
Journal of Artificial Intelligence Research 77 (2023) 1539–1589 Submitted 10/2022; published 08/2023

Certified Dominance and Symmetry Breaking for
Combinatorial Optimisation

Bart Bogaerts bart.bogaerts@vub.be
Vrije Universiteit Brussel, Brussels, Belgium

Stephan Gocht stephan.gocht@cs.lth.se
Lund University, Lund, Sweden
University of Copenhagen, Copenhagen, Denmark

Ciaran McCreesh Ciaran.McCreesh@glasgow.ac.uk
University of Glasgow, Glasgow, UK

Jakob Nordström jn@di.ku.dk

University of Copenhagen, Copenhagen, Denmark

Lund University, Lund, Sweden

Abstract

Symmetry and dominance breaking can be crucial for solving hard combinatorial search
and optimisation problems, but the correctness of these techniques sometimes relies on sub-
tle arguments. For this reason, it is desirable to produce efficient, machine-verifiable cer-
tificates that solutions have been computed correctly. Building on the cutting planes proof
system, we develop a certification method for optimisation problems in which symmetry and
dominance breaking is easily expressible. Our experimental evaluation demonstrates that
we can efficiently verify fully general symmetry breaking in Boolean satisfiability (SAT)
solving, thus providing, for the first time, a unified method to certify a range of advanced
SAT techniques that also includes cardinality and parity (XOR) reasoning. In addition,
we apply our method to maximum clique solving and constraint programming as a proof
of concept that the approach applies to a wider range of combinatorial problems.

1. Introduction

Symmetries pose a challenge when solving hard combinatorial problems. As an illustration
of this, consider the Crystal Maze puzzle1 shown in Figure 1, which is often used in intro-
ductory constraint modelling courses. A human modeller might notice that the puzzle is the
same after flipping vertically, and could introduce the constraint A < G to eliminate this
symmetry. Or, they may notice that flipping horizontally induces a symmetry, which could
be broken with A < B. Alternatively, they might spot that the values are symmetrical,
and that we can interchange 1 and 8, 2 and 7, and so on; this can be eliminated by saying
that A ≤ 4. In each case a constraint is being added that preserves satisfiability overall,
but that restricts a solver to finding (ideally) just one witness from each equivalence class
of solutions—the hope is that this will improve solver performance. However, although
we may be reasonably sure that any of these three constraints is correct individually, are
combinations of these constraints valid simultaneously? What if we had said F < C instead

1. https://theconversation.com/what-problems-will-ai-solve-in-future-an-old-british-
gameshow-can-help-explain-49080

©2023 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Bogaerts, Gocht, McCreesh, & Nordström

A B

C D E F

G H

Figure 1: The Crystal Maze puzzle. Place numbers 1 to 8 in the circles, with every cir-
cle getting a different number, so that adjacent circles do not have consecutive
numbers.

of A < B? And what if we could use numbers more than once? Getting symmetry elimina-
tion constraints right can be error-prone even for experienced modellers. And when dealing
with larger problems with many constraints and interacting symmetries it can be hard to
tell whether a problem instance is genuinely unsatisfiable, or was made so by an incorrectly
added symmetry breaking constraint.

Despite these difficulties, symmetry elimination using both manual and automatic tech-
niques has been key to many successes across modern combinatorial optimisation paradigms
such as constraint programming (CP) (Garcia de la Banda, Stuckey, Van Hentenryck, &
Wallace, 2014), Boolean satisfiability (SAT) solving (Sakallah, 2021), and mixed-integer
programming (MIP) (Achterberg & Wunderling, 2013). As these optimisation technologies
are increasingly being used for high-value and life-affecting decision-making processes, it
becomes vital that we can trust their outputs—and unfortunately, current solvers do not
always produce correct answers (Brummayer, Lonsing, & Biere, 2010; Cook, Koch, Steffy,
& Wolter, 2013; Akgün, Gent, Jefferson, Miguel, & Nightingale, 2018; Gillard, Schaus, &
Deville, 2019; Bogaerts, McCreesh, & Nordström, 2022).

The most promising way to address this problem of correctness appears to be to use cer-
tification, or proof logging, where a solver must produce an efficiently machine-verifiable cer-
tificate that the answer to the problem was computed correctly (Alkassar, Böhme, Mehlhorn,
Rizkallah, & Schweitzer, 2011; McConnell, Mehlhorn, Näher, & Schweitzer, 2011). This ap-
proach has been successfully used in the SAT community, which has developed numerous
proof logging formats such as RUP (Goldberg & Novikov, 2003), TraceCheck (Biere, 2006),
DRAT (Heule, Hunt Jr., & Wetzler, 2013a, 2013b; Wetzler, Heule, & Hunt Jr., 2014),
GRIT (Cruz-Filipe, Marques-Silva, & Schneider-Kamp, 2017b), and LRAT (Cruz-Filipe,
Heule, Hunt Jr., Kaufmann, & Schneider-Kamp, 2017a). However, currently used methods
work only for decision problems, and do not support the full range of SAT solving tech-
niques, let alone CP and MIP solving. As a case in point, there is no efficient proof logging
for symmetry breaking, except for limited cases with small symmetries which can interact
only in simple ways (Heule, Hunt Jr., & Wetzler, 2015). Tchinda and Djamégni (2020)
recently proposed a proof logging method DSRUP for symmetric learning of variants of
derived clauses, but this format does not support symmetry breaking (in the sense just
discussed) and is also inherently unable to support pre- and inprocessing techniques, which
are crucial in state-of-the-art SAT solvers.

1540

Certified Dominance and Symmetry Breaking for Combinatorial Optimisation

1.1 Our Contribution

In this work, we develop a proof logging method for optimisation problems—i.e., prob-
lems where we are given both a formula F and an objective function f to be optimised by
some assignment satisfying F—that can deal with dominance, a generalization of symme-
try. Dominance breaking starts from the observation that we can strengthen F by imposing
an additional constraint C if every solution of F that does not satisfy C is dominated by
another solution of F . This technique is used in many fields of combinatorial optimisa-
tion (Walsh, 2006, 2012; Gent, Petrie, & Puget, 2006; McCreesh & Prosser, 2016; Jouglet
& Carlier, 2011; Gebser, Kaminski, & Schaub, 2011; Bulhões, Sadykov, & Uchoa, 2018;
Hoogeboom, Dullaert, Lai, & Vigo, 2020; Baptiste & Pape, 1997; Demeulemeester & Her-
roelen, 2002). And even if we are given just a decision problem for a formula F , we can still
use this framework by inventing an objective function minimizing the lexicographic order of
assignments, and then do symmetry breaking by adding dominance constraints with respect
to this order.

The core idea to make our method produce efficiently verifiable proofs is to have it
present an explicit construction of a dominating solution, so that a verifier can check that
this construction strictly improves the objective value and preserves satisfaction of F . This
constructed solution might itself be dominated, and hence not satisfy C, but since the
objective value decreases with every application of the construction, we can be sure, with-
out performing the repeated process, that it would be guaranteed to eventually terminate.
Importantly, verifying the correctness of adding such a constraint C does not require the
construction of an actual assignment satisfying C, and can be performed efficiently even
when multiple constraints are to be added. This resolves a practical issue with earlier ap-
proaches like that of Heule et al. (2015). Such approaches struggle with large or overlapping
symmetries, because adding a new symmetry breaking constraint might make it necessary
to re-break previously added constraints, and to understand precisely how the different
symmetries interact in order to be able to do so. With our method, we never need to revisit
previously broken symmetries.

In addition, although we do not develop this direction in the current paper, it should also
be noted that a quite intriguing feature of our method is that we could break symmetries of a
problem with respect to a higher-order representation in pseudo-Boolean form in a provably
correct way, even if the encoding in the conjunctive normal form (CNF) used by SAT solvers
is not symmetric. If the solver is given a problem in pseudo-Boolean representation, then
it could add symmetry breaking constraints based on this pseudo-Boolean representation,
then translate the PB representation to CNF in a certified way (Gocht, Martins, Nordström,
& Oertel, 2022), and finally produce a proof that the combination of all of these constraints
is a valid encoding of the original problem. Following preliminaries in Section 2, we describe
in full detail in Section 3 our dominance-based method of reasoning and prove that it is
sound.

We have developed a proof format and verifier for this proof logging method by extending
the tool VeriPB (Elffers, Gocht, McCreesh, & Nordström, 2020; Gocht & Nordström, 2021;
Gocht, McCreesh, & Nordström, 2020b; Gocht, McBride, McCreesh, Nordström, Prosser,
& Trimble, 2020a) with dominance reasoning. The pseudo-Boolean constraints and cutting
planes proof system (Cook, Coullard, & Turán, 1987) used by VeriPB turn out to be quite

1541

Bogaerts, Gocht, McCreesh, & Nordström

convenient to express and reason with dominance constraints, and moreover also make it
possible to certify cardinality and parity (XOR) reasoning (Gocht & Nordström, 2021),
two other advanced SAT solving techniques which previous proof logging methods have not
been able to support efficiently.

After introducing the proof system that we have developed as the foundation of our proof
logging method, we exhibit three applications that have not previously admitted efficient
certification, and demonstrate that our new method can support simple, practical proof
logging in each case.2 First, in Section 4, we demonstrate that, by enhancing the BreakID
tool for SAT solving (Devriendt, Bogaerts, Bruynooghe, & Denecker, 2016) with VeriPB
proof logging, we can cover the entire solving toolchain when symmetries are involved. We
show in full generality, and for the first time, that proof logging is practical by running
experiments on SAT competition benchmarks. Second, in Section 5, we revisit the Crystal
Maze example and describe a tool that provides proof logging for the kind of symmetry
breaking constraints discussed above. Third, in Section 6, we discuss how adding a rule
for deriving dominance breaking constraints can be used to support vertex domination
reasoning in a maximum clique solver. We conclude the paper proper with a brief discussion
of future research directions in Section 7. Appendix A contains a worked-out example of
proof logging for symmetry breaking.

1.2 Publication History

An extended abstract of this paper was presented at the 36th AAAI Conference on Artificial
Intelligence (Bogaerts, Gocht, McCreesh, & Nordström, 2022a). The current manuscript
extends the previous work with full proofs of all formal claims, and includes a more detailed
exposition of the proof system and proof logging applications.

2. Preliminaries

Let us start with a brief review of some standard material, referring the reader to, e.g., Buss
and Nordström (2021) for more details. A literal ℓ over a Boolean variable x is x itself or
its negation x = 1− x, where variables take values 0 (false) or 1 (true). A pseudo-Boolean
(PB) constraint is a 0–1 linear inequality

C
.
=

∑
iaiℓi ≥ A , (1)

where ai and A are integers (and
.
= denotes syntactic equality). We can assume without

loss of generality that pseudo-Boolean constraints are normalized ; i.e., that all literals ℓi
are over distinct variables and that the coefficients ai and the degree (of falsity) A are non-
negative, but most of the time we will not need this. Instead, we will write PB constraints
in more relaxed form as

∑
i aiℓi ≥ A+

∑
j bjℓj or

∑
i aiℓi ≤ A+

∑
j bjℓj when convenient,

or even use equality
∑

i aiℓi = A as syntactic sugar for the pair of inequalities
∑

i aiℓi ≥ A
and

∑
i−aiℓi ≥ −A, assuming that all constraints are implicitly normalized if needed.

The negation ¬C of the constraint C in (1) is (the normalized form of)

¬C .
=

∑
i − aiℓi ≥ −A+ 1 . (2)

2. All code for our implementations and experiments, as well as data and scripts for all plots, can be found
in the repository (Bogaerts, Gocht, McCreesh, & Nordström, 2022b).

1542

Certified Dominance and Symmetry Breaking for Combinatorial Optimisation

A pseudo-Boolean formula is a conjunction F
.
=

∧
j Cj of PB constraints, which we can

also think of as the set
⋃

j{Cj} of constraints in the formula, choosing whichever viewpoint
seems most convenient. Note that a (disjunctive) clause ℓ1 ∨ · · · ∨ ℓk is equivalent to the
pseudo-Boolean constraint ℓ1 + · · ·+ ℓk ≥ 1, so formulas in conjunctive normal form (CNF)
are special cases of PB formulas.

A (partial) assignment is a (partial) function from variables to {0, 1}. A partial assign-
ment is also referred to as a restriction. A substitution (or affine restriction) can also map
variables to literals. We extend an assignment or substitution ρ from variables to literals in
the natural way by respecting the meaning of negation, and for literals ℓ over variables x
not in the domain of ρ, denoted x ̸∈ dom(ρ), we use the convention ρ(ℓ) = ℓ. (That is, we
can consider all assignments and substitution to be total, but to be the identity outside of
their specified domains. Strictly speaking, we also require that all substitutions be defined
on the truth constants {0, 1} and be the identity on these constants.) We sometimes write
x 7→ b when ρ(x) = b, for b a literal or truth value, to specify parts of ρ or when ρ is clear
from context.

We write ρ ◦ ω to denote the composed substitution resulting from applying first ω and
then ρ, i.e., ρ ◦ ω(x) = ρ(ω(x)). As an example, for ω = {x1 7→ 0, x3 7→ x4, x4 7→ x3} and
ρ = {x1 7→ 1, x2 7→ 1, x3 7→ 0, x4 7→ 0} we have ρ ◦ ω = {x1 7→ 0, x2 7→ 1, x3 7→ 1, x4 7→ 0}.
Applying ω to a constraint C as in (1) yields the restricted constraint

C↾ω
.
=

∑
iaiω(ℓi) ≥ A , (3)

substituting literals or values as specified by ω. For a formula F we define F↾ω
.
=

∧
j Cj↾ω.

Since we will sometimes have to make fairly elaborate use of substitutions, let us discuss
some further notational conventions. If F is a formula over variables x⃗ = {x1, . . . , xm},
we can write F (x⃗) when we want to stress the set of variables over which F is defined.
For a substitution ω with domain (contained in) x⃗, the notation F

(
x⃗↾ω

)
is understood

to be a synonym of F↾ω. For the same formula F and y⃗ = {y1, . . . , ym}, the notation
F (y⃗) is syntactic sugar for F↾ω with ω denoting the substitution (implicitly) defined by
ω(xi) = yi for i = 1, . . . , n. Finally, for a formula G = G(x⃗, y⃗) over x⃗ ∪ y⃗ and substitutions
α and β defined on z⃗ = {z1, . . . , zn} (either of which could be the identity), the notation
G(z⃗↾α, z⃗↾β) should be understood as G↾ω for ω defined by ω(xi) = α(zi) and ω(yi) = β(zi)
for i = 1, . . . , n.

The (normalized) constraint C in (1) is satisfied by ρ if
∑

ρ(ℓi)=1 ai ≥ A. A pseudo-
Boolean formula F is satisfied by ρ if all constraints in it are, in which case it is satisfiable.
If there is no satisfying assignment, F is unsatisfiable. Two formulas are equisatisfiable if
they are both satisfiable or both unsatisfiable. In this paper, we also consider optimisa-
tion problems, where in addition to F we are given an integer linear objective function
f
.
=

∑
iwiℓi and the task is to find an assignment that satisfies F and minimizes f . (To

deal with maximization problems we can just negate the objective function.)

Cutting planes (Cook et al., 1987) is a method for iteratively deriving constraints C from
a pseudo-Boolean formula F . We write F ⊢ C for any constraint C derivable as follows.
Any axiom constraint C ∈ F is trivially derivable, as is any literal axiom ℓ ≥ 0. If F ⊢ C
and F ⊢ D, then any positive integer linear combination of C and D is derivable. Finally,
from a constraint in normalized form

∑
i aiℓi ≥ A we can use division by a positive integer

1543

Bogaerts, Gocht, McCreesh, & Nordström

d to derive
∑

i⌈ai/d⌉ℓi ≥ ⌈A/d⌉, dividing and rounding up the degree and coefficients. For
a set of pseudo-Boolean constraints F ′ we write F ⊢ F ′ if F ⊢ C for all C ∈ F ′.

For pseudo-Boolean formulas F , F ′ and constraints C, C ′, we say that F implies or
models C, denoted F |= C, if any assignment satisfying F also satisfies C, and write
F |= F ′ if F |= C ′ for all C ′ ∈ F ′. It is easy to see that if F ⊢ F ′ then F |= F ′, and so F
and F ∧F ′ are equisatisfiable. A piece of non-standard terminology that will be convenient
for us is that we will say that a constraint C literal-axiom-implies another constraint C ′ if
C ′ can be derived from C using only addition of literal axioms ℓ ≥ 0.

An assignment ρ falsifies or violates the constraint C if the restricted constraint C↾ρ can
not be satisfied. For the normalized constraint C in (1), this is the case if

∑
ρ(ℓi)̸=0 ai < A.

A constraint C unit propagates the literal ℓ under ρ if if C↾ρ cannot be satisfied unless
ℓ 7→ 1. During unit propagation on F under ρ, the assignment ρ is extended iteratively by
any propagated literals until an assignment ρ′ is reached under which no constraint in F
is propagating, or until ρ′ violates some constraint C ∈ F . The latter scenario is referred
to as a conflict. Using the generalization of reverse unit propagation clauses (Goldberg
& Novikov, 2003) to pseudo-Boolean constraints by Elffers et al. (2020), we say that F
implies C by reverse unit propagation (RUP), and that C is a RUP constraint with respect
to F , if F ∧ ¬C unit propagates to conflict under the empty assignment. If C is a RUP
constraint with respect to F , then it can be proven that there is also a derivation F ⊢ C.
More generally, it can be shown that F ⊢ C if and only if F ∧ ¬C ⊢ ⊥, where ⊥ is a
shorthand for the trivially false constraint 0 ≥ 1. Therefore, we will extend the notation
and write F ⊢ C also when C is derivable from F by RUP or by contradiction. It is worth
noting here again that, as shown in (2), the negation of any pseudo-Boolean constraint can
also be expressed syntactically as a pseudo-Boolean constraint—this fact will be convenient
in what follows.

3. A Proof System for Dominance Breaking

We proceed to develop our formal proof system for verifying dominance breaking, which
we have implemented on top of the tool VeriPB as developed in the sequence of papers
(Elffers et al., 2020; Gocht et al., 2020b, 2020a; Gocht & Nordström, 2021). We remark
that for applications it is absolutely crucial not only that the proof system be sound, but
that all proofs be efficiently machine-verifiable. There are significant challenges involved in
making proof logging and verification efficient, but in this section we mostly ignore these
more applied aspects of our work and focus on the theoretical underpinnings.

Our foundation is the cutting planes proof system described in Section 2. However, in
a proof in our system for (F, f), where f is a linear objective function to be minimized
under the pseudo-Boolean formula F (or where f

.
= 0 for decision problems), we also allow

strengthening F by adding constraints C that are not implied by the formula. Pragmatically,
adding such non-implied constraints C should be in order as long as we keep some optimal
solution, i.e., a satisfying assignment to F that minimizes f , which we will refer to as an
f -minimal solution for F . We will formalize this idea by allowing the use of an additional
pseudo-Boolean formula O⪯(u⃗, v⃗) that, together with an ordered set of variables z⃗, defines
a relation α ⪯ β to hold between assignments α and β if O⪯(z⃗↾α, z⃗↾β) evaluates to true. We
require (a cutting planes proof) that O⪯ is such that this defines a preorder, i.e., a reflexive

1544

Certified Dominance and Symmetry Breaking for Combinatorial Optimisation

and transitive relation. Adding new constraints C will be valid as long as we guarantee to
preserve some f -minimal solution that is also minimal with respect to ⪯. In other words,
the preorder ⪯ can be combined with the objective function f to define a preorder ⪯f on
assignments by

α ⪯f β if α ⪯ β and f↾α ≤ f↾β , (4)

and we require that all derivation steps in the proof should preserve some solution that is
minimal with respect to ⪯f . The preorder defined by O⪯(u⃗, v⃗) will only become important
once we introduce our new dominance-based strengthening rule later in this section. For
simplicity, up until that point the reader can assume that the pseudo-Boolean formula is
O⊤

.
= ∅ inducing the trivial preorder relating all assignments, though all proofs presented

below work in full generality for the orders that will be introduced later.
A proof for (F, f) in our proof system consists of a sequence of proof configurations

(C ,D ,O⪯, z⃗, v), where

• C is a set of pseudo-Boolean core constraints;

• D is another set of pseudo-Boolean derived constraints;

• O⪯ is a pseudo-Boolean formula encoding a preorder and z⃗ a set of literals on which
this preorder will be applied; and

• v is the best value found so far for f .

The initial configuration is (F, ∅,O⊤, ∅,∞). The distinction between C and D is only
relevant when a nontrivial preorder is used; we will elaborate on this when discussing
the dominance-based strengthening rule. The intended relation between f and v is that
if v < ∞, then there exists a solution α satisfying F such that f↾α ≤ v, and in this case
the proof can make use of the constraint f ≤ v − 1 in the search for better solutions. As
long as the optimal solution has not been found, it should hold that f -minimal solutions
for C ∪D have the same objective value as f -minimal solutions for F . The precise relation
is formalized in the notion of (F, f)-valid configurations, which we will define next. In some
cases, it will be convenient to also have a less stringent notion of weak (F, f)-validity, which
holds even if constraints have been removed from the original formula. Jumping ahead a
bit, what this means is that proofs preserving weak (F, f)-validity can only be used to show
that no solutions better than a given value exist, while proofs preserving (F, f)-validity can
establish that the optimal value equals a certain value.

Definition 1. A configuration (C ,D ,O⪯, z⃗, v) is weakly (F, f)-valid if the following con-
ditions hold:

1. For every v′ < v, it holds that if F ∪ {f ≤ v′} is satisfiable, then C ∪ {f ≤ v′} is
satisfiable.

2. For every total assignment ρ satisfying the constraints C ∪ {f ≤ v − 1}, there exists
a total assignment ρ′ ⪯f ρ satisfying C ∪D ∪ {f ≤ v − 1}, where ⪯f is the relation
defined in (4).

The configuration (C ,D ,O⪯, z⃗, v) is (F, f)-valid if in addition the following conditions hold:

1545

Bogaerts, Gocht, McCreesh, & Nordström

3. If v <∞, then F ∪ {f ≤ v} is satisfiable.

4. For every v′ < v, it holds that if C ∪ {f ≤ v′} is satisfiable, then F ∪ {f ≤ v′} is
satisfiable.

When we present the derivation rules in our proof system below, we will show that
(F, f)-validity is an invariant of the proof system, i.e., that it is preserved by all derivation
rules. For the deletion rule, which can remove constraints in the input formula, we will
present a version of the rule that only preserves weak (F, f)-validity. This alternative rule
is introduced for pragmatic reasons to support proof logging for SAT solvers. In such a
setting, deletions can be treated in a more relaxed fashion, since the generated proofs are
only used to establish unsatisfiability.

To see why Definition 1 is relevant, note that items 1, 2, and 4 together imply that if
the configuration (C ,D ,O⪯, z⃗, v) is such that v is not yet the value of an optimal solution,
then f -minimal solutions for F and C ∪D have the same objective value, just as desired. A
proof in our proof system ends when the configuration (C ,D ,O⪯, z⃗, v

∗) is such that C ∪D
contains contradiction ⊥ .

= 0 ≥ 1. If the resulting state is (F, f)-valid, either v∗ =∞ and
F is unsatisfiable, or v∗ is the optimal value (or v∗ = 0 for a satisfiable decision problem).
If the resulting state is only weakly (F, f)-valid, we get slightly weaker conclusions. We
collect the precise statements in two formal theorems.

Theorem 2. Let F be a pseudo-Boolean formula and f an objective function. If the con-
figuration (C ,D ,O⪯, z⃗, v

∗) is weakly (F, f)-valid and is such that C ∪ D contains the con-
tradictory constraint 0 ≥ 1, then it holds that

• for any solution α for F we have f↾α ≥ v∗;

• in particular, if v∗ =∞, then F is unsatisfiable.

Proof. If F is satisfiable, then let α be a satisfying assignment for F . If f↾α < v∗, then
α satisfies F ∪ {f ≤ v∗ − 1}. Hence, item 1 in Definition 1 says that there exists an α′

that satisfies C ∪ {f ≤ v∗ − 1} and item 2 then implies the existence of an α′′ that satisfies
C ∪D ∪{f ≤ v∗−1}. But this contradicts the assumption that the unsatisfiable constraint
0 ≥ 1 is in C ∪ D . It follows that f↾α ≥ v∗, and that no satisfying assignments for F can
exist if v∗ =∞.

Theorem 3. Let F be a pseudo-Boolean formula and f an objective function. If the con-
figuration (C ,D ,O⪯, z⃗, v

∗) is (F, f)-valid and is such that C ∪D contains 0 ≥ 1, then

• F is unsatisfiable if and only if v∗ =∞; and

• if F is satisfiable, then there is an f -minimal solution α for F with objective value
f↾α = v∗.

Proof. By appealing to Theorem 2, we can conclude that if v∗ =∞, then F is unsatisfiable.
If F is unsatisfiable, then we must have v∗ = ∞ due to item 3 in Definition 1. This
establishes the first part of Theorem 3.

For the second part, suppose that F is satisfiable. Then v∗ < ∞ by the preceding
paragraph, and so by item 3 of Definition 1 there is a solution α for F such that f↾α ≤ v∗.

1546

Certified Dominance and Symmetry Breaking for Combinatorial Optimisation

But Theorem 2 says that for any solution α for F it holds that f↾α ≥ v∗. Hence, α is an
f -minimal solution for F with objective value f↾α = v∗ as claimed.

We are now ready to give a formal description of the rules in our proof system and
argue that these rules preserve (F, f)-validity (or, in the case of the alternative deletion
rule, weak (F, f)-validity). The attentive reader might have noted that we did not use
item 4 in Definition 1 in our proofs of Theorems 2 and 3, but this condition will be critical
to argue that (F, f)-validity is an invariant of our proof system.

3.1 Implicational Derivation Rule

If we can exhibit a derivation of the pseudo-Boolean constraint C from C ∪D∪{f ≤ v−1} in
our (slightly extended) version of the cutting planes proof system as described in Section 2
(i.e., in formal notation, if C ∪D ∪{f ≤ v− 1} ⊢ C), then we should be allowed to add the
implied constraint C to our collection of derived constraints. Let us write this down as our
first formal derivation rule.

Definition 4 (Implicational derivation rule). If C ∪ D ∪ {f ≤ v − 1} ⊢ C, then we can
transition from the configuration (C ,D ,O⪯, z⃗, v) to the configuration (C ,D ∪ {C},O⪯, z⃗, v)
by the implicational derivation rule. In this case, we will also say that C is derivable from
(C ,D ,O⪯, z⃗, v) by the implicational derivation rule.

The implicational derivation rule preserves (F, f)-validity (and weak (F, f)-validity)
since C ∪ D ∪ {f ≤ v − 1} |= C holds by soundness of the cutting planes proof system,
but, more importantly, the cutting planes derivation provides a simple and efficient way for
an algorithm to verify that this implication holds. This is a key feature of all rules in our
proof system—not only are they sound, but the soundness of every rule application can be
efficiently verified by checking a simple, syntactic object.

When doing proof logging, the solver would need to specify by which sequence of cut-
ting planes derivation rules C was obtained. For practical purposes, though, it greatly
simplifies matters that in many cases the verifier can figure out the required proof details
automatically, meaning that the proof logger can just state the desired constraint without
any further information. One important example of this is when C is a reverse unit propa-
gation (RUP) constraint with respect to C ∪ D ∪ {f ≤ v − 1}. Another case is when C is
literal-axiom-implied by some other constraint.

3.2 Objective Bound Update Rule

The objective bound update rule allows improving the estimate of what value can be achieved
for the objective function f .

Definition 5 (Objective bound update rule). We say that we can transition from the
configuration (C ,D ,O⪯, z⃗, v) to the configuration (C ,D ,O⪯, z⃗, v

′) by the objective bound
update rule if there is an assignment α satisfying C such that f↾α = v′ < v.

When actually doing proof logging, the solver would specify such an assignment α, which
would then be checked by the proof verifier (in our case VeriPB).

1547

Bogaerts, Gocht, McCreesh, & Nordström

To argue that this rule preserves (F, f)-validity (and weak (F, f)-validity), note that
items 1, 2, and 4 are trivially satisfied. (For item 2, observe that whenever ρ′ ⪯f ρ and ρ
satisfies {f ≤ v′ − 1}, so does ρ′.) Item 3 is satisfied after updating the objective bound
since item 4 guarantees the existence of an α′ satisfying F with an objective value that is
at least as good as v′.

Note that we have no guarantee that α itself will be a solution for F . However, although
we will not emphasize this point here, it follows from our formal treatment below that the
proof system guarantees that such a solution α′ for the original formula F can be efficiently
reconstructed from the proof (where efficiency is measured in the size of the proof).

3.3 Redundance-Based Strengthening Rule

The redundance-based strengthening rule allows deriving a constraint C from C ∪D even
if C is not implied, provided that it can be shown that any assignment α that satisfies C ∪D
can be transformed into another assignment α′ ⪯f α that satisfies both C ∪ D and C (in
case O⪯ = O⊤, the condition α′ ⪯f α just means that f↾α′ ≤ f↾α). This rule is borrowed
from Gocht and Nordström (2021), who in turn rely heavily on Heule, Kiesl, and Biere
(2017) and Buss and Thapen (2019). We extend this rule here from decision problems to
optimization problems in the natural way.

Definition 6 (Redundance-based strengthening rule). If for a pseudo-Boolean constraint C
there is a substitution ω such that

C ∪D ∪ {f ≤ v − 1} ∪ {¬C} ⊢ (C ∪D ∪ C)↾ω ∪ {f↾ω ≤ f} ∪ O⪯(z⃗↾ω, z⃗) , (5)

then we can transition from (C ,D ,O⪯, z⃗, v) to (C ,D ∪ {C},O⪯, z⃗, v) by redundance-based
strengthening, or just redundance for brevity. We refer to the substitution ω as the witness,
and also say that C can be derived from (C ,D ,O⪯, z⃗, v) by redundance.

Intuitively, (5) says that if some assignment α satisfies C ∪ D but falsifies C, then the
assignment α′ = α ◦ ω still satisfies C ∪ D and also satisfies C. In addition, the condition
f↾ω ≤ f ensures that α ◦ ω achieves an objective function value that is at least as good as
that for α. This together with the constraints O⪯(z⃗↾ω, z⃗) guarantees that α′ ⪯f α. For proof
logging purposes, the witness ω as well as any non-immediate cutting planes derivations of
constraints on the right-hand side of (5) would have to be specified, but, e.g., all RUP
constraints or literal-axiom-implied constraints can be left to the verifier to check.

Proposition 7. If we can transition from (C ,D ,O⪯, z⃗, v) to (C ,D ∪ {C},O⪯, z⃗, v) by
the redundance-based strengthening rule and (C ,D ,O⪯, z⃗, v) is [weakly] (F, f)-valid, then
(C ,D ∪ {C},O⪯, z⃗, v) is also [weakly] (F, f)-valid.

Proof. First assume (C ,D ,O⪯, z⃗, v) is weakly (F, f)-valid. Item 1 in Definition 1 remains
satisfied for (C ,D ∪ {C},O⪯, z⃗, v) since F , v, and C are unchanged.

For item 2 we can recycle proofs of similar properties for decision problems (Heule et al.,
2017; Buss & Thapen, 2019; Gocht & Nordström, 2021). Consider a total assignment ρ
satisfying C ∪{f ≤ v− 1}. Without loss of generality we can assume that ρ also satisfies D
(since (C ,D ,O⪯, z⃗, v) satisfies item 2 in Definition 1). We wish to construct an assignment ρ′

1548

Certified Dominance and Symmetry Breaking for Combinatorial Optimisation

that satisfies the constraints C ∪ D ∪ {C} and also the condition ρ′ ⪯f ρ, which is to say
that f↾ρ′ ≤ f↾ρ and O⪯(z⃗↾ρ′ , z⃗↾ρ) should hold.

If ρ satisfies C, then we use ρ′ = ρ and all conditions are satisfied (recall that O⪯ induces
a preorder, and hence a reflexive relation: for any ρ, O⪯(z⃗↾ρ, z⃗↾ρ) holds). Otherwise, choose
ρ′ = ρ ◦ ω. Since ρ is total and does not satisfy C, it satisfies ¬C. This means that ρ
satisfies C ∪D ∪ ¬C, and hence by (5) also

(C ∪D ∪ C)↾ω ∪ {f↾ω ≤ f} ∪ O⪯(z⃗↾ω, z⃗) . (6)

Clearly, for any constraint D, it holds that (D↾ω)↾ρ = D↾ρ◦ω and thus if ρ satisfies D↾ω,
then ρ′ = ρ ◦ ω satisfies D. Therefore, ρ′ satisfies C ∪ D ∪ C. By the same reasoning,
since ρ satisfies f↾ω ≤ f we have that f↾ρ◦ω = f↾ρ′ ≤ f↾ρ holds. Finally, the fact that
ρ satisfies O⪯(z⃗↾ω, z⃗) means that O⪯(z⃗↾ρ′ , z⃗↾ρ) holds. This shows that item 2 holds for
(C ,D ∪ {C},O⪯, z⃗, v), which concludes our proof that weak (F, f)-validity is preserved.

To see that also (F, f)-validity is preserved, it suffices to note that items 3 and 4 do not
depend on D and hence are satisfied in (C ,D ∪ {C},O⪯, z⃗, v) whenever they are satisfied
in (C ,D ,O⪯, z⃗, v).

3.4 Deletion Rules

An interesting property of the redundance rule introduced in Section 3.3 is that when the
set of constraints in C ∪ D grows, it can get harder to derive new constraints, since every
constraint D already in C ∪ D adds a new constraint D↾ω needing to be derived on the
right-hand side of (5). For this reason, and also due to efficiency concerns during verification
of proofs, we need to be able to delete previously derived constraints.

Definition 8 (Deletion rule). We can transition from (C ,D ,O⪯, z⃗, v) to (C ′,D ′,O⪯, z⃗, v)
by the deletion rule if

1. D ′ ⊆ D and

2. C ′ = C or C ′ = C \ {C} for some constraint C derivable via the redundance rule
from (C ′, ∅,O⪯, z⃗, v).

The last condition above perhaps seems slightly odd, but it is there since deleting arbi-
trary constraints could violate (F, f)-validity in two different ways. Firstly, it could allow
finding better-than-optimal solutions. Secondly, and perhaps surprisingly, in combination
with the dominance-based strengthening rule, which we will discuss below, arbitrary dele-
tion is unsound, as it can turn satisfiable instances into unsatisfiable ones. We will discuss
this further in Example 15 once we have introduced the dominance rule.

Proposition 9. If we can transition from (C ,D ,O⪯, z⃗, v) to (C ′,D ′,O⪯, z⃗, v) by the deletion
rule and (C ,D ,O⪯, z⃗, v) is [weakly] (F, f)-valid, then (C ′,D ′,O⪯, z⃗, v) is also [weakly] (F, f)-
valid.

Proof. First assume that (C ,D ,O⪯, z⃗, v) is weakly (F, f)-valid. Item 1 in Definition 1 clearly
remains satisfied for (C ′,D ′,O⪯, z⃗, v) since C ′ ⊆ C . To prove that item 2 is satisfied after
applying the deletion rule, let α be any assignment that satisfies C ′∪{f ≤ v−1}. If C ′ = C ,

1549

Bogaerts, Gocht, McCreesh, & Nordström

we find an α′ ⪯f α that satisfies C ′ ∪ D ′ ∪ {f ≤ v − 1} using weak (F, f)-validity of the
configuration (C ,D ,O⪯, z⃗, v). Hence, we can assume that C ′ = C \ {C}. If α satisfies C,
this assignment satisfies all of C , and again the claim follows from weak (F, f)-validity of the
configuration (C ,D ,O⪯, z⃗, v) before deletion. Assume therefore that α does not satisfy C.
Since C is derivable via redundance from (C ′, ∅,O⪯, z⃗, v), it holds that

C ′ ∪ {f ≤ v − 1} ∪ {¬C} ⊢ (C ′ ∪ C)↾ω ∪ {f↾ω ≤ f} ∪ O⪯(z⃗↾ω, z⃗) (7)

for some witness ω. We can use this witness to obtain an assignment α′′ = α ◦ ω satisfying
C = C ′∪{C} such that f↾α′′ ≤ f↾α ≤ v−1, which shows that C ∪{f ≤ v−1} is satisfiable.
Appealing to the weak (F, f)-validity of the configuration (C ,D ,O⪯, z⃗, v) before deletion,
we then find an α′ with f↾α′ ≤ v − 1 that satisfies C ∪ D ∪ {f ≤ v − 1}. In this way,
we establish that item 2 in Definition 1 holds for the configuration (C ′,D ′,O⪯, z⃗, v) after
deletion.

Now assume that (C ,D ,O⪯, z⃗, v) is (F, f)-valid. Item 3 clearly remains satisfied for
(C ′,D ′,O⪯, z⃗, v) since v is unchanged. We show that item 4 holds for (C ′,D ′,O⪯, z⃗, v);
the proof is very similar to the proof of item 2 above. Starting from an assignment α
satisfying C ′ ∪ {f ≤ v′} for some v′ < v, we use α to construct a satisfying assignment α′

for F ∪{f ≤ v′}. If C ′ = C , we get α′ from the (F, f)-validity of (C ,D ,O⪯, z⃗, v), so assume
C ′ = C \{C}. If α satisfies C, the same assignment satisfies C , and again the claim follows
from (F, f)-validity of the configuration before deletion. Assume therefore that α does not
satisfy C. Since C is derivable via redundance from (C ′, ∅,O⪯, z⃗, v), it holds that

C ′ ∪ {f ≤ v − 1} ∪ {¬C} ⊢ (C ′ ∪ C)↾ω ∪ {f↾ω ≤ f} ∪ O⪯(z⃗↾ω, z⃗) . (8)

From this we can construct an assignment α′′ = α ◦ ω that satisfies C = C ′ ∪ {C} and
is such that f↾α′′ ≤ f↾α ≤ v′, showing that C ∪ {f ≤ v′} is satisfiable. Appealing to
the (F, f)-validity of the configuration (C ,D ,O⪯, z⃗, v), we then find an α′ with f↾α′ ≤ v′

that satisfies F . This proves that item 4 holds for the configuration (C ′,D ′,O⪯, z⃗, v) after
deletion.

The deletion rule in Definition 8 is more cumbersome than that in DRAT -style proof
systems, in that deletions of constraints in the core set must be accompanied by proofs
so that the validity of the deletions can be checked. When we want to highlight this
property of the rule, we will refer to it as checked deletion. This property can make it
more difficult to implement proof logging in a solver, and can also have negative effects on
the time required for proof generation and proof verification. If we are only interested in
certifying unsatisfiability of decision problem instances—which has traditionally been the
case in Boolean satisfiability solving—then an alternative is to use a more liberal deletion
rule that allows unrestricted deletion of constraints from the core set C provided that the
derived set D is empty. When such an unchecked deletion rule is used, it is easy to see
that unsatisfiable sets of constraints can turn satisfiable, and for optimisation problems
spurious solutions can appear that yield better objective function values than are possible
for the original input constraints. But proofs of unsatisfiability are still valid, as are lower
bounds on the value of the objective function to be minimized. Phrased in the language
of Definition 1, we are guaranteed to preserve weak (F, f)-validity, but not necessarily
(F, f)-validity.

1550

Certified Dominance and Symmetry Breaking for Combinatorial Optimisation

Definition 10 (Unchecked deletion rule). If C ′ ⊆ C , then we can transition from the con-
figuration (C ,D ,O⪯, z⃗, v) to the configuration (C ′, ∅,O⪯, z⃗, v) using the unchecked deletion
rule.

Proposition 11. If (C ,D ,O⪯, z⃗, v) is a weakly (F, f)-valid configuration and we can tran-
sition from it to (C ′, ∅,O⪯, z⃗, v) using unchecked deletion, then (C ′, ∅,O⪯, z⃗, v) is also weakly
(F, f)-valid.

Proof. Item 1 in Definition 1 is clearly maintained when transitioning to (C ′, ∅,O⪯, z⃗, v)
since the set of core constraints shrinks. As to item 2, it is trivially satisfied when the set
of derived constraints is empty.

3.5 Transfer Rule

Constraints can always be moved from the derived set D to the core set C using the transfer
rule.

Definition 12 (Transfer rule). We can transition from (C ,D ,O⪯, z⃗, v) to (C ′,D ,O⪯, z⃗, v)
by the transfer rule if C ⊆ C ′ ⊆ C ∪D .

This transfer rule clearly preserves (F, f)-validity (and weak (F, f)-validity).
The transfer rule together with deletion allows replacing constraints in the original

formula with stronger constraints. For example, assume that x + y ≥ 1 is in C and that
we derive x ≥ 1. Then we can move x ≥ 1 from D to C and then delete x + y ≥ 1. The
required redundance check {x ≥ 1,¬(x+ y ≥ 1)} ⊢ ⊥ is immediate.

The rules discussed so far in this section do not change O⪯, and so any derivation using
these rules only will operate with the trivial preorder O⊤ imposing no conditions. The proof
system defined in terms of these rules is a straightforward extension of VeriPB as developed
by Elffers et al. (2020), Gocht et al. (2020a, 2020b), Gocht and Nordström (2021) to an
optimisation setting. We next discuss the main contribution of this paper, namely the new
dominance rule making use of the preorder encoding O⪯.

3.6 Dominance-Based Strengthening Rule

Any preorder ⪯ induces a strict order ≺ defined by α ≺ β if α ⪯ β and β ̸⪯ α. (Note
that if α ⪯ β and β ⪯ α both hold, this means that neither α ≺ β nor β ≺ α holds.)
The relation ≺f obtained in this way from the preorder (4) coincides with what Chu and
Stuckey (2015) call a dominance relation in the context of constraint optimisation. Our
dominance rule allows deriving a constraint C from C ∪D even if C is not implied, similar
to the redundance rule. However, for the dominance rule an assignment α satisfying C ∪D
but falsifying C only needs to be mapped to an assignment α′ that satisfies C , but not
necessarily D or C. On the other hand, the new assignment α′ should satisfy the strict
inequality α′ ≺f α and not just α′ ⪯f α as in the redundance rule. To show that this
new dominance rule preserves (F, f)-validity, we will prove that it is possible to construct
an assignment that satisfies C ∪ D ∪ {C} by iteratively applying the witness of the dom-
inance rule, in combination with (F, f)-validity of the configuration before application of
the dominance rule. As our base case, if α′ satisfies C ∪D ∪ {C}, we are done. Otherwise,
since α′ satisfies C , by (F, f)-validity we are guaranteed the existence of an assignment α′′

1551

Bogaerts, Gocht, McCreesh, & Nordström

satisfying C ∪D for which α′′ ≺f α
′ ≺f α holds. If α′′ still does not satisfy C, we can repeat

the argument. In this way, we get a strictly decreasing sequence (with respect to ≺f) of
assignments. Since the set of possible assignments is finite, this sequence will eventually
terminate.

Formally, we can derive C by dominance-based strengthening given a substitution ω
such that

C ∪D ∪ {f ≤ v − 1} ∪ {¬C} ⊢ C↾ω ∪ O⪯(z⃗↾ω, z⃗) ∪ ¬O⪯(z⃗, z⃗↾ω) ∪ {f↾ω ≤ f} , (9)

where O⪯(z⃗↾ω, z⃗) and ¬O⪯(z⃗, z⃗↾ω) together state that α ◦ ω ≺ α for any assignment α. A
minor technical problem is that the pseudo-Boolean formula O⪯(z⃗, z⃗↾ω) may contain multiple
constraints, so that the negation of it is no longer a PB formula. To get around this, we
split (9) into two separate conditions and shift ¬O⪯(z⃗, z⃗↾ω) to the premise of the implication,
which eliminates the negation.

After this adjustment, the formal version of our dominance-based strengthening rule, or
just dominance rule for brevity, can be stated as follows.

Definition 13 (Dominance-based strengthening rule). If for a pseudo-Boolean constraint C
there is a witness substitution ω such that the conditions

C ∪D ∪ {f ≤ v − 1} ∪ {¬C} ⊢ C↾ω ∪ O⪯(z⃗↾ω, z⃗) ∪ {f↾ω ≤ f} (10a)

C ∪D ∪ {f ≤ v − 1} ∪ {¬C} ∪ O⪯(z⃗, z⃗↾ω) ⊢ ⊥ (10b)

are satisfied, then we can transition from (C ,D ,O⪯, z⃗, v) to (C ,D ∪ {C},O⪯, z⃗, v) using
dominance-based strengthening, or just dominance for brevity. In this case, we also say
that C is derivable from (C ,D ,O⪯, z⃗, v) by dominance.

Just as for the redundance rule, the witness ω as well as any non-immediate derivations
would have to be specified in the proof log.

Proposition 14. If we can transition from (C ,D ,O⪯, z⃗, v) to (C ,D ∪ {C},O⪯, z⃗, v) by
the dominance-based strengthening rule and (C ,D ,O⪯, z⃗, v) is [weakly] (F, f)-valid, then
(C ,D ∪ {C},O⪯, z⃗, v) is also [weakly] (F, f)-valid.

Proof. Since F , C , and v are not affected in a transition using the dominance rule, items 1, 3,
and 4 in Definition 1 hold for (C ,D ,O⪯, z⃗, v) if and only if they hold for (C ,D∪{C},O⪯, z⃗, v).
Hence, we only need to prove that item 2 holds for (C ,D ∪ {C},O⪯, z⃗, v). Assume towards
contradiction that it does not hold. Let S denote the set of total assignments α that

(1) satisfy C ∪ {f ≤ v − 1} and

(2) admit no α′ ⪯f α satisfying C ∪D ∪ {C}.

By our assumption, S is non-empty.
Let α be some ≺f -minimal assignment in S (since ≺f is a strict order and S is finite,

minimal elements of S exist). Since (C ,D ,O⪯, z⃗, v) is weakly (F, f)-valid, there exists
some α1 ⪯f α that satisfies C ∪D . We know that α1 cannot satisfy C since α ∈ S. Hence,
α1 satisfies C ∪D∪{¬C}. From (10a) it follows that α1 satisfies O⪯(z⃗↾ω, z⃗)∪{f↾ω ≤ f} and

1552

Certified Dominance and Symmetry Breaking for Combinatorial Optimisation

thus that O⪯(z⃗↾α1◦ω, z⃗↾α1
) and f↾α1◦ω ≤ f↾α1

hold. In other words, α1 ◦ω ⪯f α1. By (10b),
it follows that α1 does not satisfy O⪯(z⃗, z⃗↾ω), i.e., O⪯(z⃗↾α1

, z⃗↾α1◦ω) does not hold, and thus
α1 ̸⪯f α1 ◦ω. Now let α2 be α1 ◦ω. We showed that α2 ≺f α1 ⪯f α. Furthermore, since α1

satisfies C ∪D ∪ {¬C}, (10a) yields that α2 satisfies C . Thus α2 satisfies C ∪ {f ≤ v− 1}.
Since α2 ≺f α, and α is a minimal element of S, it cannot be that α2 ∈ S. Thus, there
must exist a α′ ⪯f α2 that satisfies C ∪D ∪ {C}. However, it also holds that α′ ⪯f α, and
since α ∈ S this means that α′ cannot satisfy C ∪ D ∪ {C}. This yields a contradiction,
thereby finishing our proof.

When introducing the deletion rule, we already mentioned that deleting arbitrary con-
straints can be unsound in combination with dominance-based strengthening. We now
illustrate this phenomenon.

Example 15. Consider the formula F = {p ≥ 1} with objective f
.
= 0 and the configuration

(C1 = {p ≥ 1},D1 = {p ≥ 1},O⪯, {p},∞) , (11)

where O⪯(u, v) is defined as {v + u ≥ 1}. This configuration is (F, f)-valid and C ∪ D
is satisfiable. If we were allowed to delete constraints arbitrarily from C , we could derive
a configuration with C2 = ∅ and D2 = {p ≥ 1}. However, now the dominance rule can
derive C

.
= p ≥ 1, using the witness ω = {p 7→ 0}. To see that all conditions for applying

dominance-based strengthening are indeed satisfied, we notice that (10a)–(10b) simplify to

∅ ∪ {p ≥ 1} ∪ {p ≥ 1} ⊢ ∅ ∪ {p+ 1 ≥ 1} ∪ ∅ (12a)

∅ ∪ {p ≥ 1} ∪ {p ≥ 1} ∪ {0 + p ≥ 1} ⊢ ⊥ (12b)

and both of these derivations are immediate (e.g., by reverse unit propagation). This means
that we can derive a third configuration with C3 = ∅ and D3 = {p ≥ 1, p ≥ 1}, from which
we immediately get contradiction 0 ≥ 1 by adding the two constraints in D3, although the
formula F that we started with is satisfiable.

Remark 16. The unchecked deletion rule introduced in Definition 10 requires that the de-
rived set D be empty. Example 15 gives the motivation for this, highlighting the complex
interplay between dominance-based strengthening and deletion of constraints. However, in
the special case where the pre-order is the trivial order O⊤, the dominance rule can only be
used to derive implied constraints. In this case, we could in principle weaken the condition
for unchecked deletion to also allow transitioning from (C ,D ,O⊤, z⃗, v) to any configura-
tion (C ′,D ,O⊤, z⃗, v) whenever C ′ ⊆ C .

Allowing such a further relaxation of the deletion rule might be especially useful if one
does not want to make a distinction between core and derived constraints in proof logging
applications such as SAT solving. However, if we would want to extend the unchecked
deletion rule to cover also this case, then such unchecked deletion transitions would no
longer preserve weak validity. In addition, our invariant would need to be extended with a
special case stating that item 2 in Definition 1 should hold only if O⪯ is nontrivial. For
reasons of mathematical elegance, we chose not to adopt such a specially tailored version of
the unchecked deletion rule in the current paper. We would like to point out, however, that
such a version of unchecked deletion has been implemented in the formally verified pseudo-
Boolean proof checker used in the SAT Competition 2023 (Bogaerts, McCreesh, Myreen,
Nordström, Oertel, & Tan, 2023).

1553

Bogaerts, Gocht, McCreesh, & Nordström

3.7 Preorder Encodings

As mentioned before, O⪯ is shorthand for a pseudo-Boolean formula O⪯(u⃗, v⃗) over two sets
of placeholder variables u⃗ = {u1, . . . , un} and v⃗ = {v1, . . . , vn} of equal size, which should
also match the size of z⃗ in the configuration. To use O⪯ in a proof, it is required to show that
this formula encodes a preorder. This is done by providing (in a proof preamble) cutting
planes derivations establishing

∅ ⊢ O⪯(u⃗, u⃗) (13a)

O⪯(u⃗, v⃗) ∪ O⪯(v⃗, w⃗) ⊢ O⪯(u⃗, w⃗) (13b)

where (13a) formalizes reflexivity and (13b) transitivity (and where notation like O⪯(v⃗, w⃗)
is shorthand for applying to O⪯(u⃗, v⃗) the substitution ω that maps ui to vi and vi to wi,
as discussed in Section 2). These two conditions guarantee that the relation ⪯ defined by
α ⪯ β if O⪯(z⃗↾α, z⃗↾β) forms a preorder on the set of assignments.

By way of example, to encode the lexicographic order u1u2 . . . un ⪯lex v1v2 . . . vn, we
can use a single constraint

O⪯lex
(u⃗, v⃗)

.
=

∑n
i=12

n−i · (vi − ui) ≥ 0 . (14)

Reflexivity is vacuously true since O⪯lex
(u⃗, u⃗)

.
= 0 ≥ 0, and transitivity also follows easily

since adding O⪯lex
(u⃗, v⃗) and O⪯lex

(v⃗, w⃗) yields O⪯lex
(u⃗, w⃗) (where we tacitly assume that the

constraint resulting from this addition is implicitly simplified by collecting like terms, per-
forming any cancellations, and shifting any constants to the right-hand side of the inequality,
as mentioned in Section 2).

A potential concern with encodings such as (14) is that coefficients can become very
large as the number of variables in the order grows. It is perfectly possible to address this
by allowing order encodings using auxiliary variables in addition to u⃗ and v⃗. We have chosen
not to develop the theory for this in the current paper, however, since we feel that it would
make the exposition significantly more complicated without providing a commensurate gain
in terms of scientific contributions.

3.8 Order Change Rule

The final proof rule that we need is a rule for introducing a nontrivial order, and it turns
out that it can also be convenient to be able to use different orders at different points in the
proof. Switching orders is possible, but to maintain soundness it is important to first clear
the set D (after transferring the constraints we want to keep to C using the transfer rule in
Section 3.5). The reason for this is simple: if we allow arbitrary order changes, then item 2
of weak (F, f)-validity would no longer hold, and we could potentially derive contradiction
even from satisfiable formulas. However, when D = ∅ the condition in item 2 is trivially
true.

Definition 17 (Order change rule). Provided that O⪯2 has been established to be a preorder
over 2·n variables (by proofs of (13a) and (13b) with explicit cutting planes derivations) and
provided that z⃗2 is a list of n variables, we say that we can transition from the configuration
(C , ∅,O⪯1 , z⃗1, v) to the configuration (C , ∅,O⪯2 , z⃗2, v) by the order change rule.

As explained above, it is clear that this rule preserves (F, f)-validity (and weak (F, f)-
validity).

1554

Certified Dominance and Symmetry Breaking for Combinatorial Optimisation

3.9 Concluding Remarks on the Proof System for Dominance Breaking

This concludes the presentation of our proof system, which we have defined in two slightly
different flavours with different conditions for the deletion rule. In case we use the version
with unchecked deletion, each rule in the proof system has been shown to preserve weak
(F, f)-validity, where as in the version with (standard) deletion each derivation rule has
been shown to preserve (F, f)-validity. The initial configuration is clearly (F, f)-valid.
Therefore, by Theorem 2 our proof system is sound: whenever we can derive a configuration
(C ,D ,O⪯, z⃗, v) such that C ∪ D contains 0 ≥ 1, it holds that v is at least the value of f
in any f -minimal solution for F (or, for a decision problem, we have v = ∞ only when F
is unsatisfiable). If there are no applications of the unchecked deletion rule, then the final
configuration is also (F, f)-valid, and hence by Theorem 3 it holds that v is exactly the
value of f in any f -minimal solution for F (or, for a decision problem, we have v = ∞ if
and only if F is unsatisfiable). As mentioned above, in this latter case the full sequence of
proof configurations (C ,D ,O⪯, z⃗, v) together with annotations about the derivation steps—
including, in particular, any witnesses ω—contains all information needed to efficiently
reconstruct such an f -minimal solution for F . It is also straightforward to show that our
proof system is complete: after using the bound update rule to log an optimal solution v∗,
it follows from the implicational completeness of cutting planes that contradiction can be
derived from F ∪ {f ≤ v∗ − 1}.

Building on the ideas developed in this section, other variants of the proof system could
be designed. For instance, we opted to define the relation ⪯f as

α ⪯f β if α ⪯ β and f↾α ≤ f↾β , (15)

but an alternative definition could be

α ⪯′
f β if f↾α ≤ f↾β and if f↾α = f↾β then also α ⪯ β . (16)

What this says, essentially, is that we only compare assignments with respect to the order ⪯
in case they have the same objective value. Combining this with the intuition that a
witness ω for the redundance rule should map each assignment α to an assignment that is
at least as good (in terms of ⪯′

f) as α would here then yield the conditions

C ∪D ∪ {¬C} ⊢ (C ∪D ∪ C)↾ω ∪ {f↾ω ≤ f} and (17a)

C ∪D ∪ {¬C} ∪ {f↾ω = f} ⊢ O⪯(z⃗↾ω, z⃗) (17b)

for the redundance-based strengthening rule instead of (5). It can be observed that this
actually results in slightly weaker proof obligations on the right-hand side and thus a more
generally applicable rule. Similarly, for the dominance rule, the witness should map each
assignment α to an assignment that is strictly better than α (again, in terms of ⪯′

f). This
requirement would be encoded by the conditions

C ∪D ∪ {¬C} ⊢ C↾ω ∪ {f↾ω ≤ f} , (18a)

C ∪D ∪ {¬C} ∪ {f↾ω = f} ⊢ O⪯(z⃗↾ω, z⃗) , and (18b)

C ∪D ∪ {¬C} ∪ {f↾ω = f} ∪ O⪯(z⃗, z⃗↾ω) ⊢ ⊥ (18c)

1555

Bogaerts, Gocht, McCreesh, & Nordström

instead of (10a) and (10b). This again results in a slightly more generally applicable rule.
All proofs of correctness go through with this slight modification of the proof system, and
in fact would go through for any alternative to the order ⪯f , as long as the redundance and
dominance rules are adapted accordingly. In this paper we opted for using ⪯f , prioritizing
simplicity of exposition.

4. Symmetry Breaking in SAT Solvers

In this section we discuss the use of symmetry breaking in the context of Boolean satisfia-
bility (SAT) solving and how our proof system can be used to provide efficiently verifiable
proofs of correctness for symmetry breaking constraints. We also present results from a
thorough empirical evaluation.

4.1 Certified Symmetry Breaking with Dominance-Based Strengthening

Symmetry handling has a long and successful history in SAT solving, with a wide variety
of techniques considered by, e.g., Aloul, Sakallah, and Markov (2006), Benhamou and Säıs
(1994), Benhamou, Nabhani, Ostrowski, and Säıdi (2010), Devriendt, Bogaerts, De Cat,
Denecker, and Mears (2012), Devriendt, Bogaerts, and Bruynooghe (2017), Metin, Baarir,
and Kordon (2019), and by Sabharwal (2009). These techniques were used to great effect
in, e.g., the 2013 and 2016 editions of the SAT competition,3 where the SAT+UNSAT hard
combinatorial track and the no-limit track, respectively, were won by solvers employing
symmetry breaking techniques. However, it later turned out that the victory in 2013 was
partly explained by a small parser bug in the symmetry breaking tool, which could result
in the solver taking a shortcut and declaring a formula unsatisfiable before even starting to
solve it. For reasons such as this, proof logging is now obligatory in the main track of the
SAT competition. While it is hard to overemphasize the importance of this development,
and the value proof logging has brought to the SAT community, it has unfortunately also
meant that it has not been possible to use symmetry breaking in the SAT competition, since
there has been no way of efficiently certifying the correctness of such reasoning in DRAT .
We will now explain how pseudo-Boolean reasoning with the dominance rule can provide
proof logging for the static symmetry breaking techniques of Devriendt et al. (2016).

Let σ be a permutation of the set of literals in a given CNF formula F (i.e., a bijection
on the set of literals), extended to (sets of) clauses in the obvious way. We say that σ is
a symmetry of F if it commutes with negation, i.e., σ(ℓ) = σ(ℓ), and preserves satisfaction
of F , i.e., α ◦ σ satisfies F if and only if α does. A syntactic symmetry in addition satisfies
that σ(F)

.
= F↾σ

.
= F . As is standard in symmetry breaking, we will only consider

syntactic symmetries.

The most common way of breaking symmetries is by adding lex-leader constraints (Craw-
ford, Ginsberg, Luks, & Roy, 1996). We will write ⪯lex to denote the lexicographic order
on assignments induced by the sequence of variables x1, . . . , xm, i.e., α ⪯lex β if α = β or
if there is an i ≤ m such that α(xj) = β(xj) for all j < i and α(xi) < β(xi). Given a
set G of symmetries of F , a lex-leader constraint is a formula ψLL such that α satisfies ψLL

if and only if α ⪯lex α ◦ σ for each σ ∈ G. The actual choice of a set G of symmetries to

3. www.satcompetition.org

1556

Certified Dominance and Symmetry Breaking for Combinatorial Optimisation

break, as well as the choice of variables on which to define the lexicographic order, has a
significant effect on the quality of the breaking constraints (Devriendt et al., 2016), but this
is an orthogonal concern to the goals of the current paper, which is to show how to certify
an encoding of lex-leader constraints using the dominance rule.

Let {xi1 , . . . , xin} be the support of σ (i.e., all variables x such that σ(x) ̸= x), ordered
so that ij ≤ ik if and only if j ≤ k. Then the constraints

y0 ≥ 1 (19a)

yj−1 + xij + σ(xij) ≥ 1 1 ≤ j ≤ n (19b)

yj + yj−1 ≥ 1 1 ≤ j < n (19c)

yj + σ(xij) + xij ≥ 1 1 ≤ j < n (19d)

yj + yj−1 + xij ≥ 1 1 ≤ j < n (19e)

yj + yj−1 + σ(xij) ≥ 1 1 ≤ j < n (19f)

form a lex-leader constraint for σ (for fresh variables yj). The intuition behind this encoding
is as follows: the variable yj is true precisely when α and α ◦ σ are equal up to xij (so
y0 is trivially true as claimed in (19a)). The constraint (19b) does the actual symmetry
breaking: it states that if α and α ◦ σ are equal up to xij−1 , then xij ≤ σ(xij) must hold.
The constraints (19c)–(19f) encode the definition of yj as yj−1 ∧ (xij ↔ σ(xij)).

To derive the clausal constraints (19a)–(19f) in our proof system, assume that we have
a configuration (C ,D ,O⪯, x⃗, v) where assignments are compared lexicographically on the
subset of variables x⃗ = {x1, . . . , xm} according to O⪯ as defined in (14). Let σ be a syntactic
symmetry of C (i.e., such that C↾σ

.
= C) with support contained in x⃗. As a first step, we

use the dominance-based strengthening rule in Section 3.6 to derive the pseudo-Boolean
constraint

CLL
.
=

∑m
i=1 2m−i · (σ(xi)− xi) ≥ 0 (20)

expressing that σ(x⃗) is greater than or equal to x⃗. We emphasize that the constraint CLL

only exists in the proof and is nothing that the SAT solver will see—since it only understands
clauses—but this constraint will help us to construct efficient derivations of the clausal
constraints that will be used by the solver to enforce symmetry breaking.

To see how the constraint CLL in (20) can be derived by the dominance rule, note
first that in SAT solving we are dealing with decision problems, and so there is no need
to worry about the trivial objective function f

.
= 0. Second, observe that we have

O⪯(x⃗, x⃗↾σ)
.
= {CLL}, According to Definition 13, we need to show that derivations as

in (10a)–(10b) exist. To argue that (10a) holds, we note that ¬CLL expresses that x⃗ is
strictly larger than σ(x⃗), and hence this implies O⪯(x⃗↾σ, x⃗). Since these are single pseudo-
Boolean constraints, this is easily verifiable by literal-axiom implication. It is also easy to
verify that (10b) is true, since we have both CLL and its negation among the premises on
the left-hand side, and for any pseudo-Boolean constraint C it holds that adding C and ¬C
together yields 0 ≥ 1.

Once we have CLL as in (20), we can use this to obtain the constraints (19a)–(19f). Since
all yj-variables are fresh, it is straightforward to derive all constraints (19a) and (19c)–(19f)
using redundance-based strengthening as explained by Gocht and Nordström (2021). It is
important to note that in these derivations the witness substitutions only operate on the

1557

Bogaerts, Gocht, McCreesh, & Nordström

new, fresh yj-variables. Hence, we have x⃗↾ω = x⃗, and so O⪯(x⃗↾ω, x⃗) holds by the reflexivity
of O⪯. A more interesting challenge is to derive the constraints (19b), and this is where we
need CLL.

Recall that our assumption is that the support of σ is {xi1 , . . . , xin} with ij ≤ ik if
and only if j ≤ k. Note first that for all variables xi that are not in the support of σ,
the difference σ(xi) − xi disappears since σ(xi) = xi. This means that the constraint CLL

simplifies to ∑n
j=1 2m−ij · (σ(xij)− xij) ≥ 0 , (21)

and this inequality can only hold if the contributions of the variables with the largest coeffi-
cient 2m−i1 is non-negative. In other words, the constraint CLL implies that σ(xi1)− xi1 ≥ 0,
and this implication can be verified by reverse unit propagation (RUP). From this, in turn,
we can obtain the constraint (19b) for j = 1 by literal-axiom implication.

To derive constraints (19b) for j > 1, let us introduce the notation

CLL(0)
.
= CLL (22a)

CLL(k)
.
= CLL(k − 1) + 2m−ik · (19d [j = k]) (22b)

where (19d [j = k]) denotes substitution of j by k in (19d). Simplifying CLL(k) yields∑k
j=1 2m−ij · yj +

∑n
j=k+1 2m−ij · (σ(xij)− xij) ≥ 0 , (23)

which, when combined with all constraints (19c), directly entails the constraint (19b)
with j = k. To see this, note that if yk is false, then (19b) is trivially true for j = k+ 1. On
the other hand, if yk is true, then so are all the preceding yj-variables, and the dominant
contribution in CLL(k) is from σ(xik) − xik , which implies (19b) for j = k analogously to
the case for j = 1.

It is important to note here that the order used for the dominance-based strengthening
is fixed at the beginning and remains the same for all symmetries σ ∈ G to be broken. Since
constraints are added only to the derived set D , dominance rule applications for different
symmetries will not interfere with each other. Furthermore, in contrast to the approach of
Heule et al. (2015), handling a symmetry once is enough to guarantee complete breaking.
In Appendix A we include a complete worked-out example of symmetry breaking in VeriPB
syntax together with explanations of how the proof logging syntax matches rules in our
proof system.

4.2 Relation to DRAT -Style Symmetry Breaking

As discussed in the introduction, it is currently not known whether general symmetry
breaking can be certified efficiently using DRAT proof logging. Previous work on symmetry
breaking with DRAT (Heule et al., 2015) is limited to special cases of simple symmetries.
To compare and contrast this with our work, let us describe the method of Heule et al.
(2015) in our language (which is easily done, since the RAT rule is a special case of our
redundance-based strengthening rule), and explain the difficulties in extending this to a
general symmetry breaking method.

Redundance-based strengthening can easily deal with a single simple symmetry σ that
swaps two variables, say xi and xj (with j > i). In this case, the constraint CLL in (20)

1558

Certified Dominance and Symmetry Breaking for Combinatorial Optimisation

simplifies to

xj − xi ≥ 0 , (24)

which can be derived with a single application of the redundance rule with the symmetry σ
serving as the witness. However, this approach no longer works when several symmetries
need to be broken at the same time, or when we need to deal with more complex symmetries.

When multiple symmetries that swap two variables are involved, the second symmetry
cannot necessarily be broken in the way described above, since the witness for the second
symmetry might invalidate the symmetry breaking constraint for the first symmetry (which
has been added to the set of core constraints, and so will appear as one of the proof
obligations on the right-hand side in (5)). If there are two symmetries σ1 and σ2 that
share a variable, then these symmetries might need to be applied three times in order to
obtain a lexicographically minimal assignment. While this makes the proof logging more
complicated, it is still possible to deal with this scenario in DRAT proof logging by making
use of a sorting network encoding as explained by Heule et al. (2015).

A more serious problem is when the symmetries to be broken are more complex than
just swaps of a single pair of variables. For the case of involutions σ (i.e., where σ is its own
inverse), some steps towards a solution have been taken (Heule et al., 2015, Conjecture 1).
But already a symmetry σ that is a cyclic shift of three variables (i.e., such that σ(x) = y,
σ(y) = z, and σ(z) = x) brings us beyond what DRAT -based proof logging symmetry
breaking is currently able to handle. The obstacle that arises here is that we do not know
in advance whether the permutation σ should be applied once or twice to an assignment α
to get the lexicographically smallest assignment in the orbit of α under σ.

The beauty of the dominance-based strengthening rule is that it completely eliminates
these problems. There is no requirement that our witness substitutions should generate
minimal assignments—all that is needed is that the witnesses yield smaller assignments.
And since the symmetry breaking constraints are all added to the derived set D , we do
not need to worry about what previous symmetry breaking constraints might have been
added when we are breaking the next symmetry. Instead, symmetry breaking constraints
for different symmetries can be added independently of one another (for as long as the order
remains unchanged).

4.3 Extensions of Basic Symmetry Breaking

So far we have discussed the core ideas that underlie most modern symmetry breaking tools
for SAT solving. The tool BreakID (Devriendt et al., 2016) extends these ideas further in
a couple of ways. We now briefly discuss these extensions and how they are dealt with in
our proof system.

The most important contribution of Devriendt et al. (2016) is detecting so-called row
interchangeability. The goal of this optimization is to not just take an arbitrary set of
generators of the symmetry group and an arbitrary lexicographic order, but to choose “the
right” set of generators and “the right” variable order (with respect to which to define the
lexicographic order). Devriendt et al. (2016) showed that for groups that exhibit a certain
structure, breaking symmetries of a good set of generators using an appropriate order can
guarantee that the entire symmetry group is broken completely. Since our proof logging
techniques simply use the same lexicographic order as the symmetry breaking tool, and

1559

Bogaerts, Gocht, McCreesh, & Nordström

work for an arbitrary generator set, this automatically works with the techniques described
above.

Another (optional) modification to the basic symmetry breaking techniques implemented
in BreakID is the use of a more compact encoding, where the clauses (19c) and (19d) are
omitted. Since our definition of CLL(k) uses these clauses, we cannot simply omit them
in our proof. However, there are no restrictions on deletions from the derived set D .
Therefore, we can first derive all the symmetry breaking constraints as described above,
and then remove the superfluous clauses from D as soon as they are no longer needed for
the proof logging derivations.

Next, BreakID has an optimization based on stabilizer subgroups to detect a large num-
ber of binary clauses. Since these binary clauses are all clauses of the form (19b) with
j = 1, the proof logging techniques described above could support also this optimization
provided that we keep track of which symmetry is used for each such binary clause. How-
ever, BreakID currently does no such bookkeeping. While it is in principle possible to add
this feature, we have not done so in this work.

Finally, BreakID supports partial symmetry breaking. That is, instead of adding the
constraints (19b)–(19f) for every j, this is only done for j < L with L a limit that can be
chosen by the user. The reasoning behind this is that the larger j gets, the weaker the
added breaking constraint is. By setting L = 100 and adding symmetry breaking clauses
only for the L first variables, we add significantly fewer constraints while retaining most of
the symmetry breaking power.

Since we only need to do proof logging for the clauses that are actually added by BreakID ,
this optimization works out-of-the-box. However, there is an important caveat here: for
benchmark formulas where there are large symmetries, e.g., symmetries permuting all the
variables in the problem, a naive implementation of our proof logging technique will suffer
from serious performance problems even when this optimisation is used. The reason is that
in principle the order O⪯ is defined on all variables that are permuted by the symmetries. If
there are many such variables, this order in itself can get huge (with the largest coefficient
being of exponential magnitude measured in terms of the number of variables). Luckily,
there is a simple solution to this problem: instead of defining the order on all variables that
are permuted, we can use the set of variables on which we will actually do the symmetry
breaking (which for each symmetry are the first L variables in its support). This is the
approach implemented in our experimental evaluation.

4.4 Experimental Evaluation of SAT Symmetry Breaking

To validate our approach, we implemented pseudo-Boolean proof logging in the VeriPB
proof format for the symmetry breaking method in BreakID , and modified Kissat4 to output
VeriPB -proofs (since the redundance rule is a generalization of the RAT rule, this required
only purely syntactic changes). We employed the unchecked deletion rule in Definition 10
since the generated proofs are only used to certify unsatisfiability of decision problems and
never to prove satisfiability.

Among the benchmark instances from all the SAT competitions between the years 2016
and 2020, we selected all instances in which at least one symmetry was detected; there were

4. http://fmv.jku.at/kissat/

1560

Certified Dominance and Symmetry Breaking for Combinatorial Optimisation

1

10

100

1000

10000

1 10 100 1000 10000
BreakID + Proof Logging (time in s)

B
re

ak
ID

 (
tim

e
in

 s
)

1MB

1GB

Proofsize

Figure 2: Time required for symmetry breaking with and without proof logging.

1089 such instances in total. We performed our computational experiments on machines
with dual Intel Xeon E5-2697A v4 processors with 512GBytes RAM and solid-state drives
(SSD) running on the Ubuntu 20.04 operating system. We ran twenty instances in parallel
on each machine, where we limited each instance to 16GBytes RAM. We used a timeout of
5,000 seconds for solving and 100,000 seconds for verification of the proofs produced during
the solving process.

Figure 2 shows the performance overhead for symmetry breaking, comparing for each
instance the running time with and without proof logging. For most instances, the over-
head is negligible (99% of instances are at most 32% slower). Figures 3 and 4 display the
relationship between the time needed to generate a proof (both for SAT and UNSAT in-
stances) and to verify the correctness of this proof. When considering symmetry breaking
in isolation (i.e., not solving the instance completely, but only breaking the symmetries),
as plotted in Figure 3, 1058 instances out of 1089 could be verified, 2 timed out, and 29
terminated due to running out of memory. 75% of the instances could be verified within
3.2 times the time required for symmetry breaking and 95% within a factor 20. The time
needed for verification is thus considerably longer than the time required to generate the
proofs, but still practical in the majority of cases. After symmetry breaking, 721 instances
could be solved with the SAT solver (Figure 4) and we could verify 671 instances, while
for 33 instances verification timed out and for 17 instances the verifier ran out of memory.
Notably, 84 instances could only be solved by the SAT solver when symmetry breaking
clauses were added, and out of these instances we could verify correctness for 81 instances.

1561

Bogaerts, Gocht, McCreesh, & Nordström

1

10

100

1000

10000

1 10 100 1000 10000
VeriPB (time in s)

B
re

ak
ID

 +
 P

ro
of

 L
og

gi
ng

 (
tim

e
in

 s
)

Requires Breaking no unsolved yes

Figure 3: Time for symmetry breaking with proof logging compared to verification time for
the generated symmetry breaking constraints. Points to the right of the vertical
dashed line indicate timeouts (left) and out of memory (right).

5. Symmetries in Constraint Programming

In the general setting considered in constraint programming, we must deal with variables
with larger (non-Boolean) domains and with rich constraints supported by propagation al-
gorithms. One might think that a proof system based upon Boolean variables and linear
inequalities would not be suitable for this larger class of problem. However, Elffers et al.
(2020) showed how to use VeriPB for constraint satisfaction problems by first encoding
variables and constraints in pseudo-Boolean form, and then constructing cutting planes
proofs to certify the behaviour of the all-different propagator, and Gocht, McCreesh, and
Nordström (2022) later extended this to a wider range of CP constraints and propaga-
tors. Similarly, the work we present here can also be applied to constraint satisfaction and
optimisation problems.

Recall the list of symmetry breaking constraints proposed for the Crystal Maze puzzle in
the introductory section. Given the difficulties in knowing which combinations of symmetry
breaking constraints are valid, it would be desirable if these constraints could be introduced
as part of a proof, rather than taken as part of the encoding of the original problem. This

1562

Certified Dominance and Symmetry Breaking for Combinatorial Optimisation

1

10

100

1000

10000

1 10 100 1000 10000
VeriPB (time in s)

B
re

ak
ID

 +
 K

is
sa

t (
tim

e
in

 s
)

Requires Breaking no yes

Figure 4: Time for symmetry breaking plus SAT solving (with proof logging) compared to
verification time for the whole solving process. Points to the right of the vertical
dashed line indicate timeouts (left) and out of memory (right).

would give a modeller immediate feedback as to whether the constraints have been chosen
correctly. Our cutting planes proof system enhanced with redundance-based strengthening
and dominance-based strengthening rules is indeed powerful enough to express all three
of the examples we presented in the introduction, and we have implemented a small tool
which can write out the appropriate proof fragments certifying that this is so; this allows
the entire Crystal Maze example to be verified with VeriPB .

The source code to run our tool for the Crystal Maze puzzle is located in the tools/

crystal-maze-solver directory of the code and data repository (Bogaerts et al., 2022b)
associated to this paper. Full instructions for how to use the tool are given in the tools/

crystal-maze-solver/README.md file. Below we provide a summary of our work on this
problem.

We modelled the Crystal Maze puzzle as a constraint satisfaction problem in the natural
way: there is a decision variable for each circle, whose values are the possible numbers that
can be taken, and an all-different constraint over all decision variables. We use a table
constraint for each edge for simplicity. We also included symmetry elimination constraints.

1563

Bogaerts, Gocht, McCreesh, & Nordström

We implemented this model inside a small proof-of-concept CP solver (which can be
found in the file src/crystal_maze.cc) that we created for this paper. (Full proof logging
for CP is an entire research program in its own right, which we do not at all claim to have
carried out within the framework of this project—what we do claim, though, is that our
contribution shows that symmetries do not stand in the way of this work.) When executed,
the solver compiles this high level CP model to a pseudo-Boolean model, which it will output
as crystal_maze.opb. This is done following the framework introduced by Elffers et al.
(2020), but as well as using a one-hot (direct) encoding of CP decision variables to pseudo-
Boolean variables, it additionally creates channelled greater-or-equal PB variables for each
CP variable-value. We remark that the encoding of the table constraints also introduces
additional auxiliary variables.

As the solver works on the problem, it produces a file crystal_maze.veripb that pro-
vides a proof that it has found all non-symmetric solutions. The proof log will contain
reverse unit propagation (RUP) clauses that justify backtracking, as well as cutting planes
derivations that prove the correctness of propagations by the all-different and table con-
straints. Once the solver has finished, the correctness of the solver output can be checked
by feeding the two files crystal_maze.opb and crystal_maze.veripb to VeriPB .

To verify that the symmetry constraints introduced in the high-level model are actually
valid, we can remove them from the pseudo-Boolean model in crystal_maze.opb and in-
troduce them as part of the proof instead. We describe how to do this editing in README.md.
We also include a script make-symmetries.py that will output the necessary proof fragment
to reintroduce the symmetry constraints. The output of this script can be verified on top
of the reduced pseudo-Boolean model using our modified version of VeriPB supporting the
dominance-based strengthening rule, and this verification can be performed with or without
the remainder of the proof—that is, we can verify both that the constraints introduced are
valid (in that they do not alter the satisfiability of the model), and that they line up with
the actual execution of the solver.

Interestingly, although symmetries can be broken in different ways in high-level con-
straint programming models (including through lexicographic and value precedence con-
straints), when we encode the problem in pseudo-Boolean form these differences largely
disappear, and after creating a suitable order we can easily re-use the SAT proof logging
techniques for symmetry breaking that we discussed above. So, although a full proof-logging
constraint solver does not yet exist, we can confidently claim that symmetry breaking should
not block the road towards this goal.

6. Lazy Global Domination in Maximum Clique Solving

Gocht et al. (2020a) showed how VeriPB can be used to implement proof logging for a wide
range of maximum clique algorithms, observing that the cutting planes proof system is rich
enough to certify a rich variety of bound and inference functions used by various solvers
(despite cutting planes not knowing what a graph or clique is). However, there is one
clique-solving technique in the literature that is not amenable to cutting planes reasoning.
In order to solve problem instances that arise from a distance-relaxed clique-finding problem,
McCreesh and Prosser (2016) enhanced their maximum clique algorithm with a lazy global
domination rule that works as follows. Suppose that the solver has constructed a candidate

1564

Certified Dominance and Symmetry Breaking for Combinatorial Optimisation

clique C and is considering to extend C by two vertices v and w, where the neighbourhood
of v excluding w is a (non-strict) superset of the neighbourhood of w excluding v. Then
if the solver first tries v and rejects it, there is no need to branch on w as well (since any
clique including w could be exchanged for at least as good a clique including v).

In principle, it should be possible to introduce additional constraints certifying this kind
of reasoning in advance using redundance-based strengthening, without the need for the full
dominance breaking framework in Section 3 (with some technicalities involving consistent
orderings for tiebreaking). However, due to the prohibitive cost of computing the full vertex
dominance relation in advance, McCreesh and Prosser instead implement a form of lazy
dominance detection, which only triggers following a backtrack. To provide proof logging
for this, we cannot derive the constraints justifying global domination steps in the proof log
in advance, but must instead be able to introduce vertex dominance constraints on the fly
precisely when they are used. It is hard to see how to achieve this with the redundance rule,
but it is possible using dominance-based strengthening. In what follows, we first present a
pseudo-Boolean encoding of the maximum clique problem and then a high-level description
of the max clique solver used. Afterwards, we discuss how to add certification to it with
the redundance rule and the dominance rule.

6.1 The Maximum Clique Problem

Throughout this section we let G = (V,E) denote an undirected, unweighted graph without
self-loops with vertices V and edges E. We write N(u) to denote the neighbours of a
vertex u ∈ V , i.e., the set of vertices N(u) = {w | (u,w) ∈ E} that are adjacent to u in
the graph, and define neighbours of sets of vertices in the natural way by taking unions
N(U) =

⋃
u∈U N(u). We say that u dominates v if

N(u) \ {v} ⊇ N(v) \ {u} (25)

holds, which intuitively says that the neighbourhood of u is at least as large as that of v.
It is straightforward to verify that this domination relation is transitive.

When representing the maximum clique problem in pseudo-Boolean form, we overload
notation and identify every vertex v ∈ V with a Boolean variable, where v = 1 means that
the vertex v is in the clique. The task is to maximize

∑
v∈V v under the constraints that

all chosen vertices should be neighbours, but since, syntactically speaking, we require an
objective function to be minimized, we obtain

min
∑

v∈V v (26a)

v + w ≥ 1 [for all (v, w) ∈ V 2 \ E with v ̸= w] (26b)

as the formal pseudo-Boolean specification of the problem.

6.2 High-Level Description of the Max Clique Solver

At a high level, the maximum clique solver of McCreesh and Prosser (2016) before addition
of vertex dominance breaking, works as described in Algorithm 1. The first call to the
MaxCliqueSearch algorithm is with parameters G, Vrem = V , Ccurr = ∅, and Cbest = ∅.

1565

Bogaerts, Gocht, McCreesh, & Nordström

Algorithm 1: Max clique algorithm without dominance.

1 MaxCliqueSearch(G,Vrem, Ccurr, Cbest) :
2 Erem ← E(G) ∩ (Vrem × Vrem);
3 Grem ← (Vrem, Erem);
4 if |Ccurr| > |Cbest| then
5 Cbest ← Ccurr;

6 (S1, . . . , Sm)← colour classes in colouring of Grem ;
7 j ← m;
8 while j ≥ 1 and |Ccurr|+ j > |Cbest| do
9 for v ∈ Sj do

10 Cbest ← MaxCliqueSearch(G,Vrem ∩N(v), Ccurr ∪ {v}, Cbest);

11 Vrem ← Vrem \ Sj ;
12 j ← j − 1;

13 return Cbest;

When MaxCliqueSearch is called with a candidate clique Ccurr, the best solution so
far Cbest, and a subset of vertices Vrem, it considers the residual graph Grem = (Vrem, Erem)
assumed to be defined on all vertices in V \ Ccurr that are neighbours of all c ∈ Ccurr.
Thus, the set Vrem contains all vertices to which Ccurr could possibly be extended. The
algorithm produces a colouring of Grem (where as usual adjacent vertices are assigned a
different colour), which we assume results in m disjoint colour classes (S1, . . . , Sm) such
that Vrem =

⋃m
i=1 Si. It is clear that any clique extending Ccurr can contain at most one

vertex from each colour class Si, since vertices of the same colour class are non-adjacent. The
clique search algorithm now iterates over all colour classes in the order Sm, Sm−1, . . . , S1.
Whenever the clique is extended with a new vertex, a new recursive call to MaxCliqueSearch
is made. Therefore, when we reach Sj in the loop, we are considering the case when
all vertices in Sm, Sm−1, . . . , Sj+1 have been rejected. For this reason, if the condition
|Ccurr|+ j > |Cbest| fails to hold, we know that the current clique candidate cannot possibly
be extended to a clique that is larger than what we have already found in Cbest. At the end
of the first call MaxCliqueSearch(G,V,Ccurr = ∅, Cbest = ∅), after completion of all recursive
subcalls, the vertex set Cbest will be a clique of maximum size in G. A certifying version of
essentially this algorithm with VeriPB proof logging was presented by Gocht et al. (2020a).
It might be worth noting in this context that one quite interesting challenge is to certify the
backtracking performed when the condition |Ccurr|+ j > |Cbest| fails, and this is one place
where the strength of the pseudo-Boolean reasoning in the cutting planes proof system is
very helpful (as opposed to the clausal reasoning in, e.g., DRAT , where certifying this type
of counting arguments is quite challenging).

The vertex dominance breaking of McCreesh and Prosser (2016) is based on the following
observation: If the algorithm is about to consider v ∈ Sj in the innermost for loop on line 9
in Algorithm 1, but has previously considered a vertex u ∈

⋃m
i=j Si that dominates v in

the sense of (25), then it is safe to ignore v. This is so since if the algorithm would find a
solution that includes v but not u, then we could swap u for v and obtain a solution that
is at least as good.

1566

Certified Dominance and Symmetry Breaking for Combinatorial Optimisation

In pseudo-Boolean notation, this type of reasoning could be enforced by adding the
constraint u + v ≥ 1 to the formula, but there is no way this can be semantically derived
from the constraints (26a) or the requirement to minimize (26b). Therefore, the proof
logging method in (Gocht et al., 2020a) is inherently unable to deal with such constraints.

In general, the vertex dominance breaking as described above does not need to break
ties consistently. By this we mean that if u and v dominate each other, in principle it might
happen that in a given branch of the search tree, u is chosen to dominate v, while in another
one, v is chosen to dominate u, simply because of the order in which nodes are considered.
While in principle, it should be possible to adapt our proof logging methods to work in this
case, the argument is subtle. Luckily, it turns out that in practical implementations, tie
breaking only happens in a consistent manner.

Fact 18. In the vertex dominance breaking of McCreesh and Prosser (2016), there exists
a total order ≻G on the set V of vertices such that whenever v is ignored because u has
previously been considered, u ≻G v.

Moreover, this order ≻G is known before the algorithm starts: u ≻G v holds if u has a
larger degree than v, or in case they have the same degree but the identifier used to represent
u internally is larger than that of v. To see that this order indeed guarantees consistent tie
breaking, we provide some properties of the actual implementation of the algorithm.5

1. If u and v dominate each other and are not adjacent, then u and v are guaranteed to
be in the same colouring class. If furthermore u ≻G v, u is considered before v in the
loop in Line 8 (due to the order in which this for loop iterates over the nodes).

2. If u and v dominate each other, are adjacent, and satisfy u ≻G v, then u is assigned a
larger colouring class than v (due to the order in which the greedy colouring algorithm
in Line 6 iterates over the nodes). Hence, also in this case u will be considered before v.

In what follows below, we will explain:

• first, how the redundance rule introduced to VeriPB by Gocht and Nordström (2021)
could in principle be used to provide proof logging for vertex dominance breaking,
although with potentially impractical overhead; and

• then, how the dominance rule introduced in this paper can be used to resolve the
practical problems in a very simple way.

An implementation for both techniques can be found in the code and data repository (Bo-
gaerts et al., 2022b).

5. When inspecting the two conditions below, we can see that they rely on a very subtle argument, namely
that when constructing a greedy colouring, we should iterate over all nodes with the same degree in the
opposite order of the way we iterate over nodes in line 8. This (strange) condition is satsisfied by many
max clique algorithms due to a happy coincidence of an efficient data structure and colouring algorithm
introduced by Tomita and Kameda (2007).

1567

Bogaerts, Gocht, McCreesh, & Nordström

6.3 Vertex Dominance with the Redundance-Based Strengthening Rule

In order to provide proof logging for vertex dominance breaking using the redundance rule,
we could in theory proceed as follows. First, we let the solver check the vertex dominance
condition (25) for all pairs of vertices u, v in V . Before starting the solver, we add all
pseudo-Boolean constraints for vertex dominance breaking using the redundance rule. For
all u, v such that u dominates v and u ≻G v, we derive the vertex dominance breaking
constraint

u+ v ≥ 1 , (27)

doing so in decreasing order for u with respect to ≻G. Our witness for the redundance rule
derivation of (27) will be ω = {u 7→ v, v 7→ u}, i.e., ω will simply swap the dominating and
dominated vertices. Hence, the objective function (26a) is syntactically unchanged after
substitution by ω, and so the condition in (5) that the objective should not increase is
always vacuously satisfied.

We need to argue that deriving the vertex dominance breaking constraints (27) is valid
in our proof system. Towards this end, suppose we are in the middle of the process of
adding such constraints and are currently considering u + v ≥ 1 for u dominating v and
u ≻G v. Let C ∪ D be the set of constraints in the current configuration. In order to add
u+ v ≥ 1, we need to show that

C ∪D ∪ {¬(u+ v ≥ 1)} (28a)

can be used to derive all constraints in

(C ∪D ∪ {u+ v ≥ 1})↾ω (28b)

by the cutting planes method (i.e., without any extension rules).
Starting with the vertex dominance constraint being added, note that from the negated

constraint ¬(u+ v ≥ 1)
.
= u+ v ≥ 2 in (28a) we immediately obtain

u ≥ 1 (29a)

v ≥ 1 (29b)

as reverse unit propagation (RUP) constraints, meaning that the weaker pseudo-Boolean
constraint (u+ v ≥ 1)↾ω

.
= v + u ≥ 1 is also RUP with respect to the constraints in (28a).

Consider next any non-edge constraints x + y ≥ 1 in (26b) in the original formula.
Clearly, such constraints are only affected by ω if {u, v} ∩ {x, y} ̸= ∅; otherwise they are
present in both (28a) and (28b) and there is nothing to prove. Any non-edge constraint
v + y ≥ 1 containing v will after application of ω contain u, and will hence be RUP with
respect to (29a) and hence also with respect to (28a). For non-edge constraints u + y ≥ 1
with y ̸= v, substitution by ω yields (u+ y ≥ 1)↾ω

.
= v + y ≥ 1. Since by assumption

u dominates v and y ̸= v is not a neighbour of u, it follows from (25) that y is not a
neighbour of v either. Hence, the input formula in (28a) already contains the desired non-
edge constraint v + y ≥ 1.

It remains to analyse what happens to vertex dominance breaking constraints

x+ y ≥ 1 (30)

1568

Certified Dominance and Symmetry Breaking for Combinatorial Optimisation

that have already been added to D before the dominance breaking constraint u+v ≥ 1 that
we are considering now. Again, such a constraint is only affected by ω if {u, v}∩{x, y} ≠ ∅;
otherwise it is present in both (28a) and (28b). We obtain the following case analysis.

1. x = u: In this case, (x+ y ≥ 1)↾ω
.
= v + ω(y) ≥ 1, which is RUP with respect to

v ≥ 1 in (29b) and hence also with respect to (28a).

2. x = v: This is impossible, since u ≻G v and any dominance breaking constraints with
v = x as the dominating vertex will be added only once we are done with u as per
the description right below (27).

3. y = u: In this case x dominates u. Since x ≻G u, u ≻G v, and u dominates v,
by transitivity we have x ≻G v and also that x dominates v. Hence, the breaking
constraint x+ v ≥ 1 has already been added to D . But since u ̸= x ̸= v, we see that
our desired constraint is (x+ u ≥ 1)↾ω

.
= x+ v ≥ 1, which is precisely this previously

added constraint.

4. y = v: Here we see that the desired constraint (x+ y ≥ 1)↾ω
.
= ω(x) + u ≥ 1 is again

RUP with respect to (28a).

This concludes our proof that all vertex dominance breaking constraints that are consistent
with our constructed linear order ≻G can be added and certified by the redundance rule
before the solvers starts searching for cliques.

So all of this works perfectly fine in theory. The problem that rules out this approach in
practice, however, is that the solver will not have the time to compute the dominance relation
between vertices in advance, since this is far too costly and does not pay off in general.
Instead the solver designed by McCreesh and Prosser (2016) will detect and apply vertex
dominance relations on the fly during search. And from a proof logging perspective this is
too late—during search, when C∪D will also contain constraints certifying any backtracking
made, our proof logging approach above no longer works. The constraints added to the proof
log to certify backtracking are no longer possible to derive when substituted by ω as in (28b),
for the simple reason that they are not semantically implied by (28a). One possible way
around this would be to run the solver twice—the first time to collect all information about
what vertex dominance breaking will be applied, and then the second time to do the actual
proof logging—but this seems like quite a cumbersome approach.

We deliberately discuss this problem in some detail here, because this is an example of an
important and nontrivial challenge that shows up also in other settings when designing proof
logging for other algorithms. It is not sufficient to just come up with a proof logging system
that is strong enough in principle to certify the solver reasoning (which the redundance
rule is for the clique solver with vertex dominance breaking, as shown above). It is also
crucial that the solver have enough information available at the right time and can extract
this information efficiently enough to actually be able to emit the required proof logging
commands with low enough overhead. For constraint programming solvers, it is not seldom
the case that the solver knows for sure that some variable should propagate to a value,
because the domain has shrunk to a singleton, or that the search should backtrack because
some variable domain is empty, but that the solver cannot reconstruct the detailed derivation
steps required to certify this without incurring a massive overhead in running time (e.g.,

1569

Bogaerts, Gocht, McCreesh, & Nordström

since the reasoning has been performed with bit-parallel logical operations). It is precisely
for this reason that it is important that our proof system allow adding RUP constraints.
This makes it possible for the solver to claim facts that it knows to be true, and that it
knows can be easily verified, while leaving the work of actually producing a detailed proof
to the proof checker.

6.4 Vertex Dominance with the Dominance-Based Strengthening Rule

Let us now discuss how the dominance rule can be used to provide proof logging for lazy
global domination. As was the case for the redundance rule, we will make use of Fact 18.
Before starting the proof logging, we use the order change rule to activate the lexicographic
order on the the assignments to the vertices/variables induced by ≻G.

Suppose now that the solver is running and that the current candidate clique is Ccurr.
The solver has an ordered list of unassigned candidate vertices that it is iterating over
when considering how to enlarge this clique, and this list is defined by the colour classes
(Sm, Sm−1, . . . , S1). (We note that this ordered list depends on Ccurr, and would be different
for a different clique C ′

curr.) Suppose the next vertex in that list is v. Then when it is time
to make the next decision on line 9 in Algorithm 1 about enlarging the clique, the solver
enhanced with proof logging does the following:

• If there exists a vertex u that has already been considered in the current iteration
and that dominates v (and for which it hence holds that u ≻G v), then the solver
discards v by vertex dominance and adds the constraint u+ v ≥ 1 by the dominance
rule with witness ω = {u 7→ v, v 7→ u}. We will explain in detail below why this is
possible.

• Otherwise, the solver enlarges Ccurr with v and makes a recursive call.

When the solver has explored all ways of enlarging Ccurr and is about to backtrack,
here is what will happen on the proof logging side (where we refer to (Gocht et al., 2020a)
for a more detailed description of how proof logging for backtracking CP solvers works in
general):

1. For every u that was explored in an enlarged clique Ccurr ∪ {u}, when backtracking
the solver will already have added u+

∑
w∈Ccurr

w ≥ 1 as a RUP constraint.

2. The solver now inserts the explicit cutting planes derivation required to show that the
inequality |Ccurr|+ j > |Cbest| must hold.

3. After this, the solver adds the claim that
∑

w∈Ccurr
w ≥ 1 is a RUP constraint.

We need to argue why
∑

w∈Ccurr
w ≥ 1 will be accepted as a RUP constraint, allowing the

solver to backtrack. The RUP check for
∑

w∈Ccurr
w ≥ 1 propagates w = 1 for all w ∈ Ccurr.

This in turn propagates u = 0 for all explored vertices u by the backtracking constraints
for Ccurr ∪{u} added in step 1. The vertex dominance breaking constraints then propagate
v = 0 for all vertices v discarded because of vertex domination. At this point, the proof
checker has the same information that the solver had when it detected that the colouring
constraint forced backtracking. This means that the proof checker will unit propagate to

1570

Certified Dominance and Symmetry Breaking for Combinatorial Optimisation

contradiction, and so the backtracking constraint
∑

w∈Ccurr
w ≥ 1 is accepted as a RUP

constraint.

We still need to explain how and why the pseudo-Boolean dominance rule applications
allow deriving the constraint u + v ≥ 1 in case u dominates v (and hence u ≻G v). Recall
that the order used in our proof is the lexicographic order induced by ≻G. This means that if
vertices/variables u and v are assigned by α in such a way as to violate a dominance breaking
constraint u + v ≥ 1, then α ◦ ω will flip u to 1 and v to 0 to produce a lexicographically
smaller assignment (since v is considered before u in the lexicographic order).

The conditions for the dominance rule are that we have to exhibit proofs of (10a)
and (10b). In this discussion, let us focus on (10a) which says that starting with the
constraints

C ∪D ∪ {¬(u+ v ≥ 1)} (31a)

and using only cutting planes rules, we should be able to derive

C↾ω ∪ O⪯(z⃗↾ω, z⃗) ∪ {f↾ω ≤ f} . (31b)

Note first that our lexicographic order in fact does not in itself respect the objective
function (26b). However, since ω just swaps two variables it leaves the objective syntactically
unchanged, meaning that the inequality f↾ω ≤ f in (10a) is seen to be trivially true.

As in our analysis of the redundance rule, from (31a) we obtain u ≥ 1 and v ≥ 1 as
in (29a)–(29b), and O⪯(z⃗↾ω, z⃗) is easily verified to be RUP with respect to these constraints,
since what the formula says after cancellation is precisely that v ≥ u.

It remains to consider the pseudo-Boolean constraints in the solver constraint database
C ∪D . The crucial difference from the redundance rule is that we no longer have to worry
about proving D↾ω in (31b)—we only need to show how to derive C↾ω. But this means
that all we need to consider are the non-edge constraints in (26b). We already explained
in our analysis for the redundance rule derivation that the fact that u dominates v means
that for any non-edge constraints affected by ω their substituted versions are already there
as input constraints or are easily seen to be RUP constraints. In addition to these non-edge
constraints there might also be all kinds of interesting derived constraints in D , but the
dominance rule says that we can ignore those constraints.

Finally, although we skip the details here, it is not hard to argue analogously to what
has been done above to show that ¬C .

= ¬(u + v ≥ 1) and O⪯(z⃗, z⃗↾ω) in (10b) together
unit propagate to contradiction. This concludes our discussion of how to certify vertex
dominance breaking in the maximum clique solver by McCreesh and Prosser (2016) using
the pseudo-Boolean dominance rule introduced in this paper.

7. Conclusion

In this paper, we introduce a method for showing the validity of constraints obtained by
symmetry or dominance breaking by adding simple, machine-verifiable certificates of cor-
rectness. Using as our foundation the cutting planes method (Cook et al., 1987) for reason-
ing about pseudo-Boolean constraints (also known as 0–1 linear inequalities), and building
on and extending the version of the VeriPB tool developed by Gocht and Nordström (2021),
we present a proof logging method in which symmetry and dominance breaking is easily

1571

Bogaerts, Gocht, McCreesh, & Nordström

expressible. Our method is a strict extension of DRAT (Heule et al., 2013a, 2013b; Wetzler
et al., 2014) and other similar methods earlier used for solver proof logging, which means
that we can produce efficient proofs of validity for SAT solving with fully general symmetry
breaking, and we provide a thorough evaluation showing that this approach is feasible in
practice. Since VeriPB can also certify cardinality and parity (XOR) reasoning, we now
have for the first time a unified proof logging method for SAT solvers using all of these
enhanced solving methods. To demonstrate that our proof logging approach is not limited
to Boolean satisfiability, in this work we also present applications to symmetry breaking in
constraint programming and vertex domination in maximum clique solving.

From a theoretical point of view, it would be interesting to understand better the power
of the dominance-based strengthening rule. DRAT viewed as a proof system is closely re-
lated to extended resolution (Tseitin, 1968) in that these two proof systems have the same
proof power up to polynomial factors (Kiesl, Rebola-Pardo, & Heule, 2018), and extended
resolution, in turn, is polynomially equivalent to the extended Frege proof system (Cook
& Reckhow, 1979), which is one of the strongest proof systems studied in proof complex-
ity. However, there are indications that the cutting planes proof system equipped with
the dominance-based strengthening rule might be strictly stronger than extended Frege
(Ko lodziejczyk & Thapen, 2023).

Another question is whether such a strong derivation rule as dominance-based strength-
ening is necessary to generate efficient proofs of validity for general symmetry breaking
constraints, or whether redundance-based strengthening is enough. To phrase this cleanly
as a proof complexity problem, we can restrict our attention to decision problems and also
fix the order to be lexicographic order over some set of variables x⃗. Let us define cutting
planes with symmetry breaking to be the cutting planes proof system extended with a rule
that allows to derive the constraint x⃗ ⪯lex x⃗↾σ for any symmetry σ of the input formula F .
Now we can ask whether cutting planes with redundance-based strengthening efficiently
simulates this cutting planes proof system with symmetry breaking. To the best of our
understanding, this question is wide open.

From a proof logging perspective, a natural next problem to investigate is whether our
certification method is strong enough to capture other solving techniques such as those used
for SAT-based optimisation in so-called MaxSAT solvers. A crucial component of several
MaxSAT solving techniques is the translation of pseudo-Boolean constraints to CNF. This
is used in linear SAT-UNSAT (LSU) solvers for adding the objective-improving constraints
(e.g., Koshimura, Zhang, Fujita, & Hasegawa, 2012; Paxian & Becker, 2022), in core-guided
solvers for reformulation of the objective function (e.g., Ignatiev, Morgado, & Marques-Silva,
2019), and in implicit hitting set solvers that make use of abstract cores (Berg, Bacchus, &
Poole, 2020). While developing proof logging methods that can support the full range of
modern MaxSAT solving techniques remains a formidable challenge, we want to point out
that significant progress has been made of late. The proof system introduced by Gocht and
Nordström (2021) has been used to certify correctness of the translations of pseudo-Boolean
constraints into CNF for a range of encodings (Gocht et al., 2022), and quite similar ideas
have been employed to design proof logging for an objective-improving solver for unweighted
MaxSAT (Vandesande, De Wulf, & Bogaerts, 2022). Very recently, this has been extended
also to state-of-the-art core-guided MaxSAT solvers (Berg, Bogaerts, Nordström, Oertel, &
Vandesande, 2023).

1572

Certified Dominance and Symmetry Breaking for Combinatorial Optimisation

Another intriguing problem is how to design efficient proof logging for symmetric learn-
ing as explored by Devriendt et al. (2017). In contrast to the symmetry breaking techniques
considered in the current paper, when using symmetric learning one can only derive con-
straints that are semantically implied by the input formula. However, if at some point the
solver derives a constraint D, and if σ is a symmetry of the formula, then it is clear that the
permuted constraint σ(D) is also implied by the formula and so should be sound to derive
in a single extra step.

If we wanted to argue formally about such symmetric learning, we could apply σ to the
whole derivation leading up to D to get a proof that σ(D) can be derived. Taking this
observation one step further, if from the solver execution we can extract a subderivation π
showing that a constraint D is implied by constraints C1, . . . , Cm, and if σ(C1), . . . , σ(Cm)
have also been derived, then it should be valid to use π as a “lemma” to conclude σ(D). The
usefulness of such lemmas in the context of proof logging has been discussed by, e.g., Kraiczy
and McCreesh (2021). The question, however, is whether such reasoning can be incorporated
in the VeriPB framework with the current set of derivation rules in the proof system. One
way of attempting to do this could of course be to add special rules for symmetric learning
or lemmas, but this goes against the goal of keeping the proof logging system as simple as
possible, so that derivations are obviously sound. As a case in point, it is worth noting that
the naive way of adding such dedicated rules for symmetries or lemmas to our redundance-
based strengthening and dominance-based strengthening rules would result in an unsound
proof system.

The use of lemmas in proofs has been studied in the so-called substitution Frege proof
system (Cook & Reckhow, 1979), and it has been shown that extended Frege has the same
deductive strength as substitution Frege except possibly for a polynomial overhead in proof
size (Kraj́ıček & Pudlák, 1989). However, it is not clear whether such results can be scaled
down from Frege systems to cutting planes, so that cutting planes with redundance-based
strengthening can be made to simulate the usage of lemmas as described above, and whether
such reasoning could be implemented efficiently enough in VeriPB to allow a formalization
of reasoning with lemmas that would be feasible in practice.

As noted above, we have also shown in this work that our proof logging techniques can
be used beyond SAT solving and SAT-based optimization for other combinatorial solving
paradigms such as graph solving algorithms and constraint programming (CP), and Elffers
et al. (2020) and Gocht et al. (2022) have made important contributions towards providing
VeriPB -style proof logging for a full-blown CP solver. For mixed integer linear programming
(MIP) solvers, Cheung, Gleixner, and Steffy (2017) and Eifler and Gleixner (2021) have also
developed limited proof logging support (using another proof format), but this method still
seems quite far from being able to support advanced MIP techniques. It would be very
exciting if all of these different proof logging techniques could be strengthened to provide
full proof logging support for state-of-the-art CP and MIP solvers.

Finally, we want to point out that another important research direction in proof logging
is to develop formally verified proof checkers, so that we can be sure when proof verification
passes that this is not due to bugs in the proof checker but that the claimed result is
guaranteed to be valid. Such verified checkers have been built for DRAT and other clausal
proof logging systems (Cruz-Filipe et al., 2017b, 2017a; Lammich, 2020; Tan, Heule, &
Myreen, 2021), and it would be highly desirable to obtain such tools for pseudo-Boolean

1573

Bogaerts, Gocht, McCreesh, & Nordström

proof logging with VeriPB as well. As a first step in this direction, a formally verified
pseudo-Boolean proof checker for decision problems was recently submitted to and used in
the SAT Competition 2023 (Bogaerts et al., 2023).

Acknowledgements

The authors gratefully acknowledge fruitful and stimulating discussions on proof logging
with Jeremias Berg, Armin Biere, Jo Devriendt, Jan Elffers, Ambros Gleixner, Marijn Heule,
Daniela Kaufmann, Daniel Le Berre, Matthew McIlree, Magnus Myreen, Yong Kiam Tan,
James Trimble, and many other colleagues whom we have probably forgotten and to whom
we apologize. We are also grateful to the anonymous AAAI and JAIR reviewers, whose
comments helped us to improve the exposition considerably and also to fix some mistakes
in the definitions.

Part of this work was carried out while taking part in the semester program Satisfiability:
Theory, Practice, and Beyond in the spring of 2021 at the Simons Institute for the Theory
of Computing at UC Berkeley, and in the extended reunion of this semester program in the
spring of 2023. This work has also benefited greatly from discussions during the Dagstuhl
Seminars 22411 Theory and Practice of SAT and Combinatorial Solving and 23261 SAT
Encodings and Beyond.

Stephan Gocht and Jakob Nordström were supported by the Swedish Research Coun-
cil grant 2016-00782, and Jakob Nordström also received funding from the Independent
Research Fund Denmark grant 9040-00389B. Ciaran McCreesh was supported by a Royal
Academy of Engineering research fellowship. Bart Bogaerts was supported by Fonds Weten-
schappelijk Onderzoek – Vlaanderen (project G0B2221N), by the Flemish Government (AI
Research Program), and by TAILOR, a project funded by EU Horizon 2020 research and
innovation programme under GA No 952215.

Appendix A. A Proof Logging Example for Symmetry Breaking

In this appendix, we present a fully worked-out example of symmetry breaking using the
dominance-based strengthening rule for the well-known pigeonhole principle formulas claim-
ing that n + 1 pigeons can be mapped to n pigeonholes in a one-to-one fashion. Haken
(1985) showed that resolution proofs of unsatisfiability for such formulas requires a number
of clauses that scales exponentially with n, and since conflict-driven clause learning SAT
solvers can be seen to search for resolution proofs (Beame, Kautz, & Sabharwal, 2004), this
means that solvers without enhanced reasoning methods will have to run for exponential
time. However, since pigeonhole principle formulas are fully symmetric with respect to
both pigeons and holes, it is possible to add symmetry breaking constraints encoding that
without loss of generality pigeon 1 resides in hole 1, pigeon 2 resides in hole 2, et cetera, and
once such symmetry breaking constraints have been added the problem becomes trivial.

What we show in this appendix is how the BreakID tool can break pigeonhole principle
symmetries in a fully automated fashion, and produce proofs of correctness for the symmetry
breaking clauses that the proof checker will accept. The proofs for these clauses can then
be concatenated with the SAT solver proof log (rewritten from DRAT to VeriPB -format)
and fed to VeriPB to provide end-to-end verification for the whole solving process.

1574

Certified Dominance and Symmetry Breaking for Combinatorial Optimisation

We present the symmetry breaking proof logging in the syntactic format used by VeriPB ,
so that the reader will be able to see what pseudo-Boolean proof files actually look like. To
keep the example manageable, we consider a very small instance of the pigeonhole principle
with only 4 pigeons and 3 pigeonholes. We encode the pigeonhole principle formula using
variables pij , with the intended interpretation that pij is true if pigeon i resides in hole j.
The input for the symmetry breaking preprocessor consists of a CNF formula which can be
written in pseudo-Boolean form as

p11 + p12 + p13 ≥ 1 (C1)

p21 + p22 + p23 ≥ 1 (C2)

p31 + p32 + p33 ≥ 1 (C3)

p41 + p42 + p43 ≥ 1 (C4)

p11 + p21 ≥ 1 (C5)

p11 + p31 ≥ 1 (C6)

p11 + p41 ≥ 1 (C7)

p21 + p31 ≥ 1 (C8)

p21 + p41 ≥ 1 (C9)

p31 + p41 ≥ 1 (C10)

p12 + p22 ≥ 1 (C11)

p12 + p32 ≥ 1 (C12)

p12 + p42 ≥ 1 (C13)

p22 + p32 ≥ 1 (C14)

p22 + p42 ≥ 1 (C15)

p32 + p42 ≥ 1 (C16)

p13 + p23 ≥ 1 (C17)

p13 + p33 ≥ 1 (C18)

p13 + p43 ≥ 1 (C19)

p23 + p33 ≥ 1 (C20)

p23 + p43 ≥ 1 (C21)

p33 + p43 ≥ 1 (C22)

where constraints (C1)–(C4) represent that each pigeon resides in at least one hole, and con-
straints (C5)–(C22) enforce that each hole is occupied by at most one pigeon (by specifying
for every pigeonhole and every pair of distinct pigeons that it cannot be the case that both
of these pigeons reside in the hole). When VeriPB is used for SAT proof logging, the proof
checker parses CNF formulas in the standard DIMACS format used by SAT solvers, but the
CNF formula will be reprented internally in the proof checker as a set of pseudo-Boolean
constraints as above.

1575

Bogaerts, Gocht, McCreesh, & Nordström

A.1 Starting the Proof and Introducing the Order

A VeriPB proof starts with a proof header (stating which version of the proof system is
used) and an instruction to load the input formula

L1 pseudo -Boolean proof version 2.0

L2 f 22

where the number 22 specifies the number of pseudo-Boolean constraints in the input.
All constraints in the proof file will be numbered consecutively starting with the input
constraints, and will be referred to in the derivations by these numbers.

To prepare for the symmetry breaking, BreakID then introduces a pre-order that com-
pares two binary sequences in lexicographic order. This pre-order is defined by inserting
the lines

L3 pre_order exp22

L4 vars

L5 left u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

L6 right v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

L7 aux

L8 end

L9

L10 def

L11 -1 u12 1 v12 -2 u11 2 v11 -4 u10 4 v10 -8 u9 8 v9 -16 u8 16 v8 -32

↪→ u7 32 v7 -64 u6 64 v6 -128 u5 128 v5 -256 u4 256 v4 -512 u3

↪→ 512 v3 -1024 u2 1024 v2 -2048 u1 2048 v1 >= 0;

L12 end

L13

L14 transitivity

L15 vars

L16 fresh_right w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

L17 end

L18 proof

L19 proofgoal #1

L20 pol 1 2 + 3 +

L21 qed -1

L22 qed

L23 end

L24 end

in the proof file. The pre-order is named exp22 on Line 3, so that we can refer to it later
in the proof. Lines 5 and 6 introduce placeholder names for the 2 × 12 variables used to
define the order. Line 11 then provides the exponential encoding (14) of the claim that the
sequence of variables u1, . . . , u12 is lexicographically smaller than or equal to v1, . . . , v12.

To prove that the pseudo-Boolean formula consisting of the single constraint on Line 11
defines a transitive relation, a third set of placeholder variables w1, . . . , w12 is declared
on Line 16, and these variables are used in a formal derivation as specified in (13b) on
page 1554 that O⪯(u⃗, v⃗) and O⪯(v⃗, w⃗) together imply O⪯(u⃗, w⃗). The VeriPB tool has a
certain preference for proofs by contradiction, however, so the way this is established is by
showing that O⪯(u⃗, v⃗) and O⪯(v⃗, w⃗) together with the negation ¬O⪯(u⃗, w⃗) is contradictory
(and if the order consistent of more than one PB constraint, one negates the constraints

1576

Certified Dominance and Symmetry Breaking for Combinatorial Optimisation

one by one and derives contradiction for every negated constraint. For the order on Line 11
we get the three constraints

−u12 + v12 − 2u11 + 2v11 − 4u10 + 4v10 − . . . ≥ 0 (T1)

−v12 + w12 − 2v11 + 2w11 − 4v10 + 4w10 − . . . ≥ 0 (T2)

u12 − w12 + 2u11 − 2w11 + 4u10 − 4w10 + . . . ≥ −1, (T3)

where we use the labels (T1)–(T3) to emphasize that these are not constraints learned in
the proof system, but are temporary constraints, local to the proof of transitivity. Line 20
is an instruction in reverse polish notation to add the constraints (T1), (T2), and (T3)
together, resulting (after simplification) in the constraint

0 ≥ −1 . (T4)

Line 21 then concludes the subproof, which is possible since the last derived constraint
(which, using relative indexing, is what the number −1 refers to) is indeed a conflicting
constraint. Note that in order to prove that the pseudo-Boolean constraint defines a pre-
order we also need to show that the relation it defines is reflexive, but for a simple order like
the one in this example everything in the formula trivializes when you substitute the same
variables for both the u- and the v-sequence, and so VeriPB can figure out that reflexivity
holds by itself without the help of any written proof.

The proof continues with the instruction

L25 load_order exp22 p21 p22 p23 p11 p12 p13 p31 p32 p33 p41 p42 p43

which specifies that the order exp22 should be used and should be applied to all variables
in the formula in the specified order. The reader might find slightly odd that in the order
specified above all variables related to pigeon 2 are ordered before those referring to pi-
geon 1, followed by variables mentioning pigeons 3 and 4. In other words, in the lex-leader
order, assignments are sorted with respect to pigeon 2 first. The reason for this seemingly
strange choice is that the entire proof presented in this appendix is actually generated fully
automatically by BreakID . This tool only takes a propositional logic formula as input, and
has no information about high-level interpretations of what the different variables mean, or
which ordering of these variables might seem more or less natural from the point of view of
a human observer.

A.2 Logging the Breaking of a First Symmetry

Now that the order has been defined and has been proven to be an order, we can start
adding symmetry breaking constraints to the proof log. The first symmetry that BreakID
considers is

π := (p11p43)(p12p42)(p13p41)(p21p23)(p31p33) , (32)

which is the symmetry that simultaneously swaps pigeons 1 and 4 and pigeonholes 1 and 3.
We remark that the questions of why BreakID chooses to break this particular symmetry,
and how it finds the symmetry in the first place, are interesting and nontrivial questions,
but they are not relevant for our work. This is so since we are not trying to construct new
symmetry breaking tools, but to design proof logging methods to certify the correctness of

1577

Bogaerts, Gocht, McCreesh, & Nordström

the symmetry breaking constraints added by existing tools. From the point of view of proof
logging, it is mostly irrelevant to dwell on the possible reasons why a specific symmetry was
chosen, or how it was found. Instead, we can just take the symmetry as a given and focus
on proof logging for the symmetry breaking constraints.

As explained in our discussion of symmetry breaking in Section 4, in order to break a
given symmetry we first use the dominance rule to derive a pseudo-Boolean exponential
encoding of a lex-leader by the proof lines

L26 dom -1 p43 1 p11 -2 p42 2 p12 -4 p41 4 p13 -8 p33 8 p31 -32 p31 32 p33

↪→ -64 p13 64 p41 -128 p12 128 p42 -256 p11 256 p43 -512 p23 512 p21

↪→ -2048 p21 2048 p23 >= 0 ; p11 -> p43 p12 -> p42 p13 -> p41 p21 ->

↪→ p23 p23 -> p21 p31 -> p33 p33 -> p31 p41 -> p13 p42 -> p12 p43 ->

↪→ p11 ; begin

L27 proofgoal #2

L28 pol -1 -2 +

L29 qed -1

which we will now discuss in more detail.

Line 26 above says that the dominance rule should be used to derive (and add to the
derived set D) the constraint (20), which expresses that the assignment to the variables
should not become lexicographically smaller when the symmetry is applied. The variables
related to pigeon 2 occur with the highest coefficients, since they were given the highest
priority when the order was instantiated. Notice that the pseudo-Boolean constraint spec-
ified on Line 26 contains two occurrences of every variable. This is because the constraint
has been generated automatically, and VeriPB will perform cancellations to simplify the
constraint before storing it internally.

An application of the dominance rule needs to provide more information to VeriPB than
just the constraint to be derived by dominance, however. The proof should also specify

• the witness, which in this case is just the symmetry, written as a substitution at the
end of Line 26, and

• explicit derivations (subproofs) for all constraints (proof goals) where the proof checker
cannot automatically figure out such a derivation—in this case, we have a single such
proof goal that is taken care of on Lines 27–29.

Let us discuss in more detail what subproofs are required. In order to apply the dominance
rule to derive the constraint C using witness ω, we need to establish that derivations

C ∪D ∪ {¬C} ⊢ C↾ω ∪ O⪯(z⃗↾ω, z⃗) ∪ {f↾ω ≤ f} (33a)

C ∪D ∪ {¬C} ∪ O⪯(z⃗, z⃗↾ω) ⊢ ⊥ (33b)

exist. In the concrete case of the first symmetry breaking constraint for the formula con-
sisting of the clauses (C1)–(C22), VeriPB will generate the following numbered list of
derivations (or proof obligations) that it expects to see:

1. C ∪D ∪ {¬C} ⊢ O⪯(z⃗↾ω, z⃗)

2. C ∪D ∪ {¬C} ∪ O⪯(z⃗, z⃗↾ω) ⊢ ⊥

1578

Certified Dominance and Symmetry Breaking for Combinatorial Optimisation

3. C ∪D ∪ {¬C} ⊢ f↾ω ≤ f

4–25. C ∪D ∪ {¬C} ⊢ D for each D ∈ C↾ω.

Except for the second proof obligation, all of them can be proved automatically. Perhaps
the simplest case is the third obligation, which is trivial since we are dealing with a decision
problem for which the objective function is the constant f = 0. And since ω is a syntactic
symmetry of the set of core constraints C (which at this point is the CNF formula in the
input), the proof obligations 4–25 are also trivial.

Let us describe how the subproof for the second proof obligation on Lines 27–29 is
checked by VeriPB . First, VeriPB makes available in the subproof the constraint ¬C,
which (after simplification) equals

255 · p11 + 126 · p12 + 60 · p13 + 1536 · p21 + 1536 · p23
+24 · p31 + 24 · p33 + 60 · p41 + 126 · p42 + 255 · p43 ≥ 2002 ,

(C23)

giving this constraint the next available number 23 as constraint reference ID. Next, VeriPB
makes available the constraint O⪯(z⃗, z⃗↾ω), which, after simplification, equals

255 · p11 + 126 · p12 + 60 · p13 + 1536 · p21 + 1536 · p23
+24 · p31 + 24 · p33 + 60 · p41 + 126 · p42 + 255 · p43 ≥ 2001 .

(C24)

As explained above, all constraints are referred to by numbers, but as we have already seen
VeriPB also allows relative indexing. Therefore, Line 28 simply states in reverse polish
notation that the two most recently generated constraints (i.e., (C24) and (C23)) should be
added, which yields the inequality

255 + 126 + 60 + 1536 + 1536 + 24 + 24 + 60 + 126 + 255 ≥ 2002 + 2001 (34)

or, in simplified form,
0 ≥ 1 , (C25)

which is contradictory. Line 29 ends the proof by giving the (relative) identifier of the
contradicting constraint that was just derived. Finally, when this proof is finished and all
other proof obligation have been automatically checked, the desired symmetry breaking
constraint

−p43 + 1 · p11 − 2 · p42 + 2 · p12 − 4 · p41 + 4 · p13 − 8 · p33 + 8 · p31
−32 · p31 + 32 · p33 − 64 · p13 + 64 · p41 − 128 · p12 + 128 · p42
−256 · p11 + 256 · p43 − 512 · p23 + 512 · p21 − 2048 · p21 + 2048 · p23 ≥ 0

(C26)

is added to the derived set D . Once all proof obligations have been taken care of, the
constraints (C23), (C24), and (C25) are automatically erased by the proof checker and can
no longer be referred to without triggering an error, since they are only relevant for the
derivations in the subproof.

The inequality (C26) is a lex-leader constraint for the symmetry we are considering, but
this constraint is nothing that the SAT solver knows about or can understand, since the
solver only operates with disjunctive clauses. What happens next in the proof, therefore, is
that the constraint (C26) is converted to a set of clauses on the form (19a)–(19f) that the
solver can use for symmetry breaking.

First, (19a) is added with the redundance rule with the instruction

1579

Bogaerts, Gocht, McCreesh, & Nordström

L30 red 1 y0 >= 1 ; y0 -> 1

which contains both the constraint

y0 ≥ 1 (C27)

and the witness y0 7→ 1 to apply the redundance rule. All proof obligations are checked
automatically by VeriPB .

In our chosen lexicographic order, the first variable is p21. Therefore, the first clause for
symmetry breaking is

p21 ∨ π(p21)
.
= p21 ∨ p23 , (35)

which is a simplification of (19b), omitting the trivially true variable y0. This clause is
implied by the constraint (C26), which can be seen by weakening away all other variables
in it (i.e., adding literal axioms to cancel them). Instead of providing an explicit derivation,
we can simply add the clause (35) it with the reverse unit propagation rule and let VeriPB
figure out the details, which we do by inserting the line

L31 rup 1 ∼p21 1 p23 >= 1 ;

that derives the desired constraint

p21 + p23 ≥ 1 . (C28)

Next, the fresh variable y1 is introduced with four redundance rule applications

L32 red 1 p23 1 ∼y0 1 y1 >= 1 ; y1 -> 1

L33 red 1 ∼p21 1 ∼y0 1 y1 >= 1 ; y1 -> 1

L34 red 1 ∼y1 1 y0 >= 1 ; y1 -> 0

L35 red 1 ∼y1 1 ∼p23 1 p21 >= 1 ; y1 -> 0

with witnesses mapping y1 to either 0 or to 1, resulting in the constraints

p23 + y0 + y1 ≥ 1 (C29)

p21 + y0 + y1 ≥ 1 (C30)

y1 + y0 ≥ 1 (C31)

y1 + p23 + p21 ≥ 1 (C32)

corresponding to the clauses (19c)–(19f).
Before repeating this procedure for the next variable y2, we use the recently derived

constraints to cancel out the dominant terms in constraint (C26) with the instructions

L36 pol 26 32 2048 * +

L37 del id 26

The first line above adds 2048 times (C32) to (C26), yielding

255 · p11 + 126 · p12 + 60 · p13 + 512 · p21 + 512 · p23
+24 · p31 + 24 · p33 + 60 · p41 + 126 · p42 + 255 · p43 + 2048 · y1 ≥ 977 .

(C33)

The second line deletes (C26) from D since it will no longer be required.

1580

Certified Dominance and Symmetry Breaking for Combinatorial Optimisation

The next variable in lexicographic order after p21 is p22. However, since our symmetry π
maps p22 to itself, no symmetry breaking clauses are added for it. The variable after that in
the ordering is p23, which is mapped to p21, resulting in the (conditional on y1) symmetry
breaking constraint

y1 + p23 + p21 ≥ 1 (C34)

obtained by adding the line

L38 rup 1 ∼y1 1 ∼p23 1 p21 >= 1 ;

to the proof. After this, the next fresh variable y2 is introduced in the same way as y1 using
the redundance rule in the instructions

L39 red 1 p21 1 ∼y1 1 y2 >= 1 ; y2 -> 1

L40 red 1 ∼p23 1 ∼y1 1 y2 >= 1 ; y2 -> 1

L41 red 1 ∼y2 1 y1 >= 1 ; y2 -> 0

L42 red 1 ∼y2 1 ∼p21 1 p23 >= 1 ; y2 -> 0

yielding the clauses

p21 + y1 + y2 ≥ 1 (C35)

p23 + y1 + y2 ≥ 1 (C36)

y1 + y2 ≥ 1 (C37)

p21 + p23 + y2 ≥ 1 (C38)

As before, our pseudo-Boolean symmetry breaking constraint is simplified with

L43 pol 33 38 512 * +

L44 del id 33

where the first instruction again cancels out the dominant terms in (C33), replacing them
by a y-variable, to express a conditional symmetry breaking constraint, resulting in

255 · p11 + 126 · p12 + 60 · p13 + 24 · p31 + 24 · p33
+60 · p41 + 126 · p42 + 255 · p43 + 2048 · y1 + 512 · y2 ≥ 465

(C39)

and the second instruction deletes constraint (C33).
The next variable in our chosen order is p11. Since p11 is mapped to p43, we want to

have the symmetry breaking clause

p11 + p43 + y2 ≥ 1 , (C40)

which can be derived by the proof line

L45 rup 1 ∼y2 1 ∼p11 1 p43 >= 1 ;

To see that the clause (C40) indeed follows by reverse unit propagation, consider what
happens if all literals in the clause are set to false. Whenever y2 is true, so are y1 and y0
(by (C37) and (C31)). If furthermore p43 is false and p11 is true, then (C39) simplifies to

126 · p12 + 60 · p13 + 24 · p31 + 24 · p33 + 60 · p41 + 126 · p42 ≥ 465 , (36)

1581

Bogaerts, Gocht, McCreesh, & Nordström

which can never be satisifed since the coefficients on the left only add up to 420.
The process of introducing a new variable is the same as before, appending the con-

straints

p43 + y2 + y3 ≥ 1 (C41)

p11 + y2 + y3 ≥ 1 (C42)

y2 + y3 ≥ 1 (C43)

p11 + p43 + y3 ≥ 1 (C44)

to the derived set D . The last constraint can then again be used to simplify (C39) with the
instruction

L46 pol 39 44 256 * +

yielding the constraint

p11 + 126 · p12 + 60 · p13 + 24 · p31 + 24 · p33 + 60 · p41
+126 · p42 + p43 + 2048 · y1 + 512 · y2 + 256 · y3 ≥ 211

(C45)

This process continues in the same way for all variables in the lexicographic ordering that
are not mapped to themselves, or stabilized, by π.

A.3 Logging the Breaking of More Symmetries

As the BreakID execution continues, more symmetries are detected and broken, and the
corresponding symmetry breaking clauses are derived in the proof. The process is completely
analogous to what is described above for the first symmetry. For our concrete toy example
formula with 4 pigeons and 3 holes, BreakID next breaks the symmetries

(p11p12)(p21p32)(p22p31)(p23p33)(p41p42) (37a)

(p21p11)(p22p12)(p23p13) (37b)

(p11p31)(p12p32)(p13p33) (37c)

(p31p41)(p32p42)(p33p43) (37d)

(p21p22)(p11p12)(p31p32)(p41p42) (37e)

(p22p23)(p12p13)(p32p33)(p42p43) (37f)

in the order listed (where, just to help decode the notation, the first of these symmetries
swaps holes 1 and 2 and simultaneously swaps pigeons 2 and 3). It is crucial to note
here that when we break later symmetries in this list, we do not have to worry about
previously added symmetry breaking clauses. There is no interaction between the different
symmetry breaking derivations, since all the symmetry breaking constraints are added to
the derived set D , whereas the core set C containing the proof obligation for the dominance
rule applications only consists of the symmetric input formula.

A.4 Proof for the Preprocessed Formula

The symmetry breaking performed here only serves as a preprocessing step for the solving;
it is not a complete proof leading to a contradiction. A revision of the VeriPB proof format

1582

Certified Dominance and Symmetry Breaking for Combinatorial Optimisation

used in the SAT Competition 2023 (Bogaerts et al., 2023), and currently under further
development, will allow proofs for preprocessing steps, establishing that the formulas before
and after preprocessing are equisatisfiable (or, for optimization problems, that the two
formulas have the same optimal value for the objective function).

Very briefly, the way a proof for preprocessing will work is that at the end of the proof all
constraints to be output should be moved to the core set C , after which the derived set D is
emptied. The constraints in C then constitute the output formula, which is guaranteed to
be equisatisfiable to the input formula if all deletion steps are instances of checked deletion
as described in Definition 8 in Section 3.4. We remark that this is quite similar to the
concept of finalization.

For our toy example, in order to prove equisatisfiability of the formula after having
added symmetry breaking clauses one should end the proof with the lines

L492 core id 27 28 29 30 31 32 34 35 36 37 38 40 41 42 43 44 46 47 48 49 50

↪→ 52 57 58 59 60 61 62 64 65 66 67 68 70 71 72 73 74 76 77 78 79 80

↪→ 82 87 88 89 90 91 92 94 95 96 97 98 100 105 106 107 108 109 110

↪→ 112 113 114 115 116 118 123 124 125 126 127 128 130 131 132 133

↪→ 134 136 141 142 143 144 145 146 148 149 150 151 152 154 155 156

↪→ 157 158 160 165 166 167 168 169 170 172 173 174 175 176 178 179

↪→ 180 181 182 184

L493 output EQUISATISFIABLE PERMUTATION

L494 * #variable= 39 #constraint =136

L495 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 27 28 29 30 31

↪→ 32 34 35 36 37 38 40 41 42 43 44 46 47 48 49 50 52 57 58 59 60

↪→ 61 62 64 65 66 67 68 70 71 72 73 74 76 77 78 79 80 82 87 88 89 90

↪→ 91 92 94 95 96 97 98 100 105 106 107 108 109 110 112 113 114 115

↪→ 116 118 123 124 125 126 127 128 130 131 132 133 134 136 141

↪→ 142 143 144 145 146 148 149 150 151 152 154 155 156 157 158 160

↪→ 165 166 167 168 169 170 172 173 174 175 176 178 179 180 181 182

↪→ 184

L496 conclusion NONE

L497 end pseudo -Boolean proof

The intended semantics here is that Line 492 will move all the symmetry breaking clauses
that have been derived to the core set C . Line 493 claims that the input and the set of
constraints that is now in the core are equisatisfiable. At the time of writing, the public
version of VeriPB does not yet support non-trivial output statements, (i.e., does not provide
support for checking that the list of constraint identifiers are precisely the set of constraints
in the core set at the of the proof), and only output NONE is supported in the version of
VeriPB used in the SAT Competition 2023 (Bogaerts et al., 2023). However, support for
outputting formulas at the end of the proof is currently being developed and is expected
to be available in a not too distant future. Line 494 states that the output formula has 39
variables and 136 constraints and Line 495 lists the IDs of those 136 constraints. Finally,
the conclusion line 496 states that neither satisfiability nor unsatisfiability can be concluded
from this proof. More details about the intended format and semantics of the output section
in VeriPB proofs can be found in the technical documentation for the SAT Competition
2023 (Bogaerts et al., 2023), but it should be emphasized again that these features of the
proof checker are currently under development and minor changes could and should be
expected on the way from the current tentative specification to the final finished product.

1583

Bogaerts, Gocht, McCreesh, & Nordström

References

Achterberg, T., & Wunderling, R. (2013). Mixed integer programming: Analyzing 12 years
of progress. In Jünger, M., & Reinelt, G. (Eds.), Facets of Combinatorial Optimization,
pp. 449–481. Springer.

Akgün, Ö., Gent, I. P., Jefferson, C., Miguel, I., & Nightingale, P. (2018). Metamorphic
testing of constraint solvers. In Proceedings of the 24th International Conference on
Principles and Practice of Constraint Programming (CP ’18), Vol. 11008 of Lecture
Notes in Computer Science, pp. 727–736. Springer.

Alkassar, E., Böhme, S., Mehlhorn, K., Rizkallah, C., & Schweitzer, P. (2011). An introduc-
tion to certifying algorithms. it - Information Technology Methoden und innovative
Anwendungen der Informatik und Informationstechnik, 53 (6), 287–293.

Aloul, F. A., Sakallah, K. A., & Markov, I. L. (2006). Efficient symmetry breaking for
Boolean satisfiability. IEEE Transactions on Computers, 55 (5), 549–558.

Baptiste, P., & Pape, C. L. (1997). Constraint propagation and decomposition techniques
for highly disjunctive and highly cumulative project scheduling problems. In Pro-
ceedings of the 3rd International Conference on Principles and Practice of Constraint
Programming (CP ’97), Vol. 1330 of Lecture Notes in Computer Science, pp. 375–389.
Springer.

Beame, P., Kautz, H., & Sabharwal, A. (2004). Towards understanding and harnessing the
potential of clause learning. Journal of Artificial Intelligence Research, 22, 319–351.
Preliminary version in IJCAI ’03.

Benhamou, B., Nabhani, T., Ostrowski, R., & Säıdi, M. R. (2010). Enhancing clause learn-
ing by symmetry in SAT solvers. In Proceedings of the 22nd IEEE International
Conference on Tools with Artificial Intelligence (ICTAI ’10), Vol. 1, pp. 329–335.

Benhamou, B., & Säıs, L. (1994). Tractability through symmetries in propositional calculus.
Journal of Automated Reasoning, 12 (1), 89–102.

Berg, J., Bacchus, F., & Poole, A. (2020). Abstract cores in implicit hitting set MaxSat
solving. In Proceedings of the 23rd International Conference on Theory and Appli-
cations of Satisfiability Testing (SAT ’20), Vol. 12178 of Lecture Notes in Computer
Science, pp. 277–294. Springer.

Berg, J., Bogaerts, B., Nordström, J., Oertel, A., & Vandesande, D. (2023). Certified
core-guided maxsat solving. In Proceedings of the 29th International Conference on
Automated Deduction (CADE). Accepted for publication.

Biere, A. (2006). Tracecheck. http://fmv.jku.at/tracecheck/.

Biere, A., Heule, M. J. H., van Maaren, H., & Walsh, T. (Eds.). (2021). Handbook of Satisfi-
ability (2nd edition)., Vol. 336 of Frontiers in Artificial Intelligence and Applications.
IOS Press.

Bogaerts, B., Gocht, S., McCreesh, C., & Nordström, J. (2022a). Certified symmetry and
dominance breaking for combinatorial optimisation. In Proceedings of the 36th AAAI
Conference on Artificial Intelligence (AAAI ’22), pp. 3698–3707.

1584

Certified Dominance and Symmetry Breaking for Combinatorial Optimisation

Bogaerts, B., Gocht, S., McCreesh, C., & Nordström, J. (2022b). Certified symmetry and
dominance breaking for combinatorial optimisation (code and data). https://doi.

org/10.5281/zenodo.6373986.

Bogaerts, B., McCreesh, C., Myreen, M. O., Nordström, J., Oertel, A., & Tan, Y. K. (2023).
Documentation of VeriPB and CakePB for the SAT competition 2023. Available at
https://satcompetition.github.io/2023/checkers.html.

Bogaerts, B., McCreesh, C., & Nordström, J. (2022). Solving with provably correct results:
Beyond satisfiability, and towards constraint programming. Tutorial at the 28th In-
ternational Conference on Principles and Practice of Constraint Programming. Slides
available at http://www.jakobnordstrom.se/presentations/.

Brummayer, R., Lonsing, F., & Biere, A. (2010). Automated testing and debugging of
SAT and QBF solvers. In Proceedings of the 13th International Conference on Theory
and Applications of Satisfiability Testing (SAT ’10), Vol. 6175 of Lecture Notes in
Computer Science, pp. 44–57. Springer.

Bulhões, T., Sadykov, R., & Uchoa, E. (2018). A branch-and-price algorithm for the mini-
mum latency problem. Computers & Operations Research, 93, 66–78.

Buss, S. R., & Nordström, J. (2021). Proof complexity and SAT solving. In Biere et al.
(Biere, Heule, van Maaren, & Walsh, 2021), chap. 7, pp. 233–350.

Buss, S. R., & Thapen, N. (2019). DRAT proofs, propagation redundancy, and extended
resolution. In Proceedings of the 22nd International Conference on Theory and Appli-
cations of Satisfiability Testing (SAT ’19), Vol. 11628 of Lecture Notes in Computer
Science, pp. 71–89. Springer.

Cheung, K. K. H., Gleixner, A. M., & Steffy, D. E. (2017). Verifying integer programming
results. In Proceedings of the 19th International Conference on Integer Programming
and Combinatorial Optimization (IPCO ’17), Vol. 10328 of Lecture Notes in Computer
Science, pp. 148–160. Springer.

Chu, G., & Stuckey, P. J. (2015). Dominance breaking constraints. Constraints, 20 (2),
155–182. Preliminary version in CP ’12.

Cook, S. A., & Reckhow, R. A. (1979). The relative efficiency of propositional proof systems.
Journal of Symbolic Logic, 44 (1), 36–50. Preliminary version in STOC ’74.

Cook, W., Coullard, C. R., & Turán, G. (1987). On the complexity of cutting-plane proofs.
Discrete Applied Mathematics, 18 (1), 25–38.

Cook, W., Koch, T., Steffy, D. E., & Wolter, K. (2013). A hybrid branch-and-bound ap-
proach for exact rational mixed-integer programming. Mathematical Programming
Computation, 5 (3), 305–344.

Crawford, J. M., Ginsberg, M. L., Luks, E. M., & Roy, A. (1996). Symmetry-breaking
predicates for search problems. In Proceedings of the 5th International Conference on
Principles of Knowledge Representation and Reasoning (KR ’96), pp. 148–159.

Cruz-Filipe, L., Heule, M. J. H., Hunt Jr., W. A., Kaufmann, M., & Schneider-Kamp,
P. (2017a). Efficient certified RAT verification. In Proceedings of the 26th Interna-
tional Conference on Automated Deduction (CADE-26), Vol. 10395 of Lecture Notes
in Computer Science, pp. 220–236. Springer.

1585

Bogaerts, Gocht, McCreesh, & Nordström

Cruz-Filipe, L., Marques-Silva, J. P., & Schneider-Kamp, P. (2017b). Efficient certified
resolution proof checking. In Proceedings of the 23rd International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS ’17),
Vol. 10205 of Lecture Notes in Computer Science, pp. 118–135. Springer.

Demeulemeester, E. L., & Herroelen, W. S. (2002). Project Scheduling: A Research Hand-
book, Vol. 49 of International Series in Operations Research & Management Science.
Kluwer Academic Publishers.

Devriendt, J., Bogaerts, B., & Bruynooghe, M. (2017). Symmetric explanation learning:
Effective dynamic symmetry handling for SAT. In Proceedings of the 20th Interna-
tional Conference on Theory and Applications of Satisfiability Testing (SAT ’17), Vol.
10491 of Lecture Notes in Computer Science, pp. 83–100. Springer.

Devriendt, J., Bogaerts, B., Bruynooghe, M., & Denecker, M. (2016). Improved static
symmetry breaking for SAT. In Proceedings of the 19th International Conference on
Theory and Applications of Satisfiability Testing (SAT ’16), Vol. 9710 of Lecture Notes
in Computer Science, pp. 104–122. Springer.

Devriendt, J., Bogaerts, B., De Cat, B., Denecker, M., & Mears, C. (2012). Symmetry
propagation: Improved dynamic symmetry breaking in SAT. In Proceedings of the
24th IEEE International Conference on Tools with Artificial Intelligence (ICTAI ’12),
pp. 49–56.

Eifler, L., & Gleixner, A. (2021). A computational status update for exact rational mixed
integer programming. In Proceedings of the 22nd International Conference on Inte-
ger Programming and Combinatorial Optimization (IPCO ’21), Vol. 12707 of Lecture
Notes in Computer Science, pp. 163–177. Springer.

Elffers, J., Gocht, S., McCreesh, C., & Nordström, J. (2020). Justifying all differences using
pseudo-Boolean reasoning. In Proceedings of the 34th AAAI Conference on Artificial
Intelligence (AAAI ’20), pp. 1486–1494.

Garcia de la Banda, M., Stuckey, P. J., Van Hentenryck, P., & Wallace, M. (2014). The
future of optimization technology. Constraints, 19 (2), 126–138.

Gebser, M., Kaminski, R., & Schaub, T. (2011). Complex optimization in answer set pro-
gramming. Theory and Practice of Logic Programming, 11 (4–5), 821–839.

Gent, I. P., Petrie, K. E., & Puget, J. (2006). Symmetry in constraint programming. In
Rossi, F., van Beek, P., & Walsh, T. (Eds.), Handbook of Constraint Programming,
Vol. 2 of Foundations of Artificial Intelligence, pp. 329–376. Elsevier.

Gillard, X., Schaus, P., & Deville, Y. (2019). SolverCheck: Declarative testing of constraints.
In Proceedings of the 25th International Conference on Principles and Practice of
Constraint Programming (CP ’19), Vol. 11802 of Lecture Notes in Computer Science,
pp. 565–582. Springer.

Gocht, S., Martins, R., Nordström, J., & Oertel, A. (2022). Certified CNF translations
for pseudo-Boolean solving. In Proceedings of the 25th International Conference on
Theory and Applications of Satisfiability Testing (SAT ’22), Vol. 236 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pp. 16:1–16:25.

1586

Certified Dominance and Symmetry Breaking for Combinatorial Optimisation

Gocht, S., McBride, R., McCreesh, C., Nordström, J., Prosser, P., & Trimble, J. (2020a).
Certifying solvers for clique and maximum common (connected) subgraph problems.
In Proceedings of the 26th International Conference on Principles and Practice of
Constraint Programming (CP ’20), Vol. 12333 of Lecture Notes in Computer Science,
pp. 338–357. Springer.

Gocht, S., McCreesh, C., & Nordström, J. (2020b). Subgraph isomorphism meets cutting
planes: Solving with certified solutions. In Proceedings of the 29th International Joint
Conference on Artificial Intelligence (IJCAI ’20), pp. 1134–1140.

Gocht, S., McCreesh, C., & Nordström, J. (2022). An auditable constraint programming
solver. In Proceedings of the 28th International Conference on Principles and Practice
of Constraint Programming (CP ’22), Vol. 235 of Leibniz International Proceedings in
Informatics (LIPIcs), pp. 25:1–25:18.

Gocht, S., & Nordström, J. (2021). Certifying parity reasoning efficiently using pseudo-
Boolean proofs. In Proceedings of the 35th AAAI Conference on Artificial Intelligence
(AAAI ’21), pp. 3768–3777.

Goldberg, E., & Novikov, Y. (2003). Verification of proofs of unsatisfiability for CNF
formulas. In Proceedings of the Conference on Design, Automation and Test in Europe
(DATE ’03), pp. 886–891.

Haken, A. (1985). The intractability of resolution. Theoretical Computer Science, 39 (2-3),
297–308.

Heule, M. J. H., Hunt Jr., W. A., & Wetzler, N. (2013a). Trimming while checking clausal
proofs. In Proceedings of the 13th International Conference on Formal Methods in
Computer-Aided Design (FMCAD ’13), pp. 181–188.

Heule, M. J. H., Hunt Jr., W. A., & Wetzler, N. (2013b). Verifying refutations with ex-
tended resolution. In Proceedings of the 24th International Conference on Automated
Deduction (CADE-24), Vol. 7898 of Lecture Notes in Computer Science, pp. 345–359.
Springer.

Heule, M. J. H., Hunt Jr., W. A., & Wetzler, N. (2015). Expressing symmetry breaking
in DRAT proofs. In Proceedings of the 25th International Conference on Automated
Deduction (CADE-25), Vol. 9195 of Lecture Notes in Computer Science, pp. 591–606.
Springer.

Heule, M. J. H., Kiesl, B., & Biere, A. (2017). Short proofs without new variables. In Pro-
ceedings of the 26th International Conference on Automated Deduction (CADE-26),
Vol. 10395 of Lecture Notes in Computer Science, pp. 130–147. Springer.

Hoogeboom, M., Dullaert, W., Lai, D., & Vigo, D. (2020). Efficient neighborhood evalu-
ations for the vehicle routing problem with multiple time windows. Transportation
Science, 54 (2), 400–416.

Ignatiev, A., Morgado, A., & Marques-Silva, J. (2019). RC2: an Efficient MaxSAT Solver.
Journal on Satisfiability, Boolean Modeling and Computation, 11, 53–64.

Jouglet, A., & Carlier, J. (2011). Dominance rules in combinatorial optimization problems.
European Journal of Operational Research, 212 (3), 433–444.

1587

Bogaerts, Gocht, McCreesh, & Nordström

Kiesl, B., Rebola-Pardo, A., & Heule, M. J. H. (2018). Extended resolution simulates DRAT.
In Proceedings of the 9th International Joint Conference on Automated Reasoning
(IJCAR ’18), Vol. 10900 of Lecture Notes in Computer Science, pp. 516–531. Springer.

Koshimura, M., Zhang, T., Fujita, H., & Hasegawa, R. (2012). QMaxSAT: A Partial Max-
SAT Solver. Journal on Satisfiability, Boolean Modeling and Computation, 8 (1-2),
95–100.

Ko lodziejczyk, L., & Thapen, N. (2023) Personal communication.

Kraiczy, S., & McCreesh, C. (2021). Solving graph homomorphism and subgraph isomor-
phism problems faster through clique neighbourhood constraints. In Proceedings of
the 30th International Joint Conference on Artificial Intelligence (IJCAI ’21), pp.
1396–1402.

Kraj́ıček, J., & Pudlák, P. (1989). Propositional proof systems, the consistency of first
order theories and the complexity of computations. Journal of Symbolic Logic, 54 (3),
1063–1079.

Lammich, P. (2020). Efficient verified (UN)SAT certificate checking. Journal of Automated
Reasoning, 64 (3), 513–532. Extended version of paper in CADE 2017.

McConnell, R. M., Mehlhorn, K., Näher, S., & Schweitzer, P. (2011). Certifying algorithms.
Computer Science Review, 5 (2), 119–161.

McCreesh, C., & Prosser, P. (2016). Finding maximum k-cliques faster using lazy global
domination. In Proceedings of the 9th Annual Symposium on Combinatorial Search
(SOCS ’16), pp. 72–80.

Metin, H., Baarir, S., & Kordon, F. (2019). Composing symmetry propagation and effective
symmetry breaking for SAT solving. In Proceedings of the 11th International NASA
Formal Methods Symposium (NFM ’19), Vol. 11460 of Lecture Notes in Computer
Science, pp. 316–332. Springer.

Paxian, T., & Becker, B. (2022). Pacose: An iterative SAT-based MaxSAT solver. In
MaxSAT Evaluation 2021 : Solver and Benchmark Descriptions.

Sabharwal, A. (2009). SymChaff: Exploiting symmetry in a structure-aware satisfiability
solver. Constraints, 14 (4), 478–505. Preliminary version in AAAI ’05.

Sakallah, K. A. (2021). Symmetry and satisfiability. In Biere et al. (Biere et al., 2021),
chap. 13, pp. 509–570.

Tan, Y. K., Heule, M. J. H., & Myreen, M. O. (2021). cake lpr: Verified propagation
redundancy checking in CakeML. In Proceedings of the 27th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS ’21),
Vol. 12652 of Lecture Notes in Computer Science, pp. 223–241. Springer.

Tchinda, R. K., & Djamégni, C. T. (2020). On certifying the UNSAT result of dynamic
symmetry-handling-based SAT solvers. Constraints, 25 (3–4), 251–279.

Tomita, E., & Kameda, T. (2007). An efficient branch-and-bound algorithm for finding a
maximum clique with computational experiments. J. Glob. Optim., 37 (1), 95–111.

1588

Certified Dominance and Symmetry Breaking for Combinatorial Optimisation

Tseitin, G. (1968). On the complexity of derivation in propositional calculus. In Silenko,
A. O. (Ed.), Structures in Constructive Mathematics and Mathematical Logic, Part II,
pp. 115–125. Consultants Bureau, New York-London.

Vandesande, D., De Wulf, W., & Bogaerts, B. (2022). QMaxSATpb: A certified MaxSAT
solver. In Proceedings of the 16th International Conference on Logic Programming and
Non-monotonic Reasoning (LPNMR ’22), Vol. 13416 of Lecture Notes in Computer
Science, pp. 429–442. Springer.

Walsh, T. (2006). General symmetry breaking constraints. In Proceedings of the 12th Inter-
national Conference on Principles and Practice of Constraint Programming (CP ’06),
Vol. 4204 of Lecture Notes in Computer Science, pp. 650–664. Springer.

Walsh, T. (2012). Symmetry breaking constraints: Recent results. In Proceedings of the
26th AAAI Conference on Artificial Intelligence (AAAI ’12), pp. 2192–2198.

Wetzler, N., Heule, M. J. H., & Hunt Jr., W. A. (2014). DRAT-trim: Efficient checking
and trimming using expressive clausal proofs. In Proceedings of the 17th International
Conference on Theory and Applications of Satisfiability Testing (SAT ’14), Vol. 8561
of Lecture Notes in Computer Science, pp. 422–429. Springer.

1589

