW ) formulas Σ can be rewritten as a formula φ which is the
conjunction of all the formulas in Σ. The function f below translates a formula φ in
L(LEW ) to a formula f(φ) in the propositional closure of the INDU calculus such that
φ and f(φ) ∧

∧
X b ,Y b∈names(φ) = (X ,Y ) are equisatisfiable over 1D Euclidean space, where

names(φ) is the set of individual names involved in φ and the ‘duration equal’ relation
= (X ,Y ) is equivalent to b=(X,Y ) ∨ m=(X,Y ) ∨ o=(X,Y ) ∨ eq=(X,Y ) ∨ oi=(X,Y ) ∨
mi=(X,Y ) ∨ bi=(X,Y ).

• f(W (Xb, Y b)) = b=(X,Y );

• f(E(Xb, Y b)) = f(W (Y b, Xb));

• f(dW (Xb
0, X

b
τ )) = f(

∧
0≤i<τ W (Xb

i , X
b
i+1));

• f(dE (Xb, Y b)) = f(dW (Y b, Xb));

• f(Iew(Xb, Y b)) = f(¬dW (Xb, Y b) ∧ ¬dE (Xb, Y b));

• f(¬φ) = ¬f(φ);

• f(φ ∧ ψ) = f(φ) ∧ f(ψ).

Since the satisfiability problem for a finite set of atomic formulas in the propositional
closure of INDU is decidable using polynomial algorithms for solving Horn disjunctive linear
relations (Jonsson & Bäckström, 1998; Wolter & Lee, 2016), the satisfiability problem for
a finite set of L(LEW ) formulas is NP-complete. �

The complexity result of LEW obtained above is consistent with the result presented
in Section 6.
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8. Conclusion

We have introduced a new qualitative logic of east and west (LEW ) for reasoning about
directions in Euclidean spaces. The logic incorporates a margin of error and a level of
indeterminacy in directions τ ∈ N>1, which together allow the logic to be used to compare
and reason about not perfectly aligned representations of the same spatial objects in different
datasets (for example, hand sketches or crowd-sourced digital maps). For every τ ∈ N>1,
we have shown LEW τ to be sound and complete, and that the satisfiability problem of
L(LEW ) formulas over 1D Euclidean space is NP-complete. The finite axiomatisability
of LEW depends on τ : if τ = 2 or τ = 3, then there exists a finite sound and complete
axiomatisation; if τ > 3, then it is not finitely axiomatisable. While there have been many
spatial calculi previously proposed, LEW is unique in allowing indeterminate directions
which we believe are crucial in practice. Moreover, many previous spatial calculi have
not been treated to the same theoretical analysis that we do here (i.e., the soundness,
completeness, finite axiomatisability, decidability and complexity results in this paper). In
future work, we plan to develop new qualitative direction logics to reason about regions
or sets of points, and combine the logics for qualitative distances (Du et al., 2013; Du &
Alechina, 2016) and qualitative directions.
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Appendix A. Proofs of Lemmas 4 and 5

Lemmas 4 and 5 are proved by cases which are specified in Lemmas 9 and 10.

For a formula of the form R1(a0, a1) ∧ · · · ∧ Rn(an−1, a0), we refer to Rj(aj−1, aj) and
Rj+1(aj , aj+1) as neighbours, where 1 ≤ j < n and an = a0. The conjuncts R1(a0, a1) and
Rn(an−1, a0) are also referred to as neighbours.

Lemma 9 For every τ ∈ N>1, every n ∈ N>1, let Fn denote a formula of the form
R1 (a0 , a1 ) ∧ · · · ∧ Rn(an−1 , a0 ), where for every integer i such that 1 ≤ i ≤ n, Ri is in
{W, dW ,¬E,¬dE}, and number(W )+τ ∗number(dW ) ≥ number(¬E)+τ ∗number(¬dE ).
If there exists an Ri in Fn such that Ri is in {¬E,¬dE}, then there exist conjuncts Rs(a, b)
and Rt(b, c) in Fn such that they are neighbours and one of the two cases holds:

1. Rs is in {W, dW } and Rt is in {¬E,¬dE};

2. Rs is in {¬E,¬dE} and Rt is in {W, dW }.
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Proof. Let us prove by contradiction. Take arbitrary integers τ > 1, n > 1. Suppose
for every pair of conjuncts Rs(a, b) and Rt(b, c) in Fn, if they are neighbours, then neither
Case 1 nor Case 2 holds, this is, they are both in {W, dW } or both in {¬E,¬dE}. Since
there exists an Ri in Fn such that Ri is in {¬E,¬dE}, all of R1, . . . , Rn are in {¬E,¬dE}.
This contradicts number(W ) + τ ∗ number(dW ) ≥ number(¬E) + τ ∗ number(¬dE ). �

The proof of Lemma 10 is similar, hence omitted.

Lemma 10 For every τ ∈ N>1, every n ∈ N>1, let Fn denote a formula of the form
R1 (a0 , a1 ) ∧ · · · ∧ Rn(an−1 , a0 ), where for every integer i such that 1 ≤ i ≤ n, Ri is in
{W, dW ,¬E,¬dE}, and number(W )+τ ∗number(dW ) = number(¬E)+τ ∗number(¬dE ).
Then there exist conjuncts Rs(a, b) and Rt(b, c) in Fn such that they are neighbours and one
of the two cases holds:

1. Rs is in {W, dW } and Rt is in {¬E,¬dE};

2. Rs is in {¬E,¬dE} and Rt is in {W, dW }.

Lemma 4 is presented in Section 4.3 and used to prove the completeness of LEW 2
fin .

Lemma 4 For any n ∈ N>1, if for any integer i such that 1 ≤ i ≤ n, Ri ∈ {W, dW ,¬E,¬dE},
and number(W ) + 2 ∗ number(dW ) ≥ number(¬E) + 2 ∗ number(¬dE ), then ⊥ can be de-
rived from R1 (a0 , a1 ) ∧ · · · ∧ Rn(an−1 , a0 ) using LEW 2

fin .

Proof. For n = 1, let Fn denote a formula of the form W (a, a) or dW (a, a). For any n > 1,
let Fn denote a formula of the form R1 (a0 , a1 ) ∧ · · · ∧ Rn(an−1 , a0 ), where for every integer
i such that 1 ≤ i ≤ n, Ri is in {W, dW ,¬E,¬dE}, and number(W ) + 2 ∗ number(dW ) ≥
number(¬E) + 2 ∗ number(¬dE ). We will show that for any n > 0, ⊥ can be derived from
Fn using LEW 2

fin by mathematical induction.

Base case When n = 1, by Axiom 1 and Definition 4, ⊥ can be derived.
When n = 2, since Ri is in {W, dW ,¬E,¬dE} and number(W ) + 2 ∗ number(dW ) ≥
number(¬E) + 2 ∗ number(¬dE ), then {R1, R2} = {W,¬E}, {R1, R2} = {dW ,¬E},
{R1, R2} = {dW ,¬dE}, or R1, R2 are both in {W, dW }. If {R1, R2} = {W,¬E},
then by Axiom 2, ⊥ can be derived. If {R1, R2} = {dW ,¬E}, by Axioms 7, 2 and 1,
⊥ can be derived. If {R1, R2} = {dW ,¬dE}, then by Definition 4, Axioms 2 and 3,
we have dW (a, b)↔ dE (b, a), hence ⊥ can be derived. If R1, R2 are both in {W, dW },
then by Definition 4, Axioms 6, 2 and 1, ⊥ can be derived.

Inductive step Suppose ⊥ can be derived from F1, F2, . . . , Fn using LEW 2
fin , where n ≥ 2,

we will show ⊥ can be derived from Fn+1. If every Ri in Fn+1 is W or dW , then by
Definition 4, Axioms 6, 3, 2, and 1, ⊥ can be derived from Fn+1.

Otherwise, there exists at least one Ri in Fn+1 which is ¬E or ¬dE . By Lemma 9,
there exist conjuncts Rs(a, b) and Rt(b, c) in Fn+1 such that they are neighbours and
one of the two cases holds:

Case 1 Rs is in {W, dW } and Rt is in {¬E,¬dE};
Case 2 Rs is in {¬E,¬dE} and Rt is in {W, dW }.
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Let us proceed by cases. Since n+ 1 > 2, in addition to Rs(a, b), Rt(b, c) has another
neighbour Rk(c, d).

1. If Rs is W and Rt is ¬E, then

(a) if Rk is W , then by Axiom 8, W (a, b) ∧ ¬E(b, c) ∧W (c, d) → E(d, a) is 2-
valid; by Axiom 2, E(d, a)→W (a, d) is 2-valid. Hence W (a, b) ∧ ¬E(b, c) ∧
W (c, d)→W (a, d) is 2-valid.

(b) if Rk is dW , then by Axiom 7, ¬E(b, c) ∧ dW (c, d) → E(d, b) is 2-valid; by
Axiom 2, E(d, b) → W (b, d) is 2-valid; by Axiom 6, W (a, b) ∧ W (b, d) →
dE (d, a) is 2-valid; by Definition 4, Axioms 2 and 3, dE (d, a)→ dW (a, d) is
2-valid. Hence W (a, b) ∧ ¬E(b, c) ∧ dW (c, d)→ dW (a, d) is 2-valid.

(c) if Rk is ¬E, then by Axiom 7, ¬E(b, c)∧¬E(c, d)→ ¬dW (d, b) is 2-valid; by
Definition 4, Axioms 2 and 3, ¬dW (d, b)→ ¬dE (b, d) is 2-valid; by Axiom 6,
W (a, b)∧¬dE (b, d)→ ¬W (d, a) is 2-valid; by Axiom 2, ¬W (d, a)→ ¬E(a, d)
is 2-valid. Hence W (a, b) ∧ ¬E(b, c) ∧ ¬E(c, d)→ ¬E(a, d) is 2-valid.

(d) if Rk is ¬dE , then by Axiom 9, W (a, b)∧¬E(b, c)∧¬dE (c, d)→ ¬dW (d, a) is
2-valid; by Definition 4, Axioms 2 and 3, ¬dW (d, a)→ ¬dE (a, d) is 2-valid.
Hence W (a, b) ∧ ¬E(b, c) ∧ ¬dE (c, d)→ ¬dE (a, d) is 2-valid.

In each case, we replace Rs(a, b) ∧ Rt(b, c) ∧ Rk(c, d) in Fn+1 with Rk(a, d) to
obtain a formula F ′. Since the number of W and the number of ¬E are re-
duced by 1, the number of dW and the number of ¬dE are unchanged, we have
number(W ) + 2∗number(dW ) ≥ number(¬E) + 2∗number(¬dE ). By inductive
hypothesis, ⊥ can be derived from F ′, hence from Fn+1.

2. If Rs is W and Rt is ¬dE , then by Axiom 6, W (a, b) ∧ ¬dE (b, c)→ ¬W (c, a) is
2-valid; by Axiom 2, ¬W (c, a)→ ¬E(a, c) is 2-valid. Hence Rs(a, b)∧Rt(b, c)→
¬E(a, c) is 2-valid. We replace Rs(a, b)∧Rt(b, c) in Fn+1 with ¬E(a, c) to obtain
a formula F ′. Since the number of W and the number of ¬dE are reduced by 1,
the number of ¬E is increased by 1, the number of dW is unchanged, we have
number(W ) + 2∗number(dW ) ≥ number(¬E) + 2∗number(¬dE ). By inductive
hypothesis, ⊥ can be derived from F ′, hence from Fn+1.

3. If Rs is dW and Rt is ¬E, then by Axiom 7, dW (a, b) ∧ ¬E(b, c) → E(c, a) is
2-valid; by Axiom 2, E(c, a) → W (a, c) is 2-valid. Hence Rs(a, b) ∧ Rt(b, c) →
W (a, c) is 2-valid. We replace Rs(a, b) ∧Rt(b, c) in Fn+1 with W (a, c) to obtain
a formula F ′. Since the number of dW and the number of ¬E are reduced by 1,
the number of W is increased by 1, the number of ¬dE is unchanged, we have
number(W ) + 2∗number(dW ) ≥ number(¬E) + 2∗number(¬dE ). By inductive
hypothesis, ⊥ can be derived from F ′, hence from Fn+1.

4. If Rs is dW and Rt is ¬dE , then

(a) if Rk is W , then by Axiom 6, ¬dE (b, c) ∧ W (c, d) → ¬W (d, b) is 2-valid;
by Axiom 2, ¬W (d, b) → ¬E(b, d) is 2-valid; by Axiom 7, dW (a, b) ∧
¬E(b, d) → E(d, a) is 2-valid; by Axiom 2, E(d, a) → W (a, d) is 2-valid.
Hence dW (a, b) ∧ ¬dE (b, c) ∧W (c, d)→W (a, d) is 2-valid.
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(b) if Rk is dW , then by Axiom 11, dW (a, b)∧¬dE (b, c)∧ dW (c, d)→ dE (d, a)
is 2-valid; by Definition 4, Axioms 2 and 3, dE (d, a)→ dW (a, d) is 2-valid.
Hence dW (a, b) ∧ ¬dE (b, c) ∧ dW (c, d)→ dW (a, d) is 2-valid.

(c) if Rk is ¬E, then by Axiom 10, dW (a, b)∧¬dE (b, c)∧¬E(c, d)→ ¬W (d, a)
is 2-valid; by Axiom 2, ¬W (d, a) → ¬E(a, d) is 2-valid. Hence dW (a, b) ∧
¬dE (b, c) ∧ ¬E(c, d)→ ¬E(a, d) is 2-valid.

(d) ifRk is ¬dE , then by Axiom 12, dW (a, b)∧¬dE (b, c)∧¬dE (c, d)→ ¬dW (d, a)
is 2-valid; by Definition 4, Axioms 2 and 3, ¬dW (d, a) → ¬dE (a, d) is 2-
valid. Hence dW (a, b) ∧ ¬dE (b, c) ∧ ¬dE (c, d)→ ¬dE (a, d) is 2-valid.

In each case, we replace Rs(a, b) ∧ Rt(b, c) ∧ Rk(c, d) in Fn+1 with Rk(a, d) to
obtain a formula F ′. Since the number of dW and the number of ¬dE are
reduced by 1, the number of W and the number of ¬E are unchanged, we have
number(W ) + 2∗number(dW ) ≥ number(¬E) + 2∗number(¬dE ). By inductive
hypothesis, ⊥ can be derived from F ′, hence from Fn+1.

5. If Rs is ¬E and Rt is W , then

(a) if Rk is W , then by Axiom 6, W (b, c) ∧W (c, d) → dE (d, b) is 2-valid; by
Definition 4, Axioms 2 and 3, dE (d, b) → dW (b, d) is 2-valid; by Axiom 7,
¬E(a, b) ∧ dW (b, d) → E(d, a) is 2-valid; by Axiom 2, E(d, a) → W (a, d) is
2-valid. Hence ¬E(a, b) ∧W (b, c) ∧W (c, d)→W (a, d) is 2-valid.

(b) if Rk is dW , then by Axiom 10, ¬E(a, b) ∧W (b, c) ∧ dW (c, d) → dE (d, a)
is 2-valid; by Definition 4, Axioms 2 and 3, dE (d, a)→ dW (a, d) is 2-valid.
Hence ¬E(a, b) ∧W (b, c) ∧ dW (c, d)→ dW (a, d) is 2-valid.

(c) if Rk is ¬E, then by Axiom 8, ¬E(a, b) ∧W (b, c) ∧ ¬E(c, d) → ¬W (d, a)
is 2-valid; by Axiom 2, ¬W (d, a) → ¬E(a, d) is 2-valid. Hence ¬E(a, b) ∧
W (b, c) ∧ ¬E(c, d)→ ¬E(a, d) is 2-valid.

(d) if Rk is ¬dE , then by Axiom 6, W (b, c)∧¬dE (c, d)→ ¬W (d, b) is 2-valid; by
Axiom 2, ¬W (d, b)→ ¬E(b, d) is 2-valid; by Axiom 7, ¬E(a, b)∧¬E(b, d)→
¬dW (d, a) is 2-valid; by Definition 4, Axioms 2 and 3, ¬dW (d, a)→ ¬dE (a, d)
is 2-valid. Hence ¬E(a, b) ∧W (b, c) ∧ ¬dE (c, d)→ ¬dE (a, d) is 2-valid.

In each case, we replace Rs(a, b) ∧ Rt(b, c) ∧ Rk(c, d) in Fn+1 with Rk(a, d) to
obtain a formula F ′. Since the number of ¬E and the number of W are re-
duced by 1, the number of dW and the number of ¬dE are unchanged, we have
number(W ) + 2∗number(dW ) ≥ number(¬E) + 2∗number(¬dE ). By inductive
hypothesis, ⊥ can be derived from F ′, hence from Fn+1.

6. If Rs is ¬E and Rt is dW , then by Axiom 7, ¬E(a, b) ∧ dW (b, c) → E(c, a) is
2-valid; by Axiom 2, E(c, a) → W (a, c) is 2-valid. Hence Rs(a, b) ∧ Rt(b, c) →
W (a, c) is 2-valid. We replace Rs(a, b) ∧Rt(b, c) in Fn+1 with W (a, c) to obtain
a formula F ′. Since the number of ¬E and the number of dW are reduced by 1,
the number of W is increased by 1, the number of ¬dE is unchanged, we have
number(W ) + 2∗number(dW ) ≥ number(¬E) + 2∗number(¬dE ). By inductive
hypothesis, ⊥ can be derived from F ′, hence from Fn+1.

7. If Rs is ¬dE and Rt is W , then by Axiom 6, ¬dE (a, b) ∧W (b, c)→ ¬W (c, a) is
2-valid; by Axiom 2, ¬W (c, a)→ ¬E(a, c) is 2-valid. Hence Rs(a, b)∧Rt(b, c)→

551



Du, Alechina, Farjudian, Logan, Zhou, & Cohn

¬E(a, c) is 2-valid. We replace Rs(a, b)∧Rt(b, c) in Fn+1 with ¬E(a, c) to obtain
a formula F ′. Since the number of ¬dE and the number of W are reduced by 1,
the number of ¬E is increased by 1, the number of dW is unchanged, we have
number(W ) + 2∗number(dW ) ≥ number(¬E) + 2∗number(¬dE ). By inductive
hypothesis, ⊥ can be derived from F ′, hence from Fn+1.

8. If Rs is ¬dE and Rt is dW , then

(a) if Rk is W , then by Axiom 9, ¬dE (a, b) ∧ dW (b, c) ∧ W (c, d) → E(d, a)
is 2-valid; by Axiom 2, E(d, a) → W (a, d) is 2-valid. Hence ¬dE (a, b) ∧
dW (b, c) ∧W (c, d)→W (a, d) is 2-valid.

(b) if Rk is dW , then by Axiom 12, ¬dE (a, b)∧ dW (b, c)∧ dW (c, d)→ dE (d, a)
is 2-valid; by Definition 4, Axioms 2 and 3, dE (d, a)→ dW (a, d) is 2-valid.
Hence ¬dE (a, b) ∧ dW (b, c) ∧ dW (c, d)→ dW (a, d) is 2-valid.

(c) if Rk is ¬E, then by Axiom 7, dW (b, c) ∧ ¬E(c, d) → E(d, b) is 2-valid; by
Axiom 2, E(d, b) → W (b, d) is 2-valid; by Axiom 6, ¬dE (a, b) ∧W (b, d) →
¬W (d, a) is 2-valid; by Axiom 2, ¬W (d, a) → ¬E(a, d) is 2-valid. Hence
¬dE (a, b) ∧ dW (b, c) ∧ ¬E(c, d)→ ¬E(a, d) is 2-valid.

(d) ifRk is ¬dE , then by Axiom 11, ¬dE (a, b)∧dW (b, c)∧¬dE (c, d)→ ¬dW (d, a)
is 2-valid; by Definition 4, Axioms 2 and 3, ¬dW (d, a) → ¬dE (a, d) is 2-
valid. Hence ¬dE (a, b) ∧ dW (b, c) ∧ ¬dE (c, d)→ ¬dE (a, d) is 2-valid.

In each case, we replace Rs(a, b) ∧ Rt(b, c) ∧ Rk(c, d) in Fn+1 with Rk(a, d) to
obtain a formula F ′. Since the number of ¬dE and the number of dW are
reduced by 1, the number of W and the number of ¬E are unchanged, we have
number(W ) + 2∗number(dW ) ≥ number(¬E) + 2∗number(¬dE ). By inductive
hypothesis, ⊥ can be derived from F ′, hence from Fn+1.

Therefore, in every case, ⊥ can be derived from Fn+1.

Therefore, for any n ∈ N>0, ⊥ can be derived from Fn using LEW 2
fin . �

Lemma 5 stated in Section 4.4 is used to prove the completeness of LEW 3
fin . Lemma 5 is

proved by proving Lemmas 11 and 12, where number(W )+3∗number(dW ) = number(¬E)+
3 ∗ number(¬dE ) and number(W ) + 3 ∗ number(dW ) > number(¬E) + 3 ∗ number(¬dE ),
respectively. Similar to Lemma 4, Lemmas 11 and 12 are proved using mathematical in-
duction. The proof of Lemma 12 refers to Lemma 11.

Lemma 11 For any n ∈ N>1, if for any integer i such that 1 ≤ i ≤ n, Ri ∈ {W, dW ,¬E,¬dE},
and number(W )+3∗number(dW ) = number(¬E)+3∗number(¬dE ), then ⊥ can be derived
from R1 (a0 , a1 ) ∧ · · · ∧ Rn(an−1 , a0 ) using LEW 3

fin .

Proof. For any integer n > 1, let Fn denote a formula of the form R1 (a0 , a1 ) ∧ · · · ∧
Rn(an−1 , a0 ), where for every integer i such that 1 ≤ i ≤ n, Ri is in {W, dW ,¬E,¬dE},
and number(W ) + 3 ∗ number(dW ) = number(¬E) + 3 ∗ number(¬dE ). We will show that
for any n > 1, ⊥ can be derived from Fn using LEW 3

fin by mathematical induction.

Base case When n = 2, since Ri is in {W, dW ,¬E,¬dE}, number(W )+3∗number(dW ) =
number(¬E)+3∗number(¬dE ), then {R1, R2} = {W,¬E} or {R1, R2} = {dW ,¬dE}.
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If {R1, R2} = {W,¬E}, then by Axiom 2, ⊥ can be derived. Otherwise, by Defini-
tion 4, Axioms 2 and 3, ⊥ can be derived.

Inductive step Suppose ⊥ can be derived from F2, . . . , Fn using LEW 3
fin , where n ≥ 2,

we will show ⊥ can be derived from Fn+1. By Lemma 10, there exist conjuncts Rs(a, b)
and Rt(b, c) in Fn+1 such that they are neighbours and one of the two cases holds:

Case 1 Rs is in {W, dW } and Rt is in {¬E,¬dE};
Case 2 Rs is in {¬E,¬dE} and Rt is in {W, dW }.

Let us proceed by cases. Since n+ 1 > 2, in addition to Rs(a, b), Rt(b, c) has another
neighbour Rk(c, d).

1. If Rs is W and Rt is ¬E, then

(a) if Rk is W , then by Axiom 8, W (a, b) ∧ ¬E(b, c) ∧W (c, d) → E(d, a) is 3-
valid; by Axiom 2, E(d, a)→W (a, d) is 3-valid. Hence W (a, b) ∧ ¬E(b, c) ∧
W (c, d)→W (a, d) is 3-valid.

(b) if Rk is dW , then by Axiom 16, W (a, b) ∧ ¬E(b, c) ∧ dW (c, d) → dE (d, a)
is 3-valid; by Definition 4, Axioms 2 and 3, dE (d, a)→ dW (a, d) is 3-valid.
Hence W (a, b) ∧ ¬E(b, c) ∧ dW (c, d)→ dW (a, d) is 3-valid.

(c) if Rk is ¬E, then by Axiom 15, W (a, b) ∧ ¬E(b, c) ∧ ¬E(c, d) → ¬W (d, a)
is 3-valid; by Axiom 2, ¬W (d, a) → ¬E(a, d) is 3-valid. Hence W (a, b) ∧
¬E(b, c) ∧ ¬E(c, d)→ ¬E(a, d) is 3-valid.

(d) if Rk is ¬dE , then by Axiom 9, W (a, b)∧¬E(b, c)∧¬dE (c, d)→ ¬dW (d, a) is
3-valid; by Definition 4, Axioms 2 and 3, ¬dW (d, a)→ ¬dE (a, b) is 3-valid.
Hence W (a, b) ∧ ¬E(b, c) ∧ ¬dE (c, d)→ ¬dE (a, d) is 3-valid.

2. If Rs is W and Rt is ¬dE , then

(a) if Rk is W , then by Axiom 13, W (a, b) ∧ ¬dE (b, c) ∧W (c, d) → ¬W (d, a)
is 3-valid; by Axiom 2, ¬W (d, a) → ¬E(a, d) is 3-valid. Hence W (a, b) ∧
¬dE (b, c) ∧W (c, d)→ ¬E(a, d) is 3-valid.

(b) if Rk is dW , then by Axiom 17, W (a, b)∧¬dE (b, c)∧dW (c, d)→ E(d, a) is 3-
valid; by Axiom 2, E(d, a)→W (a, d) is 3-valid. Hence W (a, b)∧¬dE (b, c)∧
dW (c, d)→W (a, d) is 3-valid.

(c) if Rk is ¬E, then by Axiom 19, W (a, b)∧¬dE (b, c)∧¬E(c, d)→ ¬dW (d, a) is
3-valid; by Definition 4, Axioms 2 and 3, ¬dW (d, a)→ ¬dE (a, d) is 3-valid.
Hence W (a, b) ∧ ¬dE (b, c) ∧ ¬E(c, d)→ ¬dE (a, d) is 3-valid.

(d) if Rk is ¬dE , then no axiom in LEW 3
fin is applied.

3. If Rs is dW and Rt is ¬E, then

(a) if Rk is W , then by Axiom 17, dW (a, b) ∧ ¬E(b, c) ∧W (c, d) → dE (d, a) is
3-valid; by Definition 4, Axioms 2 and 3, dE (d, a) → dW (a, d) is 3-valid.
Hence dW (a, b) ∧ ¬E(b, c) ∧W (c, d)→ dW (a, d) is 3-valid.

(b) if Rk is dW , then no axiom in LEW 3
fin is applied.

(c) if Rk is ¬E, then by Axiom 14, dW (a, b)∧¬E(b, c)∧¬E(c, d)→ E(d, a) is 3-
valid; by Axiom 2, E(d, a)→W (a, d) is 3-valid. Hence dW (a, b)∧¬E(b, c)∧
¬E(c, d)→W (a, d) is 3-valid.
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(d) if Rk is ¬dE , then by Axiom 18, dW (a, b)∧¬E(b, c)∧¬dE (c, d)→ ¬W (d, a)
is 3-valid; by Axiom 2, ¬W (d, a) → ¬E(a, d) is 3-valid. Hence dW (a, b) ∧
¬E(b, c) ∧ ¬dE (c, d)→ ¬E(a, d) is 3-valid.

4. If Rs is dW and Rt is ¬dE , then

(a) if Rk is W , then by Axiom 16, dW (a, b) ∧ ¬dE (b, c) ∧W (c, d) → E(d, a)
is 3-valid; by Axiom 2, E(d, a) → W (a, d) is 3-valid. Hence dW (a, b) ∧
¬dE (b, c) ∧W (c, d)→W (a, d) is 3-valid.

(b) if Rk is dW , then by Axiom 11, dW (a, b)∧¬dE (b, c)∧ dW (c, d)→ dE (d, a)
is 3-valid; by Definition 4, Axioms 2 and 3, dE (d, a)→ dW (a, d) is 3-valid.
Hence dW (a, b) ∧ ¬dE (b, c) ∧ dW (c, d)→ dW (a, d) is 3-valid.

(c) if Rk is ¬E, then by Axiom 10, dW (a, b)∧¬dE (b, c)∧¬E(c, d)→ ¬W (d, a)
is 3-valid; by Axiom 2, ¬W (d, a) → ¬E(a, d) is 3-valid. Hence dW (a, b) ∧
¬dE (b, c) ∧ ¬E(c, d)→ ¬E(a, d) is 3-valid.

(d) ifRk is ¬dE , then by Axiom 12, dW (a, b)∧¬dE (b, c)∧¬dE (c, d)→ ¬dW (d, a)
is 3-valid; by Definition 4, Axioms 2 and 3, ¬dW (d, a) → ¬dE (a, d) is 3-
valid. Hence dW (a, b) ∧ ¬dE (b, c) ∧ ¬dE (c, d)→ ¬dE (a, d) is 3-valid.

5. If Rs is ¬E and Rt is W , then

(a) if Rk is W , then by Axiom 15, ¬E(a, b) ∧W (b, c) ∧W (c, d) → E(d, a) is 3-
valid; by Axiom 2, E(d, a)→W (a, d) is 3-valid. Hence ¬E(a, b) ∧W (b, c) ∧
W (c, d)→W (a, d) is 3-valid.

(b) if Rk is dW , then by Axiom 10, ¬E(a, b) ∧W (b, c) ∧ dW (c, d) → dE (d, a)
is 3-valid; by Definition 4, Axioms 2 and 3, dE (d, a)→ dW (a, d) is 3-valid.
Hence ¬E(a, b) ∧W (b, c) ∧ dW (c, d)→ dW (a, d) is 3-valid.

(c) if Rk is ¬E, then by Axiom 8, ¬E(a, b) ∧W (b, c) ∧ ¬E(c, d) → ¬W (d, a)
is 3-valid; by Axiom 2, ¬W (d, a) → ¬E(a, d) is 3-valid. Hence ¬E(a, b) ∧
W (b, c) ∧ ¬E(c, d)→ ¬E(a, d) is 3-valid.

(d) if Rk is ¬dE , then by Axiom 17, ¬E(a, b)∧W (b, c)∧¬dE (c, d)→ ¬dW (d, a)
is 3-valid; by Definition 4, Axioms 2 and 3, ¬dW (d, a) → ¬dE (a, d) is 3-
valid. Hence ¬E(a, b) ∧W (b, c) ∧ ¬dE (c, d)→ ¬dE (a, d) is 3-valid.

6. If Rs is ¬E and Rt is dW , then

(a) if Rk is W , then by Axiom 19, ¬E(a, b) ∧ dW (b, c) ∧W (c, d) → dE (d, a) is
3-valid; by Definition 4, Axioms 2 and 3, dE (d, a) → dW (a, d) is 3-valid.
Hence ¬E(a, b) ∧ dW (b, c) ∧W (c, d)→ dW (a, d) is 3-valid.

(b) if Rk is dW , then no axiom in LEW 3
fin is applied.

(c) if Rk is ¬E, then by Axiom 14, ¬E(a, b)∧dW (b, c)∧¬E(c, d)→ E(d, a) is 3-
valid; by Axiom 2, E(d, a)→W (a, d) is 3-valid. Hence ¬E(a, b)∧dW (b, c)∧
¬E(c, d)→W (a, d) is 3-valid.

(d) if Rk is ¬dE , then by Axiom 16, ¬E(a, b)∧dW (b, c)∧¬dE (c, d)→ ¬W (d, a)
is 3-valid; by Axiom 2, ¬W (d, a) → ¬E(a, d) is 3-valid. Hence ¬E(a, b) ∧
dW (b, c) ∧ ¬dE (c, d)→ ¬E(a, d) is 3-valid.

7. If Rs is ¬dE and Rt is W , then
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(a) if Rk is W , then by Axiom 13, ¬dE (a, b) ∧W (b, c) ∧W (c, d) → ¬W (d, a)
is 3-valid; by Axiom 2, ¬W (d, a) → ¬E(a, d) is 3-valid. Hence ¬dE (a, b) ∧
W (b, c) ∧W (c, d)→ ¬E(a, d) is 3-valid.

(b) if Rk is dW , then by Axiom 18, ¬dE (a, b) ∧W (b, c) ∧ dW (c, d) → E(d, a)
is 3-valid; by Axiom 2, E(d, a) → W (a, d) is 3-valid. Hence ¬dE (a, b) ∧
W (b, c) ∧ dW (c, d)→W (a, d) is 3-valid.

(c) if Rk is ¬E, then by Axiom 16, ¬dE (a, b)∧W (b, c)∧¬E(c, d)→ ¬dW (d, a) is
3-valid; by Definition 4, Axioms 2 and 3, ¬dW (d, a)→ ¬dE (a, d) is 3-valid.
Hence ¬dE (a, b) ∧W (b, c) ∧ ¬E(c, d)→ ¬dE (a, d) is 3-valid.

(d) if Rk is ¬dE , then no axiom in LEW 3
fin is applied.

8. If Rs is ¬dE and Rt is dW , then

(a) if Rk is W , then by Axiom 9, ¬dE (a, b) ∧ dW (b, c) ∧ W (c, d) → E(d, a)
is 3-valid; by Axiom 2, E(d, a) → W (a, d) is 3-valid. Hence ¬dE (a, b) ∧
dW (b, c) ∧W (c, d)→W (a, d) is 3-valid.

(b) if Rk is dW , then by Axiom 12, ¬dE (a, b)∧ dW (b, c)∧ dW (c, d)→ dE (d, a)
is 3-valid; by Definition 4, Axioms 2 and 3, dE (d, a)→ dW (a, d) is 3-valid.
Hence ¬dE (a, b) ∧ dW (b, c) ∧ dW (c, d)→ dW (a, d) is 3-valid.

(c) if Rk is ¬E, then by Axiom 17, ¬dE (a, b)∧ dW (b, c)∧¬E(c, d)→ ¬W (d, a)
is 3-valid; by Axiom 2, ¬W (d, a) → ¬E(a, d) is 3-valid. Hence ¬dE (a, b) ∧
dW (b, c) ∧ ¬E(c, d)→ ¬E(a, d) is 3-valid.

(d) ifRk is ¬dE , then by Axiom 11, ¬dE (a, b)∧dW (b, c)∧¬dE (c, d)→ ¬dW (d, a)
is 3-valid. By Definition 4, Axioms 2 and 3, ¬dW (d, a) → ¬dE (a, d) is 3-
valid. Hence ¬dE (a, b) ∧ dW (b, c) ∧ ¬dE (c, d)→ ¬dE (a, d) is 3-valid.

In the cases 2.d, 3.b, 6.b and 7.d, no axiom in LEW 3
fin is applied. Let us call all the

other cases above ‘valid’. Then for every three conjuncts Rs(a, b), Rt(b, c), Rk(c, d)
in Fn+1, at least one of these valid cases holds; otherwise, Rs, Rt, Rk ∈ {W, dW }, or
Rs, Rt, Rk ∈ {¬E,¬dE}, or exactly one of Rs, Rt, Rk is W and the rest are ¬dE ,
or exactly one of Rs, Rt, Rk is ¬E and the rest are dW , which contradicts with
number(W )+3∗number(dW ) = number(¬E)+3∗number(¬dE ). In each valid case,
we obtain a formula of the form Rs(a, b) ∧Rt(b, c) ∧Rk(c, d)→ Rx(a, d). We replace
Rs(a, b) ∧ Rt(b, c) ∧ Rk(c, d) in Fn+1 with Rx(a, d) to obtain a formula F ′, where
number(W ) + 3 ∗ number(dW ) = number(¬E) + 3 ∗ number(¬dE ). By inductive
hypothesis, ⊥ can be derived from F ′, hence from Fn+1.

Therefore, for any n > 1, ⊥ can be derived from Fn using LEW 3
fin . �

Lemma 12 For any n ∈ N>1, if for any integer i such that 1 ≤ i ≤ n, Ri ∈ {W, dW ,¬E,¬dE},
and number(W )+3∗number(dW ) > number(¬E)+3∗number(¬dE ), then ⊥ can be derived
from R1 (a0 , a1 ) ∧ · · · ∧ Rn(an−1 , a0 ) using LEW 3

fin .

Proof. For n = 1, let Fn denote a formula of the form W (a, a) or dW (a, a). For any n > 1,
let Fn denote a formula of the form R1 (a0 , a1 ) ∧ · · · ∧ Rn(an−1 , a0 ), where for every integer
i such that 1 ≤ i ≤ n, Ri is in {W, dW ,¬E,¬dE}, and number(W ) + 3 ∗ number(dW ) >
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number(¬E) + 3 ∗ number(¬dE ). We will show that for any n > 0, ⊥ can be derived from
Fn using LEW 3

fin by mathematical induction.

Base case When n = 1, by Axiom 1 and Definition 4, ⊥ can be derived.
When n = 2, since Ri is in {W, dW ,¬E,¬dE}, and number(W ) + 3 ∗number(dW ) >
number(¬E)+3∗number(¬dE ), then R1, R2 is in {W, dW } or {R1, R2} = {dW ,¬E}.
If R1, R2 is in {W, dW }, then by Definition 4, Axioms 15, 1 and 2, ⊥ can be derived
(by Axiom 15, W (a, b) ∧W (b, a) ∧ ¬E(a, a) ∧ ¬E(a, a) → ⊥ is 3-valid; by Axioms 1
and 2, ¬E(a, a) is 3-valid; hence W (a, b) ∧W (b, a) → ⊥ is 3-valid). Otherwise, by
Axioms 14, 1 and 2, ⊥ can be derived.

Inductive step Suppose ⊥ can be derived from any of F1, F2, . . . , Fn using LEW 3
fin , where

n ≥ 2, we will show that ⊥ can be derived from Fn+1. If every Ri in Fn+1 is W or
dW , then by Definition 4, Axioms 15, 1 and 2, ⊥ can be derived (by Axiom 15,
W (a, b)∧W (b, c)∧¬E(c, a)∧¬E(a, a)→ ⊥ is 3-valid; by Axioms 2 and 1, ¬E(a, a) is
3-valid; by Axiom 2, E(c, a)→W (a, c) is 3-valid; hence W (a, b) ∧W (b, c)→W (a, c)
is 3-valid).

Otherwise, there exists at least one Ri which is ¬E or ¬dE . By Lemma 9, there exist
conjuncts Rs(a, b) and Rt(b, c) in Fn+1, such that they are neighbours and one of the
following cases holds:

Case 1 Rs is in {W, dW } and Rt is in {¬E,¬dE};
Case 2 Rs is in {¬E,¬dE} and Rt is in {W, dW }.

Let us proceed by cases. Since n+ 1 > 2, in addition to Rs(a, b), Rt(b, c) has another
neighbour Rk(c, d).

1. If Rs is W and Rt is ¬E, then

(a) if Rk is W , then by Axiom 8, W (a, b) ∧ ¬E(b, c) ∧W (c, d) → E(d, a) is 3-
valid; by Axiom 2, E(d, a)→W (a, d) is 3-valid. Hence W (a, b) ∧ ¬E(b, c) ∧
W (c, d)→W (a, d) is 3-valid.

(b) if Rk is dW , then by Axiom 16, W (a, b) ∧ ¬E(b, c) ∧ dW (c, d) → dE (d, a)
is 3-valid; by Definition 4, Axioms 2 and 3, dE (d, a)→ dW (a, d) is 3-valid.
Hence W (a, b) ∧ ¬E(b, c) ∧ dW (c, d)→ dW (a, d) is 3-valid.

(c) if Rk is ¬E, then by Axiom 15, W (a, b) ∧ ¬E(b, c) ∧ ¬E(c, d) → ¬W (d, a)
is 3-valid; by Axiom 2, ¬W (d, a) → ¬E(a, d) is 3-valid. Hence W (a, b) ∧
¬E(b, c) ∧ ¬E(c, d)→ ¬E(a, d) is 3-valid.

(d) if Rk is ¬dE , then by Axiom 9, W (a, b)∧¬E(b, c)∧¬dE (c, d)→ ¬dW (d, a) is
3-valid; by Definition 4, Axioms 2 and 3, ¬dW (d, a)→ ¬dE (a, d) is 3-valid.
Hence W (a, b) ∧ ¬E(b, c) ∧ ¬dE (c, d)→ ¬dE (a, d) is 3-valid.

In each case, we replace Rs(a, b) ∧ Rt(b, c) ∧ Rk(c, d) in Fn+1 with Rk(a, d) to
obtain a formula F ′. Since the number of W and the number of ¬E are re-
duced by 1, the number of dW and the number of ¬dE are unchanged, we have
number(W ) + 3∗number(dW ) > number(¬E) + 3∗number(¬dE ). By inductive
hypothesis, ⊥ can be derived from F ′, hence from Fn+1.
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2. If Rs is W and Rt is ¬dE , then by Axiom 19, W (a, b) ∧ ¬dE (b, c) ∧ ¬E(c, c)→
¬dW (c, a) is 3-valid; by Axioms 1 and 2, ¬E(c, c) is 3-valid; by Definition 4,
Axioms 2 and 3, ¬dW (c, a)→ ¬dE (a, c) is 3-valid. Hence W (a, b)∧¬dE (b, c)→
¬dE (a, c) is 3-valid. We replace Rs(a, b)∧Rt(b, c) in Fn+1 with Rt(a, c) to obtain
a formula F ′. Since the number of W is reduced by 1, the number of ¬E, the
number of dW and the number of ¬dE are unchanged, we have number(W ) +
3 ∗ number(dW ) ≥ number(¬E) + 3 ∗ number(¬dE ). If number(W ) + 3 ∗
number(dW ) = number(¬E) + 3 ∗ number(¬dE ), then by Lemma 11, ⊥ can
be derived from F ′. Otherwise, by inductive hypothesis, ⊥ can be derived from
F ′. Hence in either case, ⊥ can be derived from Fn+1.

3. If Rs is dW and Rt is ¬E, by Axiom 14, dW (a, b)∧¬E(b, c)∧¬E(c, c)→ E(c, a)
is 3-valid; by Axioms 1 and 2, ¬E(c, c) is 3-valid; by Axiom 2, E(c, a) →
W (a, c) is 3-valid. Hence dW (a, b) ∧ ¬E(b, c) → W (a, c) is 3-valid. We re-
place Rs(a, b) ∧ Rt(b, c) in Fn+1 with W (a, c) to obtain a formula F ′. Since the
the number of dW and the number of ¬E are reduced by 1, the number of W
is increased by 1, the number of ¬dE is unchanged, we have number(W ) +
3 ∗ number(dW ) ≥ number(¬E) + 3 ∗ number(¬dE ). If number(W ) + 3 ∗
number(dW ) = number(¬E) + 3 ∗ number(¬dE ), then by Lemma 11, ⊥ can
be derived from F ′. Otherwise, by inductive hypothesis, ⊥ can be derived from
F ′. Hence in either case, ⊥ can be derived from Fn+1.

4. If Rs is dW and Rt is ¬dE , then

(a) if Rk is W , then by Axiom 16, dW (a, b) ∧ ¬dE (b, c) ∧W (c, d) → E(d, a)
is 3-valid; by Axiom 2, E(d, a) → W (a, d) is 3-valid. Hence dW (a, b) ∧
¬dE (b, c) ∧W (c, d)→W (a, d) is 3-valid.

(b) if Rk is dW , then by Axiom 11, dW (a, b)∧¬dE (b, c)∧ dW (c, d)→ dE (d, a)
is 3-valid; by Definition 4, Axioms 2 and 3, dE (d, a)→ dW (a, d) is 3-valid.
Hence dW (a, b) ∧ ¬dE (b, c) ∧ dW (c, d)→ dW (a, d) is 3-valid.

(c) if Rk is ¬E, then by Axiom 10, dW (a, b)∧¬dE (b, c)∧¬E(c, d)→ ¬W (d, a)
is 3-valid; by Axiom 2, ¬W (d, a) → ¬E(a, d) is 3-valid. Hence dW (a, b) ∧
¬dE (b, c) ∧ ¬E(c, d)→ ¬E(a, d) is 3-valid.

(d) ifRk is ¬dE , then by Axiom 12, dW (a, b)∧¬dE (b, c)∧¬dE (c, d)→ ¬dW (d, a)
is 3-valid; by Definition 4, Axioms 2 and 3, ¬dW (d, a) → ¬dE (a, d) is 3-
valid. Hence dW (a, b) ∧ ¬dE (b, c) ∧ ¬dE (c, d)→ ¬dE (a, d) is 3-valid.

In each case, we replace Rs(a, b) ∧ Rt(b, c) ∧ Rk(c, d) in Fn+1 with Rk(a, d) to
obtain a formula F ′. Since the number of dW and the number of ¬dE are
reduced by 1, the number of W and the number of ¬E are unchanged, we have
number(W ) + 3∗number(dW ) > number(¬E) + 3∗number(¬dE ). By inductive
hypothesis, ⊥ can be derived from F ′, hence from Fn+1.

5. If Rs is ¬E and Rt is W , then

(a) if Rk is W , then by Axiom 15, ¬E(a, b) ∧W (b, c) ∧W (c, d) → E(d, a) is 3-
valid; by Axiom 2, E(d, a)→W (a, d) is 3-valid. Hence ¬E(a, b) ∧W (b, c) ∧
W (c, d)→W (a, d) is 3-valid.
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(b) if Rk is dW , then by Axiom 10, ¬E(a, b) ∧W (b, c) ∧ dW (c, d) → dE (d, a)
is 3-valid; by Definition 4, Axioms 2 and 3, dE (d, a)→ dW (a, d) is 3-valid.
Hence ¬E(a, b) ∧W (b, c) ∧ dW (c, d)→ dW (a, d) is 3-valid.

(c) if Rk is ¬E, then by Axiom 8, ¬E(a, b) ∧W (b, c) ∧ ¬E(c, d) → ¬W (d, a)
is 3-valid; by Axiom 2, ¬W (d, a) → ¬E(a, d) is 3-valid. Hence ¬E(a, b) ∧
W (b, c) ∧ ¬E(c, d)→ ¬E(a, d) is 3-valid.

(d) if Rk is ¬dE , then by Axiom 17, ¬E(a, b)∧W (b, c)∧¬dE (c, d)→ ¬dW (d, a)
is 3-valid; by Definition 4, Axioms 2 and 3, ¬dW (d, a) → ¬dE (a, d) is 3-
valid. Hence ¬E(a, b) ∧W (b, c) ∧ ¬dE (c, d)→ ¬dE (a, d) is 3-valid.

In each case, we replace Rs(a, b) ∧ Rt(b, c) ∧ Rk(c, d) in Fn+1 with Rk(a, d) to
obtain a formula F ′. Since the number of ¬E and the number of W are re-
duced by 1, the number of dW and the number of ¬dE are unchanged, we have
number(W ) + 3∗number(dW ) > number(¬E) + 3∗number(¬dE ). By inductive
hypothesis, ⊥ can be derived from F ′, hence from Fn+1.

6. If Rs is ¬E and Rt is dW , by Axiom 14, ¬E(a, b)∧dW (b, c)∧¬E(c, c)→ E(c, a)
is 3-valid; by Axioms 1 and 2, ¬E(c, c) is 3-valid; by Axiom 2, E(c, a) →
W (a, c) is 3-valid. Hence ¬E(a, b) ∧ dW (b, c) → W (a, c) is 3-valid. We re-
place Rs(a, b) ∧ Rt(b, c) in Fn+1 with W (a, c) to obtain a formula F ′. Since the
the number of dW and the number of ¬E are reduced by 1, the number of W
is increased by 1, the number of ¬dE is unchanged, we have number(W ) +
3 ∗ number(dW ) ≥ number(¬E) + 3 ∗ number(¬dE ). If number(W ) + 3 ∗
number(dW ) = number(¬E) + 3 ∗ number(¬dE ), then by Lemma 11, ⊥ can
be derived from F ′. Otherwise, by inductive hypothesis, ⊥ can be derived from
F ′. Hence in either case, ⊥ can be derived from Fn+1.

7. If Rs is ¬dE and Rt is W , then by Axiom 16, ¬dE (a, b) ∧W (b, c) ∧ ¬E(c, c)→
¬dW (c, a) is 3-valid; by Axioms 1 and 2, ¬E(c, c) is 3-valid; by Definition 4,
Axioms 2 and 3, ¬dW (c, a)→ ¬dE (a, c) is 3-valid. Hence ¬dE (a, b)∧W (b, c)→
¬dE (a, c) is 3-valid. We replace Rs(a, b)∧Rt(b, c) in Fn+1 with Rs(a, c) to obtain
a formula F ′. Since the number of W is reduced by 1, the number of ¬E, the
number of dW and the number of ¬dE are unchanged, we have number(W ) +
3 ∗ number(dW ) ≥ number(¬E) + 3 ∗ number(¬dE ). If number(W ) + 3 ∗
number(dW ) = number(¬E) + 3 ∗ number(¬dE ), then by Lemma 11, ⊥ can
be derived from F ′. Otherwise, by inductive hypothesis, ⊥ can be derived from
F ′. Hence in either case, ⊥ can be derived from Fn+1.

8. If Rs is ¬dE and Rt is dW , then

(a) if Rk is W , then by Axiom 9, ¬dE (a, b) ∧ dW (b, c) ∧ W (c, d) → E(d, a)
is 3-valid; by Axiom 2, E(d, a) → W (a, d) is 3-valid. Hence ¬dE (a, b) ∧
dW (b, c) ∧W (c, d)→W (a, d) is 3-valid.

(b) if Rk is dW , then by Axiom 12, ¬dE (a, b)∧ dW (b, c)∧ dW (c, d)→ dE (d, a)
is 3-valid; by Definition 4, Axioms 2 and 3, dE (d, a)→ dW (a, d) is 3-valid.
Hence ¬dE (a, b) ∧ dW (b, c) ∧ dW (c, d)→ dW (a, d) is 3-valid.

(c) if Rk is ¬E, then by Axiom 17, ¬dE (a, b)∧ dW (b, c)∧¬E(c, d)→ ¬W (d, a)
is 3-valid; by Axiom 2, ¬W (d, a) → ¬E(a, d) is 3-valid. Hence ¬dE (a, b) ∧
dW (b, c) ∧ ¬E(c, d)→ ¬E(a, d) is 3-valid.
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(d) ifRk is ¬dE , then by Axiom 11, ¬dE (a, b)∧dW (b, c)∧¬dE (c, d)→ ¬dW (d, a)
is 3-valid; by Definition 4, Axioms 2 and 3, ¬dW (d, a) → ¬dE (a, d) is 3-
valid. Hence ¬dE (a, b) ∧ dW (b, c) ∧ ¬dE (c, d)→ ¬dE (a, d) is 3-valid.

In each case, we replace Rs(a, b) ∧ Rt(b, c) ∧ Rk(c, d) in Fn+1 with Rk(a, d) to
obtain a formula F ′. Since the number of ¬dE and the number of dW are
reduced by 1, the number of W and the number of ¬E are unchanged, we have
number(W ) + 3∗number(dW ) > number(¬E) + 3∗number(¬dE ). By inductive
hypothesis, ⊥ can be derived from F ′, hence from Fn+1.

Therefore, in every case, ⊥ can be derived from Fn+1.

Therefore, for any n > 0, ⊥ can be derived from Fn using LEW 3
fin . �

Appendix B. Proof Details of Theorem 5

This section verifies that I2 provides a solution to So. Recall that So is obtained by removing
an arbitrary individual name o from S. There are four cases: o is ax, where 0 ≤ x ≤ 2; o is
bx, where 0 < x < n; o is cx, where 0 ≤ x ≤ 2; o is dx, where 0 < x < n. Below we provide
verification details for the second case. The other cases are similar and simpler.

Since o is bx, where 0 < x < n, by the definition of I2, we have:

• I2(bx+1) = 2 + (x+ 1)τ ;

• for every integer i such that x+ 1 < i ≤ n, I2(bi) = 2 + iτ + ε
2 + · · ·+ ε

2(i−1−x) ;

• for every integer i such that 0 ≤ i ≤ 2, I2(ci) = I2(bn)− i;

• for every integer i such that 0 ≤ i ≤ n, I2(di) = I2(c2)− iτ ;

• I2(a0) = I2(dn), I2(a1) = I2(a0)+1+ ε
2(2n−x+2) , I2(a2) = I2(a0)+2+ ε

2(2n−x+2) + ε
2(2n−x+3) ;

• for every integer i such that 0 ≤ i ≤ x− 1, I2(bi) = I2(a0) + 2 + iτ + ε
2(2n−x+2) + · · ·+

ε
2(2n−x+3+i) .

Note that 0 ≤ I2(a0) ≤ ε
2 + · · ·+ ε

2(n−1−x) < 1. Referring to the items 1-11 in the proof

of Lemma 7, below we verify that I2 provides a solution to Sbx .

1. I2(a0)−I2(a1) = −1− ε
2(2n−x+2) ∈ (−2,−1), I2(a1)−I2(a2) = −1− ε

22n−x+3 ∈ (−2,−1),
I2(a0)− I2(a2) = −2− ε

2(2n−x+2) − ε
22n−x+3 ∈ (−3,−2). Since τ > 3, for every pair of

integers i, j such that 0 ≤ i < j ≤ 2, by Definitions 3 and 4, the corresponding linear
inequalities of sW (ai, aj) and sE (aj , ai) in Sbx are satisfied.

2. For every pair of integers i, j such that 0 ≤ i < j ≤ x − 1 or x + 1 ≤ i < j ≤ n,
we have I2(bi) − I2(bj) < −τ . For every pair of integers i, j such that 0 ≤ i ≤ x − 1
and x + 1 ≤ j ≤ n, we have I2(bi) − I2(bj) ≤ I2(bx−1) − I2(bx+1) < −τ . Hence
for every pair of integers i, j such that 0 ≤ i < j ≤ n, i 6= x and j 6= x, we have
I2(bi) − I2(bj) < −τ ; by Definitions 3 and 4, the corresponding linear inequalities of
dW (bi, bj) and dE (bj , bi) in Sbx are satisfied.
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3. I2(c0)−I2(c1) = 1, I2(c1)−I2(c2) = 1, I2(c0)−I2(c2) = 2. Since τ > 3, by Definitions 3
and 4, the corresponding linear inequalities of nEW (c0, c1), nEW (c1, c0), nEW (c1, c2),
nEW (c2, c1), sE (c0, c2) and sW (c2, c0) in Sbx are satisfied.

4. For every pair of integers i, j such that 0 ≤ i < j ≤ n, we have I2(di)−I2(dj) = (j−i)τ .
By Definitions 3 and 4, if j = i+ 1, the corresponding linear inequalities of sE (di, dj)
and sW (dj , di) in Sbx are satisfied; and if j > i+1, the corresponding linear inequalities
of dE (di, dj) and dW (dj , di) in Sbx are satisfied.

5. For every pair of integers i, j such that 0 ≤ i < 2, 0 < j ≤ n and j 6= x, if 1 6= x
(i.e., b1 is not bx), we have I2(ai)− I2(bj) ≤ I2(a1)− I2(b1) < −τ ; otherwise, we have
I2(ai)−I2(bj) ≤ I2(a1)−I2(b2) < −τ . Hence by Definitions 3 and 4, the corresponding
linear inequalities of dW (ai, bj) and dE (bj , ai) in Sbx are satisfied.

6. For every pair of integers i, j such that 0 ≤ i < 2 and 0 < j ≤ 2, we have I2(ai) −
I2(cj) ≤ I2(a1)− I2(c2) < −τ , since n > 2 and τ > 3. Hence by Definitions 3 and 4,
the corresponding linear inequalities of dW (ai, cj) and dE (cj , ai) in Sbx are satisfied.

7. For every integer j such that 0 < j < n − 1, we have I2(a1) − I2(dj) ≤ I2(a1) −
I2(dn−2) < −τ , as n > 2 ands τ > 3. Hence by Definitions 3 and 4, the corresponding
linear inequalities of dW (a1, dj) and dE (dj , a1) in Sbx are satisfied. Since τ > 3, we
have I2(a1) − I2(dn−1) ∈ (−τ,−1). Hence by Definitions 3 and 4, the corresponding
linear inequalities of sW (a1, dn−1) and sE (dn−1, a1) in Sbx are satisfied.

8. For every pair of integers i, j such that 0 ≤ i < n − 1, i 6= x and 0 < j ≤ 2,
if n − 2 6= x, then we have I2(bi) − I2(cj) ≤ I2(bn−2) − I2(c2) < −τ ; otherwise,
we have I2(bi) − I2(cj) ≤ I2(bn−3) − I2(c2) < −τ . Hence by Definitions 3 and 4,
the corresponding linear inequalities of dW (bi, cj) and dE (cj , bi) in Sbx are satisfied.
If n − 1 6= x, then for every integer j such that 0 < j ≤ 2, I2(bn−1) − I2(cj) ≤
I2(bn−1)−I2(c2) ∈ (−τ,−1), as τ > 3. Hence by Definitions 3 and 4, the corresponding
linear inequalities of sW (bn−1, cj) and sE (cj , bn−1) in Sbx are satisfied.

9. For every pair of integers i, j such that 0 ≤ i < n, i 6= x and 0 < j < n, we have
I2(bi) − I2(dj) < 2 + iτ + 1 − (n − j)τ = −(n − i − j)τ + 3 and I2(bi) − I2(dj) >
2+iτ−(n−j)τ−1 = −(n−i−j)τ+1. Hence if n−i−j > 1, then I2(bi)−I2(dj) < −τ , by
Definitions 3 and 4, the corresponding linear inequalities of dW (bi, dj) and dE (dj , bi)
in Sbx are satisfied; if n− i− j = 1, then I2(bi)− I2(dj) ∈ (−τ,−1), by Definitions 3
and 4, the corresponding linear inequalities of sW (bi, dj) and sE (dj , bi) in Sbx are
satisfied; if n − i − j = 0, then I2(bi) − I2(dj) ∈ (1, τ), by Definitions 3 and 4, the
corresponding linear inequalities of sE (bi, dj) and sW (dj , bi) in Sbx are satisfied; if
n− i−j < 0, then I2(bi)−I2(dj) > τ , by Definitions 3 and 4, the corresponding linear
inequalities of dE (bi, dj) and dW (dj , bi) in Sbx are satisfied.

10. For every pair of integers i, j such that 0 ≤ i < 2 and 0 < j < n, we have
I2(ci) − I2(dj) ≥ I2(c1) − I2(d1) > τ , by Definitions 3 and 4, the corresponding
linear inequalities of dE (ci, dj) and dW (dj , ci) in Sbx are satisfied.

11. For every individual name e in Ind , if e is not bx, then I2(e)− I2(e) = 0. By Defini-
tions 3 and 4, the corresponding linear inequality of nEW (e, e) in Sbx is satisfied.
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Therefore, I2 provides a solution to Sbx .

Appendix C. Proof of Lemma 8

Lemma 8 For every τ ∈ N>1, let S be a set of linear inequalities obtained by applying the
‘τ -σ-translation’ function over L(LEW ) formulas as shown in Definition 5, where σ = 1;
and let n > 0 be the number of variables in S. If S is satisfiable, then it has a solution
where for every variable, a rational number t ∈ [−nτ, nτ ] is assigned to it and the binary
representation size of t is in O(n).

Proof. Take an arbitrary integer τ > 1. Suppose that S is satisfiable. By Definition 5,
every inequality in S is of the form (x1 − x2) ∼ c, where x1, x2 are real variables, ∼ is
≤ or <, and c is a real number. Let G be a graph for S. By Corollary 1, the graph G
has no infeasible simple loop. By extending the proof of Theorem 4 (Shostak, 1981) (pp.
777 and 778), which is for non-strict inequalities only, to include both strict and non-strict
inequalities, a solution to S can be constructed as follows. Let v1, . . . , vn−1 be the variables
of S other than v0 (the zero variable). The residue inequality of an admissible path P is
denoted as (apx + bpy) ∼ cp, where ∼ is ≤ or <, and x, y are the first and last vertices of
P . We construct a sequence of reals v̂0, v̂1, . . . , v̂n−1 as a solution to S and a sequence of
graphs G0, G1, . . . , Gn−1 inductively.
1. Let v̂0 = 0 and G0 = G.
2. If v̂i and Gi have been determined for 0 ≤ i < j < n, let

supj = min{ cpap | P is an admissible path from vj to v0 in Gj−1 and ap > 0 },

infj = max{ cpbp | P is an admissible path from v0 to vj in Gj−1 and bp < 0 },

where min ∅ =∞ and max ∅ = −∞. The range of v̂j is obtained as follows.

• If there is an admissible path P from vj to v0 in Gj−1 such that the residue inequality
of P is apvj < cp, where ap > 0, and

cp
ap

= supj , then v̂j < supj , otherwise, v̂j ≤ supj .

• If there is an admissible path P from v0 to vj in Gj−1 such that the residue inequality
of P is bpvj < cp, where bp < 0, and

cp
bp

= infj , then v̂j > infj , otherwise, v̂j ≥ infj .

Instead of letting v̂j be any real number in the range (Shostak, 1981), we assign a value to
v̂j as follows:

• if there exists an integer within the range of v̂j , we assign an integer to v̂j ;

• otherwise, we assign
infj + supj

2 to v̂j .

The graph Gj is obtained from Gj−1 by adding two new edges from vj to v0, labelled vj ≤ v̂j
and vj ≥ v̂j , respectively.

To ensure that v̂j and Gj are well defined, we prove the following two claims:

1. For every integer j such that 1 ≤ j < n, the range of v̂j is not empty.
2. For every integer j such that 0 ≤ j < n, the graph Gj has no infeasible simple loop.
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We prove them by induction on j, similar to the proof presented by Shostak (1981).
Base case j = 0. 1 holds vacuously; 2 holds since G0 = G.
Inductive step Suppose the claims hold for j − 1 such that 0 ≤ j − 1 < n − 1. We will
show the claims hold for j.
For 1, suppose, to the contrary, that the range of v̂i is empty. Then in Gj−1, there exist an
admissible path P1 from vj to v0, where ap > 0, and an admissible path P2 from v0 to vj ,
where bp < 0. Then P1 and P2 form an admissible loop. By the construction of the range
of v̂i described above, if this range is empty, then the admissible loop formed by P1 and P2

is infeasible, which contradicts the inductive hypothesis that Gj−1 has no infeasible simple
loop.
For 2, suppose Gj has an infeasible simple loop P . Since Gj−1 has no such loop, and the
loop formed by the two new edges added to Gj−1 to obtain Gj is not infeasible, then P (or
its reverse) is of the form P ′E, where E is one of the two new edges (say the one labelled
vj ≤ v̂j ; the other case is handled similarly), and P ′ is a path from v0 to vj in Gj−1. If P ′

is strict, then by the definition of infeasible loop of P , we have v̂j ≤
cp′
bp′

, which contradicts

v̂j >
cp′
bp′

(if infj =
cp′
bp′

, then v̂j > infj ; otherwise, infj >
cp′
bp′

, v̂j ≥ infj); if P ′ is not strict,

then v̂j <
cp′
bp′

, which contradicts v̂j ≥
cp′
bp′

, since v̂j ≥ infj and infj ≥
cp′
bp′

. Q.E.D.

Now, it remains to show that v̂j satisfies S. Let ax+ by ≤ c be an inequality in S. We
will show that ax̂ + bŷ ≤ c. We present the case where a > 0 and b < 0. The other cases
are similar. Let E be the edge labelled ax + by ≤ c in Gn−1. Then, where E1 is the edge
labelled x̂ ≤ x in Gn−1 and E2 is the one labelled y ≤ ŷ, the edges E1, E and E2 form
an admissible loop E1EE2. Since Gn−1 has no infeasible loop, the loop E1EE2 is feasible.
Hence we have ax̂+ bŷ ≤ c. The proof for inequalities of the form ax+ by < c is similar.

By Definition 5, we have −nτ ≤ cp ≤ nτ , ap = 1 for supj , bp = −1 for infj . Therefore,
supj ≤ nτ , infj ≥ −nτ . Hence every v̂j (0 < j < n) is a rational number in [−nτ, nτ ].

Now, we show that the representation size of v̂j (0 < j < n) is polynomial in the size
of n. By the construction described above, v̂j is either an integer in [−nτ, nτ ] or obtained

by applying the ‘average operation’ v̂j =
infj + supj

2 . Since τ is a natural number and σ = 1,
inf1 and sup1 are integers in [−nτ, nτ ]. Also, since 0 < j < n, the number of ‘average
operations’ applied to obtain a v̂j is at most n. Hence the largest denominator of the values
of v̂j is 2n. Therefore, v̂j can be represented in a binary notation of size log(2nτ ∗2n), which
is in O(n). �
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