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Abstract

We present MDP Playground, a testbed for Reinforcement Learning (RL) agents with
dimensions of hardness that can be controlled independently to challenge agents in different
ways and obtain varying degrees of hardness in toy and complex RL environments. We
consider and allow control over a wide variety of dimensions, including delayed rewards,
sequence lengths, reward density, stochasticity, image representations, irrelevant features,
time unit, action range and more. We define a parameterised collection of fast-to-run toy
environments in OpenAI Gym by varying these dimensions and propose to use these to
understand agents better. We then show how to design experiments using MDP Playground
to gain insights on the toy environments. We also provide wrappers that can inject many of
these dimensions into any Gym environment. We experiment with these wrappers on Atari
and Mujoco to allow for understanding the effects of these dimensions on environments that
are more complex than the toy environments. We also compare the effect of the dimensions
on the toy and complex environments. Finally, we show how to use MDP Playground to
debug agents, to study the interaction of multiple dimensions and describe further use-cases.

1. Introduction

We begin our discussion by motivating why we need dimensions of hardness and toy environ-
ments in Reinforcement Learning.
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1.1 Need for Dimensions of Hardness

Reinforcement Learning (RL) algorithms can solve many disparate tasks, such as helicopter
aerobatics, game-playing and continuous control (Kim et al., 2004; Mnih et al., 2015; Haarnoja
et al., 2018). However, multiple recent papers (e.g., Henderson et al., 2018; Engstrom et al.,
2020; Andrychowicz et al., 2021) have shown that RL agents tend to be brittle. It has been
argued that current deep RL research has been increasing the complexity of the dynamics
but has not paid much attention to the state distributions and reward distribution over
which RL policies work and that this has made RL agents brittle (Andersson & Doherty,
2018). We believe as a step towards understanding and designing better RL agents, research
analysing the effects of common challenges faced by RL agents is of growing importance
(Osband et al., 2019; Dulac-Arnold et al., 2020). To this end, we have designed a framework,
MDP Playground, which allows such challenges to be added, in a controlled manner, to RL
environments. We describe a set of such challenges in this paper which we term dimensions
of hardness as they can be controlled independently of each other in MDP Playground.

1.2 Need for Toy Environments

Furthermore, a lot of the insights obtained on the standard environments are on very complex
and in many instances blackbox environments. There are many different types of such
environments, as many as there are different kinds of tasks in RL (e.g. Todorov et al., 2012;
Bellemare et al., 2013; Cobbe et al., 2020). They are each tied to specific kinds of tasks.
The underlying assumptions in many of these environments are that of a Markov Decision
Process (MDP) (Puterman, 1994) or a Partially Observable MDP (POMDP) (see e.g., Sutton
& Barto, 1998). However, there is a lack of simple and accessible problems which capture
common challenges seen in RL and let researchers experiment with them in a fine-grained
manner. Many researchers design their own toy problems which capture key aspects of their
problems and then try to use them to gain insights on whitebox environments1 because the
standard complex environments, such as Atari and Mujoco, are too expensive or too opaque.

To sum up the disadvantages of complex environments: 1) They are very expensive
to evaluate. For example, a DQN (Mnih et al., 2015) run on an Atari (Bellemare et al.,
2013) environment took us 4 CPU days and 64GB of memory to run. 2) The environment
structure itself is so complex that it can lead to “lucky” agents performing better (e.g., in
Henderson et al., 2018). Furthermore, different implementations even using the same libraries
can lead to very different results (Henderson et al., 2018). 3) Many dimensions of hardness
are concurrently present in the environments and do not allow us to independently test their
impact on agents’ performances.

Motivated by the above discussion on dimensions of hardness and toy environments, we
introduce MDP Playground, a platform whose intent is to: 1) help us to understand RL
agents better on toy and complex environments. This is achieved by injecting dimensions
of hardness into the environments in a fine-grained manner. This is similar in spirit to the
work of Hendrycks and Dietterich (2019). 2) “unit test” characteristics of agents on toy
MDPs. The unit tests are aimed at overcoming the disadvantages of complex environments

1. We use the term whitebox in analogy with blackbox, i.e., whitebox environments are those which are
accessible and where we know all the internal details of how they work.
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mentioned above - the evaluation is cheap, the structure of the environments is simple and
accessible and one can independently inject desired dimensions of hardness.

We would like to emphasise here that the toy environments in MDP Playground are
intended as a complement to complex environments, and not to replace them, because they
trade off compute, accessibility and control at the expense of being further removed from the
real world. They may be useful to try out new ideas quickly but may not lead to immediate
results on the complex environments which may be the long-term goal of research. As an
example of how this may be useful, we mention here that Q-learning (Sutton & Barto, 1998)
and Double Q-learning (van Hasselt, 2010) were shown as proofs of concept on tabular or
small environments several years before the advent of deep RL and complex environments.
Neither could be shown transfer to complex environments at the time of publication. As
such, toy environments in MDP Playground are meant as accessible environments where the
ground truth is known and where one might quickly test out whether a new idea helps against
a dimension of hardness and not, e.g., to tune hyperparameters for complex environments.

The main contributions of this paper are:

• We identify and discuss dimensions of hardness of MDPs that can have a significant
effect on agent performance, both for discrete and continuous environments;

• We discuss experimental designs for toy and complex environments that: 1) show
insights on toy environments alone, 2) compare the effect of dimensions on toy and
complex environments;

• The toy environments in MDP Playground provide unit testing and debugging capabili-
ties for RL agents with the ground truth being available; a single seed of an experiment
can be run in as few as 30 seconds on a single core of a laptop;

• Many of the studied dimensions of hardness stem from partial observability and the
related experiments provide an analysis of how partial observability can degrade
performance; to the best of our knowledge, this is the first such systematic analysis.

The paper is structured as follows. We define MDPs, NMRDPs (Bacchus et al., 1996) and
POMDPs needed to understand the dimensions of hardness in MDP Playground and then
describe the motivations for the dimensions of hardness in MDP Playground from a high-level
and general point of view in Section 2. We describe MDP Playground and its components in
Section 3. We provide a low-level description with details of the specific implementation of
the dimensions of hardness in MDP Playground in Section 4. We discuss design decisions
involved in implementing MDP Playground in Section 5. We perform experiments and
analyse them in Section 6. We discuss related work in Section 7. We discuss limitations
of our approach and its ethical and societal implications in Section 8. Finally, we provide
conclusions and discuss future work in Section 9.

2. Dimensions of Hardness in MDPs

To identify dimensions of hardness and to distinguish between different kinds of state that
we will encounter, we need to begin with some definitions.
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2.1 MDPs, NMRDPs and POMDPs

We define an MDP as a 7-tuple (MS,A, P,R, ρo, γ, T ), where MS is the set of states, A is
the set of actions, P : MS×A×MS → R+ describes the transition dynamics as a probability
density of reaching a state given the current state and action2, R : MS×A×MS×R→ R+

describes the reward dynamics as a probability density of obtaining a reward given the
current state, action and next state, ρo : MS → R+ is the initial state distribution, γ is the
discount factor and T is the set of terminal states. We will consider systems which also have
non-Markovian rewards because in the case of some dimensions of hardness, we have rewards
which depend on the past history of the system. So, we additionally define an NMRDP, a
Non-Markovian Reward Decision Process following (Bacchus et al., 1996) which corresponds
to our MDP of the system but has a different state space, NS. It will be worthwhile
to distinguish between the current state of the system which is non-Markovian and its
corresponding Markovian state which contains the history, to be able to fully understand the
details of MDP Playground. A state ns ∈ NS will represent the current state of the system
and a state ms ∈ MS will represent the Markovian state. As such, any state ms ∈ MS
would correspond to a tuple of states (ns0, ns1, ...) from NS. We will refer to the states from
NS as N -states and the states from MS as M -states. The NMRDP is defined using NS
instead of MS in its definitions of P and R3

Finally, we define a POMDP with two additional components - O represents the set
of observations and Ω : MS × A × O → R+ describes the probability density function of
an observation given an M -state and action. Following Subramanian et al. (2020), we will
use information state to mean the state representation used by the agent and belief state
(Cassandra et al., 1994) as the posterior belief of the unobserved Markov state given the full
observation history. POMDPs can be modelled as fully observable MDPs by considering
the belief state (i.e., the posterior belief of the unobserved state given all the observations
made by the agent) as an information state (Subramanian et al., 2020). As a result, the
theory and algorithms for exact and approximate planning for MDPs become applicable to
POMDPs and using the belief state as the information state by an agent would be sufficient
to compute an optimal policy. However, since the full observation history is not tractable
to store for many environments, the last few observations are used as the information state
which renders it only partially observable. This is an important point to keep in mind
because some of the motivated dimensions of hardness are actually due to the information
state being non-Markov.4

We also mention here the Q∗-value (Mnih et al., 2015) and use it as an example to
argue how violations of assumptions may lead to degradation in performance. For a Markov
state ms ∈ MS and action a, a policy π and rt the reward a timestep t, Q∗ is defined as:
Q∗(ms, a) = max

π
E
[∑∞

t=0 γ
trt‖mst = ms, at = a, π

]
.

2. The default MDPs in MDP Playground are deterministic. In such cases, P can also be represented as
P : MS ×A→MS. When describing such deterministic transition functions, we will assume this to be
the case and talk about P as such.

3. As a result, P and R would be overloaded symbols. Which P or R we are referring to should be clear
from the context. If unclear, we will mention it in the text.

4. We have introduced MDPs, NMRDPs and POMDPs, because all the concepts - the historical state of the
system (which is Markov), the current state of the system (which is non-Markov) and the observations
are distinct and aid an unambiguous explanation of the details of the dimensions of hardness.

824



MDP Playground

2.2 Motivations of Dimensions and Implementations

We try to identify dimensions of hardness that can be injected independently of each other
by going over the many components of an MDP and motivated by the literature. We try
to motivate as many as possible, to allow researchers to systematically study and gain new
insights. To make the understanding of these dimensions of hardness more concrete, we
briefly also describe the implementation of the dimensions of hardness in MDP Playground
in this section. To be able do so, we briefly also describe the toy discrete and continuous
environments in MDP Playground. The text in this section is more of a top-down/dimensions
of hardness-oriented presentation. For a more detailed and lower-level description of these
environments and their dimensions of hardness, we refer the reader to Section 4, where
additional dimensions which are mostly trivial to understand are described as well.

In the discrete case, the N -state and action spaces of the system, NS and A, contain
categorical elements that are labelled from 0 to ‖NS‖ − 1 and 0 to ‖A‖ − 1 respectively,
however, there is no ordering. As such, elements of both NS and A are 1-dimensional
integers. P is formulated as a graph such that each N -state is a vertex and elements of NS
are connected to other elements of NS through elements of A which form the edges. All
the vertices in the graph are set to have the same degree which lends P a uniform structure:
this avoids having “lucky” regions in the environment. In the continuous case, environments
correspond to the simplest real world task we could find: moving a rigid body to a target
point (Klink et al., 2019). P is formulated such that each action dimension affects the
corresponding space dimension: for a given N -state, ns, the derivative of N -state, ṅs, is set
to be equal to the action applied for time unit seconds on the body, in the simplest version
of the environment. This is integrated over time to yield the next state.

We now describe many of the dimensions of hardness and briefly their implementations
in MDP Playground. Please see Figure 1 for guiding visualisatons.

2.2.1 Reward Delay

In many situations, agents perform an action that leads to a rewarding trajectory but the
agent is only rewarded in a delayed manner (see e.g., Arjona-Medina et al., 2019) (see Figure
1e). For example, shooting at an enemy ship in Space Invaders leads to rewards much later
than the action of shooting. Any action taken and the resulting trajectory afterwards is
inconsequential to obtaining the reward for destroying that enemy ship. Regarding the Q∗

value, this means that if an incorrect information state is used, then updates performed
for approximating Q∗ will tend to assign partial credit also to inconsequential information
state features and actions. In MDP Playground, the reward can be artificially delayed by a
non-negative integer number of timesteps, d.

2.2.2 Sequence Length

In many environments, a reward is obtained for a sequence of N -states resulting from a
sequence of actions taken and not just the current N -state and action (see Figure 1d). A
simple example is executing a tennis serve, where one needs a sequence of actions which
leads to a rewarding N -state trajectory that results in a point, e.g., if an ace was served.
In contrast to delayed rewards, rewarding a sequence of N -states resulting from a sequence
of actions addresses the trajectory followed as being consequential to obtaining a reward.
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Figure 1: Some of the dimensions of hardness depicted visually to aid understanding. Please
note that the sub-figures do not use accurate graphical notation, but are rather
meant to be guiding visualisations about how a particular dimension of hardness
works. We depict states of the system under consideration, i.e. the N -states as
defined in the text. Not all N -states and actions are depicted to focus on the
dimension of interest. Rewarding actions are shown as “a+” while actions shown
as “a-” are not rewarding. Reward is shown as “R” and time unit as “t”. (a) R
density: only 1 of 3 possible actions (a+) leads to a reward. (b) P noise: A noise
of 0.2 (split into 0.1 and 0.1 and shown with dotted lines) is shown to lead the
agent to an N -state which is not the true next N -state. (c) R noise: The same
transition leads to different rewards. (d) Sequence Length: Assume the task is
to move in a circle, then executing a sequence of actions starting from N -state
NS0 leading to N -state NS1 executes only a semi-circle and leads to 0 reward
(intermediate N -states along the sequence shown in dashed lines). Executing the
full circle and returning to N -state NS0 leads to a reward of 1. Note: there may
be multiple such sequences corresponding to the task, but the emphasis here is on
needing more than 1 action, i.e., a sequence. (e) R delay: The rewarding action
(a+) leads to a reward not immediately but a step later than it was executed
and this reward is achieved even though an action inconsequential to achieving
the reward (a-) was performed in between. Note: the reward would have been
achieved a step later irrespective of which action was performed in the second step.
(f) Time Unit: We depict a “half” action, i.e., performed for a time unit that is
half the default time unit, leading to an intermediate N -state.

Learning sequences of actions as macro-actions or options is important, e.g., in Hierarchical
Reinforcement Learning (HRL). Sutton et al. (1999) present a framework for temporal
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abstraction in RL to deal with such sequences. Regarding the Q∗ value, this means that if
an incomplete information state is used, then updates performed for approximating Q∗ will
tend to assign partial credit also to incomplete sequences. The agent may not realise that a
whole sequence of actions is needed to reach a rewarding N -state trajectory and not just a
part of the sequence. While agents can perform well asymptotically in the face of both delays
and sequences, using the correct information state would very likely lead to much better
sample efficiency and more stable learning. In MDP Playground, for discrete environments,
only specific sequences of N -states of positive integer length n are rewardable. Sequences
consist of non-repeating N -states allowing for (‖NS‖−‖T‖)!

(‖NS‖−‖T‖−n)! sequences. For the continuous
environment of moving to a target, n is variable.

2.2.3 Reward Density

Environments can also be characterised by their reward density. When an environment has
denser rewards (see Figure 1a), one is more likely to obtain a supervisory reward signal.
In sparse reward settings (Gaina et al., 2019), the reward is 0 more frequently, e.g., in
continuous control environments where a long trajectory is followed and then a single non-
zero reward is received at its end. This also holds true for the example of the tennis serve
above. In MDP Playground, for discrete environments, the reward density, rd, is defined as
the fraction of possible N -state sequences that are actually rewarded by the environment.
For continuous environments, density is controlled by having a sparse or dense environment
using a make_denser configuration option. When the reward is dense, the reward for the
current time step is the distance travelled towards the target since the last step. When the
reward is sparse, a reward is only handed out when the agent reaches the target.

With regard to density, recall the tennis serve again. The point received by serving an ace
would be a sparse reward. We as humans know to reward ourselves for executing only a part
of the sequence correctly. Rewards in continuous control tasks to reach a target point (e.g. in
Mujoco, Todorov et al., 2012), are usually dense (such as the negative squared distance from
the target). This lets the algorithm obtain a dense signal in space to guide learning, and it is
well known (Sutton & Barto, 1998) that it would be much harder for the algorithm to learn
if it only received a single reward at the target point. The environments in MDP Playground
have a configuration option, make_denser, to allow this kind of reward shaping to make the
reward denser and observe the effects on algorithms. To achieve this, when make_denser is
True for discrete toy environments, the environment gives a fractional reward if a fraction of
a rewardable sequence is achieved and it does so for all the possible rewardable sequences an
agent is currently on.

2.2.4 Stochasticity

Another characteristic of environments that can significantly impact performance of agents
is stochasticity. The environment, i.e., dynamics P and R, may be stochastic or may seem
stochastic to the agent due to partial observability or sensor noise (see Figure 1b-1c). A
robot equipped with a rangefinder, for example, has to deal with various sources of noise in
its sensors (Thrun et al., 2005). In MDP Playground, for discrete environments, we define
transition noise t_n ∈ [0, 1]; with probability t_n, an environment transitions uniformly
at random to an N -state that is not the true next N -state given by P . We define reward
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noise as being normally distributed: r_n ∼ N (0, σ2r_n), and is added to the true reward.
For continuous environments, both t_n and r_n are normally distributed and are directly
added to the N -states and rewards.5 6

2.2.5 Irrelevant Features

Environments also tend to have a lot of irrelevant features (Rajendran et al., 2018) that one
need not focus on. This holds for all kinds of learners including Neural Networks (NNs).
However, NNs can even fit random noise (Zhang et al., 2017) and having irrelevant features
is likely to degrade performance. For example, in certain racing car games, even though the
whole screen is visible, concentrating on only the road would be more efficient without loss
in performance. In MDP Playground, for discrete environments, a new discrete dimension
is concatenated and appended to the N -state and action spaces each. This dimension
causes the dimensionality of P , associated with the NMRDP, to increase to 2. The first
dimension corresponds to dynamics relevant to the reward, Prel, while the second dimension
has dynamics Pirr. Prel and Pirr are independent of each other and when concatenated
together form P , the transition function visible to the agent. However, only the discrete
dimension corresponding to Prel is relevant to calculate the reward function. Similarly, in
continuous environments, new irrelevant dimensions are added to NS and A that are not
considered relevant to the reward. These irrelevant dimensions are visible in the observations
which come from O.

2.2.6 Representations

Another aspect is that of representations. The same underlying N -state may have many
different external representations/observations from O, e.g., feature space would be the N -
space while pixel space could be O in Mujoco. Similarly, Atari games can use the underlying
RAM state or images. For images, various image transformations (˙shift, scale, rotate, flip and
others; Hendrycks & Dietterich, 2019) may manifest as observations of the same underlying
N -state and can pose a challenge to learning. In MDP Playground, for discrete environments,
when image representations are enabled, each categorical N -state is associated with an image
of a regular polygon which becomes the externally visible observation o ∈ O to the agent
(see Figure 2a-2h). This image can be further transformed by shifting, scaling, rotating or
flipping, which are applied at random to the polygon whenever an observation is generated.
For continuous environments, image observations can be rendered for 2D environments (see
Figure 2i-2l).

2.2.7 Diameter

The diameter of an MDP, i.e., the maximum distance between 2 states, is another significant
dimension of hardness affecting performance and reachability of states (Jaksch et al., 2010).
In our case, we define the diameter for the states of the NMRDP, i.e., the N -states. In MDP

5. The noise functions can actually be passed as Python lambda functions and the described normally
distributed noise is just the default setting.

6. An important detail to note is that in case the actions are noisy, the effects of these noisy actions are seen
in the resulting N -state trajectory and this is why in MDP Playground, we reward sequences of N -states
and not sequences of N -states and actions.
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(a) No transforms (b) Shift (c) Scale (d) Rotate (e) Flip

(f) All transforms (g) Irrelevant features (h) Irrelevant features and transforms

(i) Agent + Target (j) Agent at Target (k) Terminal (l) Irrelevant Features

Figure 2: (a)-(f): Discrete environments: When using the dimension of hardness repre-
sentations with image representations, each categorical N -state corresponds to an
image of a polygon (if the states were numbered beginning from 0, each N -state n
corresponds to a polygon with n+ 3 sides). Various transforms can be applied to
the polygons randomly at each time step. Samples shown correspond to N -states
3 and 0. (g)-(h): Discrete environments with irrelevant features: When
irrelevant features are enabled alongside image representations, an additional “irrel-
evant” image is stitched to the right of the relevant part and the same transforms
are applied to each part. (i)-(k): Continuous environments: When using the
dimension of hardness representations with image representations in continuous
environments, the agent is shown as a blue circle, the target point as a green
circle and terminal N -states are black. The agent is rendered after the target as
seen in the second sub-figure. (l): Continuous environments with irrelevant
features: As for the discrete environments, the relevant part with 2 dimensions is
the left half of the image and the irrelevant is the right half. The agent exists in
all 4 dimensions and is visible in both halves of the image while the target exists
in only the 2 relevant dimensions and is visible only in the left half.

Playground, for discrete environments, for diameter = d, the set of N -states is set to be a
d-partite graph, where, if we order the d sets as 1, 2, .., d, N -states from set i will have actions
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leading to N -states in set i+ 1, with the final set d having actions leading to N -states in
set 1. The number of actions for each N -state will, thus, be (number of states)/(d). This
gives the discrete environments a grid-world like structure. For continuous environments,
setting the dimension of hardness state space max sets the bounds of the N -state space to
±state space max and the diameter = 2

√
2 state space max.

2.2.8 Time Unit and Action Range

For continuous control problems, we now describe two dimensions of hardness together.
Firstly, action range (Kanervisto et al., 2020), or the action space, is the range of actions that
the agent may take. For example, in the Gym environment Pendulum, the action applied
is a scalar representing the torque applied to the free end of the pendulum and its range
is (−2.0, 2.0). The action range can be expected to have a significant impact on an agent’s
performance. For example, if the action range is too large, the exploration may take too
long to find the optimal actions. On the other hand, if, for example, one is designing an
MDP to solve a problem, if the action range is set to be too small, it may not contain the
desired actions one is hoping to optimise for. Similar to the action range, the time unit, the
discretisation of time (see Figure 1f) can be expected to have a significant impact on an
agent’s performance. For example, Biedenkapp et al. (2021) shows that there is an optimal
number of times an action needs to be repeated. Similar to the action range, having too small
a time unit would not capture such optima and having too large a time unit would lead to a
much harder exploration problem. The time unit, t, sets P (ns, a) = ns+

∫
t Pcont(ns, a) dt

where Pcont is the time-derivative of the dynamics function. The action range sets A ⊂ Ra
where a is the action space dimensionality. In order to avoid any confusion, we must clarify
here that it is not our intention to suggest that standardised or benchmark problem definitions
be changed to show new state of the art performances because changing the problem would
invalidate the benchmark. What we want to say is that: 1) if the problem definition is given,
e.g., a fixed action range, one might want to search in a subset of this range to learn quicker;
the RL algorithm could decide to do so on a meta-level as is done with, e.g., reward shaping
on a meta-level (Zheng et al., 2018; Hu et al., 2020; Zou et al., 2021); one could call it action
space shaping when doing it with the action space; 2) in some cases, the problem at hand may
not have been defined in a desirable manner, leading to solutions which the people trying to
solve the problem may not desire, and in such cases one might want to, e.g., in the case of a
fixed action range, search outside this range if physically possible. This second case is more
likely to occur for completely unknown or new environments where the problem definition
itself may be unclear. We believe there is a difference between the problem people want to
solve and the MDP formulation they use to write their problem in a way for standard RL
agents to work. For example, the discount factor, γ, is frequently treated as a hyperparameter
even though it is part of the MDP formulation and changing it changes the MDP being
solved (Xu et al., 2018; Tessler & Mannor, 2020; François-Lavet et al., 2015). As such, Xu
et al. (2018) tuned γ with meta-gradients to try and solve their target problem. Another
example is that of Runge et al. (2019). They aimed to learn to design RNA structures,
and formulated their MDP encoding such that it had hyperparameters that modified the
state space and shaped the reward function. These hyperparameters of the MDP could be
tuned alongside the RL algorithm’s hyperparameters in order to find a combination of MDP
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encoding and RL algorithm that solved the problem as well as possible; 3) finally, one might
just want to play around with problem definitions to observe the effects on their agents,
we do not propose that researchers release such results claiming that they improved the
performance on the original benchmark problem, but such studies can still yield insights into
the RL agent’s behaviour.

2.2.9 Target Radius

Finally, an additional dimension of hardness for continuous control problems we describe is
target radius (Klink et al., 2019) which is a measure of the distance from the target within
which we consider the target to have been successfully reached. This dimension of hardness
is a fairly common use-case in continuous control environments, e.g., in OpenAI Gym. The
target radius sets T = {ns | ‖ns− nst‖2 < target radius}, where nst is the target point.

We now summarise the dimensions of hardness identified above (with the (PO)MDP
component they directly impact in MDP Playground in brackets):

• Reward Delay (R, MS)
• Sequence Length (R,
MS)
• Reward Density (R)
• Stochasticity (P , R)

• Irrelevant Features (O)
• Representations (O)
• Diameter (P , NS)

• Time Unit (P )
• Action Range (A)
• Target Radius (T )

Only selected dimensions of hardness are included here, to aid in understanding and to
show use-cases for MDP playground. Trying to identify as many dimensions as possible has
led to a very flexible platform and Table 1 lists all the dimensions of hardness and important
configuration options of MDP Playground. We would like to point out that what dimensions
of hardness are important largely depends on the domain. For instance, in a video game
domain, a practitioner may not want to inject any kind of noise into the environment, if
their only aim is to obtain high scores, whereas in a domain like robotics adding such noise
to a deterministic simulator could be crucial in order to obtain generalisable policies (Tobin
et al., 2017). To maintain the flexibility of having as many dimensions of hardness as possible
and yet keep the platform easy to use, default values are set for dimensions that are not
configured. This effectively turns off those dimensions of hardness.

3. MDP Playground

MDP Playground consists of 4 components: 1) Toy Environments 2) Complex Environment
Wrappers 3) Experiments 4) Analysis. We now briefly describe the first two parts and
describe how to experiment and analyse with MDP Playground in detail in Section 6.

3.1 Toy Environments

The toy environments are Gym environments. They are cheap and encapsulate all the
identified dimensions of hardness. The components of the MDP can be automatically
generated according to the configured dimensions of hardness or they can be user-defined.
We discuss how the automatically-generated MDPs function in detail in Section 4 and the
corresponding algorithm in Algorithms 1 and 2 in Appendix B.3. Further, the underlying
Markovian M -state is exposed in an augmented_state variable, which allows users to design
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agents that may try to identify the true underlying MDP M -state given the observations.
Design decisions regarding the MDPs are discussed in detail in Section 5.

3.2 Complex Environment Wrappers

We further provide wrappers for Gym environments which can be used to inject many of the
dimensions of hardness into complex environments such as Atari, Mujoco, ProcGen (Cobbe
et al., 2020) or any other OpenAI Gym environment. These can be used to analyse agent
behaviour in response to such dimensions of hardness.

3.3 Code Sample

from mdp_playground.envs import
RLToyEnv, GymEnvWrapper
config = {

’state_space_type’: ’discrete’,
’action_space_size’: 8,
’delay’: 1,
’reward_noise’: 0.25,
}

env = RLToyEnv(**config)

ae = gym.make("QbertNoFrameskip-v4")
env = GymEnvWrapper(ae, **config)

An environment instance is created as
easily as passing a Python dict. Users
can set the values of dimensions in the
dict with one line of code for each di-
mension. As mentioned before, users
only need to provide dimensions they
are interested in. The rest are set to
vanilla values. By vanilla, we mean the
dimension being set to its default value
which turns it off in the case of most
dimensions, e.g., setting delay, d = 0
or sequence length, n = 1. Please see
Table 1 for a list of default values of the
dimensions. In the code sample below,
we create a toy and a complex environ-
ment using the wrapper with the same

dimensions of hardness.

3.4 Experiments and Analysis

The GitHub repository7 describes how to run experiments and how to analyse them with
plots in a Jupyter Notebook. Section 6 describes some experiments and analyses of this kind.

3.5 Very Low-Cost Execution

Toy experiments with MDP Playground are cheap, allowing academics without special
hardware to perform insightful experiments. Wall-clock times depend a lot on the agent,
network size (in case of NNs) and the dimensions of hardness used. Nevertheless, to give the
reader an idea of the runtimes involved, DQN delay experiments from Section 6 performed
using Ray RLLib (Liang et al., 2018) with a network with 2 hidden layers of 256 units each)
took on average 35s for a complete run of DQN for 20 000 environment steps. In this setting,
we restricted Ray RLLib and the underlying Tensorflow to run on one core of a laptop
(core-i7-8850H CPU – the full CPU specifications can be found in Appendix H). This equates
to roughly 300 minutes for the entire delay experiment shown in Figure 9a which was plotted

7. https://github.com/automl/mdp-playground
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using 500 runs (100 seeds × 5 settings for delay ; these 500 runs could also be run in an
embarrassingly parallel manner on a cluster e.g. in less than 2 minutes with 500 CPU-cores
in total with one core for each seed). Even when using the more expensive continuous or
image representation environments, runs were only about 3-5 times slower.

4. MDPs in MDP Playground

In this section, we provide a more bottom-up/implementation-oriented presentation of MDP
Playground and its dimensions of hardness. We begin with describing the discrete toy
environments (corresponding algorithm in Algorithm 1 in Appendix B.3). We then describe
the continuous toy environments (corresponding algorithm in Algorithm 2 in Appendix B.3).
Finally, we describe the complex environment wrappers.

4.1 Discrete Toy Environments

In the discrete toy environments, NS consists of the set of states of the system, i.e., it
contains no history. For diameter = d, NS is set to be a d-partite graph, where, if we order
the d sets as 1, 2, .., d, N -states from set i will have actions leading to all N -states in set i+ 1,
with the final set d having actions leading to all N -states in set 1. The number of actions
for each N -state is, thus, (number of states)/(d). In setting the configuration, the user sets
action space size (which is equal to the size of each independent set) and the diameter, which
indirectly sets the size of NS. The N -states are labelled from 0 to ‖NS‖ − 1 which we term
global labelling. The N -states in each independent set are labelled from 0 to ‖NS‖/d − 1
within that set ( this is obtained by modulo division of the global label with ‖A‖ which we
term local labelling. They are categorical in that they are not ordered. As such, elements of
both NS and A are 1-dimensional integers. In the case of the vanilla environment, N -states,
M -states and observations coincide. The terminal N -state density can also be set by the
user. The initial state distribution, ρ0, is currently fixed to be uniform over the non-terminal
N -states. The environments’ episodes are restricted to a maximum of 100 timesteps by
default. As an example, Figure 3 shows a discrete toy environment with 6 N -states in total,
partitioned into sets of 2 each. Please see the text in the figure caption for details on the
example.

Based on the value the reward density rd and the sequence length n are set to, automatic
generation of the MDP leads to randomly selecting brd∗number of possible sequencesc (where
b c denotes the floor function) of non-repeating N -state sequences of length n to be rewardable.
While there are transitions possible to terminal N -states, the reward density and sequence
lengths only consider non-terminal states to determine rewarding sequences, allowing for
(‖NS‖−‖T‖)!

(‖NS‖−‖T‖−n)! sequences. The reward handed out for following a rewardable sequence is 1.
Based on the value the reward delay d is set to, we delay the reward at any timestep to be
handed out d steps later. In the case of reward delay and sequence lengths, the N -states
remain the same as for the vanilla environment, but theM -states consist of N -state sequences
of length n from d timesteps in the past. The observations remain the same as the N -states.
Finally, when make_denser is True for discrete toy environments, the environment gives a
fractional reward if a fraction of a rewardable sequence is achieved and it does so for all the
possible rewardable sequences an agent is currently on.
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An additional point to note about episodic rewards in the presence of delay and sequence
length in the toy environments is that the optimal episodic reward changes in the presence of
these dimensions of hardness. In the case of delays, an agent cannot get the delayed reward
at the end of an episode if the episode terminates before the delayed reward is handed out.
In the case of sequence lengths, it is a bit tricky to handle rewardable sequences because
the agent might be on multiple rewardable sequences at the same time and it is a very hard
problem to determine the optimal episodic reward for larger sequence lengths in such cases.
Since we are usually concerned only with agents trying to execute non-overlapping rewardable
sequences, we provide the option reward_every_n_steps which is turned on by default.
With this option, we hand out rewards for executing a rewardable sequence only if it finishes
executing in a timestep of the environment that is divisible by n if the sequence length is n
and there is no reward handed out if a rewardable sequence is completed at other timesteps
(this does not affect other dimensions, e.g., there may be independent reward noise after every
step or a terminal state reward at the end of the episode as described later). This means that
even if the agent is on multiple rewardable sequences at once, they only get rewarded for one
of them and the optimal episodic reward for the toy environment with 100 steps is 100/n.
For example, suppose the sequence length were 4. If an agent in N -state ns0 at timestep 0
started executing a rewarding sequence and then reached N -states ns1, ns2, ns3 which are
all also the starting points of other rewarding sequence, it could then be on 4 rewarding
sequences at once for the given sequence length of 4. If the agent successfully executes all 4
sequences, it could be rewarded at timesteps 4, 5, 6 and 7 (if reward_every_n_steps were
False). This complicates the optimal reward calculation because given all the generated
rewarding sequences, it would be hard to calculate the optimal sequence of overlapping
rewarding sequences the agent needs to be on. However, if reward_every_n_steps were
True, the agent would only be rewarded after every nth step, so only after step 4 in the above
example. As a result, the optimal reward calculation in this case is fairly easy. It would
be the episode length, i.e. 100, divided by n. This holds even when the diameter is > 1,
because an equal number of rewarding sequences per independent set of N -states is selected.
However, this does change the reward scale of the optimal episodic reward. To combat these
changing episodic reward scales, we normalise the plots to have episodic reward scales of 100.
This normalisation will be described in Section 6.

Transition noise t_n sets the fraction of times we transition to a connected N -state that
is not the true next N -state as defined by the transition function P for the current N -state,
ns and action a. In the presence of diameter, this means that the next N -state belongs to the
next independent set. Reward noise σr_n adds a normally distributed reward with standard
deviation σr_n to the obtained reward at each time step. Stochasticity, thus, affects all of
N -states, M -states and the observations.8.

When irrelevant features are turned on, the user sets the action space size with a list
of length 2. The first number in the list is used as the normal/relevant action space size as
specified above. The second number is used in the same way to set the irrelevant action space
size and the size of the irrelevant N -state space size using the same diameter as for the relevant

8. Since the noise generation process is based on a pseudo-random number generator (PRNG), one could in
principle claim that the M -state should, in the case of stochasticity have, additionally, the state of the
PRNG as well because the next M -state depends on it. However, our intent is to treat the noise as true
noise and, as such, we ignore this technicality.
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spaces. The N -states and observations have the additional irrelevant dimension appended to
the original N -states and observations, respectively. The M -states in this case are unchanged
from when irrelevant features would be turned off. The dynamics function associated with
the sub-space relevant to the reward, Prel and the dynamics function associated with the
sub-space irrelevant to the reward, Pirr, are independent of each other. They are concatenated
together to form the dynamics function, P associated with the NMRDP. The dynamics
associated with the MDP, however, are only Prel9. The irrelevant sub-space also does not
have any terminal states. Finally, the same transition noise is applied to the irrelevant
sub-space as the relevant sub-space.

When turning on image representations, the observations become 2-dimensional greyscale
images. The integer representation, n, of the underlying N -state space is associated with
a polygon of n + 3 sides as shown in Figure 2 and this is used as the observation10. This
polygon is displayed in the centre of a 100× 100 pixel image with the radius of the circle
which circumscribes the polygon as 20 pixels. Turning on image representations changes
only the observations. All of the dimensions of hardness discussed so far remain largely
the same, otherwise. For example, the transition noise is only applied when transitioning
within the underlying N -state space. There is no additional noise in the image space, when
transition noise is turned on, due to image representations also being turned on. In the case
of irrelevant features also being turned on at same time as image representations, however, it
may be ambiguous as to how image representations of the relevant and irrelevant sub-spaces
are concatenated. In this case, we do so along axis 0, i.e., the “X-axis” of the image (in
other words, width-wise) with the relevant part always being on the left side of the image.
Additionally, in the case when the diameter is > 1, there is more than one independent set
and it may be ambiguous as to whether the global or the local label is used to create the
polygons in the default image representations. We do so using the global label to be able to
distinguish different N -states visually.

As image observations are associated with different kinds of transforms such as shift,
scale, rotate and flip, we allow these transforms to be applied when image representations are
turned on. While the default observation is of a polygon centred in the image with a fixed
size, further turning on these transforms results in the observations associated with the same
underlying N -state to vary as shown in sub-figures 2b-2f.11 This allows the representation
learning aspect of the environment to potentially also be made harder. We also allow the
quantisation of the shift and rotate transforms and the range of the scale transform to
be adjusted to have more fine-grained control over these. Finally, in the case of irrelevant
features also being turned on at the same time as transforms for image representations, we
apply the same transforms to the irrelevant part of the image as to the relevant part and
then concatenate along the “X-axis” of the image with the relevant part always being on the
left side of the image.

9. One could, naturally, also change the M -states and MDP to include the irrelevant features and still
remain Markovian. However, in our MDP, we have decided to retain the minimal amount of information
needed to obtain rewards.

10. Since the above image representations might only be useful for vertex detectors of polygons, we allow
users to provide a directory with custom images that can be used as the representations for the N -states
in case they have better ideas to test the representation learning aspect of their algorithm.

11. We take care that the polygon does not translate out of the image and also print warnings in case the
polygon size ends up being “too small” or “too large”.
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Figure 3: An example discrete toy environment with 6 N -states with diameter = 312, divided
into 3 independent sets with 2 N -states each. Each N -state has 2 possible actions
in its action space. The N -states have the set index for the set they belong to as
superscript and the N -state index within the set (the local label as described in
the text) as subscript. The actions have, additionally, the action index for the
N -state they belong to as a second subscript. From each N -state in set 1, one can
take an action to enter each N -state in set 2. The reward density is set to 1/6 and
the sequence length to 1. Based on these settings, N -state sequences of length 1
would be rewardable, i.e., one needs to reach a rewardable N -state to obtain a
reward of 1. Automatic generation of the MDP leads to randomly selecting 1 out
of the 6 N -state sequences of length 1 being picked as rewardable. In this example,
this leads to the only rewarding transitions being from ns10 to ns20 and ns11 to ns20
with the rewardable sequence of N -states being ns20. The edges to it are labelled
with reward R = 1, all other rewards are 0. Not all edges are labelled to avoid
clutter. Not all dimensions of hardness and no terminal N -states are included here
for simplicity.

Finally, the reward scale scales the (possibly noisy) reward at each time step. After this,
the reward shift is added to the reward at each time step. The terminal state reward scaled
by the reward scale is added to the reward at the end of the episode.

12. The diameter is 3, and not 2 as may seem at first sight, because the route from a starting vertex to the
other vertices in the same set are of minimum length 3.
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The Gym environment returns observations as is usual. We, additionally, also return
the whole N -state sequence starting from d+ n+ 1 time steps in the past in Gym’s info
variable, so that the agent might use these to validate its learning in different ways, e.g.,
checking if it can create the underlying M -state given the observation.

4.2 Continuous Toy Environments

We now describe the continuous toy environments in MDP Playground.
The continuous toy environments consist of a point mass which is controllable using the

agent’s actions. The user can set the mass of the system using the inertia configuration of
the system. Similar to the discrete environments, NS consists of the (non-Markovian) state
of the system. In the case of the continuous toy environment, the elements of NS and A
belong to Rndim where ndim is the dimensionality of the system, which is set by the user. The
user also sets the bounds of the system by setting the state space max and action space max
options. The dimensionality of NS and A is equal and each action dimension controls each
N -state space dimension. The user can set the transition dynamics order, nP , of the system.
This sets an action a, when applied, to set the nthP order derivative of the position of the mass
divided by the inertia for time unit seconds. In the simplest case of nP = 1 and inertia = 1,
this sets the velocity of the point mass. Or, for example, in the case of nP = 2, this sets the
acceleration of the point mass. The time unit, t, then sets P (ns, a) = ns+

∫
t Pcont(ns, a) dt

where Pcont is the time-derivative of the dynamics function. In this case where a is constant
for a fixed timestep, for current N -state, ns, the equations of motion can be analytically

derived in closed form to be nsit+1 =
nP−i∑
j=0

nsi+jt · 1
j! · time_unit

j where an integer in the

superscript represents the order of the derivative and not exponentiation. For example, if
nP = 1, the equation is ns = ns + ns1 ∗ t, i.e., the next N -state is equal to the current
N -state plus ns1 where ns1 = a/inertia, is set equal to the action, a. As in the case of
discrete toy environments, the continuous toy environments’ episodes are restricted to a
maximum of 100 timesteps by default.

The reward function of the continuous environments is such that there is a target point
that needs to be reached. The difference between the distance of the current N -state from the
target point and the previousN -state from the target point is handed out as the reward at each
time step.13 Terminal N -state regions can be set by the user by providing terminal_states
which are ndim-dimensional points that specify centres of hypercube sub-spaces. Entering
these hypercubes ends the episode.14 The length of the side of the hypercube is set by
term_state_edge. The initial N -state of the system is set to be sampled uniformly from
non-terminal regions of the space.

13. There is an additional reward function, moving along a line as opposed to moving to a (target) point but
this is still in the experimental phase. This is an attempt at having a sequential task in the continuous
environment and is described in the experimental dimensions section in Appendix A.

14. The reason sub-spaces are used to implement terminal states in the continuous toy environments, as
opposed to randomly sampling them from the whole N -state space as is the case with the discrete toy
environments, is that, in principle, randomly sampling terminal states in continuous spaces would mean
they are virtually impossible for the agent to reach. In practice, though, due to the finite precision of
floating point numbers, one could contemplate doing the latter. However, we believe it would be a lot of
overhead for little gain and so decided to not implement it in this manner.
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The reward delay in the continuous toy environments works as in the discrete ones. The
sequence length is variable for the task of reaching a target point and depends on the actions
taken, so it cannot be set by the user. The reward density can be controlled in the sense
of whether the reward is handed out after each time step or only once the target point is
reached. This is done by turning the configuration option make_denser on or off. The
transition noise differs from the discrete environments. The transition noise, σt_n, and
reward noise, σr_n, both add normally distributed noise with standard deviation σt_n or
σr_n to the N -state or reward, respectively, at each time step. Stochasticity, thus, affects all
of N -states, M -states and the observations.

Irrelevant features can be specified by using the relevant indices option and specifying
a dimensionality of the system, ndim, which is greater than the number of relevant indices.
So, the continuous environments can have more than 1 relevant dimension and more than 1
irrelevant dimension. In contrast to the discrete toy environment, the relevant and irrelevant
parts have the same transition dynamics. The only difference between the relevant and
irrelevant parts in the continuous case is that the former are considered for calculating
the reward, i.e., the dimensionality of the target point is equal to the number of relevant
dimensions and the agent needs to try and reach the target point in the relevant sub-space
of the system. The irrelevant sub-space also does not have any terminal regions. Irrelevant
features, thus, affects the N -state and observations but the M -states are unchanged from
when irrelevant features would be turned off.

Image representations are only available for 2-dimensional spaces. They represent the
point mass as a blue circle with radius 5 pixels and the target point as a green circle with
radius 5 pixels. Terminal regions are represented as black and the background is grey as
shown in Figures 2i-2l. They only change the observations of the system and do not affect
the N -states or the M -states. In case irrelevant features are also turned on, as in the case
of the discrete environments, there are relevant and irrelevant parts to the image that are
stitched together along the “X-axis” with the relevant part on the left (each part is fixed
to be 2-dimensional). We do not allow transforms for image representations for continuous
environments as there would be no way to distinguish between an action and a shift transform.

The target radius is the distance from the target point where it is considered to have
been reached. In addition to the user set terminal regions, reaching the target point ends the
episode. The action space max option mentioned above sets the action range of the system.
The user can additionally also opt to add an action loss weight to penalise the L2-norm of
the actions taken during the control task. This subtracts the action loss weight multiplied
by the L2-norm of the action from the reward at the current time step.

Finally, the reward scale, reward shift and terminal state reward work in the same way
as for the discrete toy environments.

4.3 Complex Environment Wrappers

We now describe the complex environment wrappers which allow a subset of the dimensions
of hardness of MDP Playground to be controlled in complex environments such as Atari,
Mujoco and Procgen. They function in largely the same way as the toy environments, however,
they only implement a subset of the dimensions of hardness. An overview of which of these
are implemented for complex environments can be found in Table 1.
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The reward delay works the same way as in the toy environments, except towards the end
of the episode, when any delayed reward that was not yet handed out is handed out at the
end of the episode. This is to maintain the same episodic reward scales for the environment
when comparing across delays. For the toy environments we decided to normalise the episodic
rewards post hoc (i.e., only in the plots) and not hand out all the delayed reward at the end of
an episode because 1) we know the optimal rewards for the toy environments whereas we do
not know the optimal rewards for complex environments; 2) rewards in the toy environment
experiments we performed were much denser than the complex environments and handing
out all the delayed reward at once in the toy environment would bias the terminal samples
stored in the replay buffer a lot compared to the complex environments.

The transition noise for discrete environments is applied by choosing an action that is not
the selected action from the action space.15 The transition noise for continuous environments
and the reward noise for both discrete and continuous environments are applied in the same
way as for the toy environments. The irrelevant features for continuous environments creates
a toy continuous environment (with the same dynamics as the ones described above and
with its own dimensions of hardness which are set to their defaults if not set) whose N -states
are appended to the N -states of the continuous environment for every transition and whose
reward is ignored. The reward scale, reward shift and terminal state reward work in the same
way as for the toy environments.

The action range and time unit wrappers are specific to Mujoco. For both of these
dimensions of hardness, the scalar value passed in the configuration is used to multiply the
base environments’ default values for that dimension of hardness. With respect to the action
space max (which controls the action range), the new action range is achieved by multiplying
the base Gym Mujoco environments’ action_max and action_min by the action space max
passed in the configuration for the wrapper. This works with any Mujoco environment.

With respect to the new time unit, it is achieved by multiplying the base Gym Mujoco
environments’ frame_skip and not Mujoco’s internal timestep. This means that if the base
environments’ frame_skip is 5, for example, the smallest new time unit achievable using our
wrapper would be 1/5 times the default time unit of the base environment and that larger
time units would be integral multiples of this smallest achievable time unit. We decided not
to achieve the new time unit by modifying Mujoco’s internal timestep, although this would
have technically been possible, because that would change the numerical integration done by
Mujoco and thus would introduce more noise into the dynamics of the environment. Further,
while this wrapper also works with any Mujoco environment in the way described above,
we would advise the reader to be careful that this might interfere with the reward function
of the base environment. For the environments HalfCheetahV3, Pusher and Reacher, since
changing the time unit to be 5 times smaller, for example, means that we get 5 rewards in
the original amount of real time per time step and these rewards are of the same scale, we
multiply each of the 5 rewards by 0.2 to achieve episodic reward on the same scale as the
original environment. For HalfCheetahV3, for example, the rewards are of the same scale in
the new time unit because its reward consists of 2 parts: the velocity and the control cost.
So, for a given velocity and given applied control having rewards 5 times more frequently

15. The transition noise for the discrete complex environments wrappers is modelled in the action space and
not in the state space (as was the case for the toy environments), as it is not possible to know all the
possible next discrete states in advance for the complex environments.
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Table 1: Dimensions of hardness and additional configuration options in MDP Playground
with default values. For the wrappers, + next to a Xsignifies that the dimension
only works on the continuous case, ∗ that it only works on continuous Mujoco
environments. (Note: Formatting and colour of the text: bold dimensions sig-
nify applicability on both continuous and discrete toy environments, plain text:
only on discrete toy, italic: only on continuous toy, coloured ones have wrappers
implemented: blue: the wrappers can be used any environment, red: only with
continuous environments, green: only with Mujoco environments.)

Dimension of Hardness Discrete Continuous Wrapper Default

Reward Delay X X X 0
Sequence Length X 1
Reward Density X 0.25
Transition Noise X X X 0
Reward Noise X X X 0
Irrelevant Features X X X+ False
Image Representations X X False
Image Transforms X None
Reward Scale X X X 1
Reward Shift X X X 0
Make denser X X False
N -State space size, ‖NS‖ X 8
Action space size, ‖A‖ X 8
Reward every n steps X True
Diameter X 1
Terminal state density X 0.25
Terminal state reward X X X 0
Target Radius X 0.05
Target Point X Origin
N -State Space Range X [-10, 10]
Action Range X X* [-1, 1]
Time Unit X X* 1
Action Loss Weight X 0
Initial State Distribution X X Uniform over non-terminal

states
Transition Dynamics Order X 1
Inertia X 1
Terminal regions X Circle of radius target ra-

dius around target point
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in the original real time step would mean a reward scale that is 5 times greater and so
the need for the correction. Pusher and Reacher have similar reasoning and, therefore, we
would caution the user to be careful when setting the time unit dimension of hardness in the
complex Mujoco wrapper16.

5. Design Decisions for Toy Environments

We now discuss some of the design decisions underlying the toy environments to shed more
light on their design.

5.1 Discrete Environment Generation

Once the values for the dimensions of hardness are set, for the case of auto-generated discrete
toy environments, as mentioned above, P is generated by selecting for each N -state ns in
independent set i, for each action a, a random successor state ns′ from independent set
i+ 1. This results in a regular grid-world like structure for P . For R, we select the numr

rewardable sequences randomly for a given reward density rd based on all the sequences
possible under the generated P . A motivating reason for unit testing in such a regularly
structured environment is that all the RL agents we are aware of do not themselves take the
structure of the environment into account and are designed for general P s and Rs. Because
of this, once the toy environment’s dimensions are set, the structure of the environment is set
and the agents should show similar behaviour on all such environments and this is exactly
what we observed in our experiments when run with different seeds for the environment
generation.

5.2 Regular Structure for Unit Tests

In principle, it is always possible to design adversarial P s (Nau, 1983; Ramanujan et al.,
2010) which can be made arbitrarily hard to solve. Suppose there is an environment where
a large reward is placed in an unknown and deliberately unexpected location. For many
use cases, evaluating an agent on such an environment may give us a misleading measure
of the type of agent intelligence we are hoping to measure. This is, in some cases, also a
problem with many complex environments, e.g., HalfCheetah has a bug that allows the agent
to reach infinite speed and obtain enormous rewards (Zhang et al., 2021). qbert has a bug
which allows the agent to achieve a very large number of points (Chrabaszcz et al., 2018).
breakout has a scenario where, if an agent creates a hole through the bricks, it can achieve a
very large number of points. Even though the latter can be a sign of desired behaviour, it
skews the distribution of rewards and introduces a lot of variance in the evaluation. There is
the additional danger that the blackbox nature of complex environments can lead researchers
to draw inferences that may be biased by their intuition (Kirkebøen & Nordbye, 2017). For
example, the agent strategy of creating a tunnel to target bricks in the top for breakout
has been challenged multiple times (Atrey et al., 2020; Tosch et al., 2019). As Irpan (2018)

16. A similar concern does not exist for the toy continuous environments because in that case, the reward is
the amount of distance moved from the current position to the target point. So even if the time step
is made smaller, the reward scale becomes proportionally smaller because the agent can only travel
proportionally smaller distances towards the goal on average in smaller timesteps.
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sums it up: If my reinforcement learning code does no better than random, I have no idea if
it’s a bug, if my hyperparameters are bad, or if I simply got unlucky. Thus, having a very
complex P or R itself can introduce “noise” into the evaluation of agents and require many
iterations of training before we can see the agent learning. For unit testing, especially, such
complexity and variance in evaluation is likely undesirable. One needs quick insights on
whitebox environments and thus, we believe it is beneficial to have a simple and regular
structure.

Finally, a more regular structure is imposed as opposed to the usual gridworld because,
though, semantically meaningful, such gridworlds have small irregularities around edges
which makes them hard to keep consistent with all the other dimensions and begins to
introduce the kind of “noise” that was discussed for more complex environments above.

5.3 Independently Controllable Dimensions

Algorithms like DQN (Mnih et al., 2015) have been applied to many varied environments
and produce very variable performance across these. In some simple environments, DQN’s
performance exceeds human performance by large amounts, but in other environments, such
as Montezuma’s revenge, performance is very poor. For some of these environments, e.g.
Montezuma’s revenge, we need a very specific sequence of actions to get a reward. For others,
there are different delays in rewards. A problem with evaluating on these environments
is that we have either no control over their difficulty or little control such as with having
different difficulty levels. But even these difficulty levels do not isolate the confounding
factors that are present at the same time and do not allow us to control the confounding
factors individually. We make that possible with our dimensions. We do not try to capture,
say credit assignment or generalisation as dimensions because these are not independently
controllable. They are to be dealt with at a higher level, something that is like an integration
test, rather than a unit test.

6. Experimenting with MDP Playground

We now discuss in detail how to experiment on MDP Playground to understand and debug
agents.

6.1 Experimental Setup

We used the following experimental setup for this section. Agents: We evaluated Rllib
implementations (Liang et al., 2018) of DQN (Mnih et al., 2015), Rainbow DQN (Hessel
et al., 2018), and A3C (Mnih et al., 2016) on discrete environments and DDPG (Lillicrap
et al., 2016), TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018) on continuous
environments over grids of values for the dimensions of hardness. The information state used
by the agent was always the observation given out by the environment. Hyperparameters
(including neural network architectures used) and the tuning procedure used are specified in
Appendices F and G. We used fully connected networks except for image representations
where we used Convolutional Neural Networks (CNNs).
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6.1.1 Environments

For the discrete toy experiments, we created a simple toy task with ‖S‖ and ‖A‖ set to
8. The diameter was set to 1. Thus, an agent could transition from an N -state to every
other N -state. The reward density was such that when the sequence length was 1, only one
sequence of a single N -state was rewarding, so that the task in the vanilla environment was
as easy as choosing the right action to reach the rewarding N -state at every time step. For
the continuous toy experiments, we set the state and action space dimensionalities to 2.
The state space range for each dimension was [−10, 10] while the default action space range
was [−1, 1]. The episodes would terminate when an algorithm would reach the target point,
or after at most 100 timesteps. The agent had to reach the same target point [0, 0], from
random starting positions. For these toy experiments, the dimension under consideration
had a grid of values, each of which is shown in the figures for the corresponding experiment
below. All other dimensions of hardness were set to their default values mentioned in Table
1. We evaluated 100 seeds for each of these experiments. We ran the DQN variants for
20k timesteps and A3C for 150k timesteps. The reason for selecting a different number of
timesteps was dependent on how long it took for the different agents to converge and is
discussed further in Appendix B.1. We ran all the continuous control task agents for 20k
timesteps. For the complex experiments, we used Atari and Mujoco. For Atari, we ran the
agents on Beam Rider, Breakout, Qbert and Space Invaders. For Mujoco, we ran the agents
on HalfCheetahV3, Pusher and Reacher using mujoco-py. We evaluated 5 seeds for 10M
steps (40M frames) for Atari, 500k steps for Pusher and Reacher and 3M for HalfCheetah.

6.1.2 Analysis

For the experiments with toy environments, in the presence of delay and sequence length,
we normalise the plots so that the optimal episodic reward is 100. For delay, we do so
by multiplying the episodic reward by 100/(100 − delay). For sequence length, we do so
by multiplying the episodic reward by the sequence length, n. In the bar plots, we plot
the Area Under the Curve (AUC) of the training curves. As a result, the reward scales
between the learning curves and bar plots would differ. For all bar plots, we apply Bonferroni
corrections (Colas et al., 2018) for a significance level of 0.05 (Bonferroni corrections adjust
the significance level of 0.05 as 0.05 / (number of comparisons being performed), e.g. 0.05/

(
5
2

)
if there are 5 bars in a plot).

6.2 Understanding Existing Agents

We hope our platform can help analyse and understand RL agents much better, especially due
to the ease of performing experiments with fine-grained control over the injected dimensions
of hardness. We first describe an experiment where experiments on toy environments alone
led us to interesting insights. We then describe some experiments where we compare and
contrast the performances on the toy and complex environments for further interesting
insights.
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Figure 4: AUC of episodic reward at the end of training for the different agents when varying
image representation transforms on the discrete toy environments. ‘s’ denotes
shift, ‘S’ denotes scale, ‘f’ denotes flip, ‘r’ denotes rotate and ‘sSrf’ denotes all
4 of these transforms in the X-axis ticks in the first three sub-figures and Shift
Quantisation in the fourth sub-figure represents quantisation (in pixels) of the shifts
in the DQN experiment for this. Error bars represent bootstrapped confidence
intervals with Bonferroni corrections for a significance level of 0.05.

6.2.1 Image representations

As an example of what a researcher might want to experiment with, MDP Playground allows
turning on image representations for the categorical states in the discrete toy environments.
It further allows applying transforms to these images to have multiple possible representations
for the same state. We applied various transforms (shift, scale, rotate and flip) one at a time
and also all at once to study the effects of these. We observed that the more transforms
that are applied to the images at once, the harder it is for agents to learn, as can be seen in
Figures 4a-4c. This was to be expected since there are many more combinations to generalise
over for the agent.

However, it was unexpected to us that the most difficult transform for the agents to deal
with was shift. Despite the spatial invariance learned in CNNs (LeCun, 2012), our results
imply that this variation seems to be the hardest one to adapt to. The results seemed to
suggest that the more the total different values that are possible for a transform, the harder
it is to adapt to. Shift had the most possible different values that could be applied to the
images as compared to the other transforms. This fact seems to suggest that at least some
amount of memorisation is taking place in the NNs.

As these trends were strongest in DQN, we evaluated further ranges for the individual
transforms for DQN. Therefore, we quantised the shifts to have fewer possible values. Figure
4d shows that DQN’s performance improved with increasing quantisation (i.e., fewer possible
values) of shift. We noticed similar trends for the other transforms as well, although not as
strong as they do not have as many different values as shift (see Figures 18a-18b in Appendix
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Figure 5: AUC of selected metric at the end of training for DDPG (a): episodic reward with
time unit on the toy environment (b): episode length with time unit on the toy
environment. (c): episodic reward with action range on the toy environment (d):
episode length with action range on the toy environment. (e): episodic reward
with time unit on a complex (HalfCheetah) environment (time unit values are
relative to the defaults). (f): episodic reward with action range on a complex
(HalfCheetah) environment (action range values are relative to the defaults). Error
bars represent bootstrapped confidence intervals with Bonferroni corrections for a
significance level of 0.05.

B). We emphasise that in a more complex setting, we would have easily attributed some of
these results to chance but in the setting where we had individual control over the dimensions
of hardness, our platform allowed us to dig deeper in a controlled manner.

6.2.2 Time unit and Action Range

As another example of a dimension of hardness a researcher might be interested in controlling,
MDP Playground allows varying the time unit of how often the agent acts in a continuous
environment. We varied this dimension of hardness in the toy continuous environment
and observed that the time unit has an optimal value which has a significant impact on
performance (Figure 5a for DDPG; and Figures 28c and 28b in the appendix for SAC and
TD3). The time unit can be neither too small nor too large since there is an optimal time unit
for which we should repeat the same action (Biedenkapp et al., 2021). Based on this finding,
we also analysed the time unit for complex environments (Figure 5e, Figures 34d-34f, 35d-35f
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Figure 6: AUC of selected metric at the end of training for DDPG when varying target
radius on the toy environment (a): episodic reward (b): episodic length. Error
bars represent bootstrapped confidence intervals with Bonferroni corrections for a
significance level of 0.05.

and 36d-36f in the appendix), finding similar results on all environments. In fact, for all
three agents, (Figures 5e, Figures 34f and 34e in the appendix), we see peak performance on
HalfCheetah for a time unit 0.4 smaller than that of the expert-designed vanilla environment.
There were gains of even 100% in performance in some cases. We emphasise again that we
do not advocate modifying the problem definition of such benchmark problems to claim new
state of the art results, but rather for analysing problems. A further insight to be had is
that for simpler environments like the toy, Pusher and Reacher, the effect of the selection of
the time unit was not as pronounced as for a more complex environment like HalfCheetah.
This makes intuitive sense as one can expect a narrower range of values to work for more
complex environments. This shows that it may be even more important to study the effect
of such dimensions of hardness for more complex environments, especially when defining the
problem for a completely new task.

We observed similar trends for action range as for time unit, in that there was an optimal
value of action range, i.e., that it can be neither too small nor too large. For the toy
environment, please see Figure 5c for DDPG and Figures 27c and 27b in the appendix for
SAC and TD3. Similarly as for time unit, more pronounced trends for action range can be
seen for HalfCheetah in Figure 5f for DDPG and in Figures 34b-34c for TD3 and SAC in the
appendix. Figures 35a-35c and 36a-36c in the appendix show trends largely similar to the toy
environment for all three agents on Pusher and Reacher. This supports the insight gained
on our toy environment that setting this value differently may lead to significant gains for an
agent. Similar to the time unit, in the expert-designed environment setting of Reacher in
Gym, we found that all three algorithms performed best for an action range 0.25 times the
value found in Gym (Figures 36a, 36b, 36c in the appendix). The difference in performances
across the different values of action range is much greater in the complex environments. We
believe this is due to correlations within the multiple degrees of freedom as opposed to a
rigid object in the toy environment.

To the best of our knowledge, the impact of time unit and action range while developing
agents and defining problems is under-researched because the standard benchmark environ-
ments have been pre-configured by experts. From the above discussion, it is clear that playing
around with pre-configured values can lead to new insights even in known environments and
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Figure 7: AUC of episodic reward for DQN at the end of training when varying transition
noise (a): on the toy environment while training. (b): on the toy environment
when rolling out the policy that was learned on the noisy environment on a noise-
free setting (c) on Breakout. Error bars represent bootstrapped confidence intervals
with Bonferroni corrections for a significance level of 0.05.

that we need to pay attention to these dimensions of hardness in a completely unknown
environment when defining the MDP formulation of a problem, if we want agents to perform
as desired. And even when the problem definition is set, one might still want their agent to
search within a subset of the action range or want their agent to repeat actions over multiple
timesteps (Biedenkapp et al., 2021).

6.2.3 Target Radius

The target radius is a value which is generally set to a small enough value to be able to say
that the algorithm has reached the target. We noticed in the continuous toy environment that,
for small values of the target radius, all the continuous control agents oscillated around the
target while trying to reach it exactly. This can be observed in Figure 6a and 6b for DDPG
(and in Figures 26b and 26e for TD3 and Figures 26c and 26f for SAC in the appendix),
where we note that even though the task was learnt for different target radii, the episode
lengths were much longer for shorter target radii. This was because the agents kept oscillating
outside the target radius. Even for such a simple task all evaluated algorithms failed to
adapt to performing fine-grained control near the target. We believe that the agents did not
learn to perform fine-grained control close to the target because the agents need to see data
points closer to the goal to train their NNs, which highlights how data intensive model-free
algorithms can be.

6.2.4 Transition and Reward Noise

Experimenting with transition noise and reward noise allowed us to observe that performance
dropped on the toy environments for all agents as one might expect (Figure 7a and 8a;
Figures 21-22 in the appendix). Performance degrades gradually as more and more noise is
injected. It is interesting that, during training, all the algorithms seem to be more sensitive
to noise in the transition dynamics compared to the reward dynamics: transition noise values
as low as 0.02 lead to a clear handicap in learning while for the reward dynamics (with the
reward scale being 1.0) reward noise standard deviation of σr_n = 1 still resulted in learning
progress.
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Figure 8: AUC of episodic reward for DQN at the end of training when varying reward
noise (a): on the toy environment while training. (b): on the toy environment
when rolling out the policy that was learned on the noisy environment on a noise-
free setting (c): on Breakout. Please note that this run on Breakout had reward
clamping turned off, which is on by default in Ray and thus had a very different
episodic reward range compared to runs with other dimensions of hardness on
Breakout. Error bars represent bootstrapped confidence intervals with Bonferroni
corrections for a significance level of 0.05.

Interestingly, when we look at the performances on the noisy environment versus when
rolling out the policy that was learned on the noisy environment on a noise-free setting for
transition noise in Figures 7a and 7b (Figures 21 and 23 for all agents in the appendix), we
see that the training performance of the algorithms is more sensitive to noise during training
than the eventual performance of the same policy on the noise-free setting. It is a non-trivial
insight that injecting noise into the transition function still leads to good learning for the
noise-free version of the transition noise environment (as displayed in the noise-free rollout
plots). A second interesting insight is when comparing the above pairs of figures from the
transition noise environments to the corresponding ones for the reward noise versions of the
environments Figures 8a and 8b (Figures 22 and 24 for all agents in the appendix). We
observe that injecting noise into the reward function does not lead to good learning for the
noise-free version of the reward noise environment. This is in contrast to the insight from
the transition noise versions of the environments. We conjecture that this could be due to
the noise from different noisy transitions in the replay buffer/training data cancelling each
other out in the gradient-based updates while learning for the transition noise but not for
the reward noise. It could also be that transition noise helps the agent explore more while
reward noise does not.

We observed also for the Atari environments for all three agents that performance dropped
on average when injecting transition noise (Figure 7c for DQN on Breakout ; Figures 30d-30f,
31d-31f, 32d-32f and 33d-33f for all agents and environments in the appendix). However,
we also observe that performance drop is different for different environments. This is to be
expected as there are other dimensions of hardness that we cannot control or measure for the
complex environments. We further observed that for some of the environments, transition
noise actually even helped performance (e.g. Figure 33e for Rainbow on Space Invaders).
This has also been observed in prior work (Wang et al., 2019). This can happen when
the exploration policy was not tuned optimally since inserting transition noise is almost
equivalent to ε-greedy exploration for low values of noise. Finally, we observed similar trends
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Figure 9: AUC of episodic reward for DQN at the end of training when varying (a): delay
on the toy environment. (b): delay on Qbert. (c): sequence length on the
toy environment. Error bars represent bootstrapped confidence intervals with
Bonferroni corrections for a significance level of 0.05.

for reward noise (Figure 8c for DQN on Breakout ; Figures 30g-30i, 31g-31i, 32g-32i and
33g-33i for all agents and environments in the appendix).

Another interesting insight is that if one compares the X-axis ticks for the toy and
complex environments for reward noise (e.g. Figures 8a and 8c), the scale of the reward
noise is very different in the toy and complex environments. This, we believe, is because the
complex environments are much more sparse - if one rolls out a random agent, or even a
trained one, on the complex environments, the non-zero rewards are far less frequent than
in the toy environments we experimented with. While it is naturally possible to design
toy environments to be much more representative in terms of trying to match the hardness
dimensions of complex environments, it tends to happen that this leads to them becoming
much harder to learn on as well and, as a result, losing their ability to be quick testbeds.
Training the agents on them with the same scale of reward noise as the toy environments
led to no learning at all, so we had to select far smaller values to show the trends. Another
important detail to note about the reward noise experiments on Atari environments is that
Atari environments in Ray have what they term reward clipping turned on by default. This
sets the reward at every time step to 0, -1 or +1 depending on the sign of the reward
obtained17. This interferes with the reward noise experiments because even very small noisy
rewards are clamped according to their sign, e.g., +0.01 would be set to +1 and then the
meaning of reward noise is different to what we intended to inject. As such, we had to change
reward clipping to instead actually have “clip” behaviour, i.e. to clip rewards greater than
+1 to +1 and clip rewards less than −1 to −1, to perform meaningful experiments with
reward noise. This led to very different episodic reward ranges compared to runs with other
dimensions of hardness, e.g. on Breakout (compare reward scales in Figures 7c and 8c). This
difference seemed to occur only for DQN and Rainbow but not for A3C (please compare the
reward scales in the bottom row of Figure 31 in the appendix with the reward scales in its
upper rows) which is an interesting avenue for future research regarding behaviour of these
agents in the presence or absence of reward clipping. Ideally, needless to say, we want our
agents to be robust to different scales of reward and to not have to resort to something like
reward clipping.

17. It is called reward clipping in there, but clamping might be a better term
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Figure 10: AUC of episodic reward for DQN at the end of training when varying (a): reward
density on the toy environment. Error bars represent bootstrapped confidence
intervals with Bonferroni corrections for a significance level of 0.05.

6.2.5 Reward Delay and Sequence Length

Experimenting with delay also led to similar high-level trends as for transition noise: perfor-
mance dropped on the toy environments for all agents (Figure 9a for DQN; Figure 19 for all
agents in the appendix). We additionally also plot the learning curves, when varying delay,
in Figure 13. We see how training proceeds much more smoothly and is less variant across
different seeds for the vanilla environment (where the delay is 0) and that the variance across
seeds is very large for delay = 2. Such noisy learning curves are typically associated with RL
and clearly partial observability, as is the case here, is a contributing factor even for a toy
environment. Sometimes, the agents still managed to perform well, which emphasises that
agents can perform well even when having a non-Markov information state and shows how
tuning seeds can lead to good results (see e.g., Figure 5 in Henderson et al., 2018).

We also note that, on average, performance dropped for the Atari environments (Figure
9b for DQN on Qbert ; Figures 30a-30c, 31a-31c, 32a-32c and 33a-33c for all agents and
environments in the appendix). However, the trends for delay were noisier than for transition
noise. We believe this is because the situation for delays is more nuanced in the case of
complex environments: many considered environments tend to have repetitive sequences
which would make the effect of injecting delays noisier. Interestingly, many of the learning
curves with delays inserted, are indistinguishable from normal learning curves (e.g., DQN on
Atari in Figure 11). We believe that, in addition to the motivating examples from Section
2.2, this is empirical evidence that delays are already present in these environments and so
inserting them does not cause the curves to look vastly different. In contrast, when we look
at learning curves for transition noise (e.g., DQN on Atari in Figure 12), we observe that,
as we inject more and more noise, training tends to a smoother curve as the agent tends
towards becoming a completely random agent. Pointers to more such learning curves can be
found in Appendix J.

Even more nuanced in the case of delay is the comparison of effects on the different
environments: the greatest drops in performance, on average, were on Qbert, followed by
Beam Rider, Space Invaders and Breakout (see again Figures 30a-30c, 31a-31c, 32a-32c
and 33a-33c in the appendix); for Breakout, in many instances, we do not even see any
performance drops. We believe this is because large delays from rewarding trajectory to
reward are already present in Breakout, which means that inserting more delays does not
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have as large an effect as in Qbert. Agents are most strongly affected in Qbert which, upon
looking at gameplay, we believe has the least delays from rewarding trajectory to reward. It is
interesting that inserting delays for Rainbow on Qbert seems to really impact its performance,
more so than any of the other Atari experiments.

To further analyse and compare the effects of the dimensions of hardness on the toy
and complex environments for the Atari experiments, we use the Spearman rank correlation
coefficient between corresponding toy and complex experiments for performance across
different values of the dimension of hardness (Tables 2-4 in the appendix list the individual
rank correlation for each experiment (for different agents, environments and dimensions of
hardness). The Spearman correlation was >= 0.7 for 27 out of 36 experiments and a positive
correlation for eight of the remaining nine. DQN with delays added on breakout was the
only experiment with correlation 0, which further supports our hypothesis above that delays
are already present in the greatest amount in breakout. Further, the average rank correlation
over 12 experiments (3 agents x 4 Atari environments) was 0.867 for transition noise, 0.733
for reward noise and 0.617 for reward delay which supports the observation above that trends
were noisier for delay.

Results for experiments with different sequence lengths on the toy environment are
qualitatively similar to the ones for delay. However, we observe (see Figure 9c for DQN,
Figure 20 for all agents in the appendix) that sequence length has a more drastic effect in
terms of degradation of performance.

6.2.6 Irrelevant Features

Introducing irrelevant dimensions in to the toy continuous environments, while keeping
the number of relevant dimensions fixed to 2, decreased agent performance (Figure 14a for
SAC; Figure 29a-29c for all agents in the appendix). This gave us the insight that irrelevant
features interfere with the learning process. It was not just the episodic reward that was
worse but also the mean episodic length (Figure 14b; Figures 29d-29f for all agents in the
appendix), which meant that even though the agents were reaching the target point within
the episode, they were taking longer to do so. We performed similar experiments with SAC
on a complex environment (HalfCheetah) and observed similar trends for performance (Figure
14c).

6.2.7 Reward Density

Figure 10 shows the results for DQN (Figure 25 for all agents in the appendix) when
controlling the reward density on the toy environment. It is interesting that the density does
not seem to impact the performance almost at all for any of the agents. We believe that is
because once any of these agents finds a rewarding sequence (which is a single N -state in the
case of a sequence length of 1), they do not really need to change their policy because the
other rewarding sequences also result in the same reward. To allow for a more varied reward
distribution to explore more interesting directions in such cases, we have an experimental
dimension of hardness, the reward distribution (for more information on how this dimension
works, please see Appendix A). While the above experiment might make it seem that the
dimension of hardness reward density is not useful when the reward handed out is always 1,
Section 6.3 shows an interesting use-case for it in the presence of ε-greedy exploration.
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Figure 13: Train Learning Curves for 100 runs with different seeds for DQN when varying delay.
Please note that each different colour corresponds to one of 100 seeds in each subplot.
We do not show the curves for delay = 4 and delay = 8 which follow the same trends to
improve readability.
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Figure 14: AUC of selected metric for SAC at the end of training when varying irrelevant
dimensions (a): episodic reward on the toy environment. (b): episode length on
the toy environment. (c): episodic reward on HalfCheetah. Error bars represent
bootstrapped confidence intervals with Bonferroni corrections for a significance
level of 0.05.

6.2.8 Further Discussion

For some readers, it might feel self-evident that injecting many of these dimensions causes
difficulties for agents. However, to the best of our knowledge, no other work has tried to
collect so many dimensions of hardness in one place and study them comprehensively and
what aspects transfer from toy to more complex environments.

We believe that the transfer of the hardness dimensions from toy to complex environments
occurs because the algorithms we have tested are environment agnostic and usually do not
take aspects of the environment into account. Q-learning for instance is based on TD-errors
and the Bellman equation. The equation is agnostic to the environment and while adding
deep learning may help agents learn representations better, it does not remove the problems
inherent in deep learning. While it is nice to have general algorithms that may be applied in a
blackbox fashion, by studying the dimensions we have listed and their effects on environments,
we may gain deeper insights into what is needed to design better agents.

An additional comment can be made about comparing the continuous complex to toy
comparisons to the discrete complex to toy comparisons. The “noise” in comparing the toy
to the complex discrete environments was higher compared to comparing the continuous toy
to complex environments and we believe this is due to the discrete environments being much
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more sparse and having many more lucky areas that can be exploited as with the qbert bug
and breakout strategy mentioned. In comparison, continuous environments usually employ
a dense reward formulation in which case the value functions are likely to be continuous
leading to less noisy comparisons.

The experiments in this section also show how the complex environment wrappers allow
researchers, who are curious, to study the robustness of their agents to these dimensions of
hardness on complex environments, without having to fiddle with lower-level code.
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0.1 0.2 0.5 1.0 2.0 4.0 8.0
Time Unit

0.1

0.25

0.5

1.0

2.0

4.0

8.0
Ac

tio
n 

Ra
ng

e

0

1

2

3

4

5

6

Reward

(b) 2 dimensions together

Figure 15: Analysing and Debugging. (a): Varying reward density on the toy environment
for the bsuite DQN agent. (b): Varying 2 dimensions of hardness together -
action range and time unit.

6.3 Debugging Agents

Analysing how an agent performs under the effect of various dimensions of hardness can
reveal unexpected aspects of the agent. For instance, when using bsuite agents (Osband et al.,
2019), we noticed that when we varied our environment’s reward density, the performance of
the bsuite DQN agent got worse as the reward got sparser (see Figure 15a). This did not
occur for other bsuite agents. This behaviour with MDP Playground occurs because the
DQN agent used ε-greedy while the other agents explored using other methods. ε-greedy
causes the agent to perform a completely random a certain fraction of the time which then
leads to entering a terminal state a proportional fraction of the time and consequently to
rewards in proportion to the reward density. Such insights can easily go unnoticed if the
environments used are too complex. The simplicity of our toy environments helps debug
such cases.

In another example, in one of the Ray versions we used (0.9.0.dev0), we observed that
DQN was performing well on the image representations environment while Rainbow was
performing poorly. We were quickly able to ablate additional Rainbow hyperparameters on
the toy environments and found that the noisy nets (Fortunato et al., 2018) implementation
was broken (see Figure 16a). We then tested and observed the same on a more complex
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environment, Beam Rider (see Figure 16b). This shows how easily and quickly agents can
be debugged to see if something major is broken.18 This, in combination with their low
computational cost, also makes a case to use the toy environments in Continuous Integration
(CI) tests on code repositories.
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Figure 16: Ablations of Rainbow on image representation environments. X-axis labels
mention which component was ablated, i.e., turned off: noisy represents noisy nets,
double represents Double DQN, dueling represents Dueling Networks and prio_repl
represents prioritised replay. Runs on Beam Rider were only till 3M timesteps in
this experiment. Turning noisy nets off improved performances on both toy and
complex environments significantly. Error bars represent bootstrapped confidence
intervals with Bonferroni corrections for a significance level of 0.05.

6.4 Further Use Cases

We now discuss further interesting use cases for MDP Playground.

6.4.1 Multiple Dimensions

It is possible to vary multiple dimensions of hardness at the same time in the same base
environment in MDP Playground. For instance, Figure 15b shows the interaction effect
(an inversely proportional relationship) between the action range and the time unit in the
continuous toy environment with DDPG. This is an interesting insight and shows that the
agent’s action range should depend on the time unit or vice versa. On thinking more about
this, it makes sense because: 1) if actions that are too large are allowed for large time steps,
the agent might go out of control, while if large actions are allowed only for shorter time
steps, the agent can still remain stable because it has fine-grained control; 2) allowing a large
space of actions for large time steps increases the search space for optimal actions and make
it a harder control problem. Plots for more such experiments can be found in Appendix
E, including varying both P and R noises together and varying delay and sequence length
together in the toy discrete environments.

18. An example of how hard it can be to debug RL agents can be found in this GitHub issue for bsuite:
https://github.com/deepmind/bsuite/issues/20.
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6.4.2 Design and Analyse Experiments

We allow the user the ability to inject dimensions of hardness into toy or complex environments
in a fine-grained manner. This can be used to define custom experiments with the dimensions
of hardness. The results can be analysed in the accompanying Jupyter notebook19.

6.4.3 Ground Truth

Since MDP Playground has the ground truth of the underlying MDPs available for the toy
environments, it is a useful tool for designing agents that run on POMDPs and try to extract
the underlying features of an MDP that make it fully observable. The ground truth could
also be used, for instance, in model-based RL to test how well true aleatoric uncertainties
are learned by a probabilistic model on a toy environment with stochasticity injected.

6.4.4 Tabular Agents

The fact that the toy environments are so simple also allows the platform to be used to
compare tabular and deep agents. To this end, we also evaluated the tabular baselines
Q-learning (Sutton & Barto, 1998), Double Q-learning (van Hasselt, 2010) and SARSA
(Sutton & Barto, 1998) on the discrete non-image based environments with similar qualitative
results as to those for deep agents. Results can be seen in Appendix D.

The experiments here are only a glimpse into the power and flexibility of MDP Playground.
Users can also upload custom functions for P and R and custom image representations O
(instead of the polygons from Figure 2) and our platform takes care of injecting the other
dimensions of hardness for them (wherever possible).

7. Related Work

Many of the other environments mentioned in the main paper are largely vision-based, which
means that a large part of their problem solving receives benefits from advances in the vision
community while our environments try to tackle pure RL problems in their most toy form.
This also means that our experiments are extremely cheap, making them a good platform to
test out new algorithms’ robustness to different challenges in RL.

A parallel and independent work along similar lines as the MDP Playground, which was
released a month before ours on arXiv, is the Behaviour Suite for RL (bsuite, Osband et al.,
2019). In contrast to our generated environments, bsuite collects simple RL environments
from the literature that are representative of various types of problems which occur in RL
and tries to characterise RL algorithms. Bsuite can be seen as an intermediate step between
our toy MDPs and more complex environments, because the toy environments that bsuite
collects are more complex than ours and do not always have controllable dimensions of
hardness that can be independently injected. This makes bsuite’s dimensions not individually
controllable and atomic like ours. Fine-grained control is a feature that sets our platform
apart. bsuite has a collection of presets chosen by experts which work well but would be
much harder to play around with. While MDP Playground also has good presets through
default values defined for experiments, it is much easier to configure. Bsuite’s experiments are

19. https://github.com/automl/mdp-playground/blob/master/plot_experiments.ipynb
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also more expensive than ours; while bsuite is already quite cheap to run, MDP Playground
experiments are over an order of magnitude cheaper. Furthermore, while bsuite offers no
continuous control environments, MDP Playground provides discrete and continuous
environments. This is important because several agents like DDPG, TD3, SAC are designed
for continuous control. Unlike their framework, where currently there is no toy environment
for Hierarchical RL (HRL) algorithms, the rewardable sequences that we describe also fits
very well with HRL. Finally, in contrast to bsuite, MDP Playground offers wrappers to
inject many of the identified dimensions of hardness into complex environments. We use
these wrappers to also compare the identified trends on toy and complex environments. An
important distinction between the two platforms could be summed up by saying that they try
to characterise algorithms while we try to characterise environments with the aim that new
adaptable algorithms can be developed that can tackle environments with specific challenges.

Toybox (Tosch et al., 2019) and Minatar (Young & Tian, 2019) are also cheap platforms
with similar goals of gaining deeper insights into RL agents. However, their games target the
specific Atari domain and, like bsuite, they are complementary to our approach as they have
more specific environments and do not offer fine-grained control over dimensions of hardness.

We found the work of Andersson and Doherty (2018) the most similar work to ours in
spirit. In contrast to our platform, they only target continuous environments. We capture
their dimensions of hardness in a different manner and offer many more dimensions with
fine-grained control. Furthermore, their code is not open-source, making their work harder
to build on by the community.

Maillard et al. (2014) defines a novel theoretical metric for defining hardness of MDPs
and captures this hardness when the true state of the MDP is known. However, a large part
of the hardness in our MDPs comes from the agent not knowing the optimal information
state to use. It would be interesting to design a metric which captures this aspect of hardness
as well.

Our platform allows formulating problems in terms of the identified dimensions and
we feel this is a very human-understandable way of defining problems or specifying tasks.
Littman et al. (2017) defines a Geometric Linear Temporal Logic (GLTL) specification
language to formally specify tasks for MDPs and RL environments. They also share our
motivation in making it easier and more natural to specify tasks.

Further related work includes Procgen (Cobbe et al., 2020) and Obstacle Tower (Juliani
et al., 2019). Procgen adds various heterogeneous environments and tries to quantify
generalisation in RL. In a similar vein, Obstacle Tower provides a generalisation challenge for
problems in vision, control, and planning. Unlike ours, the scope of these platforms is not being
a testbed. As such, they do not capture dimensions of hardness that can be independently
injected with fine-grained control over them, which we view as an important aspect when
testing agents. Dulac-Arnold et al. (2020) provides some overlapping dimensions of hardness
with our platform but only for continuous environments, and has no toy environments.

7.1 MDP Playground in Relation to MNIST

MNIST (LeCun & Cortes, 2010) captured some key aspects of hardness required for computer
vision (CV) which made it a good testbed for designing and debugging CV algorithms -
the webpage for the dataset (http://yann.lecun.com/exdb/mnist/ mentions some distor-
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tions for MNIST (similar to our image representation transforms): distortions are random
combinations of shifts, scaling, skewing, and compression. Mu and Gilmer (2019) captures
15 such distortions to benchmark out-of-distribution robustness in CV. However, being a
good testbed does not mean that MNIST can be used to directly learn models for much
more specific CV applications such as classification of plants or medical image analysis. It
captures many aspects that are general to CV problems but not specific ones, similar to our
toy environments for RL.

8. Limitations of the Approach and its Ethical and Societal Implications

While we do not see any limitations regarding the complex environment wrappers in MDP
Playground beyond the limitations of complex environments themselves, we would like to
caution against some limitations for the toy environments. Toy environments in MDP
Playground are meant to be analysis and debug testbeds and not for tuning the final
agent hyperparameters (HPs) for use on complex environments. They are extremely cheap
compared to complex environments and (as one would expect), can only be used to draw
high-level insights and are likely not as differentiating as complex environments for many
of the finer changes between RL agents. As also mentioned in Dehghani et al. (2021), a
lot of tricks may be involved in achieving SOTA scores on complex benchmarks and the
toy environments cannot be expected to be predictive of performance on such benchmarks.
Finally, Multi-Agent RL, Multi Objective RL, and Time Varying MDPs (amongst others)
are beyond the scope of the currently implemented toy environments. We also note here
that we currently consider partial observability only in the reward dynamics and not in the
transition dynamics. Introducing partial observability also in the transition dynamics is an
interesting avenue for future work.

Another limitation is that in the complex environment wrappers, it is not always possible
to control the exact “amount” of hardness in complex environments. Using the wrappers,
however, always increases this existing amount. For dimensions of hardness like transition
noise and reward noise, one can use the wrappers to control the exact amount of hardness.
However, for dimensions of hardness like delay and sequence length which are usually already
present in a complex environment and variable across the state space, it is not possible to
control their exact amounts of hardness with the wrappers as we do not know how much of
these exist already in the environment. It is a very hard problem to determine how much of
each of them exists already and being able to determine this could go a long way to solving
the RL problem itself, so there is no trivial way to get around this limitation of the wrappers
in MDP Playground.

Further, high-dimensional control problems where there are interaction effects between
degrees of freedom are not captured in the toy rigid body continuous control problem as this
is the domain of complex environments and beyond the scope of this platform.

In terms of the broader impact on society and ethical considerations, we foresee no direct
impact, only indirect consequences through RL since our work promotes standardisation and
reproducibility. An additional environmental impact would be that, at least, prototyping
and testing of agents could be made cheaper, reducing carbon emissions but also hopefully
accelerating RL research.
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9. Conclusion and Future Work

We introduced a platform to analyse and debug RL agents with fine-grained control over
various dimensions of hardness. The platform allows low-cost experiments on toy environments
and analysing the effects of dimensions of hardness on complex environments. We studied
the performance of various agents and gained insights on toy and complex environments by
varying these dimensions. To the best of our knowledge, we are also the first to perform a
principled study of how significant aspects such as non-Markov information states, irrelevant
features, representations and low-level dimensions of hardness, like time discretisation, affect
agent performance. Finally, we also described debugging capabilities of the platform.

We believe there is great potential to design agents that adapt the time unit, action
range, etc. dynamically and test them on vanilla environments. To the best of our knowledge
agents currently do not try to adapt most of these dynamically and yet as we know from
observing humans, humans are adaptive to these dimensions of hardness. Previous theoretical
breakthroughs initially came on very small toy examples while deep breakthroughs came,
in some cases, decades later. If we are able to make agents more robust to some of these
dimensions of hardness on toy examples, we may later be able to make it work on complex
environments. Such agents could also improve explainability of RL agents because, as we
know, humans can also provide rough estimates of the dimensions of hardness to explain
their actions. For example, if a human buys a lottery ticket and wins the lottery a week
later, they can say that it was the action of buying with a week’s delay that got them their
reward. This also has links to causality.

An interesting distinction can also be made between agents’ robustness to perturbations
to a single task and agents learning to generalise across a distribution of tasks. Having ground
truth and fine-grained control over the dimensions of hardness allows MDP Playground to also
be used as a testbed for MetaRL which learns over distributions of tasks/environments. For
example, it could be studied how robust MAML (Finn et al., 2017) is to wider distributions
of the same task, by simply varying the range of a dimension of hardness of MDP Playground.
It could also be used to study how the number of gradient descent steps performed from
the common initialisation found by MAML interacts with the distribution it performs well
over. While the exact values from such analyses may not carry over to complex domains, it
is interesting to analyse whether such effects exist on a simpler domain and to then possibly
formalise them theoretically and come up with numerical quantifications of the effects and
their transfer across environments.

Finally, we would like MDP Playground to be a community-driven effort. It is open-source
for the benefit of the RL community at https://github.com/automl/mdp-playground.
While we tried to identify as many dimensions of hardness as possible, it is unlikely that we
have captured all such dimensions that can be independently injected in RL environments.
We have some further dimensions of hardness currently in the experimental phase and we
describe these in Appendix A. We welcome more dimensions of hardness that readers think
will help us encapsulate further challenges in RL and will add them to MDP Playground
based on the community’s opinions. Given the current brittleness of RL agents (Henderson
et al., 2018), and many claims that have been challenged (Atrey et al., 2020; Tosch et al.,
2019), we believe RL agents need to be tested on a lower and more basic level to gain insights
into their inner workings.
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Appendix A. Experimental Dimensions in MDP Playground

We list here some dimensions that are still experimental in MDP Playground.

∗ Only for discrete toy environments:

• Reward Distribution: When the reward distribution option is turned on, it
can be specified as a list with 2 floats. These 2 values are interpreted as a closed
interval and taken as the end support points of a categorical distribution with
support points equally spaced along the interval. Each support point is assigned
randomly to one of the automatically generated rewardable sequences, so that
when a rewardable sequence is achieved, the reward handed out is the value of the
support point. Further different kinds of reward distributions that could lead to
interesting insights are an interesting avenue to develop this dimension of hardness
further.

∗ Only for continuous toy environments:

• Reward Function: The reward function is currently fixed to move_to_a_point
which represents the task of moving the point mass to a target point. Additionally,
we have a toy task of moving along a line which can be specified by setting
the reward function to move_along_a_line. For this task, we hand out greater
rewards the closer a point object is to moving linearly for n consecutive steps
where n is the sequence length. The linear movement can be along any direction,
the important thing is that n consecutive movements of the point mass should
be in a straight line to achieve the reward. This allows evaluating agents on a
sequential/navigation task of moving along a line. However, it is currently in the
experimental phase because it turned out to be too hard for the agents and we
probably need to find a better formulation for the task so that it allows us more
valuable insights into agents.
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Appendix B. Additional Details on Toy Experiments

We provide some additional detail on the experiments in the main paper here, including the
remaining plots referenced in the discussion in the main paper.

B.1 Selecting Total Timesteps for Discrete Toy Runs
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Train timesteps
0
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100

Re
wa

rd

DQN
A3C

Figure 17: Evaluation rollouts for DQN and A3C in the vanilla environment which shows that DQN
learns faster than A3C in terms of the number of timesteps.

We ran the experiments and plot the results for DQN variants up to 20 000 environment
timesteps and the ones for A3C variants up to 150 000 time steps since A3C took longer20 to
learn as can be seen in Figure 17. We refrain from fixing a single number of timesteps for our
environments (as, e.g., bsuite does), since the study of different trends for different families
of algorithms will require different numbers of timesteps. Policy gradient methods such as
A3C tend to be slower in terms of time steps compared to value-based approaches such as
DQN. Throughout, we always run 100 seeds of all algorithms to obtain reliable results. We
repeated many of our experiments with an independent set of 100 seeds and obtained the
same qualitative results.

20. In terms of environment steps. Wallclock time used was still similar.
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B.2 Additional Plots

We provide here additional plots for the various experiments we ran on MDP Playground.
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Figure 18: AUC of episodic reward at the end of training for DQN when varying the
quantisation/range of transforms for image representations. (a): Image
Scale Range represents scaling ranges. The X-axis ticks are the lower end of
the image scale range, the upper end is just the inverse of the tick value shown.
(b): Rotation quantisation represents quantisation of the rotations. Error bars
represent bootstrapped confidence intervals with Bonferroni corrections for a
significance level of 0.05.
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Figure 19: AUC of episodic reward at the end of training for DQN, Rainbow, A3C when vary-
ing delays on the discrete toy environment. Error bars represent bootstrapped
confidence intervals with Bonferroni corrections for a significance level of 0.05.
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Figure 20: AUC of episodic reward at the end of training for DQN, Rainbow, A3C when
varying sequence lengths on the discrete toy environment. Error bars represent
bootstrapped confidence intervals with Bonferroni corrections for a significance
level of 0.05.
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Figure 21: AUC of episodic reward at the end of training for DQN, Rainbow, A3C when
varying transition noise on the discrete toy environment. Error bars represent
bootstrapped confidence intervals with Bonferroni corrections for a significance
level of 0.05.
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Figure 22: AUC of episodic reward at the end of training for DQN, Rainbow, A3C when
varying reward noise on the discrete toy environment. Error bars represent
bootstrapped confidence intervals with Bonferroni corrections for a significance
level of 0.05.
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Figure 23: AUC of episodic reward when rolling out the policy that was learned on the noisy
environment on a noise-free setting at the end of training for DQN, Rainbow,
A3C when varying transition noise on the discrete toy environment. Error
bars represent bootstrapped confidence intervals with Bonferroni corrections for
a significance level of 0.05.
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Figure 24: AUC of episodic reward when rolling out the policy that was learned on the noisy
environment on a noise-free setting at the end of training for DQN, Rainbow,
A3C when varying reward noise on the discrete toy environment. Error bars
represent bootstrapped confidence intervals with Bonferroni corrections for a
significance level of 0.05.
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Figure 25: AUC of episodic reward at the end of training for DQN, Rainbow, A3C when
varying reward density on the discrete toy environment. Error bars represent
bootstrapped confidence intervals with Bonferroni corrections for a significance
level of 0.05.
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Figure 26: AUC of episodic reward (top) and lengths (bottom) for DDPG, TD3, SAC at
the end of training when varying target radius on the discrete continuous envi-
ronment. Error bars represent bootstrapped confidence intervals with Bonferroni
corrections for a significance level of 0.05.
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Figure 27: AUC of episodic reward (above) and lengths (below) for DDPG, TD3, SAC at
the end of training when varying action range on the discrete continuous envi-
ronment. Error bars represent bootstrapped confidence intervals with Bonferroni
corrections for a significance level of 0.05.
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Figure 28: AUC of episodic reward (above) and lengths (below) for DDPG, TD3, SAC at the
end of training when varying time unit on the discrete continuous environment.
Error bars represent bootstrapped confidence intervals with Bonferroni corrections
for a significance level of 0.05.
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Figure 29: AUC of episodic reward (above) and lengths (below) for DDPG, TD3, SAC
at the end of training when varying irrelevant dimensions on the discrete
continuous environment. Error bars represent bootstrapped confidence intervals
with Bonferroni corrections for a significance level of 0.05.
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B.3 Algorithms for Automatically Generated Toy MDPs with MDP
Playground

Algorithm 1 Automatically Generated Discrete Toy MDPs with MDP Playground
1: Input:
2: number of actions ‖A‖,
3: diameter,
4: reward density rd,
5: terminal_state_density,
6: reward delay d,
7: sequence length n,
8: transition noise t_n,
9: reward noise σr_n,

10: reward_scale,
11: reward_shift,
12: term_state_reward,
13: irrelevant_features,
14: image_representations,
15: transforms for image representations transforms
16:
17: function init_transition_function():
18: Set ‖NS‖ = ‖A‖ ∗ diameter
19: Divide NS into independent sets NSi with ‖A‖ elements in each with i =

1, 2, ..., diameter
20: for each independent set NSi do
21: for each state ns in NSi do
22: Set possible successor states: NS′ = NSi+1

23: for each action a do
24: Set Prel(ns, a) = ns′ sampled uniformly from NS′ and remove ns′ from

NS′

25: if irrelevant_features then
26: Generate dynamics Pirr of irrelevant part of N -state space as was done for Prel
27:
28: function init_reward_function():
29: Randomly sample rd ∗ (‖NS‖−‖T‖)!

(‖NS‖−‖T‖−n)! and store in rewardable_sequences
30: . The actual formula is more complicated because of the diameter and independent

sets. The formula shown here is valid for a diameter of 1.
31: . Only those sequences are sampled which are admissible according to Prel
32:
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33: function transition_function(ns, a):
34: ns′ = Prel(ns, a)
35: if U(0, 1) < t_n then
36: ns′ = a random state in NS \ {Prel(ns, a)} . Inject noise
37: Observation o = ns′

38: if irrelevant_features then
39: Execute dynamics Pirr of irrelevant part of state space and append to ns′ to get
observation o

40: if image_representations then
41: Set o = to image of corresponding polygon(s) with applied selected transforms

42: return o
43:
44: function reward_function(ns, a):
45: r = 0
46: if irrelevant_features then
47: ns = ns[0] . Select first dimension of the N -state which is relevant to the reward
48: if not make_denser then
49: if state sequence nss of n N -states ending d steps in the past is in
rewardable_sequences then

50: r = 1
51: else
52: for i in range(n) do
53: if sequence of i states ending d steps in the past is a prefix sub-sequence of a
sequence in rewardable_sequences then

54: r+ = i/n
55: if reward every n steps and timesteps % n != 0 then
56: r = 0
57: r + = N (0, σ2r_n)
58: r ∗ = reward_scale
59: r + = reward_shift
60: if reached terminal state then
61: r + = term_state_reward ∗ reward_scale
62: return r
63:
64: function main():
65: init_terminal_states() . Set T according to terminal_state_density
66: init_init_state_dist() . Set ρo to uniform distribution over non-terminal states
67: init_transition_function()
68: init_reward_function()
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Algorithm 2 Automatically Generated Continuous Toy MDPs with MDP Playground
1: Input:
2: reward delay d,
3: transition noise σt_n,
4: reward noise σr_n,
5: reward_scale,
6: reward_shift,
7: term_state_reward,
8: make_denser,
9: relevant_dimensions,

10: target_point,
11: target_radius,
12: transition_dynamics_order,
13: time_unit,
14: inertia
15:
16: function init_transition_function():
17: . Do nothing as continuous environments have a fixed parameterisation
18: function init_reward_function(n):
19: . Do nothing as continuous environments have a fixed parameterisation
20:
21: function transition_function(ns, a):
22: Set n = transition_dynamics_order
23: Set an = a . Superscript n represents nth derivative
24: Set nsn = an/inertia . Each state dimension is controlled by each action dimension
25: for i in reversed(range(n)) do

26: Set nsit+1 =
n−i∑
j=0

nsi+jt · 1j! · time_unit
j . t is current time step.

27: nst+1 + = N (0, σ2t_n)
28: o = nst+1

29: if image_representations then
30: Set left part of o = to image of point mass, terminal regions and target point

according to the first 2 dimensions of o
31: if irrelevant features then
32: Set right part of o = to image of point mass according to the last 2 dimensions

of o
33: return o
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34: function reward_function(ns, a):
35: r = 0
36: if relevant_dimensions then
37: ns = ns[relevant_dimensions] . Select the part of state space relevant to
reward

38: r = Distance moved towards the target_point
39: r + = N (0, σ2r_n)
40: r ∗ = reward_scale
41: r + = reward_shift
42: if reached terminal state then
43: r + = Sum of delayed rewards that were not handed out so far
44: r + = term_state_reward ∗ reward_scale
45: return r
46:
47: function main():
48: init_terminal_states() . Set T to be states within target_radius of target_point
49: init_init_state_dist() . Set ρo to uniform distribution over non-terminal states
50: init_transition_function()
51: init_reward_function()

Appendix C. Effect of Dimensions on More Complex Environments

We include here the remaining plots and tables referenced in the discussion in the main paper
that provide further detail on the experiments.

Table 2: Spearman Rank Correlations for performance on toy and complex environments
across different amounts of the dimension injected: reward delay

Environment/Agent DQN Rainbow A3C

beam_rider r=0.8, pvalue=0.104 r=0.4, pvalue=0.504 r=0.6, pvalue=0.284
breakout r=0.0, pvalue=1.0 r=0.3, pvalue=0.623 r=0.8, pvalue=0.104
qbert r=0.6, pvalue=0.284 r=0.4, pvalue=0.504 r=0.9, pvalue=0.037

space_invaders r=0.9, pvalue=0.037 r=0.9, pvalue=0.037 r=0.8, pvalue=0.104

871



Rajan, Borja, Guttikonda, Ferreira, Biedenkapp, von Hartz & Hutter

Table 3: Spearman Rank Correlations for performance on toy and complex environments
across different amounts of the dimension injected: transition noise

Environment/Agent DQN Rainbow A3C

beam_rider r=0.9, pvalue=0.037 r=0.7, pvalue=0.188 r=0.9, pvalue=0.037
breakout r=1.0, pvalue=1e-24 r=1.0, pvalue=1e-24 r=0.9, pvalue=0.037
qbert r=0.9, pvalue=0.037 r=0.9, pvalue=0.037 r=0.7, pvalue=0.188

space_invaders r=0.9, pvalue=0.037 r=0.7, pvalue=0.188 r=0.9, pvalue=0.037

Table 4: Spearman Rank Correlations for performance on toy and complex environments
across different amounts of the dimension injected: reward noise

Environment/Agent DQN Rainbow A3C

beam_rider r=0.9, pvalue=0.037 r=0.9, pvalue=0.037 r=0.7, pvalue=0.188
breakout r=0.8, pvalue=0.104 r=0.9, pvalue=0.037 r=0.9, pvalue=0.037
qbert r=0.4, pvalue=0.504 r=0.5, pvalue=0.391 r=0.5, pvalue=0.391

space_invaders r=0.9, pvalue=0.037 r=0.7, pvalue=0.188 r=0.7, pvalue=0.188
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Figure 30: AUC of episodic reward for DQN, Rainbow, A3C at the end of training on Beam
Rider for various dimensions of hardness. Error bars represent bootstrapped
confidence intervals with Bonferroni corrections for a significance level of 0.05.
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Figure 31: AUC of episodic reward for DQN, Rainbow, A3C at the end of training on
Breakout for various dimensions of hardness. Error bars represent bootstrapped
confidence intervals with Bonferroni corrections for a significance level of 0.05.
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Figure 32: AUC of episodic reward for DQN, Rainbow, A3C at the end of training on Qbert
for various dimensions of hardness. Error bars represent bootstrapped confidence
intervals with Bonferroni corrections for a significance level of 0.05.
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Figure 33: AUC of episodic reward for DQN, Rainbow, A3C at the end of training on Space
Invaders for various dimensions of hardness. Error bars represent bootstrapped
confidence intervals with Bonferroni corrections for a significance level of 0.05.
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Figure 34: AUC of episodic reward for DDPG, TD3, SAC at the end of training on HalfChee-
tah when varying action range and time unit. Error bars represent boot-
strapped confidence intervals with Bonferroni corrections for a significance level of
0.05. For SAC and DDPG, runs for action range values >= 2 and >= 4 crashed
and are absent from the plot.
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Figure 35: AUC of episodic reward for DDPG, TD3, SAC at the end of training on Pusher
when varying action range and time unit. Error bars represent bootstrapped
confidence intervals with Bonferroni corrections for a significance level of 0.05.
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Figure 36: AUC of episodic reward for DDPG, TD3, SAC at the end of training on Reacher
when varying action range and time unit. Error bars represent bootstrapped
confidence intervals with Bonferroni corrections for a significance level of 0.05.
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Appendix D. Plots for Tabular Baselines

We present here plots of experiments with the tabular baselines on the discrete toy environ-
ments with image representations turned off.
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Figure 37: AUC of episodic reward at the end of training for three different tabular baseline
algorithms when varying transition noise. Error bars represent bootstrapped
confidence intervals with Bonferroni corrections for a significance level of 0.05.
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Figure 38: AUC of episodic reward at the end of training for three different tabular baseline
algorithms when varying reward noise. Error bars represent bootstrapped
confidence intervals with Bonferroni corrections for a significance level of 0.05.
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Figure 39: AUC of episodic reward at the end of training for three different tabular baseline
algorithms when varying reward delay. Error bars represent bootstrapped
confidence intervals with Bonferroni corrections for a significance level of 0.05.
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Figure 40: AUC of episodic reward at the end of training for three different tabular baseline
algorithms when varying sequence length. Error bars represent bootstrapped
confidence intervals with Bonferroni corrections for a significance level of 0.05.

Appendix E. Plots for Varying 2 Hardness Dimensions Together

We present here some more plots of experiments with 2 dimensions of hardness varied together.
The experiments in this section are only for 10 seeds as opposed to 100 seeds for the main
paper.
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Figure 41: AUC of episodic reward at the end of training for the different algorithms when
varying delay and sequence lengths. Please note the different colour bar
scales.
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Figure 42: Standard deviation of AUC of mean episodic reward at the end of training for the
different algorithms when varying delay and sequence lengths. Please note
the different colour bar scales.
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Figure 43: AUC of episodic reward at the end of training for the different algorithms when
varying transition noise and reward noise. Please note the different colour
bar scales.
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Figure 44: AUC of episodic reward when varying transition and reward noise when
rolling out the policy that was learned on the noisy environment on a noise-free
setting for the different algorithms. Please note the different colour bar scales.
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Figure 45: Standard deviation of AUC of mean episodic reward at the end of training for the
different algorithms when varying transition noise and reward noise. Please
note the different colour bar scales.

0.0 1.0 5.0 10.0 25.0
Reward Noise

0.0

0.01

0.02

0.1

0.25

Tr
an

sit
io

n 
No

ise

0

5

10

15

20Reward Std Dev.

(a) DQN

0.0 1.0 5.0 10.0 25.0
Reward Noise

0.0

0.01

0.02

0.1

0.25

Tr
an

sit
io

n 
No

ise

0

5

10

15Reward Std Dev.

(b) Rainbow

0.0 1.0 5.0 10.0 25.0
Reward Noise

0.0

0.01

0.02

0.1

0.25
Tr

an
sit

io
n 

No
ise

0

2

4

6Reward Std Dev.

(c) A3C

Figure 46: Standard deviation of AUC of mean episodic reward when varying transition
and reward noise when rolling out the policy that was learned on the noisy
environment on a noise-free setting for the different algorithms. Please note the
different colour bar scales.
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Figure 47: AUC of episodic reward at the end of training for the different algorithms when
varying action space max and time unit for a given P order. Please note
the different colour bar scales.
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(c) SAC episode rew.
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Figure 48: AUC of episodic reward and lengths at the end of training for the different
algorithms when varying P noise and target radius. Please note the different
colour bar scales.
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Appendix F. Hyperparameter Tuning

We gained some interesting insights into the significance of certain hyperparameters while
tuning them for the different algorithms. Thus, our toy environments might in fact be good
test beds for researching hyperparameters in RL, too. For instance, target network update
frequency turned out to be very significant for learning and sub-optimal values led to very
noisy and unreliable training and unexpected results such as networks with greater capacity
not performing well. Once we tuned it, however, training was much more reliable and, as
expected, networks with greater capacity did well.

Hyperparameters were tuned for the vanilla environment; we did so manually in order
to obtain good intuition about them before applying automated tools. We tuned the
hyperparameters in sets, loosely in order of their significance and did 3 runs over each setting
to get a more robust performance estimate. We describe an example of the tuning for DQN
next. All hyperparameter settings for tuned agents can be found in Appendix G.

We expected that quite small neural networks would already perform well for such toy
environments and we initially grid searched over small network sizes (Figure 49a). However,
the variance in performance was quite high (Figure 49b). When we tried to tune DQN
hyperparameters learning starts and target network update frequency, however, it became
clear that the target network update frequency was very significant (Figure 49c and 49d)
and when we repeated the grid search over network sizes with a better value of 800 for the
target network update frequency (instead of the old 80) this led to both better performance
and lower variance (Figure 49e and 49f).

We then changed the network number of neurons grid to [128, 256, 512] and changed
target network update frequency grid to [80, 800, 8000] and continued with further tuning
using the grid values specified in Appendix G.

Appendix G. Tuned Hyperparameters

The code for corresponding experiments for both discrete and continuous environments can
be found in the accompanying code for the paper. The experiments with _tune_hps in the
names contain the grid of HPs that were tuned over. In some instances (where _tune_hps
experiments do not exist), in order to save costs, we used the default HPs in Ray. The
README in the GitHub repo describes how to run the experiments using config files and
which config files correspond to which experiments. Older experiments on the discrete
toy environments were run with Ray 0.7.3, while for the newer continuous and complex
environments, they were run with Ray 0.9.0. We had to use Ray 0.7.3 for the discrete toy
environments and Ray 0.9.0 for the continuous toy ones because we had run the discrete
cases for a previous version of the paper on 0.7.3. DDPG was not working and SAC was not
implemented in Ray at that time. We tried to use Ray 0.9.0 also for the discrete version
but found for the first few algorithms we tested that, for the same hyperparameters, the
results did not transfer even across implementations of the same library. This further makes
our point about using our platform to unit test algorithms. For the complex environments,
since we had to tune the agents again anyway, we decided to use the newer Ray version. The
names of the hyperparameters for the algorithms in the config files will match those used in
the respective Ray versions (i.e., 0.7.3 and 0.9.0).
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Figure 49: AUC of episodic reward at the end of training for different hyperparameter sets
for DQN. Please note the different colour bar scales.
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Appendix H. CPU Specifications

Cluster experiments were run on Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz cores for
approximately 300000 CPU hours.

H.1 CO2 Emission Related to Experiments

Experiments were conducted using a private infrastructure, which has a carbon efficiency
of 0.432 kgCO2eq/kWh. A cumulative of 300000 hours of computation was performed on
hardware of type Intel Xeon E5-2630v4 (TDP of 85W).

Total emissions are estimated to be 5140.8 kgCO2eq of which 0 percents were directly
offset.

Estimations were conducted using the MachineLearning Impact calculator presented in
Lacoste et al. (2019).

The cluster CPU core specifications were:

processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 79
model name : Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz
stepping : 1
microcode : 0xb000020
cpu MHz : 1200.170
cache size : 25600 KB
physical id : 0
siblings : 20
core id : 0
cpu cores : 10
apicid : 0
initial apicid : 0
fpu : yes
fpu_exception : yes
cpuid level : 20
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca

cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx
pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good

nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor
ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1
sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c r

drand lahf_lm abm 3dnowprefetch epb cat_l3 cdp_l3 invpcid_single intel_ppin
intel_pt tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1
hle avx2 smep bmi2 erms invpcid rtm cqm rdt_a rdseed adx smap x

saveopt cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat
pln pts

bogomips : 4389.48
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clflush size : 64
cache_alignment : 64
address sizes : 46 bits physical, 48 bits virtual
power management:

The laptop CPU core specifications were:

processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 158
model name : Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz
stepping : 10
microcode : 0xb4
cpu MHz : 900.055
cache size : 9216 KB
physical id : 0
siblings : 12
core id : 0
cpu cores : 6
apicid : 0
initial apicid : 0
fpu : yes
fpu_exception : yes
cpuid level : 22
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca

cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx
pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl

xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq
dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid
sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c
rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb invpcid_single pti ssbd
ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase
tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx rdseed adx smap
clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln
pts hwp hwp_notify hwp_act_window hwp_epp md_clear flush_l1d

bugs : cpu_meltdown spectre_v1 spectre_v2 spec_store_bypass l1tf
mds swapgs

bogomips : 5184.00
clflush size : 64
cache_alignment : 64
address sizes : 39 bits physical, 48 bits virtual
power management:
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Appendix I. Additional Learning Curves for Toy Environments

Please find the learning curves for this section in the arxiv version of our paper: https:
//arxiv.org/abs/1909.07750v3. We present there plots of the learning curves of the
experiments which provide more details into how learning progressed during training. The
plots show how each seed performed. As a result, we plot them only for 10 seeds as opposed
to 100 seeds for the main paper to maintain visual clarity.

Appendix J. Additional Learning Curves for Complex environments

Please find the learning curves for this section in the arxiv version of our paper: https:
//arxiv.org/abs/1909.07750v3. The curves contain a lot of data points and hence have
large file sizes which leads to exceeding the file size limit for this submission.
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