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Abstract

This paper deals with the anonymous multi-agent path finding (MAPF) problem for
a team of tethered robots. The goal is to find a set of non-crossing paths such that
the makespan is minimal. A difficulty comes from the fact that a safety distance must
be maintained between two robots when they pass through the same subpath, to avoid
collisions and cable entanglements. Hence, robots must be synchronized and waiting times
must be added when computing the makespan. We show that bounds can be efficiently
computed by solving linear assignment problems. We introduce a variable neighborhood
search method to improve upper bounds, and a Constraint Programming model to compute
optimal solutions. We experimentally evaluate our approach on three different kinds of
instances.

1. Introduction

Multi-Agent Path Finding (MAPF) is a very active research topic which has important
applications for robotics in industrial contexts such as transport in fulfillment centers or
autonomous tug robots, for example. The goal of MAPF is to find a set of collision-free
paths from starting points to target points. Usually, there is an objective function to
optimize such as the duration of the longest path (called makespan), the sum of all path
durations, or the number of agents that cannot reach their targets within a given makespan
(Ma, Wagner, Felner, Li, Kumar, & Koenig, 2018). The problem is NP-hard in the general
case (Yu & LaValle, 2013a). In the case of anonymous MAPF (AMAPF), the target of
each agent is not known, i.e., there is a set of targets and each agent must be first assigned
to a target before searching for paths (Stern, Sturtevant, Felner, Koenig, Ma, Walker, Li,
Atzmon, Cohen, Kumar, et al., 2019). Regardless of whether the goal is to minimize the
makespan or the sum of all paths’ costs, AMAPF can be generally solved in polynomial
time (Yu & LaValle, 2013b).

In some cases, robots are attached to anchor points with flexible cables which allow
them to have continuous access to energy, water, or network, for example. These cables
may be kept taut by a system that pulls on cables when robots move back. This is the case
for our industrial partners in a European project1 where a fleet of mobile robots is used for
inspecting and cleaning large structures, as illustrated in Fig. 1. The main difficulty with
such tethered robots comes from the fact that robots are not able to cross cables. It may
be possible that robots share a same subpath, provided that their paths do not cross, but
in this case we must synchronize robots in order to ensure a safety distance that prevents

1. H2020 project BugWright2: Autonomous Robotic Inspection and Maintenance on Ship Hulls and Storage
Tanks, 2020-24 (see https://www.bugwright2.eu/)
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Figure 1: Example of tethered robot used to clean industrial surfaces in H2020 project
BugWright2.

Figure 2: (a): a1 and a2 are the anchor points of 2 robots that both have to go to points b
and c before reaching their final targets t1 and t2 (gray polygons are obstacles).
(b): The red robot could arrive first on point b (because it is closer), but it has
to wait for the blue robot to pass point b (because the blue robot cannot travel
between the red cable and point b if the red robot has already passed point b).
(c): Then, the blue robot could arrive first on point c (because it left point b
first), but it has to wait for the red robot to pass point c. (d): When the anchor
point and the target of the blue robot are exchanged, a deadlock occurs because
the red robot must wait for the blue one to pass b first, while the blue one cannot
pass c before the red robot.

collisions and entanglements of cables (usually, this safety distance is larger than the size
of the robots). As a consequence, robots may have to wait at some points, as illustrated
in Fig. 2(a-c), and these waiting times must be taken into account when computing the
makespan. Also, deadlocks may occur, as illustrated in Fig. 2(d).

1.1 Related Work

Classical MAPF problems are often solved by using a two-level approach called Conflict
Based Search (CBS) (Sharon, Stern, Felner, & Sturtevant, 2015): path searching at the
low level and resolution of path conflicts at the high level. As a special case, the AMAPF
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problem is usually reduced to a Network Flow problem, and the maximum flow algorithms
(Ford-Fulkerson, 1956) may be applied to solve it in polynomial time (Yu & LaValle, 2013b).
However, both CBS and the Network Flow-based method are limited in handling agents’
collisions occurring at an instant or over a short period of time and cannot effectively address
the topological constraints associated with cables.

For the motion planning of a single tethered robot, studies mainly focus on finding the
shortest path given the initial and final configurations (Salzman & Halperin, 2015), and
planning paths for coverage and exploration tasks (Shnaps & Rimon, 2014).

When considering the case of multiple tethered robots, the challenge is that cables can
easily get tangled, and avoiding cable crossings makes the planning harder. (Sinden, 1990)
introduces the tethered robot problem where robots may have to visit several points in a
workspace that does not contain any obstacle: in this case, the problem basically involves
searching for matchings in bipartite graphs such that selected edges do not cross. In the
work of (Hert & Lumelsky, 1994, 1997, 1999), the workspace does not contain obstacles and
robots cannot cross cables but they may push and bent the cables of other robots (which
is not the case for our robots). Also, the goal is to minimize the sum of all path lengths
whereas our objective is to minimize the makespan. Hert & Lumelsky describe efficient
algorithms for detecting whether two paths are crossing or not, from a purely geometric
standpoint. The procedure that we use for detecting path crossings (described in Section
2.2) is adapted from this work.

(Zhang & Pham, 2019) consider the same problem as (Hert & Lumelsky, 1994), but
the workspace may contain obstacles and there is no objective function to optimize: they
simply search for a valid schedule such that robots do not cross cables. To avoid crossings,
precedence constraints and waiting times are introduced, and a precedence graph is used
to detect deadlocks. Zhang & Pham propose algorithms for iteratively removing deadlocks.
However, there is no guarantee that all deadlocks can be suppressed, and robots are con-
strained to diverge from straight line motions whenever there are non resolved deadlocks.

In (Peng, Solnon, & Simonin, 2021), we introduced the Non-Crossing AMAPF (NC-
AMAPF): given a workspace that contains obstacles and a set of anchor points and targets,
the goal is to find non-crossing paths from anchor points to targets so that the makespan
is minimized. In this preliminary study, we considered bodiless robots so that two robots
could share a same subpath without having to include waiting times. With this simplifying
assumption, we showed that the NC-AMAPF is related to an Euclidean bipartite matching
problem: a lower bound and an upper bound may be computed in polynomial time by
solving a Linear Bottleneck Assignment Problem (LBAP) and a Linear Sum Assignment
Problem (LSAP), respectively. We also introduced an approach based on the sequential
combination of LSAP, Variable Neighborhood Search (VNS) and Constraint Programming
(CP) to solve the problem to optimality.

1.2 Contributions and Overview of the Paper

In Section 2, we formally define the NC-AMAPF for tethered robots. The main difference
with the NC-AMAPF introduced in (Peng et al., 2021) is that we add precedence constraints
between robots that share a same subpath in order to take into account the fact that a safety
distance must be maintained between them to avoid collisions and cable entanglements. This
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new setting definitely changes the definition of the makespan as we may have to introduce
waiting times to satisfy precedence constraints.

In Section 3, we introduce an algorithm that exploits a precedence graph to suppress
deadlocks by reassigning targets. We also prove that the optimal solution of LSAP cannot
contain deadlocks. This allows us to compute two different upper bounds of the optimal
solution: the first one is computed by solving the LSAP; the second one is computed by
first solving the LBAP and then using our new algorithm to remove deadlocks, if any.

In Section 4, we introduce a VNS approach to improve the upper bounds computed in
Section 3. This algorithm is similar to the VNS approach introduced in (Peng et al., 2021),
but it enlarges the neighborhood by taking into account non-shortest paths, as the optimal
solution may contain non-shortest paths in order to avoid crossings.

In Section 5, we extend the CP model of (Peng et al., 2021) to include waiting times
due to interactions between pairs of robots when computing the makespan. This CP model
relaxes constraints due to interactions of more than two robots, and we show how to lazily
generate constraints to compute the optimal solution. We also introduce a dichotomous
approach to avoid computing useless paths.

In Section 6, we discuss further work.

2. Problem Statement

In Section 2.1, we define notations and definitions (most of them are coming from (Peng
et al., 2021)). Then, we show how to decide whether two paths are crossing or not (Section
2.2), how to remove crossings (Section 2.3), how to detect deadlocks (Section 2.4) and
how to compute the makespan of a set of paths (Section 2.5). Finally, we define the NC-
AMAPF problem for tethered robots (Section 2.6), and we describe the benchmarks used
for evaluating our approach (Section 2.7).

2.1 Notations and Definitions

Robots move on a 2 dimensional workspace W ⊂ R2. This workspace is defined by a
bounding polygon B and a set O of convex obstacles: every obstacle in O is a polygon
within B, and W is composed of every point in B that does not belong to an obstacle in O.
We denote VO the set of all obstacle vertices.

Given two points u, v ∈ W, we denote uv the straight line segment that joins u to v,
and |uv| the Euclidean distance between u and v (i.e., |uv| is the length of uv). We assume
that all robots have the same speed which is equal to 1, so that |uv| is also equal to the
time needed by a robot to traverse uv. We say that a segment uv crosses an obstacle if
u, v ∈ W and uv 6⊂ W.

Given three points u, v, w ∈ W, we denote ∠uvw the angle between vu and vw, and we
denote ]uvw the size of this angle measured in degrees when considering a counterclockwise
order from vu to vw.

A path in W is composed of a chain of incident segments u0u1, u1u2, . . . , ui−1ui, which
is represented by the vertex sequence π = 〈u0, u1, u2, . . . , ui〉. The length of a path π is
denoted |π| and is the sum of the lengths of its segments, i.e., |π| =

∑i
j=1 |uj−1uj |. Given

two paths πi and πj , we denote πi.πj the path obtained by concatening πj at the end of πi.
We use set operators to denote vertex membership and path inclusion: u ∈ π denotes the
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fact that path π contains vertex u (i.e., ∃πi, πj , π = πi.〈u〉.πj) and πi ⊆ π denotes the fact
that path π contains the subpath πi (i.e., ∃πj , πk, π = πj .πi.πk). Given a set Π of paths and
a vertex u, we denote Πu the set of all paths of Π that contain u, i.e., Πu = {π ∈ Π | u ∈ π}.

As the workspace W is continuous, there exists an infinite number of paths from an
anchor point a to a target t. However, as each cable is kept taut, the number of different
cable positions that start from a and end on t is finite (provided that we forbid infinite loops).
More precisely, the cable position associated with a robot path from a to t is a chain of
incident segments 〈u0, u1, . . . , ui〉 such that (i) u0 = a and ui = t, (ii) no segment crosses
an obstacle, and (iii) every internal point is an obstacle vertex, i.e., ∀j ∈ [1, i− 1], uj ∈ VO.

As the length of a robot path cannot be smaller than the length of its cable position, we
can simplify our problem by assuming that the path of a robot is its cable position. Hence,
we search for paths in a visibility graph (Lozano-Pérez & Wesley, 1979) defined below.

Definition 1 (Visibility graph (Lozano-Pérez & Wesley, 1979)). The visibility graph as-
sociated with a workspace W, a set of anchor points A, and a set of targets T is the
directed graph (V, E) such that vertices are either points of A and T or obstacle vertices,
i.e., V = A ∪ T ∪ VO, and edges correspond to segments that do not cross obstacles and
that do not contain any other vertex, i.e.,

E = {(u, v) ∈ (A ∪ VO)× (T ∪ VO) | uv ⊂ W ∧ ∀w ∈ V \ {u, v}, w /∈ uv}

The graph is directed because edges starting from targets or ending on anchor points are
forbidden.

Given two edges (u, v) and (u′, v′), we say that they are incident if they have one
common endpoint (i.e., |{u, v} ∩ {u′, v′}| = 1), and we say that they cross if they share one
point (called the crossing point) which is not an endpoint (i.e., {u, v} ∩ {u′, v′} = ∅ and
uv ∩ u′v′ 6= ∅).

In (Lozano-Pérez & Wesley, 1979), it is shown that visibility graphs can still be used
when robots have a non-negligible size as obstacles may be expanded to compensate for
robot sizes. In our problem, the robot size has no significant impact on the geometric
properties of the cable. Even though the location of the cable does not perfectly overlap
the trajectory along which the robots move, the cable can remain taut and the topological
relationship between the cables (crossing or not) is not affected.

A path in the visibility graph (V, E) is a sequence of vertices 〈u0, . . . , ui〉 such that
(uj−1, uj) ∈ E , ∀j ∈ [1, i]. This path also corresponds to a chain of segments and its length
is the sum of the lengths of its segments. We only consider elementary paths, i.e., a vertex
cannot occur more than once in a path. Indeed, if a path is not elementary, then it can be
replaced by a shorter elementary path obtained by removing its cycles.

Given an anchor point a ∈ A and a target t ∈ T , we denote sp(a, t) the shortest path
from a to t in the visibility graph.

2.2 Detecting Crossing Paths

Whenever two paths π1 and π2 have a non-empty intersection, we need to decide whether
they are crossing or not. The different cases of non-empty intersection paths are illustrated
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Figure 3: Different cases of two paths with a non empty intersection (angle sizes are rep-
resented by green arrows). (a): The paths are trivially crossing because the
intersection is a point that does not belong to an obstacle. (b) and (c): the
intersection is a single obstacle vertex w. (b) corresponds to non-crossing paths
(]u1wu2 < 180◦ and ]v1wv2 > 180◦), whereas (c) corresponds to crossing paths
(both angles are lower than 180◦). (d) and (e): the intersection is a sequence of
segments from w to z. (d) corresponds to non-crossing paths (]u1wu2 > 180◦

and ]v1zv2 < 180◦), whereas (e) corresponds to crossing paths (both angles are
lower than 180◦).

in Fig. 3. The case in Fig. 3(a) is trivial: when two paths share a same point that does not
belong to any obstacle, then they are crossing.

When the intersection corresponds to an obstacle vertex, the two paths may be crossing
or not, as illustrated in Fig. 3(b) and 3(c). To decide whether they are crossing or not, we
consider the following definition which is an adaptation of (Hert & Lumelsky, 1997) to our
context.

Definition 2 (Intersecting paths). Let us consider two paths π1 = 〈u1, w, v1〉 and π2 =
〈u2, w, v2〉 such that {u1, v1} ∩ {u2, v2} = ∅ (i.e., the intersection of π1 and π2 contains the
single vertex w). π1 and π2 are crossing if and only if ]u1wu2 and ]v1wv2 are either both
lower than 180◦ or both greater than 180◦.

This may be extended in a straightforward way to the case where the intersection is
a sequence of segments π3 instead of a single vertex, i.e., π1 = 〈u1〉.π3.〈v1〉 and π2 =
〈u2〉.π3.〈v2〉 and {u1, v1} ∩ {u2, v2} = ∅. Let w and z be the first and last vertices of π3,
respectively. In this case, the two paths are crossing if and only if ]u1wu2 and ]v1zv2 are
either both lower than 180◦ or both greater than 180◦, as illustrated in Fig. 3(d) and 3(e).

Hence, we can decide whether two paths are crossing or not in O(k2) where k is the
maximum number of segments in a path. Indeed, we first check in O(k2) that there is
no crossing segments (there are O(k2) pairs of segments and we check if two segments are
crossing in constant time). Then, we search for all common subpaths in O(k), and for each
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common subpath we check that there is no crossing by measuring two angles in constant
time.

2.3 Removing Crossings

In (Peng et al., 2021), we have shown that whenever two paths πi and πj are crossing, we can
always replace them by two non crossing paths π′i and π′j such that |πi|+ |πj | ≥ |π′i|+ |π′j |.
The basic idea is to exchange the end of πi with the end of πj , starting from the crossing
point, and to replace the resulting paths with taut paths whenever they are not taut (see
the proof of Theorem 3 in (Peng et al., 2021) for more details).

Given a set of paths with crossings, these pairwise exchanges of path ends may be
iterated until all crossings have been removed. The resulting set of non-crossing paths has
a total length smaller than or equal to the initial set of crossing paths.

2.4 Detecting Deadlocks

In (Peng et al., 2021), we considered bodiless robots, i.e., we assumed that a robot can
always travel between the cable of another robot and an obstacle. With this simplifying
assumption, a set of non-crossing paths is always a consistent solution. In this paper, we
take into account the fact that a safety distance must be maintained between two robots
when they pass through the same sub-path, to avoid collisions and cable entanglements.
This is done by constraining robots to pass shared obstacles in a given order, as illustrated
in Fig. 2. This order depends on the relative path positions with respect to the obstacle: if
πi is closer to the obstacle than πj , then the robot associated with πi must reach the vertex
before the robot associated with πj . For example, in Fig. 2(a), the blue path is closer to
the triangle than the red path whereas the red path is closer to the rectangle than the blue
path. Given two paths that share a same obstacle vertex, we can decide in constant time
which one is the closer to the obstacle, as described in (Zhang & Pham, 2019). This may be
extended to the case of two paths that share some sub-path, by ensuring that paths never
cross. For example, in Fig. 4, once we have decided that π1 ≺d π2, we can propagate the
relative positions of π1 and π2 at vertex b, i.e., π2 is above π1 and, therefore, π2 ≺b π1. We
use this to define total orders among paths that traverse a same obstacle vertex.

Definition 3 (Total order ≺u). Let Π be a set of non-crossing paths, and u ∈ VO be
a vertex of an obstacle o ∈ O. We denote ≺u the strict total order on Πu such that
∀{πi, πj} ⊆ Πu, πi ≺u πj if and only if πi is closer to o than πj (as defined in (Zhang &
Pham, 2019)). In this case, the robot associated with πi must visit u before the robot
associated with πj , and we say that πi has a higher priority than πj for vertex u.

These total orders are used to define a precedence graph which is similar to the Pair
Interaction Graph of (Zhang & Pham, 2019). This precedence graph models precedence
constraints between path steps, where a path step is a couple (u, πi) that represents the
visit of a vertex u by the robot associated with a path πi. Besides the precedence constraints
induced by total orders, this graph also models precedence constraints due to the fact that
a robot must visit vertices in the order defined by its path.

Definition 4 (Precedence graph). Let Π be a set of non-crossing paths. The precedence
graph associated with Π is the directed graph GΠ = (VΠ, EΠ) such that vertices correspond
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a1, π1 h, π1 b, π1 d, π1 e, π1 t1, π1

a2, π2 d, π2 b, π2 h, π2 g, π2 t2, π2

a3, π3 b, π3 k, π3 e, π3 f, π3 t3, π3

Figure 4: Deadlock example. Left: Three paths π1 = 〈a1, h, b, d, e, t1〉 in black, π2 =
〈a2, d, b, h, g, t2〉 in red, and π3 = 〈a3, b, k, e, f, t3〉 in blue. The robot associ-
ated with π1 should pass h after the robot associated with π2 because π2 ≺h π1,
meanwhile, the robot associated with π2 cannot pass d until the robot asso-
ciated with π1 has passed it because π1 ≺d π2. Right: The corresponding
precedence graph (vertical edges are in green whereas horizontal edges have
the same color as their corresponding path). This graph contains the cycle
c = 〈(h, π1), (b, π1), (d, π1), (d, π2), (b, π2), (h, π2), (h, π1)〉 (displayed in bold).

to path steps, i.e., VΠ = {(u, πi) | πi ∈ Π ∧ u ∈ πi}, and edges correspond to precedence
constraints between path steps, i.e., EΠ = {((u, πi), (v, πi)) | πi ∈ Π ∧ 〈u, v〉 ⊆ πi} ∪
{((u, πi), (u, πj)) | u ∈ VO ∧ {πi, πj} ⊆ Πu ∧ πi ≺u πj}. Edges ((u, πi), (v, πi)) between two
path steps in a same path are called horizontal edges whereas edges ((u, πi), (u, πj)) between
two path steps in two different paths are called vertical edges.

Two paths that both visit two vertices may have different precedence constraints on
these two vertices. For example, let us consider the paths π1 and π2 displayed in Fig. 4.
Both paths visit vertices h and d. However, π2 ≺h π1 (because π2 is closer to the left most
obstacle than π1) whereas π1 ≺d π2 (because π1 is closer to the middle obstacle than π2).
As π1 must visit h before d whereas π2 must visit d before h, a deadlock occurs.

More generally, deadlocks occur if and only if the precedence graph contains cycles, as
cyclic precedence constraints cannot be satisfied. These deadlocks may be detected in linear
time with respect to the size of GΠ by performing a depth first search (Cormen, Leiserson,
Rivest, & Stein, 2009).

2.5 Computing the Makespan

We aim at minimizing the makespan, i.e., the arrival time of the latest robot including
waiting times due to the fact that robots must pass shared obstacles in a given order. This
may be computed by exploiting the precedence graph. To this aim, we define a cost function
cΠ : EΠ → R+ such that:

• the cost of an horizontal edge associated with a path segment is the time needed to
travel through this segment, i.e., ∀((u, πi), (v, πi)) ∈ EΠ, c((u, πi), (v, πi)) = |uv|;

• the cost of a vertical edge associated with a priority at a vertex is the time that
a robot should wait to let another robot pass before it, i.e., ∀((u, πi), (u, πj)) ∈
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EΠ, c((u, πi), (u, πj)) = dt where dt is a parameter corresponding to the duration
for traveling the safety distance (which depends on the size of robots, among other
things).

The makespan is equal to the size of the longest path in GΠ when considering cost function
cΠ. It may be computed in linear time with respect to the size of GΠ by topologically sorting
vertices of VΠ and then relaxing edges of EΠ according to this topological order (Cormen
et al., 2009). We do not define the exact locations of the waiting times as this does not
affect the computation of the overall makespan. Obviously, robots must wait before starting
to follow shared sub-paths and the choice of waiting locations should be considered when
planning robot actions, which is not in the scope of this work.

2.6 Definition of the NC-AMAPF Problem for Tethered Robots

An instance of the NC-AMAPF problem for tethered robots is defined by:

• a workspace W (as defined in Section 2.1);

• a set A ⊆ W of n different anchor points (also corresponding to starting points);

• a set T ⊆ W of n different targets such that A ∩ T = ∅;

• a positive value dt ∈ R+ corresponding to the time a robot must wait to let another
robot pass before it at some shared point.

A solution is a couple (m,Π) such that:

• m : A → T is a bijection that assigns a different target to each anchor point;

• Π is a set of n paths such that (i) for each anchor point a ∈ A, Π contains a path
from a to its assigned target m(a); (ii) paths in Π do not cross (as defined in Section
2.2); and (iii) Π contains no deadlock (as defined in Section 2.4).

Given a solution s = (m,Π), we denote makespan(s) the makespan (as defined in Section
2.5). An optimal solution is a solution s = (m,Π) such that makespan(s) is minimal.

When the workspace W has no obstacle, our problem is equivalent to the bottleneck
matching problem with edge-crossing constraints which has been shown to be NP-hard
by (Carlsson, Armbruster, Rahul, & Bellam, 2015). Hence, our problem is also NP-hard
in the more general case where W contains obstacles.

2.7 Description of Benchmarks

To study the sensibility of our algorithms to different configurations, we generate instances
according to a random model that has three parameters o, n, and d which are described
below. For all instances, the bounding polygon is the square B = [0, 200]2.

The first parameter o is used to set the number of obstacles. For each value of o ∈
{5, 10, 15, 20}, we have randomly generated one set Oo of o obstacles such that each obstacle
is a rectangle2 whose height and width belong to [1, 40], and such that the distance between

2. We have made experiments with other kinds of obstacles and obtained similar conclusions as with
rectangular obstacles.
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Figure 5: Workspaces Wo with o ∈ {5, 10, 15, 20} (obstacles are displayed in green).

two obstacle vertices is larger than 10. For each value of o, the workspace is defined by
Wo = B \ Oo. These workspaces are displayed in Fig. 5.

The second parameter n is used to set the number of robots, and we consider values of
n ∈ {10, 20, 30} to study scale-up properties.

The third parameter d is used to generate anchor points and targets in Wo, and we
consider three different kinds of distributions d ∈ {U,B,A}, in order to study the impact
of this distribution on bound quality and instance hardness:

• when d = U (Uniform), anchor points and targets are randomly generated in Wo

according to a uniform distribution;

• when d = B (Bipartite), anchor points (resp. targets) are randomly generated on the
left (resp. right) part ofWo, by constraining their abscissa to be smaller than 60 (resp.
greater than 140).

• when d = A (Alternate) anchor points are randomly generated with their abscissa
being equally constrained in [0, 20] ∪ [40, 60] ∪ [120, 140], and targets are equally dis-
tributed in [80, 100] ∪ [140, 160] ∪ [180, 200].

For the three distributions, we ensure that the distance between two points is always larger
than 4 by rejecting any point that does not satisfy this constraint. We believe that setting
this minimum distance is suitable considering the sizes of the workspace and the obstacles.
Examples of instances are displayed in Fig. 6.

For each value of n, o, and d, we have randomly generated 30 instances (all instances
with a same value of o share the same workspace). For all instances, the value of dt is set to
4 (see the conclusion for a discussion on the impact of this parameter on instance hardness).

All experiments reported in this paper are run on Grid5000 (Balouek, Carpen Amarie,
Charrier, Desprez, Jeannot, Jeanvoine, Lèbre, Margery, Niclausse, Nussbaum, Richard,
Pérez, Quesnel, Rohr, & Sarzyniec, 2013) with an AMD EPYC 7642 with 512GB of RAM.

3. Computation of Bounds for the Makespan

In (Peng et al., 2021), we considered the NC-AMAPF problem with bodiless robots and
we showed how to efficiently compute lower and upper bounds for the makespan by solving
assignment problems in the complete bipartite graph GA,T = (A, T ,A× T ) such that the
cost of an edge (a, t) ∈ A×T is |sp(a, t)| (i.e., the length of the shortest path from a to t in
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Figure 6: Instance examples with n=30, o=20, and d=U (left), B (middle), and A (right).

the visibility graph). More precisely, we showed that a lower bound may be computed by
solving an LBAP in GA,T , i.e., searching for a matching that minimizes the longest selected
edge. Also, we showed that an upper bound may be computed by solving an LSAP in GA,T ,
i.e., searching for a matching that minimizes the sum of the selected edges. This comes
from the fact that, for every pair of selected edges (ai, ti) and (aj , tj) in an LSAP solution,
either sp(ai, ti) and sp(aj , tj) are not crossing, or they can be replaced by two non-crossing
paths πi and πj such that |sp(ai, ti)|+ |sp(aj , tj)| = |πi|+ |πj |.

When taking into account the physical shape of robots, a set of non-crossing paths is
not necessarily solution because it may imply deadlocks, as illustrated in both Fig. 2(d)
and Fig. 4. In this section, we first introduce an algorithm that removes all deadlocks from
a set of paths by iteratively exchanging targets, and we show that this algorithm decreases
the path length sum (Section 3.1). Then, we show how to compute a lower bound and two
different upper bounds by exploiting LSAP and LBAP solutions (Section 3.2). Finally, we
experimentally compare these bounds (Section 3.3).

3.1 Algorithm for Removing Deadlocks

To remove deadlocks, we remove cycles in the precedence graph GΠ by exchanging targets.
Given a cycle c in GΠ, let Πc denote the set of paths involved in c, where a path πi ∈ Π is
involved in c if c contains a vertex (u, πi). Given a path πi ∈ Πc, let inc(πi) (resp. outc(πi))
denote the set of vertices of πi that have an incoming (resp. outgoing) vertical edge in c,
i.e.,

inc(πi) = {u ∈ πi : ∃πj ∈ Πc \ {πi}, 〈(u, πj), (u, πi)〉 ⊆ c}
outc(πi) = {u ∈ πi : ∃πj ∈ Πc \ {πi}, 〈(u, πi), (u, πj)〉 ⊆ c}

For example, let us consider the precedence graph GΠ and the cycle c displayed in Fig. 4:
inc(π1) = {h} and outc(π1) = {d}.

Property 1. Let Π be a set of paths and c be an elementary cycle in GΠ. For each path
πi ∈ Πc, the number of vertical edges of c that end on a vertex of πi is equal to the number
of vertical edges of c that start from a vertex of πi, i.e., #inc(πi) = #outc(πi).
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Algorithm 1: RemoveCycle(Π, c)

Input: A set Π of non-crossing paths and an elementary cycle c in GΠ such that,
for each path πi involved in c, #inc(πi) = #outc(πi) = 1

Output: A set of non-crossing paths Π′ with the same sets of anchor and target
points as Π and such that GΠ′ no longer contains cycle c

1 Π′ ← Π \Πc

2 for each path πi ∈ Πc do
3 Let ((u, πj), (u, πi)) ∈ c be the incoming vertical edge of πi
4 Let πi1 and πi2 be the prefix and suffix of πi such that πi = πi1.〈u〉.πi2
5 Let πj1 and πj2 be the prefix and suffix of πj such that πj = πj1.〈u〉.πj2
6 Let π′i = πi1.〈u〉.πj2
7 if π′i is not a taut path then
8 Replace π′i with the shortest path from the first vertex of π′i to the last

vertex of π′i and in the same homotopy class as π′i

9 Add π′i to Π′

10 Remove crossings from Π′ as explained in Section 2.3

Proof. This is a straightforward consequence of the fact that (i) c is a cycle and (ii) every
horizontal edge connects two vertices in a same path. Indeed, each time the cycle reaches
a path πi ∈ Πc, using a vertical edge that ends on a vertex of inc(πi), it must use a vertical
edge that starts from a vertex of outc(πi) to leave πi.

Property 1 ensures that, whenever #inc(πi) = #outc(πi) = 1 for each path πi ∈ Πc,
there are exactly #Πc vertical edges, and these vertical edges define a permutation on the
paths of Πc. In this case, we can remove cycle c by replacing the target of each path πi with
the target of the previous path πj in the permutation, as described in Algorithm 1. More
precisely, the new path π′i is composed of the prefix of πi that ends on the vertex u such
that inc(πi) = {u}, and the suffix of πj that starts from u (lines 3-6). This new path is
valid as it is composed of two valid sub-paths that share a same vertex u. However, it may
not be taut and, in this case, we have to replace it by its corresponding taut path (lines
7-8), which is the shortest path in the same homotopy class as defined in (Bhattacharya,
Likhachev, & Kumar, 2012). It may be possible that the new taut paths contain crossings
and, in this case, we use the procedure described in Section 2.3 to remove all crossings (line
10).

For example, let us consider the precedence graph GΠ displayed in Fig. 4. This graph
contains two different elementary cycles.

• Let us suppose that RemoveCycle is called with c = 〈(h, π1), (b, π1), (d, π1), (d, π2),
(b, π2), (h, π2), (h, π1)〉. The vertical edge of c that reaches π1 is ((h, π2), (h, π1)).
Hence, the new path π′1 is composed of the prefix of π1 that ends on h and the suffix
of π2 that starts from h, i.e., π′1 = 〈a1, h, g, t2〉. The vertical edge of c that reaches π2

is ((d, π1), (d, π2)). Hence, the new path π′2 is composed of the prefix of π2 that ends
on d and the suffix of π1 that starts from d, i.e., π′2 = 〈a2, d, e, t1〉. These two paths
are not taut, and their associated taut paths are 〈a1, g, t2〉 and 〈a2, t1〉.
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Algorithm 2: BuildSolution(m,Π)

Input: A bijection m : A → T and a set Π of n paths such that, ∀a ∈ A, Π
contains a path from a to m(a)

Output: A solution to the NC-AMAPF problem
1 Remove crossings from Π as explained Section 2.3
2 while GΠ contains cycles do
3 Search for an elementary cycle c in GΠ

4 while there exists a path πi involved in c such that #inc(πi) > 1 do
5 Let πi,1 be the longest prefix of πi such that ∀w ∈ πi,1, w 6∈ inc(πi)
6 Let πi,2 be the longest suffix of πi such that ∀w ∈ πi,2, w 6∈ outc(πi)
7 Let πi,3 = 〈u1, . . . , uk〉 be the sub-path of πi such that πi = πi,1.πi,3.πi,2
8 Let c′ be the sub-path of c that starts on (u1, πi) and ends on (uk, πi)
9 Replace c′ with 〈(u1, πi), (u2, πi), . . . , (uk, πi)〉

/* For each path πi involved in c, we have #inc(πi) = #outc(πi) = 1 */

10 Π← RemoveCycle(Π, c)

11 Update m with respect to Π and return (m,Π)

• Let us suppose that RemoveCycle is called with c = 〈(b, π1), (d, π1), (d, π2), (b, π2),
(b, π1)〉. The vertical edge of c that reaches π1 is ((b, π2), (b, π1)). Hence, the new path
π′1 is 〈a1, h, b, h, g, t2〉. The vertical edge of c that reaches π2 is ((d, π1), (d, π2)). Hence,
the new path π′2 is 〈a2, d, e, t1〉. These two paths are not taut, and their associated
taut paths are 〈a1, g, t2〉 and 〈a2, t1〉.

It may be possible that new deadlocks are introduced by Algorithm 1, either when paths
are replaced with taut paths, or when crossings are removed. In this case, we have to call
again Algorithm 1 in order to remove them. The following property ensures that such an
iterative process eventually stops.

Property 2. Let Π′ = RemoveCycle(Π, c). We have:
∑

πi∈Π |πi| >
∑

π′
i∈Π′ |π′i|

Proof. Let us first note that the cycle c necessarily contains at least two horizontal edges
because vertical edges correspond to total order relations that cannot contain cycles.

Now, let us consider Algorithm 1 without lines 7-8 (i.e., non taut paths are not replaced
with taut paths). In this case, every horizontal edge of c no longer appears in the new
paths and we have

∑
πi∈Π |πi| =

∑
π′
i∈Π′ |π′i| +

∑
〈(u,πi),(v,πi)〉⊂c |uv|. As c contains at least

two horizontal edges, we have
∑

πi∈Π |πi| >
∑

π′
i∈Π′ |π′i|.

Finally, let us consider Algorithm 1 with lines 7-8. Replacing a non taut path with a
taut path can only reduce the length of the path because a taut path is the shortest path
within the same homotopy class. This may introduce some crossings, but we have shown
in (Peng et al., 2021) that path length sums can only be reduced when removing crossings.
Hence, we still have

∑
πi∈Π |πi| >

∑
π′
i∈Π′ |π′i|.

Algorithm 2 exploits Algorithm 1 to build a valid solution given a set of paths that
may contain crossing paths or deadlocks. It first removes crossing paths using the approach
described in Section 2.3 (line 1). Then, while the precedence graph GΠ contains cycles,
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a1, π1 b, π1 g, π1 d, π1 t1, π1

a2, π2 e, π2 b, π2 d, π2 f, π2 t2, π2

a3, π3 f, π3 e, π3 t3, π3

a1, π1 b, π1 g, π1 d, π1 t1, π1

a2, π2 e, π2 b, π2 d, π2 f, π2 t2, π2

a3, π3 f, π3 e, π3 t3, π3

Figure 7: Illustration of Algorithm 2. Left: A precedence graph with an elementary cycle
c displayed in green. inc(π2) = {e, d}, outc(π2) = {b, f}, π2,3 = 〈e, b, d, f〉. Right:
The precedence graph obtained after replacing the sub-path c′ from (e, π2) to
(f, π2) (displayed in yellow on the left) with 〈(e, π2), (b, π2), (d, π2), (f, π2)〉.

it searches for an elementary cycle c (with a simple depth-first-search, for example) and
iteratively simplifies c until #inc(πi) = #outc(πi) = 1 for every path πi involved in c (lines
4-9). To simplify c, we search for a path πi such that #inc(πi) = #outc(πi) > 1, and we
shortcut c by replacing its sub-path that goes from the leftmost vertex u1 ∈ inc(πi) to the
rightmost vertex uk ∈ outc(πi) with the sub-path of πi that joins u1 to uk. This removes
at least one vertex from both inc(πi) and outc(πi). An example is depicted in Fig. 7. In
some cases, the number of paths involved in c is also decreased, but this number cannot
become smaller than two as c still contains at least two vertical edges (one that ends on u1

and one that starts from uk) and a vertical edge necessarily involves two different paths.
Hence, the loop lines 4-9 is ensured to reach a cycle c such that #inc(πi) = #outc(πi) = 1
for every path πi ∈ Πc in at most v/2 − 2 iterations, where v =

∑
πi∈Πc

#inc(πi) is the
initial number of vertical edges in c. Finally, the cycle is removed by using Algorithm 1
(line 10). Property 2 ensures that the loop lines 2-9 is performed a finite number of times:
As each cycle removal decreases the total path length, the process necessarily stops with a
deadlock free situation.

3.2 Computation of Makespan Bounds from LSAP and LBAP Solutions

Let us now show how to compute lower and upper bounds for our NC-AMAPF problem by
solving assignment problems in GA,T . We have shown in (Peng et al., 2021) that we can
remove all crossings from the optimal solution of LSAP without changing the sum of all se-
lected path lengths. Let mLSAP : A → T be the optimal solution of LSAP without crossings,
and ΠLSAP be the corresponding set of paths, i.e., ΠLSAP = {sp(a,mLSAP (a)) : a ∈ A}.
Similarly, let mLBAP denote the optimal solution of LBAP and ΠLBAP = {sp(a,mLBAP (a)) :
a ∈ A}.

The following property shows us that sLSAP = (mLSAP ,ΠLSAP ) may be used to build a
solution of the NC-AMAPF problem.

Property 3. The precedence graph GΠLSAP
contains no cycle.

Proof. Let us suppose that GΠLSAP
contains cycles. In this case, we could use Algorithm 2

to remove these cycles. However, this would decrease the sum of all path lengths, which is
in contradiction with the fact that mLSAP minimizes the sum of all path lengths.
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Hence, sLSAP is a solution of our NC-AMAPF problem and, therefore, makespan(sLSAP )
is an upper bound.

sLBAP = (mLBAP ,ΠLBAP ) provides a lower bound to our NC-AMAPF problem and
it is the optimal solution whenever paths in ΠLBAP do not cross nor do they share ver-
tices. However, sLBAP is not a solution if ΠLBAP contains crossings or deadlocks. In
this case, we may use Algorithm 2 to remove all crossings and deadlocks (in other words,
buildSolution(sLBAP ) is a solution) so that makespan(buildSolution(sLBAP )) is an
upper bound.

To summarize relations between bounds, if opt denotes the optimal makespan of our
NC-AMAPF problem, we have:

opt ≤ makespan(sLSAP )

max
πi∈ΠLBAP

|πi| ≤ opt ≤ makespan(buildSolution(sLBAP ))

However, makespan(sLSAP ) and makespan(buildSolution(sLBAP )) are not comparable.

3.3 Experimental Evaluation

Algorithms have been implemented in Python.
In Fig. 8, we display the gap between the optimal makespan opt and the lower bound

lbLBAP = maxπi∈ΠLBAP
|πi|, the upper bound ubLSAP = makespan(sLSAP ), and the upper

bound ubLBAP = makespan(buildSolution(sLBAP )). This gap is computed as a percent-
age (i.e., we display 100 ∗ b−optopt for each bound b, where opt is computed with the exact
methods introduced in Section 5), and on average for 30 instances per combination (n, o, d).
lbLSAP is usually rather close to the optimal solution, especially for U instances, and the
bound tends to move away from the optimal solution when increasing n, especially for B
and A instances. The number of obstacles o does not seem to have a strong influence on
the quality of the lower bound.

There is no clear winner between the two upper bounds. When d = U , ubLBAP tends
to be closer to opt than ubLSAP , whereas when d = B the two bounds are very close and,
when d = A, ubLSAP is better than ubLBAP for 8 (o, n) combinations (among 12). In Fig. 9,
we display scatter plots to compare the two upper bounds on a per instance basis when
n = 30. For U instances, the gap of ubLBAP is equal to 0% for 8 instances whereas it is
greater than 125% for two instances, and the gap of ubLSAP is equal to 0% for 9 instances
whereas it is equal to 112% for one instance. For B instances, gaps are always smaller than
25%. For both B and A instances, the difference between the two bounds is less important
than for U instances.

In Table 1, we display the time needed to compute all shortest paths from anchor points
to targets, and the time needed to compute the two upper bounds (when excluding the
time needed to compute paths). For U instances, we always spend more time to compute
all shortest paths than to compute a bound. Times increase when increasing the number
of obstacles o or the number of robots n, but bounds are always computed within a few
tenths of a second. For A instances, the time needed to compute ubLSAP is larger than for
U instances (e.g., 0.4s instead of 0.02s when n = 30 and o = 20), and this time is even
larger for B instances (e.g., 1.4s when n = 30 and o = 20). This comes from the fact
that the optimal solution of LSAP for U instances nearly never contains crossing paths,
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Figure 8: Gap in percentage (y-axis) between the optimal makespan and lbLBAP , ubLSAP ,
and ubLBAP when n ∈ {10, 20, 30} (x-axis), o ∈ {5, 10, 15, 20} (from left to right),
and d = U (Top), B (Middle), or A (Bottom). Every point corresponds to an
average value over 30 instances.

whereas it more often contains crossing paths for A and B instances. For example, when
n = 30 and o = 20, the average number of crossing paths is equal to 0.6 (resp. 3.2 and
10) for U (resp. A and B) instances (and replacing these crossing paths by non-crossing
paths is time-consuming). This conclusion also holds for ubLBAP , as we can observe that
the computation time also increases with m and o for all types of instances. However,
compared to ubLSAP , ubLBAP takes more time, notably, when n = 30, this difference can go
up to several seconds for A and B instances. We know that the optimal solution of LBAP
is computed without considering the non-crossing constraints, so there are more crossings
to remove. When n = 30 and o = 20, this average number is equal to 11.3 (resp. 44.2 and
58.1) for U (resp. A and B) instances. We do not report times needed to solve LBAP (and
compute lbLBAP ): this time is always smaller than 0.03s and is negligible with respect to
other times.

In conclusion, ubLSAP is more efficiently computed than ubLBAP , while the two bounds
are rather comparable in quality. Therefore, we use the result of ubLSAP as an initial upper
bound.
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Table 1: Time (in seconds) needed to compute all shortest paths (tpath), and the two bounds
ubLSAP and ubLBAP (when excluding the time needed to compute shortest paths),
on average over the 30 instances per combination (n, o, d).

n=10 n=20 n=30
o=5 o=10 o=15 o=20 o=5 o=10 o=15 o=20 o=5 o=10 o=15 o=20

d=U

tpath 0.03 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4
ubLSAP 0.0 0.0 0.01 0.01 0.0 0.01 0.01 0.01 0.01 0.01 0.01 0.02
ubLBAP 0.02 0.03 0.1 0.1 0.05 0.1 0.1 0.2 0.1 0.2 0.3 0.3

d=B

tpath 0.03 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4
ubLSAP 0.01 0.04 0.1 0.2 0.04 0.2 0.5 0.7 0.1 0.4 1.0 1.4
ubLBAP 0.1 0.3 0.7 1.3 0.3 0.8 2.4 4.3 0.7 1.8 4.9 8.3

d=A

tpath 0.03 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4
ubLSAP 0.0 0.0 0.03 0.02 0.01 0.05 0.1 0.1 0.04 0.1 0.3 0.4
ubLBAP 0.04 0.1 0.6 0.3 0.2 0.4 1.0 1.4 0.4 1.0 2.4 3.8

4. Improving the Upper Bound with VNS

We have introduced in (Peng et al., 2021) a VNS approach for improving the solution
sLSAP that minimizes the sum of costs: the neighborhood of a solution (m,Π) contains
every solution (m′,Π′) such that m′ is a matching obtained by permuting the targets of k
anchor points in m, and Π′ = {sp(a,m′(a)) : a ∈ A} does not contain crossing paths; k is
initialized to 2 and it is incremented each time the current solution is locally optimal; k
is reset to 2 each time an improving move has been found; the search is stopped when k
exceeds a given upper bound kmax or when a time limit is reached.

373



Peng, Simonin, Solnon

Algorithm 3: newVNS(m,Π, kmax )

Input: an initial solution (m,Π), and a parameter kmax ∈ N
Output: an improved solution (m,Π)

1 k ← 2
2 while k ≤ kmax do
3 let πmax be the path of Π with the latest arrival time and amax its anchor point
4 C ← {π ∈ Π : π is in the same connected component as πmax in GΠ}
5 if #C < k then
6 add to C the k −#C paths whose anchors are the closest to amax

7 for each S ⊆ C such that #S = k and πmax ∈ S do
8 let AS be the set of anchor points of paths in S
9 for each permutation σ : AS → AS such that

∀a ∈ AS , |sp(a,m(σ(a)))| < makespan(m,Π) do
10 for each a ∈ AS do
11 compute the set Πa of every taut path π from a to m(σ(a)) such that

|π| < makespan(m,Π), and π does not cross any path in Π \ S
12 for each set S ′ which contains exactly one path of Πa, ∀a ∈ AS do
13 if Π′ = (Π \ S) ∪ S ′ is valid and improving then
14 replace Π with Π′ and update m consequently
15 set k to 2, and go to line 2

16 increment k

17 return (m,Π)

To adapt this VNS to the case where robots have physical shapes, we simply have to
forbid deadlocks and to modify the computation of the makespan by integrating waiting
times in case of shared vertices, as defined in Sections 2.4 and 2.5. This VNS approach is
denoted oldVNS.

In (Peng et al., 2021), we showed that optimal solutions may contain non-shortest
paths. For some instances (in particular those generated with d 6= U), optimal solutions
widely use non shortest paths and have much shorter makespans than solutions computed
with shortest paths only (as done by oldVNS). For this reason, we introduce a new VNS
approach, denoted newVNS, which takes into account non-shortest paths as described in
Algorithm 3.

newVNS starts the search from an initial solution (m,Π) (which may be sLSAP or
BuildSolution(sLBAP ), for example). At each iteration of the loop lines 2-16, it ex-
plores the neighborhood of the current solution (m,Π). This neighborhood contains couples
(m′,Π′) such that Π′ is obtained from Π by replacing a set S of k paths with a set S ′ of k
new paths (which are not necessarily shortest paths). Obviously, S must contain the path
πmax with the latest arrival time (corresponding to the makespan), as this is a mandatory
condition to reduce the makespan. The search for S ′ is done in four steps:
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Step 1 (lines 4-6): As it is time-consuming to compute new paths, the neighborhood is
deliberately reduced by constraining paths of S to belong to a limited set of candidate
paths C which contains all paths in the same connected component as πmax in GΠ. If
there are less than k paths in C, it is completed by selecting the paths whose anchor
points are the closest to the anchor point of πmax .

Step 2 (lines 7-9): For each subset S of k paths in C (including πmax ), we enumerate
every permutation σ of the k anchor points of S such that the length of the shortest
path from any of these k anchor points a to m(σ(a)) is smaller than the current
makespan (otherwise the permutation cannot lead to a shorter makespan).

Step 3 (lines 10-11): For every anchor point a involved in S, we compute the set Πa of
all paths from a to the new target m(σ(a)) associated with a, while limiting the search
to taut paths that do not cross paths of Π \ S and that have a length smaller than
the current makespan.

Step 4 (lines 12-15): We search for a new set S ′ of k paths in Πa such that the k new
paths are non-crossing and the makespan of (Π\S)∪S ′ is smaller than the makespan
of Π. If such an improving set of paths is found, the current solution is updated, and
a new improving move is searched with k = 2.

If no improving neighbor is found in the loop lines 7-15, then k is increased to enlarge the
neighborhood.

4.1 Experimental Evaluation

Algorithms have been implemented in Python3.
In Fig. 10, we display the evolution of the gap to optimality (in percentage) of bounds

computed by oldVNS and newVNS when kmax ∈ {1, 3, 5, 7} and when the initial solution
is sLSAP . oldVNS and newVNS both return sLSAP when kmax = 1 as k is initialized to
2 and the search is stopped whenever k > kmax . Increasing kmax decreases the makespan,
but we observe larger improvements from 1 to 3 than for 3 to 5 and then to 7. We have
made experiments with values of kmax larger than 7 and observed that this does not allow
us to significantly improve the makespan.

For U instances, we obtain a better upper bound with oldVNS which only considers
the shortest paths, while newVNS works better for B and A instances. This difference is
due to two reasons. First, compared to oldVNS, newVNS takes into account non-shortest
paths. For A and B instances, we more often need to use non shortest paths to improve the
solution than for U instances. Second, for the neighborhood construction, in newVNS, we
restrained the number of anchor points, or the location ranges where they can be, as well
as the location ranges of targets are fixed. For B instances, the anchor points and targets
are located in a bipartite way, so the optimal solution could also follow a symmetric match
along the Y axis. This means that our new neighborhood is smaller but more effective than
the previous one. A instances also follow a bit of bipartite symmetry, so it works too. For U
instances, as anchors and targets are uniformly distributed, exchanging with nearby points

3. Our implementation is publicly available at https://gitlab.inria.fr/xipeng/

tethered-amapf-jair2023.git.
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Figure 10: Evolution of the gap to optimality in percentage with respect to time (in seconds)
for oldVNS (top row) and newVNS (bottom row) when kmax ∈ {1, 3, 5, 7}: av-
erage value over 30 instances when n = 30, o = 20, and d = U (left), B (middle),
and A (right). Scales on y-axis are different for U, B, and A instances (from the
left to the right), whereas they are identical for oldVNS and newVNS.

can easily violate the non-crossing constraint and it becomes harder to get a better solution:
in this case, performing an exhaustive search among all anchor points (as oldVNS does)
is more effective.

Since oldVNS and newVNS show complementary performance, we combine them by
running oldVNS first then followed by newVNS (each step is limited to 60s) in order to
improve the robustness when tackling different instances, and we call this combined method
combinedVNS. The switching time of 60 seconds is chosen to find a compromise between
the quality of the solution and the time required for resolution. From Fig. 10, we can
observe that when oldVNS and newVNS are run individually, the optimality gap curves for
each tend to converge around 60 seconds. We have tested other combination methods, and
this sequential combination performs better in terms of robustness and efficiency.

In Fig. 11, we show the evolution of the gap to optimality (in percentage) of bounds
computed by oldVNS, newVNS, and combinedVNS when kmax = 7. For U instances,
we see that running newVNS after oldVNS slightly improves the bound. For B instances,
the curve drops slowly in the first phase (which corresponds to oldVNS), until the 60s time
limit is reached, then it continues to improve the bound, and even reaches a level lower than
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Figure 11: Evolution of the gap to optimality in percentage with respect to time (in seconds)
for combinedVNS (which runs oldVNS for 60s and then newVNS for 60s)
when kmax = 7: average value over 30 instances when n = 30, o = 20, d = U
(left), B (middle), and A (right).

the simple newVNS does. This conclusion also holds for A instances, and we can see that
combinedVNS has a clear advantage over oldVNS and newVNS.

5. Computation of the Optimal Solution with CP

In this section, we first introduce a relaxed CP model, where interactions between more than
two paths are ignored. Then, we show how to lazily generate constraints due to interactions
between more than two paths in order to compute the optimal solution, and we introduce a
dichotomous approach to reduce the number of candidate paths that must be pre-computed.
Finally, we report experimental results.

5.1 Relaxed CP Model

As pointed out in (Peng et al., 2021), the optimal solution may use non-shortest paths.
Hence, to find the optimal solution we must compute all relevant paths that may belong to
the optimal solution. These paths must be taut, elementary, and non self-crossing. As there
is an exponential number of paths with respect to the number of obstacle vertices, we add
a limit l to the length of the paths. Obviously, we can set l to the best known upper bound,
as the makespan cannot be smaller than the length of the longest selected path. Let ub
denote this best known upper bound, computed with approaches described in the previous
sections. By default, we assume that l = ub (we shall describe in Section 5.3 a dichotomous
approach where l is set to values smaller than ub). Given a length bound l, Πl denotes the
set of all taut, elementary, and non self-crossing paths of length smaller than l (see (Peng
et al., 2021) for more details on how to compute this set). Paths in Πl are numbered from
1 to #Πl. For each path π ∈ Πl, a(π) and t(π) denote the anchor point and the target of
π, respectively.

Our CP model uses the same variables as in (Peng et al., 2021): for each anchor point
ai ∈ A, the integer variable Ti represents the target matched with ai and the integer variable
Pi represents the path used to reach Ti from ai. The initial domains of these variables are

377



Peng, Simonin, Solnon

Algorithm 4: lazyApproach(ub,Πl)

Input: an initial upper bound ub, and a set Πl of candidate paths
Output: the optimal makespan

1 let M be the CP model described in Section 5.1
2 while M has a solution s do
3 if G{s(Pi):ai∈A} contains a cycle c then

4 add to M a nogood constraint that forbids c
5 else
6 let π be the longest path in G{s(Pi):ai∈A}
7 if |π| < ub then ub← |π|; add to M the constraint Obj < ub;
8 else add to M a nogood constraint that forbids π;

9 return ub

D(Ti) = {t(π) : π ∈ Πl ∧ a(π) = ai} and D(Pi) = {π ∈ Πl : a(π) = ai}. Finally, an integer
variable Obj represents the makespan and its domain is D(Obj ) = [0, ub[.

Like in (Peng et al., 2021), we channel Ti and Pi variables by posting Ti = t(Pi), for
each anchor point ai ∈ A, and we post an allDifferent({Ti : ai ∈ A}) constraint.

We introduce new variables for taking into account waiting times due to vertices shared
by two paths: for each pair of anchor points {ai, aj} ⊆ A, the integer variable Mi,j represents
the makespan of the two paths Pi and Pj , including the waiting times due to vertices shared
by Pi and Pj , i.e., the length of the longest path in the precedence graph G{Pi,Pj}. The
domain of this variable is D(Mi,j) = [0, ub[.

Pi and Mi,j variables are related thanks to table constraints. For each pair of anchor
points {ai, aj} ⊆ A, we pre-compute the table Ti,j that contains every triple (πi, πj , x) ∈
D(Pi)×D(Pj)×N such that (i) t(πi) 6= t(πj), (ii) path πi does not cross path πj , (iii) G{πi,πj}
has no cycle, (iv) x is the length of the longest path in G{πi,πj}, and (v) x < ub. For each
pair of anchor points {ai, aj} ⊆ A, we post the table constraint (Pi, Pj ,Mi,j) ∈ Tij , and we
post the constraint Obj ≥ Mi,j . As Pi and Pj are channeled with Ti and Tj , condition (i)
ensures that Ti 6= Tj and, therefore, the allDifferent({Ti : ai ∈ A}) constraint is redundant.
However, we keep it because it speeds up the solution process.

The solution that minimizes Obj is a lower bound of the optimal makespan because some
constraints have been relaxed. Indeed, table constraints ensure that there is no deadlock
between two paths and Obj takes into account waiting times due to pairs of paths that
have common vertices. However, deadlocks may be due to a circular dependency between
more than two paths. Also, in the case of dependency chains of more than two paths, the
makespan may be larger than all Mi,j variables (e.g., when π1 and π2 share a vertex and
π2 and π3 share another vertex, the actual makespan may be larger than M1,2 and M2,3).
In the next section, we introduce an approach that lazily generate constraints to compute
the optimal solution.
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5.2 Lazy Constraint Generation

Lazy constraint generation is often used when there are too many constraints. This is the
case for our problem, as we should add a constraint for each possible subset of anchor
points in order to ensure that the paths associated with these anchor points do not create
deadlocks4. In Algorithm 4, we describe an approach based on lazy constraint generation.
We enumerate all solutions of the model described in Section 5.1. Each time a solution
s is found, we compute the precedence graph G{s(Pi):ai∈A} (where s(X) denotes the value
assigned to a variable X in solution s). If s implies a deadlock, i.e., the precedence graph
contains a cycle, we search for a cycle c in the precedence graph, we compute the set of
anchor points involved in c, and we add a nogood constraint to prevent the search from
enumerating again the paths associated by s to these anchor points (lines 3-4). If there is no
deadlock, we search for the longest path π in the precedence graph (line 6): the makespan
corresponds to the length of this path. If this makespan is smaller than ub, we have found
a new improving solution and we constrain Obj to be smaller than this makespan (line 7).
Otherwise, we search for all anchor points involved in π and we add a nogood constraint to
prevent the search from enumerating again the paths associated by s to these anchor points
(line 8).

5.3 Dichotomous Approach

A main issue is related to the initial bound l. This bound limits the length of the paths
computed in the set Πl used to generate the relaxed CP model. The larger l, the more
time needed to compute paths in Πl , the larger the domains of Pi variables and the more
triples in Ti,j tables. The upper bound ub computed with combinedVNS is often quite
close to the optimal solution (the average gap is smaller than 10% for U and B instances,
and smaller than 20% for A instances when kmax = 7). However, in most cases, ub is
much larger than the longest selected path in the optimal solution because waiting times
are added. As a consequence, when setting l to ub, a considerable number of paths of Πl

do not contribute to the optimal solution. To avoid this unnecessary computation, we use
a dichotomous approach for setting l, as described in Algorithm 5.

lb and ub are the lower and upper bounds of Obj, respectively (lb is initialized to
makespan(sLBAP ) and ub to an upper bound computed by LSAP or combinedVNS). α is
a parameter used to control when to switch from dichotomous search to a classical search.
While the gap between ub and (lb + ub)/2 is larger than α ∗ ub, we set l to (lb + ub)/2 ,
we compute the set Πl and launch lazyApproach (lines 2-4). If the bound returned by
lazyApproach is smaller than l, then we have found the optimal solution (line 5); other-
wise, we increase the lower bound of Obj to l as we know that the optimal solution is greater
than or equal to l (line 6). When the gap between ub and (lb+ub)/2 becomes smaller than
α ∗ ub, we stop the dichotomous approach and run lazyApproach with the set Πub of all
paths of length smaller than ub.

4. Another possibility is to design a global constraint for ensuring that the selected set of paths does not
contain deadlocks. We have implemented a propagator for this global constraint, that incrementally
detects cycles in the precedence graph. However, experimental results showed us that this approach is
less efficient than a lazy approach, on most instances.
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Algorithm 5: dichotomousApproach(lb, ub, α)

Input: a lower bound lb, an upper bound ub, and a parameter α ∈ [0, 1]
Output: the optimal makespan

1 while (ub − (lb + ub)/2 ) > α ∗ ub do
2 l ← (lb + ub)/2
3 Compute the set Πl of all paths of length smaller than l
4 ub ← lazyApproach(ub, l)
5 if ub ≤ l then return ub;
6 lb← l

7 Compute the set Πub of all paths of length smaller than ub
8 return lazyApproach(ub,Πub)
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5.4 Experimental Results

Algorithm 4 has been implemented in Java, using the Choco CP library (Prud’homme,
Fages, & Lorca, 2016). Algorithm 5 has been implemented in Python.

The sequential lazy approach described in Section 5.2 is denoted seq and the dichoto-
mous approach described in Section 5.3 is denoted dicho. For dicho, the rate α is set to
0.05 (i.e., we switch to seq when the gap between ub and (lb + ub)/2 is smaller than or
equal to 5%). For each approach x ∈ {seq,dicho}, the bound l is either initialized with
makespan(sLSAP ) (denoted lsap+x) or with the bound computed by combinedVNS with
kmax = 7 (denoted vns+x).

In Fig. 12, we display the ratio of solved instances with respect to time for the four
approaches x+y with x ∈ {seq,dicho} and y ∈ {lsap,vns} (CPU times include the time
for computing the initial bound l with y). For each instance type d ∈ {U,B,A}, there are
360 instances (30 instances per value of o ∈ [5, 10, 15, 20] and n ∈ [10, 20, 30]). dicho is more
successful than seq. This is more particularly sensible when the upper bound is computed
with lsap as, in this case, the initial upper bound is much greater. When the upper bound
is computed with vns, vns+seq and vns+dicho obtain very close results for U and B
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Figure 13: Evolution of the gap to optimality (in percentage) with respect to time for
n = 30, o ∈ {5, 10, 15, 20} and d = U (Top), B (Middle), or A (Bottom).

instances. However, vns+dicho is much more successful than vns+seq for A instances
for time limits greater than 100s (corresponding to the time spent by combinedVNS to
compute the upper bound when kmax = 7). This comes from the fact that the upper bound
returned by combinedVNS is quite close to the optimal solution for U and B instances
(less than 5% for U instances, and less than 6% for B instances), whereas the gap is equal
to 18% for A instances (see Fig. 11).

In Fig. 13, we display the evolution of the gap to optimality (in percentage) with respect
to time. For lsap+seq and lsap+dicho, the curve is horizontal at the beginning of the
solution process. This corresponds to the time needed to compute paths of Πl. This
horizontal part is shorter for lsap+dicho (especially for B and A instances), as paths are
computed up to (lb + ub)/2 instead of ub for lsap+seq. vns+seq and vns+dicho have
identical gaps at the beginning of the search process. This corresponds to the 120 seconds
spent by combinedVNS to improve the upper bound. After 120s, vns+dicho has smaller
gaps than vns+seq, and it is the best performing approach for most instances.

An NC-AMAPF instance has a parameter dt which corresponds to the time needed by a
robot to let another robot pass before it at some shared vertex. In all experiments reported
in this paper, this parameter has been set to four. We made experiments with other values
of dt and observed that it has an impact on instance hardness: the higher dt, the greater the
upper bound (computed with VNS) and, therefore, the more expensive the computation of
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all paths of length smaller than the upper bound. However, the relative performance of the
different considered approaches are not drastically changed when dt is changed.

6. Conclusion

In this work, we extend previous work on non-crossing AMAPF by considering the impact
of robots’s physical size. We show that motion constraints can be translated into precedence
constraints, that imply waiting times when computing the makespan. We prove that the
solution of LSAP cannot contain deadlocks and always provides a valid upper bound for
the new problem. We propose as well an alternative way to calculate an upper bound from
the LBAP solution. Experimental results show us that the two upper bounds have rather
similar qualities but the LSAP upper bound is more quickly computed.

We introduce a novel VNS approach that also considers non-shortest paths as neighbors,
and we show that it has complementary performance with the VNS approach of (Peng et al.,
2021). We propose to combine them sequentially to improve robustness in practice. To solve
the problem optimally, we firstly introduce a relaxed CP model that disregards interactions
between more than two robots, thus it provides theoretically a lower bound. Then a lazy
constraint generation approach is applied to compute the optimal solution.

In this problem, one of the main issues affecting efficiency is related to the initial upper
bound used to generate the CP model. The larger the upper bound, the greater the num-
ber of candidate paths and the heavier the CP model, which requires more time to solve
optimally. To avoid unnecessary path computations, we adopt a dichotomous approach to
choose an appropriate upper bound. Experimental results on randomly generated instances
have shown us that a sequential combination of VNS and CP enables efficient computation
of solutions for this novel variant of AMAPF problem. Additionally, we have introduced pa-
rameters in each method to effectively control efficiency and solving time, thereby enhancing
its generalization capability for solving diverse instances.

In this work, we adopted a strategy of enumerating all candidate paths that could
contribute to the solution. The results show that this step can be very expensive for some
difficult instances, especially when the gap between the upper bound solved by VNS and
the lower bound by LBAP is large. Instead of precomputing all paths and then selecting
compatible ones, we could directly search for a solution in the visibility graph. Geometric
constraints associated with paths, such as non-intersecting, as well as their precedence
relationships could be partially relaxed in the model (a path is a sequence of edges, and the
constraints can be locally satisfied at each vertex by imposing constraints on edge selection).
We plan to evaluate the interest of this approach for computing tighter bounds.

Also, to cope with real industrial constraints, we plan to consider heterogeneous velocity
in robots’ motion model when planning trajectory. In addition, the models and methods
introduced in this paper are based on the hypothesis of a planar workspace, which are not
easily adaptable to curved surfaces. It will be interesting to extend this work on 3D meshes.
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