
Journal of Artificial Intelligence Research 76 (2023) 393-433 Submitted 08/2022; published 01/2023

Distributed Bayesian: A Continuous Distributed Constraint
Optimization Problem Solver

Jeroen Fransman j.e.fransman@tudelft.nl
Delft Center for Systems and Control (DCSC),
Delft University of Technology

Joris Sijs j.sijs@tudelft.nl
Delft Center for Systems and Control (DCSC),
Delft University of Technology

Henry Dol henry.dol@tno.nl
Netherlands Organisation for Applied Scientific Research (TNO)

Erik Theunissen e.theunissen@uav.nl
Netherlands Defence Academy (NLDA)

Bart De Schutter b.deschutter@tudelft.nl

Delft Center for Systems and Control (DCSC),

Delft University of Technology

Abstract

In this paper, the novel Distributed Bayesian (D-Bay) algorithm is presented for solving
multi-agent problems within the Continuous Distributed Constraint Optimization Problem
(C-DCOP) framework. This framework extends the classical DCOP framework towards
utility functions with continuous domains. D-Bay solves a C-DCOP by utilizing Bayesian
optimization for the adaptive sampling of variables. We theoretically show that D-Bay
converges to the global optimum of the C-DCOP for Lipschitz continuous utility functions.
The performance of the algorithm is evaluated empirically based on the sample efficiency.
The proposed algorithm is compared to state-of-the-art DCOP and C-DCOP solvers. The
algorithm generates better solutions while requiring fewer samples.

1. Introduction

Many real-world problems can be modeled as multi-agent problems in which agents need
to assign values to their variables to optimize a global objective characterized by a utility
function. Examples include scheduling (Sato, Borges, Márton, & Scalabrin, 2015), mobile
sensor coordination (Zivan, Parash, & Naveh, 2015), hierarchical task network mapping
(Sultanik, Modi, & Regli, 2007), and cooperative search (Acevedo, Arrue, Maza, & Ollero,
2013). Even though numerous algorithms exist that solve these problems, applying them
in practice is often problematic, as complications arise from limitations in communication,
computation, and/or memory.

The Distributed Constraint Optimization Problem (DCOP) framework is well suited to
model the above-mentioned problems (as detailed in Meisels (2007), Modi, Shen, Tambe,
and Yokoo (2005), Petcu and Faltings (2005), Gershman, Meisels, and Zivan (2009), Yeoh
and Yokoo (2012)). Within the DCOP framework, a problem is defined based on vari-
ables and on utility functions that are aggregated into an objective function. Additionally,

©2023 AI Access Foundation. All rights reserved.

Fransman, Sijs, Dol, Theunissen & De Schutter

agents assign values to all the variables that are allocated to them. Agents are considered
neighbors if their variables are arguments of the same utility function. Neighbors coopera-
tively optimize their utility functions through the exchange of messages. Within the DCOP
framework, variables are constrained by their domains. In other words, a domain defines all
possible value assignments of a variable. This explicit definition of the domains of the vari-
ables is suitable for problems that are (input) constrained. These domains are considered to
be finite and discrete within a DCOP, while problems related to mobile (sensor) platforms
are typically characterized by finite continuous domains. Problems with finite continuous
domains can be modeled as a Continuous DCOP (C-DCOP), which is equal to a DCOP
except for the domain definition. A common approach to solve a C-DCOP with a DCOP
solver is to use equidistant discretization of the domains, such as using a grid overlay to
define all possible positions of an agent in an area. This process converts the continuous
domains into discrete domains. When discretizing a continuous domain, the quality of the
solution will depend on the distance between the values, where a smaller distance will allow
for a better solution. This results in a trade-off as more values will increase the cardinality
of the discrete domains. The increase in cardinality will result in polynomial growth of the
search space where the degree of the polynomial is equal to the number of agents. From
the overview articles of Leite, Enembreck, and Barthès (2014) and Fioretto, Pontelli, and
Yeoh (2018), it is clear that the cardinality of the domains is a major restriction to DCOP
solvers. Therefore, solving a C-DCOP by discretization can become intractable for DCOP
solvers despite a small number of variables.

The underlying reason for the increase in problem size is that DCOP solvers (implicitly)
consider all values within a domain as unrelated to each other. Because of this assumption, it
is not possible to efficiently sample the search space. In problems with continuous domains,
this assumption does not hold since the utility of values that are close is often similar. By
explicitly taking such a relation into account, a C-DCOP solver based on efficient sampling
methods can be constructed.

Several C-DCOP solvers have been introduced that, based on initial discretization of the
continuous domains, update the discretized values within an iterative optimization method
such as local gradient descent. Notable examples are CMS (Stranders, Farinelli, Rogers,
& Jennings, 2009), C-CoCoA (Sarker, Arif, Choudhury, & Khan, 2020), PFD (Choudhury,
Mahmud, & Khan, 2020), and AC-DPOP (Hoang, Yeoh, Yokoo, & Rabinovich, 2020).
In this paper, Bayesian optimization (Mockus, 1989) will be used as it focuses on efficient
sampling during optimization, thereby requiring relatively few iterations to closely approach
the optimum. This method completely eliminates need for discretization of the domains.

Overall, the contributions of this paper are threefold. Firstly, we introduce an efficient
algorithm that uses methods found in Bayesian optimization to solve C-DCOPs called
Distributed Bayesian (D-Bay). Secondly, we provide theoretical proof of the convergence
of the proposed algorithm to the global optimum of the C-DCOP for utility functions with
known Lipschitz constants. Lastly, simulation results are given for randomly generated
graphs and sensor coordination problems to compare the sample efficiency of D-Bay to
state-of-the-art DCOP and C-DCOP solvers.

The remainder of this paper is organized as follows. Firstly, in Section 2 background
information about the DCOP framework is given. In Section 3 relevant literature regarding
DCOP solvers is discussed. The Bayesian optimization algorithm is provided in Section 4.

394

Distributed Bayesian: A Continuous DCOP Solver

Afterward, we present the novel sampling-based C-DCOP solver called D-Bay in Section 5.
The theoretical properties of D-Bay are analyzed in Section 6. Evaluation of D-Bay for sen-
sor coordination problems and random graphs are included in Section 7. Finally, Section 8
summarizes the results and defines future work.

2. Distributed Constraint Optimization Problems

The DCOP framework originates from an extension and generalization of Constraint Sat-
isfaction Problems (CSPs) (Tsang, 1993) towards distributed optimization. A solution for
a CSP is defined as the assignment of all variables from (finite) discrete domains such that
all hard constraints are satisfied. The CSP framework has been extended from a central-
ized problem framework to an agent-based distributed problem framework in the work of
Yokoo, Durfee, Ishida, and Kuwabara (1998). Within the Distributed-CSP framework, the
variables are allocated to agents and the agents coordinate the value assignments among
each other.

Additionally, CSP has been generalized into the Constraint Optimization Problem
(COP) framework, where the hard constraints are replaced with soft constraints expressed
as utility functions. Utility functions return a cost or reward based on the value assign-
ments. Hard constraints are enforced by the utility functions by returning infinite cost (or
infinite negative reward). Instead of constraint satisfaction, the goal of a COP is to find
assignments that optimize an objective function.

A final extension is the Distributed Constraint Optimization Problem (DCOP) frame-
work, which provides a unified framework that includes a large class of problems by combin-
ing the generalization of Distributed-CSP and the extension of COP. A graphical overview
of the relations between the problem frameworks can be seen in Figure 1.

COP

CSP Dist-CSP

DCOP

Extends to

Extends to

Generalizes to Generalizes to

Figure 1: Graphical overview of the relations between the problem frameworks. Adapted
from Fioretto et al. (2018).

In the DCOP framework the domains are considered to be discrete, which limits its
application to problems with continuous domains. In the current paper, the Continuous
DCOP (C-DCOP) framework will be used to overcome this restriction in order to include
real-world problems such as cooperative search.

A DCOP is a problem in which an objective function needs to be optimized in a dis-
tributed manner through value assignments for all variables. The objective function consists
of the aggregate of utility functions, which define a utility value for the value assignments
of the variables. All variables within the DCOP are exclusively allocated to agents. An
agent is responsible to assign values to all the variables that are allocated to it. Typically,

395

Fransman, Sijs, Dol, Theunissen & De Schutter

the number of variables is equal to the number of agents, i.e. every agent is allocated a
single variable. The agents cooperate by sending messages to agents with whom they share
a utility function. A utility function is shared between agents if their variables are in the
arguments of that function. An important aspect of a DCOP is the definition of the do-
mains of the variables. A domain defines all possible values that a variable can be assigned
to. In other words, the value assignments are restricted by the domains of the variables.
Following the notation of Fioretto et al. (2018), a DCOP is defined byD = ⟨A,X,D,F, α, η⟩
where,

• A = {a1, . . . , aM} is the set of agents, where M is the number of agents.

• X = {x1, . . . , xN} is the set of discrete variables, where N ≥ M is the number of
variables.

• D = {D1, . . . ,DN} is the set of domains of all variables, where Di ⊆ R is the finite
discrete domain associated with variable xi. The search space of the DCOP is defined
by all possible combinations of all values within the domains as Σ =

∏N
i=1Di, where∏

is the set Cartesian product. The search space of a set of variables (V ⊆ X) is
defined as ΣV =

∏
i :xi∈V

Di.

An assignment denotes the projection of variables onto their domain as ρ : X → Σ.
In other words, for all xi ∈ X if ρ(xi) is defined, then ρ(xi) ∈ Di. An assignment of
a subset of variables is denoted by ρV = {ρ(xi) : xi ∈ V}.

• F = {f1, . . . , fK} is the set of utility functions, where K is the number of utility
functions. The scope of fn is denoted as Vn ⊆ X, where xi ∈ Vn when xi is an
argument of fn. The optimum of fn is denoted by y∗n = maxx∈ΣVn

fn(x) with input
x∗n = argmaxx∈ΣVn

fn(x), where ΣVn denotes the domain of the utility function.

• α : X → A is a mapping from variables to agents. The agent to which variable xi is
allocated is denoted as α(xi). A common assumption is that the number of agents is
equal to the number of variables, such that ai = α(xi) for i = 1, . . . , N . Likewise, the
set of agents associated with fn is denoted by α(Vn) = {α(x) ∈ A | x ∈ Vn}.

• η is an operator that combines all utility functions into the objective function. Com-
mon options are the summation operator (

∑
(·)) and themaximum operator

(
max(·)

)
.

The objective function is defined by G(ρ) =
fn∈F
η
(
fn(ρVn)

)
. The optimal value assign-

ment is denoted by ρ∗ :=
ρ∈Σ

argmaxG(ρ).

Analogous to the DCOP definition, a Continuous DCOP (C-DCOP) can be defined as a
tuple ⟨A,X,D,F, α, η⟩. The definitions of A, F, α, and η are identical to their definitions in
a DCOP. The differences between a DCOP and a C-DCOP are the definition of the domain
set and the variables. All variables in the variable set of a C-DCOP, X, are continuous. The
corresponding domain set is defined as D = {D1, . . . ,DN}, where the domain for variable
xi is defined by a lower bound di and an upper bound di as Di = [di, di].

The relation between the variables and the utility functions is typically represented as
a constraint graph. In this representation, the agents are defined as nodes and the edges

396

Distributed Bayesian: A Continuous DCOP Solver

implicitly represent the utility functions. A constraint graph is often converted into a
pseudo-tree to introduce a hierarchy to the agents. A pseudo-tree is a rooted spanning tree
where the subproblems are contained in separate branches. All agents are assigned a single
parent, which is an agent higher in the hierarchy. The only exception is the agent on top of
the hierarchy, which is denoted as the root of the tree, this agent has no parent. An agent
can have multiple children and the agents without children are denoted as the leaves of the
tree.

In addition to parent/child relations, the pseudo-tree defines pseudo-parent/pseudo-child
relations to indicate relations between agents over multiple hierarchy levels. Typically, the
pseudo-tree is used as a communication structure, where agents only communicate between
parent and child. In these cases, the pseudo relation allows for (indirect) interaction between
pseudo-parent and pseudo-children. A graphical example of the two DCOP representations
is given in Figure 2.

a1

a2

a3

a4

a5x1

x2

x3

x4

x5f1

f2

f3

f4 f5

(a) Constraint graph

a1

a2 a3

a4 a5

x1

x2 x3

x4 x5

f1 f2

f3

f4

f5

(b) Pseudo-tree

Figure 2: Graphical example for two representations of the same DCOP. A node represents
an agent ai and the edges indicate the utility functions fn based on the variables xi. In
Figure 2a the nodes are unstructured. In Figure 2b the hierarchy is indicated by horizontal
layers. The agent at the top (a1) is the root of the tree, and the bottom agents (a2, a4, a5)
are the leaves. The edge (dotted line) between a1 and a4 specifies a pseudo-parent/pseudo-
child relation.

Producing a pseudo-tree from a constraint graph was introduced in the work of Freuder
and Quinn (1985). Various methods exists for the generation of a pseudo-tree (e.g. pseudo-
tree ordering (Chechetka & Sycara, 2005), MLSP tree generation (Maheswaran, Tambe,
Bowring, Pearce, & Varakantham, 2004), and BFS construction (Chen, He, & He, 2017)).
A commonly used method is to produce a depth-first search (DFS) tree from the constraint
graph by a DFS traversal. A DFS tree (Petcu & Faltings, 2005) is a special case of a pseudo-
tree where the number of edges is equal to the number of edges in the constraint graph. This
property ensures that all agents within the DFS tree are also connected in the constraint
graph. If the DFS tree is used as a communication structure, this property ensures that
agents only communicate if they share a utility function. Various algorithms exist in the
literature that creates a DFS tree through a distributed procedure. The interested reader

397

Fransman, Sijs, Dol, Theunissen & De Schutter

is referred to the works of Gallager, Humblet, and Spira (1983), Barbosa (1996), Hamadi
and Quinqueton (1998), and Awerbuch (1985) for implementation details.

3. Background of DCOP Solvers

In the literature numerous solvers for DCOPs have been proposed; for a detailed overview,
the reader is referred to Cerquides, Farinelli, Meseguer, and Ramchurn (2014) and Leite
et al. (2014). As noted by Modi et al. (2005), optimally solving a DCOP is NP-hard
with regard to the number of variables and the cardinality of their domains. For this
reason, complete (optimal) DCOP solvers are often not used in practice. In the literature, a
diverse range of incomplete (near-optimal) DCOP solvers exist that trade off solution quality
against computational requirements. Such solvers perform well for benchmark problems
with domains with low cardinalities, such as graph coloring problems (Modi et al., 2005).

DCOP solvers are unable to directly solve C-DCOPs due to the definition of the domains.
However, a C-DCOP can be discretized into a DCOP. One typically discretizes all domains
of the C-DCOP using a grid-based approach that converts the continuous domains into
discrete domains. This process can arbitrarily increase the cardinality of the domains,
thereby rendering the use of DCOP solvers intractable.

For this reason, the development of C-DCOP solvers has recently gained a lot of atten-
tion within the literature. Initially, Stranders et al. (2009) introduced the extension of the
DCOP framework towards continuous variables (and domains) and proposed a continuous
max-sum based (CMS) algorithm to solve C-DCOPs with continuous piecewise linear utility
functions. The motivation behind this class of functions was that it can approximate all con-
tinuous functions arbitrarily close. In this approach, the domain discretization is replaced
with a function approximation that has the same trade-off between resolution and solution
quality. In a follow-up paper, Voice, Stranders, Rogers, and Jennings (2010) proposed a
hybrid continuous max-sum (HCMS) algorithm without the function approximation. The
HCMS algorithm extends the max-sum algorithm by incorporating a continuous non-linear
optimization method. Within the algorithm, the domains are discretized and during op-
timization, the values are updated at every iteration based on a gradient descent method
that depends on local utility values. An important parameter of the algorithm is the step
size or learning factor with which the values are updated. The authors note that the step
size parameter of the algorithm must be adjusted for the given problem, as small values will
require numerous iterations while high values could result in overshooting of the optimum.

The concept of discretization of the continuous domains and the iteratively updating
of their values is used to extend DCOP solvers of various classes. Based on the taxonomy
introduced by Yeoh, Feiner, and Koenig (2010) DCOP solvers can be divided into three
classes:

Search-based solvers perform a distributed search over the local search space of the
agents. These solvers are based on centralized search techniques such as best-first and
depth-first to reduce the search space of the problem by exchanging messages between
the agents. Examples are ADOPT (Modi et al., 2005), CoCoA (Van Leeuwen, 2017),
AFB (Gershman et al., 2009), DSA (Kirkpatrick, Gelatt, & Vecchi, 1983), and DBA
(Wittenburg & Zhang, 2003).

398

Distributed Bayesian: A Continuous DCOP Solver

Inference-based solvers communicate accumulated information among agents to reduce
the problem size after every message through dynamic programming methods. Well-
known examples of this class of solvers are DPOP (Petcu & Faltings, 2005), the max-
sum based algorithm (Rogers, Farinelli, Stranders, & Jennings, 2011), and action GDL
(Vinyals, Rodŕıguez-Aguilar, & Cerquides, 2009).

Sampling-based solvers coordinate the sampling of the global search space guided by
probabilistic measures. The probabilistic measures are calculated based on (all) pre-
ceding samples to balance exploration and exploitation of the global search space. At
the time of writing, two sampling-based solvers are found in the literature: DUCT
(Ottens, Dimitrakakis, & Faltings, 2017) and Distributed Gibbs (Nguyen, Yeoh, Lau,
& Zivan, 2019).

The inference-based DPOP algorithm (Petcu & Faltings, 2005) is extended by Hoang
et al. (2020) into several algorithms, where AC-DPOP and the memory-limited variant
CAC-DPOP can be applied to C-DCOPs without requirements on the utility functions.
The search-based CoCoA algorithm (Van Leeuwen, 2017) is extended in a similar manner
by Sarker et al. (2020) into C-CoCoA. Both Stranders et al. (2009) and Sarker et al. (2020)
note that the local gradient descent approach cannot guarantee convergence to a global
optimum. Initial domain discretization thus remains an important factor in the solution
quality. An alternative approach to gradient-based optimization is presented by Choudhury
et al. (2020). The proposed Particle Swarm Based F-DCOP (PFD) is based on Particle
Swarm Optimization (PSO) (Kennedy & Eberhart, 1995). PSO is a stochastic optimization
technique in which multiple particles are assigned a random position and velocity. The
positions represent domain values and the velocities contain implicit derivative information.
The PFD algorithm guarantees convergence to a local optimum when the velocity of the
best particle is reduced to zero. In conclusion, local gradient-descent-based and PSO-
based algorithms will arguably find higher quality solutions compared to their discrete
counterparts, but they remain dependent on the initial discretization of the domains and
do not guarantee convergence to the global optimum.

In the literature, alternative approaches exist that are capable of extending the inference-
based or search-based solvers toward continuous domains. A prominent example is the
adaption of dynamic programming for Markov Decision Problems (MDPs) with continuous
domains toward C-DCOPs. The interested reader is referred to the work of van Hasselt
(2012), and the references therein, for a reinforcement learning approach for learning policies
for MDPs with continuous state and action spaces. Additionally, the work of Vianna,
Sanner, and de Barros (2014) extends symbolic dynamic programming techniques to solve
discrete and continuous state MDPs.

Sampling-based solvers coordinate the sampling of the global search space guided by
probabilistic measures, where samples are referred to as (partial) value assignments. Note
that in the field of stochastic optimization samples are typically only defined in the con-
text of functions perturbed by noise. The probabilistic measures are used to quantify the
probability of finding samples that correspond with function outputs with high utility val-
ues. Sampling-based solvers iteratively select samples while taking previous iterations into
account to balance exploration and exploitation of the global search space. Sampling-based
solvers have not been extended towards the application to C-DCOPs, however, the itera-

399

Fransman, Sijs, Dol, Theunissen & De Schutter

tive process allows for the selection of a sample from a continuous domain directly. The
elimination of the discretization of the domains combined with the balanced search of the
global search space makes sampling-based solvers highly promising to efficiently solve C-
DCOPs. Therefore, in Section 4, the sample selection for C-DCOPs is addressed and a
novel sampling-based solver for C-DCOPs is introduced in Section 5.

4. Sample Selection for Continuous DCOPs

As mentioned in Section 3, a sampling-based solver will be introduced such that the relation
between the value assignment and the corresponding utility will be taken into account
within the optimization process. During the optimization process, a sample is defined as a
value assignment of a variable. Samples of agents are combined and used as inputs for the
utility functions to calculate the corresponding utility values. Within the literature several
methods exist for sample generation:

• Upper Confidence Bound (UCB) sampling (Auer, Cesa-Bianchi, & Fischer, 2002),
developed for the reduction of regret for K-armed bandit problems (Bather, Berry, &
Fristedt, 1986).

• Gibbs sampling (Geman & Geman, 1984), constructed to approximate joint probabil-
ity distributions in a Markov random field.

• Bayesian sampling (Mockus, 1982), designed for the optimization of utility functions
that are computationally expensive to evaluate.

UCB sampling has been applied to DCOPs by Ottens et al. (2017) based on the UCB
Applied to Trees (UCT) (Kocsis & Szepesvári, 2006) and HOO (Bubeck, Munos, Stoltz, &
Szepesvári, 2011). The resulting algorithm, Distributed UCT (DUCT), generates samples
based on previously returned values and the uncertainty (or confidence) over these values.
All possible values (of the discrete domains) are sampled at least once before sampling
is based on the confidence bounds. Gibbs sampling has been extended by Nguyen et al.
(2019) for the optimization of DCOPs based on the mapping of a DCOP to a maximum
a posteriori (MAP) estimation problem. The MAP is found by approximating a joint
probability distribution over all the variables. Samples are generated to approximate the
joint probability distribution in a distributed manner. Note that several initial samples are
required to accurately represent the desired distribution.

Both UCT and Gibbs sampling share a drawback compared to Bayesian sampling: these
methods do not allow for the inclusion of a priori knowledge about the utility functions.
This allows for Bayesian sampling to generate samples more efficiently than UCT and Gibbs.
For this reason, in this paper, Bayesian sampling is extended towards the application to
C-DCOPs.

Bayesian sampling is based on Bayesian optimization which is a method to find the
global optimum of a function in a sample-efficient manner, i.e. it minimizes the number of
required samples. Bayesian optimization consists of two elements: a probabilistic model to
approximate a (utility) function f(·), and an acquisition function q(·) to optimally select
a new sample xs, where s denotes the sample index. These two elements are discussed in
more detail in Sections 4.1 and 4.2. Every input/output pair, Os = (xs, ys), is included in

400

Distributed Bayesian: A Continuous DCOP Solver

the ordered observations set OS = {O1, . . . , OS}, where S is the number of observations
and ys = f(xs) is the function (utility) value. The observations are used to update the
probabilistic model, such that after every new observation the approximation is refined.
Based on observations, the probabilistic model is used to estimate a mean function

µ(x,O) = E [f(x)|O]

and the corresponding variance function

σ2(x,O) = E
[
([f(x)|O]− µ(x,O))2

]
.

An overview of the Bayesian optimization algorithm is given in Algorithm 1.

Algorithm 1: Bayesian optimization (Mockus, 1982)

Input : f(·), q(·), S
Output: µ(x,O), σ2(x,O)
/* Initialize the observation set */

O0 := ∅;
for s = 1, 2, . . . , S do

/* Select the next sample based on acquisition function */

xs := argmaxx q(x|Os−1);
/* Sample the utility function */

ys := f(xs);
/* Augment (and reorder) the observation set */

Os := Os−1 ∪ {(xs, ys)};
/* Calculate the mean function and the variance function */

µ(x,O) = E [f(x)|O];

σ2(x,O) = E
[
([f(x)|O]− µ(x,O))2

]
;

end

4.1 Probabilistic Model

The Gaussian process is a widely used probabilistic model to represent acquired knowledge
about a function. More elaborate models exist, but these will often not share the com-
putational benefit of the Gaussian process model. Using the Gaussian process model, a
function f(·) is modeled based on a prior mean function m(x) = E [f(x)] and a kernel

κ(x, x′) = E
[(
f(x)−m(x)

)(
f(x′)−m(x′)

)T]
. The kernel represents the cross-correlation

between two values of a variable x, x′. The prior mean function and the kernel contain all
(prior) knowledge of f(·). Typically, no prior information about the function is available
and the zero function (m(x) = 0 for all x) is used as the prior mean function. In such cases,
the modeling of the function depends mostly on the choice of the kernel. The Gaussian pro-
cess model is combined with the observations to construct the joint Gaussian distribution
over the function.

401

Fransman, Sijs, Dol, Theunissen & De Schutter

From the joint Gaussian distribution, the posterior (distribution) can be found by using
the Sherman-Morrison-Woodbury formula (Sherman & Morrison, 1950):

P (f(x)|O) = N
(
µ(x|O), σ2(x|O)

)
, (1)

where

µ(x|O) = k(x|O)TK−1(O)y(O), (2)

σ2(x|O) = κ(x, x)− k(x|O)TK−1(O)k(x|O), (3)

and N denotes the normal distribution, K(O) is the Gramian matrix of the kernel, defined
by (K)i,j = κ(xi, xj) for all i, j ∈ {1, . . . , S}, k(x|O) = [κ (x1, x) , . . . , κ (xS , x)]

T denotes
the cross-correlation vector between the observations and x, and y(O) = [y1, . . . , yS]

T

denotes the observation value vector. The (posterior) mean and variance functions of the
probabilistic model are denoted as µ(·) and σ2(·), respectively. Note that the posterior
distribution contains the estimate of the function based on both the prior knowledge and
the observations.

A wide range of kernels for Gaussian processes exist in the literature and the interested
reader is referred to the work of Duvenaud, Nickisch, and Rasmussen (2011) for an overview
of constructing kernels. An important kernel property is the ability to estimate every
continuous function up to a required resolution given a sufficient number of observations.
A kernel that possesses this property is called a universal kernel. In the work of Micchelli,
Xu, and Zhang (2006), the conditions for a kernel to be universal in terms of properties of
its features are given. The most commonly used universal kernel is the squared exponential
kernel. A general description of the kernel and its properties is given by Vert, Tsuda, and
Schölkopf (2004). A drawback of the squared exponential kernel is that it can result in over-
smooth approximations. For this reason, the Matérn kernel (Minasny & McBratney, 2005)
is often used, since it can trade off differentiability and smoothness. In practice, the choice
for a kernel depends on the properties of the function that needs to be approximated. All
kernels have parameters that can be used to adjust their properties, such as smoothness and
scaling. If information about f(·) is available, this should be incorporated in the selection
of the kernel and its parameters. Typically, it is assumed that no information about f(·)
is available, and then, as noted by Rasmussen and Williams (2006), the selection of the
parameters is non-trivial. For this reason, the selection of parameters is often treated as
a separate optimization problem (MacKay, 1992). It is commonly solved by using the
maximum likelihood problem for which automatic relevance detection (MacKay, 1994) is a
widely used algorithm.

4.2 Acquisition Function

The selection of the next sample is the result of the optimization of an acquisition function
q(·), defined by

xs = argmax
x

q(x|O).

The acquisition function depends on the posterior distribution in Equation (1) and thereby
on all previous observations. Two commonly used acquisition functions are the probability

402

Distributed Bayesian: A Continuous DCOP Solver

of improvement function (Kushner, 1964) and the expected improvement function (Mockus,
Tiesis, & Zilinskas, 1978). The probability of improvement function considers the probability
of finding a sample of which its value is larger than the maximum observed value. The
maximum observed value is defined as

y+ = max{ys : (xs, ys) ∈ O}.

The corresponding maximum sample is defined as x+ = {xs : (xs, ys) ∈ O|ys = y+}. As
noted by Brochu, Cora, and de Freitas (2010), the probability of improvement function
focuses solely on the exploitation of already observed samples. To balance the exploration
of the search space and exploitation of the observations, the expected improvement function
will be used in this chapter. The expected improvement function chooses the sample based
on the expected value of the next observation. The interested reader is referred to Brochu
et al. (2010) for a comparison of the two acquisition functions and more details. The
expected improvement function can be written in closed form in terms of the mean and the
deviation function of the probabilistic model as

qEI(x, ξ|O) =

{
z(x, ξ|O)Φ

(
z(x,ξ|O)
σ(x|O)

)
+ σ(x|O)ϕ

(
z(x,ξ|O)
σ(x|O)

)
if σ(x|O) > 0

0 if σ(x|O) = 0
(4)

z(x, ξ|O) = µ(x|O)−
(
y+ + ξ

)
(5)

where Φ(·) is the Gaussian cumulative distribution function, ϕ(·) is the Gaussian probability
density function, and ξ is a design parameter. The design parameter can be used to trade
off exploration and exploitation. As noted by Lizotte, Greiner, and Schuurmans (2012),
even a value as low as ξ = 0 will not result in a solely exploiting sampling behavior.

5. The Distributed Bayesian Algorithm

In the previous sections, background information has been given about the DCOP frame-
work and Bayesian optimization. In this section, the novel sampling-based C-DCOP solver
Distributed Bayesian (D-Bay) is presented. This solver is capable of directly solving C-
DCOPs without discretization of the domains. D-Bay uses Bayesian optimization as the
probabilistic measure to optimize the sample selection. The overall procedure is similar to
state-of-the-art sampling-based solvers, e.g. DUCT (Ottens et al., 2017) and Sequential
Distributed Gibbs (SD-Gibbs) (Nguyen et al., 2019).

Sampling-based solvers coordinate the sampling of the global search space guided by
probabilistic measures to balance exploration and exploitation. The general outline of
sampling-based solvers is as follows. Based on a pseudo-tree representation of the C-DCOP,
the variables and utility functions are allocated to the agents. Afterward, two consecutive
phases are iteratively repeated until a termination condition is satisfied. The first phase, the
sampling phase, is top-down and starts from the root agent. The root starts the sampling
phase by selecting a sample for all its variables. A sample can be viewed as a temporary
value assignment of a variable. The sample is sent as a sample message to all the children
of the agent. Upon receiving this message, an agent samples its variables and adds these
samples to the sample message before sending it to its children. This process continues
until the leaf agents are reached.

403

Fransman, Sijs, Dol, Theunissen & De Schutter

When the leaf agents are reached, the utility phase is initiated. This second phase is
bottom-up and starts from the leaf agents. Based on the allocated utility functions, the
agents calculate the utility (value) based on the sample message and the assignments of
their variables. This utility is encoded within a utility message and sent to the parent of
the agent. Upon receiving a utility message, an agent calculates the utility of its allocated
utility functions. The resulting utility value is aggregated with the utility value of the
received message before sending a utility message to its parent. This phase finishes when
the root agent received a utility message from all its children. This moment marks the
end of a single iteration. At this time, all agents have obtained the utility value associated
with the sample of their variables. This information is used by the agents to update their
probabilistic models and thereby the selection of their sample at the next iteration.

The main difference between sample-based solvers is in the method of selecting additional
samples. The probabilistic measure in DUCT is based on confidence bounds of the utility
of the samples and selects samples to improve these bounds. The agents store the utility for
all previous samples during optimization. The Distributed Gibbs algorithm selects samples
based on joint probability distributions and only keeps track of the differences between the
utility values of the samples as a termination criterion. This makes Distributed Gibbs more
memory efficient compared to DUCT.

Both algorithms are DCOP solvers and have a runtime complexity that is linear in
the cardinality of the largest domain (Fioretto et al., 2018, Table 4). Therefore, both
Distributed Gibbs and DUCT suffer from the discretization of continuous domains and are
not suitable for continuous DCOPs.

An additional disadvantage of both solvers is the non-determinism with regard to the
utility value of a sample. This is caused by the consecutive sampling and utility phases
since within an iteration all agents sample a single value from their local search space. In
other words, the same sample message can result in different utility messages when the
children of an agent select different samples for their variables.

To remove the non-determinism, the sampling and utility phase in D-Bay will be re-
stricted to parents and children instead of the entire pseudo-tree. To be more precise, when
a child receives a sample message it will first iterate between its children before sending a
utility message to its parent. This will guarantee that the utility message in response to
a sample message will always be identical.

404

Distributed Bayesian: A Continuous DCOP Solver

D-Bay as described in Algorithm 2 (Appendix A) involves four phases:

(1) Pseudo-tree construction: The agents create a pseudo-tree from the constraint graph
of the C-DCOP. Afterwards, every agent ai knows its parent/children sets (Pi/Ci)
and pseudo-parents/pseudo-children sets (PPi/PCi), where Pi,PPi,Ci,PCi ⊂ A.
The pseudo-tree is used as the communication structure in which agents only com-
municate with agents with whom they share a parent/child relation. Note that the
agents only have local information on the pseudo-tree.

(2) Allocation of utility functions: Similar to the allocation of variables, all utility
functions in F are exclusively allocated to the agents. Every agent ai constructs
two separate function sets based on the variables of the agent and the variables of its
(pseudo-)parents. Firstly, the utility function set Fai = {fn ∈ F : α(Vn) = {ai}},
which only depends on the agent itself. Secondly, the shared utility function set,
FPi = {fn ∈ F : (ai ∈ α(Vn)) ∧ (α(Vn) ∩ (Pi ∪PPi) ̸= ∅)}, involves the agent and
its (pseudo-)parents. These two function sets are combined as Fi = Fai ∪ FPi .

(3) Sample propagation: In this phase, every agent optimizes its variables through the
Bayesian optimization method and exchanges sample and utility messages. By
doing so, the assignments of the variables will converge to the global optimum of the
objective function as will be shown in Section 6.2. The variables of ai are defined as
Xi = {xj ∈ X | ai ∈ α(xj)}. The variables are optimized based on the aggregate
utility of all functions in set Fi and the functions of its children (fn ∈ Fk for all
ak ∈ Ci). Consequently, the aggregate utility values obtained by the root agent hold
the utility values of the objective function.

Since a sample from (pseudo-)parents is required to calculate the utility of the func-
tions in FPi , every agent ai waits for a sample message from its parent. The phase
is therefore initiated by a sample message from the root agent. The sample propaga-
tion phase finishes when a convergence threshold is reached by the root agent. Upon
receiving sample message Sj from its parent aj , agent ai samples its variables with
respect to the functions in set Fi. The samples are selected through the optimiza-
tion of an acquisition function. Note that the acquisition function depends on both a
kernel and all preceding samples. If the agent is a leaf agent, the agent can optimize
its variables without considering the impact of its assignments on other agents. The
agents with children augment the sample message of their parent with their sample
as Si = Sj ∪ {ρXi} and send this message to their children.

The agent then waits until it has received all utility messages from its children. Only
then is the agent able to compute the aggregate utility and return a utility message
to its parent. Note that the aggregate utility represents the optimal utility for the
sample of the agent and all its (pseudo-)children. A utility message is defined as

Uj
i = η

(
Ui, Ûi

)
, where Ui = min

ρ∈ΣXi

η
fn∈Fi

(
fn(ρVn | Sj)

)
and Ûi = η

ak∈Ci

(
Ui
k

)
define

the utility and the aggregated child utility, respectively. A graphical overview of the
sample propagation phase is shown in Figure 3. Additionally, a partial trace of the
Bayesian optimization is shown in Figure 4.

405

Fransman, Sijs, Dol, Theunissen & De Schutter

(4) Assignment propagation: The final phase is the assignment propagation phase, in
which the root agent a1 sends the final assignment of all its variables to its children
as a final message Ŝ1 = {ρ̂X1}. Based on these assignments, the children assign their
variables to the value corresponding to the optimal utility value. Afterwards, every
agent adds its assignments to the final message as Ŝi = {ρ̂Xi} ∪ Ŝj . After the leaf
agents have received a final message, all agents have completed their local assign-
ments ρ̂Xi . Note that typically no agent has information of the complete assignment,
ρ̂ = {ρ̂Xi : i = 1, . . . ,M}.

Proposition 1. The memory complexity of each agent in D-Bay is O(S), where S is the
number of samples at every iteration.

Proof. The optimization of the variables of an agent is restarted every time a sample
message from the parent is received. An agent only needs to store the utility of the values
based on the current (local) iteration to send the best utility value back to its parent, thereby
restricting the memory requirement per agent to O(S).

Proposition 2. The maximal message size for all messages in D-Bay is O(t), where t is the
maximal depth of the tree.

Proof. The utility message has a fixed size of O(1) as it contains a single utility value
related to the current sample message S. Both the sample message and the final message
are appended with the sample of the agent before it is sent to the children of the agent.
This limits the size of these messages to O(t).

Proposition 3. The total number of messages sent by an agent in D-Bay is O(cSt), where
t is the depth of the tree, S is the number of samples and c denotes the largest number of
children.

Proof. When agent ai receives a sample message from its parent it generates S samples
that are sent to all its children Ci. This process continues until the leaves of the pseudo-tree
are reached and will bind the number of messages for an agent to O(cSt).

Proposition 4. The maximal runtime complexity of each agent in D-Bay is O(St), where t
is the depth of the tree.

Proof. For every sample message an agent receives it optimizes the value of its next sample
through Bayesian optimization a total of S times. The runtime complexity of the agents is
greatest for the leaf agents and therefore the maximum number of samples for an agent is
O(St).

In the next section, the convergence of D-Bay to the global optimum of a C-DCOP is
analyzed. D-Bay utilizes Bayesian optimization for the sample selection within the sample
propagation phase. For that reason, the performance of D-Bay depends highly on the
properties of the Bayesian optimization method. As mentioned in Section 4, Bayesian
optimization consists of the combination of a kernel and an acquisition function. Therefore,
the analysis is focused on the selection of the kernel, the acquisition function, and their
parameters.

406

Distributed Bayesian: A Continuous DCOP Solver

S
ta
rt

F
in
is
h

1

2 3

4 5

U4 U5

1

2 3

4 5

S3

1

2 3

4 5U34 U35

1

2 3

4 5

S1

1

2 3

4 5

U31

2 3

4 5

U131

2 3

4 5

U1

31

Threshold

not reached

Threshold

not reached

I

VII VI

II III

V IV

Figure 3: Graphical overview of the sample propagation phase of D-Bay. Agents are in-
dicated by circles labeled with an agent index, and utility functions are shown as black
lines. Starting from the root a1 (I), sample message S1 is sent to its children (a2, a3).
Subsequently, agent a3 will send sample message S3 to its children (II). After iterating
between its children and calculating its local utility (III), agent a3 combines all utilities (IV)
and checks its threshold (V). The check for the threshold is indicated by an annotated grey
diamond. If the threshold is reached the agent a3 sends utility message U1

3 to its parent
(VI). This process is repeated when the root a1 sends another sample message and finishes
when a1 the convergence threshold or the number of samples is reached (VII). Note that
the interactions between a1 and a2 are not illustrated for brevity.

407

Fransman, Sijs, Dol, Theunissen & De Schutter

1

2 3

4 5

1

2 3

4 5

1

2 3

4 5

1

2 3

4 5

(a) Partial trace for simple DCOP during sample propagation phase. During the optimization,
the children sample their variables based on the sample message of a parent. This dependency is
indicated by the curly brackets, where the samples associated with a parent sample are contained
within the curly bracket.

1

2 3

4 5

(b) Detailed view for agent a5.

Figure 4: Graphical examples of a partial trace of the Bayesian optimization process. The
agent associated with the trace is shown on the left. The trace consists of the utility function
approximation (top) and the acquisition function (bottom). The function approximation
shows the samples (), the mean (), and the standard deviation (). The acquisition
function shows both the values () and its optimum (). The optimum of the acquisition
function determines the next sample of the objective function.

408

Distributed Bayesian: A Continuous DCOP Solver

6. Theoretical Analysis of D-Bay

This section analyses the convergence of D-Bay to the global optimum of a C-DCOP in two
parts. Firstly, in Section 6.1, the convergence to the global optimum of the utility functions
within the sampling propagation phase is proven. It shows that if the Lipschitz constant of
the utility functions is known, the convergence to the global optimum can be guaranteed
through the appropriate selection of the kernel and the acquisition function. In this paper,
all utility functions are assumed to be Lipschitz continuous with known Lipschitz constant.
A utility function f(·) is Lipschitz continuous with Lipschitz constant Lf if

|f(xi)− f(xj)| ≤ Lf |xi − xj | ∀xi, xj ∈ dom(f) (6)

where dom(f) denotes the domain of the utility function.
Secondly, in Section 6.2, the convergence of D-Bay to the global optimum of the objective

function based on the global optima of the utility functions is proven. This analysis focuses
on the assignment propagation phase. The two parts of the analysis are combined to prove
the convergence of D-Bay to the global optimum of C-DCOPs with utility functions with
known Lipschitz constants.

6.1 Convergence of Bayesian Optimization Based on Lipschitz Continuous
Functions

As shown by Törn and Žilinskas (1989), the convergence to the global optimum of a function
by Bayesian optimization can only be guaranteed through dense sampling of the domain
of the function. For this reason, within the Bayesian optimization method, the acquisition
function will need to produce dense samples. In the work of Vazquez and Bect (2010,
Theorem 6), the expected improvement acquisition function, given by Equation (4), is
proven to produce dense observations within its search region. The search region is defined
in Definition 1.1.

Definition 1.1. The search region of the acquisition function qEI(·) (based on f(·) and O)
is defined by

S = {x ∈ dom(f) : qEI(x, ξ|O) > 0}.
As a consequence of the dense sample generation property, S will converge to an empty

set when the number of samples goes to infinity. Therefore, since the next sample is chosen
from the search region (xs ∈ S), the global optimum (x∗) will be sampled for s → ∞ if
x∗ ∈ S. In other words, if the optimum inclusion (x∗ ∈ S) property holds, then global
convergence is guaranteed.

Definition 1.2. The upper bound function f̄(x|O) of (a Lipschitz continuous) function
f(·) over all observations in O is defined by

f̄(x|O) = min{Lf |x− xs|+ ys : (xs, ys) ∈ O} ∀x ∈ dom(f).

Definition 1.3. The upper bound region of f(·) holds all values of x for which the upper
bound function f̄(·) (Definition 1.2) is larger than the maximum observed value y+ and is
defined by

U = {x ∈ dom(f) : f̄(x|O) > y+}.

409

Fransman, Sijs, Dol, Theunissen & De Schutter

To find the conditions for which the optimum inclusion holds, the upper bound region
set is introduced. The upper bound region set U (Definition 1.3) is based on the upper
bound function f̄(·) (Definition 1.2). Note that by definition, f̄(x) ≥ f(x) for all x and U
does not include any observations in O since f̄(x|O) = ys ≤ y+ for all xs. As shown in
Lemma 1.1, this region is guaranteed to include the global optimum if the optimum has
not already been observed. A graphical example of sets U and S, and f̄(·) can be seen in
Figure 5.

Posterior distribution
µ

f̄

y+

µ + σ

(x̂, ŷ)

U
O

Acquisition function
q

S

Figure 5: Graphical overview of the sets U , S, and the upper bound function f̄(·) based on
the observations O.

Lemma 1.1. The upper bound region U includes the optimum sample x∗ if it has not been
observed. Formally, if x+ ̸= x∗, then x∗ ∈ U .

Proof. By Definition 1.2 and Equation (6), the value of the upper bound function at the
optimal sample is larger or equal to the optimal value. Formally, f̄(x∗|O) ≥ y∗. If the
optimal sample has not been observed (x∗ ̸= x+), then y∗ > y+. Consequently, f̄(x∗|O) >
y+. Therefore, by definition of the upper bound region (Definition 1.3) the optimal sample
is included (x∗ ∈ U).

Based on the definition of the upper bound region, the optimum inclusion is satisfied
when the set inclusion U ⊆ S holds. The conditions for the set inclusion are given in two
parts. Firstly, in Lemma 1.2 it is shown that if for all samples where the sum of the mean and
deviation function is greater or equal to the highest sampled value, the sample is included
in the search region set. Secondly, by Definition 1.3, the upper bound function defines all
samples that are within the upper bound region set. By combining both conditions, we
find that if the sum of the mean and deviation function is greater than the upper bound
function, then U ⊆ S, as shown in Lemma 1.3.

410

Distributed Bayesian: A Continuous DCOP Solver

Lemma 1.2. If µ(x|O) + σ(x|O) ≥ y+ + ξ and σ(x|O) > 0 then x ∈ S.

Proof. By Definition 1.1, x ∈ S if qEI(x, ξ|O) > 0. Let σ(x|O) > 0 and define

w(x, ξ|O) = z(x,ξ|O)
σ(x|O) and through substitution rewrite Equation (4) as

qEI(x, ξ|O) = z(x, ξ|O)Φ
(
w(x, ξ|O)

)
+ σ(x|O)ϕ

(
w(x, ξ|O)

)
. (7)

Since σ(x|O) > 0, we find qEI(x, ξ|O) > 0 if qEI(x,ξ|O)
σ(x|O) > 0 where

qEI(x, ξ|O)

σ(x|O)
= w(x, ξ|O)Φ

(
w(x, ξ|O)

)
+ ϕ

(
w(x, ξ|O)

)
.

Define h(w) = wΦ (w) + ϕ (w). Then since Φ′ (w) = ϕ (w) and ϕ (w) = 1√
2π
e−

1
2
w2

, we

find h′(w) = Φ (w) + wϕ (w) − wϕ (w) = Φ (w). Let µ(x|O) + σ(x|O) ≥ y+ + ξ, then
z(x, ξ|O) ≥ −σ(x|O) and w(x, ξ|O) ≥ −1. For w in the interval (−1,∞] we find

h(w) =

∫ w

−1
h′(v)dv + h(−1) =

∫ w

−1
Φ(v)dv − Φ(−1) + ϕ(−1) > 0,

since Φ(w) > 0 for finite inputs, and −Φ(−1) + ϕ(−1) > 0.
Therefore, if µ(x|O)+σ(x|O) ≥ y++ξ and σ(x|O) > 0, then qEI(x, ξ|O) > 0 and x ∈ S.

Lemma 1.3. If µ(x|O) + σ(x|O) ≥ f̄(x|O) + ξ for all x ∈ dom(f), then U ⊆ S.

Proof. As shown in Lemma 1.2, if µ(x|O) + σ(x|O) ≥ y+ + ξ and σ(x|O) > 0, then x ∈ S.
By definition of U , for all x ∈ U we find f̄(x|O) > y+. Additionally, for all x ∈ U we
find σ(x|O) > 0, since σ2(x|O) = 0 only if x = xs and by definition xs /∈ U . Therefore, if
µ(x|O) + σ(x|O) ≥ f̄(x|O) + ξ, then x ∈ S for all x ∈ U .

Note that µ(·) and σ(·) depend on the kernel and f̄(·) depends on the Lipschitz constant.
This raises the question of which (type of) kernel is capable of explicitly associating its mean
function and variance function to the Lipschitz constant.

An answer can be found in the work of Ding and Zhang (2018), where Markovian
class kernels are introduced as kernels that possess a Markovian posterior distribution.
The value of a Markovian posterior distribution for a certain input value only depends on
the observations surrounding that value. This property is beneficial as the upper bound
function, which is directly related to the Lipschitz constant, possesses the same property.
An additional benefit of this class of kernels is that the elements ofK−1(O) can be expressed
analytically. This removes the need of inversion of a matrix of which the size grows with the
number of observations, since K(O) ∈ RS×S . As noted by Rasmussen and Williams (2006),
this inversion is considered a major restriction to the practical application of Bayesian
optimization. In general, a Markovian class kernel is defined by

κ(xi, xj) = λ2
(
p(xi)g(xj)Ixi≤xj + p(xj)g(xi)Ixi>xj

)
for some function p(·) and g(·), where I(·) is the indicator function and λ is the kernel scale
parameter. The observations are (re)ordered after every new observation, such that for

411

Fransman, Sijs, Dol, Theunissen & De Schutter

scalar arguments x1 ≤ x2 ≤ · · · ≤ xS . The mean function µs(·) and the variance function
σ2
s(·) of the posterior on the interval between observations for a kernel of this class is defined

by,

µs(x|O) = κT
s (x,O)K−1

s (O)ys(O), (8)

σ2
s(x|O) = κ (x, x)− κT

s (x,O)K−1
s (O)κs(x,O), (9)

for x ∈ [xs−1, xs], where

κs(x,O) =
[
κ (x1, x) . . . κ (xs−1, x) κ (xs, x) κ (xs+1, x) . . . κ (xS , x)

]T
,

ys(O) =
[
y1 . . . ys−1 ys ys+1 . . . yS

]T
,

and K−1
s (O) is a tridiagonal matrix of appropriate dimensions where the tridiagonal ele-

ments of K−1
s (O), for S ≥ 3 and if Ks(O) is nonsingular, are given by

(K−1
s (O))s,s =

λ−2p(x2)

p(x1)
(
p(x2)g(x1)−p(x1)g(x2)

) , if s = 1,

λ−2
(
p(xs+1)g(xs−1)−p(xs−1)g(xs+1)

)(
p(xs)g(xs−1)−p(xs−1)g(xs)

)(
p(xs+1)g(xs)−p(xs)g(xs+1)

) , if s ∈ {2, . . . , S − 1},

λ−2g(xS−1)

g(xS)
(
p(xS)g(xS−1)−p(xS−1)g(xS)

) , if s = S,

and

(K−1
s (O))s−1,s = (K−1

s (O))s,s−1 =
−λ−2(

p(xs)g(xs−1)− p(xs−1)g(xs)
) , s = 2, . . . , S.

All other elements of K−1
s (O) are equal to zero.

Next, we show that for the Dirichlet kernel, as introduced by Ding and Zhang (2018),
the inequality of Lemma 1.3 will hold for all observations if the kernel scale λ is chosen
appropriately. This kernel is selected over other Markovian class kernels because of its
simplicity. The Dirichlet kernel defined by

κd(xi, xj) = λ2min(xi, xj)(1−max(xi, xj)) (10)

for xi, xj ∈ [0, 1]. Note that for κd, we find that p(x) = x and g(x) = (1 − x). The
mean function, given by Equation (8), and the variance function, given by Equation (9),
corresponding to the Dirichlet kernel in the interval [xs−1, xs] can be written as

µs(x|O) =
ys−1(xs − x) + ys(x− xs−1)

xs − xs−1
, (11)

σ2
s(x|O) = λ2−(xs − x)(xs−1 − x)

xs − xs−1
. (12)

The derivation of Equations (11) and (12) can be found in Appendix B. It is important to
note that both the mean function and the variance function on the interval [xs−1, xs] only
depend on the observations at the boundaries of the interval.

412

Distributed Bayesian: A Continuous DCOP Solver

Based on Equations (11) and (12), the inequality of Lemma 1.3 holds if

µs(x|O) + σs(x|O) ≥ f̄(x|O) + ξ for x ∈ [xs−1, xs] (13)

for all s ∈ {1, . . . , S}, given x1 = 0 and xS = 1. In other words, by using the Dirichlet
kernel, instead of analyzing the inequality in Lemma 1.3 over the entire domain of the
function, it is sufficient to analyze Equation (13) on the intervals between the observations.

Now that the acquisition function and the kernel have been selected, we need to find their
parameters (ξ and λ) such that the inequality of Equation (13) holds. These parameters
can be appropriately chosen based on the Lipschitz constant as given in Theorem 1.4.

Theorem 1.4. For a function f(·) with known Lipschitz constant Lf and dom(f) = [0, 1],
the Dirichlet kernel κd, and S ≥ 3, where x1 = 0 and xS = 1,
will yield µ(x|O) + σ(x|O) ≥ f̄(x|O) for all x ∈ dom(f) if λ ≥ Lf .

Proof. Let the functions µs(·) and σs(·) be as defined by Equations (11) and (12), respec-
tively. At the observations (x = xs for s ∈ {1, . . . , S}), the inequality µ(x|O) + σ(x|O) ≥
f̄(x|O) is satisfied, since µs(xs|O) + σs(xs|O) = f̄(xs|O) = ys. Therefore, by letting x1 = 0
and xS = 1, only the closed intervals x ∈ [xs−1, xs] for all s ∈ {2, . . . , S} need to be
examined. The proof will focus on these closed intervals next.

Based on Equations (11) and (12) the inequality µ(x|O) + σ(x|O) ≥ f̄(x|O) for the
Dirichlet kernel at the closed intervals can be rewritten as

µs(x|O) + σs(x|O) ≥ f̄(x|O) where x ∈ [xs−1, xs] for all s ∈ {2, . . . , S}. (14)

For the benefit of the analysis, we normalize the function input for every interval by defining
a normalized function argument as

τs(x|O) =
x− xs−1

∆xs
. (15)

Where ∆xs = xs − xs−1 is the size of the interval, and τs(x|O) ∈ [0, 1] for x ∈ [xs−1, xs].
All possible critical points of f̄(·), τ̂s, can be written as a function of νs(O) as

τ̂s(νs|O) =
1

2
+

(ys − ys−1)

2Lf∆xs
(16)

=
1

2
(1 + νs(O)) , (17)

where νs(O) ∈ [−1, 1] is defined as

νs(O) =
ys − ys−1

Lf∆xs
.

Likewise, the upper bound function f̄(·) (Definition 1.2) can be rewritten based on the
normalized interval as

f̄s(x|O) =

{
Lf∆xsτs(x|O) + ys−1 if 0 ≤ τs(x|O) < τ̂s(νs|O),

Lf∆xs(1− τs(x|O)) + ys if τ̂s(νs|O) ≤ τs(x|O) ≤ 1.
(18)

413

Fransman, Sijs, Dol, Theunissen & De Schutter

Figure 6: Graphical overview of the normalized function argument τs(x|O) over its domain
[0, 1]. The domain corresponds to the interval [xs−1, xs+1] where µs(·) and σs(·) are based on
the Dirichlet kernel and f̄s(·) is based on Lf and ∆xs. Based on the upper bound function,
the domain can be divided into two intervals [0, τ̂s(νs|O)) and [τ̂s(νs|O), 1].

A graphical overview of the normalized interval and the corresponding functions can be
seen in Figure 6.

After defining these variables, two separate intervals can be considered, [0, τ̂s(νs|O)) and
[τ̂s(νs|O), 1]. Both these intervals will be investigated next.

Interval [0, τ̂s(νs|O)): Let τs(x|O) ∈ [0, τ̂s(νs|O)). The mean function, given by Equa-
tion (11), on the interval can be rewritten based on the normalized function argument
as

µs(x|O) =
ys−1(xs − x) + ys(x− xs−1)

xs − xs−1

= ys−1(1− τs(x|O)) + ysτs(x|O)

= ys−1 + τs(x|O)Lf∆xsνs(O). (19)

Likewise, the variance function in Equation (12) can be rewritten as the deviation
function as

σs(x|O) = λ

√
−(xs − x)(xs−1 − x)

xs − xs−1

= λ
√
(1− τs(x|O))τs(x|O)∆xs. (20)

Substitution of Equations (18) to (20) into Equation (14) yields

µs(x|O) + σs(x|O) ≥ f̄s(x|O)

λ ≥ (1− νs(O))

√
τs(x|O)

(1− τs(x|O))
Lf

√
∆xs. (21)

414

Distributed Bayesian: A Continuous DCOP Solver

Note that Equation (21) gives an explicit expression of the value for the kernel scale λ
and all possible values of input/output pairs of the observations through the auxillary
variable νs(O).

To analyze the values of λ for which the inequality of Equation (21) holds, the upper
bound of the right-hand side is determined.

Since
√

τs(x|O)/(1− τs(x|O)) is monotonically increasing with respect to τs(x|O), we
find for τs(x|O) in the interval [0, τ̂s(νs|O)),

(1− νs(O))

√
τs(x|O)

(1− τs(x|O))
≤ (1− νs(O))

√
τ̂s(νs|O)

(1− τ̂s(νs|O))

≤ (1− νs(O))

√
1
2(1 + νs(O))

(1− 1
2(1 + νs(O)))

≤
√
1− νs(O)2

≤ 1.

Furthermore, since ∆xs ≤ ∆x ≤ 1, we find through substitution of the upper bounds
in Equation (21) that if λ ≥ Lf , then Equation (21) is satisfied for all possible obser-
vations.

Interval [τ̂s(νs|O), 1]: For this interval the same approach is applied. Let τs(x|O) ∈
[τ̂s(νs|O), 1]; then substitution of Equations (18) to (20) in Equation (14) yields

µs(x|O) + σs(x|O) ≥ f̄s(x|O)

λ ≥ (1 + νs(O))

√
(1− τs(x|O))

τs(x|O)
Lf

√
∆xs. (22)

Since
√

(1− τs(x|O))/τs(x|O) is monotonically decreasing with respect to τs(x|O),
we find

(1 + νs(O))

√
(1− τs(x|O))

τs(x|O)
≤ 1. (23)

Therefore, we conclude that for the interval [τ̂s(νs|O), 1] if λ ≥ Lf then Equation (22)
is satisfied for all possible observations.

In conclusion, if λ ≥ Lf , we find that the inequality of Equation (14) will hold for the
intervals [xs−1, xs] for s ∈ {1, . . . , S}. Since x1 = 0 and xS = 1, Equation (13) hold for all
x ∈ (0, 1). Subsequently, µ(x|O) + σ(x|O) ≥ f̄(x|O) will holds for all x ∈ [0, 1].

According to Theorem 1.4, if λ ≥ Lf we find µ(x|O) + σ(x|O) ≥ f̄(x|O) for all
x ∈ dom(f). Applying Lemma 1.3 and setting ξ = 0, yields U ⊆ S where x∗ ∈ S for all
observations. Subsequently, the Bayesian optimization will converge to the global optimum
of the function. Note that for all functions without a normalized domain, the Lipschitz
constant should be scaled according to the scaling required for the normalization of the
domain.

415

Fransman, Sijs, Dol, Theunissen & De Schutter

6.2 Convergence of D-Bay Based on Global Optima of Utility Functions

As shown in Section 6.1, all agents can find the global optimum of the aggregate utility of
their utility functions and the utility functions of their children through Bayesian optimiza-
tion. In this section, it will be shown that given the global optima of the utility functions,
D-Bay will find the global optimum of the objective function.

During the sample phase of D-Bay, none of the agents can optimize their variables
without interaction with other agents. The interaction involves the sending of (top-down)
sample messages S and (bottom-up) utility messages U. Therefore, for the leaf agents,
the optimization depends on their utility functions and the sample message of their parent,
Sj , as

ρ̂Xi = argmin
ρ∈ΣXi

η
(
Ui

)
= argmin

ρ∈ΣXi

η

(
η

fn∈Fi

(
fn(ρVn | Sj

))
∀ai : Ci = ∅. (24)

When the kernel and acquisition function are selected as detailed in Section 6.1, the
assignment ρ̂Xi is optimal with respect to the assignments of the (pseudo-)parents of agent
ai, since Sj = ρ̂Pi ∪ ρ̂PPi . Consequently, the optimal assignment results in the optimal

value for the utility message Uj
i given the sample message Sj .

This optimal value is sent as a utility message to the parents of the leaf agents and
results in the following assignment for the other agents:

ρ̂Xi = argmin
ρ∈ΣXi

η
(
Ui, Ûi

)
= argmin

ρ∈ΣXi

η

(
η

fn∈Fi

(
fn(ρVn | Sj

)
, Ûi

)
∀ai : Ci ̸= ∅. (25)

The aggregated utility message Ûi = η
ak∈Ci

(
Ui
k

)
is the aggregate of the optimal utility

messages of all children given an assignment of ai. Therefore, agent ai can calculate the
optimal assignment with regard to its parent sample message.

This process is repeated until the root agent a1 has received all utility messages from
its children. As the root agent does not have any (pseudo-)parents, Equation (25) can be
rewritten as

ρ̂X1 = argmin
ρ∈ΣX1

η
(
U1, Û1

)
= argmin

ρ∈ΣX1

η

(
η

fn∈F1

(
fn(ρVn)

)
, Û1

)
= ρ∗X1

. (26)

Note that Û1 holds the aggregate utility value of all other agents based on the sample of the
root agent. For that reason, if the root agent finds the optimal assignment ρ̂X1 it is equal
to the optimum of the objective function ρ∗X1

.

After the root agent has found the optimal assignment of its variables it starts the
final phase of D-Bay. In this phase the root agent sends the optimal assignment as a
final message to its children, Ŝ1 = {ρ∗X1

}. Based on that optimal sample all agents are
able to determine their optimal assignments, as shown in Equation (25), and append their
optimal assignment to the final message before sending the final message to their children,
i.e. Ŝi = {ρ∗Xi

} ∪ Ŝj . This process is repeated until the leaf agents are reached and all
agents have assigned the globally optimal values to their variables.

416

Distributed Bayesian: A Continuous DCOP Solver

6.3 Summary

In Section 6.1 it was shown that, based on the Lipschitz constant of a utility function (or
aggregate of functions), the kernel and acquisition function (and their parameters) can be
appropriately selected to guarantee convergence to the global optimum of the utility func-
tion. Subsequently, Section 6.2 has shown that, if the agents can find the global optimum
of the aggregate of the utility functions, D-Bay will converge to the global optimum of the
objective function. Combining these results proves the convergence of D-Bay to the global
optimum of the objective function for utility functions with known Lipschitz constants.

7. Simulation Results

In this section, the performance of the D-Bay algorithm is compared to DCOP solvers and
C-DCOP solvers. The sampling-based DCOP solvers Sequential Distributed Gibbs (SD-
Gibbs) (Nguyen et al., 2019) and DUCT (Ottens et al., 2017) are chosen to compare the
performance of the D-Bay algorithm with discrete solvers of the same class. Additionally,
DPOP (Petcu & Faltings, 2005) is added to the comparison to represent the optimal solution
of the DCOP solvers, since these solvers operate on the same domains and DPOP is a
complete solver. The C-DCOP solvers AC-DPOP (Hoang et al., 2020) and PFD (Choudhury
et al., 2020) are selected as both achieve higher performance than the HCMS algorithm of
Voice et al. (2010).

The implementation of DPOP is included within the pyDCOP library (Rust, Picard, &
Ramparany, 2019). All other algorithms have been included in the pyDCOP library and
made available publicly1. The simulations are conducted on a 2.1GHz Intel Xeon Gold 6152
CPU machine with sufficient memory for the requirements of all solvers and the computation
time is limited to one hour. All algorithms are evaluated on two types of problems: random
graphs and sensor coordination problems.

The hyperparameters of the solvers are fixed for all experiments and their values are
listed in Table 1. If available, the values are taken equal to the listed values in the original
works. The termination criteria for the incomplete solvers will be related to the parameters
of the experiments.

Table 1: Hyperparameters of DCOP solvers used during simulations.

Algorithm Hyperparameters

DPOP -
SD-Gibbs iterations = 20
DUCT ϵ = 0.6, δ = 0.1
AC-DPOP iterations = 100, δ = 0.001, α = 0.01
PFD particles = 2000, w = 0.9, c1 = 0.9, c2 = 0.1,maxfc = 5,maxsc = 15
D-Bay λ = Lf

The experiments are defined based on three parameters: number of constraint checks,
number of agents |A|, and density of the graph p1. The density of the graph is defined as the

1. https://gitlab.com/jfransman/pyDcop/

417

Fransman, Sijs, Dol, Theunissen & De Schutter

ratio between the number of edges and the maximal number of possible edges. The number
of constraint checks is used as a parameter to compare the DCOP and C-DCOP solvers
based on computational efficiency. The efficiency of the solver is an important measure
for problems for which the utility functions are computationally expensive to evaluate.
Note that when comparing solvers for problems in which communication is the bottleneck
non-concurrent constraint checks (Meisels, Kaplansky, Razgon, & Zivan, 2002) are more
suitable.

For all DCOP solvers, the continuous domains are uniformly discretized in a preprocess-
ing step to convert the C-DCOP into a DCOP. The domain cardinality of the generated
DCOPs is related to the constraint checks during the solving procedure. More values within
a domain will constitute more possible evaluations of the utility functions. The C-DCOP
solvers operate directly on the continuous domains; however, most solvers have a param-
eter that is analogous to the domain cardinality. The AC-DPOP algorithm requires the
discretization of the domains within a preprocessing step. As Hoang et al. (2020) provides
no method for defining the optimal level of discretization, the discretization is set equal
to that of the DCOP. The PFD algorithm initiates by selecting a random value for every
particle using a uniform distribution from the domains and updates the values during ev-
ery iteration. The D-Bay algorithm samples the continuous domains dynamically without
discretization. For that reason, the number of samples parameter is used as a threshold
during the experiments.

7.1 Random Graphs

For the generation of the random graph experiments, the NetworkX (Hagberg, Schult, &
Swart, 2020) generator, embedded within the pyDCOP library, is used. Based on the
randomly created graph, a C-DCOP is generated by allocating a variable (and agent) to
every node and defining utility functions for all edges. The bi-modal Bird function (Mishra,
2006) (shown in Figure 7) is used as utility function. The Bird function was created as a
test function for global optimization and contains multiple local optima at different values.

Based on the three defined parameters, numerous experiments are conducted; the num-
ber of agents is varied from 3 to 10, and the graph density is varied from 0.1 to 0.4 with
increments of 0.02. All experiments are repeated 50 times and the median of the most
illustrious results are shown in Figure 8.

In Figures 8a and 8b the relative utility is calculated based on the utility found by a
centralized exhaustive search-based algorithm on densely discretized domains. The relative
utility shows several important properties of the solvers. In Figure 8a all solvers show an
increase of relative utility that converges when the number of constraint checks is increased.
The performance of the C-DCOP solvers differs significantly. The AC-DPOP solver shows
a nearly constant performance but requires a large number of constraint checks. This is
expected as the AC-DPOP solver initially starts with domain values that are equal to that of
the discrete solvers and then the agents update their values based on a local gradient descent
method. Upon further investigating the cause of the constant performance, we found that
most of the domain values converge to the same local optima. This effectively reduces the
number of domain values that are evaluated. During optimization, the utility values at the
local optima of the Bird function are sent to the parents of the agents after which these

418

Distributed Bayesian: A Continuous DCOP Solver

x1 x2

f(x
1,

x 2
)

Figure 7: Combined view of the function values and a contour plot of the Bird function
(Mishra, 2006) on the domain xi ∈ [−2π, 2π] for i = 1, 2.

values are interpolated. This (linear) interpolation results in a large overestimation of the
utility values between the optima, therefore the solver does not escape the local optima and
the performance does not improve when the constraint checks in increased.

The performance of the PFD solver steadily increases for larger numbers of constraint
checks. This behavior is expected since the domain values are updated during optimization
based on the shared particles. The particles represent (partial) allocations of the variables
within the C-DCOP. The relatively large number of particles (2000) increases the chance of
producing particles that represent high utility allocations. These particles influence other
particles during their value updates, thereby improving performance. This effect also holds
for particles that are initialized near local optima. These particles influence other particles
by driving them away from regions with high global utility.

Compared to other solvers, D-Bay shows the most consistent performance, in terms of
achieved relative utility. It shows a (near) monotonic increase in performance. This can be
explained by the property of the Bayesian optimization. Bayesian optimization combined
with the appropriate choice of the kernel based on the Lipschitz constant ensures that all
samples are selected such that the largest amount of information about the optima is gained.
This allows for the exclusion of large regions of the domains, which effectively focuses the
sampling on high-utility areas of the search space.

The results of the DCOP solvers (DPOP, SD-Gibbs, DUCT) show increasing utility that
approaches the optimum. Compared to the C-DCOP solvers, the utility does not increase
as smoothly when the number of constraint checks is increased. Upon further investigation,
the performance of the DCOP solvers shows a clear dependency on the selection of the
domain values. This is visible by the irregular increase of the relative utility for increasing
domain cardinality as shown in Figure 8b. For a domain cardinality of 9, the discretiza-
tion resulted in an excellent performance. This highlights a drawback of solvers that are
dependent on discretization, as increasing the cardinality will not always guarantee better
performance. In other words, there is no monotonic relation between the cardinality of

419

Fransman, Sijs, Dol, Theunissen & De Schutter

102 103 104 105

Number of constraint checks [-]

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

ut
ilit

y
[-]

|A| = 6, p1 = 0.2

(a) Relative utility for varying numbers of constraint checks.

3 9 15 21 27 33 39 45 50
|Di|

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

ut
ilit

y
[-]

|A| = 6, p1 = 0.2

(b) Relative utility for varying domain cardinality |Di|.
DPOP D-Bay AC-DPOP SD-Gibbs DUCT PFD

Figure 8: Experimental results for the random graph problems.

the domains and the performance. The results of the DCOP solvers (DPOP, SD-Gibbs,
DUCT) can be seen to overlap significantly. The DPOP algorithm yields the optimal so-
lution of the discretized C-DCOP. This indicates that both SD-Gibbs and DUCT show
close-to-optimal performance with high consistency. DUCT outperforms SD-Gibbs for low
values of the domain cardinality however, for all higher values, SD-Gibbs achieves close to
optimal performance. However, these algorithms require more constraint checks as can be
seen in Figure 8a.

The performance of the D-Bay algorithm is very close to the optimum for 5 × 102

constraint checks. Similar performance is consistently achieved by the DCOP solvers at
1× 104 constraint checks. To show D-Bay has a high sample efficiency independent of the
number of agents and the density of the graph, these values are used in the comparison for
the experiments with a varying number of agents and graph density. The results are shown
in Figure 9.

420

Distributed Bayesian: A Continuous DCOP Solver

3 4 5 6 7 8 9 10
|A|

0

200

400

600

800

1000

Ut
ilit

y
[-]

p1 = 0.2, |CC| = 104

(a) Solution quality for varying numbers of agents.

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42
p1

0

100

200

300

400

500

600

700

Ut
ilit

y
[-]

|A| = 6, |CC| = 104

(b) Solution quality for varying graph density.

DPOP D-Bay AC-DPOP SD-Gibbs DUCT PFD

Figure 9: Comparison of performance based on a varying number of agents and graph
density.

Figure 9a shows the results for problems with a graph density of 0.2, where the number of
agents is varied from 3 to 10. In Figure 9b the results for a 6 agent problem are shown, where
the graph density is varied from 0.1 to 0.4 with increments of 0.02. Within both figures,
the performance for all solvers is shown to be closely related to the results from Figure 8b.
This demonstrates the fact that the sample efficiency of D-Bay holds for numerous random
graphs. In other words, D-Bay achieves high performance with a limited number of samples
and this performance is achieved by the compared algorithms only for a larger number of
(evaluated) domain values.

421

Fransman, Sijs, Dol, Theunissen & De Schutter

7.2 Sensor Coordination Problems

The sensor coordination problem is an optimization problem in which every agent needs to
orient its sensor to observe targets as accurately as possible. A real-world analogy would be
the optimization of the orientation of multiple cameras based on image recognition. This
problem is modeled within the DCOP framework as a distributed problem. The image
recognition process can require significant computational effort depending on the image
quality and the type of target(s). It is therefore computationally intensive to check every
orientation of the camera, especially for a centralized approach. Even for a relatively small
number of agents, a DCOP representation of these problems will result in a large search
space.

Within the sensor coordination problem, all sensors are modeled identically in terms
of their sensor range l and angle of view β. These properties, combined with the position
of the sensor, determine the observation domain of the sensor. This domain defines all
locations that could be observed by the sensor. The orientation ωi of the sensor of agent ai
determines the observed area within the observation domain. A target is detected when it
is located within this area. For every detected target, a (positive) utility value is allocated
to the agent. The maximum utility is allocated when the sensor is oriented directly at
the target. The utility value decreases linearly towards the edges of the observation area.
The optimal utility is determined by the optimal solution of the centralized optimization
approach with 720 samples (0.5 degree resolution) for every domain. The parameters of
the problem are the number of targets T , the number of sensors N , the sensor range l,
the angle of view β of the sensors, and the arrangement of the sensors. The sensors are
arranged in an equally distanced rectangular grid. Various configurations are simulated,
where a configuration indicates the number of rows and columns of the grid. The sensors
are positioned such that the combined observation domains of all sensors are maximized
without allowing unobservable areas between the sensors. For this reason, the distance
between the sensors of the same row or column is

√
2l. The locations of the targets t

are uniformly distributed within the combined observation domains of the sensors. In the
experiments, the problems are generated with 6 sensors, 12 targets, and with identical sensor
properties, where the sensor range is set to l = 1 and the angle of view is set to β = 36◦. A
graphical example of the simulated sensor coordination problems can be seen in Figure 10.
The sensor coordination problem is described within the C-DCOP framework as follows:

• A = {a1, . . . , aM} is the set of agents, where M is the number of agents. The position
of agent i is denoted as pi ∈ R2.

• X = {ω1, . . . , ωN} is the set of sensor orientations, where N = M .

• D = {D1, . . . ,DN}, where Di = (−180◦, 180◦) for all i = 1, . . . , N indicating all
possible values of sensor orientation ωi.

• F = {fn}Tn=1 is the set of utility functions associated with the observation of the
targets. The number of targets is denoted by T ∈ N. Target n is located at position
tn ∈ R2. The utility functions of the targets are described as fn = maxi=1,...,N (fn,i)

422

Distributed Bayesian: A Continuous DCOP Solver

for n = 1, . . . , T , where

fn,i =

{
1− |ωi − ∠

−−→
pitn|/β if ∥−−→pitn∥ ≤ l and |ωi − ∠

−−→
pitn| ≤ β

0 otherwise

and
−−→
pitn denotes the vector between the location of the target tn and the position of

the agent ai. Figure 11 shows an example of the utility value as a function of the
angle of view.

• α(ωi) = ai for i = 1, . . . , N allocating a single sensor to every agent.

• η =
∑

(·), resulting in the goal function G(·) =∑fn∈F fn(·).

a1 a2 a3

a4 a5 a6

β

l

−−→
p6t4

∠
−−→
p6t4

ω6

√
2l

√
2l

11

1

10

8

5

7

2

12

6

9

4

3

Figure 10: Graphical example of a sensor coordination problem with 6 sensors and 12
targets. The sensors ai are arranged in an equally distanced rectangular grid. The distance
between the sensors is based on the sensor range l. The observation domain is indicated by
a dotted circle centered around the position of the sensor. The observed area of the sensors
is shown as shaded areas and is based on the angle of view β and the orientation ωi. The
targets are shown as annotated black circles.

In this section, the performance of D-Bay is empirically evaluated using the achieved
relative utility as a function of the number of samples. This metric is important to consider
if the evaluation of the utility functions by the agents is computationally expensive. The
relative utility allows for the comparison of the results over various randomly generated
problems. The achieved relative utility is defined as the achieved utility divided by the
optimal utility generated by centralized exhaustive search based on densely discretized
domains. The number of samples is defined as the maximum number of domain values
checked by an agent and allows for a comparison based on sample efficiency per agent
instead of the algorithm as a whole. For the DCOP solvers, the number of samples (per
agent) is equal to the domain cardinality of the variables of the discretized C-DCOPs. The

423

Fransman, Sijs, Dol, Theunissen & De Schutter

−180◦ −β 0◦ β 180◦
0

1

ωi − ∠
−−→
pitn

f n
,i

Figure 11: Utility function fn,i indicates the utility of agent ai for the observation of target

tn if the target is within the sensor range l (∥−−→pitn∥ ≤ l). The angle of view of the sensor is
denoted as β. On the horizontal axis the difference between the sensor orientation ωi and
the angle between the position of the agent and the position of the target ∠

−−→
pitn is given.

C-DCOP solvers iteratively update the domain values by either local gradient descent (AC-
DPOP), particle velocity update (PFD), or sampling (D-Bay). In order to compare these
solvers, the number of updates of the value of the root agent is used.

The performance results of D-Bay compared to the DCOP and C-DCOP solvers are
given in Figure 12 for various configurations of the sensor coordination problem. Similar to
the results of D-Bay in Figure 8a, the sample efficiency of D-Bay enables it to outperform
both the DCOP solvers as well as the C-DCOP solvers. The performance of PFD slightly
surpasses D-Bay for the 1x2 configuration but falls behind all other solvers for the 2x2, 2x3,
and 3x2 configurations. This indicates that the performance of PFD largely depends on the
random initialization of the particles.

1x1 1x2 1x3 2x1 2x2 2x3 3x1 3x2 3x3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
la

tiv
e

ut
ilit

y
[-]

DPOP D-Bay AC-DPOP SD-Gibbs DUCT PFD

Figure 12: Sensor configurations for 10 targets and 10 number of samples.

The performance results of D-Bay compared to the centralized approach are presented
in Figure 13. This figure shows the results for 30 randomly generated problems for 6 sen-
sors and 12 targets. The results show an increase in the achieved relative utility of D-Bay

424

Distributed Bayesian: A Continuous DCOP Solver

compared to the centralized approach based on the number of samples. The difference in
achieved utility can be explained by investigating the sampling strategies. The central-
ized approach samples the sensor orientations equidistantly. Therefore, as the number of
samples is increased, the resolution of the samples increases uniformly for the centralized
approach. D-Bay samples dynamically to balance exploration and exploitation based on all
previously acquired observations. Consequently, D-Bay will initially focus on exploration
and eventually focus on exploitation. This behavior is clearly visible in Figure 13a in the
range between samples 3 and 10. Within this range, D-Bay samples the sensor orientations
equidistantly focussing on exploration. The sampling behavior is identical to the centralized
approach, which can be seen in the similarity in achieved utility. For more than 11 number
of samples, the achieved utility of D-Bay increases substantially. This can be explained
based on the angle of view of 36◦ of the sensors during the experiments. At 10 samples the
entire observation domain of a sensor is observed. Afterward, the switch to the exploitation
of the observations increases the achieved utility more than the continued exploration of the
centralized approach. The advantage is even more prominent when comparing the number
of samples required by the centralized approach to achieve equal utility to D-Bay, as shown
in Figure 13b. This clearly shows the advantage of the dynamic sampling of D-Bay over
equidistant sampling.

3 10 30 50 70
Number of samples [-]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
la

ti
v
e
 u

ti
lit

y
 [

-]

Centralized
D-Bay

(a) Achieved relative utility.

10 30 50 70 100
D-Bay [-]

10

30

50

70

100

150

200

250

C
e
n
tr

a
liz

e
d
 [

-]

(b) Required number of
samples for equal utility.

Figure 13: Simulation results for randomly generated sensor coordination problems with
6 sensors and 12 targets. The figures show the average result of 30 randomly generated
problems. Figure 13a shows the achieved utility of D-Bay and the centralized approach
relative to the optimum. Note that the achieved utility for both algorithms is equal for
3 samples since the first 3 samples are equidistantly spaced for D-Bay. Figure 13b shows
the number of samples required by the centralized approach to achieve the same utility as
D-Bay.

425

Fransman, Sijs, Dol, Theunissen & De Schutter

8. Conclusions

In this paper, the novel algorithm called Distributed Bayesian (D-Bay) has been introduced
to solve Continuous Distributed Constraint Optimization Problems (C-DCOPs). Within
D-Bay, the continuous domains are sampled based on Bayesian optimization. This removes
the need for the discretization of the domains and balances exploration and exploitation of
the global search space by incorporating knowledge about the utility functions within the
kernels of the probabilistic models. Compared to DCOP solvers, which require discretization
of the C-DCOP, it results in a reduction of the computational and memory demands of the
individual agents. For utility functions with known Lipschitz constants, D-Bay is proven to
converge to the global optimum solution of the C-DCOP.

Random graphs and sensor coordination problems have been used to evaluate the per-
formance of D-Bay. The results show that D-Bay outperforms a centralized approach as
well as state-of-the-art DCOP and C-DCOP solvers based on the achieved utility as a func-
tion of the required number of samples. This sample efficiency is a result of the application
of Bayesian optimization with the D-Bay algorithm. Implementations of the proposed
algorithm and the state-of-the-art DCOP and C-DCOP solver have been added to the
open-source software library pyDCOP (Rust et al., 2019) and made available publicly2.

In future work, D-Bay will be extended towards dynamic DCOPs (Fioretto et al., 2018)
in which the agents need to optimize a dynamic problem at every time step. An extension
will increase the applicability of the proposed algorithm to dynamic mobile sensor platform
problems in which tracking of targets is an important factor, such as multi-agent surveil-
lance. In a dynamic adaptation of the sensor coordination problem, the locations of the
targets change over time based on the target properties, such as velocity and turn radius.

Acknowledgments

The authors would like to thank dr. Peyman Mohajerin Esfahani of the Delft Center for
Systems and Control at the Delft University of Technology for his insightful comments.

2. https://gitlab.com/jfransman/pyDcop/

426

Distributed Bayesian: A Continuous DCOP Solver

Appendix A. The Distributed Bayesian Algorithm

In this appendix, the formal description of the distributed Bayesian algorithm is presented.

Algorithm 2: Distributed Bayesian (D-Bay) for agent ai
Input : Pi,PPi,Ci,PCi,Fai ,FPi ,Xi, κ
Output: ρ̂Xi

Initialization
if root agent then

while not threshold reached do

Uj
i := optimizeLocalVariables(∅);

end
processFinal(∅);

when received sample Sj from parent Pi

while not threshold reached do

Uj
i := optimizeLocalVariables(Sj);

end

send(Pi, Uj
i);

when received final Ŝj from parent Pi

processFinal(Ŝj);

Function optimizeLocalVariables(Sj)

ρXi
:= computeOptimalSample(κ);

Si := Sj ∪ {ρXi};
Uj
i := calculateUtility(Si);

return Uj
i ;

Function calculateUtility(Si)

Ui := min
ρ∈ΣXi

η
fn∈Fi

(
fn(ρVn | Sj)

)
;

if Ci ̸= ∅ then

Ûi := getChildUtility(Si);

Uj
i := η

(
Ui, Ûi

)
;

else

Uj
i := Ui;

storeUtility(Uj
i, Si);

return Uj
i ;

427

Fransman, Sijs, Dol, Theunissen & De Schutter

Function getChildUtility(Si)

foreach ak ∈ Ci do send(ak, Si);
when received Ui

k from all ak ∈ Ci

Ûi := η
ak∈Ci

(
Ui
k

)
;

return Ûi;

Procedure processFinal(Ŝj)

ρ̂Xi
:= retrieveOptimalLocalSample(Ŝj);

Ŝi := Ŝj ∪ {ρ̂Xi};
foreach ak ∈ Ci do send(ak, Ŝi);

Appendix B. Dirichlet Kernel Interval Functions

In this appendix, the derivation of the mean and variance function corresponding to the
Dirichlet kernel are presented.

As shown in the work of Ding and Zhang (2018, Theorem 2), a kernel κ of the Markovian
class reduces the mean function µs(·) and the variance function σ2

s(·|O) of the posterior on
the interval between observations as given in Equations (8) and (9), respectively. For the
Dirichlet kernel as defined by Equation (10), for a normalized domain xi, xj ∈ [0, 1] and the
kernel scale parameter λ, the non-zero elements of the K−1

s (O) matrix are given by

(K−1
s (O))s,s =

λ−2 x1

x1

(
x2−x1

) , if s = 1,

λ−2 (xs+1−xs−1)
(xs−xs−1)(xs+1−xs)

, if s ∈ {2, . . . , S − 1},

λ−2 (1−xS−1)
(1−xS)(xS−xS−1)

, if s = S,

and

(K−1
s (O))s−1,s = (K−1

s (O))s,s−1 =
−λ−2

(xs − xs−1)
, s = 2, . . . , S.

428

Distributed Bayesian: A Continuous DCOP Solver

The mean function µs(·) and the variance function σ2
s(·|O) for the Dirichlet kernel can

be rewritten accordingly as

µs(x|O) = κT
s (x,O)K−1

s (O)ys(O)

=
[
0 . . . 0 xs−x

xs−xs−1

x−xs−1

xs−xs−1
0 . . . 0

]

y1
...

ys−2

ys−1

ys
ys+1
...
yS

=
[

xs−x
xs−xs−1

x−xs−1

xs−xs−1

] [ys−1

ys

]
=

ys−1(xs − x) + ys(x− xs−1)

xs − xs−1
(27)

and

σ2
s(x|O) = κ (x, x)− κT

s (x,O)K−1
s (O)κs(x,O)

= λ2x(1− x)−
[
0 . . . 0 xs−x

xs−xs−1

x−xs−1

xs−xs−1
0 . . . 0

]

λ2x1(1− x)
...

λ2xs−2(1− x)
λ2xs−1(1− x)
λ2x(1− xs)
λ2x(1− xs+1)

...
λ2x(1− xS)

= λ2

(
x(1− x)−

(xs−1(1− x)(xs − x)

xs − xs−1
+

x(1− xs)(x− xs−1)

xs − xs−1

))
= λ2−(xs − x)(xs−1 − x)

xs − xs−1
. (28)

References

Acevedo, J. J., Arrue, B. C., Maza, I., & Ollero, A. (2013). Cooperative large area surveil-
lance with a team of aerial mobile robots for long endurance missions. Journal of
Intelligent and Robotic Systems: Theory and Applications, 70, 329–345.

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47 (2-3), 235–256.

Awerbuch, B. (1985). A new distributed depth-first-search algorithm. Information Process-
ing Letters, 20 (3), 147–150.

429

Fransman, Sijs, Dol, Theunissen & De Schutter

Barbosa, V. C. (1996). An introduction to distributed algorithms. Mit Press.

Bather, J. A., Berry, D. A., & Fristedt, B. (1986). Bandit Problems: Sequential Allocation
of Experiments., Vol. 149.

Brochu, E., Cora, V. M., & de Freitas, N. (2010). A tutorial on Bayesian optimization of
expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning. arXiv.

Bubeck, S., Munos, R., Stoltz, G., & Szepesvári, C. (2011). X-armed bandits. Journal of
Machine Learning Research (JMLR), 12 (5), 1655–1695.

Cerquides, J., Farinelli, A., Meseguer, P., & Ramchurn, S. D. (2014). A tutorial on opti-
mization for multi-agent systems. The Computer Journal, 57 (6), 799–824.

Chechetka, A., & Sycara, K. (2005). A decentralized variable ordering method for dis-
tributed constraint optimization. In International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pp. 1307–1308.

Chen, Z., He, Z., & He, C. (2017). An improved DPOP algorithm based on breadth first
search pseudo-tree for distributed constraint optimization. Applied Intelligence, 47 (3),
607–623.

Choudhury, M., Mahmud, S., & Khan, M. M. (2020). A particle swarm based algorithm
for functional distributed constraint optimization problems.. Vol. 34, pp. 7111–7118.

Ding, L., & Zhang, X. (2018). Scalable stochastic kriging with Markovian covariances.
arXiv.

Duvenaud, D. K., Nickisch, H., & Rasmussen, C. E. (2011). Additive Gaussian processes.
In Advances in Neural Information Processing Systems (NIPS), pp. 226–234.

Fioretto, F., Pontelli, E., & Yeoh, W. (2018). Distributed constraint optimization problems
and applications: a survey. Journal of Artificial Intelligence Research (JAIR), 61,
623–698.

Freuder, E. C., & Quinn, M. J. (1985). Taking advantage of stable sets of variables in
constraint satisfaction problems. In International Joint Conference on Artificial In-
telligence (IJCAI), pp. 1076–1078.

Gallager, R. G., Humblet, P. a., & Spira, P. M. (1983). A distributed algorithm for
minimum-weight spanning trees. Transactions on Programming Languages and Sys-
tems (TOPLAS), 5 (1), 66–77.

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. Transactions on Pattern Analysis and Machine Intel-
ligence, pp. 721–741.

Gershman, A., Meisels, A., & Zivan, R. (2009). Asynchronous forward bounding for dis-
tributed COPs. Journal of Artificial Intelligence Research (JAIR), 34, 61–88.

Hagberg, A., Schult, D., & Swart, P. (2020). Networkx..

Hamadi, Y., & Quinqueton, J. (1998). Backtracking in distributed constraint networks. In
European Association for Artificial Intelligence (ECAI), pp. 219–223.

430

Distributed Bayesian: A Continuous DCOP Solver

Hoang, K. D., Yeoh, W., Yokoo, M., & Rabinovich, Z. (2020). New algorithms for contin-
uous distributed constraint optimization problems. In International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pp. 502–510.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In International Confer-
ence on Neural Networks (IJCNN), Vol. 4, pp. 1942–1948.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing.
Science, 220 (4598), 671–680.

Kocsis, L., & Szepesvári, C. (2006). Bandit based Monte-Carlo planning. In European
Conference on Machine Learning (ECML), pp. 282–293.

Kushner, H. J. (1964). A new method for locating the maximum point of an arbitrary
multipeak curve in the presence of noise. Journal of Basic Engineering, 86 (1), 97–
106.

Leite, A. R., Enembreck, F., & Barthès, J.-P. A. (2014). Distributed constraint optimization
problems: review and perspectives. Expert Systems with Applications, 41 (11), 5139–
5157.

Lizotte, D. J., Greiner, R., & Schuurmans, D. (2012). An experimental methodology for
response surface optimization methods. Journal of Global Optimization, 53 (4), 699–
736.

MacKay, D. J. C. (1992). Bayesian interpolation. Neural Computation, 4 (3), 415–447.

MacKay, D. J. (1994). Bayesian nonlinear modeling for the prediction competition. Amer-
ican Society of Heating, Refrigerating and Air-Conditioning Engineers Transactions,
100 (2), 1053–1062.

Maheswaran, R., Tambe, M., Bowring, E., Pearce, J., & Varakantham, P. (2004). Tak-
ing DCOP to the real world: efficient complete solutions for distributed multi-event
scheduling. In International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS).

Meisels, A., Kaplansky, E., Razgon, I., & Zivan, R. (2002). Comparing performance of
distributed constraints processing algorithms. In AAMAS workshop on Distributed
Constraint Reasoning (DCR), pp. 86–93.

Meisels, A. (2007). Distributed search by constrained agents: algorithms, performance, com-
munication. Springer Science & Business Media.

Micchelli, C. A., Xu, Y., & Zhang, H. (2006). Universal kernels. Journal of Machine
Learning Research (JMLR), 7, 2651–2667.

Minasny, B., & McBratney, A. B. (2005). The matérn function as a general model for soil
variograms. Geoderma, 128, 192–207.

Mishra, S. K. (2006). Some new test functions for global optimization and performance of
repulsive particle swarm method. Tech. rep..

Mockus, J. (1982). The Bayesian approach to global optimization. System Modeling and
Optimization, 38, 473–481.

431

Fransman, Sijs, Dol, Theunissen & De Schutter

Mockus, J. (1989). Bayesian approach to global optimization: theory and applications.
Kluwer Academic Publishers.

Mockus, J., Tiesis, V., & Zilinskas, A. (1978). The application of Bayesian methods for
seeking the extremum. Towards Global Optimisation, 2, 117–129.

Modi, P. J., Shen, W. M., Tambe, M., & Yokoo, M. (2005). Adopt: Asynchronous distributed
constraint optimization with quality guarantees. Artificial Intelligence, 161 (1-2), 149–
180.

Nguyen, D. T., Yeoh, W., Lau, H. C., & Zivan, R. (2019). Distributed Gibbs: a linear-space
sampling-based DCOP algorithm. Journal of Artificial Intelligence Research (JAIR),
64, 705–748.

Ottens, B., Dimitrakakis, C., & Faltings, B. (2017). DUCT: An upper confidence bound
approach to distributed constraint optimization problems. ACM Transactions on
Intelligent Systems and Technology, 8 (5).

Petcu, A., & Faltings, B. (2005). DPOP: a scalable method for multiagent constraint
optimization. In International Joint Conference on Artificial Intelligence (IJCAI),
pp. 266–271.

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning.
MIT Press.

Rogers, A., Farinelli, A., Stranders, R., & Jennings, N. R. (2011). Bounded approximate
decentralised coordination via the max-sum algorithm. Artificial Intelligence, 175 (2),
730–759.

Rust, P., Picard, G., & Ramparany, F. (2019). pyDCOP, a DCOP library for IoT and
dynamic systems. In International workshop on Optimisation in Multi-Agent Systems
(OptMAS), Montréal, Canada.

Sarker, A., Arif, A. B., Choudhury, M., & Khan, M. M. (2020). C-CoCoA: a continuous
cooperative constraint approximation algorithm to solve functional DCOPs. arXiv.

Sato, D. M., Borges, A. P., Márton, P., & Scalabrin, E. E. (2015). I-DCOP: train classifica-
tion based on an iterative process using distributed constraint optimization. Procedia
Computer Science, 51, 2297–2306.

Sherman, J., & Morrison, W. J. (1950). Adjustment of an inverse matrix corresponding to
a change in one element of a given matrix. The Annals of Mathematical Statistics,
pp. 124–127.

Stranders, R., Farinelli, A., Rogers, A., & Jennings, N. R. (2009). Decentralised coordi-
nation of continuously valued control parameters using the max-sum algorithm. In
International Conference on Autonomous Agents and Multiagent Systems (AAMAS),
pp. 601–608.

Sultanik, E. A., Modi, P. J., & Regli, W. W. C. (2007). On modeling multiagent task
scheduling as a distributed constraint optimization problem. In International Joint
Conference on Artificial Intelligence (IJCAI), pp. 247–253.

Törn, A., & Žilinskas, A. (1989). Global optimization, Vol. 350. Springer.

432

Distributed Bayesian: A Continuous DCOP Solver

Tsang, E. (1993). Foundations of Constraint Satisfaction. Academic Press, London.

van Hasselt, H. (2012). Reinforcement learning in continuous state and action spaces. In
Adaptation, Learning, and Optimization, Vol. 12, pp. 207–251.

Van Leeuwen, C. J. (2017). CoCoA: a non-iterative approach to a local search (A)DCOP
solver. In Association for the Advancement of Artificial Intelligence, pp. 3944–3950.

Vazquez, E., & Bect, J. (2010). Convergence properties of the expected improvement algo-
rithm with fixed mean and covariance functions. Journal of Statistical Planning and
Inference (SPI), 140 (11), 3088–3095.

Vert, J.-P., Tsuda, K., & Schölkopf, B. (2004). A primer on kernel methods. Kernel Methods
in Computational Biology, 47, 35–70.

Vianna, L. G. R., Sanner, S., & de Barros, L. N. (2014). Continuous real time dynamic
programming for discrete and continuous state MDPs. In Brazilian Conference on
Intelligent Systems (BRACIS), Vol. 3, pp. 134–139. IEEE.

Vinyals, M., Rodŕıguez-Aguilar, J. A., & Cerquides, J. (2009). Generalizing DPOP: Action-
GDL, a new complete algorithm for DCOPs. In International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), Vol. 1, pp. 1239–1240.

Voice, T., Stranders, R., Rogers, A., & Jennings, N. R. (2010). A hybrid continuous max-
sum algorithm for decentralised coordination. Frontiers in Artificial Intelligence and
Applications, 215, 61–66.

Wittenburg, L., & Zhang, W. (2003). Distributed breakout algorithm for distributed
constraint optimization problems – DBArelax. In International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), p. 1158.

Yeoh, W., Feiner, A., & Koenig, S. (2010). BnB-ADOPT: an asynchronous branch-and-
bound DCOP algorithm. Journal of Artificial Intelligence Research (JAIR), 38, 85–
133.

Yeoh, W., & Yokoo, M. (2012). Distributed problem solving. AI Magazine, 33, 53–65.

Yokoo, M., Durfee, E. H., Ishida, T., & Kuwabara, K. (1998). The distributed constraint
satisfaction problem: formalization and algorithms. Transactions on Knowledge and
Data Engineering, 10 (5), 673–685.

Zivan, R., Parash, T., & Naveh, Y. (2015). Applying max-sum to asymmetric distributed
constraint optimization. In International Joint Conference on Artificial Intelligence
(IJCAI), pp. 432–439.

433

