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Abstract

Artificial Intelligence (AI) is at a crucial point in its development: stable enough to be
used in production systems, and increasingly pervasive in our lives. What does that mean
for its safety? In his book Normal Accidents, the sociologist Charles Perrow proposed a
framework to analyze new technologies and the risks they entail. He showed that major
accidents are nearly unavoidable in complex systems with tightly coupled components if
they are run long enough. In this essay, we apply and extend Perrow’s framework to AI
to assess its potential risks. Today’s AI systems are already highly complex, and their
complexity is steadily increasing. As they become more ubiquitous, different algorithms
will interact directly, leading to tightly coupled systems whose capacity to cause harm we
will be unable to predict. We argue that under the current paradigm, Perrow’s normal
accidents apply to AI systems and it is only a matter of time before one occurs.

1. Introduction

In 1979, despite intricate security mechanisms, a sequence of human errors and techni-
cal malfunctions brought the Three-Mile Island (TMI) nuclear reactor perilously close to
killing thousands. In the aftermath, sociologist Charles Perrow investigated the incident
and published a book about his findings (Perrow, 1999). His takeaway: Accidents like
Three-Mile Island are not aberrations. As systems become ever more complex and tightly
coupled, it is only a matter of time until they malfunction. They are “normal accidents”
waiting to happen. The book proved eerily prescient: Only two years later, the disaster at
Chernobyl unfolded very much in the way Perrow had outlined—and this time, the results
were catastrophic.

Perrow points out that it is hard to find one single cause for the TMI incident. It was
caused by the interaction of different components that bypassed the safety measures im-
plemented by the designers (Pidgeon, 2011). Most man-made accidents have several trivial
causes, each innocuous in isolation but catastrophic in combination. Although calamitous
outcomes are luckily rare, their individual causes occur frequently enough that it is only a
matter of time until they align, especially with frequently used technology. Perrow’s findings
have proven influential, with researchers in different fields framing risks under the normal
accident theory (e.g., Chera, Mazur, and Marks, 2015). Normal Accidents also holds lessons
for much more recent technology: artificial intelligence (Chan, 2021; Maas, 2018).
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To be clear, we do not assume any fatal risks in AI any time soon. AI systems are highly
specialized for individual tasks, which do not have violent outcomes. They are not at a stage
where they could autonomously start tackling tasks for which they were not designed.

However, we have seen an alarming increase in cases of AI “accidentally” gone wrong.
An automated decision system in India denied food rations to an applicant who subsequently
starved (Pilkington, 2019), and even in less high-stakes scenarios, AI has the potential to
wreak havoc. For example, the automated grading system used in the UK unfairly disad-
vantaged some students (Kolkman, 2020), and a machine translation system mistranslated
“Good morning” as “Attack them”, landing an innocent man in hot water (Hern, 2017).

AI systems are highly complex and increasingly coupled, fulfilling exactly the criteria
outlined by Perrow 37 years ago: OpenAI’s GPT-3 (Brown et al., 2020) has 175 billion
parameters. It is difficult to control its output, and understanding its inner workings is
even more challenging. As AI systems become ever more ubiquitous, we must find a mean-
ingful and coherent framework for understanding the risks they pose. At a recent NLP
conference, a panelist suggested combining self-driving cars with large language models to
improve human-computer interaction and explainability. The combined system fulfills ex-
catly Perrow’s criteria for normal accidents: a highly complex system with tightly coupled
components and catastrophic potential.

We cannot stop the development of AI technology as it is now too entangled with
future economic developments. But the adoption of new technologies without awareness of
performance and competitive pressure to deploy before competitors increases the risk that
testing and ethical issues will be overlooked (Maas, 2018; Pereira, Santos, Lenaerts, et al.,
2020; Bianchi & Hovy, 2021). Moreover, faster models are also dangerous: Assuming the
error rate is constant and equal between humans and models, a model that generates output
faster can also generate more errors in less time. The race to improve AI exacerbates these
issues. Thus, we join existing calls for more, better regulation and planning and a more
mindful approach to the development and deployment of responsible AI (Hagendorff, 2020;
Dignum, 2019).

We have not yet seen calamitous outcomes, and current AI systems are unlikely to
cause severe destruction or death. However, normal accidents should be cause for concern
for our field. Recent research has considered how Perrow’s framework might be applied to
AI issues (Chan, 2021; Maas, 2018). We suggest extending this work to include two novel
components that are becoming key properties of AI systems: easy availability and the
incompleteness of their design.

2. Framework

Perrow’s framework categorizes systems along two dimensions: 1) interactions (linear or
complex) and 2) interdependence or coupling (loose or tight). Systems that are complex
and tightly coupled are prone to unpredictable accidents. Figure 1 shows a diagram of
this framework along with existing technologies (blue dots) and their level of coupling and
interaction. According to Perrow, universities are complex, loosely coupled systems, so a
replacement can be found if a professor is unable to teach. Most manufacturing is loosely
coupled and not too complex, while rail transport is tightly coupled but the interaction
tends to be linear. Nuclear plants, however, are complex and tightly coupled.
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Figure 1: Diagram of the coupling and interaction axis of Perrow’s framework. Current AI
and Future AI models added by us.

2.1 Complexity

In a highly complex system, parts can interact in unexpected ways and feedback to operators
may be indirect or ambiguous.

Modern AI systems based on deep networks have unknown complexity, since we cannot
directly interpret the outcome for unseen inputs. Early machine translation required several
separate steps, from POS-tagging, to lexical transfer, to morphological generation, etc.;
nowadays, machine translation pipelines are end-to-end, with one neural architecture taking
care of all the different translation steps. Previously, each component of the pipeline required
sanity checks, which would flag any issues and prevent error propagation. End-to-end
models lack these checkpoints and their output is inscrutable.

2.2 Tightly Coupled

Coupling refers to the extent to which the components of a system are interconnected and
dependent on each other. In a tightly coupled system, one part can have a major effect on
another, meaning errors can be propagated forward, resulting in major system failure.

Currently, AI models are not tightly coupled: Few systems pipe models together. How-
ever, many NLP applications are based on pipelines where each component is an AI model.
For example, response generation is often a pipeline where each component is a stand-alone
ML system. Most NLP applications depend on input from language models whose errors
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and biases are then propagated through the system. In addition, some systems use the
output of ML models as a reward to subsequently train new models in a reinforcement
learning set-up.

Additionally, the potential for tighter coupling is high. As outlined above, combining
large language models with other existing AI systems is within the realm of possibility.

3. Extending the Framework to AI

In addition to Perrow’s coupling and complexity, we believe we must consider two aspects
of AI algorithms: their availability and incompleteness. Inspired by positions in recent
work (Maas, 2018; Dietterich, 2019; Chan, 2021) we make these two components explicit in
a framework we refer to as ACCI (Availability, Complexity, Coupling, and Incompleteness).

3.1 Availability

Resources required to build a nuclear reactor or a dam are hard to come by. In contrast,
AI models are readily available. Code for many state-of-the-art language models is avail-
able online and computational power is becoming increasingly cheaper. These models can
run—albeit with some time constraints—even on common hardware, increasing the risks of
misuse. For example, easy access to text-to-image generation models can perpetuate and
amplify stereotypes (Bianchi et al., 2022).

Meanwhile, while voice assistant functions on mobile devices make certain jobs more
convenient or accessible to specific populations, they also pose safety concerns (Dinan,
Abercrombie, Bergman, Spruit, Hovy, Boureau, & Rieser, 2022). Yet many offer develop-
ment environments that enable anyone with basic programming abilities to create their own
assistant apps.1

Easy availability of AI systems exponentiates the risk probability, as the point of failure
becomes distributed globally rather than in a single location. As a result, novel frame-
works for selecting how to release and access systems are now being discussed and de-
veloped (Liang, Bommasani, Creel, & Reich, 2022; Bergman, Abercrombie, Spruit, Hovy,
Dinan, Boureau, & Rieser, 2022).

Ease of access also affects the number of groups that must function with high-risk
technology. Human-machine systems should become extremely dependable (Dietterich,
2019), but the exploding number and lack of control makes that less likely.

3.2 Incompleteness

We expect technology to work reliably as intended under normal conditions: smartphones
should get messages and nuclear plants should produce energy. However, AI systems usually
work only up to a certain performance level. What works in one setting does not work
in another: For example, changing datasets can compromise evaluation results (Amodei,
Olah, Steinhardt, Christiano, Schulman, & Mané, 2016). As researchers, we often only need
point-wise metrics to reach a certain threshold as proof of functionality. However, as Chan
(2021) correctly points out, poor out-of-distribution performance can result in undesired
consequences when models are applied to real data. Moreover, adversarial attacks that

1. https://developer.amazon.com/en-US/alexa/alexa-skills-kit
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trick models and the poor representation of protected groups are two additional examples
of incompleteness in AI systems.

Would we accept a nuclear plant that worked correctly only 80% of the time? A rea-
sonable answer might be, “It depends on what happens when it does not work.” While the
potential consequences of AI accidents have yet to rise to the level of a nuclear disaster, it
is worth considering that our models have been trained on a subset of the world, work only
up to a certain level of accuracy, and do not generalize well to new information. We need
to know which questions our models can answer correctly to trust them.

4. Case Studies

We apply our framework to two case studies.

4.1 Framing Conversational AI with ACCI

As it becomes embedded in our lives, NLP has the potential to become a high-risk technol-
ogy. A prime example is conversational AI, used to interact with future technologies.

Incidents connected to Perrow’s framework on those devices are already making the
news. For example, children have requested songs from Alexa only to receive pornography,2

or used Alexa to order toys from the Internet without their parents realizing.3 Both exam-
ples show how tightly coupled conversational AI systems are with their ASR components
and other services such as credit cards and external apps. This coupling will only increase
as more smart devices and apps become available.

We must consider what will happen when our conversational devices are connected to
other systems, some of which might be mission critical. Moreover, these conversational AI
systems are now readily available for companies but are generally incomplete (i.e., they
cannot cover all the answers).

4.2 Framing Autonomous Driving with ACCI

Both self-driving cars and language models (to enable them to communicate with drivers
and service personnel) are currently available to companies. Combining them would increase
the complexity of two already complex systems.

The resulting system would be tightly coupled, as the language model would need to
interface with the breaks, steering, acceleration, etc. to work as intended. However, as
recent reports show, both of these two components are still incomplete: Self-driving cars
struggle with certain situations and language models contain biases that make them unable
to process all input equally well. The framework suggests keeping coupling low in this
context: adding a confirmation screen that requires user interaction —Would you like to
perform operation X?— would reduce coupling.

2. https://nypost.com/2016/12/30/toddler-asks-amazons-alexa-to-play-song-but-gets-porn-ins
tead/

3. https://nypost.com/2019/12/18/kids-use-alexa-to-order-700-worth-of-toys-on-moms-credi
t-card/
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5. Conclusion

Perrow suggests dividing technologies into two main groups: 1) those we should abandon
because the risks outweigh the benefits and 2) those we should redesign.

Abandoning AI is not an option; hopes for a better future usually invoke improved AI
methods. Yet we also know that it is hard to regulate what we do not yet fully under-
stand. We must develop robust and explainable systems (Došilović, Brčić, & Hlupić, 2018;
Holzinger, Dehmer, Emmert-Streib, Cucchiara, Augenstein, Del Ser, Samek, Jurisica, &
Dı́az-Rodŕıguez, 2022) to build AI we can trust.

With this essay, we call for more reflection on how we develop and connect AI technolo-
gies and future systems, but we also ask for a better framing of AI risks in terms of Perrow’s
extended categories. Our components let us better comprehend how the technologies that
surround us might affect our lives. AI is not yet as risky as it might become, and we still
have time to better understand what those risks might be. Let us use it wisely.
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