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Abstract

Robin Hirsch posed in 1996 the Really Big Complexity Problem: classify the computa-
tional complexity of the network satisfaction problem for all finite relation algebras A. We
provide a complete classification for the case that A is symmetric and has a flexible atom;
in this case, the problem is NP-complete or in P. The classification task can be reduced to
the case where A is integral. If a finite integral relation algebra has a flexible atom, then
it has a normal representation B. We can then study the computational complexity of
the network satisfaction problem of A using the universal-algebraic approach, via an anal-
ysis of the polymorphisms of B. We also use a Ramsey-type result of Nešetřil and Rödl
and a complexity dichotomy result of Bulatov for conservative finite-domain constraint
satisfaction problems.

1. Introduction

One of the earliest approaches to formalise constraint satisfaction problems over infinite
domains is based on relation algebras (Ladkin & Maddux, 1994; Hirsch, 1997). We think
about the elements of a relation algebra as binary relations; the algebra has operations
for intersection, union, complement, converse, and composition of relations, and constants
for the empty relation, the full relation, and equality, and is required to satisfy certain
axioms. Important examples of relation algebras are the Point Algebra, the Left Linear
Point Algebra, Allen’s Interval Algebra, RCC5, and RCC8, just to name a few.

The most important computational problems related to relation algebras that have been
studied are called network satisfaction problems (NSPs). A finite network is given in which
the nodes are linked via the elements of a fixed relation algebra. Then the computational
task of the NSP for this relation algebra is to decide whether the network satisfies a strong
notion of consistency with respect to the laws of the fixed relation algebra. Such NSPs for
a finite relation algebra can be used to model many computational problems in temporal
and spatial reasoning (Düntsch, 2005; Renz & Nebel, 2007; Bodirsky & Jonsson, 2017).

More than two decades ago, Hirsch (1996) asked the Really Big Complexity Problem
(RBCP): can we classify the computational complexity of the network satisfaction problem
for every finite relation algebra? For example, the complexity of the network satisfaction
problem for the Point Algebra and the Left Linear Point Algebra is in P (Vilain, Kautz,
& van Beek, 1990; Bodirsky & Kutz, 2007), while it is NP-complete for all of the other
examples mentioned above (Allen, 1983; Renz & Nebel, 1999). There also exist relation
algebras where the complexity of the network satisfaction problem is not in NP: Hirsch
gave an example of a finite relation algebra with an undecidable network satisfaction prob-
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lem (Hirsch, 1999). This result might be surprising at first sight; it is related to the fact
that the representation of a finite relation algebra by concrete binary relations over some
set can be quite complicated. We also mention that not every finite relation algebra has
a representation (Lyndon, 1950). There are even non-representable relation algebras that
are symmetric (Maddux, 2006a); a relation algebra is symmetric if every element is its own
converse.

A simple condition that implies that a finite relation algebra A has a representation is
the existence of a so-called flexible atom (Comer, 1984; Maddux, 1982). A flexible atom is
an element of A that is maximally unconstrained in its interaction with other elements of
the relation algebra; the formal definitions can be found in Section 2.

Such relation algebras have been studied intensively, for example in the context of the
so-called flexible atoms conjecture (Maddux, 1994; Alm, Maddux, & Manske, 2008). We will
see that integral relation algebras with a flexible atom even have a normal representation,
i.e., a representation which is fully universal, square, and homogeneous (Hirsch, 1996). The
network satisfaction problem for a relation algebra with a normal representation can be
seen as a constraint satisfaction problem for an infinite structure B that is well-behaved
from a model-theoretic point of view; in particular, we may choose B to be homogeneous
and finitely bounded.

Constraint satisfaction problems over finite domains have been studied intensively in the
past two decades, and tremendous progress has been made concerning systematic findings
about their computational complexity. As a highlighting result, Bulatov (2017) and Zhuk
(2017, 2020) proved the famous Feder-Vardi dichotomy conjecture which states that every
finite-domain CSP is in P or NP-complete. Both proofs build on an important connection
between the computational complexity of constraint satisfaction problems and universal
algebra.

The universal-algebraic approach can also be applied to study the computational com-
plexity of countably infinite homogeneous structures B with finite relational signature
(Bodirsky & Nešetřil, 2006). For an introduction to the field, we refer to (Bodirsky, 2021).
If B is finitely bounded, then CSP(B) is contained in NP (see, e.g. Bodirsky, 2012). If B
is homogeneous and finitely bounded then a complexity dichotomy has been conjectured,
along with algebraic criteria that distinguish NP-complete from polynomial-time solvable
problems (Bodirsky, Pinsker, & Pongrácz, 2019). The exact formulation of the conjecture
from Bodirsky et al. (2019) in full generality requires concepts that we do not need to
prove our results. In Theorem 9.1 we verify these conjectures for all normal representa-
tions of finite integral symmetric relation algebras with a flexible atom, and thereby also
solve Hirsch’s RBCP for symmetric relation algebras with a flexible atom. Phrased in the
terminology of relation algebras, our result is the following.

Theorem 1.1. Let A be a finite symmetric representable relation algebra with a flexible
atom, and let A0 be the set of atoms of A. Then

• there exists an operation f : A6
0 → A0 that preserves the allowed triples of A, satisfies

∀x1, . . . , x6 ∈ A0. f(x1, . . . , x6) ∈ {x1, . . . x6}

and satisfies the Siggers identity

∀x, y, z ∈ A0. f(x, x, y, y, z, z) = f(y, z, x, z, x, y);
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in this case the network satisfaction problem for A is in P, or

• the network satisfaction problem for A is NP-complete.

Moreover, the satisfiability of the Siggers identity in Theorem 1.1 is a decidable criterion
for A that is a sufficient condition for the polynomial-time tractability of the network sat-
isfaction problem of A. We want to mention that there are several other equivalent criteria
that could be used instead of the first item in the theorem, namely all characterizations of
Taylor Algebras for finite conservative algebras (see e.g., Bulatov, 2003).

This article is the full version of results described in a conference article (Bodirsky &
Knäuer, 2021).

1.1 Proof Strategy

Every finite integral representable relation algebra A with a flexible atom has a normal
representation B; for completeness, and since we are not aware of a reference for this
fact, we include a proof in Section 3. It follows that the classification question about the
complexity of the network satisfaction problem of A can be translated into a question about
the complexity of the constraint satisfaction problem for the relational structure B.

We then associate a finite relational structure O to B and show that CSP(B) can
be reduced to CSP(O) in polynomial-time (Section 4). If the structure O satisfies the
condition of the first case in Theorem 1.1, then known results about finite-domain CSPs
imply that CSP(O) is in P (Bulatov, 2003, 2016; Barto, 2011), and hence CSP(B) is in P,
too. If the first case in Theorem 1.1 does not apply, then known results about finite-domain
algebras imply that there are a, b ∈ A0 such that the canonical polymorphisms of B act as
a projection on {a, b} (Bulatov, 2003, 2016; Barto, 2011). We first observe NP-hardness of
CSP(B) if B does not have a binary injective polymorphism (Section 6). If B has a binary
injective polymorphism, we use results from structural Ramsey theory to show that B must
even have a binary injective polymorphism which is canonical (Section 7). This implies that
none of a, b equals Id ∈ A. We then prove that B does not have a binary {a, b}-symmetric
polymorphism; also in this step, we apply Ramsey theory. In Section 8 we show that this
in turn implies that all polymorphisms of B must be canonical on {a, b}. Finally, we show
that B cannot have a polymorphism which acts as a majority or as a minority on {a, b},
and thus by Schaefer’s theorem all polymorphisms of B act as a projection on {a, b}. This
is again implied by results from Section 7. Finally it follows that CSP(B) is NP-hard. This
concludes the proof of Theorem 1.1.

Our proof follows a strategy that was applied several times in the study of infinite-
domain constraint satisfaction problems and recently described and generalized by Mottet
and Pinsker (2022). We give some details about this in Section 10.

1.2 Organisation of the Article

Section 2 introduces all the basic concepts and tools that are used in this article. In Sec-
tion 3 we define flexible atoms and obtain first results about representable relation algebras
with a flexible atom. Section 4 is dedicated to the atom structure and the polynomial-time
tractability results. In Section 5 we provide an additional perspective on the class of compu-
tational problems under consideration; in this section we define those problems completely
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without the use of the relation algebra framework. The reader can get better intuition of
the class of problems studied in this article, however our results and proofs do not rely
on that section. The Sections 6-8 contain the main parts of the proof as outlined in the
previous paragraph. In Section 9 we put everything together and prove the main theorem.
We end with a conclusion and a small discussion of our result.

2. Preliminaries

We recall some basic definitions and results about universal algebra, representable relation
algebras, constraint satisfaction, model theory, and structural Ramsey theory.

2.1 Algebras and Structures

Let N denote the natural numbers starting with 0 and define N+ := N \ {0}. A signature τ
is a set of relation symbols and function symbols. Each symbol is associated with a natural
number, called the arity of the symbol. Function symbols of arity 0 are called constant
symbols. A τ -structure is a tuple A = (A; (QA)Q∈τ ) where A is a set, called the domain of
A, such that for every Q ∈ τ :

• if Q is a relation symbol of arity n ∈ N, then QA is a subset of An,

• if Q is a function symbol of arity n ∈ N, then QA is an operation An → A.

Note that by A0 = {∅} a subset of A0 can be seen as a Boolean value and the operation
f : A0 → A can be interpreted as a constant. As long as there is no risk of confusion we will
often use the function symbols for the corresponding functions, and the relation symbols
for the corresponding relations, i.e., we use Q instead of QA.

Let A and B be two τ -structures. A homomorphism h from A to B is a function
h : A→ B such that

• for every relation symbol Q of arity n ∈ N and every tuple (a1, . . . , an) ∈ An, we have
that (a1, . . . , an) ∈ QA ⇒ (h(a1), . . . , h(an)) ∈ QB;

• for every function symbol Q of arity n ∈ N and every tuple (a1, . . . , an) ∈ An, we have
that h(QA(a1, . . . , an)) = QB(h(a1), . . . , h(an)).

In the case that τ contains only function symbols and h is surjective, then B is called
homomorphic image of A. In general, the homomorphism h is called an embedding if h is
injective and satisfies

• for every relation symbol Q of arity n ∈ N and every tuple (a1, . . . , an) ∈ An, we have
that (a1, . . . , an) ∈ QA ⇔ (h(a1), . . . , h(an)) ∈ QB.

A surjective embedding is called an isomorphism. An endomorphism of a τ -structure A is
a homomorphism from A to A and an automorphism of A is an isomorphism from A to A.
We denote by Aut(A) the group of all automorphisms of A.

A τ -structure A is a substructure of a τ -structure B if

• A ⊆ B;
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• for every relation symbol Q of arity n ∈ N and every tuple (a1, . . . , an) ∈ An, we have
that (a1, . . . , an) ∈ QA if and only if (a1, . . . , an) ∈ QB;

• for every function symbol Q of arity n ∈ N and every tuple (a1, . . . , an) ∈ An, we have
that QA(a1, . . . , an) = QB(a1, . . . , an).

Note that for every subset A′ ⊆ B of the domain of a τ -structure B there exists a unique
substructure A of B with smallest domain A and A′ ⊆ A. We call this the substructure of
B induced by A.

Let A and B be τ structures. The direct product C = A×B is the τ -structure where

• A×B is the domain of C;

• for every relation symbol Q of arity n ∈ N and every tuple ((a1, b1), . . . , (an, bn)) ∈
(A × B)n, we have that ((a1, b1), . . . , (an, bn)) ∈ QC if and only if (a1, . . . , an) ∈ QA

and (b1, . . . , bn) ∈ QB;

• for every function symbol Q of arity n ∈ N and every tuple ((a1, b1), . . . , (an, bn)) ∈
(A×B)n, we have that QC((a1, b1), . . . , (an, bn)) = (QA(a1, . . . , an), QB(b1, . . . , bn)).

We denote the direct product A×A by A2. The k-fold product A× · · · × A is defined
analogously and denoted by Ak.

Structures with a signature that only contains function symbols are called algebras and
structure with purely relational signature are called relational structures. Since we do not
deal with signatures of mixed type in this article, we will from now on use the term structure
for relational structures only.

2.2 Representable Relation Algebras and Network Satisfaction Problems

Relation algebras that are not representable have a trivial network satisfaction problem,
namely the class of yes-instances of their network satisfaction problem is empty (see Defi-
nition 2.5). We thus omit the definition of relation algebras and start immediately with the
simpler definition of representable relation algebras; here we basically follow the textbook
by Maddux (2006b).

Definition 2.1. Let D be a set and E ⊆ D2 an equivalence relation on D.
Let (P(E); ∪, ¯ , 0, 1, Id, ^, ◦) be an algebra with the following operations:

1. a ∪ b := {(x, y) | (x, y) ∈ a ∨ (x, y) ∈ b},

2. ā := E \ a,

3. 0 := ∅,

4. 1 := E,

5. Id := {(x, x) | x ∈ D},

6. a^ := {(x, y) | (y, x) ∈ a},

7. a ◦ b := {(x, z) | ∃y ∈ D : (x, y) ∈ a and (y, z) ∈ b}.
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A subalgebra of (P(E); ∪, ¯ , 0, 1, Id, ^, ◦) is called a proper relation algebra.

The class of representable relation algebras, denoted by RRA, consists of all algebras
with signature τ = { ∪, ¯ , 0, 1, Id, ^, ◦} with corresponding arities 2, 1, 0, 0, 0, 1 and 2
that are isomorphic to some proper relation algebra. We use bold letters (such as A) to
denote algebras from RRA and the corresponding roman letter (such as A) to denote the
domain of the algebra. An algebra is called finite if its domain is finite. We call A ∈ RRA
symmetric if all its elements are symmetric, i.e., a^ = a for every a ∈ A.

According to the previous definition, an algebra A is in RRA if it has an isomorphism
to a proper relation algebra. Such an isomorphism is usually called the representation of
A. To link the theory of relation algebras with model theory it will be convenient to view
representations of algebras in RRA as relational structures and to not use the classical
notation here. However, it is easy to see that the existence of a representation is equivalent
under both definitions.

Definition 2.2. Let A ∈ RRA. Then a representation of A is a relational structure B
such that

• B is an A-structure, i.e., the elements of A are binary relation symbols of B;

• The map a 7→ aB is an isomorphism between A and the proper relation algebra induced
by the relations of B in (P(1B); ∪, ¯ , 0, 1, Id, ^, ◦).

Let A = (A; ∪, ¯, 0, 1, Id, ^, ◦) be a representable relation algebra and let us define
a new operation x ∩ y := x ∪ y on the set A. Then the algebra (A; ∪, ∩, ¯ , 0, 1) is by
definition a Boolean algebra and induces therefore a partial order ≤ on A, which is defined
by x ≤ y :⇔ x∪ y = y. Note that for proper relation algebras, this ordering coincides with
the set-inclusion order. The minimal elements of this order in A\{0} are called atoms. The
set of atoms of A is denoted by A0. A tuple (x, y, z) ∈ (A0)3 is called an allowed triple if
z ≤ x ◦ y. Otherwise, (x, y, z) is called a forbidden triple and in this case z ∪ x ◦ y = 1.
We say that a relational A-structure B induces a forbidden triple (from A) if there exists
b1, b2, b3 ∈ B and (x, y, z) ∈ (A0)3 such that x(b1, b2), y(b2, b3) and z(b1, b3) hold and (x, y, z)
is a forbidden triple. Note that a representation of A does not induce a forbidden triple.

Definition 2.3. Let A ∈ RRA. An A-network (V ; f) is a finite set V together with a
partial function f : E ⊆ V 2 → A, where E is the domain of f . An A-network (V ; f) is
satisfiable in a representation B of A if there exists an assignment s : V → B such that for
all (x, y) ∈ E the following holds:

(s(x), s(y)) ∈ f(x, y)B.

An A-network (V ; f) is satisfiable if there exists a representation B of A such that (V ; f)
is satisfiable in B.

We give an example of an instance of the NSP for a representable relation algebra. The
numbering of the representable relation algebra is by Andréka and Maddux (1994).

Example 2.4 (An instance of NSP of representable relation algebra #17). Let A be the
symmetric representable relation algebra with the set of atoms {Id, a, b} and the values for
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◦ Id a b

Id Id a b

a a Id∪b a ∪ b
b b a ∪ b Id∪a ∪ b

Figure 1: Multiplication table of the representable relation algebra #17.

the composition operation ◦ on these atoms be given by Table 1. Note that this determines
the composition operation on the whole domain of A, which is the following set:

A = {∅, Id, a, b, Id∪a, Id∪b, a ∪ b, Id∪a ∪ b}.

Let V := {x1, x2, x3} be a set. Consider the map f : V 2 → A given by

f(xi, xi) = Id for all i ∈ {1, 2, 3}
f(x1, x2) = f(x2, x1) = a

f(x1, x3) = f(x3, x1) = Id∪a
f(x2, x3) = f(x3, x2) = b ∪ a.

The tuple (V ; f) is an example of an instance of NSP of A ∈ RRA.

We will in the following assume that for an A-network (V ; f) it holds that f(V 2) ⊆
A \ {0}. Otherwise, (V ; f) is not satisfiable. Note that every A-network (V ; f) can be
viewed as an A-structure C on the domain V : for all x, y ∈ V and a ∈ A the relation
aC(x, y) holds if and only if f(x, y) = a.

Definition 2.5. The (general) network satisfaction problem for a finite representable rela-
tion algebra A, denoted by NSP(A), is the problem of deciding whether a given A-network
is satisfiable.

2.3 Normal Representations and CSPs

In this section we consider a subclass of RRA introduced by Hirsch in 1996. For repre-
sentable relation algebras A from this class, NSP(A) corresponds naturally to a constraint
satisfaction problem (CSP). In the last two decades a rich and fruitful theory emerged to
analyse the computational complexity of CSPs. We use this theory to obtain results about
the computational complexity of NSPs.

In the following let A be in RRA. An A-network (V ; f) is called closed (transitively
closed in the work by Hirsch (1997)) if it is total and for all x, y, z ∈ V it holds that
f(x, x) ≤ Id, f(x, y) = f(y, x)^, and f(x, z) ≤ f(x, y) ◦ f(y, z). It is called atomic if the
range of f only contains atoms from A.

Definition 2.6 (from Hirsch (1996)). Let B be a representation of A. Then B is called

• fully universal, if every atomic closed A-network is satisfiable in B;

• square, if 1B = B2;
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• homogeneous, if for every isomorphism between finite substructures of B there exists
an automorphism of B that extends this isomorphism;

• normal, if it is fully universal, square and homogeneous.

Definition 2.7. Let τ be a relational signature. A first-order formula ϕ(x1, . . . , xn) is called
primitive positive (pp) if it has the form

∃xn+1, . . . , xm.(ϕ1 ∧ · · · ∧ ϕs)

where ϕ1, . . . , ϕs are atomic formulas, i.e., formulas of the form R(y1, . . . , yl) for R ∈ τ
and yi ∈ {x1, . . . , xm}, of the form y = y′ for y, y′ ∈ {x1, . . . xm}, or of the form false.

As usual, formulas without free variables are called sentences. A relational structure is
called connected if it is not the disjoint union of two structures. A connected component of
a relational structure C is a substructure B of C that is maximal with respect to domain
inclusion and is connected. For every primitive positive τ -sentence ϕ with variable set X
the canonical database D(ϕ) is defined as the τ -structure on X where x ∈ Xm is in the
relation RD(ϕ) for R ∈ τ if and only if R(x) is a conjunct from ϕ. Conversely every relational
τ -structure A induces a primitive positive τ -sentence on the variable set A, the so-called
conjunctive query, simply by taking the conjunction all atomic formulas that hold in A.
We say that the primitve positive τ -sentences ϕ1, . . . , ϕn are the connected components
of a primitive positive τ -sentence ϕ if they are the conjunctive queries of the connected
components of the canonical database D(ϕ).

Definition 2.8. Let τ be a finite relational signature and let B be a τ -structure. Then
the constraint satisfaction problem of B (CSP(B)) is the computational problem of deciding
whether a given primitive positive τ -sentence holds in B.

Consider the following translation which associates to each A-network (V ; f) a primitive
positive A-sentences ϕ as follows: the variables of ϕ are the elements of V and ϕ contains
for every (x, y) in the domain of f the conjunct a(x, y) if and only if f(x, y) = a holds.
For the other direction let ϕ be an A-sentence with variable set X and consider the A-
network (X; f) with the following definition: for every x, y ∈ X, if (x, y) does not appear in
any conjunct from ϕ we leave f(x, y) undefined, otherwise let a1(x, y), . . . , an(x, y) all the
conjuncts from ϕ that contain (x, y). We compute in A the element a := a1 ∩ . . . ∩ an and
define f(x, y) := a.

The following theorem, which subsumes the connection between network satisfaction
problems and constraint satisfaction problems is based on this natural 1-to-1 correspondence
between A-networks and A-sentences.

Theorem 2.9 (Bodirsky, 2012, see also Bodirsky & Jonsson, 2017; Bodirsky, 2018). Let
A ∈ RRA be finite. Then the following holds:

1. A has a representation B such that NSP(A) and CSP(B) are the same problem up
to the translation between A-networks and A-sentences.

2. If A has a normal representation B the problems NSP(A) and CSP(B) are the same
up to the translation between A-networks and A-sentences.
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2.4 Model Theory

Let τ be a finite relational signature. The class of finite τ -structures that embed into a τ -
structure B is called the age of B, denoted by Age(B). If F is a class of finite τ -structures,
then Forb(F) is the class of all finite τ -structures A such that no structure from F embeds
into A. A class C of finite τ structures is called finitely bounded if there exists a finite set of
finite τ -structures F such that C = Forb(F) (see, e.g., Macpherson, 2011). The structures
from F are called bounds or forbidden substructures. It is easy to see that a class C of
τ -structures is finitely bounded if and only if it is axiomatisable by a universal τ -sentence.
A structure B is called finitely bounded if Age(B) is finitely bounded.

Proposition 2.10 (Bodirsky, 2018). Let B be a normal representation of a finite A ∈ RRA.
Then the following holds:

• B is finitely bounded by bounds of size at most three.

• The A0 \ {Id}-reduct of B is finitely bounded by bounds of size at most three.

Definition 2.11. A class of finite τ -structures has the amalgamation property if for all
structures A,B1,B2 ∈ C with embeddings e1 : A → B1 and e2 : A → B2 there exist a
structure C ∈ C and embeddings f1 : B1 → C and f2 : B2 → C such that f1 ◦ e1 = f2 ◦ e2.
If additionally f1(B1) ∩ f2(B2) = f1(e1(A)) = f2(e2(A)), then we say that C has the strong
amalgamation property.

Let B1,B2 be τ -structures. Then B1 ∪B2 is the τ -structure on the domain B1 ∪ B2

such that RB1∪B2 := RB
1 ∪RB

2 for every R ∈ τ . If Definition 2.11 holds with C := B1 ∪B2

then we say that C has the free amalgamation property ; note that the free amalgamation
property implies the strong amalgamation property.

Theorem 2.12 (Fräıssé; see, e.g., Hodges, 1997). Let τ be a finite relational signature and
let C be a class of finite τ -structures that is closed under taking induced substructures and
isomorphisms and has the amalgamation property. Then there exists an up to isomorphism
unique countable homogeneous structure B such that C = Age(B).

Definition 2.13. Let B be a relational structure. A set O ⊆ Bn is called an n-orbit of
Aut(B) if O is preserved by all α ∈ Aut(B) and for all x, y ∈ O there exists α ∈ Aut(B)
such that α(x) = y.

For a structure B the automophism group Aut(B) is called transitive if Aut(B) has only
one orbit. We want to remark that if B is a normal representation of a finite A ∈ RRA
then the 2-orbits of Aut(B) are exactly the relations induced by the atoms A0 of A.

2.5 The Universal-Algebraic Approach

In this section we present basic notions for the so-called universal-algebraic approach to the
study of CSPs.

Definition 2.14. Let B be some set. We denote by O
(n)
B the set of all n-ary operations

on B and by OB :=
⋃
n∈NO

(n)
B the set of all operations on B. A set C ⊆ OB is called
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an operation clone on B if it contains all projections of all arities and if it is closed under

composition, i.e., for all f ∈ C (n) := C ∩ O(n)
B and g1, . . . , gn ∈ C ∩ O(s)

B it holds that
f(g1, . . . , gn) ∈ C , where f(g1, . . . , gn) is the s-ary function defined as follows

f(g1, . . . , gn)(x1, . . . , xs) := f(g1(x1, . . . , xs), . . . , gn(x1, . . . , xs)).

An operation f : Bn → B is called conservative if for all x1, . . . , xn ∈ B it holds that
f(x1, . . . , xn) ∈ {x1, . . . , xn}. A clone is called conservative if all its operations are conser-
vative. Note that an operation clone C on B can be considered as an algebra with domain
B and an infinite signature that consists of symbols for all operations in C (cf. Section
2.1). In this sense a conservative operation clone C on B induces on every set A ⊆ B a
subalgebra. It is easy to see that this subalgebra corresponds to an operation clone on A.
We call this the restriction of C to A. We later need the following classical result for clones
over a two-element set.

Theorem 2.15 (Post, 1941). Let C be a conservative operation clone on {0, 1}. Then
either C contains only projections, or at least one of the following operations:

1. the binary function min,

2. the binary function max,

3. the minority function,

4. the majority function.

Operation clones occur naturally as polymorphism clones of relational structures. If
x1, . . . , xn ∈ Bk and f : Bn → B, then we write f(x1, . . . , xn) for the k-tuple obtained by
applying f component-wise to the tuples x1, . . . , xn.

Definition 2.16. Let B a structure with a finite relational signature τ and let R ∈ τ . An
n-ary operation preserves a relation RB if for all x1, . . . , xn ∈ RB it holds that

f(x1, . . . , xn) ∈ RB.

If f preserves all relations from B then f is called a polymorphism of B.

In order to provide an additional view on polymorphisms we give the following definition.

Definition 2.17. Let τ be a relational signature and let B be a τ -structure. For n ∈ N+

the structure Bn is the τ -structure on the domain Bn defined as follows. Let R ∈ τ be of
arity l. Then

(x1, . . . , xl) ∈ RBn
:⇔ ∀i ∈ {1, . . . , n} : (x1

i , . . . , x
l
i) ∈ RB.

It is easy to see that the n-ary polymorphisms of B are precicely the homomorphisms
from Bn to B.

The set of all polymorphisms (of all arities) of a relational structure B is an operation
clone on B, which is denoted by Pol(B). A Siggers operation is an operation that satisfies
the Siggers identity (see Theorem 1.1). The following result can be obtained by combining
known results from the literature.
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Theorem 2.18 (Siggers, 2010; Bulatov, 2003; see also Barto, 2011; Bulatov, 2016). Let
B be a finite structure with a finite relational signature such that Pol(B) is conservative.
Then precisely one of the following holds:

1. There exist distinct a, b ∈ B such that for every f ∈ Pol(B)(n) the restriction of f to
{a, b}n is a projection. In this case, CSP(B) is NP-complete.

2. Pol(B) contains a Siggers operation; in this case, CSP(B) is in P.

We now discuss fundamental results about the universal-algebraic approach for con-
straint satisfaction problems of structures with an infinite domain.

Theorem 2.19 (Bodirsky & Nešetřil, 2006). Let B be a homogeneous structure with finite
relational signature. Then a relation is preserved by Pol(B) if and only if it is primitively
positively definable in B.

The following definition is a preparation to formulate the next theorem which is a well-
known condition that implies NP-hardness of CSP(B) for homogeneous structures with a
finite relational signature.

Definition 2.20. Let K be a class of algebras. Then we have

• H(K) is the class of homomorphic images of algebras from K and

• S(K) is the class of subalgebras of algebras from K.

• Pfin(K) is the class of finite products of algebras from K.

An operation clone C on a set B can also be seen as an algebra B with domain B whose
signature consists of the operations of C such that fB := f for all f ∈ C .

The following is a classical condition for NP-Hardness, see for example Theorem 10 in
the survey by Bodirsky (2008).

Theorem 2.21. Let B be a homogeneous structure with finite relational signature. If
HSPfin({Pol(B)}) contains a 2-element algebra where all operations are projections, then
CSP(B) is NP-hard.

In the following let A ∈ RRA be finite and with normal representation B.

Definition 2.22. Let a1, . . . , an ∈ A0 be atoms of A. Then the 2n-ary relation (a1, . . . , an)B

is defined as follows:

(a1, . . . , an)B :=
{

(x1, . . . , xn, y1, . . . , yn) ∈ B2n |
∧

i∈{1,...,n}

aBi (xi, yi)
}
.

An operation f : Bn → B is called edge-conservative if it satisfies for all x, y ∈ Bn and
all a1, . . . , an ∈ A0

(a1, . . . , an)B(x, y)⇒ (f(x), f(y)) ∈
⋃

i∈{1,...,n}

aBi .

Note that for every D ⊆ A0 the structure B contains the relation
⋃
ai∈D a

B
i . Therefore the

next proposition follows immediately since polymorphisms of B preserve all relations of B.
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Proposition 2.23. All polymorphisms of B are edge-conservative.

Definition 2.24. Let X ⊆ A0. An operation f : Bn → B is called X-canonical (with
respect to B) if there exists a function f̄ : Xn → A0 such that for all a, b ∈ Bn and
O1, . . . , On ∈ X, if (ai, bi) ∈ Oi for all i ∈ {1, . . . , n} then (f(a), f(b)) ∈ f̄(O1, . . . , On)B.
An operation f is called canonical (with respect to B) if it is A0-canonical. In this case we
say that the behaviour f̄ is total. If X ( A0 we call f̄ a partial behaviour. The function f̄
is called the behaviour of f on X. If X = A0 then f̄ is just called the behaviour of f .

We denote by Polcan(B) the set of all polymorphisms of B that are canonical with
respect to B. It will always be clear from the context what the domain of a behaviour f̄ is.
An operation f : S2 → S is called symmetric if for all x, y ∈ S it holds that f(x, y) = f(y, x).
An X-canonical function f is called X-symmetric if the behaviour of f on X is symmetric.

2.6 Ramsey Theory and Canonisation

We avoid giving an introduction to Ramsey theory, since the only usage of the Ramsey
property is via Theorem 2.26, and rather refer to the survey by Bodirsky (2015) for an
introduction.

Let A be a homogeneous τ -structure such that Age(A) has the strong amalgamation
property. Then the class of all (τ ∪ {<})-structures A such that <A is a linear order and
whose τ -reduct (i.e. the structure on the same domain, but only with the relations that are
denoted by symbols from τ , see e.g. the book by Hodges (1997)) is from Age(A) is a strong
amalgamation class, too (see e.g. Bodirsky, 2015). By Theorem 2.12 there exists an up to
isomorphism unique countable homogeneous structure of that age, which we denote by A<.
It can be shown by a straightforward back-and-forth argument that A< is isomorphic to an
expansion of A, so we identify the domain of A and of A< along this isomorphism, and call
A< the expansion of A by a generic linear order.

Theorem 2.25 (Nešetřil & Rödl, 1989; Hubička & Nešetřil, 2019). Let A be a relational
τ -structure such that Age(A) has the free amalgamation property. Then the expansion of A
by a generic linear order has the Ramsey property.

The following theorem gives a connection of the Ramsey property with the existence of
canonical functions and plays a key role in our analysis.

Theorem 2.26 (Bodirsky & Pinsker, 2021). Let B be a countable homogeneous structure
with finite relational signature and the Ramsey property. Let h : Bk → B be an operation
and let L :=

{
(x1, . . . , xk) 7→ α(h(β1(x1), . . . , βk(xk)) | α, β1 . . . , βk ∈ Aut(B)

}
.

Then there exists a canonical operation g : Bk → B such that for every finite F ⊂ B
there exists g′ ∈ L such that g′|Fk = g|Fk .

Remark 2.27. Let A and B be homogeneous structures with finite relational signatures. If
A and B have the same domain and the same automorphism group, then A has the Ramsey
property if and only if B has it (see, e.g., Bodirsky, 2015).
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3. Representable Relation Algebras with a Flexible Atom

In this section we define the concept of a flexible atom and show how to reduce the classifica-
tion problem for the network satisfaction problem for a finite A ∈ RRA with a flexible atom
to the situation where A is additionally integral (Proposition 3.3). A finite representable
relation algebra A is called integral if the element Id is an atom of A (cf. Maddux, 2006b) .

Then we show that an integral A ∈ RRA with a flexible atom has a normal represen-
tation. Therefore, the universal-algebraic approach is applicable; in particular, we make
heavy use of polymorphisms and their connection to primitive positive definability in later
sections (cf. Theorem 2.19). Furthermore, we prove that every normal representation of a
finite representable relation algebra with a flexible atom has a Ramsey expansion (Section
3.2). Therefore, the tools from Section 2.6 can be applied, too. Finally we give some ex-
amples of representable relation algebras with a flexible atom (Section 3.3). We start with
the definition of a flexible atom.

Definition 3.1. Let A ∈ RRA and let I := {a ∈ A | a ≤ Id}. An atom s ∈ A0 \ I is called
flexible if for all a, b ∈ A \ I it holds that s ≤ a ◦ b.

This definition can for example be found in the book by Hirsch and Hodkinson (2002,
Chapter 11, Exercise 1). Note that this definition does not require the representable relation
algebra A to be integral. This is slightly more general than the definition by Maddux (1994,
2006b). As mentioned before, we show in the following section that it is sufficient for our
result to classify the computational complexity of NSPs for finite representable relation
algebras with a flexible atom that are additionally integral. This means that readers who
prefer this second definition by Maddux (1994, 2006b) (assuming integrality) can perfectly
skip the following section and read the article with this other definition in mind. In this
case representable relation algebras with a flexible atom are always implicitly integral.

3.1 Integral Representable Relation Algebras

Let A ∈ RRA and let I := {a ∈ A | a ≤ Id}. The atoms in I ∩A0 are called identity atoms.
Therefore, A is integral if and only if A has exactly one identity atom. The first claim of the
following lemma is a well-known fact about atoms of representable relation algebras. This
fact is used to prove a second claim about representable relation algebras with a flexible
atom. In simple terms, this claim states that a representation of a non-integral representable
relation algebra with a flexible atom is only “square” on precisely those elements that are
in one certain identity atom.

Lemma 3.2. Let A ∈ RRA be finite. Then there exists for every atom s a unique e1 ∈ A0

with 0 < e1 ≤ Id such that s = e1 ◦ s. Furthermore, if s is a flexible atom then for all
e2 ∈ A0 with 0 < e2 ≤ Id and e2 6= e1 we have that e2 ◦ Id = 0.

Proof. Note that Id ◦s = s by definition and therefore e◦s ⊆ s for all e ∈ A0 with 0 < e ≤ Id.
Since s is an atom either e◦s = 0 or e◦s = s. By Id =

⋃
{e ∈ A0 | 0 < e ≤ Id} and Id ◦s = s

there exists at least one 0 < e ≤ Id with e ◦ s = s. In the next step we prove uniqueness
of such an element e. Assume for contradiction that there exist distinct e1, e2 ∈ A0 with
0 < e1 ≤ Id and 0 < e2 ≤ Id such that e1 ◦ s = s and e2 ◦ s = s. Note that e1 ◦ e2 = 0 since
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e1 and e2 are identity atoms. Therefore, we get

0 = 0 ◦ s = (e1 ◦ e2) ◦ s = e1 ◦ (e2 ◦ s) = e1 ◦ s = s,

which is a contradiction since s is an atom. This proves the first statement.

For the second statement assume for contradiction that there exists e2 ∈ A0 \ {e1} such
that e2 ≤ Id and e2 ◦ Id 6= 0. Let a be an atom with a ≤ e2 ◦ Id. Since e1 ◦ e2 = 0 we get
e1 ◦ a ≤ e1 ◦ (e2 ◦ Id) = (e1 ◦ e2) ◦ Id = 0 ◦ Id = 0. Since s is a flexible atom it holds that
s ≤ a ◦ a^ and therefore

s = e1 ◦ s ≤ e1 ◦ (a ◦ a^) = (e1 ◦ a) ◦ a^ = 0 ◦ a^ = 0,

which is a contradiction.

Proposition 3.3. Let A ∈ RRA be finite and with a flexible atom. Then there exists a
finite integral A′ ∈ RRA with a flexible atom such that the following statements hold:

1. There exists a polynomial-time many-one reduction from NSP(A) to NSP(A′).

2. There exists a polynomial-time many-one reduction from NSP(A′) to NSP(A).

3. The atom structure of A has a polymorphism that satisfies the Siggers identity if and
only if the atom structure of A′ has such a polymorphism (see Definition 4.1).

Proof. If A is integral there is nothing to be shown. So assume that A is not integral and
let s be a flexible atom. Let B be a representation of A such that NSP(A) and CSP(B)
are the same problem up to the translation between A-networks and A-sentences. Such

a representation exists by Theorem 2.9. Let (x, y) ∈ Id
B

and let e1 ∈ A0 be the unique
element with e1 ≤ Id and s = e1 ◦ s that exists by Lemma 3.2. The second statement of
Lemma 3.2 implies e1 ◦ Id = Id and therefore we have that (x, x) ∈ eB1 and (y, y) ∈ eB1 . Let
C′ be the substructure of B on the domain {x ∈ B | (x, x) ∈ eB1 }. The set of relations of
C′ clearly induces a proper relation algebra which is integral. We denote this representable
relation algebra by A′. Note that we can also consider A′ as a subset of A. Let B′ be
the representation of A′ such that NSP(A′) and CSP(B′) are the same problem up to the
translation between A′-networks and A′-sentences. As before, such a representation exists
by Theorem 2.9.

Proof of 1.: Note that if a connected instance of CSP(B) is satisfiable, then either
all variables are mapped to an atom from the subset of A0 that corresponds to A′0 or all
variables are mapped to one element x with e∗(x, x) and e∗ ∈ {e ∈ A0 | e ≤ Id and e 6= e1}.
This leads to the following polynomial-time many-one reduction from CSP(B) to CSP(B′),
which proves together with Theorem 2.9 the claim that there exists a polynomial-time
many-one reduction from NSP(A) to NSP(A′). Consider the following algorithm: For a
given primitive positive A-sentence ϕ it computes the connected components ϕ1, . . . , ϕn
(see paragraph after Definition 2.7). Then it checks for every i ∈ {1, . . . , n} whether there
exists e∗ ∈ {e ∈ A0 | e ≤ Id and e 6= e1} such that for every conjunct a(x, y) of ϕi it holds
that e∗ ≤ a. Let I ⊆ {1, . . . , n} be the set of indices for which this is not the case. Then the
algorithm defines new A′-sentences ϕ′i from ϕi for every i ∈ I by replacing every conjunct
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a(x, y) with a′(x, y) where a′ := a\{e ∈ A0 | e ≤ Id and e 6= e1}. Let ϕ′ be the conjunction
of all ϕ′i for i ∈ I.

It is easy to see that ϕ′ is computable from ϕ in polynomial time and that ϕ is a
satisfiable instance of CSP(B) if and only if ϕ′ is a satisfiable instance of CSP(B′).

Proof of 2.: Consider now an A′-network (V ; f ′). We claim that (V ; f ′) is satisfiable
as an A′-network if and only if it is satisfiable as an A-network. Suppose that (V ; f ′) is
satisfiable in a representation D′ of A′ by an assignment α. Let yi be fresh elements for
every atom ei ≤ Id with ei 6= e1. We build the disjoint union of D′ with one-element
{ei}-structures ({yi}; {(yi, yi)}) and then close the structure under union and intersection
of binary relations. This results in a representation of A that satisfies (V ; f ′) again by the
assignment α. For the other direction, if (V ; f ′) is satisfiable in a representation D of A we
can again consider the substructure on the domain (x, x) ∈ eD1 and get a representation of
A′ that satisfies (V ; f ′).

Proof of 3.: Let g be a polymorphism of the atom structure of A that satisfies the
Siggers identity. By assumption g satisfies

∀x1, . . . , x6 ∈ A0. g(x1, . . . , x6) ∈ {x1, . . . x6}

and therefore the restriction of g to (A0 ∩A′)6 is a polymorphism of the atom structure of
A′ .

For the other direction choose an arbitrary ordering of the atoms {e ∈ A0 | e ≤
Id and e 6= e1} = {l1, . . . , lj}. If g is a Siggers polymorphism of the atom structure of
A′ one can extend g to an operation g∗ : A6 → A by defining

g∗(x1, . . . , x6) :=

{
min({l1, . . . , lj} ∩ {x1, . . . , x6}) if {l1, . . . , lj} ∩ {x1, . . . , x6} 6= ∅,
g(x1, . . . , x6) otherwise.

It is easy to see that this operation satisfies also the Siggers identity. Furthermore, since
every atom e from {e ∈ A0 | e ≤ Id and e 6= e1} is only contained in allowed triples of the
form (e, e, e) it follows that f∗ preserves the allowed triples from A (see after Definition 4.1).

3.2 Normal Representations

Let A ∈ RRA be for the rest of the section finite, integral, and with a flexible atom s. We
consider the following subset of A:

A− s := {a ∈ A | s 6≤ a}.

Let (V, g) be an A-network and let C be the corresponding A-structure (see paragraph
before Definition 2.5). Let C− s be the (A− s)-structure on the same domain V as C such
that for all x, y ∈ V and a ∈ (A− s) \ {0} we have

aC−s(x, y) if and only if (aC(x, y) ∨ (a ∪ s)C(x, y)).

We call C− s the s-free companion of an A-network (V, f).
The next lemma follows directly from the definitions of flexible atoms and s-free com-

panions.
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Lemma 3.4. Let C be the class of s-free companions of atomic closed A-networks. Then
C has the free amalgamation property.

Proof. Let A,B1, and B2 be structures in C with embeddings e1 : A→ B1 and e2 : A→ B2.
Since s is a flexible atom and C is a class of s-free companions we get that the structure
C := B1 ∪ B2 is in C. Therefore, the natural embeddings f1 : B1 → C and f2 : B2 → C
prove the free amalgamation property of C.

As a consequence of this lemma we obtain the following.

Proposition 3.5. A has a normal representation B.

Proof. Let C be the class from Lemma 3.4. This class is closed under taking substructures
and isomorphisms. By Lemma 3.4 it also has the amalgamation property and therefore
we get by Theorem 2.12 a homogeneous structure B′ with Age(B′) = C. Let B′′ be the
expansion of B′ by the following relation

s(x, y) :⇔
∧

a∈A0\{s}

¬aB′
(x, y).

Let B be the (homogeneous) expansion of B′′ by all Boolean combinations of relations
from B′′. Then B is a representation of A ∈ RRA. Since Age(B′) is the class of all atomic
closed A-networks, B is fully universal. The definition of s witnesses that B is a square
representation of A: for all elements x, y ∈ B there exists an atom a ∈ A0 such that aB(x, y)
holds.

The next theorem is another consequence of Lemma 3.4.

Theorem 3.6. Let B be a normal representation of A. Let B< be the expansion of B by
a generic linear order. Then B< has the Ramsey property.

Proof. Let B′ be the (A0 \ {s})-reduct of B. The age of this structure has the free amalga-
mation property by Lemma 3.4. Therefore, Theorem 2.25 implies that the expansion of B′

by a generic linear order has the Ramsey property. By Remark 2.27 the structure B< also
has the Ramsey property since B< and (B′)< have the same automorphism group.

Remark 3.7. The binary first-order definable relations of B< form a proper relation algebra
since B< has quantifier-elimination (see Hodges, 1997). By the definition of the generic
order the atoms of this proper relation algebra are of the following form

• aB<∩ <B< for a ∈ A0 \ {Id}, or

• aB<∩ >B< for a ∈ A0 \ {Id}, or

• Id,

where the relation >B< consists of all tuples (x, y) such that (y, x) ∈<B< holds.
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◦ Id a b

Id Id a b

a a {Id, a, b} {a, b}
b b {a, b} {Id, a, b}

◦ Id a b

Id Id a b

a a {Id, b} {a, b}
b b {a, b} {Id, a, b}

Figure 2: Multiplication tables of representable relation algebras #18 (left) and #17 (right).

3.3 Examples

We give two concrete examples of finite integral symmetric representable relation algebras
with a flexible atom (Examples 3.8 and 3.9), and a systematic way of building such alge-
bras from arbitrary representable relation algebras (Example 3.10). The numbering of the
algebras in the examples is by Andréka and Maddux (1994).

Example 3.8 (Representable relation algebra #18). The representable relation algebra
#18 has three atoms, namely the identity atom Id and two symmetric atoms a and b.
The multiplication table for the atoms is given in Fig. 2. In this representable relation
algebra the atoms a and b are flexible. Consider the countable, homogeneous, undirected
graph R = (V ;ER), whose age is the class of all finite undirected graphs (see, e.g., Hodges,
1997), also called the Random graph. The expansion of R by all binary first-order definable
relations is a normal representation of the algebra #18. In this representation the atoms
a and b are interpreted as the relation ER and the relation NR, where NR is defined as
¬E(x, y) ∧ x 6= y.

Example 3.9 (Representable relation algebra #17). The representable relation algebra #17
also consists of three symmetric atoms. The multiplication table in Fig. 2 shows that in this
algebra the element b is a flexible atom. To see that a is not a flexible atom, note that
a 6≤ a ◦ a = {Id, b}. Let N = (V ;EN) be the countable, homogeneous, undirected graph,
whose age is the class of all finite undirected graphs that do not embed the complete graph
on three vertices (see, e.g., Hodges, 1997). This structure is called a Henson graph. If we
expand N by all binary first-order definable relations we get a normal representation of the
algebra #17. To see this note that we interpret a as the relation EN. That N is triangle
free, i.e. triangles of EN are forbidden, matches with the fact that a 6≤ a ◦ a holds in the
representable relation algebra.

Example 3.10. Consider an arbitrary finite, integral A = (A;∪,̄ , 0, 1, Id,^ , ◦) ∈ RRA.
Clearly A does not have a flexible atom s in general. Nevertheless we can expand the
domain of A to implement an “artificial” flexible atom.

Let s be some symbol not contained in A. Let us mention that every element in A
can uniquely be written as a union of atoms from A0. Let A′ be the set of all subsets of
A0 ∪ {s}. The set A′ is the domain of our new algebra A′. Note that on A′ there exists the
subset-ordering and A′ is closed under set-union and complement (in A0 ∪ {s}) We define
s to be symmetric and therefore get the following unary function ∗ in A′ as follows. For an
element x ∈ A′ we define

x∗ :=

{
y^ ∪ {s} if x = y ∪ {s} for y ∈ A,
x^ otherwise.
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The new function symbol ◦′A in A′ is defined on the atoms A0 ∪ {s} as follows:

x ◦A′ y :=


A0 ∪ {s} if {s} = {x, y},
(A0 \ {Id}) ∪ {s} if {s, a} = {x, y} for a ∈ A0 \ {s, Id},
{a} if {Id, a} = {x, y} for a ∈ A0 ∪ {s},
(x ◦ y) ∪ {s} otherwise.

One can check that A′ = (A′;∪,̄ , ∅, A0 ∪ {s}, Id,∗ , ◦A′) is a finite integral representable
relation algebra with a flexible atom s. Note that the forbidden triples of A′ are exactly
those of A together with triples which are permutations of (s, a, Id) for some a ∈ A0.

4. Polynomial-time Tractability

In this section we introduce for every finite A ∈ RRA an associated finite structure, called
the atom structure of A. Note that it is closely related, but not the same, as the type
structure introduced by Bodirsky and Mottet (2016). In the context of relation algebras
the atom structure has the advantage that its domain is the set of atoms of A, rather than
the set of 3-types, which would be the domain of the type structure of Bodirsky and Mottet
(2016); hence, our domain is smaller and has some advantages on which the main result of
this section (Proposition 4.4) is based. Up to a some differences in the signature, our atom
structure is the same as the atom structure introduced by Lyndon (1950) which was used
there for different purposes (see also Maddux, 1982; Hirsch & Hodkinson, 2001; Hirsch,
Jackson, & Kowalski, 2019).

Let B be a normal representation of a finite A ∈ RRA. We will reduce CSP(B) to
the CSP of the atom structure of A. This means that if the CSP of the atom structure
is in P, then so are CSP(B) and NSP(A). For our main result we will show later that
every network satisfaction problem for a finite integral symmetric representable relation
algebra with a flexible atom that cannot be solved in polynomial time by this method is
NP-complete.

Definition 4.1. The atom structure of A ∈ RRA is the finite relational structure O with
domain A0 and the following relations:

• for every x ∈ A the unary relation xO := {a ∈ A0 | a ≤ x},

• the binary relation EO := {(a1, a2) ∈ A2
0 | a^1 = a2},

• the ternary relation HO := {(a1, a2, a3) ∈ A3
0 | a3 ≤ a1 ◦ a2}.

Note that the relation HO consists of the allowed triples of A ∈ RRA. We say that an
operation preserves the allowed triples if it preserves the relation HO.

Proposition 4.2. Let B be a fully universal representation of a finite A ∈ RRA. There is
a polynomial-time reduction from CSP(B) to CSP(O).

Proof. Let Ψ be an instance of CSP(B) with variable set X = {x1, . . . , xn}. We construct
an instance Φ of CSP(O) as follows. The variable set Y of Φ is given by Y := {(xi, xj) ∈
X2 | i ≤ j}. The constraints of Φ are of the two kinds:
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1. Let a ∈ A be an element of A ∈ RRA and let a((xi, yj)) be an atomic formula of Ψ.
If i < j, then we add the atomic (unary) formula a((xi, xj)) to Φ; otherwise we add
the atomic formula a^((xj , xi)). If j = i we additionally add Id((xi, xj)).

2. Let xi, xj , xl ∈ X be such that i ≤ j ≤ l. Then we add the atomic formula
H((xi, xj), (xj , xl), (xi, xl)) to Φ.

It remains to show that this reduction is correct. Let s : X → B be a satisfying assignment
for Ψ. This assignment maps every pair of variables xi and xj to a unique atom in A0

and therefore induces a map s′ : Y → A0. The map s′ clearly satisfies all atomic formulas
introduced by (1.). To see that it also satisfies all formulas introduced by (2.) note that s
maps the elements xi, xj , xl ∈ X to a substructure of B, which does not induces a forbidden
triple.

For the other direction assume that s′ : Y → A0 is a satisfying assignment for Φ. This
induces an A-structure X on X (maybe with some identification of variables) as follows:
we add (xi, xj) to the relation aX if i ≤ j and s′((xi, xj)) = a; if otherwise j < i and
s′((xj , xi)) = a we add (xi, xj) to the relation (a^)X. It is clear that no forbidden triple
from A is induced by X. Also note that X satisfies Ψ by the choice of the (unary) constraints
of the first kind. Since B is a fully universal representation the structure X is a substructure
of B. Hence, the instance Ψ is satisfiable in B.

The atom structure has another property which is fundamental for our proof of Theorem
1. Recall that every canonical polymorphism f induces a behaviour f̄ : An0 → A0. In the
next proposition we show that then f̄ is a polymorphism of O. Moreover the other direction
also holds. Every g ∈ Pol(O) is the behaviour of a canonical polymorphism of B.

Proposition 4.3. Let B be a normal representation of a finite A ∈ RRA.

1. Let g ∈ Pol(B)(n) be canonical and let g : An0 → A0 be its behaviour. Then g ∈
Pol(O)(n).

2. Let f ∈ Pol(O)(n). Then there exists a canonical g ∈ Pol(B)(n) whose behaviour
equals f .

Proof. For (1): Let g ∈ Pol(B)(n) be canonical and let c1, . . . , cn ∈ HO. Then by the
definition of HO there exist tuples x1, . . . , xn ∈ B3 such that for all i ∈ {1, . . . , n} we have

ci1
B

(xi1, x
i
2), ci2

B
(xi2, x

i
3), and ci3

B
(xi1, x

i
3).

We apply the canonical polymorphism g and get y := g(x1, . . . , xn) ∈ B3. Then there
exists an allowed triple (d1, d2, d3) ∈ A3

0 such that

dB1 (y1, y2), dB2 (y2, y3), and dB3 (y1, y3).

We have that d = (d1, d2, d3) ∈ HO and by the definition of the behaviour of a canonical
function we get g(c1, . . . , cn) = d. The other relations in O are preserved trivially and
therefore g ∈ Pol(O)(n) .

For (2): Since B is fully universal and homogeneous it follows by a compactness argu-
ment (see e.g., Lemma 2 by Bodirsky & Dalmau, 2013) that every countable A0-structure
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which does not induce a forbidden triple and is square has a homomorphism to B. It
is therefore enough to show that every operation h : Bn → B with behaviour f does not
induce a forbidden triple in the image. Let x1, . . . , xn ∈ B3 be such that the application
of a canonical function with behaviour f on x1, . . . , xn would give a tuple y ∈ B3 with
d = (d1, d2, d3) ∈ A3

0 such that

dB1 (y1, y2), dB2 (y2, y3), and dB3 (y1, y3).

Since f preserves HO the triple d is not forbidden.

Recall from Proposition 2.23 that polymorphisms of B are edge-conservative. Note that
this implies that polymorphisms of O are conservative. In fact, Theorem 2.18 and the
Proposition 4.3 imply the following.

Proposition 4.4. If Pol(B) contains a canonical polymorphism s whose behaviour s is a
Siggers operation in Pol(O) then CSP(B) is in P.

We demonstrate how this result can be used to prove polynomial-time tractability of
NSP(A) for a symmetric, integral A ∈ RRA with a flexible atom.

Example 4.5 (Polynomial-time tractability the NSP of representable relation algebra #18).
The polynomial-time tractability of the NSP of the representable relation algebra #18

(see Example 3.8) was first shown by Cristiani and Hirsch (2004) (see also Section 8.4
of Bodirsky & Pinsker, 2015). Here we consider the following function s̄ : {Id, a, b}6 →
{Id, a, b}.

s̄(x1, . . . , x6) :=


a if a ∈ {x1, . . . , x6},
b if b ∈ {x1, . . . , x6} and a 6∈ {x1, . . . , x6},
Id otherwise.

Let R′ be the normal representation of the algebra #18 given in Example 3.8. Note that s̄
is the behaviour of an injective, canonical polymorphism of R. The injectivity follows from
the last line of the definition; if s̄(x1, . . . , x6) = Id then {x1, . . . , x6} = {Id}. Therefore s̄
preserves all allowed triples, since in the algebra #18 the only forbidden triples involve Id.
One can check that s̄ is a Siggers operation and therefore we get by Proposition 4.4 that
NSP(#18) is in P.

Example 4.6. Consider the construction of representable relation algebras with a flexible
atom from Example 3.10. It is easy to see that NSP(A) for a finite integral A ∈ RRA has a
polynomial-time reduction to NSP(A′) where A′ is the representable relation algebra with a
flexible atom that is constructed in Example 3.10. We get as a consequence that if a normal
representation of A′ satisfies the condition of Proposition 4.4 then NSP(A) is in P.

Theorem 2.18 has additionally to Proposition 4.4 another important consequence.

Corollary 4.7. If Pol(O) does not have a Siggers operation then there exist elements
a1, a2 ∈ A0 such that the restriction of every operation from Pol(O)(n) to {a1, a2}n is a
projection.
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5. Network Consistency Problems

The purpose of this section is to give an additional perspective on the class of network satis-
faction problems of finite symmetric integral representable relation algebras with a flexible
atom. Even more, we define these computational problems in this section completely with-
out the use of the relation algebra framework. Our classification result for these problems
does not depend on the content of this section and the reader may skip it.

We introduce a class of computational decision problems which we call network consis-
tency problems (NCPs). It is easy to see that NCPs are in a 1-to-1 correspondence with
NSPs of finite, symmetric, integral A ∈ RRA with a flexible atom.

Definition 5.1. Let A be a finite set and R ⊆ A3. Then R is called totally symmetric if
for all bijections π : {1, 2, 3} → {1, 2, 3} we have

(a1, a2, a3) ∈ R ⇒ (aπ(1), aπ(2), aπ(3)) ∈ R.

We call an element p ∈ A identity element if for all x, y ∈ A the following holds:

(p, x, y) ∈ R⇔ x = y.

A structure (A;R) is called a stencil if R is totally symmetric and it contains an identity
element.

Definition 5.2. Let (G;F ) be an undirected graph and let Q be a set. We call a map
c : F → Q an edge Q-coloring of (G;F ) if for all x, y ∈ G with (x, y) ∈ F it holds that
c((x, y)) = c((y, x)).

For each fixed stencil, we define an NCP as follows.

Definition 5.3. Let (A,R) be a stencil. The network completion problem of (A,R), denoted
by NCP(A,R), is the following problem. Given a finite undirected graph (G;F ) with an edge
P(A)-coloring f the task is to decide whether there exists an edge A-coloring f ′ of (G;F )
such that

1. for all x, y ∈ G with (x, y) ∈ F it holds that f ′((x, y)) ∈ f((x, y)).

2. for all x, y, z ∈ G with (x, y), (y, z), (x, z) ∈ F we have

(f ′((x, y)), f ′((y, z)), f ′((x, z))) ∈ R.

The following proposition illustrates how NCPs correspond to a certain class of NSPs.

Proposition 5.4. The class of NCPs and the class of NSPs for finite symmetric integral
representable relation algebras with a flexible atom are in a natural 1-to-1 correspondence
such that corresponding problems are polynomial-time equivalent.

Proof. Let (A′, R′) be a stencil with p ∈ A′ according to (2) in Definition 5.1 and let s be
new element with s 6∈ A′. We define a relational structure D as follows. The domain of D
is the set A′ ∪ {s}. We assume that D has every subset of its domain as a unary relation.
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Furthermore D contains the binary relation ED := {(x, x) | x ∈ A′ ∪ {s}} and the ternary
relation HD which is defined as follows:

(x, y, z) ∈ HD :⇔
(
(x, y, z) ∈ R′

∨ (s ∈ {x, y, z} ∧ p 6∈ {x, y, z})
∨ ((x, y, z) ∈ {(p, s, s), (s, p, s), (s, s, p)})

)
.

One can find a finite symmetric integral algebra A ∈ RRA with domain P(A′ ∪ {s}) and a
flexible atom s such that D is the atom structure of A (see, e.g., Theorem 2.2 and Theorem
2.6 in the article by Maddux (1982)).

Furthermore, given a finite symmetric integral algebra A ∈ RRA with a flexible atom s
let D be the atom structure of A. Let (A′;R′) be the substructure of the {R}-reduct of D
induced by D \ {s}. By the properties of D we get that (A′;R′) is a stencil.

We show that the instances of NCP(A′, R′) and NSP(A) are in a natural 1-to-1 cor-
respondence that preserves the acceptance condition of the computational problems. Let
(G;F ) be a finite undirected graph with an edge P(A′)-coloring f . We define an A-network
(G; g) by defining

g(x, y) =


f(x, y) (x, y) ∈ F,
{p} (x, y) 6∈ F and x = y
{s} else.

It is easy to see that (G;F ) is an accepted instance of NCP(A′, R′) if and only if (G; g) is
an accepted instance of NSP(A). Since we can reverse this and find for every A-network
(G; g) a finite undirected graph (G;F ) with an edge P(A′)-coloring f such that each of them
is an accepted instance if and only if the other one is. These to reductions show that the
computational decision problems NCP(A′, R′) and NSP(A) are polynomial-time equivalent.

We end this section by providing a rich source of examples for NCPs.

Example 5.5 (“Distance problems”). Let A ⊂ Q be an arbitrary finite set that contains 0.
We define the relation R ⊆ A3 of all tuples which satisfy all instantiations of the triangle
inequality, i.e.

(a1, a2, a3) ∈ R :⇔ (a1 ≤ a2 + a3) ∧ (a2 ≤ a1 + a3) ∧ (a3 ≤ a1 + a2),

where the addition is meant to be the usual one on rational numbers. The relation R is by
definition totally symmetric and the element 0 is an identity element. Therefore, (A;R) is
a stencil.

Now consider a finite undirected graph (G;F ) with an edge P(A)-coloring f . This can
be seen as a labeling of each edge in the graph by a set of possible (or allowed) distances.
The computational task of NCP(A,R) is to decide whether one can choose for each edge
(x, y) one of the possible distance such that in the end this choice satisfies on each triangle
of edges the triangle inequalities of metric spaces.

By Proposition 5.4 there exists a finite symmetric integral algebra A′ ∈ RRA with a
flexible atom s such that NCP(A,R) and NSP(A′) are polynomial-time equivalent. By the
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proof of Proposition 5.4 we have that the domain of A′ is equal to P(A∪ {s}). It is easy to
observe that A ∪ {s} is the set of atoms A′0 from A′.

We define an operation f : A′0
6 → A′0 as follows:

f(x1, . . . , x6) =

{
s s ∈ {x1, . . . , x6},
max{x1, . . . , x6} otherwise,

where the max operation is the usual from in Q.

The allowed triples of A′ are, up to triples that involve the flexible atom s, those which
arise from valid triangle inequalities. For this reason the operation f preserves the allowed
triples of A′. Moreover, one can check that f satisfies the Siggers identity. This implies that
all these “distance problems” satisfy the first condition in Theorem 1.1 and are therefore
solvable by a polynomial-time algorithm. Furthermore, if the normal representation of A′

induces a proper relation algebra A on the set A, then A is a representable relation algebra
with a normal representation. This follows from Proposition 2.7.4 in the thesis of Conant
(2015) (see also Delhommé, Laflamme, Pouzet, & Sauer, 2007), since the composition
operation of A is associative. We get that if the representable relation algebra A exists then
the argument from Example 3.10 implies that NSP(A) is also in P.

6. Binary Injective Polymorphisms

We give in this section a proof of the following proposition.

Proposition 6.1. Let B be a normal representation of a finite, symmetric, integral A ∈
RRA with a flexible atom s. If HSPfin({Pol(B)}) does not contain a 2-element algebra
where all operations are projections, then B has a binary injective polymorphism.

This statement is a consequence of well known results that can be found in the book by
Bodirsky (2021) and results by Mottet and Pinsker (2022) applied to the class of normal
representations of finite, symmetric, integral A ∈ RRA with a flexible atom s. An operation
f ∈ Pol(B) is called essentially unary if it depends on at most one of its variables and f is
called essential otherwise.

Following the terminology of Mottet and Pinsker (2022), we now define free 2-orbits.
The existence of a free 2-orbit appeared under the name ‘orbital extension property’ for
example in the habilitation thesis of Bodirsky (2012).

Definition 6.2. Let B be a structure. A 2-orbit O of Aut(B) is called free if for all
elements x, y ∈ B there exists z ∈ B with (z, x) ∈ O and (z, y) ∈ O.

Note that if Aut(B) has a free 2-orbit then it is transitive. The following theorem
generalises a fact that was first proved for first-order reducts of (Q;<) by Bodirsky and
Kára (2009).

Proposition 6.3 (Lemma 5.3.10 in Bodirsky, 2012). Let B be a structure such that B has
a free 2-orbit. If Pol(B) contains an essential operation then it contains a binary essential
operation.

The following is essentially taken from the article by Mottet and Pinsker (2022).
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Definition 6.4. Let B be a structure. Then the canonical binary structure of B is the
structure with domain B and a binary relation for each 2-orbit O of Aut(B) such that
(x, y) ∈ O implies x 6= y.

Definition 6.5. A τ -structure B has finite duality if there exists a finite set F of finite
τ -structures such that a τ -structure I has a homomorphism to B if and only if no element
of F has a homomorphism to I.

We establish finite duality for the class of structures which is important for our classifi-
cation purposes.

Lemma 6.6. Let B be a normal representation of a finite, integral A ∈ RRA with a flexible
atom s. Then the canonical binary structure of B has finite duality.

Proof. Let τ := A0 \ {Id}. Note that since A is integral and B is homogeneous, the
canonical binary structure C of Aut(B) is precisely the τ -reduct of B. Let F be the set
of all τ -structures with domain {1, 2, 3} that do not have a homomorphism to C. We show
that the set F witnesses the finite duality of the canonical binary structure C of B. Let I be
a τ -structure with a homomorphism to C. If there exists F ∈ F with a homomorphism to I,
then F also has a homomorphism to C, contradicting the choice of F . For the other direction
assume that no element from F has a homomorphism to I. Let I′ be the τ -expansion of
the (τ \ {s})-reduct of I where the relation sI

′
is defined by

sI
′

:= {(x, y) ∈ I2 | (x, y) ∈ sI ∨ (x 6= y ∧ ∀a ∈ τ \ {s}. (x, y) /∈ aI)}.

By the definition of the flexible atom s it follows that no element from F has a homomor-
phism to I′. This implies that for all distinct elements x, y from I′ the tuple (x, y) is in at
most one relation from τ . The definition of I′ ensures that (x, y) is in at least one relation
from τ . Recall that Proposition 2.10 states that C is finitely bounded by τ -structures of size
at most three. Assume that one of those bounds N embeds into I′. This implies by what
we noted before that all elements of N are in precisely one relation from τ . On the other
hand N is not in F and therefore has a homomorphism to C. Since all elements of N are
related by precisely one relation from τ , this homomorphism needs to be a embedding, con-
tradicting our assumption on N to be a bound. Therefore, none of the bounds of C embeds
into I′, which means that I′ is a substructure of C. Clearly, there exists a homomorphism
from I to I′ which proves the lemma.

The following proposition about the existence of injective operations is from Mottet and
Pinsker (2022), building on ideas of Bodirsky and Pinsker (2015) and Bodirsky, Martin,
Pinsker, and Pongrácz (2019).

Proposition 6.7 (Mottet & Pinsker, 2022). Let B be a homogeneous structure such that
Aut(B) is transitive and such that the canonical binary structure of Aut(B) has finite
duality. If Pol(B) contains a binary essential operation that preserves 6= then it contains a
binary injective operation.

We are now able to prove the main result of this section.
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Proof of Proposition 6.1. Note that since A is integral and B is homogeneous, the flexible
atom s is a free 2-orbit of Aut(B). Furthermore, Aut(B) is transitive. Suppose that
HSPfin({Pol(B)}) does not contain a 2-element algebra where all operations are projections.
Since all operations of Pol(B) are edge conservative, it follows that Pol(B) contains an
operation that does not behave as a projection on {s, Id}. This implies that Pol(B) contains
an essential operation. By Proposition 6.3, Pol(B) must also contain a binary essential
operation. Since the canonical binary structure of B has finite duality by Lemma 6.6 we
can apply Proposition 6.7 and get that Pol(B) contains a binary injective operation.

The following shows how to use Proposition 6.1 to obtain a hardness result for the
concrete A ∈ RRA from Example 3.9.

Example 6.8 (Hardness of representable relation algebra #17, see Bodirsky et al., 2019;
Bodirsky & Knäuer, 2020). Let N′ be the normal representation of the algebra #17 men-
tioned in Example 3.9. We claim that the structure N′ does not have a binary injective
polymorphism. To see this, consider a substructure of N′2 on elements x, y, z ∈ V 2 such
that (E,=)(x, y), (=, E)(y, x), and (E,E)(x, z). Assume N′ has a binary injective polymor-
phism f . This means that f(E, Id) = E = f(Id, E) holds. Then we get that E(f(x), f(y)),
E(f(y), f(z)), and E(f(x), f(z) hold in N′, which is a contradiction, since in N′ trian-
gles of this form are forbidden. By the contraposition of Proposition 6.1 it follows that
HSPfin({Pol(B)}) contains a 2-element algebra where all operations are projections. We
conclude with Theorem 2.21 that NSP(#17) is an NP-hard problem.

7. From Partial to Total Canonical Behaviour

In this section we prove that in many cases the existence of a polymorphism with a certain
partial behaviour implies the existence of a canonical polymorphism with the same partial
behaviour. Following this idea we start in Section 7.1 with the proof that the existence
of an injective polymorphism implies the existence of a canonical injective polymorphism.
In some cases the existence of an {a, b}-canonical polymorphism implies the existence of a
canonical polymorphism with the same behaviour on {a, b}. We prove this separately for
binary (Section 7.2) and ternary (Section 7.3) operations, making use of the binary injective
polymorphism that exists by the results from Section 6 and Section 7.1.

Let us remark that most proofs of this section would fail if the representable relation
algebra A was not symmetric. Indeed, every representable relation algebra that contains a
non-symmetric atom a normal representation would not satisfy Proposition 7.2 below, since
the stated behaviour is not well-defined.

We assume for this section that B is a normal representation of a finite, symmetric,
integral A ∈ RRA with a flexible atom s. Let furthermore B< be the expansion of B by
the generic linear order. The structure B< exists by the observations in Section 3.2.

Proposition 7.1. Let f ∈ Pol(B)(n) be injective. Then there exists a polymorphism f< of
B< and an injective endomorphism e of B such that

f = e ◦ f<

as mappings from Bn to B.
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Proof. Let U := f(Bn) and consider the substructure U induced by B on U . There exists
a linear ordering on Bn, namely the lexicographic order given by the linear order of B< on
each coordinate.

Let U< be the expansion of U by the linear order that is induced by the lexicographic
linear order of B< on the preimage. This is well defined since f is injective. By the
definition of B< and a compactness argument the structure U< embeds into B<. In this
way we obtain a homomorphism f< from Bn

< to B<. Again by a compactness argument
also an endomorphism e with the desired properties exists.

7.1 Canonical Binary Injective Polymorphisms

We prove in this section that the existence of an injective polymorphism implies the existence
of a canonical injective polymorphism. We say that a polymorphism f of B< is canonical
with respect to B< if f satisfies Definition 2.24, where the underlying representable relation
algebra is the proper relation algebra induced by the binary first-order definable relations
(i.e., unions of 2-orbits) of B<. Note that in a normal representation the set of 2-orbits
equals the set of the interpretations of the atoms of the representable relation algebra.

Proposition 7.2. Let f be a binary polymorphism of B< that is canonical with respect to
B<. Let h : A2

0 → A0 be the map such that for all x, y, z ∈ A0

h(x, y) = z ⇔ f̄(xB<∩ ≤B< , yB<∩ ≤B<) = zB<∩ ≤B< ,

(cf. Remark 3.7). Then h is well defined and there exists a canonical binary polymorphism
of B with behaviour h.

Proof. The function h is well defined since all atoms are symmetric. We show that there
exists a canonical polymorphism of B that has h as a behaviour. Consider the following
structure A on the domain B2. Let x, y ∈ B2 and let a, a1, a2 ∈ A0 be atoms of A with
aB1 (x1, y1) and aB2 (x2, y2). Then we define that aA(x, y) holds if and only if h(a1, a2) = a.

We show in the following that A has a homomorphism to B. This is enough to prove the
statement, because a homomorphism from A to B is a canonical polymorphism of B. Since
B is homogeneous is suffices to show that every finite substructure of A homomorphically
maps to B. Let F be a finite substructure of A and assume for contradiction that F does
not homomorphically map to B. We can view F as an atomic A-network. Since B is
fully universal F is not closed. There must exist elements b1, b2, b3 ∈ B2 of F and atoms
a1, a2, a3 ∈ A0 such that a1 6≤ a2 ◦ a3 holds in A and

aF1(b1, b3), aF2(b1, b2), and aF3(b2, b3).

This means that the substructure induced on the elements b1, b2, b3 by F contains a forbidden
triple.

Now we consider the substructures that are induced on b11, b
2
1, b

3
1 and b12, b

2
2, b

3
2 by B. Our

goal is to order these elements such that for all i, j ∈ {1, 2, 3}

¬(bi1 < bj1 ∧ b
i
2 > bj2). (1)

If we achieve this we know that there exist elements in B< that induce isomorphic copies of
the induced structures of the elements b11, b

2
1, b

3
1 and b12, b

2
2, b

3
2 with the additional ordering.

1726



Network Satisfaction for Symmetric Relation Algebras with a Flexible Atom

Now the application of the polymorphism f on these elements results in a structure whose
A0-reduct is isomorphic to the substructure induced by b1, b2 and b3 on F by the definition
of the canonical behaviour h. This contradicts our assumption because a polymorphism
can not have a forbidden substructure in its image.

It remains to show that we can choose orderings on the elements b11, b
2
1, b

3
1 and b12, b

2
2, b

3
2

such that (1) holds. Without loss of generality we can assume that {b11, b21, b31}∩{b12, b22, b32} =
∅ holds. Now consider the following cases:

1. |{b11, b21, b31}| = 3 and |{b12, b22, b32}| = 3.

We can obviously choose linear orders on both sets such that (1) holds.

2. |{b11, b21, b31}| = 2 and |{b12, b22, b32}| = 3.

Assume that IdB(b11, b
2
1) holds then the possible orders are

b11 = b21 < b31 and b12 < b22 < b32.

3. |{b11, b21, b31}| = 2 and |{b12, b22, b32}| = 2.

First consider the case that IdB(b11, b
2
1) and IdB(b12, b

2
2) hold. Then we choose as orders

b11 = b21 < b31 and b12 = b22 < b32.

In the second possible case we can assume without loss of generality that IdB(b11, b
2
1)

and IdB(b22, b
3
2) hold. Note that otherwise we could change the role of two of the tuples

b1, b2 and b3 and get this case. The compatible order is then

b11 = b21 < b31 and b12 < b22 = b32.

4. |{b11, b21, b31}| = 1 and |{b12, b22, b32}| = 3.
In this case we choose the order

b11 = b21 = b31 and b12 < b22 < b32.

5. |{b11, b21, b31}| = 1 and |{b12, b22, b32}| = 2.
Assume that IdB(b12, b

2
2) holds and that we have

b11 = b21 = b31 and b12 = b22 < b32.

6. |{b11, b21, b31}| = 1 and |{b12, b22, b32}| = 1.
For this case we trivially get

b11 = b21 = b31 and b12 = b22 = b32.

Note that up to the symmetry of the arguments for both coordinates these are all the
possible cases. This completes the proof of the proposition.

Corollary 7.3. Suppose that B has a binary injective polymorphism. Then B also has a
canonical binary injective polymorphism.
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Proof. By Proposition 7.1 we may assume that there exists also an injective polymorphism
of B<. The structure B< has the Ramsey property by Theorem 3.6. Therefore, Theorem
2.26 implies that there also exists an injective canonical polymorphism g of B<. According
to Proposition 7.2 the restriction of the behaviour ḡ to the 2-orbits that satisfy x ≤ y
induces the behaviour of a canonical polymorphism of B which is also injective.

7.2 Canonical {a, b}-symmetric Polymorphisms

We will now use the results about binary injective polymorphism from Section 7.1 to show
the existence of a canonical {a, b}-symmetric polymorphism in case there exists an {a, b}-
symmetric polymorphism.

Lemma 7.4. Let a, b ∈ A0 \ {Id} be atoms. Then every binary {a, b}-symmetric polymor-
phism of B is injective.

Proof. Let f be an {a, b}-symmetric polymorphism. Without loss of generality f̄(a, b) =
a = f̄(b, a). Assume for contradiction that f is not injective. This means that there exist
c ∈ A0 and x, y ∈ B2 with (c, Id)(x, y) (for the notation see Definition 2.22) such that
Id(f(x), f(y)) holds.

Case 1: s 6∈ {a, b}. Since s is a flexible atom we may choose z ∈ B2 such that (a, b)(z, x)
and (s, b)(z, y) hold. By the choice of the polymorphism f we get a(f(z), f(x)) and (s ∪
b)(f(z), f(y)) which induces either the forbidden triple (Id, s, a) or the forbidden triple
(Id, b, a) on f(x), f(y), and f(z).

Case 2: s = a. We choose z ∈ B2 such that (a, b)(z, x) and (b, b)(z, y). This is possible
since a is the flexible atom. We obtain a(f(z), f(x)) and b(f(z), f(y)) which again induces
a forbidden triple on f(x), f(y), and f(z).

Case 3: s = b. We choose z ∈ B2 such that (a, b)(z, x) and (b, b)(z, y). This is possible
since a is the flexible atom. We obtain a(f(z), f(x)) and b(f(z), f(y)) which again induces
a forbidden triple on f(x), f(y), and f(z).

Since we obtained in all cases a contradiction we conclude that f is injective.

Proposition 7.5. Let a, b ∈ A0 \ {Id} be atoms. If B has a binary {a, b}-symmetric
polymorphism, then B has also a binary canonical {a, b}-symmetric polymorphism.

Proof. Let f be the binary {a, b}-symmetric polymorphism. By Lemma 7.4 we know that
f is injective. By Proposition 7.1 it induces a polymorphism f< on B<. The structure B<

has the Ramsey property by Theorem 3.6. Let g be the canonization of f< that exists by
Theorem 2.26. The restriction of the behaviour ḡ to the 2-orbits that satisfy x ≤ y induces
by Proposition 7.2 the behaviour of a canonical polymorphism h of B. The way we obtained
h ensures that h is {a, b}-symmetric with the same behaviour on {a, b} as f .

The following is an easy observation about {a, Id}-symmetric polymorphisms that we
will use several times.

Observation 7.6. Let a 6≤ Id be an atom and f an {a, Id}-symmetric polymorphism of B.
Then f̄(a, Id) = a = f̄(Id, a).
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Proof. Suppose for contradiction that f̄(a, Id) = Id = f̄(Id, a). Let x, y, z ∈ B2 be such
that

(a, Id)(x, y), (Id, a)(y, z), and (a, a)(x, z)

and consider the substructure of B that is induced by f(x), f(y) and f(z). This structure
induces a forbidden triple (Id, Id, a) which contradicts the assumption A ∈ RRA .

In the remainder of the section we combine canonical {a, b}-symmetric polymorphisms
to obtain a single “maximal-symmetric” polymorphism.

Definition 7.7. We call a subset {a, b} ⊆ A0 an edge of Polcan(B) and we call the elements
in

Q :=
{
{a, b} ⊆ A0 | ∃g ∈ Polcan(B) such that ḡ is symmetric on {a, b}

}
the red edges of Polcan(B).

The terminology of the colored edges as well as the following lemma are from Bulatov
(2016).

Lemma 7.8. There exists a binary canonical polymorphism that is symmetric on all red
edges and behaves on each non-red edge like a projection. We call this function maximal-
symmetric.

Proof. For each {a, b} ∈ Q let fa,b be a canonical polymorphism such that its behaviour is
symmetric on {a, b}. We prove the lemma by an induction on the size of subsets of Q, i.e.,
we show that for every subset F ⊆ Q of size n there exists a polymorphism fF ∈ Polcan(B)
that is symmetric on all edges from F . For each subset {a} of Q of size one, there exists
by the definition of red edges a canonical polymorphism fa,a with a behaviour that is
symmetric on {a}. Let F ⊆ Q and suppose there exists a canonical polymorphism g with
symmetric behaviour on elements from F . Let {a1, a2} ∈ Q \ F . We want to show that
there exists a canonical polymorphism with a behaviour that is symmetric on all elements
from F ∪ {a1, a2}. We may assume that this does not hold for g, otherwise we are done.
Therefore, and since g is edge-conservative, we have

ḡ(a1, a2) 6= ḡ(a2, a1) and ḡ(a1, a2), ḡ(a2, a1) ∈ {a1, a2}.

With this it is easy to see that fa1,a2(g(x, y), g(y, x)) is a polymorphism with a behaviour
that is symmetric on all elements from F ∪ {a1, a2}.

This proves the first part of the statement. For the second part note that for a binary
canonical edge-conservative polymorphism there are only 4 possibilities for the behaviour
on a set {a1, a2}. If {a1, a2} is not a red edge then every binary canonical edge-conservative
polymorphism behaves like a projection on {a1, a2} .

7.3 Canonical Ternary Polymorphisms

We obtain in this section a result that states that the existence of a ternary {a, b}-canonical
polymorphism f implies the existence of a canonical polymorphism with the same behaviour
on {a, b} as f (Corollary 7.11). This is done similarly as in Section 7.2.
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Lemma 7.9. Let s′ ∈ Polcan(B) be a binary, injective, maximal-symmetric polymorphism.
Then the function s∗ : B3 → B3 where s∗(x1, x2, x3) is defined by

(s′(s′(x1, x2), s′(x2, x3)), s′(s′(x2, x3), s′(x3, x1)), s′(s′(x3, x1), s′(x1, x2)))

is a homomorphism. Moreover, for all x, y ∈ B3 with x 6= y it holds that

Id
B3

(s∗(x), s∗(y)).

Note that this means that two distinct tuples in the image of s∗ have distinct entries in
each coordinate.

Proof. Let x, y ∈ B3 and suppose that aB
3
(x, y) holds for a ∈ A. By the definition of the

product structure aB(xi, yi) holds for all i ∈ {1, 2, 3}. Since s′ is a polymorphism clearly
aB(s∗(x)i, s

∗(y)i) holds by the definition of s∗. Now we use again the definition of a product
structure and get aB

3
(s∗(x), s∗(y)) which shows that s∗ is a homomorphism.

For the second part of the statement let x, y ∈ B3 distinct. Suppose that aB1 (x1, y1),
aB2 (x2, y2) and aB3 (x3, y3) hold for some a1, a2, a3 ∈ A0, where at least one atom is different
from Id. Since s′ is injective we have

Id
B

(s′(x1, x2), s′(y1, y2)) or Id
B

(s′(x2, x3), s′(y2, y3)).

Again by the injectivity of s′ we get

Id
B

(s′(s′(x1, x2), s′(x2, x3)), s′(s′(y1, y2), s′(y2, y3))).

By the definition of s∗ this shows that Id
B

(s∗(x)1, s
∗(y)1) holds. It is easy to see by anal-

ogous arguments that the same is true for the other coordinates. Therefore, the statement
follows.

Proposition 7.10. Let a 6≤ Id and b 6≤ Id be atoms of A such that {a, b} 6∈ Q. Let
m ∈ Pol(B) be ternary {a, b}-canonical and s′ ∈ Pol(B) be injective, maximal-symmetric.
Then there exists a canonical m′ ∈ Pol(B) with the same behaviour as m on {a, b}.

Proof. By Lemma 7.8 we may assume that s′ behaves on {a, b} like the projection to the
first coordinate since {a, b} 6∈ Q. Let s∗ be the function defined in Lemma 7.9 and consider
the function m′ : B3 → B which is defined by m∗(x) := m(s∗(x)).

Claim 1: m∗ is injective. Let x, y ∈ B3 be two distinct elements. By Lemma 7.9 we

know that Id
B3

(s∗(x), s∗(y)) holds. Since m is a polymorphism of B we directly get that

Id
B

(m∗(x),m∗(y)) holds, which proves the injectivity of m∗.

Claim 2: m∗ is {a, b}-canonical and behaves on {a, b} like m.
Let x, y ∈ B3 with (q1, q2, q3)(x, y) such q1, q2, q3 ∈ {a, b}. Since s behaves like the

first projection on {a, b} it follows that (q1, q2, q3)(s∗(x), s∗(y)). Together with the {a, b}-
canonicity of m this proves Claim 2.

Since m∗ is injective there exists by Proposition 7.1 a polymorphism m∗< of B<. Since
B< is a Ramsey structure we can apply Theorem 2.26 to m∗<. Let g be the resulting
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polymorphism that is canonical with respect to B<. Note that if we consider g as a poly-
morphism of B it behaves on {a, b} like m∗ and therefore like m. Now we consider the
induced behaviour of g on all 2-orbits that satisfy x < y. Since all atoms of A are symmet-
ric and ḡ is conservative this induces a function h : (A0 \ {Id})3 → A0 \ {Id}.

Claim 3: The partial behaviour h does not induce a forbidden triple.
We would like to note that we prove this claim with similar arguments as in the proof

of Proposition 7.2. Assume for contradiction that there exist x, y, z ∈ B3 such that the
application of an operation with behaviour h would induce a forbidden triple.Without loss
of generality we can order the elements of each coordinate of x, y, z strictly with xi < yi < zi
for i ∈ {1, 2, 3}. Note that if on some coordinate there would be the relation Id then we are
out of the domain of the behaviour h.

If we choose such an order we can find isomorphic copies A of this structure (with
the order) in B<. If we apply the polymorphism g to this copy and forget the order of
the structure g(A) we get a structure that is by definition isomorphic to the forbidden
triple.This proves Claim 3.

To finish the proof of the lemma note that the composition of s∗ with the projection to
the i-th coordinate for i ∈ {1, 2, 3} is a canonical, injective polymorphism (for injectivity
see Lemma 7.9) and therefore induces a behaviour fi : A

3
0 → A0 \ {Id}. We define f : A3

0 →
(A0 \ {Id})3 by f(a1, a2, a3) := (f1(a1), f2(a2), f3(a3)). The composition h ◦ f : A3

0 → A0 is
the behaviour of a canonical function of B. If h ◦ f would induce a forbidden triple then
also h would induce a forbidden triple, which contradicts Claim 3.

Corollary 7.11. Let B have a binary injective polymorphism. Let a, b ∈ A0 be such that no
{a, b}-symmetric polymorphism exists. Let m be a ternary {a, b}-canonical polymorphism.
Then there exists a canonical polymorphism m′ with the same behaviour on {a, b} as m.

Proof. By assumption there is no canonical {a, b}-symmetric polymorphism and therefore
{a, b} 6∈ Q. By Corollary 7.3 B has a canonical binary injective polymorphism. This
polymorphism is a witness that {c, Id} ∈ Q for all c ∈ A0 \ {Id}. With Lemma 7.8 we get a
maximal symmetric polymorphism h. Since {c, Id} ∈ Q we get that h is {c, Id}-symmetric
for all c ∈ A0. By Observation 7.6 it follows h̄(c, Id) = c = h̄(Id, c), which implies that h is
injective. Now Proposition 7.10 implies the statement.

8. The Independence Lemma and How To Use It

The central result of this section is Proposition 8.2 which states that the absence of an
{a, b}-symmetric polymorphism implies that all polymorphism are canonical on {a, b}. The
main ingredients of our proof of this proposition are the fact that A ∈ RRA has a flexible
atom and the following “Independence Lemma” (Lemma 8.1).

8.1 The Independence Lemma

The following lemma transfers the absence of a special partially canonical polymorphism to
the existence of certain relations of arity 4 that are primitively positively definable in B.
A lemma of a similar type appeared as Lemma 42 in an article by Bodirsky and Pinsker
(2014).
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Lemma 8.1 (Independence Lemma). Let B be a homogeneous structure with finite rela-
tional signature. Let a and b be 2-orbits of Aut(B) such that a, b, and (a∪b) are primitively
positively definable in B. Then the following are equivalent:

1. B has an {a, b}-canonical polymorphism g that is {a, b}-symmetric with g(a, b) =
g(b, a) = a.

2. For every primitive positive formula ϕ such that ϕ ∧ a(x1, x2) ∧ b(y1, y2) and ϕ ∧
b(x1, x2)∧ a(y1, y2) are satisfiable over B, the formula ϕ∧ a(x1, x2)∧ a(y1, y2) is also
satisfiable over B.

3. For every finite F ⊂ B2 there exists a homomorphism hF from the substructure of B2

induced by F to B that is {a, b}-canonical with hF (a, b) = hF (b, a) = a.

Proof. The implication from (1) to (2) follows directly by applying the symmetric polymor-
phisms to tuples from the relation defined by ϕ.

For the implication from (2) to (3) let F be a finite subset of B2. Let {e1, . . . , en} with
n ∈ N be an enumeration of F . To construct hF consider the formula ϕ0 with variables xi,j
for 1 ≤ i, j ≤ n that is the conjunction of all atomic formulas R(xi1,j1 , . . . , xik,jk) such that
R(ei1 , . . . , eik) and R(ej1 , . . . , ejk) hold in B. Note that this formula states exactly which
relations hold on F in B2. Let P be the set of pairs ((i1, i2), (j1, j2)) such that

(a ∪ b)(ei1 , ei2)

and (a ∪ b)(ej1 , ej2)

and (a(ei1 , ei2) ∨ a(ej1 , ej2))

and (b(ei1 , ei2) ∨ b(ej1 , ej2)).

If we show that the formula

ψ := ϕ0 ∧
∧

((i1,i2),(j1,j2))∈P

a(xi1,j1 , xi2,j2)

is satisfiable by an assignment α, we get the desired homomorphism by setting hF (ei, ej) :=
α(xi,j). We prove the satisfiability of ψ by induction over the size of subsets I of P . For the
inductive beginning consider an element ((i1, i2), (j1, j2)) ∈ P . Without loss of generality we
have that a(i1, i2) holds. Therefore the assignment α(xi,j) := ei witnesses the satisfiability
of the formula ϕ0 ∧ a(xi1,j1 , xi2,j2). For the inductive step let I ⊆ P be of size m and
assume that the statement is true for subsets of size m− 1. Let p1 = ((u1, u2), (v1, v2)) and
p2 = ((u′1, u

′
2), (v′1, v

′
2)) be two elements from I. We define the following formula

ψ0 := ϕ0 ∧
∧

((i1,i2),(j1,j2))∈I\{p1,p2}

a(xi1,j1 , xi2,j2).

Then by the inductive assumption the formulas ψ0∧a(xu1,v1 , xu2,v2) and ψ0∧a(xu′1,v′1 , xu′2,v′2)
are satisfiable. The assumptions on the elements in P give us that also

ψ0 ∧ a(xu1,v1 , xu2,v2) ∧ b(xu′1,v′1 , xu′2,v′2)
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and
ψ0 ∧ b(xu1,v1 , xu2,v2) ∧ a(xu′1,v′1 , xu′2,v′2)

are satisfiable; since a ∪ b is a primitive positive definable relation we are done otherwise.
But then we can apply the assumption of (2) and get that also ψ0 ∧ a(xu1,v1 , xu2,v2) ∧
a(xu′1,v′1 , xu′2,v′2) is satisfiable, which proves the inductive step.

The direction from (3) to (1) is a standard application of König’s tree lemma. For a
reference see for example Lemma 42 in the article by Bodirsky and Pinsker (2014).

8.2 Absence of {a, b}-symmetric Polymorphisms

We are now able to prove the main result of this section, which will be a corner stone in
the proof of Theorem 1.1. Our proof of this proposition makes use of a 4-ary relation Ea,b
with the following first-order definition:

(x1, x2, x3, x4) ∈ Ea,b :⇔ ((a ∪ b)(x1, x2) ∧ (a ∪ b)(x3, x4) ∧ a(x1, x2)↔ a(x3, x4)).

It is an easy observation that the {a, b}-canonical polymorphisms of B are precisely those
that preserve the relation Ea,b. By Theorem 2.19 we get that whenever Ea,b is primitively
positively definable in B then all polymorphisms of B preserve Ea,b and are therefore {a, b}-
canonical. In the following proof we use the 4-ary relations that are provided by the second
item of the Independence Lemma 8.1 to provide a primitive positive definition of Ea,b.

Proposition 8.2. Let B be a normal representation of a finite integral symmetric relation
algebra with a flexible atom s. Suppose that B has a binary injective polymorphism. Let
a 6≤ Id and b 6≤ Id be two atoms such that B has no {a, b}-symmetric polymorphism. Then
all polymorphisms are canonical on {a, b}.

Proof. By Corollary 7.3 there exists a canonical binary injective polymorphism of B. There-
fore, for every a′ ∈ A0 the edge {a′, Id} is red and the maximal symmetric polymorphism
t that exists by Lemma 7.8 is symmetric on all these edges. Observation 7.6 implies that
t is injective. Note that t behaves like a projection on {a, b} since there exists no {a, b}-
symmetric polymorphism.

Let ψ be the formula defined as follows:

ψ(x1, x2, y1, y2) := Id(x1, y1) ∧ Id(x1, y2) ∧ Id(x2, y1) ∧ Id(x2, y2).

We use ψ to formulate and prove the following claim:

Claim 1: a) There exists a formula ϕa(x1, x2, y1, y2) such that

ϕa ∧ ψ(x1, x2, y1, y2) ∧ a(x1, x2) ∧ b(y1, y2) is satisfiable in B,

ϕa ∧ ψ(x1, x2, y1, y2) ∧ b(x1, x2) ∧ a(y1, y2) is satisfiable in B,

ϕa ∧ a(x1, x2) ∧ a(y1, y2) is not satisfiable in B.

b) There exists a formula ϕb(x1, x2, y1, y2) that has the same property with a and b in
exchanged roles.

Proof of Claim 1. There exists a formula ϕ′′a that witnesses the negation of (2) in the Inde-
pendence Lemma (Lemma 8.1) since B does not have an {a, b}-symmetric polymorphism h
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Figure 3: Application of the injective operation t on tuples u and v. Orange and black
edges correspond to atoms c and d, the dotted edge to atom Id, and the dashed lines denote
Id.

with h̄(a, b) = a. Let ϕ′′b be the formula that witnesses in the same way the non-existence
of an {a, b}-symmetric polymorphism h of B with h̄(a, b) = b. We define for c ∈ {a, b} the
formula ϕ′c as follows:

ϕ′c(x1, x2, y1, y2) := ϕ′′c (x1, x2, y1, y2) ∧ (a ∪ b)(x1, x2) ∧ (a ∪ b)(y1, y2). (2)

If ϕ′a and ϕ′b witness a) and b) in Claim 1, we are done. So suppose that they do not.
Note that if we have c ∈ {a, b} and d ∈ {a, b} \ {c} such that

ϕ′c(x1, x2, y1, y2) ∧ c(x1, x2) ∧ d(y1, y2) ∧ Id(x2, y1) is satisfiable in B and (3)

ϕ′c(x1, x2, y1, y2) ∧ d(x1, x2) ∧ c(y1, y2) ∧ Id(x2, y1) is satisfiable in B, (4)

then ϕ′c would satisfy the statement about ϕc in Claim 1, a) or in Claim 1, b). To see this
note that we can apply the injective, maximal symmetric polymorphism t that behaves like
a projection on {a, b} to the tuples u and v that witness (3) and (4). The first tuple satisfies
Id(x1, y1), Id(x2, y2) and Id(x1, y2) since Id(x2, y1) and c 6= d. The second tuple satisfies
Id(x2, y1). Then the injectivity of t ensures that the tuples t(u, v) and t(v, u) witness Claim
1, a) or Claim 1, b). Figure 3 illustrates this situation.

By our assumption that Claim 1 is not satisfied by ϕ′a and ϕ′b we conclude that for at
least one c ∈ {a, b} it holds that for d ∈ {a, b} \ {c}

ϕ′c(x1, x2, y1, y2) ∧ c(x1, x2) ∧ d(y1, y2) ∧ Id(x2, y1) is satisfiable in B and (5)

ϕ′c(x1, x2, y1, y2) ∧ d(x1, x2) ∧ c(y1, y2) ∧ Id(x2, y1) is satisfiable in B. (6)

We distinguish the following different cases.

1. ϕ′a satisfies a) in Claim 1 and (5) and (6) hold for c = b and d = a.

2. (5) and (6) hold for c = a and d = b and ϕ′b satisfies b) in Claim 1.

3. (5) and (6) hold for c = a and d = b as well as for c = b and d = a.
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Figure 4: ϕb build from ϕ′b (red), ϕ′a (blue), the atom b (black), the atom a (dashed) and
the flexible atom s (dotted). The roles of a and b can be changed.

Case 1: Consider the following formula ϕb with

ϕb(x1, x2, y1, y2) := ∃z1, z2.(ϕ
′
b(x1, x2, x2, z1) ∧ ϕ′a(x2, z1, z2, y1) ∧ ϕ′b(z2, y1, y1, y2)).

We claim that ϕb satisfies b) in Claim 1. This proves Claim 1, because ϕ′a satisfies a)
in Claim 1. To see that ϕb fulfills the two satisfiability statements in Claim 1, b) we can
first amalgamate the structure B1 induced (as a substructure of B) by the elements of a
satisfying tuple for ϕ′b with the structure B2 induced by the elements of a satisfying tuple
for ϕ′a (see Figure 4 for an illustration). We amalgamate these two structures over their
common substructure A induced by the variables x2 and z1, with the variable names from
the definition of ϕb. In this amalgamation step all missing edges are filled with the flexible
atom s. In a second amalgamation step we amalgamate the resulting structure with another
copy of the structure B1, but now with the common substructure on the variables z1 and
y1 (again with refer to the names used in the definition of ϕb). As before the missing edges
are filled with the flexible atom s. Figure 4 illustrates the situation. It follows from the
choice of ϕ′a and ϕ′b and the definition of ϕb that ϕb ∧ b(x1, x2) ∧ b(y1, y2) is not satisfiable
in B.

Case 2: This case is analogous to Case 1.

Case 3: Consider the formula ϕa with

ϕa(x1, x2, y1, y2) := ∃z.(ϕ′a(x1, x2, x2, z) ∧ ϕ′b(x2, z, z, y1) ∧ ϕ′a(z, y1, y1, y2)).

We show that ϕa ∧ψ(x1, x2, y1, y2)∧ a(x1, x2)∧ b(y1, y2) is satisfiable in B. Since (5) holds
for c = a and d = b and since a and b are distinct, there exists p1 ∈ A0 \ {Id} such that

ϕ′a(x1, x2, y1, y2) ∧ a(x1, x2) ∧ b(y1, y2) ∧ Id(x2, y1) ∧ p1(x1, y2)

is satisfiable in B. Similarly, since (5) holds for c = b and d = a, there exists p2 ∈ A0 \ {Id}
such that

and ϕ′b(x1, x2, y1, y2) ∧ b(x1, x2) ∧ a(y1, y2) ∧ Id(x2, y1) ∧ p2(x1, y2).
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Figure 5: The formula δ build from ϕ′a (red), ϕ′b (blue), and the flexible atom s (dotted).

Note that there are u1, . . . , u5 ∈ B such that the following atomic formulas hold:

a(u1, u2), p1(u1, u3), s(u1, u4), s(u1, u5),

b(u2, u3), p2(u2, u4), s(u2, u5),

a(u3, u4), p1(u3, u5),

b(u4, u5).

If we choose for the existentially quantified variable z in the definition of ϕa the element u3

then the tuple (u1, u2, u4, u5) satisfies the formula

ϕa ∧ ψ(x1, x2, y1, y2) ∧ a(x1, x2) ∧ b(y1, y2).

By an analogous argument also ϕa ∧ ψ(x1, x2, y1, y2) ∧ b(x1, x2) ∧ a(y1, y2) is satisfiable. It
follows again from the choice of ϕ′a and ϕ′b and the definition of ϕa that ϕa ∧ a(x1, x2) ∧
a(y1, y2) is not satisfiable in B. By an analogous definition we can find a formula ϕb that
satisfies b) in Claim 1. Therefore, we are done with Case 3. Altogether this proves Claim
1.

Let ϕa and ϕb be the two formulas that exist by Claim 1. We define the following
formulas

ϕ′a(x1, x2, y1, y2) := ϕa(x1, x2, y1, y2) ∧ (a ∪ b)(x1, x2) ∧ (a ∪ b)(y1, y2)

ϕ′b(x1, x2, y1, y2) := ϕb(x1, x2, y1, y2) ∧ (a ∪ b)(x1, x2) ∧ (a ∪ b)(y1, y2).
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We also define a formula δ as follows (see also Figure 5):

δ(x1, x2, x3, x4) := s(x1, x3) ∧ s(x1, x4) ∧ s(x2, x3) ∧ s(x2, x4)

∧ ∃y1, y2, y3, y4.(ϕ
′
a(x1, x2, y1, y2) ∧ ϕ′b(y1, y2, y3, y4)

∧ ϕ′a(y3, y4, x3, x4))

∧ ∃z1, z2, z3, z4.(ϕ
′
b(x1, x2, z1, z2) ∧ ϕ′a(z1, z2, z3, z4)

∧ ϕ′b(z3, z4, x3, x4)).

Analogously to Case 1, an amalgam of the structures that are induced by tuples that
satisfy ϕ′a and ϕ′b shows that the formulas δ∧a(x1, x2)∧b(x3, x4) and δ∧b(x1, x2)∧a(x3, x4)
are satisfiable in B. Note that this is possible since we ensured in Claim 1 that there exist
tuples that additionally satisfy ψ. It also holds that a tuple x that satisfies δ also satisfies

(a(x1, x2) ∧ b(x3, x4)) ∨ (b(x1, x2) ∧ a(x3, x4)). (7)

Assume that for a tuple x that satisfies δ it holds that a(x1, x2) ∧ a(x3, x4). Then
there exist y1, y2, y3, y4 such that ϕ′a(x1, x2, y1, y2) ∧ ϕ′a(y3, y4, x3, x4) holds. But this is
by the definition of ϕ′a only possible if b(y1, y2) and b(y3, y4) hold, in contradiction to
ϕ′b(y1, y2, y3, y4). The same argument works for proving that ¬(b(x1, x2) ∧ b(x3, x4)) holds.

We complete the proof with a primitive positive definition of Ea,b. We have the following
primitive positive formula

δ′(x1, x2, x3, x4) := ∃y1, y2.(δ(x1, x2, y1, y2) ∧ δ(y1, y2, x3, x4)),

and define Ea,b by
(x1, x2, x3, x4) ∈ Ea,b ⇔ δ′(x1, x2, x3, x4).

For the forward direction of this equivalence, let x be a tuple from Ea,b such that c(x1, x2)
holds for c ∈ {a, b}. Let d ∈ {a, b}\{c} and let y1 and y2 be two elements from B such that
d(y1, y2) and s(xi, yj) for every i ∈ {1, . . . , 4} and every j ∈ {1, 2} holds. Such elements
exists since in the substructure of B that is induced by {x1, x2, x3, x4, y1, y2} all appearing
triangles are allowed by the definition of the flexible atom s. The elements y1 and y2 witness
that x satisfies the formula δ′.

For the other direction assume that a tuple x satisfies δ′. Then there exist y1 and y2

such that δ(x1, x2, y1, y2) ∧ δ(y1, y2, x3, x4) is satisfied. Since we observed that the tuples
(x1, x2, y1, y2) and (y1, y2, x3, x4) both satisfy (7) we can assume that c(x1, x2) holds for
c ∈ {a, b}. It follows also from (7) that d(y1, y2) holds for d ∈ {a, b} \ {c} and then (7)
implies that c(x3, x4) holds, which proves the backward direction of the stated equivalence.

9. Proof of the Result

In this section we prove the main results of this article. We first obtain a dichotomy theorem
for a class of CSPs (Theorem 9.1). This is used in combination with the observations in
Section 3 to conclude the proof of Theorem 1.1.

Theorem 9.1. Let A ∈ RRA be finite integral symmetric and with a flexible atom s and
let A0 be the set of atoms of A. Then either
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• there exists an operation f : A6
0 → A0 that preserves the allowed triples of A, satisfies

∀x1, . . . , x6 ∈ A0. f(x1, . . . , x6) ∈ {x1, . . . x6}

and satisfies the Siggers identity

∀x, y, z ∈ A0. f(x, x, y, y, z, z) = f(y, z, x, z, x, y);

in this case, CSP(B) is in P, or

• HSPfin({Pol(B)}) contains a 2-element algebra where all operations are projections;
in this case, CSP(B) is NP-complete.

Proof. Let B be a normal representation of A that exists by Proposition 3.5. The finite
boundedness of B implies that CSP(B) is in NP. Let O be the atom structure of A. We
can assume that B has a binary injective polymorphism, because otherwise Proposition 6.1
would directly imply the second item. The existence of a binary injective polymorphism
implies by Corollary 7.3 the existence of a canonical binary injective polymorphism g.

If the first item of the theorem is satisfied then the operation f is a Siggers polymorphism
of O and the statement follows by the Propositions 4.3 and 4.4.

Assume therefore that the first item in the theorem does not hold. By Corollary 4.7
there exist elements a, b ∈ A0 such that the subalgebra of Pol(O) on {a, b} contains only
projections. It holds that Id 6∈ {a, b}, since g is a witness that Id can not be in the
domain of a subalgebra that contains only projections. Since all operations from Pol(O) are
projections on {a, b} there exists no canonical polymorphism of B that is {a, b}-symmetric.
By Proposition 7.5 there exists also no {a, b}-symmetric polymorphism of B. Since B has a
binary injective polymorphism we can apply Proposition 8.2 and get that all polymorphisms
of B are {a, b}-canonical. The last step is to show that all polymorphisms of B behave like
projections on {a, b}.

Assume for contradiction that there exists a ternary, {a, b}-canonical polymorphism m
that behaves on {a, b} like a majority or like a minority. By Corollary 7.11 there exists a
canonical polymorphism that is also a majority or minority on {a, b} (here we use again
the existence of an injective polymorphism). This contradicts our assumption that Pol(O)
is trivial on {a, b}. We get that every polymorphism of B does not behave on {a, b} as an
operation from Post’s theorem (Theorem 2.15) and therefore must behave as a projection
on {a, b} by Theorem 2.15. Thus, HSPfin({Pol(B)}) contains a 2-element algebra whose
operations are projections and CSP(B) is NP-hard, according to Theorem 2.21.

We can prove the main result.

Proof of Theorem 1.1. Let A be as in the assumptions of the theorem and let A′ be the finite
symmetric integral representable relation algebra that exists by Proposition 3.3. Suppose
that A satisfies the first condition of Theorem 1.1. By Item 3) in Proposition 3.3, we get
that then A′ satisfies the first condition in Theorem 9.1 and therefore CSP(B) for the
normal representation B of A′ is in P. By Section 2.3 we know that NSP(A′) and CSP(B)
are polynomial-time equivalent. This, together with the Turing reduction from NSP(A) to
NSP(A′) by Item 1) in Proposition 3.3 implies that NSP(A) is in P. This proves the first
part of the theorem.
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Assume that A does not satisfy the first condition of Theorem 1.1. Item 3) in Propo-
sition 3.3 again implies that A′ does not satisfy the first condition in Theorem 9.1 and
therefore CSP(B) for the normal representation B of A′ is NP-complete. As before we get
that NSP(A′) is NP-complete and the many-one reduction from NSP(A) to NSP(A′) by
Item 2) in Proposition 3.3 implies the NP-hardness of NSP(A). The containment in NP
follows by Item 1) in Proposition 3.3. This concludes the proof of Theorem 1.1.

Corollary 9.2. For a given finite, symmetric A ∈ RRA with a flexible atom it is decidable
which of the two items in Theorem 1.1 holds. In particular, it is decidable whether NSP(A)
is solvable in polynomial time.

Proof. Since A0 is a finite set one can go through all possible operations f : A6
0 → A0 that

preserve all the allowed triples of A and check whether the Siggers identity is satisfied. If
P 6= NP, it follows from Theorem 1.1 that it is decidable whether NSP(A) is in P. In the
case of P = NP this is a trivial task.

The problem of deciding whether certain identities hold in the polymorphism clone of
a structure is well known problem in the study of CSPs. The computational complexity is
known to be in NP (Chen & Larose, 2017). The precise complexity of deciding whether
a polymorphism clone of an explicitly given structure has a conservative operation that
satisfies the Siggers identity is open (Chen & Larose, 2017).

10. Connection to Smooth Approximations

We discuss the relationship of our results to the techniques developed by Mottet and Pinsker
(2022). The main invention of Mottet and Pinsker (2022) are smooth approximations which
are equivalence relations on sets of n-tuples. The purpose of these equivalence relations is to
approximate the prominent orbit-equivalence relation. We have seen the importance of these
relations in the present article: the polymorphisms which preserve the orbit-equivalence
relation are precisely the canonical ones and they store the information about possible
finite-domain algorithms that can be used to solve the infinite-domain CSP (cf. Section 4).

We start by rearranging the results of Section 8 such that we get the following theorem.
In order to repeat the key steps of our main proof with a focus on the similarities to Mottet
and Pinsker (2022) the assumptions in this theorem are a natural starting point.

Theorem 10.1. Let B be a normal representation of a finite integral symmetric relation
algebra with a flexible atom s and let O be the atom structure of B. Suppose that Pol(B)
contains a binary injective polymorphism and Pol(O) does not have a Siggers operation.
Then there exists two atoms a 6≤ Id and b 6≤ Id such that one of the following holds:

1. The orbit-equivalence relation Ea,b is primitively positively definable in B.

2. For all x, y ∈ {a, b} and every primitive positive formula ϕ such that ϕ ∧ x(x1, x2) ∧
y(y1, y2) and ϕ∧y(x1, x2)∧x(y1, y2) are satisfiable over B, the formula ϕ∧x(x1, x2)∧
x(y1, y2) is also satisfiable over B.

This theorem is similar to the “Loop lemma of approximations” (Theorem 10 Mottet
& Pinsker, 2022), even though it does not make proper use of the approximation idea
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(Ea,b approximates itself). The first case in the theorem leads to the hardness condition
that HSPfin({Pol(B)}) contains a 2-element algebra whose operations are projections and
therefore CSP(B) is NP-complete.

However, the second case is “stronger” than the second case in Theorem 10 by Mottet
and Pinsker (2022). The strength in the statement relies on the special class of problems
in our article. To see what we mean by this, we continue with the strategy of Mottet and
Pinsker (2022). As a next step we can restrict the “Independence Lemma” (Lemma 8.1) as
follows:

Lemma 10.2. Let B be a homogeneous structure with finite relational signature. Let a and
b be 2-orbits of Aut(B) such that a, b, and (a∪ b) are primitively positively definable in B.

Assume that for every primitive positive formula ϕ such that ϕ∧a(x1, x2)∧b(y1, y2) and
ϕ ∧ b(x1, x2) ∧ a(y1, y2) are satisfiable over B, the formula ϕ ∧ a(x1, x2) ∧ a(y1, y2) is also
satisfiable over B. Then B has an {a, b}-canonical polymorphism g that is {a, b}-symmetric
with g(a, b) = g(b, a) = a.

Note that the assumptions in this lemma are precisely what we get from case 2) in
Theorem 10.1. A lemma of similar style can be also found as Lemma 13 in the article of
Mottet and Pinsker (2022). They obtain in this lemma a weakly commutative operation.
The {a, b}-symmetric operations from our article are a special case of weakly commutative
operations. The difference between these two properties seems crucial for the next step
of our proof: while {a, b}-symmetric operations can often be “lifted” to canonical {a, b}-
symmetric operations this seems not clear in general for weakly commutative operations.
This last step is necessary in order to obtain a contradiction to our assumption that Pol(O)
does not have a Siggers operation.

In order to apply the results of Mottet and Pinsker (2022) directly to obtain the di-
chotomy results of our article one would have to find a way to canonize the weakly com-
mutative operations in a suitable way. It seems that this can be done by a similar proof
as for Lemma 56 of Mottet and Pinsker (2022) were the authors used among other things
arguments which are also incorporated in our proof of the loop lemma (Theorem 10.1).

11. Conclusion

We classified the computational complexity of the network satisfaction problem for finite
symmetric A ∈ RRA with a flexible atom and obtained a P versus NP-complete dichotomy.
We gave a decidable criterion for A that is a sufficient condition for the membership of
NSP(A) in P, which is also necessary unless P=NP. We want to mention that if we drop
the assumptions on A to be symmetric and to have a flexible atom then the statement of
Theorem 1.1 is false. An example for this is the Point Algebra; even though the NSP of this
representable relation algebra is in P (Vilain et al., 1990), the first condition of Theorem 1.1
does not apply. However, if we only drop the symmetry assumption we conjecture that
Theorem 1.1 still holds; yet it is not clear how to obtain the results of Section 7 in this case.
Similarly, if we only drop the flexible atom assumption we conjecture that the statement
also remains true. For this generalization it would be necessary to obtain Ramsey-type
results like Theorem 3.6 without the assumption of the existence of a flexible atom.
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