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Abstract
We introduce a formal framework (called NCDC-ASP ) for representing and reasoning about

cardinal directions between extended spatial objects on a plane, using Answer Set Programming
(ASP). NCDC-ASP preserves the meaning of cardinal directional relations as in Cardinal Direc-
tional Calculus (CDC), and provides solutions to all consistency checking problems in CDC under
various conditions (i.e., for a complete/incomplete set of basic/disjunctive CDC constraints over
connected/disconnected spatial objects). In particular, NCDC-ASP models a discretized version
of the consistency checking problem in ASP, over a finite grid (rather than a plane), where we
provide new lower bounds on the grid size to guarantee that it correctly characterizes solutions for
the consistency checking in CDC. In addition, NCDC-ASP has the following two novelties im-
portant for applications. NCDC-ASP introduces default CDC constraints to represent and reason
about background or commonsense knowledge that involves default qualitative directional rela-
tions (e.g., “the ice cream truck is by default to the north of the playground” or “the keyboard is
normally placed in front of the monitor”). NCDC-ASP introduces inferred CDC constraints to
allow inference of missing CDC relations and to provide them as explanations. We illustrate the
uses and usefulness of NCDC-ASP with interesting scenarios from the real-world. We design and
develop a variety of benchmark instances, and comprehensively evaluate NCDC-ASP from the
perspectives of computational efficiency.

1. Introduction

Spatial representation and reasoning is an essential component of geographical information systems,
artificial intelligence, cognitive robotics, spatial databases and digital forensics. Many tasks in these
areas, such as satellite image retrieval, navigation of a robot to a destination, describing the location
of a landmark, constructing digital maps involve dealing with spatial properties of the objects and
the environment.

For higher precision of solutions, if data is available, quantitative approaches can be employed
to find metric solutions for these tasks. On the other hand, in some applications (e.g., exploration
of an unknown territory), qualitative models are more suitable because quantitative data may not
always be available due to uncertainty or incomplete knowledge. In cognitive systems, spatial in-
formation obtained through perception might be coarse or imperfect. In some applications (e.g., that
involve human-robot interactions), even if quantitative data is available, sociable and understand-
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able interactions and acceptable explanations are often more desirable than high precision (Kuipers,
1983). Although qualitative terms have less resolution in geometry than their quantitative coun-
terparts, it is easier for people to communicate with and understand them. Consider, for instance,
a robot describing the location of the library to a tourist, with a qualitative description like “The
library is in front of the theater, near to the cafeteria” compared to a quantitative description like
“The library is at 38.6 latitude and 27.1 longitude”. Normally, the former is preferred in our daily
lives. For these applications, qualitative spatial relations seem more suitable. They can deal with
describing imprecise data about spatial relations in environments, and their verbal descriptions are
sufficient and understandable for describing a way to some destination or the location of an entity.

Qualitative spatial relations between objects can be described via different aspects of space, such
as topology, direction, distance, size, and shape. In this study, we focus on a particular sort of qual-
itative spatial relations, cardinal directions (e.g., west/left, south/front, north/back, east/right, and
their combinations), to describe the orientation of objects relative to each other in a two-dimensional
space. We understand cardinal directions as in Cardinal Directional Calculus (CDC) (Goyal &
Egenhofer, 1997; Skiadopoulos & Koubarakis, 2004, 2005). We consider spatial objects as ex-
tended regions of any shape on the plane; they may have holes (e.g., “Store A may have a small
garden in the middle”) or may be disconnected (e.g., “Store A may consist of two parts across a
small street”). We describe the cardinal directional relations between objects by basic CDC con-
straints like “The missing child is in front of the toy store”, and disjunctive CDC constraints like
“The missing child is to the south or to the west of Store B”.

The most widely studied problem in CDC is checking the consistency of a given set of CDC
constraints, i.e., checking whether a feasible configuration of the objects exists on the plane with
respect to the given CDC constraints. Consider, for instance, an agent helping a parent to find
her missing child in a shopping mall that is not completely known to the agent nor to the parents.
Suppose that the agent receives some sightings of the child, e.g., “to the south of Store A” and “in
front of the playground”. Each sighting can be represented as a CDC constraint. Then the agent
can see whether the sightings make sense or not, by checking the consistency of the corresponding
CDC constraints.

The complexity of CDC consistency checking has been studied under different circumstances,
where the objects are connected vs. disconnected (i.e. belong to domain Reg vs. Reg* ), the CDC
constraints are basic vs. disjunctive, and the set of CDC constraints is complete vs. incomplete (i.e.,
qualitative spatial relations between some spatial objects are not known). Although polynomial time
complexity fragments of the problem have been identified, in general, consistency checking problem
is proven to be NP-complete (Liu, 2013; Liu & Li, 2011; Liu, Zhang, Li, & Ying, 2010; Skiadopou-
los & Koubarakis, 2005). In particular, with uncertainty or incomplete knowledge, checking the
consistency of a given set of constraints is NP-complete. A summary of these complexity results is
provided in Table 1.

In this study, we construct a unifying framework (called NCDC-ASP ) that provides solutions
to all types of intractable consistency checking problems in CDC. In addition to its generality,
NCDC-ASP has two important novelties: it supports inference of the missing CDC relations, and
default reasoning over commonsense knowledge.

Let us consider the missing child scenario again. Suppose that the agent checks the consistency
of the gathered information, and finds out that it is consistent. Then the agent has some idea about
the possible locations of the missing child. Then it will be desirable for the agent to be able to
express such possible locations to the parents in an understandable way, like “the child might be
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to the southeast of the food court and to the east of the park”, and lead the parents “to the north
of where they are”. Motivated by such examples, we introduce a method to infer the missing CDC
relations from the given set of basic/disjunctive CDC constraints. We call these new CDC relations,
inferred CDC constraints. In various applications, due to dynamic conditions with human presence,
qualitative spatial relations may have assumptions or exceptions. For example, in the missing child
scenario, suppose that the agent has the following commonsense knowledge: “The children are by
default at the ice-cream truck” and “The ice-cream truck is by default in the free area which is to
the north of the movie theater”. Then it will be desirable to express such commonsense knowledge
formally, similar to CDC constraints, and to allow default reasoning over them. Motivated by such
examples, we introduce default qualitative directional constraints (default CDC constraints), and
extend CDC consistency checking to include such constraints.

Due to the nonmonotonic aspects, we call this extension of CDC as nCDC. We utilize the
knowledge representation and reasoning paradigm Answer Set Programming (ASP) (Marek &
Truszczyński, 1999; Niemelä, 1999; Lifschitz, 2002), based on answer set semantics (Gelfond &
Lifschitz, 1988, 1991), to provide a meaning to the novel CDC constraints and to provide methods
to compute solutions for the reasoning problems.

Recall that consistency checking problem in CDC is defined over the continuous domain (i.e.,
the objects are regions on a plane). To use ASP for nCDC consistency checking, we define a
discretized version of the CDC consistency checking problem over a grid of appropriate size.

Let us summarize the theoretical contributions of our studies presented in this paper:

• We extend CDC (called nCDC) with two novel CDC constraints, inferred CDC constraints
and default CDC constraints, to represent the inferred missing relations and to represent the
commonsense knowledge about CDC relations that involves defaults (Section 3).

• We introduce the discretized nCDC consistency checking problem where the consistency of a
set of nCDC constraints is determined over a grid of appropriate size (Section 4). We provide
lower bounds on the grid size so that the discretized consistency checking returns correct
solutions for CDC consistency checking (Theorems 1, 7, 9).

• We provide semantics of nCDC using the nonmonotonic formalism of ASP, based on the
discretized consistency checking problem (Sections 5–8). We discuss further improvements
of ASP formulations (Section 9).

Basic CDC Relations Disjunctive CDC Relations
Complete Incomplete

Simp P P NP-complete
(Liu et al., 2010, Thm 8) (Navarrete et al., 2007, Thm 3) (Navarrete et al., 2007, Thm 4)

Reg P NP-complete –
(Liu, 2013, Thm 5.4) (Liu et al., 2010, Thm 5)

Reg* P NP-complete NP-complete
(Liu, 2013, Thm 5.7) (Liu, 2013, Thm 5.8) (Skiadopoulos & Koubarakis, 2005, Thm 6)

Table 1: Computational complexity analysis of consistency checking problems in Cardinal Direc-
tional Calculus
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• We prove the correctness of ASP formulations of basic CDC constraints (Theorem 2) and dis-
junctive CDC constraints (Theorem 4) with respect to CDC consistency checking, and when
some objects are connected (Theorem 3). These results show that our ASP-based framework
is general enough to solve all types of CDC consistency checking problems.

• We prove the correctness of ASP formulations for inferring missing CDC relations (Theo-
rem 5) and with default CDC constraints (Theorem 6).

• Motivated by applications, we introduce new methods to improve the layout of objects on the
tabletop in the sense that the number of overlapping objects and the area occupied by each
object are minimized.

Let us also summarize the practical contributions:

• We introduce an ASP-based framework (called NCDC-ASP ) to represent and reason about
nCDC constraints.

• We present three different scenarios motivated by real-world applications, to illustrate the
uses and benefits of the ASP-based framework for representing nCDC constraints, to check
consistency of nCDC constraints, to infer missing CDC relations, and to reason about com-
monsense knowledge that involves defaults (Section 10).

• We introduce a comprehensive set of benchmarks for experimental evaluations (Section 12).
Some of these benchmarks are carefully handcrafted, avoiding too many redundant CDC con-
traints, to better analyze the scalability of the ASP-based method for consistency checking,
the effect of the degree of incompleteness of the CDC constraints, and the effect of including
different types of constraints. Some of these benchmarks are randomly generated.

• We perform a comprehensive set of experiments, present the results with figures and tables,
and discuss the experimental results (Section 13).

This paper is a revised and significantly extended version of a preliminary paper (Izmirlioglu
& Erdem, 2018) that appeared in Proceedings of The Thirty-Second AAAI Conference on Artificial
Intelligence (AAAI-18), with the following novelties: new definitions for default CDC constraints,
further theoretical results (including proofs) that provide tighter lower bounds on the grid size and
that guarantee the correctness of the ASP formulations, further improvements of the ASP formu-
lations that significantly reduce the computation time by more than hundred times, novel methods
for layout optimization of objects and for benchmark generation motivated by applications, dif-
ferent example scenarios including robotic planning, comprehensive experimental evaluations and
comparisons with the related work.

2. Preliminaries

We study qualitative reasoning over cardinal directions between spatial entities, as in Cardinal Di-
rectional Calculus (CDC) (Skiadopoulos & Koubarakis, 2004, 2005), using Answer Set Program-
ming (ASP) (Marek & Truszczyński, 1999; Niemelä, 1999; Lifschitz, 2002). Let us provide some
preliminaries about CDC and ASP that will help us explain our contributions.
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2.1 Answer Set Programming

Answer Set Programming (ASP) is a knowledge representation and reasoning paradigm, based
on answer set semantics (Gelfond & Lifschitz, 1988, 1991). It provides a formal framework for
declaratively solving intractable problems, like consistency checking in CDC. The idea of ASP is
to represent a problem by a set of logical formulas (called rules), so that its models (called answer
sets) characterize the solutions of the problem. The models can be computed by ASP solvers, like
CLINGO (Gebser et al., 2011).

Syntax Let us briefly describe the syntax of programs and useful constructs used in the paper. For
more general ASP programs and further constructs, we refer the reader to the books on ASP (Baral,
2003; Gebser, Kaminski, Kaufmann, & Schaub, 2012; Gelfond & Kahl, 2014; Lifschitz, 2019) and
the special issue of AI Magazine on ASP (Brewka, Eiter, & Truszczynski, 2016).

In this paper, we consider the rules of the form

Head ← L1, . . . ,Lk,not Lk+1, . . . ,not Ll (1)

where l ≥ k≥ 0, Head is a literal (i.e., an atom A or its negation ¬A) or⊥, and each Li is a literal. A
rule is called a (hard) constraint if Head is ⊥, and a fact if l = 0. A set of rules is called a program.

ASP can express both classical negation (¬) and default negation (not). For example, the fol-
lowing rule expresses that, normally, the elevator works fine (works) unless stated or observed
otherwise that it does not work (¬works):

works← not ¬works.

Semantics A set Z of literals satisfies a formula F (symbolically, Z |= F) recursively, as follows:

• Z |= F if F ∈ Z ∨ F =>,

• Z |= not F if Z 6|= F ,

• Z |= (F,G) if Z |= F ∧ Z |= G,

• Z |= (F ;G) if Z |= F ∨ Z |= G.

Then a set Z of literals satisfies a program Π (Z |= Π) if, for every rule Head ← Body in Π,
Z |= Head then Z |= Body.

The reduct FZ of a formula F with respect to a set Z of literals is obtained by replacing every
maximal occurrence of a subformula of the form not G in F with ⊥ if Z |= G, otherwise replacing
with >. The reduct ΠZ of a program Π with respect to Z is obtained by replacing every rule F←G
of Π by the rule FZ ← GZ .

A set Z of literals is an answer set of Π if Z is a consistent set of literals and Z is a minimal set
satisfying ΠZ .

Useful constructs of ASP ASP provides special constructs to express nondeterministic choices,
cardinality constraints, and aggregates. Programs using these constructs can be viewed as abbrevi-
ations for programs that consist of rules of the form (1).

Choice rules provide a concise representation for nondeterministic choices, and thus allow gen-
eration of answer sets. For instance, the answer sets for the choice rule

{p1, p2, p3, p4, p5}←

1375



IZMIRLIOGLU & ERDEM

are all subsets of the set {p1, p2, p3, p4, p5}.
Cardinality expressions are of the form l≤{L1, . . . ,Lk}≤u where each Li is a literal and l and

u are nonnegative integers denoting the lower and upper bounds (Simons, Niemelae, & Soininen,
2002). Such an expression describes the subsets of the set {L1, . . . ,Lk} whose cardinalities are at
least l and at most u. Cardinality expressions can be used in heads of choice rules; then they generate
the answer sets whose cardinality is at least l and at most u. For instance, the choice rule

1≤{p1, p2, . . . , p5}≤3 ← (2)

allows nondeterministically selecting at least 1 and at most 3 elements of the set {p1, p2, . . . , p5} to
be included in an answer set. When a cardinality expression is in the body of the rules, it imposes a
cardinality constraint on the number of literals. For instance, adding the following constraint

← #count {p1, p2, . . . , p5}≥2

to (2) will impose a constraint on the choice rule, and thus only subsets of {p1, p2, . . . , p5} whose
cardinality is exactly one will be generated.

Schematic variables can be used to compactly describe a group of rules, or a set of literals in
a choice rule. For instance, the cardinality expression 1≤{p1, p2, . . . , p5}≤3 can be represented
as 1≤{p(i) : index(i)}≤3, along with a definition of index(i) to describe the range of variable i:
index(1..5). The following choice rule allows nondeterministically selecting at least 1 and at most
3 numbers x for every set u:

1≤{select(u,x) : num(x)}≤3 ← set(u).

ASP provides utilities to represent aggregates. For instance, the following rule defines the
smallest number, n, selected so far using the aggregate min:

smallest(n)← n=#min {x : select(u,x), set(u)}.

ASP also allows (weighted) weak constraints—expressions of the following form
∼←− Body(t1, ..., tn)[w@p, t1, ..., tn]

where Body(t1, ..., tn) is a formula with the terms t1, ..., tn. Whenever an answer set for a program
satisfies Body(t1, ..., tn), the tuple 〈t1, ..., tn〉 contributes a cost of w to the total cost function of
priority p. The ASP solver tries to find an answer set with the minimum total cost. For instance, the
following weak constraint

∼←− select(u,x),smallest(x)[1@2,u]

instructs the ASP solver to compute an answer set that does not include both select(u,x) and
smallest(x) for any set u, if possible. If the ASP solver cannot find such an answer set, it is al-
lowed to compute an answer set with these atoms select(u,x) and smallest(x) for some sets u, but
with an additional cost of 1 per each such u. Therefore, this weak constraint tries to minimize the
total number sets that includes the smallest number x.

Remark In this paper, we present ASP programs in mathematical format instead of the input
language of an ASP solver. Therefore, for terms, the lower-case letters denote schematic variables
while the upper-case letters denote object constants. For our experiments, we implement these
programs in the language of CLINGO , confirming with the ASP-Core-2 standard (Calimeri et al.,
2013). We provide these ASP programs in Appendix B.
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2.2 Cardinal Directional Calculus

Cardinal Directional calculus (CDC) describes orientation of spatial objects with respect to one
another in terms of cardinal directions. We briefly describe some terminology and notation relevant
to the rest of the paper, in the spirit of Skiadopoulos and Koubarakis (2004, 2005), Liu et al. (2010).

Regions In CDC, spatial objects are nonempty, regular, compact subsets of R2. That is, spatial
objects are closed and bounded regions on a plane and they can be connected or disconnected.
A region is connected if its interior is connected. Connected regions might have holes inside. A
disconnected region can be viewed as a finite union of connected regions. In this paper, we consider
the following types of regions (Fig. 1(i)):

• Simp is the set of closed, connected and bounded regions on R2, that are topologically equiv-
alent to a closed disk (i.e., with no holes).

• Reg is the set of closed, connected and bounded regions on R2. The regions in Reg may have
holes.

• Reg* is the set of closed, possibly disconnected and bounded regions on R2.

As in Skiadopoulos and Koubarakis (2004, 2005), Liu et al. (2010), other arbitrary shapes on the
plane (like points, lines and regions with emanating lines) are excluded from these three types of
regions. The definition of a simple region above is the same as the definition of a simple region in
Definition 3 of Liu et al. (2010), and a Reg region in Skiadopoulos and Koubarakis (2004, 2005).

The projection of a region a on the x-axis (resp. y-axis) is defined as the set of the x-coordinates
(resp. y-coordinates) of all the points in a. Let infx(a), supx(a) (resp. infy(a), supy(a)) stand for
the infimum and supremum of the projection of region a on the x-axis (resp. y-axis). The minimum
bounding rectangle of a region a, denoted mbr(a), is the smallest rectangle which contains a and has
sides parallel to the axes. Sides of mbr(a) are the straight lines x = infx(a), x = supx(a), y = infy(a)
and y = supy(a).

Basic CDC relations between spatial objects The orientation of a spatial object a (called the
primary or target region) with respect to another spatial object b (called the reference region) is
defined by nine cardinal directional relations: north (N), south (S), east (E), west (W), northeast
(NE), northwest (NW), southeast (SE), southwest (SW), on (O).

For such a definition, first we extend the sides of the minimum bounding rectangle mbr(b) of
the reference region b along the axes, dividing the plane into nine regions, called tiles, as illustrated
in Figure 1(iii):

• N(b) (“north of b”) is the tile to the north of b, and consists of the coordinates (x,y) ∈ R2

where infx(b)< x < supx(b), and y > supy(b).

• S(b) (“south of b”) is the tile to the south of b, and consists of the coordinates (x,y) ∈ R2

where infx(b)< x < supx(b), and y < infy(b).

• E(b) (“east of b”) is the tile to the east of b, and consists of the coordinates (x,y) ∈R2 where
x > supx(b), and infy(b)< y < supy(b).

• W (b) (“west of b”) is the tile to the west of b, and consists of the coordinates (x,y) ∈ R2

where x < infx(b), and infy(b)< y < supy(b).
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(i)

(ii) (iii)

(iv)

Figure 1: (i) Regions: a, b, c1, c2 are in Reg , where c = c1∪c2 is in Reg* . (ii) A region b, and its minimum
bounding rectangle mbr(b) defined by infx(b), supx(b), infy(b) and supy(b). (iii) Nine target regions (or tiles)
with respect to the region b: N(b) (“north of b”), S(b) (“south of b”), E(b) (“east of b”), W (b) (“west of
b”), NE(b) (“northeast of b”), NW (b) (“northwest of b”), SE(b) (“southeast of b”), SW (b) (“southwest of
b”), O(b) (“on b”). (iv) Sample CDC relations that describe different orientations of a with respect to b:
a O:S:SW b (“the region a occupies O(b), S(b) and SW (b)”), a NE:E b (“Some part of a is in NE(b) and the
rest of a is in E(b)”), a N:NE:S b (“a has parts in N(b), NE(b) and S(b)”).

• NE(b) (“northeast of b”) is the tile to the northeast of b, and consists of the coordinates
(x,y) ∈ R2 where x > supx(b), and y > supy(b).

• NW (b) (“northwest of b”) is the tile to the northwest of b, and consists of the coordinates
(x,y) ∈ R2 where x < infx(b), and y > supy(b).

• SE(b) (“southeast of b”) is the tile to the southeast of b, and consists of the coordinates
(x,y) ∈ R2 where x > supx(b), and y < infy(b).

• SW (b) (“southwest of b”) is the tile to the southwest of b, and consists of the coordinates
(x,y) ∈ R2 where x < infx(b), and y < infy(b).

• O(b) (“on b”) is the tile onto b, and consists of the coordinates (x,y) ∈ R2 where infx(b) <
x < supx(b), and infy(b)< y < supy(b).
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Then, by identifying the unique tiles R1(b), ...,Rk(b), (1 ≤ k ≤ 9, Ri 6= R j for 1 ≤ i, j ≤ k) that
contain parts of the target region a, we can describe the orientation of a with respect to b with the
basic CDC relation R1:R2:...:Rk. For example, in the second figure in Figure 1(iv), the orientation
of a with respect to b can described by the basic CDC relation E:NE since some part of a is in E(b)
and the rest of a is in NE(b).

A basic CDC relation a R1:R2:...:Rk b holds if and only if a∩Ri(b) 6= /0 for every tile 1≤ i≤ k
in the relation and a∩Ri(b)= /0 for the remaining tiles k+ 1 ≤ i ≤ 9. If k=1 then this basic CDC
relation is called a single-tile relation; otherwise, if k ≥ 2, it is called a multi-tile relation. In the
rest of the paper, let Rs stand for the set of single-tile relations, and R denote the set of basic CDC
relations over Reg* .

Remark on disjointness of tiles and relations Note that, according to our definition of tiles,

• all tiles are open regions that do not include their boundary points,

• all tiles but O(b) are unbounded,

• the union of all nine tiles including their boundary points is R2, and

• two distinct tiles have disjoint interiors and do not share point in their boundaries.

As in Skiadopoulos and Koubarakis (2004, 2005), Liu et al. (2010), we consider spatial objects that
have positive area, so the minimum bounding rectangle (and thus the tiles) are nontrivial boxes.

According to Skiadopoulos and Koubarakis (2004, 2005), the tiles are not defined as disjoint
from each other, and they share boundaries; however, the authors achieve disjointness of relations
by relying on that the class Reg* does not include points and lines. According to Liu et al. (2010),
the tiles are not defined as disjoint from each other either; however, the satisfaction of a basic CDC
relation is defined by ensuring that the interior part of a does intersect with Ri(b), and hence the
relations are disjoint. In our approach, the disjointness of tiles is defined explicitly, leading to the
disjointness of relations.

Disjunctive CDC relations A disjunctive CDC relation is a finite set δ ={δ1, ...,δo}, o > 1 of
basic CDC relations, intuitively describing their exclusive disjunction. For example, if we are not
certain about the orientation of a with respect to b but know that one of the orientations illustrated in
Fig. 1(iv) is possible, then the orientation of a with respect to b can be described by the disjunctive
CDC relation {O : S : SW, E : NE, N : NE : S}. A disjunctive CDC relation between two regions
a {δ1, ...,δo} b holds if a δi b holds for exactly one i ∈ [1,o] in the disjunction.

CDC constraints and networks A CDC relation can be basic or disjunctive. A CDC constraint
is a formula of the form u δ v, where u and v are spatial variables and δ is a CDC relation. A pair
(a,b) of spatial objects satisfies a CDC constraint u δ v if a δ b holds.

A CDC (constraint) network is a set C of CDC constraints defined by spatial variables V ={v1, ...,vl}
that range over a domain D of spatial objects, and a set Q of CDC relations:

C ⊆ {vi δ v j |δ ∈ Q, vi, v j ∈V} (3)

such that, for every pair (u,v) of variables in V , there exists at most one CDC constraint in C. Let
us denote by I=(C,V,D,Q) the problem of checking the consistency of a CDC constraint network
C.
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A CDC network C is complete if there exists a unique basic CDC constraint in C for every pair
(vi,v j) of variables in V (i 6= j). Otherwise, if there does not exist a basic CDC constraint in C for
some pair (vi,v j) of variables in V (i 6= j), C is called incomplete.

A CDC network is basic if it consists of basic CDC constraints. A solution of I=(C,V,D,Q)
with a basic CDC network C and V ={v1, ...,vl} is an assignment A of spatial objects ai in D to
variables vi in V , such that every basic CDC constraint vi δ v j in C is satisfied by the corresponding
pair (ai,a j) of spatial objects in D. We sometimes denote A by an l-tuple (a1,a2, ...,al) ∈ Dl . A
basic CDC network C is consistent over D if I has a solution.

In the presence of disjunctive CDC constraints, the consistency of a CDC network C can be
defined as follows. Let Ĉ be a basic CDC network obtained from C by replacing every disjunctive
CDC constraint vi δ v j in C by exactly one basic CDC constraint vi δ ′ v j where δ ′ ∈ δ . Then, a
CDC constraint network C is consistent over D if there exists such a basic CDC network Ĉ that is
consistent over D.

As an example, suppose that V consists of two variables, v1 and v2, denoting two spatial objects,
and we are told that v1 is on, south and southwest of v2, i.e., C = {v1 O : S : SW v2}. There exists
a solution for C in the domain D=Reg* as shown in the first figure of Fig. 1(iv): instantiate v1 by
the region a and v2 by the region b. Hence, C is consistent.

Complexity of CDC consistency checking Deciding the consistency of a CDC network C is one
of the main problems studied in the literature about CDC. When C is a complete network, consis-
tency checking in Simp , Reg , Reg* is a polynomial time problem. However, when the network
is incomplete or includes disjunctive constraints, consistency checking becomes NP-complete. The
complexity analysis of consistency checking problem is summarized in Table 1. In this paper, we
introduce a general framework (called NCDC-ASP ) for reasoning about cardinal directional rela-
tions, and provide solutions for all cases of CDC consistency checking.

3. nCDC: Nonmonotononic Reasoning about Cardinal Directions

We provide a general framework (called NCDC-ASP ) for reasoning about cardinal directional
relations between spatial objects, that provides solutions for consistency checking (with respect to
the model-based semantics given above), inference of missing relations, and default reasoning over
the given/inferred CDC constraints.

3.1 Inferences over CDC Constraints

Let us consider the missing child scenario explained in the introduction, where two parents are
looking for their missing child in a shopping mall and request help from an assistive agent located
in the food court. The agent receives some sightings of the child, and checks the consistency of
the gathered information. If the gathered information is consistent, the agent has an idea about the
possible locations of the missing child. Then it will be desirable for the agent to be able to express
such possible locations in an understandable way, like “the child might be to the southeast of the
food court and to the east of the park”.

Motivated by such examples, we introduce a method to infer the missing CDC relations from
the given set C of CDC constraints. We call these new CDC relations, inferred CDC constraints.

Let C be a CDC network, where CDC constraints are defined over a set V of spatial variables,
a domain D ⊆ Reg* , and a set Q of CDC relations. Suppose that C is incomplete. Let X be an
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Notation Description
R2 2D-space (i.e., the plane).
Simp The set of closed, connected and bounded regions on R2,

that are topologically equivalent to a closed disk (i.e., with no holes).
Reg The set of closed, connected and bounded regions on R2.
Reg* The set of closed, possibly disconnected and bounded regions on R2.
a, b Constants used to denote spatial objects or regions.
v, u, w, vi, ui Variables used to denote spatial objects or regions.
infx(a) (resp. infy(a)) The infimum of the projection of region a on the x-axis (resp. y-axis).
supx(a) (resp. supy(a)) The supremum of the projection of region a on the x-axis (resp. y-axis).
mbr(a) The minimum bounding rectangle of a region a.
Rs The set of nine cardinal direction relations (i.e., single-tile relations):

north (N), south (S), east (E), west (W), northeast (NE), northwest (NW),
southeast (SE), southwest (SW), on (O).

Ri Variables used to denote single-tile relations.
R The set of basic CDC relations over Reg* .
δ ,γ,δi,δi j Variables used to denote CDC relations.
C A CDC (constraint) network (i.e., a set of CDC constraints).
V A set of spatial variables.
D A set of spatial objects (regions).
Q A set of CDC relations.
Λm,n The set of all grid cells of a grid of size m×n.
Dm,n The set of all nonempty subsets of the grid cells in Λm,n,

where each subset characterizes a spatial object in D.
mbrm,n(b) The smallest rectangle in Λm,n which contains b.
I The consistency checking problem I=(C,V,D,Q).
Im,n The discretized consistency checking problem Im,n=(C,V,Dm,n,Q).

Table 2: A summary of the notation used in this manuscript

assignment of spatial objects in D to variables in V , that is a solution for C. For a pair of variables u
and v in V where there does not exist a CDC constraint u δ v in C, an inferred CDC constraint with
respect to X is a basic CDC constraint u β v, β ∈ Q such that X(u) β X(v) holds.

3.2 Default Reasoning over CDC Constraints

In various applications, due to dynamic conditions with human presence, qualitative spatial relations
may have exceptions. For example, let us consider the missing child scenario again. The agent
knows that the children are by default at the ice-cream truck, and the ice-cream truck is by default
in the free area which is to the north, east or northeast of the movie theater. Then it will be desirable
to express such commonsense knowledge formally, similar to CDC constraints, to allow for default
reasoning.

Motivated by such examples, we introduce default qualitative directional constraints (default
CDC constraints) as expressions of the form:

default u δ v (4)

where u δ v is a CDC constraint.
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We understand default CDC constraints as follows. Consider a default CDC constraint default u δ v
for any two spatial objects u and v in V . The assumption u δ v holds by default if there is no ev-
idence against it. The evidence against a default can be defined as the presence of an existing or
inferred CDC constraint u β v that such that δ 6= β ; or can be defined explicitly by the user.

3.3 nCDC Constraints

We have extended CDC by introducing new sorts of constraints and defined their semantics. Due to
its nonmonotonic aspects, we call this extension of CDC as nonmonotonic CDC (nCDC). We build
nCDC formalism based on CDC relations. An nCDC constraint can be a basic, disjunctive, default
or an inferred CDC constraint. An nCDC (constraint) network is a set C of CDC constraints defined
by spatial variables V ={v1, ...,vl} that range over a domain D of spatial objects in Reg* , and a set
Q of CDC relations:

C ⊆ {vi δ v j, default vi δ v j |δ ∈ Q, vi, v j ∈V} (5)

such that, for every pair (u,v) of variables in V , there exists at most one basic or disjunctive CDC
constraint in C.

An nCDC network is basic if it consists of basic CDC constraints. A basic nCDC network C
is complete if there exists a unique basic CDC constraint in C for every pair (vi,v j) of variables in
V , (i 6= j). Otherwise, if there does not exist a basic CDC constraint in C for some pair (vi,v j) of
variables in V , (i 6= j), C is called incomplete.

The problem of checking the consistency of a basic nCDC constraint network C is characterized
by a tuple I=(C,V,D,Q). A solution of I=(C,V,D,Q) is an assignment A of spatial objects ai

in D to variables V ={v1, ...,vl} such that A satisfies every constraint in C. An nCDC network C
is consistent over D if I has a solution. The definition of consistency of an nCDC network in the
presence of disjunctive CDC constraints is analogous to CDC networks, as explained in Section 2.2.

4. Discretized Consistency Checking

Let C be an nCDC constraint network defined by a set V of variables ranging over the set D of all
spatial objects in Reg* and a set Q of CDC relations. Recall that checking the consistency of C is
defined over continuous space since D ⊆ 2R

2
. This problem can be discretized in the spirit of Liu

et al. (2010) by viewing the plane as a sufficiently fine grid so that the regions occupied by spatial
objects can be specified by a set of grid cells.

For positive integers m and n, let Λm,n denote the set of all cells of a grid whose size is m× n,
where a grid cell is identified by the coordinates of its lower left corner. Let Dm,n denote the set of all
nonempty subsets a of the grid cells in Λm,n, where each subset a characterizes a spatial object (i.e.,
the set of possibly disconnected regions) in D. Every spatial variable u in V then can be instantiated
by an element a of Dm,n.

We define the minimum bounding rectangle of a region b ∈ Dm,n in an analogous fashion as
before, but with respect to Λm,n. The minimum bounding rectangle of a region b, denoted mbrm,n(b),
is the smallest rectangle in Λm,n which contains b and has sides parallel to the axes. The infimum
and supremum of the object b over the x axis (i.e. inf m,n

x (b) and supm,n
x (b)) are defined as the

smallest and the largest x coordinate value of the cells in b. We define inf m,n
y (b) and supm,n

y (b) in an
analogous manner.
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(i) (ii) (iii)

Figure 2: For a consistency checking problem I with a set C = {b S a, c E b, a N : NW c} of basic
CDC constraints, (i) shows a solution on R2, (ii) shows a solution to the discretized consistency
checking problem I5,5 over a grid of size 5×5, whereas (iii) shows a solution to I3,3 over a grid of
size 3×3.

We define the nine tiles of the grid Λm,n with respect to a reference object b ∈ Dm,n, also in a
similar fashion. We denote by Rm,n(b) the tile in Λm,n with respect to a reference object b and a
cardinal direction R. For example, Nm,n(b) is the tile to the north of b, and consists of the grid cells
(x,y) ∈ Λm,n where x≥ infx(b), x≤ supx(b), and y>supy(b).

We say that a pair (a,b) of spatial objects in Dm,n satisfies a basic CDC constraint u δ v in C if
the following hold:

(C1) a∩Rm,n(b) 6= /0 for every single-tile relation R in δ , and

(C2) a∩Rm,n(b)= /0 for every single-tile relation R that is not included in δ .

Similarly, a pair (a,b) of spatial objects in Dm,n satisfies a disjunctive CDC constraint u δ v in C if
the conditions (C1) and (C2) hold for some basic CDC relation δ ′ ∈ δ .

The discretized consistency checking problem is characterized by a tuple Im,n=(C,V,Dm,n,Q).
Let X be an assignment of spatial objects ai in Dm,n to variables vi in V ={v1, ...,vl}. Then, X is a
solution of Im,n if every constraint vi δ v j in C is satisfied by (ai,a j). We sometimes denote X by an
l-tuple (a1,a2, ...,al) ∈ (Dm,n)

l . An nCDC network C is consistent over a discrete space Dm,n if Im,n

has a solution.
Consider, for example, the problem I with constraints C = {b S a, c E b, a N : NW c} and

V = {a,b,c}, where D consists all regions in Reg* , and Q consists of all basic CDC relations. A
solution to I is illustrated in Fig. 2(i): variable a (resp. b and c) is instantiated by the region denoted
by a (resp. b and c). In the discretized version Im,n of I, Dm,n consists of all nonempty subsets of
grid cells in a grid of size m×n. A solution to Im,n for m = n = 5 is shown in Fig. 2(ii): variable a
(resp. b and c) is instantiated by the region that consists of the grid cells denoted by a (resp. b and
c).

If the grid Λm,n is fine enough, then the discretized version Im,n=(C,V,Dm,n,Q) of the consis-
tency checking problem and I have the same output regarding the consistency of C: C is consistent
over D if and only if C is consistent over Dm,n. According to the following theorem, if m,n≥ 2|V |−1
then the grid is fine enough:
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Theorem 1 The consistency checking problem I=(C,V,D,Q) and the discretized consistency check-
ing problem Im,n=(C,V,Dm,n,Q) where m,n≥2|V |−1 have the same output.

Liu et al. (2010) have the same lower bound 2|V | − 1 on the grid size for complete networks
in Reg* (Theorem 6 of Liu et al., 2010). Theorem 1 extends this result to possibly incomplete
networks. The proof of Theorem 1 is presented in Appendix A.

5. Basic CDC Consistency Checking using ASP

After discretizing CDC consistency checking, we can represent it in ASP by a program. Let us first
consider basic CDC constraints defined over Reg* .

5.1 Regions in Reg* : Spatial Objects may be Disconnected

Let Im,n=(C,V,Dm,n,Q) be the discretized version of a consistency checking problem, where m
and n are positive integers, and C contains basic CDC constraints and may be incomplete. Note
that since D=Reg* , spatial objects may be disconnected regions and have holes. We define the
corresponding ASP program ΠIm,n as follows.

Represent the input We represent the given constraint network C in ASP by a set of facts. In
particular, we describe every basic CDC constraint u R1:R2:...:Rk v (k ≥ 1) in C, by a set of facts as
follows:

rel(u,v,Ri)← . (6)

For instance, the basic CDC constraint u N:NE v is represented by the facts:

rel(u,v,N)←
rel(u,v,NE)← .

The answer set for the program (6) characterizes the input network C. Since the network C might
be incomplete, existrel(u,v) atoms are introduced to identify which pair of variables are related by
a constraint in the network:

existrel(u,v)← rel(u,v,r) (r ∈Rs, u,v ∈V ). (7)

Generate assignments of spatial objects to variables Recall that a solution of Im,n is character-
ized by an instantiation of every variable u ∈ V by a spatial object in Dm,n, i.e., a nonempty set of
grid cells (x,y) in Λm,n. We describe such an instantiation by the atoms of the form occ(u,x,y).

An assignment of a nonempty set of cells (x,y) ∈ Λm,n to every variable u ∈V is generated by a
set of choice rules as follows:

{occ(u,x,y) : (x,y) ∈ Λm,n}≥1 ← . (8)

Note that these choice rules are augmented by a cardinality constraint to ensure that at least one grid
cell is assigned to every variable.

Every answer set for program (6)∪(7)∪(8) characterizes an assignment of spatial objects to the
variables. Note that some of these answer sets do not correspond to solutions, i.e., the corresponding
assignments violate conditions (C1) and/or (C2).
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Eliminate the assignments that violate the constraints To check whether a generated assign-
ment satisfies every basic CDC constraint u δ v in C, first we identify the bounds of the spatial
object in Dm,n assigned to v by defining the smallest and the largest coordinate values of the cells of
the object on the x-axis and the y-axis of Λm,n. We represent these coordinate values on the x-axis
by the atoms of the form inf m,n

x (v,x) and supm,n
x (v,x), respectively; we consider similar atoms for

the coordinate values on y-axis. Recall that the spatial object assigned to v is defined by the atoms
of the form occ(v,x,y). Then, we can define these coordinate values as follows:

inf x(v,x)← x=#min{x : occ(v,x,y), (x,y) ∈ Λm,n}
supx(v,x)← x=#max{x : occ(v,x,y), (x,y) ∈ Λm,n}.

(9)

Note that these definitions use aggregates min and max supported by ASP. Similar rules are added
for the y axis.

Then, for each single-tile relation that δ contains (resp. does not contain), we add constraints
for ensuring (C1) (resp. (C2)). For instance, if δ contains the single tile relation N (north) then the
following constraint ensures condition (C1) for N: for every pair of spatial objects u,v∈V , if u is to
the north of v, then there should be some grid cells to the north of mbrm,n(v) occupied by u.

← #count{x,y: occ(u,x,y), x≤x≤x, y>y, (x,y)∈Λm,n}≤0,
rel(u,v,N), inf x(v,x), supx(v,x), supy(v,y).

(10)

If δ does not contain N, then the following constraint ensures condition (C2) for N: for every
pair of spatial objects u,v∈V , if u is not to the north of v then there should not be any cells to the
north of mbrm,n(v) occupied by u.

← #count{x,y: occ(u,x,y), x≤x≤x, y>y, (x,y)∈Λm,n }≥1,
not rel(u,v,N), existrel(u,v), inf x(v,x), supx(v,x), supy(v,y).

(11)

Similar rules are added for the other single-tile relations.
Then, the ASP program ΠIm,n for basic CDC consistency checking is composed of rules (6), (7),

(8), (9) and similar rules for y axis, (10), (11), and similar rules for other single-tile relations.

Correctness Let Om,n denote the set of all atoms of the form occ(u,x,y) where u ∈V and (x,y) ∈
Λm,n. Recall that an assignment X of spatial objects in Dm,n (i.e., nonempty set of grid cells (x,y)
in Λm,n) to variables u in V , can be represented by a nonempty set Z ⊆ Om,n of atoms of the form
occ(u,x,y) that describe the assignment X . In such cases, we say that X is characterized by Z.

The following theorem states that the ASP program ΠIm,n correctly formulates the discretized
consistency checking problem Im,n. In this way, we can decide for the consistency of a basic CDC
network using ASP.

Theorem 2 Let Im,n=(C,V,Dm,n,Q) be a discretized consistency checking problem, where C is a
basic CDC network. For an assignment X of spatial objects in Dm,n to variables u in V , X is a
solution of Im,n if and only if X can be represented in the form of Z∩Om,n for some answer set Z of
ΠIm,n . Moreover, every solution of Im,n can be represented in this form in only one way.

The proof of Theorem 2 is presented in Appendix A.
From Theorems 1 and 2, we obtain the following corollary:

Corollary 1 For a consistency checking problem I=(C,V,D,Q), where C consists of basic CDC
constraints and may be incomplete, I has a solution if and only if the corresponding ASP program
ΠIm,n with m=n=2|V |−1 has an answer set.
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5.2 Regions in Reg : Spatial Objects must be Connected

Let us consider a variation of basic CDC consistency checking where spatial objects are connected.
We can solve this problem using ASP, utilizing a recursive definition for connectedness.

Suppose that I=(C,V,D,Q) is a consistency checking problem, where C contains basic CDC
constraints and may be incomplete, but the spatial objects are connected (i.e., D=Reg ). We solve
this problem by adding the following rules to the ASP program ΠIm,n .

First, for every spatial object u∈V , we recursively define (4-)connectedness of grid cells that
are occupied by the same spatial object u:

conn(u,x,y,x,y)← occ(u,x,y) ((x,y) ∈ Λm,n)
conn(u,x1,y1,x2,y2)← occ(u,x1,y1), occ(u,x2,y2)

((x1,y1),(x2,y2) ∈ Λm,n , |x1−x2|+|y1−y2|=1)
conn(u,x1,y1,x3,y3)← conn(u,x1,y1,x2,y2), conn(u,x2,y2,x3,y3)

((x1,y1),(x2,y2),(x3,y3) ∈ Λm,n).

(12)

Note that conn(u,x1,y1,x2,y2) expresses the reflexive transitive closure of the adjacency relation of
cells occupied by u (due to Theorem 2 of Erdem & Lifschitz, 2003).

Next, we guarantee that every two grid cells (x1,y1) and (x2,y2) in Λm,n that are occupied by the
same spatial object u are connected indeed:

← not conn(u,x1,y1,x2,y2), occ(u,x1,y1), occ(u,x2,y2). (13)

The following theorem states that extending ΠIm,n with the rules (12)∪ (13) correctly solves the
discretized consistency checking problem Im,n where the spatial objects are connected:

Theorem 3 For a discretized version Im,n=(C,V,Dm,n,Q) of a consistency checking problem, where
C consists of basic CDC constraints and may be incomplete, and where the spatial objects in Dm,n

are connected, Im,n has a solution if and only if the corresponding ASP program ΠIm,n combined
with (12)∪ (13) for every variable u ∈V has an answer set.

The proof of Theorem 3 uses Proposition 4 of Erdem and Lifschitz (2003) to show that the
definition of connectedness i.e., the rules in (12) are correct, Proposition 3 of Erdogan and Lifs-
chitz (2004) to show that adding the definition of connectedness to the program ΠIm,n extends its
answer sets conservatively, and Proposition 2 of Erdogan and Lifschitz (2004) to show that the
connectedness is ensured for each spatial object.

6. Disjunctive CDC Constraints

Consider a CDC consistency checking problem I=(Cd∪Cb,V,D,Q) where D=Reg* , Cd is a set of
disjunctive CDC constraints, and Cb is a set of basic CDC constraints. Furthermore, C=Cd∪Cb may
be incomplete. Recall that, in the presence of disjunctive CDC constraints, consistency of a CDC
constraint network C is defined as follows. Let Ĉd be a basic CDC network obtained from Cd by
replacing every disjunctive CDC constraint vi δi j v j in Cd by a basic CDC constraint vi δ ′i j v j where
δ ′i j ∈ δi j. Then, a CDC network C is consistent if there exists a basic CDC network Ĉd obtained
from Cd such that Ĉd ∪Cb is consistent. In other words, I=(Cd ∪Cb,V,D,Q) returns Yes if and only
if Î=(Ĉd ∪Cb,V,D,Q) returns Yes for some basic CDC network Ĉd obtained from Cd .
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Thanks to Theorem 1, the consistency checking problem I has the same answer as the discretized
consistency checking problem Im,n where m,n≥2|V |−1. On the other hand, the program ΠIm,n

(described in Section 5) contains rules (6) that describe the basic CDC constraints in Cb but not the
constraints in Ĉd .

Based on this observation, we define the given disjunctive CDC constraints in Cd and then non-
deterministically construct the basic CDC constraints in Ĉd . We represent every given disjunctive
CDC constraint u {δ1,δ2, ...,δo} v in Cd , by identifying every single-tile relation R ∈Rs included
in every basic CDC relation δi:

disjrel(u,v, i,R)← (R ∈ δi, 1≤ i≤ o). (14)

Then, we nondeterministically construct basic CDC constraints Ĉd from Cd : For each disjunc-
tive CDC constraint u {δ1,δ2, ...,δo} v in Cd , a disjunct δi is nondeterministically chosen:

{chosen(u,v, i) : 1≤ i≤ o}=1 ← (15)

and a new basic CDC constraint u δi v is constructed:

rel(u,v,R)← chosen(u,v, i), disjrel(u,v, i,R). (16)

Let Πv
Im,n

be the program obtained from ΠIm,n by augmenting it with the rules (14), (15) and
(16). The rules (14), (15) and (16) define some Ĉd that is nondeterministically constructed from
Cd according to the definition for consistency checking of disjunctive CDC constraints. Then, the
program Πv

Im,n
extends the correctness results stated in Theorem 2 to disjunctive CDC constraints.

Theorem 4 Let m,n≥2|V |−1, let Im,n=(C,V,Dm,n,Q) be a discretized CDC consistency checking
problem where C is the union of a set of disjunctive CDC constraints and a set of basic CDC
constraints. Furthermore, C may be incomplete. For an assignment X of spatial objects in Dm,n to
variables u in V , X is a solution of Im,n if and only if X can be represented in the form of Z∩Om,n

for some answer set Z of Πv
Im,n

. Moreover, every solution of Im,n can be represented in this form in
only one way.

7. Inferring Cardinal Directions using ASP

When the given CDC network is incomplete, it may be useful to infer the cardinal directions between
two spatial objects whose CDC relation is not known at all.

Let us first define the inference of cardinal directions for discretized consistency checking. Let
Im,n=(C,V,Dm,n,Q) be a discretized version of the consistency checking problem I=(C,V,D,Q)
where D=Reg* . Suppose that the given CDC network C, defined by a set V of variables over a
discrete domain Dm,n and a set Q of CDC relations, is incomplete. Let X be an assignment of spatial
objects ai in Dm,n to variables vi in V ={v1, ...,vl}, that is a solution for C. For a pair of variables u
and v in V where there does not exist a basic or disjunctive CDC constraint u δ v in C, an inferred
CDC constraint with respect to X is a basic CDC constraint u β v, β ∈ Q where the regions X(u)
and X(v) in Dm,n satisfy u β v.

In our setup, inferred relations correspond to the candidate solutions for unknown relations in a
given CDC network. There may be more than one inferred relation between a pair of objects for the
same network. As an example, consider the CDC network C1={v E : NE u, v S : SE : SW w, z N w}
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where V ={u,v,w,z}, D=Reg . There are six possible inferred CDC relations between (u,z):
u SW z, u S z, u SE z, u S : SE z, u S : SW z, u SE : S : SW z. Note that the constraints in C1
do not entail any of these relations. Therefore our notion of inference is different from entailment
in classical logic.

Now let us describe how missing CDC relations can be inferred using ASP. For a pair of spatial
objects u and v where there does not exist a CDC constraint u δ v in C, first a basic CDC relation
δ ∈ Q is generated for them:

{inferrel(u,v,R) : R ∈Rs}≥1 ← not 1≤{rel(u,v,R′) : R′ ∈Rs}. (17)

Then, for every generated CDC constraint u δ v, we add constraints to ensure (C1) and (C2).
For instance, if the inferred relation δ contains the single tile relation N (north) then the following
constraint (similar to (10)) ensures condition (C1) for N: for every spatial object u,v∈V , if u is to
the north of v then there should be some grid cells to the north of mbrm,n(v) occupied by u.

← #count{x,y: occ(u,x,y), x≤x≤x, y>y, (x,y)∈Λm,n}≤0,
inferrel(u,v,N), inf x(v,x), supx(v,x), supy(v,y).

(18)

If the inferred δ does not contain N, then the constraint (11) is replaced by the following con-
straint to ensure condition (C2) for N: for every spatial object u,v∈V , if u is not to the north of v
then there should not be any cells to the north of mbrm,n(v) occupied by u.

← #count{x,y: occ(u,x,y), x≤x≤x, y>y, (x,y)∈Λm,n }≥1,
not inferrel(u,v,N), not rel(u,v,N), inf x(v,x), supx(v,x), supy(v,y).

(19)

Similar rules are added for the other single tile relations.
Let Em,n denote the set of all atoms of the form inferrel(u,v,R) where u,v ∈ V and R ∈ Rs.

Let Π
v,+
Im,n

be the program obtained from Πv
Im,n

by adding the rules (17), by deleting the constraints
(11) and similar constraints for the other single tile relations, and by adding the constraints (18)∪
(19) and similar constraints for the other single tile relations. The added rules infer missing CDC
relations.

Theorem 5 Let m,n≥2|V |−1, let Im,n=(C,V,Dm,n,Q) be a discretized CDC consistency checking
problem where C is the union of a set of disjunctive CDC constraints and a set of basic CDC
constraints. Furthermore, C may be incomplete. Let X be an assignment of spatial objects in Dm,n

to variables u in V , that is a solution of Im,n. For every pair of variables u and v in Dm,n where
there does not exist a CDC constraint u δ v in C, the regions X(u) and X(v) satisfy an inferred CDC
constraint u β v for some basic CDC relation β if and only if the inferred constraint u β v can be
represented in the form of Z∩Em,n for some answer set Z of Π

v,+
Im,n

.

Corollary 2 For a solution X of Im,n=(C,V,Dm,n,Q), let Cin f be the set of all basic CDC con-
straints inferred with respect to X. Then, X is a solution for I′m,n=(C∪Cin f ,V,Dm,n,Q) as well.

8. Default CDC Constraints

As discussed in Section 3.2, we extend CDC with a set of default qualitative directional constraints
of the form (4) to be able to express commonsense knowledge like “the children are by default at
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the ice-cream truck”, and “the ice-cream truck is by default in the free area which is to the north of
the movie theater”. We call this extension nCDC, emphasizing its nonmonotonic aspect.

We provide the meaning of default CDC constraints over a discrete domain Dm,n, in ASP utiliz-
ing the nonmonotonic construct not and the aggregates.

Now suppose that the constraint network C contains default CDC constraints. We represent
every default CDC constraint default u δ v (where δ is a basic relation) in ASP by a set of facts:

defaultrel(u,v,R)← (R ∈ δ ). (20)

Existence of a default constraint for a pair (u,v) is identified by the rule

existdefrel(u,v)← defaultrel(u,v,R). (21)

If δ ={δ1,δ2, ...,δo} is a disjunctive CDC relation, we represent the disjunctive default con-
straint default u δ v as:

disjdefrel(u,v, i,R)← (R ∈ δi, 1≤ i≤ o)
existdisjdefrel(u,v)← disjdefrel(u,v, i,R).

(22)

The rules below nondeterministically choose a disjunct from δ and generate the corresponding
defaultrel(u,v,R) atoms:

{defchosen(u,v, i) : 1≤ i≤ o}=1 ← existdisjdefrel(u,v) (23)

defaultrel(u,v,R)← defchosen(u,v, i), disjdefrel(u,v, i,R). (24)

The default CDC constraint default u δ v applies if there is no evidence against it. Let drel(u,v)
represent the lack of an evidence against the default constraint:

drel(u,v)← not ¬drel(u,v), defaultrel(u,v,R) (R ∈ δ ). (25)

The evidence against a default constraint default u δ v can be due to a violation of a CDC
constraint. Such a violation can come from an existing CDC constraint between (u,v) in the network
or an inferred CDC constraint between (u,v). Note that C may already contain a basic or disjunctive
CDC constraint for the pair (u,v). If the existing CDC constraint or the inferred CDC constraint
between (u,v) is different from δ , this would constitute an evidence against the default constraint

¬drel(u,v)← not inferrel(u,v,R), defaultrel(u,v,R), existinferrel(u,v) (R ∈Rs)
¬drel(u,v)← inferrel(u,v,R), not defaultrel(u,v,R), existdefrel(u,v) (R ∈Rs)
¬drel(u,v)← not rel(u,v,R), defaultrel(u,v,R), existrel(u,v) (R ∈Rs)
¬drel(u,v)← rel(u,v,R), not defaultrel(u,v,R), existdefrel(u,v) (R ∈Rs)

(26)

where existinferrel(u,v) atoms indicate the pair of variables for which inferred relations are gener-
ated:

existinferrel(u,v)← inferrel(u,v,R) (R ∈Rs, u,v ∈V ). (27)

The following weak constraint minimizes the evidences against the default constraints to satisfy
as many default CDC constraints as possible:

∼←− ¬drel(u,v), existdefrel(u,v) [1@1,u,v]. (28)
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For instance, consider two spatial variables u and v for which no CDC constraint is provided. It
is possible to infer a relation between them, and the inferred relation may not be unique. Then, we
prefer to minimize the evidences so that a given default constraint, e.g., default u N v applies.

Note that a weak constraint should be used in (28) instead of a hard constraint because the
default CDC constraint might conflict with the basic and disjunctive constraints in the network. In
such a case, the default CDC constraint should not hold. As an example, consider the network
C={bedesten S movie, truck W bedesten, default truck N movie}. The first two constraint implies
that the food truck is to the southwest of the movie theater, hence the default assumption does not
hold.

The evidence (or an abnormal case) against a default CDC constraint might be provided by the
user. For example, the webcam is normally located on the laptop. However if the webcam is a
separate component detached from the laptop, this would be an exception to the default constraint.
This exception can be expressed as follows:

¬drel(u,v)← ab(v), existdefrel(u,v)
¬drel(u,v)← ab(u), existdefrel(u,v)
ab(WebCam)← .

Let Π
v,+,d
Im,n

be the ASP program obtained from Π
v,+
Im,n

by adding the rules (20)–(28). For every

answer set Z for the program Π
v,+,d
Im,n

and the solution X for Im,n characterized by Z, the assumption
expressed by a default CDC constraint default u δ v applies relative to X if there is no exception
¬drel(u,v) in Z against the default.

Theorem 6 Let m,n≥2|V |−1, let Im,n=(C,V,Dm,n,Q) be a discretized CDC consistency checking
problem where C is the union of a set of disjunctive CDC constraints, a set of basic CDC constraints,
and a set Cde f of default CDC constraints. Let X be a set of assignments of spatial objects in Dm,n

to variables u in V , such that every X ∈X is a solution of I′m,n=(C \Cde f ,V,Dm,n,Q), and let nX

be the number of default CDC constraints in Cde f that applies relative to X. Then X is a solution
for Im,n if there is no X ′ ∈X such that the number of default CDC constraints in Cde f that applies
relative to X ′ is greater than nX .

Remark In this study, we consider all the evidences against a default CDC constraint uniformly,
so the weights of weak constraints (28) for every violation are equal and of the same priority. In a
more general setting, the user may provide different weights w and priorities p to different type t of
violations; then weak constraints (28) can be updated accordingly:

∼←− ¬drel(t,u,v), existdefrel(u,v) [w@p,u,v].

Also, in this study, we prefer solutions with the minimum number of violations of assumptions. In
an alternative approach, the user may prefer solutions with a minimal set of violations.

9. Further Improvements

9.1 Improving the Lower Bound on the Grid Size

The grid size is critical in terms of computational efficiency in ASP: a larger grid is likely to cause
longer computation time due to the increase in domain size and possible assignments of grid cells to

1390



QUALITATIVE REASONING ABOUT 2D CARDINAL DIRECTIONS USING ASP

regions. Therefore, it will be useful to provide tighter lower bounds on the grid size. Consider, for
instance, the problem I of the previous section with the constraints C = {b S a, c E b, a N : NW c}
and V = {a,b,c}, where D consists of all regions in Reg* , and Q consists of all basic CDC relations.
A solution to I3,3 can be found as in Fig. 2(iii).

In the following, we present a reduced lower bound on the grid size (Theorem 7) for consistency
checking of a basic CDC network, by examining the CDC constraints in the network. Let us first
introduce some useful notation.

Let C be a set of basic CDC constraints. Let Trg(C) (resp. Ref(C)) be the set of spatial variables
in V that denote the target (resp. reference) objects in some CDC constraint in C:

Trg(C)={u ∈V | (uδ v)∈C}
Ref(C)={v ∈V | (uδ v)∈C}.

First, we define the projection of a single-tile CDC relation R ∈Rs on the x-axis:

Rx=


Left if R ∈ {SW,W,NW}
Middleh if R ∈ {S,O,N}
Right if R ∈ {SE,E,NE}.

Intuitively, these projections describe whether a target object is to the Left , to the Right , or horizon-
tally in the Middle of the reference object, relative to the x-axis.

We also define the projection of a single-tile CDC relation R ∈Rs on the y-axis:

Ry=


Top if R ∈ {NW,N,NE}
Middlev if R ∈ {W,O,E}
Bottom if R ∈ {SW,S,SE}.

These projections describe whether a target object is to the Top , to the Bottom , or vertically in the
Middle of the reference object, relative to the y-axis.

These concepts of projected CDC relations are illustrated in Figure 3: the left figure shows the
Left , Right , and horizontally Middle of the reference object u relative to the x-axis; and the right
figure shows the Top , Bottom , and vertically Middle of the reference object u relative to the y-axis.

Figure 3: The projection of a single-tile CDC relation on the x-axis (as shown in the left figure) and on the
y-axis (as shown in the right figure).

Next, we define the projection of a multi-tile relation δ =R1:R2:...:Rk on the x-axis and the
y-axis, accordingly:

δ x={(Ri)
x : 1≤ i≤ k, δ =R1:R2:...:Rk}

δ y={(Ri)
y : 1≤ i≤ k, δ =R1:R2:...:Rk}.
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Based on these projections, to satisfy a given set C of constraints, we define how many addi-
tional slots (i.e., unit grid cells) on the x-axis and the y-axis are needed to represent each spatial
object u in V :

Slotx(u,C)=



2 if u ∈ Trg(C) and ∃v ∈V such that (uδ v) ∈C, {Left , Right} ⊆ δ x

2 if u ∈ Trg(C) ∩ Ref(C) and ∃v ∈V such that
(uδ v),(vγ u) ∈C, δ x={Right , Middleh}, γx={Left , Middleh}

0 if u 6∈ Ref(C) and ∀v ∈V if (uδ v) ∈C, δ x∩{Left , Right}= /0
1 otherwise.

Sloty(u,C)=



2 if u ∈ Trg(C) and ∃v ∈V such that (uδ v) ∈C, {Top, Bottom} ⊆ δ y

2 if u ∈ Trg(C) ∩ Ref(C) and ∃v ∈V such that
(uδ v),(vγ u) ∈C, δ y={Top, Middlev}, γy={Bottom, Middlev}

0 if u 6∈ Ref(C) and ∀v ∈V if (uδ v) ∈C, δ y∩{Top, Bottom}= /0
1 otherwise.

Intuitively, if a spatial object u is to the Left and to the Right of some (other) object, then two
additional slots are required horizontally for u. If u appears either to the left of an object or to the
right of an object, it requires one additional slot. If u appears only to the middle of other objects or
u is not a reference object in any constraint, u does not require any additional slots.

Figure 4: Examples to illustrate the cases in the definitions of Slotx(u,C) and Sloty(u,C).

Figure 4 depicts some examples for the cases in the definitions of Slotx(u,C) and Sloty(u,C).
The examples (a)–(d) of the figure illustrate four different cases in the definition of Slotx(u,C), and
the examples (e)–(h) illustrate four different cases in in the definition of Sloty(u,C).

In Figure 4(a), the object u occupies tiles horizontally to the left and to the right of the object
v, and thus u needs 2 additional slots on the x axis to be instantiated. In Figure 4(b), the object u
occupies tiles horizontally in the middle and to the right of v, and v occupies tiles horizontally in
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the middle and to the left of u. Then, according to the second case of the definition of Slotx(u,C), u
needs 2 additional slots on the x axis, and v needs 1 additional slot on the x axis to be instantiated. In
Figure 4(c), the object u occupies tiles horizontally in the middle of the object v so u does not need
an additional slot on the x axis. The reason is that one additional slot on the x axis is already assigned
to v (since v is a reference object) according to the fourth case of the definition of Slotx(u,C). In
Figure 4(d), the object t occupies a tile only to the left of the object v, and the object u occupies tiles
to the right and horizontally in the middle of v but u does not occupy any tile to the left of v. Hence,
the first three cases in the definition of Slotx(u,C) do not apply for u and t. Consequently, both u
and t need 1 additional slot on the x axis. Again, since v is a reference object, one additional slot on
the x axis is assigned to v.

Similarly, Figure 4(e)–(h) illustrates examples for each case of the definition of Sloty(u,C) on
the vertical axis.

Based on the number of slots required for each spatial object with respect to C, then we can give
a lower bound on the grid size as follows:

Theorem 7 The basic CDC consistency checking problem I=(C,V,D,Q) and the discretized basic
CDC consistency checking problem Im,n=(C,V,Dm,n,Q) where m≥ ∑u∈V Slotx(u,C) and
n≥ ∑u∈V Sloty(u,C) have the same output.

For constraint networks C that include disjunctive CDC constraints, Theorem 7 may not be di-
rectly applicable. Recall that the consistency of such a network C is defined as follows. Let Ĉ be
a basic CDC network obtained from C by replacing every disjunctive CDC constraint vi δi j v j in C
by exactly one basic CDC constraint vi δ ′i j v j where δ ′i j ∈ δi j. Then, a CDC constraint network C
is consistent if there exists such a basic CDC network Ĉ that is consistent. Then, depending on Ĉ,
Slotx(u,Ĉ) and Sloty(u,Ĉ) may have different values compared to Slotx(u,C) and Sloty(u,C), re-
spectively. Therefore, when C includes disjunctive CDC constraints, we can consider the maximum
values of Slotx(u,Ĉ) and Sloty(u,Ĉ) among all possible basic CDC networks Ĉ obtained from C.

From Theorems 2 and 7, we can get the following corollary:

Corollary 3 For a consistency checking problem I=(C,V,D,Q), where C consists of basic CDC
constraints and may be incomplete, I has a solution if and only if the corresponding ASP program
ΠIm,n with m= ∑u∈V Slotx(u,C) and n= ∑u∈V Sloty(u,C) has an answer set.

9.2 A Divide-and-Conquer Approach for Basic CDC Consistency Checking

We can further improve the computation of consistency checking of a basic CDC constraint network
C by analyzing its structure. Suppose that there exists a partition {V1, ...,Vp} of the set V of variables
that appear in C, such that the following holds:

• for every constraint u δ v in C, there exists a unique Vi such that u,v ∈Vi.

Intuitively, each Vi characterizes a unique subnetwork Ci of C where the constraints in Ci only
mention variables in Vi. In such cases, consistency checking of C is equivalent to consistency
checking of each Ci.

Theorem 8 Let {V1, ...,Vp} be a partition of V subject to a basic CDC network C, where u,v
belongs to a unique Vi for every constraint u δ v in C. The output of the consistency check-
ing problem I=(C,V,D,Q) is Yes if and only if the output of every consistency checking problem
Ii=(Ci,Vi,D,Q) is Yes, 1≤ i≤ p.
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Due to such a partition, the lower bounds on the grid size for C can further be decreased:

Theorem 9 Let {V1, ...,Vp} be a partition of V subject to a set C of basic CDC constraints, where
u,v belongs to a unique Vi for every constraint u δ v in C. The output of the consistency checking
problems I=(C,V,D,Q) and Im,n=(C,V,Dm,n,Q) are identical if m≥maxVi ∑u∈Vi Slotx(u,Ci) and
n≥maxVi ∑u∈Vi Sloty(u,Ci).

Theorem 9 is useful, in particular for max-size partitions (i.e., partitions with maximum cardi-
nality), where the subnetworks are smaller.

The proofs of Theorems 8 and 9 are presented in Appendix A.
From Theorems 2 and 9, we can get the following corollary:

Corollary 4 Let {V1, ...,Vp} be a partition of V subject to C, where u,v belongs to a unique Vi for
every constraint u δ v in C. For a consistency checking problem I=(C,V,D,Q), where C consists
of basic CDC constraints and may be incomplete, I has a solution if and only if the corresponding
ASP program ΠIm,n with m=maxVi ∑u∈Vi Slotx(u,Ci) and n=maxVi ∑u∈Vi Sloty(u,Ci) has an answer
set.

9.3 Improving the ASP Formulation

Defining vs. generating the minimum bounding rectangles The ASP formulation of Section 5
first nondeterministically generates grid cells for every spatial variable (by the rules (8)) and then
defines the minimum bounding rectangle of the regions (by the rules (9)).

Alternatively, for every spatial object, instead of defining its minimum bounding rectangle, we
can nondeterministically generate its minimum bounding rectangle, and ensure that the grid cells of
the region generated by the rules (8) stay inside its minimum bounding rectangle.

Recall that a solution of Im,n is characterized by an instantiation of every variable u ∈ V by a
spatial object in Dm,n, i.e., a nonempty set of grid cells (x,y) in Λm,n. We identify the infimum and
supremum of a spatial object in Dm,n, by defining the smallest and the largest coordinate values of
the cells of the object on the x-axis and the y-axis of Λm,n.

For the alternative ASP formulation, first, for every spatial object u, the infimum and the supre-
mum are nondeterministically guessed between 1 and m for the x-axis by the choice rules:

{inf x(u,x) : 1≤x≤m}=1 ← (u ∈V )
{supx(u,x) : 1≤x≤m}=1 ← (u ∈V )

(29)

and then the infimum is ensured to be less than or equal to the supremum:

← inf x(u,x), supx(u,x) (x>x, u∈V ). (30)

Similar rules and constraints are added for the infimum and the supremum of the coordinate values
of the cells of u on the y-axis.

After that, we ensure that the grid cells of a region u (generated by rules (8)) stay inside its
minimum bounding rectangle. In particular, after extracting the coordinate values of the projection
of u on the x-axis:

xocc(u,x)← occ(u,x,y) ( (x,y) ∈ Λm,n, u∈V ) (31)

1394



QUALITATIVE REASONING ABOUT 2D CARDINAL DIRECTIONS USING ASP

we ensure that these coordinate values lie within the minimum bounding rectangle of u:

← inf x(u,x), xocc(u,x′) (x′<x, 1≤x′≤m, u∈V )
← supx(u,x), xocc(u,x′) (x′>x, 1≤x′≤m, u∈V ).

(32)

We also ensure that the spatial object u occupies at least one grid cell at the infimum and at least
one grid cell at the supremum of the coordinate values of the cells of u on the x-axis; otherwise, the
values of the the infimum and the supremum would not be correct.

← not xocc(u,x), inf x(u,x) (u∈V )
← not xocc(u,x), supx(u,x) (u∈V ).

(33)

Similar rules and constraints are added for ensuring that at least one grid cell exist at the infimum
and at least one grid cell exist at the supremum of u on the y-axis.

There is an important difference of this alternative ASP formulation for identifying the infimum
and supremum, compared to the formulation described in Section 5: it does not use the aggregates
min and max .

Connectedness: transitive closure vs. reachability The ASP formulation of Section 5 defines
connectedness of a region as the transitive closure of the adjacency relation between the grid cells
occupied by that region, and ensures the existence of a path between every two grid cells of the
region.

Another way of formulating connectedness is to incrementally define the connected grid cells
for each spatial object starting from some grid cell (called the stem grid cell), and ensure that all
the grid cells of the spatial object are reachable from this stem grid cell. Furthermore, note that
it is sufficient to check connectedness of spatial objects that act as a target object in some CDC
constraint. For the remaining objects, connectedness can always be accomplished since they can be
freely constructed inside their minimum bounding rectangle.

In this alternative formulation, for a spatial object u that is a target object for some CDC con-
straint, we define its stem cell as the grid cell (i) that is at the leftmost side of the minimum bounding
rectangle of u, and (ii) that is closest to the bottom corner of u. Notice that the cell at the left bottom
corner of the minimum bounding rectangle of u might actually not belong to the object.

First, we identify the y-coordinates of the grid cells at the leftmost side of the minimum bound-
ing rectangle of u:

left(u,y)← inf x(u,x), occ(u,x,y) (1≤y≤n, u∈Trg(C)). (34)

Among these grid cells, we pick the one that is closest to the bottom of the minimum bounding
rectangle of u:

leftbottom(u,y)← left(u,y), #count{y′: left(u,y′), y′ < y}≤0. (35)

and define the stem cell as follows:

stem(u,x,y)← inf x(u,x), leftbottom(u,y) (u∈Trg(C)). (36)

After that, we ensure the connectedness of the grid cells occupied by u∈Trg(C) by means of
reachability from the stem cell:

reachable(u,x,y)← stem(u,x,y)
reachable(u,x2,y2)← reachable(u,x1,y1), occ(u,x2,y2) (|x2− x1|+ |y2− y1|= 1)
← not reachable(u,x,y), occ(u,x,y).

(37)
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We have noticed in our experiments that the ASP formulation can be improved slightly more,
by replacing (35) with an incremental definition

leftbottom(u,y)← inf y(u,y), left(u,y) (u∈Trg(C))

not-leftbottom(u,y)← inf y(u,y), not left(u,y) (u∈Trg(C))

leftbottom(u,y+1)← not-leftbottom(u,y), left(u,y+1) (u∈Trg(C))
not-leftbottom(u,y+1)← not-leftbottom(u,y), not left(u,y+1) (y≤y, u∈Trg(C)).

9.4 Layout Optimization

In some applications, in addition to consistency, we may need to get location of objects on a 2D
surface. As an example, suppose that a human user is asking a service robot to place items such
as notebook, pencil, cup on a desktop with directional constraints between these objects. In this
application, the robot needs to find a configuration of items on the desktop which conforms to the
user’s request.

The location of each object can be obtained from the occ(u,x,y) atoms in the answer set. How-
ever, since objects are extended regions, they may occupy a large area on the grid and overlap, thus
it may be difficult to determine the exact position of an object. To better identify the position of
each object on the surface, we can add the rules below to the relevant ASP program to optimize the
layout by minimizing the occupied area.

The weak constraint below adds 1 to the cost function for each occupied cell of an object and
aims to minimize this cost. By this way, the total area occupied by all objects on the grid is mini-
mized:

∼←− occ(u,x,y) [1@1,u,x,y]. (38)

In many contexts such as the desktop placement mentioned above, it is desirable that objects do
not overlap with one another, unless this is explicitly stated by CDC constraints. To minimize the
number of overlapping objects, the following rules can be added to the program:

overlap(u,v)← occ(u,x,y), occ(v,x,y) (u > v, u,v ∈V )
∼←− overlap(u,v) [1@2,u,v].

(39)

The first rule in (39) detects the pair of overlapping objects and the second rule adds 1 to the
cost function for each pair. The rules (38), (39) can be utilized to optimize the ASP output to obtain
a better layout of objects for placement. Observe that the priority of the weak constraint in (39) is
higher than the priority of (38) assuming that reducing the number of overlaps is more important.
In case the rules in this subsection coexist with the subprogram for default constraints, the priority
of the weak constraint in (28) should be made 3 since satisfaction of default constraints has higher
precedence than layout optimization.

10. Sample Applications of NCDC-ASP

Let us illustrate with some example scenarios, how NCDC-ASP can be used for CDC consistency
checking and inference of incomplete information. The examples are given in real-world domains
(e.g., social/service robotics) that involves interaction of an agent (e.g., a robot) with human(s).

In these scenarios, we use the ASP solver CLINGO 5.3.0 to obtain a solution. The ASP solver
can return all or a given number of answer sets that characterize different solutions, which include
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(a) (b)

Figure 5: Meeting scenario: (a) Basic CDC constraints. (b) A possible layout of spatial objects.

different locations of objects and satisfy/optimize the given set of constraints. In these scenarios, we
consider the first answer set (i.e., solution) returned by the solver and the (optimal) configuration of
objects demonstrated by it.

10.1 Scenario 1: Meeting

Consider an assisting agent in a shopping mall, who has incomplete information about the relative
locations of stores. Suppose that the agent knows the following about the relative locations of the
stores at the shopping mall:

CoffeeShop O:S Cafeteria
Cafeteria O:N:E:NE BookStore
BookStore W :NW CoffeeShop
Boutique W :SW BookStore .

Suppose that a girl wants to meet her father in the shopping mall, but she has not been to this
mall before. She knows that her father is waiting somewhere to the southwest of the cafeteria and
northwest of the boutique. The girl approaches the assisting agent and asks for help. They are
located to the north of the coffee store. From the information conveyed by the girl, the agent also
knows the following:

CoffeeShop S:SE:SW Girl
Father SW Cafeteria
Father NW Boutique .

For a better understanding, we illustrate these CDC constraints as a constraint graph in Figure 5.
Using the improved ASP program described in Sections 5 and 9.3, with the improved lower

bounds on the grid size as stated by Theorem 9, the agent checks the consistency of this basic CDC
network. After checking that the information conveyed to him by the girl makes sense with respect
to what he knows, using the ASP programs described in Sections 5 and 7, the agent infers a possible
location of the father:

Father SW Girl .
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(a) nCDC constraint network (b) A possible layout

Figure 6: Missing child scenario

Then, the agent guides the girl towards the direction of her father to the southwest.
Recall that an inferred CDC constraint is associated with an instantiation, and that there may be

more than one inferred CDC constraint between a pair of objects for the same constraint network,
as explained in Section 7. In this scenario, the inferred constraint is the same for all instantiations.
Note that, without the basic CDC constraint Father SW Cafeteria in the network, six possible in-
ferred constraints would be generated across different answer sets: Father SW Girl , Father W Girl ,
Father NW Girl , Father W :NW Girl , Father W :SW Girl , Father NW :W :SW Girl . Therefore, the
loss of information may cause such an uncertainty in the inference.

Considering that the father and the girl occupy relatively small area in a mall environment,
we can add the rules for optimizing the layout (presented in Section 9.4), to minimize the area
occupied by the girl and the father. In this case, the number of inferred constraints reduces to three:
Father SW Girl , Father W Girl , Father NW Girl . Consequently, the agent informs the girl that her
father might be to the southwest, west or northwest.

The agent can also infer possible locations of the stores from the ASP output. Using the original
constraint network and the ASP program augmented with the rules for layout optimization, we
obtain the answer set and the corresponding object locations. These inferred locations are depicted
in Figure 5(b), over a discretized representation of the shopping mall. For example, the cafeteria is
possibly located inside the blue-colored grid cells, to the northeast of the boutique.

10.2 Scenario 2: Missing Child

Suppose that two parents are looking for their missing child in a shopping mall and request help from
the agent in the food court. Suppose also that the parents do not know the exact locations of the
stores. The agent have received sightings of the child at the south or west of the pool. Meanwhile,
he knows that the child is by default at the ice-cream truck; the ice-cream truck is by default in the
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free area which is to the north, east or northeast of the movie theater, and south or southeast of the
pool.

Then the nCDC network that the agent knows contains the disjunctive CDC constraint

Child {S,W} Pool ,

the default CDC constraints

default Child O Truck
default Truck {N,E,NE}MovieTheater
default Truck {S,SE} Pool ,

and the basic CDC constraints

Parents O FoodCourt FoodCourt N:NE:NW Bedesten
Parents N Bedesten FoodCourt NW :NE PetStore
MovieTheater S:SE Bedesten Bedesten W :NW Pool
Bedesten W :SW PetStore Bank N:NE MovieTheater
Pool NW :SW Bank Pool SW PetStore
Pool N MovieTheater Grocery E:SE PetStore
Grocery NE Bank .

This nCDC constraint network is depicted in Figure 6(a).
In order to check the consistency of this network and identify possible relative directions of

spatial objects, the agent uses the improved ASP program for consistency checking, extended with
subprograms for disjunctive and default constraints. Besides, the rules in Section 9.4 are added to
the ASP program to optimize the locations of the objects, and the subprogram in Section 7 is added
to infer the unknown directional relations. Then the agent determines that the nCDC network is
consistent, finds a layout of objects (depicted in Figure 6(b)) that satisfies the constraints and infers
a new directional relation between the parents and the child:

Child SE Parents.

The inferred relation is the same in all answer sets, thus the agent guides the parents towards the
direction of their child to the southeast.

In a variation of this scenario, if we replace the basic constraint Parents N Bedesten with a
disjunctive constraint Parents {N,NE} Bedesten , then the agent will infer three possible inferred
constraints from the answer sets: Child SE Parents , Child S Parents , Child SW Parents . Upon
receiving this information, one parent can search for the child in the southeast, another parent can
search in the south and southwest.

10.3 Scenario 3: Tabletop Placement

Consider a service robot whose task is to place a set of items in a particular 2-dimensional envi-
ronment like a desk which we take as reference frame. A human actor requests the service robot
to place items on his desk using statements such as “the book is to the right of the notebook, the
printer is located on the left side of the monitor and rear to the notebook, the fan is at the rear of the
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(a) nCDC constraint network (b) Output with layout optimization

(c) Output without layout optimization

Figure 7: Tabletop placement scenario

folder, but might be located a little to the right or left of it”. Upon this inquiry, the robot creates the
following nCDC constraint network from the given information:

Printer N Notebook Book E Notebook
Keyboard E Book Printer W :NW :SW Monitor
Fan {N, N:NW, N:NE} Folder Mouse SW Fan
Folder {E:SE, SE}Monitor Cup S Folder
Cup E:SE Mouse .
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In addition to the user’s specifications, the following commonsense knowledge of the robot is
also included in the network:

default Monitor N:NE:NW Keyboard
default Mouse E Keyboard
default Pencil O Notebook
default Eraser O Notebook
default Eraser {E,W} Pencil .

The constraint network can be visualized in Figure 7(a). To solve this problem instance, we
utilize the improved ASP program described in Sections 5 and 9.3 together with the rules in Section
9.4 to enhance the layout for better identification of locations. Running the ASP program with the
improved lower bounds on the grid size as stated by Theorem 9 yields an answer set. From the
occ(u,x,y) atoms in this answer set, the robot finds an arrangement of the objects that conforms to
the request (Figure 7(b)). The colored cells in the figure show the possible locations of the objects.

To observe the impact of layout optimization, we produced the ASP output for the same instance
without the rules in Section 9.4. The locations of objects obtained from the occ(u,x,y) atoms in this
output are shown in Figure 7(c). Now the objects occupy larger area on the table and their precise
positions are not very clear. Therefore, the rules for layout optimization are beneficial for placement
of the objects.

11. Experimental Evaluations: Setup

Objectives We have performed comprehensive set of experiments to evaluate our ASP-based
method for CDC consistency checking, to better understand the following questions:

• How does the input size affect the computational efficiency in terms of CPU time?

• How does providing more information about the CDC relations between spatial objects affect
the computational efficiency in terms of CPU time?

• How does the computational efficiency in terms of CPU time change for the inconsistent
instances, compared with the consistent instances?

• How do the additional constraints about connectedness of objects, as discussed in Section 5.2,
affect the computational efficiency in terms of CPU time?

• How does the grid size suggested by Theorem 9 affect the computational efficiency in terms
of CPU time, in comparison with the grid size suggested by Theorem 1?

• How do the modifications of the ASP programs proposed in Section 9.3 (i.e., explicitly defin-
ing the minimum bounding rectangles instead of using aggregates, and defining connected-
ness via reachability instead of transitive closure of the adjacency relation) affect the compu-
tational efficiency in terms of CPU time?
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(a) Disconnected regions (Reg* ) (b) Connected regions (Reg )

Figure 8: Layout of handcrafted regions for benchmark instances.

Measures For every instance of the discretized consistency checking problem Im,n=(C,V,Dm,n,Q),
we consider the following parameters descriptive of the input size: the number |V | of spatial vari-
ables to be instantiated by l spatial objects (i.e., regions in Dm,n), the number |C| of constraints in
the network, and the size m×n of the grid Λm,n that also determines the size of Dm,n.

In addition, we consider a measure to characterize to what degree the knowledge about CDC
relations is complete. Considering that a complete constraint network contains |V |(|V | − 1) CDC
constraints, we define the degree of incompleteness for an instance as the ratio |C|/|V |(|V |−1). In
our experiments, we consider four degrees of incompleteness: Sparse, Medium, Dense, Complete
corresponding to %15, %40, %70, %100 densities, respectively.

Hardware and software All tests have been performed on a Linux server with 3.3GHz Intel
Xeon W-2155 CPU, 32GB memory, single thread and using the ASP solver CLINGO 5.3.0. For the
computation time, we have recorded the time to compute the first solution by the solver. Numerical
data is presented in the tables which are relegated to Appendix C for readibility.

12. Experimental Evaluations: Benchmark Generation

Considering the measures above, we have created a set of handcrafted CDC networks and we have
generated a set of random instances. Let us describe these benchmarks for basic CDC networks,
disjunctive CDC networks, and nCDC networks.

12.1 Benchmarks: Basic CDC Networks

Considering the measures above, we have created a set of handcrafted basic CDC networks and
classified them in four groups with respect to whether the domain is Reg or Reg* (i.e., whether the
spatial objects are connected or not, respectively), and whether the network is consistent or not. We
conjecture that these instances will serve as benchmarks for other researchers as well.

Incremental construction of instances with different degrees of incompleteness To generate
benchmark problem instances, first, a layout of spatial objects has been manually instantiated over
Reg* and Reg separately, as depicted in Figure 8; the objects are indexed from 1 to 20.

On each domain, problem instances have been generated incrementally by varying the number
l of objects up to 20 and by realizing each incompleteness degree for every l. In particular, starting
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with l1 number of spatial variables (in the benchmarks, l1 = 6), we first form a consistent Sparse
network over spatial objects 1..l1, by extracting some of the constraints from the respective layout.

Next, a consistent Medium network is formed by augmenting to this Sparse network, some more
constraints among spatial objects 1..l1 in the same layout. We continue in this way to construct a
Dense network and then a Complete network with l1 variables.

Next, we incrementally construct Sparse, Medium, Dense and Complete networks with l2 > l1
variables. This procedure continues until we have instances with l variables. Such an incremental
construction of instances helps us to analyze the effects of scalability and the degree of incomplete-
ness on computational efficiency.

Informativeness of the constraints While we construct Sparse, Medium and Dense networks,
it is important to decide which constraints between spatial objects to include in the constraint net-
work. To resolve this issue, we have considered the diversity of the variables in the constraints and
the informativeness of the constraints. For the former concern, for incomplete networks, we have
avoided imposing constraints among a small subset of variables, preferring to span a variety of spa-
tial objects in the constraints as much as possible. Regarding the latter concern, we have defined
informativeness of basic CDC constraints under some conditions.

If the directional relation in a basic constraint between two spatial objects has only one possible
inverse relation, then the constraint between the same objects with the inverse relation is uninforma-
tive (i.e., it does not provide any additional information or affect consistency) and there is no need
to include it in the network. For example, in the layout on Figure 8(a), let us assume that the relation
between objects denoted by 4 and 2 are described by a constraint d SW : SE b in a Sparse network.
Then, the constraint b N d is uninformative and there is no need to add it to the network, while
turning it to a Medium network. Note that the converse is not true: Existence of the constraint b N d
in the network makes d SW : SE b less informative but not totally uninformative because b N d has
five possible inverses.

If a basic CDC relation between two spatial objects can be inferred from the composition of two
other relations, then the constraint between these objects with the former relations is uninformative.
For example, the constraint e SE f is uninformative if the constraints e SE a and a E : SE f are
already present in the network, because the composition of the latter two relations produces the
unique relation e SE f .

While constructing the basic instances with l1 variables, we have distributed informative con-
straints proportional to the level of incompleteness. Formally, the Complete instance possesses
all informative and uninformative constraints among l1 objects, whereas the Medium and Dense
networks contain roughly %40 and %70 of the informative constraints included in the Complete
instance, respectively, and the rest of their constraints are uninformative. We have tried to obey this
rule in Sparse networks as well, however, slight deviations have occurred due to the fact that the
size of a Sparse network is small but we want to encompass diversity in variables. We somehow
circumvent this drawback by adding some less informative constraints.

Construction of inconsistent instances Inconsistent problem instances are obtained by modify-
ing the corresponding consistent networks in a way that only one CDC constraint between spatial
variables indexed 2 and 1 (i.e., b S : O a) is replaced with a new constraint (i.e., b O : E a) to
contradict with the other constraint between 1 and 2 (i.e., a W : NW : N : NE b).
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Instances generated over Reg* vs. Reg The constraints included in a network are generated over
the two layouts shown in Figure 8. These layouts are similar, except that some spatial objects in
Figure 8(b) are turned into disconnected objects in Figure 8(a), for the sake of better understanding
the effect of connectedness on computational efficiency. This similarity allows us to obtain net-
works over Reg* from the networks generated over Reg with respect to the layout in Figure 8(b).
In particular, we consider constraints like d SW : S : SE b over connected objects, and replace them
with constraints like d SW : SE b to ensure that d is disconnected. In this way, none of the solutions
computed for instances generated over Reg* is consistent over Reg ; so, indeed, disconnectedness is
required for instances generated over Reg* .

12.2 Benchmarks: Disjunctive CDC Constraints

We have generated consistent instances with disjunctive CDC constraints, from the handcrafted
consistent instances that are constructed over Reg* and Reg with basic CDC constraints and that are
used in the experiments discussed above. In particular, we have considered Dense networks with
l = 14 objects. In each instance, we have selected some basic CDC constraints, and then converted
each selected basic CDC constraint into a disjunctive CDC constraint such that the disjunctive CDC
constraint includes the basic CDC constraint. For example, a basic constraint c SE f is converted
into a disjunctive constraint c {W : O : E, SE} f with two disjuncts, or a disjunctive constraint
c {W : O : E, O, SW : S, SE} f with four disjuncts.

Each new instance constructed in this way is denoted by c×disj d, where c denotes the number
of disjunctive CDC constraints and d denotes the number of disjuncts in these constraints. For
example, 1× disj8 denotes an instance whose network contains only one disjunctive constraint
with 8 basic CDC constraints as disjuncts; 4×disj2 denotes an instance whose network contains 4
disjunctive constraints and each disjunctive constraint includes 2 disjuncts.

Then, we have defined some more instances by further modifying the basic CDC constraints
in these disjunctive instances. For example, the disjunctive constraints of an instance 24× disj2
already contain the disjunctive constraints of an instance 16×disj2. The disjunctive constraints of
an instance 8×disj2 coincide with those of an instance 8×disj8 except that the latter instance has
disjunctions with 6 more disjuncts; for these instances, all the basic constraints are the same. In this
way, we have prepared instances with up to 32 disjunctive constraints and 8 disjuncts.

Inconsistent disjunctive instances are constructed in a similar way as in the case of nondis-
junctive instances: A basic constraint is replaced by another to make the network inconsistent, as
explained in Section 12.1.

To better observe the impact of disjunctiveness, we have created the instances where only one
basic CDC relation in each disjunctive constraint makes the network consistent.

12.3 Benchmarks: Default CDC Constraints

We have considered the benchmark instances that have been generated with l = 14, 16 objects
over Reg* and Reg with Medium density of basic CDC constraints, and that we have used in our
experiments above. From each instance, we have incrementally constructed six consistent instances
that involve default CDC constraints as follows.

The first type of instance (Default v1) is formed by randomly picking one third of the con-
straints in the Medium basic network and then by converting them into default CDC constraints.
For example, a basic constraint e E : SE c is replaced with default e E : SE c.
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The second type of instance (Default v2) is formed by randomly picking two thirds of the con-
straints in the Medium basic network and then by converting them into default CDC constraints.

For the third type of instance (Default v3), we consider the Dense network built on the Medium
network as described in Section 12.1, take one third of the constraints that appear in the Dense
network but not in the Medium network, convert them to default constraints, and add them to the
Medium basic instance that we have started with.

For the fourth type of instance (Default v4), we consider the Dense network built on the Medium
network as described in Section 12.1, take two thirds of the constraints that appear in the Dense
network but not in the Medium network, convert them to default constraints, and add them to the
Medium basic instance that we have started with.

For the fifth type of instance (Default v5), the default constraints of Default v3 are added to
Default v1.

For the sixth type of instance (Default v6), the default constraints of Default v4 are added to
Default v2.

Inconsistent problem instances are generated from these consistent instances, as described in
Section 12.1.

12.4 Randomly Generated Benchmarks

We have also randomly generated benchmark problem instances with basic constraints over Reg* and
Reg for a variety of number of objects and incompleteness degree. The pair of objects in the network
and the CDC constraints between them have been randomly chosen. For example, in a |V |=10,
Sparse network over Reg , there are 13 constraints. The 13 object pairs are randomly chosen out of
90 possible pairs; and the CDC relation for each pair is randomly chosen from 218 possible basic
CDC relations over Reg .

To obtain robust results, for the same |V | and incompleteness ratio, 50 samples over Reg* and
Reg have been produced (total 100) and the average value is taken within the respective domain.
Because CDC relations are random, most random problem instances (%98 of them) turned out to
have inconsistent network. Consistent instances could be generated only for |V |=6, Sparse network.

13. Experimental Evaluations: Results

Let us present the results of our experiments and discuss them in connection with the questions
listed in Section 12.

13.1 Experimental Evaluation of the ASP Improvements

We have presented a straightforward ASP formulation of basic CDC consistency checking in Sec-
tion 5, suggested some modifications of these formulations in Section 9 to improve computation
timings. In particular, we have suggested

• generating and testing the minimum bounding rectangles vs. explicitly defining the minimum
bounding rectangles for spatial objects using aggregates, and

• defining the connectedness of a region using reachability vs. transitive closure.
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(a) Consistent instances (b) Inconsistent instances

Figure 9: Effect of program improvement on computation time (seconds): generating and testing the
minimum bounding rectangles (improved), instead of defining the minimum bounding rectangles
using aggregates (original).

We have investigated experimentally how the computational efficiency is affected by these mod-
ifications. We have experimented using the handcrafted instances with Sparse, Medium, Dense,
Complete networks constructed over l = 6,8,10 variables.

For each instance, the grid size is precomputed as suggested by Theorem 9. The total com-
putation time reported in the figures includes the time to calculate the grid size, although this is
negligible compared to the timings for consistency checking. In the figures, the height of a bar in
a plot denotes the total computation time (CPU time in seconds). Each bar is splitted by a vertical
line; the lower part of the bar (darker color) shows the grounding time, whereas the top part (lighter
color) shows the search time.

Defining the minimum bounding rectangles using aggregates (Original) vs. generating and
testing the minimum bounding rectangles (Improved) We have considered instances generated
over the layout in Figure 8(a), where some objects are disconnected. The improved ASP program
is obtained from the original ASP program presented in Section 5, as explained in Section 9.3.

Figure 9 shows the total computation time in seconds, with the improved ASP program and with
the original ASP program. These results clearly illustrate the benefit of the program improvement
described in Section 9.3. With the program improvement on determining the minimum bounding
rectangles, the computation time is significantly reduced by almost two hundred times; e.g., for
a consistent instance with l = 10 variables described by a Dense network, the total CPU times is
reduced to 0.33 seconds from 57.06 seconds. Note that for both programs, grounding takes more
time than search. The program improvement saves both on the grounding time and the search time.

In line with the computation times, we observe that the size of the grounded improved ASP
program (i.e., the number of atoms, rules, constraints) is much smaller than that of the grounded
original ASP program. For instance, for a consistent instance with l = 10 variables described by a
Dense network, the number of atoms and rules are reduced to 20996 and 145546, respectively, from
226477 and 8614362.

For more detailed information about the computation times (grounding and search times), and
the program sizes (the number of atoms, rules, constraints), we refer the reader to Tables 7, 8, 9
and 10 in Appendix C.
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(a) Consistent instances (b) Inconsistent instances

Figure 10: Effect of program improvement on computation time (seconds): defining connectedness
in terms of reachability (improved) rather than transitive closure (original).

Overall, the experimental results favor for the improved program (where the minimum bounding
rectangles are generated and tested, instead of being defined using aggregates) in terms of scalability
in CPU time and program size.

Connectedness in terms of transitive closure (Original ASP program) vs. reachability (Im-
proved ASP program) We have performed experiments with the improved main program aug-
mented with the connectedness definition using the transitive closure of the adjacency of the grid
cells, and the constraints presented in Section 5.2. We have also experimented with the improved
subprogram where connectedness of regions is defined instead using reachability, as explained in
Section 9.3. In these experiments, we have considered instances generated over the layout Fig-
ure 8(b), where the objects are connected.

Figure 10 shows the comparison of two programs with respect to the computation time. The
results illustrate that the benefit of the improvements suggested in Section 9.3. With the program
improvement on the definition of connectedness, the computation time reduces by more than hun-
dred times; e.g., for a consistent instance with l = 10 variables described by a Dense network, the
total CPU times is reduced to 0.66 seconds from 77.91 seconds. With both programs, note that
grounding takes more time than search. The program improvement saves more both on the search
time and on the grounding time.

In line with the computation times, we observe that the size of the improved ASP program
(i.e., the number of atoms, rules, constraints) is significantly smaller than that of the original ASP
program. For instance, for a consistent instance with l = 10 variables described by a Dense network,
the number of atoms and rules are reduced to 24968 and 161618, respectively, from 412068 and
1965458.

For more detailed information about the computation times (grounding and search times), and
the program sizes (the number of atoms, rules, constraints), we refer the reader to Tables 11, 12, 13
and 14 in Appendix C.

Overall, the experimental results favor for the improved subprogram (where connectedness of
regions is defined using reachability instead of transitive closure) in terms of scalability in CPU time
and the program size.
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(a) Consistent problem instances (b) Inconsistent problem instances

Figure 11: Effect of the number of objects and the network density on the computation time (i.e.,
CPU time in seconds).

13.2 Evaluating the Scalability: Input Size and Degree of Incompleteness

In order to investigate how computational performance is affected by the sizes of the instances (i.e.,
the number of variables) and the degrees of incompleteness of knowledge about CDC relations be-
tween spatial objects, we have experimented with the handcrafted problem instances generated over
Reg* (Figure 8(a)) and Reg (Figure 8(b)) using the improved ASP program described in Section 9.3.

A summary of these experimental results concerning computation time is presented in Figure 11,
while further details are shown in Tables 15, 16, 17 and 18 in Appendix C.

Input size From these results, we see that as the number of variables increases, the grid size
increases, and the computation time and the program size increase as well. For example, in Table 3,
we can observe that, for a consistent instance with l = 10 possibly disconnected objects in a Sparse
network (with 13 constraints), viewing the space as a grid of size 13x12, the ground program has
6754 atoms, 41208 rules, 51710 constraints, and a solution is computed in 0.07 seconds. Increasing
the number of variables to l = 18, still in a Sparse network, increases the number of constraints to
46 and the grid size to 21x20. This leads to an increase in the program size to 41310 atoms, 313462
rules, 388041 constraints, and the computation time to 0.49 seconds.

A similar increase in computation time can be observed for inconsistent instances in Table 16.
For example, the inconsistency of an instance with l = 10 possibly disconnected objects in a Sparse
network is determined in 0.07 seconds. Increasing l to 18, still in a Sparse network, increases the
computation time to 0.51 seconds.

These observations are not surprising, but does the amount of increase in computation time (as
the number of variables increase) change when we consider more dense networks? For a consistent
instance with l = 10 possibly disconnected objects in a Dense network (with 63 constraints), viewing
the space as a grid of size 14x14, the ground program has 20996 atoms, 145546 rules, 183734
constraints, and a solution is computed in 0.33 seconds. Increasing the number of variables (l = 18),
in a Dense network, increases the number of constraints (to 214 constraints) and the grid size (to
24x25) almost three times. This leads to a significant increase (almost 10 times) in the program size
to 186512 atoms, 1456450 rules, 1818532 constraints. However, the computation time increases
even more for Dense networks, to 18.86 seconds.
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Consistent Instances
Objects Density Constraints Grid Grounding Total Atoms Rules Constraints

Time (s) Time (s)
10 Sparse 13 13x12 0.06 0.07 6754 41208 51710
10 Medium 36 14x13 0.12 0.19 13638 88708 112544
10 Dense 63 14x14 0.21 0.33 20996 145546 183734
10 Complete 90 14x15 0.32 0.78 31049 211759 269674
14 Sparse 27 17x16 0.17 0.19 18093 128679 159642
14 Medium 72 19x17 0.42 0.76 39664 295542 368893
14 Dense 126 19x18 0.76 2.07 63960 493106 614349
14 Complete 182 19x21 1.35 8.65 107260 798132 1005067
18 Sparse 46 21x20 0.43 0.49 41310 313462 388041
18 Medium 122 23x22 1.20 8.06 96997 758283 942873
18 Dense 214 24x25 2.55 18.86 186512 1456450 1818532
18 Complete 306 27x29 4.92 86.38 351015 2646951 3336035

Inconsistent Instances
10 Sparse 13 13x11 0.07 0.07 6259 37700 47345
10 Medium 36 14x12 0.12 0.18 12635 81615 103578
10 Dense 63 14x13 0.19 0.23 19518 134548 169883
10 Complete 90 14x15 0.32 0.38 31048 211758 269671
14 Sparse 27 17x15 0.15 0.17 17046 120261 149315
14 Medium 72 19x16 0.39 0.79 37376 277608 346610
14 Dense 126 19x17 0.71 1.32 60404 464507 578823
14 Complete 182 19x21 1.35 2.44 107258 798130 1005061
18 Sparse 46 21x20 0.42 0.51 41311 313463 388044
18 Medium 122 23x22 1.21 3.56 96998 758284 942876
18 Dense 214 24x25 2.55 7.15 186511 1456449 1818529
18 Complete 306 27x29 4.93 10.84 351013 2646949 3336029

Table 3: Effect of the number of objects and the network density on computation time, with hand-
crafted instances generated over Reg* (Figure 8(a)) and with the Improved ASP program.

Degree of incompleteness Note that the network density increases, when more knowledge (i.e.,
constraints) is provided about the CDC relations between objects. Consider for example, the con-
sistent instances with l = 18 variables. As we can observe from Table 3, the number of constraints
increase from 46 to 122, 214, 306, as the density of the network changes from Sparse to Medium,
Dense, Complete respectively. In parallel to these changes, the computation time for a solution also
increases from 0.49 seconds to 8.06, 18.86, 86.38 seconds, respectively. These observations suggest
that the number of constraints play a more significant role (compared to an increase in the number
of variables) in computation time. This can be explained due to a harder search for a solution with
more number of constraints.

Consistent vs. inconsistent instances From the Table 3, we can observe that, for instances with
the same number of objects in a network of same density, the inconsistency is determined faster than
finding a solution. For example, for a consistent instance with l = 18 variables in a Dense network,
a solution is computed in 18.86 seconds, whereas the corresponding inconsistent instance is verified
in 7.15 seconds.

Remember that inconsistent instances are obtained from consistent instances by simply modify-
ing the constraint relating b to a in such a way that it contradicts the constraint relating a to b. Then,
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(a) Consistent problem instances (b) Inconsistent problem instances

Figure 12: Impact of defining the grid size with respect to Theorem 9 compared to Theorem 1 on
computational performance, with instances generated over Reg* (Figure 8(a))

the inconsistency can be detected as soon as the grid cells are assigned to b and a. In such cases,
checking inconsistency takes less time as observed above.

Domain: Reg* vs. Reg For the same input size, consistency of an instance over Reg* is computed
faster than the corresponding instance over Reg . This phenomenon is expected due to the additional
overhead of checking connectedness. The ASP program over connected domain yields greater pro-
gram size and computation time compared to the ASP program over possibly disconnected domain.

13.3 Evaluating the Usefulness of Theorem 9

The grid size is critical in terms of computational efficiency in ASP: a larger grid is likely to cause
longer computation time due to the increase in domain size and possible assignments of grid cells
to regions. Therefore, it is expected that Theorem 9 would be useful in improving computational
efficiency by providing lower bounds on the grid size. This is indeed observed from the results of
our experiments.

The experiments in the previous section have been performed by taking into account the grid size
suggested by Theorem 9. When the experiments have been performed with the grid size suggested
by Theorem 1, the results are higher as seen in Table 19 and 20. Comparison of results with different
grid sizes are illustrated in Figure 12.

13.4 Experiments with Disjunctive CDC Constraints

We have performed experiments to evaluate our ASP-based method for CDC consistency checking,
using the improved ASP program, to better understand how the number of disjunctive constraints
and the disjuncts affect the computation timings.

We have experimented with the handcrafted disjunctive instances that are generated as described
before, using the improved ASP program that allows disconnectedness.

Regarding the grid size, we have considered the grid size suggested by Theorem 9. Observe
that computing the grid size as suggested by Theorem 9 depends on the nondeterministic choice of
the basic CDC constraints from the disjunctive CDC constraints as described in Section 6, and thus
it takes considerable time to compute the grid size for each instance and for each such choice. For
that reason, we have taken the maximum value of the slot values for all the basic relations in the
disjunctive constraints, and set it as Slotx(u,C) and Sloty(u,C) for each variable u. The grid size
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(a) Consistent problem instances (b) Inconsistent problem instances

Figure 13: Impact of the disjunctive constraints on the computation time (i.e., CPU time in seconds):
Problem instances with l = 14, Dense networks

is then calculated as in Theorem 9. In this way, the slot values do not depend on which basic CDC
constraints are chosen from the disjunctive constraints, but then may not lead to smaller grids.

The results are presented in Figure 13 and Tables 21, 22, considering that the grid size is com-
puted with respect to our approximate calculation based on Theorem 9 as described above. We
observe that in both domains the timings do not rise so much even though the number of disjunctive
constraints and their sizes increase.

For inconsistent instances, the situation is a bit different: Notice the increase in computation
time between instances 4×disj8 and 8×disj8 over Reg* when the number of disjunctive constraints
increase twofold; and between instances 32× disj2 and 32× disj8 when the number of disjuncts
increase four times in each disjunctive constraint.

13.5 Experiments with Default CDC Constraints

Recall that one of the contributions of our approach is a new sort of CDC constraints, called default
CDC constraints. As part of our experimental evaluations, we have also performed experiments to
evaluate our ASP-based method for CDC consistency checking, using the improved ASP program,
when the instances contain such default CDC constraints.

In our experiments, we have used the improved ASP program augmented with the rules that
provide the semantics of the default CDC constraints, as described in Section 8. We have considered
the grid size as suggested by Theorem 9.

The results are shown in Figure 14 and Tables 23, 24. The computation time for the instances
with default constraints are an order of magnitude greater than the computation time for the cor-
responding basic instances. The reason is that the definition of exceptions (i.e., (28)) relies on the
inference of all the missing relations in the network (i.e., atoms of the form inferrel(u,v,R)). To
examplify, the consistency of a Medium-size basic consistent network with 72 constraints between
l = 14 spatial objects over Reg* is decided in 0.76 seconds; on the other hand, using the improved
ASP program augmented with the rules that provide the semantics of the default CDC constraints
as described in Section 8, the consistency of the same instance (without any default constraints) is
decided in 7.79 seconds.

With a similar reason, converting a basic constraint into a default constraint in general (as ob-
served by the instances Default v1 and Default v2) increases the computation time: with this con-
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(a) Consistent problem instances (b) Inconsistent problem instances

Figure 14: Computation time (i.e., CPU time in seconds) for problem instances with default CDC
constraints

version, the relation between a pair of spatial objects becomes unknown; and the ASP solver tries
to infer this missing relation to match with the default constraint.

Besides, adding a default constraint to the network that does not include any basic constraint for
the same pair tends to increase the computation time. When a constraint is not present between two
variables in the network, the ASP solver just infers the missing relation. However, after a default
constraint between such two variables is added to the network, the program tries to find an inferred
relation that would match the default constraint. For instance, for a consistent basic constraint
network with l = 16 variables over Reg , when new default constraints are added to obtain Default
v3 and Default v4 instances, the computation time increases from 34.58 seconds to 48.61 and 71.15
seconds respectively. Consequently, computation time for the Default v3 and Default v4 instances
are generally greater than the basic instance. Likewise, the computation time for the Default v5
and Default v6 instances are generally greater than that of Default v1 and Default v2 instances,
respectively.

13.6 Experimental Evaluations with Random Benchmark Instances

Experiments have been performed with random benchmark instances using our improved ASP pro-
gram and the grid size in Theorem 9. Averaged results for the samples over connected and possibly
disconnected domain are summarized in Figure 15. For detailed results, we refer the reader to
Tables 25 and 26 in Appendix C.

Figure 15: Test results for random inconsistent instances: Effect of input size
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We observe from these results that the pattern and absolute value of timings are comparable to
the test results with handcrafted basic instances. In particular, the grounding time and the total time
increase as the number of objects and the network density increase.

13.7 Experimental Comparisons with the Existing Solver

Liu et al. (2010) has implemented a software based on a polytime algorithm to check for the consis-
tency of complete CDC networks (whose complexity is in P). We first experimented with complete
CDC networks to compare our approach with the other existing solver. As expected, we have ob-
served that Liu et al.’s polytime algorithm performs better (Table 4).

Instance Reg* Reg
Objects Liu et al. NCDC-ASP Liu et al. NCDC-ASP

Consistent Instances
6 0.0004 0.07 0.0005 0.07
8 0.0009 0.28 0.0009 0.43
10 0.0004 0.78 0.0008 1.57
12 0.0006 1.85 0.0007 3.17
14 0.0008 8.65 0.0010 10.90

Inconsistent Instances
6 0.0001 0.06 0.0001 0.08
8 0.0001 0.24 0.0001 0.29
10 0.0001 0.38 0.0001 1.11
12 0.0001 0.94 0.0001 1.60
14 0.0001 2.44 0.0001 2.08

Table 4: Complete CDC networks over Reg* and Reg : Computation times in seconds for the rele-
vant improved ASP programs (for Reg* or Reg ) and for the polytime algorithm of Liu et al. (2010)

To decide consistency of incomplete CDC networks, the algorithm of Liu et al. (2010) can be
adapted for exhaustive search. For the missing constraints in the network, all possible CDC relations
(218 over Reg and 511 over Reg* ) can be tested one by one. Each possible combination of CDC
relations is appended to the original incomplete network to fill it and make it complete. Then the
algorithm of Liu et al. is called to decide its consistency. The original network is consistent if and
only if at least one combination yields a consistent outcome. If no combination results a consistent
network, the original network is inconsistent.

We have modified the code provided by the authors of Liu et al. (2010) to implement the above
exhaustive search method for incomplete networks. We have experimented with some of our bench-
mark instances on both domains to assess efficiency of this adapted algorithm of Liu et al. and
compare to our ASP formulation. Results of the experiments for incomplete networks are tabulated
in Table 5. For all problem instances, the computation time of Liu et al.’s algorithm has exceeded
the timeout value and is orders of magnitude greater than ASP. The reason is that the number of pos-
sible combinations increases exponentially with the number of missing constraints hence exhaustive
search using algorithm of Liu et al. is not a viable option for incomplete CDC networks. Besides the
computation time for inconsistent networks with exhaustive search, is expected to be even greater
than the time for consistent ones since all possible combinations must be tested to determine the
inconsistency.
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Instance Reg* Reg
Objects Density Liu et al. NCDC-ASP Liu et al. NCDC-ASP

Consistent Instances
6 Sparse > 1000 0.02 > 1000 0.02
6 Medium > 1000 0.04 > 1000 0.05
6 Dense > 1000 0.05 > 1000 0.07
8 Sparse > 1000 0.05 > 1000 0.05
8 Medium > 1000 0.09 > 1000 0.14
8 Dense > 1000 0.17 > 1000 0.29

Inconsistent Instances
6 Sparse > 1000 0.02 > 1000 0.02
6 Medium > 1000 0.03 > 1000 0.04
6 Dense > 1000 0.04 > 1000 0.06
8 Sparse > 1000 0.04 > 1000 0.04
8 Medium > 1000 0.09 > 1000 0.12
8 Dense > 1000 0.11 > 1000 0.15

Table 5: Incomplete CDC networks over Reg* and Reg : Computation times in seconds for the rele-
vant improved ASP programs (for Reg* or Reg ) and for the modified algorithm of Liu et al. (2010)

13.8 Summary

We have performed various experiments to comprehensively evaluate our ASP-based approach NCDC-
ASP for reasoning about nCDC constraints.

We have designed our experiments by

• setting our objectives and introducing the measures to use in evaluations (Section 11),

• introducing a method to incrementally generate meaningful handcrafted benchmarks, in ad-
dition to the randomly generated instances (Section 12).

We have experimented with the handcrafted benchmark instances to better understand

• the effectiveness of ASP improvements for explicitly defining the minimum bounding rect-
angles for spatial objects vs. generating the minimum bounding rectangles, and defining the
connectedness of a region using reachability vs. transitive closure,

• the scalability of NCDC-ASP in terms of the input size (i.e., the number of variables and
the density of the constraint network),

• the usefulness of the theoretical results (i.e., Theorem 9) that provide further lower bounds
for the grid size,

• the effect of including disjunctive CDC constraints and default CDC constraints on the
scalability.

In these experiments, we have considered consistent vs. inconsistent instances over connected vs.
possibly disconnected domains.

We have also experimented with the randomly generated instances to better understand the
scalability of our approach (Figure 15, Tables 25 and 26).
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In addition, we have performed comparisons with the existing solver of Liu et al. (2010) over
complete vs. incomplete basic CDC networks (Tables 4 and 5).

The results of these experiments are discussed in detail in the previous subsections. A summary
of these results is presented in Table 6.

Experiment Findings Section Figures/Tables

ASP Improvements The improvements lead to significantly more efficient computa-
tions, in terms of CPU time and the program size.

13.1 Figures 9,10,
Tables 7–14

Input Size As the number of variables and the network density increases, the
computation time and the program size increase. These increases
are higher for Reg compared to Reg* .

13.2 Figure 11,
Tables 15–
18

Theorems The tighter lower bounds provided by Theorem 9 significantly
decreases the grid size and improves the computational efficiency
in terms of CPU time.

13.3 Figure 12,
Tables 19,20

Disjunctive CDC
Constraints

Including disjunctive CDC constraints in a constraint network
does not affect the computation time for consistent instances, but
increases the computation time for inconsistent instances.

13.4 Figure 13,
Tables 21,22

Default CDC
Constraints

Converting basic CDC constraints into default CDC constraints
or adding new default CDC constraints in a constraint network
increases the computation time.

13.5 Figure 14,
Tables 23,24

Randomly Generated
Benchmarks

The findings regarding scalability are similar to those with the
handcrafted instances.

13.6 Figure 15,
Tables 25,26

Comparisons with
Liu et al. (2010)

Liu et al.’s system is faster for complete basic CDC networks.
NCDC-ASP is faster for incomplete basic CDC networks, com-
pared to the adapted version of Liu et al.’s system with exhaustive
search.

13.7 Tables 4,5

Table 6: Summary of Experimental Evaluations

14. Related Work

Beginning with the seminal work of Allen on Interval Algebra (IA) (Allen, 1983), a multitude of
qualitative calculi have been proposed in the literature focusing on different aspects of space, such
as

• topology: DIR9 (Egenhofer & Herring, 1990), RCC8 (Cohn et al., 1997),

• direction: cone and projection based (Frank, 1991), LR (Ligozat, 1993), Double-cross (Freksa,
1992), Dipole (Moratz, Renz, & Wolter, 2000), SV (Lee, Renz, & Wolter, 2013), OPRA (Moratz,
Dylla, & Frommberger, 2005), Rectangle Algebra (RA) (Balbiani, Condotta, & del Cerro,
1998, 1999), Cone-Shaped Directional (CSD) (Skiadopoulos et al., 2007), Cardinal Direc-
tional Calculus (CDC) (Goyal & Egenhofer, 1997; Skiadopoulos & Koubarakis, 2004),

• distance (Zimmermann & Freksa, 1996; Monferrer & Lobo, 1996; Falomir, Museros, Castelló,
& Gonzalez-Abril, 2013; Guesgen, 2002), size (Frank, 1991), and

• shape (Dugat et al., 1999; Gottfried, 2005; Van de Weghe et al., 2005; Museros & Escrig,
2004; Dorr & Moratz, 2014).
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An overview of qualitative spatial and temporal calculus can be found in the surveys (Cohn &
Renz, 2008; Chen et al., 2015; Dylla et al., 2017). In this paper, we are concerned with qualitative
reasoning about cardinal directions.

Regarding cardinal directions, researchers have considered various types of spatial objects, such
as

• point objects (Frank, 1991; Moratz et al., 2005; Lee et al., 2013),

• line segments and ternary relations (Freksa, 1992; Moratz, Nebel, & Freksa, 2002), and

• extended regions on the plane (Balbiani et al., 1999; Goyal & Egenhofer, 1997).

In this paper, we consider spatial objects that are extended regions on the plane.
The cardinal directions of Frank (1991), Ligozat (1998) view objects as points and may not

express orientation accurately. Consider the following examples by Skiadopoulos and Koubarakis
(2004, 2005). If we consider the centers of Portugal and Spain as illustrated in the leftmost figure in
Figure 16, then according to the point-based semantics of CDC “Spain is to the northeast of Portu-
gal”; however, many people would agree that “northeast” does not accurately describe the relation
between Portugal and Spain. A similar example is illustrated in the middle figure in Figure 16 to
emphasize the problems with the point and minimum bounding rectangle approximations. Accord-
ing to Skiadopoulos and Koubarakis (2004, 2005), as illustrated in the rightmost figure in Figure 16,
Spain is partially on, to the north, to the northeast, to the east, to the south, and to the southeast of
Portugal.

Figure 16: An example by Skiadopoulos and Koubarakis (2004, 2005) to illustrate the problems with point
and minimum bounding rectangle approximations.

For qualitative reasoning about directions between extended regions on the plane, two well-
studied calculi are Rectangle Algebra (RA) (Balbiani et al., 1999) and Cardinal Directional Cal-
culus (CDC) (Goyal & Egenhofer, 1997; Skiadopoulos & Koubarakis, 2004, 2005). Rectangle
Algebra is an extension of Allen’s Interval Algebra to 2-dimension. Objects are rectangles whose
sides are parallel to the axes of reference frame. An RA relation is identified by a pair of interval
relation between sides of rectangles in horizontal and vertical axis. In Direction Relation Matrix
(DRM) (Goyal & Egenhofer, 1997), spatial objects are simple regions; the plane is divided into
9 tiles based on the minimum bounding rectangle of the reference object, and the direction of the
target object relative to the reference object is represented by its intersection with the tiles in a 3x3
matrix. Based on DRM, a formal model was adapted for extended objects that may have holes or
may be disconnected, by Skiadopoulos and Koubarakis (2004, 2005); this extended model is called
Cardinal Directional Calculus. In this paper, our studies regarding directions is based on CDC.
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Let us mention that there are variations of CDC in the literature, e.g., where the on relation is
refined by partitioning the minimum bounding rectangle of the reference object into 5 tiles and thus
lead to more relations (Liu et al., 2005), and where 5 cone-shaped (angular) tiles are considered
around the minimum bounding rectangle of the reference object (instead of 9 rectangular tiles) and
thus lead to less number of relations. There are also extensions of CDC, e.g., where the position of
a target object is defined with respect to two reference objects, and where RCC8 (Kor & Bennett,
2013; Li & Sun, 2005) is augmented to express direction and topology relation together. Such
refinements and extensions of CDC are not considered in this study, as the focus is more about
extending CDC with a minimal addition to its syntax, while conservatively extending its semantics,
that leads to a wide variety of reasoning capabilities.

In CDC literature, mainly three reasoning tasks have been studied: consistency checking of
CDC constraints, inferring the composition of CDC relations, and inferring the inversion of CDC
relations. The most widely studied problem is CDC consistency checking, in particular, to under-
stand the complexity of this problem under different circumstances (Liu, 2013; Liu & Li, 2011; Liu
et al., 2010; Navarrete et al., 2007; Skiadopoulos & Koubarakis, 2004, 2005; Zhang et al., 2008).
Although polynomial time complexity fragments of the problem have been identified (Liu, 2013;
Liu et al., 2010; Navarrete et al., 2007; Zhang et al., 2008) and algorithms have been presented for
them, in general, consistency checking problem is proven to be NP-complete (Liu, 2013; Liu &
Li, 2011; Liu et al., 2010; Skiadopoulos & Koubarakis, 2005). To study the NP-completeness of
CDC consistency checking problems, the researchers have investigated the use of constraint pro-
gramming and model checking. A summary of these complexity results is provided in Table 1.
Cohn et al. (2014) examine the joint satisfaction problem of different calculi. The authors show that
even with basic constraints, joint satisfaction of RCC8 and CDC constraints is NP-complete. On
the other side, joint satisfaction of basic RA and CDC constraints remains in P. In this paper, we
introduce a general formal framework (NCDC-ASP ) to solve all variations of CDC consistency
checking, with a different approach based on the expressive formalism and efficient ASP solvers.
We study generating explanations to consistency checks by means of generating possible layouts of
spatial objects, and inferring the missing CDC relations with respect to such possible layouts. We
also study default reasoning about CDC relations, by lifting defaults from ASP to CDC descrip-
tions. Note that inference of missing CDC relations in such a way provides solutions to inference
of composition/inversion of CDC relations with respect to possible layouts.

ASP has been applied to different types of qualitative spatial reasoning. For instance, using ASP,
the following consistency checking problems are investigated: consistency checking of constraint
networks in IA and RCC8 (Li, 2012; Brenton, Faber, & Batsakis, 2016), path-consistency of a
network in Trajectory Calculus (Baryannis et al., 2018), consistency checking of constraint networks
in RCC5 and some other calculi (Walega, Bhatt, & Schultz, 2015; Walega, Schultz, & Bhatt, 2017).
Different from these studies that use ASP for qualitative spatial reasoning, we are concerned about
reasoning about cardinal directions as in CDC.

Walega et al. (2015, 2017) use a special ASP language called ASPMT (Bartholomew & Lee,
2014) that allows the use of polynomial (in)equalities to encode constraints. This allows them to
use an ASP solver that transforms a given program in ASPMT into the input language of an SMT
solver, if the program is tight, so that the answer sets for the program can be computed by an SMT
solver. They call their approach as ASPMT(QS). Let us underline the differences between our study
and Walega et al.’s study, concerning cardinal directions. Proposition 4 of Walega et al. (2015)
and Proposition 5 of Walega et al. (2017) state that “Each relation of Cardinal Directional Calcu-
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lus (Frank, 1991) may be defined in ASPMT(QS)”. Recall that CDC as in Frank (1991), Ligozat
(1998) is point-based and may lead to confusions, as illustrated by the example above about the
directional relation of Spain with respect to Portugal. In our paper, we consider CDC as in Ski-
adopoulos and Koubarakis (2004, 2005). Second, while Walega et al. mention the possibility of
formalizing CDC as in Frank (1991) by an ASPMT(QS) program, they do not present the program.
We do present the ASP encodings for various CDC reasoning, and prove that our formalization pre-
serves the meaning of CDC as defined in Skiadopoulos and Koubarakis (2004, 2005). Third, Walega
et al. use a special ASP language (ASPMT) that relies on a transformation of a given program into
the input language of an SMT solver, subject to the condition that the program is tight. In our study,
we use traditional ASP programs to formalize CDC reasoning problems so that we can prove their
correctness using well-known theorems; we use the ASP-Core-2 standard language (Calimeri et al.,
2013) to implement them so that any traditional ASP solver can be used to compute answer sets.
Since our concern is to provide a general framework for CDC reasoning, that may involve non-tight
programs with recursive definitions (as can be seen in the recursive definitions for connectedness),
we have not restricted our study to special ASP languages and solvers that utilize constraint tech-
nologies. Though the use of such special ASP languages and solvers for appropriate variations of
CDC reasoning is an interesting problem to investigate in the future.

It is important to discuss some differences of our study from the related ASP-based studies
from the perspective of the use of nonmonotonicity to express defaults about directional relations.
Related studies (Walega et al., 2017; Schultz et al., 2018) use defaults to express the commonsense
law of inertia for spatial relations. For instance, they can express by a default in ASP that ”typically
the trailer remains attached to the car”, i.e., if the trailer is attached to the car at time step t then by
default the trailer is attached to the car at time step t+1. In our study, we “lift” the nonmonotonicity
of ASP to the level of CDC constraint specification for the purpose of describing defaults over
directional relations. For that, we introduce default CDC constraints to easily express, e.g., that
“the ice cream truck is by default to the north of the playground” or “typically the trailer is attached
to the car”. This allows the user to specify the default CDC constraints using the new syntax,
without having to deal with a semantics-preserving ASP program, e.g., as described in Section 8. We
define the meaning of default CDC constraints over answer set semantics utilizing the nonmonotonic
construct of negation as failure. Such constraints have not been studied in the qualitative calculi
mentioned above, and thus they are novel. Note that nCDC extends CDC for various reasoning
tasks over directional relations without considering temporal reasoning. Further extensions that also
allow temporal reasoning over directional relations is an interesting research problem to investigate
in the future.

Regarding nonmonotonicity in qualitative spatial reasoning in connection with reasoning about
actions, we should also add a remark on Shanahan’s (Shanahan, 1995) use of nonmonotonicity in
a setting with incomplete information: when moving an object in a real valued coordinate system,
it is assumed that by default the destination location is empty. To achieve this, a circumscription
policy is utilized to minimize the abnormal states and the occupied space.

Our recent work (Izmirlioglu & Erdem, 2020b) extends CDC to 3-dimensional space utilizing
defaults (called 3D-nCDC) based on the 3D CDC calculi (Chen, Liu, Jia, & Zhang, 2007; Hou,
Wu, & Yang, 2016), and introduces an ASP-based method (called 3D-NCDC-ASP ) for qualitative
reasoning about 3D-nCDC constraints. The foundations of our recent work relies on the presented
results. On the other hand, the ASP definitions for default constraints and inferred constraints in
the recent work are different for the purpose of providing explanations. For instance, in the current
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study, NCDC-ASP first infers all the unknown relations in the network and then tries to find evi-
dence against the given default constraints using literals of the form ¬drel(u,v). In our recent work,
3D-NCDC-ASP infers only the missing relations between user-specified pairs of variables, and
explicitly defines violations of default constraints using atoms of the form violatedDef(u,v), which
are also used to provide explanations. Also, in the current study, alternative proof methodologies
are utilized for the proofs of theorems about the discretization of the consistency checking problem,
and further theoretical results are provided to improve the ASP formulation and discretization. For
instance, the current study reduces the lower bound on the grid size for the discretized consistency
problem by examining the given nCDC constraints in the network and partitioning the network
into smaller subnetworks. Both studies consider different types of applications. The present work
involves a comprehensive experimental evaluation about NCDC-ASP .

15. Consistency Checking Tools and Algorithms

Reasoning and consistency checking with qualitative spatial calculi have received attention in the
literature of computer science, geography and information sciences, leading to generic toolboxes,
like QAT (Condotta, Saade, & Ligozat, 2006), GQR (Gantner, Westphal, & Wölfl, 2008), and
SparQ (Wallgrün et al., 2006). These systems employ algebraic closure techniques for checking
consistency. The user can describe a qualitative calculus by entering its basic relations, identity
function, inverse relations and a composition table. In practice, these toolboxes can be used only
for calculus with small number of base relations due to manual entry of the composition table.

The generic toolkit GQR has been developed for binary calculi: it takes a description of quali-
tative calculus and a constraint network as input, and applies path-consistency and heuristic back-
tracking for consistency checking. Relying on path-consistency, QAT and SparQ are developed
for qualitative spatial and temporal calculus with arbitrary arity. SparQ, in addition to constraint
reasoning, can find qualitative relation from a geometric configuration and can compute inversion,
composition, intersection, union of relations. The tools GQR, QAT and SparQ require the given
calculus to have an identity relation and the inverse relation to be a basic relation, which CDC does
not possess. Consequently we do not attempt to implement consistency checking for CDC using
these tools. Furthermore, these toolkits are not capable of incorporating commonsense knowledge
into reasoning.

In the same spirit, utilizing path-consistency, the line of tools ParQR (Mantle, Batsakis, & An-
toniou, 2019), CHOROS (Christodoulou, Petrakis, & Batsakis, 2012), and SOWL (Batsakis & Pe-
trakis, 2010) are also developed for qualitative spatio-temporal reasoning based on RCC8 and CSD.
Differently, they utilize ontologies (in OWL), rules (in SWRL) and/or semantic web technologies
to represent these calculi (including inversion and composition of relations) and answer queries (in
SPARQL) , like “Is there a coffee shop inside the mall? Where is the bank with respect to our
apartment? Is there a restaurant near the campus?” Furthermore, ParQR is based on a parallel al-
gorithm (utilizing MapReduce and Hadoop) to improve computational performance for large-scale
datasets. Similar to the generic toolkits mentioned above, the representation of defaults (needed for
commonsense reasoning) is not supported by these reasoners, mainly, due to the monotonicity of
the formalisms they rely on.

Likewise, existing reasoning mechanisms used in spatial databases and GIS systems mostly
employ path-consistency methods (Jan & Chipofya, 2011).
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Note that local algorithms, such as path-consistency or k-consistency,1 are not sufficient to
decide the consistency of a network in CDC, as shown in Liu et al. (2010), Skiadopoulos and
Koubarakis (2004). To examplify, consider the following CDC network in Skiadopoulos and Koubarakis
(2004): C={u O : SW : W : N : NE v, u O : SW : W : E : SE w, u O : SW : W : E : SE t, vO : S :
SW : W : E : SE w, v S : SW t, t O : W : NW : N : NE : E w}, V ={u,v,w, t}. This network is path-
consistent but not consistent over D=Reg* . Liu et al. (2010) investigates basic CDC networks with
five spatial variables, which are 4-consistent but not consistent. Namely, the network is consistent
up to subset of 4 variables but not satisfiable with 5 variables. This means that even k-consistency,
which is stronger than path-consistency, is not sufficient for deciding the consistency of a network
of CDC constraints.

Different from the tools above, NCDC-ASP is not based on path-consistency, provides an exact
method for consistency checking, supports nonmonotonic constructs (like default CDC constraints)
for commonsense reasoning in qualitative spatial reasoning, and allows solutions for a variety of
reasoning tasks, including inference of missing relations and explanation generation. The use of
ontologies and semantic web technologies, combining qualitative spatial reasoning with temporal
reasoning, and investigating parallel algorithms to aid reasoning over large datasets as employed by
the tools above, are interesting research directions for NCDC-ASP .

16. Applicability of NCDC-ASP

Let us also discuss the applicability of NCDC-ASP in the real-world. Our study is motivated by
applications in domains with the human presence and interactions, like in the examples presented
in Section 10. Such applications often require commonsense reasoning, inference over incomplete
knowledge about qualitative directional relations, and explanation generation. Thus, with this mo-
tivation, our concern in this study is more on extending CDC minimally in its syntax, while conser-
vatively extending its semantics for a wide variety of reasoning capabilities (including consistency
checking), and developing an efficient reasoner that supports these extensions.

Note that the examples presented in Section 10 are realistic in the real-world, e.g., in service/-
social robotics applications: often there are not many objects placed on a kitchen/office table, and
humans describe such placements sparsely and prefer relevant explanations as justifications. In that
sense, considering the typical size of the networks in these applications and the scalability anal-
ysis results of NCDC-ASP (Sections 12 and 13), NCDC-ASP is applicable in such real-world
domains.

Some other applications of NCDC-ASP also shows the usefulness of NCDC-ASP . For in-
stance, Le-Phuoc, Eiter, and Le-Tuan (2021) utilizes NCDC-ASP to integrate qualitative directional
reasoning in multi-object tracking, for applications that involve autonomous driving and traffic mon-
itoring. Izmirlioglu and Erdem (2020a) presents a digital forensics case study where suspects of a
criminal event describe configuration of the items at the event venue during the crime, and the truth-
fulness of suspects in their statements can be identified using NCDC-ASP by checking whether
the statement of each suspect is consistent with the evidence obtained from camera images. Our
ongoing study (Izmirlioglu & Erdem, 2020b) extends nCDC to 3D space and illustrate that 3D-
NCDC-ASP can be applied to inferring unknown locations of objects in the ocean by underwater

1. A constraint network is path-consistent if the transitive closure of the constraints in the network under weak compo-
sition and inversion does not yield an empty relation. A constraint network is k-consistent if the network restricted to
any subset with k spatial variables is consistent (Liu et al., 2010).
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robots, and creating a floor plan subject to building regulations. These applications involve com-
monsense knowledge and explaining inconsistencies.

There are other applications (like GIS systems, e.g., used to visualize the geographical data)
with many objects and relations in between, that are maintained in very-large spatial databases. As
discussed above, the objective of NCDC-ASP is more to widen the qualitative spatial reasoning
capabilities beyond consistency checking, rather than to improve the computational performance of
consistency checking for big spatial data. Fortunately, as discussed above, there are various types
of methods and tools for such applications, that are developed to address consistency checking to
some extent very efficiently.

17. Discussions and Conclusion

Considering cardinal direction calculus (CDC) of Skiadopoulos and Koubarakis (2004), we have
introduced a provably correct and generic method for representing constraints about basic/disjunc-
tive qualitative directional relations over connected/disconnected regions on a plane, by discretizing
CDC consistency checking and then using Answer Set Programming (ASP). The idea is then to
use existing state-of-the-art ASP solvers to check the consistency of these constraints and infer new
qualitative directional relations when the constraints are incomplete. No existing CDC reasoner can
handle uncertainty (represented by disjunctive constraints) or incomplete knowledge.

Note that, in most of the cases, consistency checking of CDC constraints is NP-complete (Ta-
ble 1), and our method is general enough to provide solutions for all of them.

For efficient use of ASP for CDC consistency checking, we have introduced lower bounds on the
size of the discretized CDC consistency checking by utilizing theoretical results from real analysis,
and presented various improvements on ASP formulations. The lower bounds are not specific to
ASP so they can be utilized by other discrete methods for CDC consistency checking. The proposed
ASP modifications are also based on general ideas, so they can be useful for other ASP applications.

Furthermore, we have extended CDC with a new sort of constraints, called default qualitative
directional constraints, that allow us to utilize commonsense knowledge (e.g., children normally
like playgrounds) and assumptions (e.g., food truck is normally seen to the south of Store X) about
directional relations between spatial objects. These constraints can be formalized in ASP, thanks to
the nonmonotonic negation and aggregates.

For experimental evaluations, since there is no available benchmarks for CDC consistency
checking, we have carefully handcrafted some benchmark instances to be able to analyze CDC
consistency checking from different perspectives. While constructing these instances, we have paid
attention to their informativeness, considering redundancies due to composition of CDC relations
and inconsistencies due to the inverse of CDC relations. We have also introduced novel methods to
generate further benchmark instances to investigate variations of CDC consistency checking.

With experimental evaluations, we have observed the usefulness of the improvements for ASP
formulations, with significant decreases in program sizes and computation times. We have observed
the usefulness of the theorems that provide lower bounds on the size of the grid used for discretizing
the CDC consistency checking problem. Furthermore, we have observed an exponential behaviour
on the increase of total CPU time as the input size and the degree of completeness increase, as
suggested by the computational complexity of the problem.

On the other hand, despite the complexity results, we have observed that for instances with
Complete networks, the computation time increases significantly. This can be due to the use of
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ASP, which is oriented towards solving intractable problems. For these problems, the solver of Liu
et al. (2010), based on a polytime algorithm is more appropriate (Table 4). Nevertheless exhaustive
search using this algorithm is not a viable method for incomplete networks.

We have illustrated possible uses and usefulness of our methods by sample scenarios in a dy-
namic environment that involve incomplete knowledge, disjunctive CDC relations, and default CDC
constraints. These methods can be applied to various applications, like exploration of an unknown
environment, without having to change the ASP formulation for consistency checking. Possibility
of reasoning over CDC constraints in such environments is important for human-robot interactions
as well, so that a robot can understand qualitative descriptions of directional relations provided by
humans, can reason about these possible incomplete qualitative knowledge, and provide guidance
to humans by means of qualitative descriptions.

In connection with such applications, our ongoing work (Izmirlioglu, 2019) involves extending
nCDC and our ASP-based framework NCDC-ASP with further qualitative spatial relations, like
distance.

The ASP code, benchmark problem instances and the example scenarios can be found in the
online repository https://github.com/yizmirlioglu/nCDC. We have also created a software which
takes input from the user and performs the automatic computation of the reasoning tasks using
these ASP programs. This software is available at another repository
https://github.com/yizmirlioglu/nCDC-ASP-Software.
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Appendix A: Proofs

Proof of Theorem 1

Theorem 1 The consistency checking problem I=(C,V,D,Q) and the discretized consistency
checking problem Im,n=(C,V,Dm,n,Q) where m,n≥2|V |−1 have the same output.

Proof 1 (Proof of Theorem 1) If Im,n has an answer Yes so does I: Every solution for C over Λm,n

is trivially a solution in Reg* . Suppose that I has an answer Yes. We show that Im,n has an answer
Yes as well, as follows.

Take any solution (a1,a2, ...,al) ∈ Dl of C. We first show that C has a solution (relative to I)
where regions are composed of finite number of closed squares. By definition of regions in CDC,
ai are compact and therefore they are totally bounded. According to Theorem A.4 of Rudin (Rudin,
1991, page 393), given any η > 0, every ai has a finite cover Ai={a j

i }
h(i)
j=1 ∈ D where h(i) ∈ N,

a j
i ∈ D are closed squares of side η and ai ⊆

⋃
σ∈Ai

σ . We insert a sequence of closed squares
into each Ai whose sides are tending to zero, in order to obtain a Vitali cover Âi. Namely, for
any point x ∈ ai and η > 0, there is a square in Âi containing x whose side is less than η . Then
according to Corollary 7.18 of of Wheeden (Wheeden, 2015, page 143), for an arbitrary ε > 0, a
finite collection of disjoint squares {s1, ...,st(i)} from Âi can be found which satisfy the outer measure

|ai \
⋃t(i)

j=1 s j |e < ε for each i. Hence, the measure approaches to 0 and we can cover almost all
points in ai with a finite union of non-overlapping closed squares in R2. Since regions with zero
measure do not change CDC relations, the approximated regions āi=

⋃
s j satisfy constraints in C

as well.
Now we prove that I attains a solution on a grid of size (2|V |− 1)× (2|V |− 1). Note that we

allow regions to be disconnected. Since C is consistent, there exists ordering of bounds of regions
on x and y axis which obeys CDC constraints in C. Let Ox={infx(ai),supx(ai) | 1≤ i≤ l} and
Oy={infy(ai),supy(ai) | 1≤ i≤ l} be such ordered lists of infimum and supremums over respective
axes. We construct a grid in a way that each index on its vertical axis corresponds to a distinct
element in Oy and indices are in the same order as elements in Oy. In case some elements in Oy

coincide, the same index on the grid is allocated for them. Horizontal axis of the grid is organized
in an analogous fashion.

We show that (a1,a2, ...,al) can be instituted on this grid as follows. Let us first examine Oy and
the assignment of cells to spatial variables over vertical axis. If a constraint in C imposes a spatial
object ai to occupy some parts of the top tile (i.e., {NW, N, NE}) of another object a j, we assign
the grid cells along the row located above supy(a j) to ai. Likewise, for a constraint in C imposing
ai to occupy some parts of the bottom tile (i.e., {SW, S, SE}) of another object a j, we assign the
grid cells along the row located below infy(a j) to ai. In case a constraint in C imposes ai to occupy
vertically some parts of the middle tile (i.e., {W, O, E}) of another object a j, then the object ai will
be located on the grid in a manner that its lower bound is the maximum of {infy(ai), infy(a j)}, and
its upper bound is the minimum of {supy(ai), supy(a j)}. A similar argument can be done for the
horizontal axis. Then, for a solution (a1,a2, ...,al), since there can be at most 2|V | distinct elements
in Ox and Oy, the grid has maximum 2|V |−1 rows and columns.

Remark 1. In our earlier paper (Izmirlioglu & Erdem, 2018), our proof consists of two parts:
We first show that each region can be written as countably infinite number of closed squares, then
we take finite number of closed squares and show that each region can be approximated by finite

1423



IZMIRLIOGLU & ERDEM

number of closed squares. Based on the feedback provided to us by mathematician Prof. Nihat
Gokhan Gogus, the proof is simplified as presented above: The proof above directly shows that
every region can be approximated by a finite union of closed squares, using totally boundedness
and covering.

Remark 2. Note that Theorem 1 is dependent on the number of variables, therefore, it is ap-
plicable to CDC networks that include not only basic CDC constraints but also disjunctive CDC
constraints.

Proof of Theorem 2

Theorem 2 Let Im,n=(C,V,Dm,n,Q) be a discretized consistency checking problem, where C is a
basic CDC network. For an assignment X of spatial objects in Dm,n to variables u in V , X is a
solution of Im,n if and only if X can be represented in the form of Z∩Om,n for some answer set Z of
ΠIm,n . Moreover, every solution of Im,n can be represented in this form in only one way.

The proof of Theorem 2 follows from Lemmas 1 and 2 below.
Let Z be an answer set for ΠIm,n . For every variable v ∈V , let us denote by Z(v) the assignment

of grid cells (x,y) to v obtained from occ(v,x,y) in Z.

Lemma 1 For a discretized version Im,n=(C,V,Dm,n,Q) of a consistency checking problem with
V ={v1, ...,vl}, where C consists of basic CDC constraints and may be incomplete, let Z be an
answer set for the ASP program ΠIm,n . Then the l-tuple (Z(v1),Z(v2), ...,Z(vl)) is a solution for Im,n.

Let (a1,a2, ...,al) ∈ Dl
m,n be a solution for Im,n=(C,V,Dm,n,Q). We denote by Occm,n(ai) the

set of atoms of the form occ(ai,x,y) where (x,y) ∈ Λm,n is in ai. Recall that Om,n denotes the set of
all atoms of the form occ(u,x,y) where u ∈V and (x,y) ∈ Λm,n.

Lemma 2 For a discretized version Im,n=(C,V,Dm,n,Q) of a consistency checking problem with
V ={v1, ...,vl}, where C consists of basic CDC constraints and may be incomplete, let
X = (a1,a2, ...,al) ∈ Dl

m,n be a solution for Im,n. Then the ASP program ΠIm,n has a unique answer
set Z where Z∩Om,n = ∪l

i=1Occm,n(ai).

Proof 2 (Proof of Theorem 2) Let Im,n=(C,V,Dm,n,Q) be a discretized consistency checking prob-
lem, where C consists of basic CDC constraints and may be incomplete.

Let Z be an answer set for the ASP program ΠIm,n . Recall that, for every variable v ∈ V , let
us denote by Z(v) the assignment of grid cells (x,y) to v obtained from occ(v,x,y) in Z. Then by
Lemma 1, the l-tuple (Z(v1),Z(v2), ...,Z(vl)) is a solution for Im,n.

Let X be an assignment X = (a1,a2, ...,al) of spatial objects in Dm,n to variables u in V . Recall
that we denote by Occm,n(ai) the set of atoms of the form occ(ai,x,y) where (x,y) ∈ Λm,n is in ai.
If X is a solution of Im,n then by Lemma 2, the ASP program ΠIm,n has a unique answer set Z where
Z∩Om,n = ∪l

i=1Occm,n(ai).

The proofs of Lemma 1 and 2 use the following theorems.

Splitting Set Theorem (Erdogan & Lifschitz, 2004). Let U be a splitting set for a program Π. A
consistent set of literals is an answer set for Π if it can be written as X ∪Y where X is an answer set
for bU(Π) and Y is an answer set for eU(Π\bU(Π),X).

1424



QUALITATIVE REASONING ABOUT 2D CARDINAL DIRECTIONS USING ASP

A splitting set for a program Π is any set U of literals such that, for every rule r , if head of r
contains a literal in U ; then all literals in the whole rule r are included in U . The partial evaluation
of a formula F with respect to X , denoted by eU(Π,X), is computed as follows: For each regular
occurrence of a literal L ∈U in F , replacing L with > if L ∈ X , otherwise replacing L with ⊥. For
a program Π, we will denote by eU(Π,X) the program obtained by replacing each rule F←G of Π

by eU(F,X)← eU(G,X).
Intuitively, the bottom part bU(Π) of a program Π consists of the rules whose literals are con-

tained in the splitting set U . Once an answer set X for the bottom part is computed, it is “propagated
to the rest of the program (called the top part) and the answer set Y is computed for the top part.
The theorem ensures that X ∪Y is an answer set for the whole program.
Proposition 2 of Erdogan and Lifschitz (2004). For any program Π and formula F , a set Z of
literals is an answer set for Π∪{← F} if Z is an answer set for Π and does not satisfy F .

Intuitively, Proposition 2 of Erdogan and Lifschitz (2004) expresses that adding constraints to
an ASP program eliminates its answer sets that violate these constraints.

Proof 3 (Proof of Lemma 1) Let Π′Im,n
be the program obtained from ΠIm,n by dropping the con-

straints like (10) and (11). We apply the splitting set theorem (Erdogan & Lifschitz, 2004) to Π′Im,n
.

Take the splitting set U as the set of atoms of the form rel(u,v,R) where R ∈ δ for u δ v ∈C, and
of the form occ(u,x,y) where u ∈ V and (x,y) ∈ Λm,n. Then an answer set Y1 for the bottom part
(6)∪ (7)∪ (8) describes the CDC constraints in C and possible assignments grid cells in Λm,n to
variables u ∈ V . The answer set Y2 for the top part i.e., the rules (9) evaluated with respect to Y1
defines the infimum and supremum for these variables. Then Y1∪Y2 is an answer set for Π′Im,n

.
With Proposition 2 of Erdogan and Lifschitz (2004), by adding constraints like (10) and (11)

for each CDC relation δ , the answer sets for Π′Im,n
that do not satisfy (C1) and (C2) are eliminated.

Then the answer sets Z for ΠIm,n characterize assignments Z(v) of regions to every variable in v∈V
that satisfy (C1) and (C2). Thus the l-tuples (Z(v1),Z(v2), ...,Z(vl)) are solutions for Im,n.

Proof 4 (Proof of Lemma 2) Every solution X = (a1,a2, ...,al) for Im,n=(C,V,Dm,n,Q) describes
possible assignments of grid cells of Λm,n to variables vi ∈ V . Then ∪l

i=1Occm,n(ai) is included in
some answer set Z for the program Π′Im,n

obtained from ΠIm,n by dropping constraints like (10) and
(11).

Every pair (ai,a j) in X satisfies conditions (C1) and (C2). Then, the union of atoms Occm,n(ai)
also satisfy the constraints like (10) and (11). Then, by Proposition 2 of Erdogan and Lifschitz (2004),
Z is an answer set for ΠIm,n as well.

To prove uniqueness of representation, suppose that another answer set Z′ 6= Z for ΠIm,n also
characterizes X. Then, ∪l

i=1Occm,n(ai) is included in Z′ as well. Since Z′ 6= Z, there exists an atom
of the form occ(u,x,y) in Z′ \Z or in Z \Z′. Without loss of generality, assume the former. Then,
there is a grid cell (x,y) assigned to a variable u ∈ V according to Z′ but not to Z. But then Z′ do
not characterize X.

Proof of Theorem 3

Theorem 3 For a discretized version Im,n=(C,V,Dm,n,Q) of a consistency checking problem, where
C consists of basic CDC constraints and may be incomplete, and where the spatial objects in Dm,n

are connected, Im,n has a solution if and only if the corresponding ASP program ΠIm,n combined
with (12)∪ (13) for every variable u ∈V has an answer set.
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The proof of Theorem 3 uses Proposition 4 of Erdem and Lifschitz (2003) to show that the defi-
nition of connectedness i.e., rules (12) is correct, and Proposition 3 of Erdogan and Lifschitz (2004)
to show that adding definition of connectedness to the program ΠIm,n extends its answer sets conser-
vatively.

Let Def be the recursive definition of the transitive closure tc of a binary relation p in ASP:

tc(x,y)← p(x,y)
tc(x,y)← p(x,v), tc(v,y).

Proposition 4 of Erdem and Lifschitz (2003). Let Π be a program that does not contain atoms of
the form tc(x,y) in the heads of rules. If X is an answer set for Π∪Def then {〈x,y〉 : tc(x,y) ∈ X}
is the transitive closure of {〈x,y〉 : p(x,y) ∈ X}.

Proposition 3 of Erdogan and Lifschitz (2004). Let Π1 be a program and Q be a set of atoms that
do not occur in Π1. Let Π2 be a program that consists of the rules of the form

q← F

where q ∈ Q and F does not contain any element of Q in the scope of negation as failure. Then
Z 7→ Z \Q is a 1-1 correspondence between the answer sets for Π1∪Π2 and the answer sets for Π1.

Proof 5 (Proof of Theorem 3) Recall that the answer sets for ΠIm,n correctly characterize the solu-
tions for Im,n by Theorem 2. Due to Proposition 4 of Erdem and Lifschitz (2003), for every variable
u ∈ V , the rules (12) that define the transitive closure of the adjacency relation of the grid cells
in region u is correct. Therefore, the rules (12) correctly define the connectedness of u in these
solutions.

By Proposition 3 of Erdogan and Lifschitz (2004), adding the rules (12) (for every variable u ∈
V ) to ΠIm,n conservatively extends the answer sets for ΠIm,n by a correct definition of connectedness.

Then, by Proposition 2 of Erdogan and Lifschitz (2004), for every variable u ∈ V , adding the
constraints (13) to ΠIm,n ∪ (12) ensures the connectedness of cells occupied by the same object u.

Proof of Theorem 4

Theorem 4 Let m,n≥2|V |−1, let Im,n=(C,V,Dm,n,Q) be a discretized CDC consistency checking
problem where C is the union of a set of disjunctive CDC constraints and a set of basic CDC
constraints. Furthermore, C may be incomplete. For an assignment X of spatial objects in Dm,n to
variables u in V , X is a solution of Im,n if and only if X can be represented in the form of Z∩Om,n

for some answer set Z of Πv
Im,n

. Moreover, every solution of Im,n can be represented in this form in
only one way.

Consider a CDC consistency checking problem I=(Cd ∪Cb,V,D,Q) where D=Reg* , Cd is a
set of disjunctive CDC constraints, and Cb is a set of basic CDC constraints. Furthermore, C=Cd ∪
Cb may be incomplete. Recall that, in the presence of disjunctive CDC constraints, consistency of
a CDC constraint network C is defined as follows. Let Ĉd be a basic CDC network obtained from
Cd by replacing every disjunctive CDC constraint vi δi j v j in Cd by some basic CDC constraint
vi δ ′i j v j where δ ′i j ∈ δi j. Then, a CDC network C is consistent if there exists a basic CDC network
Ĉd obtained from Cd such that Ĉd ∪Cb is consistent.
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Thanks to Theorem 1, the consistency checking problem I has the same answer as the discretized
consistency checking problem Im,n where m,n≥2|V |−1. On the other hand, the program ΠIm,n

(described in Section 5) contains rules (6), (7) that describe the basic CDC constraints in Cb but not
the constraints in Ĉd .

Based on this observation, we define the given disjunctive CDC constraints in Cd and then
construct the basic CDC constraints in Ĉd . The following lemma shows that the rules (14)∪ (15)∪
(16) correctly describe Ĉd .

Lemma 3 For every answer set for (14)∪ (15)∪ (16), atoms of the form rel(u,v,R) describe the
basic CDC constraints u δi v obtained from the disjunctive CDC constraints u {δ1,δ2, ...,δo} v in
Cd according to the definition for consistency checking of disjunctive CDC constraints.

Proof 6 (Proof of Theorem 4) Let m,n≥2|V |−1 and let Im,n=(Cd∪Cb,V,Dm,n,Q) be a discretized
consistency checking problem where Cd is a set of disjunctive CDC constraints, and Cb is a set of
basic CDC constraints. Furthermore, C=Cd ∪Cb may be incomplete.

Due to the definition of consistency of disjunctive CDC constraints, I=(Cd ∪Cb,V,D,Q) re-
turns Yes if and only if Î=(Ĉd ∪Cb,V,D,Q) returns Yes for some basic CDC constraints Ĉd ob-
tained from Cd . Thanks to Theorem 1, the consistency checking problem I has the same answer as
the discretized consistency checking problem Im,n. Also, for some basic CDC network Ĉd ∪Cb,
the consistency checking problem Î has the same answer as the discretized consistency check-
ing problem Îm,n=(Ĉd ∪Cb,V,Dm,n,Q). Therefore, for some Ĉd obtained from Cd , the problems
Im,n=(Cd ∪Cb,V,Dm,n,Q) and Îm,n=(Ĉd ∪Cb,V,Dm,n,Q) have the same answers.

By Lemma 3, the rules (14)∪ (15)∪ (16) describe the new basic CDC constraints in Ĉd . Note
that the basic constraints in Cb are described by the rules (6). By Proposition 3 of Erdogan and
Lifschitz (2004), the rules (14)∪(15)∪(16)∪(6) describe the the basic CDC constraints in Ĉd∪Cb.

The program ΠIm,n is described in Section 5 and includes the rules (6). The program Πv
Im,n

is
obtained from ΠIm,n by augmenting it with the rules (14), (15) and (16). Then the program Πv

Im,n

essentially constructs some set Ĉd of basic CDC constraints from Cd , unites these constraints with
Cb described by rules (6), and then checks the consistency of all these basic CDC constraints.

Indeed, let us apply the Splitting Set theorem on Πv
Im,n

with a splitting set that consists of atoms of
the form disjrel(u,v, i,R),chosen(u,v, i), rel(u,v, i). By Lemma 3 and Proposition 3 of Erdogan and
Lifschitz (2004), the bottom part (14)∪ (15)∪ (16)∪ (6) describes the basic CDC network Ĉd ∪Cb.
Then, the top part ΠIm,n \ (6) correctly checks for the consistency of the basic CDC constraints
Ĉd ∪Cb, thanks to Theorem 2.

Proof 7 (Proof of Lemma 3) We apply the Splitting Set theorem to Π=(14)∪ (15)∪ (16), with
a splitting set U that consists of atoms of the form disjrel(u,v, i,R) and chosen(u,v, i). Then,
bU(Π)=(14)∪ (15).

For every answer set X for bU(Π) the following hold:

• For every pair of spatial objects u,v∈V , there is a disjunctive CDC constraint u {δ1,δ2, ...,δo} v
in C if and only if {disjrel(u,v, i,R) : R ∈ δi,1≤ i≤o} ⊂ X.

• For every disjunctive CDC constraint u {δ1,δ2, ...,δo} v in C, there exists exactly one atom of
the form chosen(u,v, i) in X describing the basic CDC relation δi is chosen for u and v.

Furthermore, for every answer set Y of eU(Π\bU(Π),X) the following holds:
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• The set {rel(u,v,R) |chosen(u,v, i)∈X , disjrel(u,v, i,R)∈X , u {δ1,δ2, ...,δo} v ∈C, R∈ δi}
describes the basic CDC constraint u δi v.

Proof of Theorem 5

Theorem 5 Let m,n≥2|V |−1, let Im,n=(C,V,Dm,n,Q) be a discretized CDC consistency checking
problem where C is the union of a set of disjunctive CDC constraints and a set of basic CDC
constraints. Furthermore, C may be incomplete. Let X be an assignment of spatial objects in Dm,n

to variables u in V , that is a solution of Im,n. For every pair of variables u and v in Dm,n where there
does not exist a CDC constraint u δ v in C, the regions X(u) and X(v) satisfy an inferred CDC
constraint u β v for some basic CDC relation β if and only if the inferred constraint u β v can be
represented in the form of Z∩Em,n for some answer set Z of Π

v,+
Im,n

.

Proof 8 (Proof of Theorem 5) Let m,n≥2|V |−1, let Im,n=(C,V,Dm,n,Q) be a discretized CDC
checking problem where C is the union of a set of disjunctive CDC constraints and a set of basic
CDC constraints. Furthermore, C may be incomplete.

Recall that Π
v,+
Im,n

is the program obtained from Πv
Im,n

by adding the rules (17), by deleting the
constraints (11) and similar constraints for other single tile relations, and by adding the constraints
(18)∪(19) and similar constraints for other single tile relations. The added rules infer missing CDC
relations.

Atoms of the form inferrel(u,v,R) do not occur in the program Πv′
Im,n

which is obtained from
Πv

Im,n
by deleting the constraints (11) for the relation N and similar constraints for other single-tile

relations. Let U be the splitting set that consists of all atoms that occur in Πv′
Im,n

. When the Splitting

Set Theorem is applied to Π
v,+
Im,n

, the bottom part bU(Π
v,+
Im,n

) is the program Πv′
Im,n

.

Note that the program Πv′
Im,n

includes the constraints (10) for the relation N and similar con-
straints for the other single tile relations, and does ensure the condition (C1) for every CDC con-
straint in C. Therefore, answer sets for the bottom part Πv′

Im,n

(a) describe assignments of spatial objects in Dm,n to variables u in V , and

(b) ensure that these assignments satisfy condition (C1) for every CDC constraint given in C.

The top part Π
v,+
Im,n
\ bU(Π

v,+
Im,n

) is the program that consists of the rules (17), the constraints
(18)∪ (19) for the single-tile relation N, and similar constraints for the other single-tile relations.
For an answer set Z′ for the bottom part, the answer sets for the top part evaluated with respect to
Z′

(c) describe the inferred CDC relations for spatial objects for u and v for which there is no CDC
constraint u δ v in C, i.e., there is no atom of the form rel(u,v,R) in Z′ (due to the rules (17)),

(d) ensure condition (C1) for the inferred CDC constraints (due to constraints (18) for relation
N, and similar constraints for the other single-tile relations),

(e) ensure condition (C2) for all CDC constraints (due to constraints (19) for relation N, and
similar constraints for the other single-tile relations).

By the Splitting Set Theorem, every answer set for Π
v,+
Im,n

is the union of an answer set Z′ for the
bottom part and an answer set Z for the top part evaluated relative to Z′. Therefore, Z∪Z′ satisfies
(a)–(e).
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Figure 17: Cases 1–4 in the proof of Theorem 7.

Proof of Theorem 6

Theorem 6 Let m,n≥2|V |−1, let Im,n=(C,V,Dm,n,Q) be a discretized CDC consistency checking
problem where C is the union of a set of disjunctive CDC constraints, a set of basic CDC constraints,
and a set Cde f of default CDC constraints. Let X be a set of assignments of spatial objects in Dm,n

to variables u in V , such that every X ∈X is a solution of I′m,n=(C \Cde f ,V,Dm,n,Q), and let nX

be the number of default CDC constraints in Cde f that applies relative to X . Then X is a solution
for Im,n if there is no X ′ ∈X such that the number of default CDC constraints in Cde f that applies
relative to X ′ is greater than nX .

Proof 9 (Proof of Theorem 6) Since atoms that appear in the heads of rules (20)–(27) do not
appear in Π

v,+
Im,n

, due to Proposition 3 of Erdogan and Lifschitz (2004), every answer set for Π
v,+,d
Im,n
\

(28) is a conservative extension of an answer set for Π
v,+
Im,n

.

Then adding weak constraints (28) to Π
v,+,d
Im,n
\ (28) does not lead to a new answer set but a

preference of answer sets with the minimum number of violations of assumptions expressed by de-
fault nCDC constraints. In other words, every answer set for Π

v,+,d
Im,n

characterizes a solution X for
Im,n according to which a maximum number of assumptions expressed by default nCDC constraints
applies.

Proof of Theorem 7

Theorem 7 The basic CDC consistency checking problem I=(C,V,D,Q) and the discretized basic
CDC consistency checking problem Im,n=(C,V,Dm,n,Q) where m≥ ∑u∈V Slotx(u,C) and
n≥ ∑u∈V Sloty(u,C) have the same output.

Proof 10 (Proof of Theorem 7) It suffices to show that if the answer of I is Yes, then the answer of
Im,n is also Yes. Assume that C is consistent and the answer of I is Yes. We can construct a solution
on a grid whose size is m×n, where m≥ ∑u∈V Slotx(u,C) and n≥ ∑u∈V Sloty(u,C). Intuitively, the
extent of the grid on an axis that allows feasible instantiation of objects, is greater than or equal to
the sum of the grid cells required for each object on that axis.

Let us show that the extent of the grid on y axis is bounded from below by n≥ ∑u∈V Sloty(u,C).
A similar proof applies for the x axis.

Part 1: Consider the following cases for every spatial object u, with respect to the CDC constraints
in C. In each case, we identify ly(u), which is the minimum number of grid cells required vertically
(i.e., in different rows), for an instantiation of u (with a region in these grid cells) to satisfy the
relevant constraints in C.
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Case 1: If there exists a CDC constraint in C that imposes an object u to occupy parts of a
top-tile (i.e., NW, N, NE) and a bottom-tile (i.e., SW, S, SE) of another object v, then u requires
at least 2 non-adjacent vertically-oriented grid cells (i.e., two rows) as depicted in Figure 17.

Note that if u is also a reference object in another CDC constraint in C, an additional
vertically-oriented grid cell is not needed for u for the following reason: The grid cells allo-
cated for u as a target object also serve as a reference object.

Case 2: If there exists a CDC constraint in C that imposes (i) an object u to occupy parts of a
top-tile (i.e., NW, N, NE) and a vertically middle-tile (i.e., E, W, O) of another object v, and (ii)
the object v to occupy parts of a bottom-tile (i.e., SW, S, SE) and a vertically middle-tile (i.e.,
E, W, O) of u, then at least 3 vertically-oriented grid cells are compulsory to instantiate u and
v: each object occupies two of these 3 vertically-oriented grid cells as depicted in Figure 17.
Therefore, without loss of generality, we can say that u requires at least 2 vertically-oriented
grid cells (i.e., two rows).

Note that if u is also a reference object in another CDC constraint in C, an additional
vertically-oriented grid cell is not needed for u due to the following reason: The grid cells
allocated for u as a target object also serve as a reference object.

Case 3: If there does not exist a constraint in C that imposes the conditions in Cases 1 and
2, and if there exists a CDC constraint in C that imposes an object u to occupy parts of
either a top-tile (i.e., NW, N, NE) or a bottom-tile (i.e., SW, S, SE) of another object, then 1
vertically-oriented grid cell (i.e., one row) is required to realize u as depicted in Figure 17.

Note that if u is also a reference object in another CDC constraint in C, an additional
vertically-oriented grid cell is not needed for u due to the following reason: The grid cells
allocated for u as a target object also serve as a reference object.

Case 4: If there does not exist a constraint in C that imposes the conditions in Cases 1–3, and
constraints in C impose u to be in a solely vertically middle-tile of other objects, and u is not
a reference object in any constraint in C, then u does not demand a dedicated cell for itself
(Figure 17).

Case 5: If the Cases 1–4 do not hold, and if u acts as a reference object in one or more
constraint in C, i.e., u ∈ Ref(C), then it requires 1 vertically-oriented grid cell (i.e., one row)
so that the target objects can position themselves accordingly.

Case 6: If u is neither a target nor a reference object of any CDC constraint in C, then u does
not have to be instantiated.

Note that Cases 1–4 describe the cases where u is a target object; and in Case 5, u is a reference
object.

Note also that Cases 1–6 are covered by the cases of the definition of Sloty(u,C): Case 1 is the
first case of Sloty(u,C), Case 2 is the second case of Sloty(u,C), Cases 4 and 6 are the third case of
Sloty(u,C), and Cases 3 and 5 are the fourth case of Sloty(u,C). Hence ly(u) = Sloty(u,C). Then,
the extent n of y axis is the sum of the lower bounds ly(u) for all spatial objects u that appear in
some constraint in C, i.e., n≥ ∑u∈V Sloty(u,C).
Part 2: With respect to Cases 1–6 above, for each spatial variable u, we can identify a lower bound
ly(u) on the number of vertically-oriented grid cells that are required to instantiate u to satisfy all the

1430



QUALITATIVE REASONING ABOUT 2D CARDINAL DIRECTIONS USING ASP

constraints that involve u: for each constraint c in C that involves u, identify the minimum number
my(c,u) of vertically-oriented grid cells that are required to instantiate u to satisfy c as described in
each case; then ly(u) is the maximum of my(c,u) for all such c. Note that the largest value my(c,u)
can take is 2. Therefore, for every spatial variable u, if there exist different constraints in C that
involve u and distinct cases of Part 1 apply, u does not necessitate more than 2 vertical grid cells to
instantiate, to satisfy all the constraints that involve u. Let’s prove this claim.

For every spatial variable u, let us form three sets of variables w with respect to y-axis that
appear in a CDC constraint in C as a reference object for u:

• (i) u occupies top-tile(s) of another object w:

Top(u)={w ∈V | (uδ w) ∈ C, δ ∩{NW, N, NE} 6= φ}.

• (ii) u occupies vertically middle tile(s) of object w:

Middlev(u)={w ∈V | (uδ w) ∈ C, δ ∩{W, O, E} 6= φ}.

• (iii) u occupies bottom tile(s) of object w:

Bottom(u)={w ∈V | (uδ w) ∈ C, δ ∩{SW, S, SE} 6= φ}.

The first set of variables represents objects w, relative to which, u occupies some grid cells in
their top tile(s) according to constraints in C. The second set represents objects, relative to which,
u occupies some grid cells that are aligned in the same row as their middle tile(s) according to
constraints in C. The third set of variables represents objects w, relative to which, u occupies some
grid cells in their bottom tile(s) according to constraints in C.

Suppose that u requires at least 2 non-adjacent vertically-oriented grid cells (according to Cases
1 and 2). Then, u can be assigned to some cells in a row that is immediately above all the cells
assigned to its reference objects in Top(u), and u can be assigned to some cells in a row that is
immediately below all the cells assigned to its reference objects in Bottom(u).

Suppose that u demands at least 1 non-adjacent vertically-oriented grid cells (according to
Cases 3 and 5). Then, u can be assigned to some cells in a single row at a position that is both
above its reference objects in Top(u) and below its reference objects in Bottom(u).

Therefore, maximum 2 vertically-oriented grid cells are sufficient to instantiate the object u.

Proof of Theorem 8

Theorem 8 Let {V1, ...,Vp} be a partition of V subject to a basic CDC network C, where u,v be-
longs to a unique Vi for every constraint u δ v in C. The output of the consistency checking
problem I=(C,V,D,Q) is Yes if and only if the output of every consistency checking problem
Ii=(Ci,Vi,D,Q) is Yes, 1≤ i≤ p.

Proof 11 (Proof of Theorem 8) Let {V1, ...,Vp} be a partition of V subject to C.
Left-to-Right. Suppose that the answer of I=(C,V,D,Q) is Yes. Then there exists an instanti-

ation of regions on the plane to the variables that appear in C, such that all constraints in C hold.
Then, for every Vi, the relevant constraints Ci are satisfied by this instantiation restricted to Vi.
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Right-to-Left. Suppose that, every Ii has an affirmative answer Yes. Take any Ii. Then there
exists an instantiation Ai of regions on the plane to the variables in Vi, such that all constraints in
Ci hold. Since every Vi is distinct, then the combination of Ai will give an instantiation for all the
variables in V . Moreover, since each constraint of C is involved in a unique Ci, all the constraints
in C hold with respect to the combined instantiation.

Proof of Theorem 9

Theorem 9 Let {V1, ...,Vp} be a partition of V subject to a set C of basic CDC constraints, where
u,v belongs to a unique Vi for every constraint u δ v in C. The output of the consistency checking
problems I=(C,V,D,Q) and Im,n=(C,V,Dm,n,Q) are identical if m≥maxVi ∑u∈Vi Slotx(u,Ci) and
n≥maxVi ∑u∈Vi Sloty(u,Ci).

Proof 12 (Proof of Theorem 9) Thanks to Theorem 8, the lower bound on the size m×n of a grid
required to solve the largest subproblem Ii of consistency checking gets as small as

m≥maxVi ∑
u∈Vi

Slotx(u,Ci)

and
n≥maxVi ∑

u∈Vi

Sloty(u,Ci).

Thanks to Theorem 8, the consistency checking of each Ci is independent from the others. Then, the
lower bounds on the grid size for C also reduces to the above values.

Appendix B: ASP Programs used in Experiments

An Example CDC Constraint Network
region(1..6).

% CDC Tiles
alltiles(sw). alltiles(s). alltiles(se). alltiles(w). alltiles(o).
alltiles(e). alltiles(nw). alltiles(n). alltiles(ne).

% CDC Constraints
rel(1,2,w). rel(1,2,nw). rel(1,2,n). rel(1,2,ne).
rel(2,1,s). rel(2,1,o).
rel(2,3,sw). rel(2,3,w).
rel(2,4,n).
rel(3,2,e). rel(3,2,ne).
rel(3,5,w). rel(3,5,nw).
rel(4,6,se).
rel(5,3,se). rel(5,3,e).
rel(6,1,w). rel(6,1,nw).
rel(6,4,nw).
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ASP Program for Consistency Checking on Reg* (Section 5)

% Grid of size MxN
xcoord(0..M-1) :- hsize(M).
ycoord(0..N-1) :- vsize(N).

existrel(K,L) :- rel(K,L,J).
reference(L) :- rel(K,L,J).
target(K) :- rel(K,L,J).

% Infimum and supremum of regions in x and y dimensions
infx(K,M) :- M=#min{X,Y: occ(K,X,Y)}, region(K).
supx(K,M) :- M=#max{X,Y: occ(K,X,Y)}, region(K).
infy(K,M) :- M=#min{Y,X: occ(K,X,Y)}, region(K).
supy(K,M) :- M=#max{Y,X: occ(K,X,Y)}, region(K).

% Nondeterministically assign grid cells to every region
1{occ(K,X,Y): xcoord(X), ycoord(Y)} :- region(K).

% Check whether instantiated regions obey CDC constraints
% Condition C1
:- rel(K,L,n),

{occ(K,X,Y): Y>Y2, X<=X2, X>=X1, xcoord(X), ycoord(Y)}0,
supy(L,Y2), supx(L,X2), infx(L,X1),
xcoord(X1), xcoord(X2), ycoord(Y2), region(K), region(L).

:- rel(K,L,s),
{occ(K,X,Y): Y<Y1, X<=X2, X>=X1, xcoord(X), ycoord(Y)}0,
infy(L,Y1), supx(L,X2), infx(L,X1),
xcoord(X1), xcoord(X2), ycoord(Y1), region(K), region(L).

:- rel(K,L,e),
{occ(K,X,Y): X>X2, Y<=Y2, Y>=Y1, xcoord(X), ycoord(Y)}0,
supx(L,X2), infy(L,Y1), supy(L,Y2),
xcoord(X2), ycoord(Y1), ycoord(Y2), region(K), region(L).

:- rel(K,L,w),
{occ(K,X,Y): X<X1, Y<=Y2, Y>=Y1, xcoord(X), ycoord(Y)}0,
infx(L,X1), infy(L,Y1), supy(L,Y2),
xcoord(X1), ycoord(Y1), ycoord(Y2), region(K), region(L).

:- rel(K,L,nw),
{occ(K,X,Y): X<X1, Y>Y2, xcoord(X), ycoord(Y)}0,
infx(L,X1), supy(L,Y2), xcoord(X1),
ycoord(Y2), region(K), region(L).

:- rel(K,L,sw),
{occ(K,X,Y): X<X1, Y<Y1, xcoord(X), ycoord(Y)}0,
infx(L,X1), infy(L,Y1), xcoord(X1),
ycoord(Y1), region(K), region(L).

:- rel(K,L,ne),
{occ(K,X,Y): X>X2, Y>Y2, xcoord(X), ycoord(Y)}0,
supx(L,X2), supy(L,Y2), xcoord(X2),
ycoord(Y2), region(K), region(L).

1433



IZMIRLIOGLU & ERDEM

:- rel(K,L,se),
{occ(K,X,Y): X>X2, Y<Y1, xcoord(X), ycoord(Y)}0,
supx(L,X2), infy(L,Y1), xcoord(X2),
ycoord(Y1), region(K), region(L).

:- rel(K,L,o),
{occ(K,X,Y): Y<=Y2, Y>=Y1, X<=X2, X>=X1, xcoord(X), ycoord(Y)}0,
infx(L,X1), supx(L,X2), infy(L,Y1), supy(L,Y2), xcoord(X1),
xcoord(X2), ycoord(Y1), ycoord(Y2), region(K), region(L).

% Condition C2
:- not rel(K,L,n),

1{occ(K,X,Y): Y>Y2, X<=X2, X>=X1, xcoord(X), ycoord(Y)},
existrel(K,L), supy(L,Y2), supx(L,X2), infx(L,X1),
xcoord(X1), xcoord(X2), ycoord(Y2), region(K), region(L).

:- not rel(K,L,s),
1{occ(K,X,Y): Y<Y1, X<=X2, X>=X1, xcoord(X), ycoord(Y)},
existrel(K,L), infy(L,Y1), supx(L,X2), infx(L,X1),
xcoord(X1), xcoord(X2), ycoord(Y1), region(K), region(L).

:- not rel(K,L,e),
1{occ(K,X,Y): X>X2, Y<=Y2, Y>=Y1, xcoord(X), ycoord(Y)},
existrel(K,L), supx(L,X2), infy(L,Y1), supy(L,Y2),
xcoord(X2), ycoord(Y1), ycoord(Y2), region(K), region(L).

:- not rel(K,L,w),
1{occ(K,X,Y): X<X1, Y<=Y2, Y>=Y1, xcoord(X), ycoord(Y)},
existrel(K,L), infx(L,X1), infy(L,Y1), supy(L,Y2),
xcoord(X1), ycoord(Y1), ycoord(Y2), region(K), region(L).

:- not rel(K,L,nw),
1{occ(K,X,Y): X<X1, Y>Y2, xcoord(X), ycoord(Y)},
existrel(K,L), infx(L,X1), supy(L,Y2), xcoord(X1),
ycoord(Y2), region(K), region(L).

:- not rel(K,L,sw),
1{occ(K,X,Y): X<X1, Y<Y1, xcoord(X), ycoord(Y)},
existrel(K,L), infx(L,X1), infy(L,Y1), xcoord(X1),
ycoord(Y1), region(K), region(L).

:- not rel(K,L,ne),
1{occ(K,X,Y): X>X2, Y>Y2, xcoord(X), ycoord(Y)},
existrel(K,L), supx(L,X2), supy(L,Y2), xcoord(X2),
ycoord(Y2), region(K), region(L).

:- not rel(K,L,se),
1{occ(K,X,Y): X>X2, Y<Y1, xcoord(X), ycoord(Y)},
existrel(K,L), supx(L,X2), infy(L,Y1), xcoord(X2),
ycoord(Y1), region(K), region(L).

:- not rel(K,L,o),
1{occ(K,X,Y): Y<=Y2, Y>=Y1, X<=X2, X>=X1, xcoord(X), ycoord(Y)},
existrel(K,L), infx(L,X1), supx(L,X2), infy(L,Y1),
supy(L,Y2), xcoord(X1), xcoord(X2), ycoord(Y1),

1434



QUALITATIVE REASONING ABOUT 2D CARDINAL DIRECTIONS USING ASP

ycoord(Y2), region(K), region(L).

#show occ/3.

Checking Connectedness (Section 5.2)
% Adjacency of occupied cells
adjacent(K,X,Y,X,Y+1) :- occ(K,X,Y), occ(K,X,Y+1).
adjacent(K,X,Y,X,Y-1) :- occ(K,X,Y), occ(K,X,Y-1).
adjacent(K,X,Y,X+1,Y) :- occ(K,X,Y), occ(K,X+1,Y).
adjacent(K,X,Y,X-1,Y) :- occ(K,X,Y), occ(K,X-1,Y).

% Recursive definition of transitive closure of adjacency
conn(K,X,Y,X,Y) :- occ(K,X,Y).
conn(K,X1,Y1,X3,Y3) :- conn(K,X1,Y1,X2,Y2),

adjacent(K,X2,Y2,X3,Y3).

% Any two cells of a region must be connected to each other
:- not conn(K,X1,Y1,X2,Y2), occ(K,X1,Y1), occ(K,X2,Y2), region(K).

Improved ASP Program (Section 9.3)
% Grid of size MxN
xcoord(0..M-1) :- hsize(M).
ycoord(0..N-1) :- vsize(N).

existrel(K,L) :- rel(K,L,J).
reference(L) :- rel(K,L,J).
target(K) :- rel(K,L,J).

% Nondeterministically guess infimum and supremum of
% each spatial variable over x and y axes
1{infx(K,X): xcoord(X)}1 :- region(K).
1{supx(K,X): xcoord(X)}1 :- region(K).
1{infy(K,Y): ycoord(Y)}1 :- region(K).
1{supy(K,Y): ycoord(Y)}1 :- region(K).

% Constraints on inf and sup
:- X2<X1, infx(K,X1), supx(K,X2), region(K).
:- Y2<Y1, infy(K,Y1), supy(K,Y2), region(K).

% Nondeterministically generate cells for all regions
1{occ(K,X,Y): xcoord(X), ycoord(Y)} :- region(K).

% Project instantiated regions on x and y axes
xocc(K,X) :- occ(K,X,Y).
yocc(K,Y) :- occ(K,X,Y).

% Test bounds of objects
:- xocc(K,X), X<X1, infx(K,X1).
:- xocc(K,X), X>X2, supx(K,X2).
:- yocc(K,Y), Y<Y1, infy(K,Y1).
:- yocc(K,Y), Y>Y2, supy(K,Y2).

1435



IZMIRLIOGLU & ERDEM

% Ensure that every object has a cell at its borders so that
% infx, infy, supx, supy hold
:- not xocc(K,X1), infx(K,X1).
:- not xocc(K,X2), supx(K,X2).
:- not yocc(K,Y1), infy(K,Y1).
:- not yocc(K,Y2), supy(K,Y2).

% Find left, right, top, bottom of each object to identify 9 tiles
hbox(K,X1..X2) :- infx(K,X1), supx(K,X2).
right(K,X2+1..M-1) :- supx(K,X2), hsize(M).
left(K,0..X1-1) :- infx(K,X1).

vbox(K,Y1..Y2) :- infy(K,Y1), supy(K,Y2).
top(K,Y2+1..N-1) :- supy(K,Y2), vsize(N).
bottom(K,0..Y1-1) :- infy(K,Y1).

% Check whether instantiated regions obey CDC constraints
% Condition C1
:- rel(K,L,n), {occ(K,X,Y): hbox(L,X), top(L,Y)}0.
:- rel(K,L,s), {occ(K,X,Y): hbox(L,X), bottom(L,Y)}0.
:- rel(K,L,e), {occ(K,X,Y): right(L,X), vbox(L,Y)}0.
:- rel(K,L,w), {occ(K,X,Y): left(L,X), vbox(L,Y)}0.
:- rel(K,L,nw), {occ(K,X,Y): left(L,X), top(L,Y)}0.
:- rel(K,L,sw), {occ(K,X,Y): left(L,X), bottom(L,Y)}0.
:- rel(K,L,ne), {occ(K,X,Y): right(L,X), top(L,Y)}0.
:- rel(K,L,se), {occ(K,X,Y): right(L,X), bottom(L,Y)}0.
:- rel(K,L,o), {occ(K,X,Y): hbox(L,X), vbox(L,Y)}0.

% Condition C2
:- not rel(K,L,n), existrel(K,L), occ(K,X,Y), hbox(L,X), top(L,Y).
:- not rel(K,L,s), existrel(K,L), occ(K,X,Y), hbox(L,X), bottom(L,Y).
:- not rel(K,L,e), existrel(K,L), occ(K,X,Y), right(L,X), vbox(L,Y).
:- not rel(K,L,w), existrel(K,L), occ(K,X,Y), left(L,X), vbox(L,Y).
:- not rel(K,L,nw), existrel(K,L), occ(K,X,Y), left(L,X), top(L,Y).
:- not rel(K,L,sw), existrel(K,L), occ(K,X,Y), left(L,X), bottom(L,Y).
:- not rel(K,L,ne), existrel(K,L), occ(K,X,Y), right(L,X), top(L,Y).
:- not rel(K,L,se), existrel(K,L), occ(K,X,Y), right(L,X), bottom(L,Y).
:- not rel(K,L,o), existrel(K,L), occ(K,X,Y), hbox(L,X), vbox(L,Y).

Alternative Definition of Connectedness (Section 9.3)
target(K) :- existrel(K,L).

% Find a stem cell of a region (bottom-most cell at left border)
left(K,Y) :- occ(K,X1,Y), infx(K,X1), target(K).
leftbottom(K,Y1) :- left(K,Y1), infy(K,Y1), target(K).
not-leftbottom(K,Y1) :- not left(K,Y1), infy(K,Y1), target(K).
leftbottom(K,Y+1) :- left(K,Y+1), not-leftbottom(K,Y),

target(K).
not-leftbottom(K,Y+1) :- Y<Y1, not left(K,Y+1),

not-leftbottom(K,Y), supy(K,Y1), target(K).
stem(K,X1,Y1) :- leftbottom(K,Y1), infx(K,X1).
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% Establish set of connected cells by adding neighbors
% of present cells
reachable(K,X,Y) :- stem(K,X,Y).
reachable(K,X-1,Y) :- reachable(K,X,Y), occ(K,X-1,Y).
reachable(K,X+1,Y) :- reachable(K,X,Y), occ(K,X+1,Y).
reachable(K,X,Y-1) :- reachable(K,X,Y), occ(K,X,Y-1).
reachable(K,X,Y+1) :- reachable(K,X,Y), occ(K,X,Y+1).

% Insist that all cells of a region are in this set
:- not reachable(K,X,Y), occ(K,X,Y), target(K).

Representing Disjunctive CDC Constraints (Section 6)
disjindex(K,L,I) :- disjrel(K,L,I,J).
existdisjrel(K,L) :- disjrel(K,L,I,J).

% Nondeterministically choose a disjunct from each disjunctive constraint
1{chosen(K,L,I): disjindex(K,L,I)}1 :- existdisjrel(K,L).
rel(K,L,J) :- disjrel(K,L,I,J), chosen(K,L,I).

Representing ASP Rules for Inferred CDC Constraints (Section 7)
% Generate inferred CDC constraint for those pairs whose relation is unknown
1{inferrel(K,L,J): alltiles(J)} :- not existrel(K,L), K!=L,

region(K), region(L).
existinferrel(K,L) :- inferrel(K,L,J).

% Check Condition C1 for inferred CDC constraints
:- inferrel(K,L,n), {occ(K,X,Y): hbox(L,X), top(L,Y)}0.
:- inferrel(K,L,s), {occ(K,X,Y): hbox(L,X), bottom(L,Y)}0.
:- inferrel(K,L,e), {occ(K,X,Y): right(L,X), vbox(L,Y)}0.
:- inferrel(K,L,w), {occ(K,X,Y): left(L,X), vbox(L,Y)}0.
:- inferrel(K,L,nw), {occ(K,X,Y): left(L,X), top(L,Y)}0.
:- inferrel(K,L,sw), {occ(K,X,Y): left(L,X), bottom(L,Y)}0.
:- inferrel(K,L,ne), {occ(K,X,Y): right(L,X), top(L,Y)}0.
:- inferrel(K,L,se), {occ(K,X,Y): right(L,X), bottom(L,Y)}0.
:- inferrel(K,L,o), {occ(K,X,Y): hbox(L,X), vbox(L,Y)}0.

% Modified Condition C2 in equation (19) in the text
:- not inferrel(K,L,n), not rel(K,L,n), occ(K,X,Y), hbox(L,X), top(L,Y).
:- not inferrel(K,L,s), not rel(K,L,s), occ(K,X,Y), hbox(L,X), bottom(L,Y).
:- not inferrel(K,L,e), not inferrel(K,L,e), occ(K,X,Y), right(L,X), vbox(L,Y).
:- not inferrel(K,L,w), not inferrel(K,L,w), occ(K,X,Y), left(L,X), vbox(L,Y).
:- not inferrel(K,L,nw), not inferrel(K,L,nw), occ(K,X,Y), left(L,X), top(L,Y).
:- not inferrel(K,L,sw), not inferrel(K,L,sw), occ(K,X,Y), left(L,X), bottom(L,Y).
:- not inferrel(K,L,ne), not inferrel(K,L,ne), occ(K,X,Y), right(L,X), top(L,Y).
:- not inferrel(K,L,se), not inferrel(K,L,se), occ(K,X,Y), right(L,X), bottom(L,Y).
:- not inferrel(K,L,o), not inferrel(K,L,o), occ(K,X,Y), hbox(L,X), vbox(L,Y).

Representing Default CDC Constraints (Section 8)
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existdefrel(K,L) :- defaultrel(K,L,J).
reference(L) :- defaultrel(K,L,J).
target(K) :- defaultrel(K,L,J).

% Default applies unless there is an evidence against it
drel(K,L,J) :- not -drel(K,L), defaultrel(K,L,J).

-drel(K,L) :- defaultrel(K,L,J), not inferrel(K,L,J),
existinferrel(K,L).

-drel(K,L) :- not defaultrel(K,L,J), inferrel(K,L,J),
existdefrel(K,L).

-drel(K,L) :- defaultrel(K,L,J), not rel(K,L,J),
existrel(K,L).

-drel(K,L) :- not defaultrel(K,L,J), rel(K,L,J),
existdefrel(K,L).

% Maximize the number of default constraints which are satisfied
:˜ -drel(K,L), existdefrel(K,L), region(K), region(L). [1@1,K,L]

Representing Disjunctive Default CDC Constraints (Section 8)
disjdefaultindex(K,L,I) :- disjdefrel(K,L,I,J), not existrel(K,L).
existdisjdefrel(K,L) :- disjdefrel(K,L,I,J), not existrel(K,L).

% Nondeterministically choose a disjunct
1{defchosen(K,L,I): disjdefaultindex(K,L,I)}1 :-

existdisjdefrel(K,L).
defaultrel(K,L,J) :- disjdefrel(K,L,I,J), defchosen(K,L,I).

Representing Rules for Layout Optimization (Section 9.4)
% Minimize the number of occupied cells
:˜ occ(K,X,Y). [1@1,K,X,Y]

% Mimimize the number of overlapping objects
overlap(K,L) :- K>L, occ(K,X,Y), occ(L,X,Y).
:˜ overlap(K,L). [1@2,K,L]

Appendix C: Experimental Evaluation Results
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Instance Original Program Improved Program
Objects Density Grid Grounding Total Grounding Total

Time (s) Time (s) Time (s) Time (s)
6 Sparse 6x5 0.08 0.08 0.02 0.02
6 Medium 8x8 0.63 0.65 0.04 0.04
6 Dense 8x9 1.24 1.42 0.04 0.05
6 Complete 8x10 2.18 2.62 0.06 0.07
8 Sparse 11x10 1.72 1.82 0.05 0.05
8 Medium 12x11 6.01 6.28 0.07 0.09
8 Dense 12x12 12.39 14.16 0.11 0.17
8 Complete 12x13 21.16 32.97 0.15 0.28
10 Sparse 13x12 6.36 7.10 0.06 0.07
10 Medium 14x13 21.02 22.88 0.12 0.19
10 Dense 14x14 44.50 57.06 0.21 0.33
10 Complete 14x15 72.08 146.69 0.32 0.78

Table 7: Effect of program improvement (i.e., defining the minimum bounding rectangles using
aggregates, rather than generating and testing the minimum bounding rectangles) on computation
time: Consistent instances over Reg* (Figure 8(a))

Instance Original Program Improved Program
Objects Density Grid Grounding Total Grounding Total

Time (s) Time (s) Time (s) Time (s)
6 Sparse 6x4 0.06 0.06 0.02 0.02
6 Medium 8x7 0.46 0.51 0.03 0.03
6 Dense 8x8 0.96 1.06 0.04 0.04
6 Complete 8x10 2.17 2.61 0.05 0.06
8 Sparse 11x9 1.33 1.59 0.04 0.04
8 Medium 12x10 4.73 6.53 0.07 0.09
8 Dense 12x11 9.98 14.35 0.10 0.11
8 Complete 12x13 21.77 32.80 0.15 0.24
10 Sparse 13x11 5.14 6.56 0.07 0.07
10 Medium 14x12 17.02 23.08 0.12 0.18
10 Dense 14x13 35.86 49.60 0.19 0.23
10 Complete 14x15 72.20 128.35 0.32 0.38

Table 8: Effect of program improvement (i.e., defining the minimum bounding rectangles using
aggregates, rather than generating and testing the minimum bounding rectangles) on computation
time: Inconsistent instances over Reg* (Figure 8(a))
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Instance Original Program Improved Program
Objects Density Grid Atoms Rules Constraints Atoms Rules Constraints

6 Sparse 6x5 3915 30244 35149 973 3867 4753
6 Medium 8x8 18572 268140 291052 2302 11860 15040
6 Dense 8x9 24255 410259 439474 3207 19101 23964
6 Complete 8x10 29346 569767 603084 4632 28140 35719
8 Sparse 11x10 45000 946084 1005332 3995 20483 26345
8 Medium 12x11 82880 2137802 2238222 7615 42659 55437
8 Dense 12x12 109327 3190212 3313384 11468 69648 89873
8 Complete 12x13 135421 4370724 4492523 16752 101680 132208

10 Sparse 13x12 124385 3455501 3611749 6754 41208 51710
10 Medium 14x13 178834 6073121 6288761 13638 88708 112544
10 Dense 14x14 226477 8614362 8869284 20996 145546 183734
10 Complete 14x15 274555 11475916 11726703 31049 211759 269674

Table 9: Effect of program improvement (i.e., defining the minimum bounding rectangles using
aggregates, rather than generating and testing the minimum bounding rectangles) on program size:
Consistent instances over Reg* (Figure 8(a))

Instance Original Program Improved Program
Objects Density Grid Atoms Rules Constraints Atoms Rules Constraints

6 Sparse 6x4 2797 18396 21777 844 3180 3889
6 Medium 8x7 14873 195105 213386 2060 10316 13075
6 Dense 8x8 19952 310987 335164 2886 16800 21066
6 Complete 8x10 29405 570624 603901 4630 28138 35713
8 Sparse 11x9 37710 729528 779201 3654 18438 23725
8 Medium 12x10 71076 1705155 1791195 6967 38663 50252
8 Dense 12x11 95013 2599611 2706500 10539 63501 81951
8 Complete 12x13 136409 4400832 4523528 16751 101679 132205
10 Sparse 13x11 106922 2769241 2903860 6259 37700 47345
10 Medium 14x12 156756 5004840 5193963 12635 81615 103578
10 Dense 14x13 200496 7215131 7440851 19518 134548 169883
10 Complete 14x15 276100 11537901 11790113 31048 211758 269671

Table 10: Effect of program improvement (i.e., defining the minimum bounding rectangles using
aggregates, rather than generating and testing the minimum bounding rectangles) on program size:
Inconsistent instances over Reg* (Figure 8(a))
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Instance Original Program Improved Program
Objects Density Grid Grounding Total Grounding Total

Time (s) Time (s) Time (s) Time (s)
6 Sparse 3x3 0.02 0.02 0.02 0.02
6 Medium 8x8 0.31 0.64 0.04 0.05
6 Dense 8x9 0.42 0.81 0.06 0.07
6 Complete 8x10 0.55 1.69 0.06 0.07
8 Sparse 8x9 0.57 0.99 0.04 0.05
8 Medium 12x11 2.29 9.26 0.09 0.14
8 Dense 12x12 2.83 17.09 0.13 0.29
8 Complete 12x13 3.33 20.00 0.17 0.43
10 Sparse 12x13 4.14 7.61 0.10 0.11
10 Medium 14x13 5.78 43.98 0.16 0.33
10 Dense 14x14 6.82 77.91 0.25 0.66
10 Complete 14x15 7.99 120.93 0.37 1.57

Table 11: Effect of program improvement (i.e., defining connectedness in terms of reachability
rather than transitive closure) on computation time: Consistent instances over Reg (Figure 8(b))

Instance Original Program Improved Program
Objects Density Grid Grounding Total Grounding Total

Time (s) Time (s) Time (s) Time (s)
6 Sparse 3x3 0.02 0.02 0.02 0.02
6 Medium 8x7 0.22 0.37 0.04 0.04
6 Dense 8x8 0.32 0.58 0.05 0.06
6 Complete 8x10 0.54 1.23 0.07 0.08
8 Sparse 8x8 0.43 0.65 0.04 0.04
8 Medium 12x10 1.87 7.77 0.08 0.12
8 Dense 12x11 2.31 7.72 0.12 0.15
8 Complete 12x13 3.37 14.80 0.18 0.29
10 Sparse 12x12 3.48 6.29 0.08 0.09
10 Medium 14x12 4.86 36.41 0.14 0.35
10 Dense 14x13 5.83 62.10 0.23 0.45
10 Complete 14x15 8.09 72.75 0.36 1.11

Table 12: Effect of program improvement (i.e., defining connectedness in terms of reachability
rather than transitive closure) on computation time: Inconsistent instances over Reg (Figure 8(b))
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Instance Original Program Improved Program
Objects Density Grid Atoms Rules Constraints Atoms Rules Constraints

6 Sparse 3x3 1104 3137 7729 609 1512 2493
6 Medium 8x8 28280 124238 410825 3272 15104 25937
6 Dense 8x9 35901 161955 527995 4299 22791 36415
6 Complete 8x10 44810 205118 661052 5846 32282 49754
8 Sparse 8x9 46185 203257 688182 3878 17101 30699
8 Medium 12x11 150640 695732 2376370 9768 51212 84218
8 Dense 12x12 181312 848900 2861367 13792 79020 121511
8 Complete 12x13 215581 1018109 3393790 19109 111741 166334

10 Sparse 12x13 255585 1187039 4129566 9644 52765 90813
10 Medium 14x13 351303 1654873 5692739 17353 103573 162539
10 Dense 14x14 412068 1965458 6671360 24968 161618 237930
10 Complete 14x15 479457 2304467 7733078 35287 229057 328148

Table 13: Effect of program improvement (i.e., defining connectedness in terms of reachability
rather than transitive closure) on program size: Consistent instances over Reg (Figure 8(b))

Instance Original Program Improved Program
Objects Density Grid Atoms Rules Constraints Atoms Rules Constraints

6 Sparse 3x3 1104 3137 7729 609 1512 2493
6 Medium 8x7 22090 95866 313670 2908 13120 22448
6 Dense 8x8 28864 129178 416851 3856 20044 31963
6 Complete 8x10 44808 205116 661046 5844 32280 49748
8 Sparse 8x8 36997 161069 541893 3501 15026 26921
8 Medium 12x10 125455 576671 1960494 8927 46383 76150
8 Dense 12x11 153544 716554 2402824 12672 72034 110672
8 Complete 12x13 215580 1018108 3393787 19108 111740 166331

10 Sparse 12x12 218686 1011844 3511976 8962 48289 83102
10 Medium 14x12 300787 1413047 4844584 16067 95257 149344
10 Dense 14x13 357159 1700689 5750006 23209 149389 219806
10 Complete 14x15 479456 2304466 7733075 35286 229056 328145

Table 14: Effect of program improvement (i.e., defining connectedness in terms of reachability
rather than transitive closure) on program size: Inconsistent instances over Reg (Figure 8(b))
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Instance Improved Program (Reg* )
Objects Density Constraints Grid Grounding Total Atoms Rules Constraints

Time (s) Time (s)
6 Sparse 5 6x5 0.02 0.02 973 3867 4753
6 Medium 12 8x8 0.04 0.04 2302 11860 15040
6 Dense 21 8x9 0.04 0.05 3207 19101 23964
6 Complete 30 8x10 0.06 0.07 4632 28140 35719
10 Sparse 13 13x12 0.06 0.07 6754 41208 51710
10 Medium 36 14x13 0.12 0.19 13638 88708 112544
10 Dense 63 14x14 0.21 0.33 20996 145546 183734
10 Complete 90 14x15 0.32 0.78 31049 211759 269674
14 Sparse 27 17x16 0.17 0.19 18093 128679 159642
14 Medium 72 19x17 0.42 0.76 39664 295542 368893
14 Dense 126 19x18 0.76 2.07 63960 493106 614349
14 Complete 182 19x21 1.35 8.65 107260 798132 1005067
18 Sparse 46 21x20 0.43 0.49 41310 313462 388041
18 Medium 122 23x22 1.20 8.06 96997 758283 942873
18 Dense 214 24x25 2.55 18.86 186512 1456450 1818532
18 Complete 306 27x29 4.92 86.38 351015 2646951 3336035

Table 15: Effect of the number of objects and the network density: Consistent instances over
Reg* (Figure 8(a))

Instance Improved Program (Reg* )
Objects Density Constraints Grid Grounding Total Atoms Rules Constraints

Time (s) Time (s)
6 Sparse 5 6x4 0.02 0.02 844 3180 3889
6 Medium 12 8x7 0.03 0.03 2060 10316 13075
6 Dense 21 8x8 0.04 0.04 2886 16800 21066
6 Complete 30 8x10 0.05 0.06 4630 28138 35713
10 Sparse 13 13x11 0.07 0.07 6259 37700 47345
10 Medium 36 14x12 0.12 0.18 12635 81615 103578
10 Dense 63 14x13 0.19 0.23 19518 134548 169883
10 Complete 90 14x15 0.32 0.38 31048 211758 269671
14 Sparse 27 17x15 0.15 0.17 17046 120261 149315
14 Medium 72 19x16 0.39 0.79 37376 277608 346610
14 Dense 126 19x17 0.71 1.32 60404 464507 578823
14 Complete 182 19x21 1.35 2.44 107258 798130 1005061
18 Sparse 46 21x20 0.42 0.51 41311 313463 388044
18 Medium 122 23x22 1.21 3.56 96998 758284 942876
18 Dense 214 24x25 2.55 7.15 186511 1456449 1818529
18 Complete 306 27x29 4.93 10.84 351013 2646949 3336029

Table 16: Effect of the number of objects and the network density: Inconsistent instances over
Reg* (Figure 8(a))
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Instance Improved Program (Reg )
Objects Density Constraints Grid Grounding Total Atoms Rules Constraints

Time (s) Time (s)
6 Sparse 5 3x3 0.02 0.02 609 1512 2493
6 Medium 12 8x8 0.04 0.05 3272 15104 25937
6 Dense 21 8x9 0.06 0.07 4299 22791 36415
6 Complete 30 8x10 0.06 0.07 5846 32282 49754
10 Sparse 13 12x13 0.1 0.11 9644 52765 90813
10 Medium 36 14x13 0.16 0.33 17353 103573 162539
10 Dense 63 14x14 0.25 0.66 24968 161618 237930
10 Complete 90 14x15 0.37 1.57 35287 229057 328148
14 Sparse 27 16x17 0.23 0.33 25576 158275 259449
14 Medium 72 18x17 0.50 0.96 46030 313570 465709
14 Dense 126 18x18 0.84 4.02 68859 502133 703762
14 Complete 182 18x20 1.34 10.9 104765 756171 1037990
18 Sparse 46 20x21 0.60 1.57 55403 372554 587418
18 Medium 122 22x21 1.28 5.31 103205 754849 1081244
18 Dense 214 22x24 2.48 18.67 178504 1348398 1845494
18 Complete 306 26x28 4.90 295.00 344300 2554502 3438271

Table 17: Effect of the number of objects and the network density: Consistent instances over
Reg (Figure 8(b))

Instance Improved Program (Reg )
Objects Density Constraints Grid Grounding Total Atoms Rules Constraints

Time (s) Time (s)
6 Sparse 5 3x3 0.02 0.02 609 1512 2493
6 Medium 12 8x7 0.04 0.04 2908 13120 22448
6 Dense 21 8x8 0.05 0.06 3856 20044 31963
6 Complete 30 8x10 0.07 0.08 5844 32280 49748
10 Sparse 13 12x12 0.08 0.09 8962 48289 83102
10 Medium 36 14x12 0.14 0.35 16067 95257 149344
10 Dense 63 14x13 0.23 0.45 23209 149389 219806
10 Complete 90 14x15 0.36 1.11 35286 229056 328145
14 Sparse 27 16x16 0.22 0.25 24147 148008 242681
14 Medium 72 18x16 0.44 0.89 43370 294232 436812
14 Dense 126 18x17 0.77 1.02 65037 472717 662365
14 Complete 182 18x20 1.33 2.08 104763 756169 1037984
18 Sparse 46 20x21 0.61 0.72 55402 372553 587415
18 Medium 122 22x21 1.27 8.13 103206 754850 1081247
18 Dense 214 22x24 2.46 3.27 178502 1348396 1845488
18 Complete 306 26x28 4.89 17.19 344298 2554500 3438265

Table 18: Effect of the number of objects and the network density: Inconsistent instances over
Reg (Figure 8(b))
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Instance Improved Program (Reg* )
Objects Density Constraints Grid Grounding Total Atoms Rules Constraints

(Theorem 1) Time (s) Time (s)
6 Sparse 5 11x11 0.04 0.04 2839 15618 19633
6 Medium 12 11x11 0.05 0.05 4021 23527 29821
6 Dense 21 11x11 0.06 0.07 5172 33327 41841
6 Complete 30 11x11 0.07 0.09 6883 43687 55516
10 Sparse 13 19x19 0.14 0.15 14469 104044 128817
10 Medium 36 19x19 0.26 0.36 26483 185633 234176
10 Dense 63 19x19 0.41 0.59 38481 279306 351584
10 Complete 90 19x19 0.60 1.54 53539 376039 478127
14 Sparse 27 27x27 0.48 0.55 46102 385087 469485
14 Medium 72 27x27 1.14 1.29 88758 708588 877847
14 Dense 126 27x27 1.78 3.93 136846 1099931 1364851
14 Complete 182 27x27 2.62 28.59 197556 1503896 1889631
18 Sparse 46 35x35 1.48 2.11 116858 1033434 1254558
18 Medium 122 35x35 3.26 39.90 234881 1957741 2414172
18 Dense 214 35x35 5.48 54.17 383608 3093105 3846076
18 Complete 306 35x35 7.64 117.17 552631 4227547 5317571

Table 19: Impact of defining the grid size with respect to Theorem 9 compared to Theorem 1 on
computational performance, with consistent instances generated over Reg* (Figure 8(a))

Instance Improved Program (Reg* )
Objects Density Constraints Grid Grounding Total Atoms Rules Constraints

(Theorem 1 ) Time (s) Time (s)
6 Sparse 5 11x11 0.04 0.04 2839 15618 19633
6 Medium 12 11x11 0.04 0.05 4021 23527 29821
6 Dense 21 11x11 0.06 0.07 5172 33327 41841
6 Complete 30 11x11 0.08 0.10 6883 43687 55516
10 Sparse 13 19x19 0.13 0.15 14469 104044 128817
10 Medium 36 19x19 0.26 0.36 26483 185633 234176
10 Dense 63 19x19 0.41 0.53 38481 279306 351584
10 Complete 90 19x19 0.59 0.81 53539 376039 478127
14 Sparse 27 27x27 0.49 0.57 46102 385087 469485
14 Medium 72 27x27 1.14 1.48 88758 708588 877847
14 Dense 126 27x27 1.78 2.71 136846 1099931 1364851
14 Complete 182 27x27 2.63 4.25 197556 1503896 1889631
18 Sparse 46 35x35 1.48 2.31 116858 1033434 1254558
18 Medium 122 35x35 3.26 10.70 234881 1957741 2414172
18 Dense 214 35x35 5.47 11.38 383608 3093105 3846076
18 Complete 306 35x35 7.64 10.60 552631 4227547 5317571

Table 20: Impact of defining the grid size with respect to Theorem 9 compared to Theorem 1 on
computational performance, with inconsistent instances generated over Reg* (Figure 8(a))
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Improved Program (Reg* ) Improved Program (Reg )
Instance Grid Grounding Total Grid Grounding Total

(Theorem 9) Time (s) Time (s) (Theorem 9) Time (s) Time (s)
Basic 19x18 0.78 2.13 18x18 0.84 4.01

4x disj2 19x19 0.85 1.86 18x19 0.90 3.67
4x disj4 19x20 0.91 2.17 18x20 0.96 3.63
4x disj8 22x20 1.09 4.73 21x20 1.16 6.10
8x disj2 19x19 0.86 2.12 18x19 0.92 4.09
8x disj4 20x21 1.10 1.94 19x21 1.17 6.52
8x disj8 23x22 1.34 3.32 22x22 1.46 8.11
16x disj2 20x19 0.91 1.10 19x19 1.06 3.73
16x disj4 23x25 1.58 4.03 22x25 1.69 22.90
16x disj8 26x26 2.04 9.16 26x26 2.39 35.60
32x disj2 21x21 1.21 3.22 20x21 1.28 2.01
32x disj4 25x26 2.11 18.08 25x26 2.42 16.09
32x disj8 28x28 3.03 9.04 28x28 3.24 33.09

Table 21: Impact of the disjunctive constraints on computation time: Consistent instances with
n = 14, dense networks

Improved Program (Reg* ) Improved Program (Reg )
Instance Grid Grounding Total Grid Grounding Total

(Theorem 9) Time (s) Time (s) (Theorem 9) Time (s) Time (s)
Basic 19x17 0.71 1.35 18x17 0.75 1.00

4x disj2 19x18 0.77 1.61 18x18 0.84 1.73
4x disj4 19x19 0.86 2.26 18x19 0.91 2.25
4x disj8 22x19 1.04 1.39 21x19 1.10 2.14
8x disj2 19x19 0.87 3.09 18x19 0.91 9.59
8x disj4 20x21 1.10 11.71 19x21 1.16 17.17
8x disj8 23x22 1.33 18.56 22x22 1.44 67.05
16x disj2 20x19 0.91 6.08 19x19 1.05 13.08
16x disj4 23x25 1.59 29.93 22x25 1.69 40.09
16x disj8 26x26 2.04 70.33 26x26 2.39 153.66
32x disj2 21x21 1.21 12.54 20x21 1.28 18.67
32x disj4 25x26 2.09 45.16 25x26 2.42 112.71
32x disj8 28x28 3.04 160.46 28x28 3.26 311.95

Table 22: Impact of the disjunctive constraints on computation time: Inconsistent instances with
n = 14, dense networks
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Instance Consistent Inconsistent
Objects Default Grid Grounding Total Grid Grounding Total

Time (s) Time (s) Time (s) Time (s)
14 No Default 19x17 2.77 7.79 20x16 2.74 3.47
14 Default v1 19x17 3.30 17.20 20x16 3.27 4.55
14 Default v2 19x17 3.62 16.33 20x16 3.55 4.57
14 Default v3 19x18 3.28 6.08 20x17 3.14 6.89
14 Default v4 20x18 3.33 11.41 21x17 3.29 4.60
14 Default v5 19x18 3.62 7.79 20x17 3.46 5.53
14 Default v6 20x18 4.01 70.37 21x17 3.97 4.42
16 No Default 21x20 4.76 32.92 22x19 4.63 7.37
16 Default v1 21x20 6.06 16.52 22x19 5.82 10.41
16 Default v2 21x20 6.67 53.34 22x19 6.37 7.71
16 Default v3 21x20 5.22 11.26 22x19 5.01 16.43
16 Default v4 22x21 6.05 54.06 23x20 5.76 14.01
16 Default v5 21x20 6.04 42.04 22x19 5.83 17.48
16 Default v6 22x21 7.25 635.38 23x20 6.91 8.07

Table 23: Default CDC constraints: Computation time for problem instances over
Reg* (Figure 8(a))

Instance Consistent Inconsistent
Objects Default Grid Grounding Total Grid Grounding Total

Time (s) Time (s) Time (s) Time (s)
14 No Default 18x17 2.79 6.69 18x16 2.55 16.09
14 Default v1 18x17 3.31 11.76 18x16 3.06 4.35
14 Default v2 18x17 3.66 16.09 18x16 3.32 4.17
14 Default v3 18x18 3.42 20.03 18x17 3.06 3.65
14 Default v4 18x18 3.40 11.23 18x17 3.06 3.53
14 Default v5 18x18 3.80 18.12 18x17 3.36 4.95
14 Default v6 18x18 4.11 51.90 18x17 3.64 4.85
16 No Default 20x19 4.30 34.58 20x18 4.03 26.19
16 Default v1 20x19 5.70 72.36 20x18 4.91 6.85
16 Default v2 20x19 6.19 45.17 20x18 5.69 7.93
16 Default v3 20x19 4.81 48.61 20x18 4.33 9.27
16 Default v4 20x20 5.42 71.15 20x20 5.43 21.63
16 Default v5 20x19 5.69 53.06 20x18 4.93 12.87
16 Default v6 20x20 6.88 347.03 20x20 6.88 8.67

Table 24: Default CDC constraints: Computation time for problem instances over Reg (Figure 8(b))
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Instance Consistent Inconsistent
Objects Density Constraints Grounding Total Grounding Total

Time (s) Time (s) Time (s) Time (s)
6 Sparse 5 0.03 0.04 0.03 0.03
6 Medium 12 - - 0.06 0.07
6 Dense 21 - - 0.09 0.10
6 Complete 30 - - 0.11 0.12
10 Sparse 13 - - 0.14 0.22
10 Medium 36 - - 0.40 0.48
10 Dense 63 - - 0.72 0.87
10 Complete 90 - - 0.99 1.17
14 Sparse 27 - - 0.60 1.02
14 Medium 72 - - 1.82 2.52
14 Dense 126 - - 3.10 4.01
14 Complete 182 - - 4.33 5.67
18 Sparse 46 - - 1.91 6.18
18 Medium 122 - - 5.42 7.85
18 Dense 214 - - 9.25 13.01
18 Complete 306 - - 13.25 19.63

Table 25: Experimental results for random benchmark instances over Reg* (Figure 8(a))

Instance Consistent Inconsistent
Objects Density Constraints Grounding Total Grounding Total

Time (s) Time (s) Time (s) Time (s)
6 Sparse 5 0.03 0.04 0.03 0.03
6 Medium 12 - - 0.07 0.08
6 Dense 21 - - 0.10 0.12
6 Complete 30 - - 0.13 0.14
10 Sparse 13 - - 0.17 0.24
10 Medium 36 - - 0.50 0.61
10 Dense 63 - - 0.85 0.99
10 Complete 90 - - 1.14 1.39
14 Sparse 27 - - 0.75 1.94
14 Medium 72 - - 2.13 3.04
14 Dense 126 - - 3.51 4.91
14 Complete 182 - - 4.82 6.85
18 Sparse 46 - - 2.36 5.92
18 Medium 122 - - 6.42 10.63
18 Dense 214 - - 10.34 18.62
18 Complete 306 - - 14.48 24.40

Table 26: Experimental results for random benchmark instances over Reg (Figure 8(b))
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