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Abstract

Deep reinforcement learning has achieved impressive results in recent years; yet, it is
still severely troubled by environments showcasing sparse rewards. On top of that, not all
sparse-reward environments are created equal; in other words, they can differ in the presence
or absence of various features, with many of them having a great impact on learning. In
light of this, the present work puts together a literature compilation of such environmental
features, covering particularly those that have been taken advantage of and those that
continue to pose a challenge. We expect this effort to provide guidance to researchers for
assessing the generality of their new proposals and to call their attention to issues that
remain unresolved when dealing with sparse rewards.

1. Introduction

In recent years, deep reinforcement learning (DRL) has achieved remarkable results in a
number of domains, such as: learning to play Go at a superhuman level only from self-play
(Silver et al., 2017), defeating professional players in heads-up Poker (Heinrich & Silver,
2016), reaching Grandmaster level in Starcraft II (Vinyals et al., 2019), surpassing the scores
of non-expert human players in all 57 Atari games belonging to a famous benchmark suite
(Puigdomenech Badia et al., 2020a), as well as performing complex robotic tasks (Levine
et al., 2015; Gu et al., 2017; Rajeswaran et al., 2018; Haarnoja et al., 2019).

Despite this success, there are still various settings in which DRL struggles to perform
competently. One of these corresponds to sparse-reward environments; that is, domains
where rewards are zero everywhere except in few special states. The main problem with
such a lack of reinforcement is that it gives DRL agents no reason to prefer one action
over another. And this in turn causes them to generally adopt the sensible strategy of
trying every action evenly at random, which sadly leads nowhere in large and complex
environments. A famous example of an environment with very sparse rewards is the Atari
game Montezuma’s revenge. In the seminal work of Mnih et al. (2015), this was one of the
few games for which DQN showed no competence at all; indeed, this learner never scored
above zero throughout training (see Figure 1). For many years, otherwise highly successful
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general-purpose end-to-end DRL algorithms (e.g., Hessel et al., 2018; Espeholt et al., 2018;
Horgan et al., 2018) were unable to even beat inexperienced human players in this game.
It is only fairly recently that generic approaches (e.g., Puigdomenech Badia et al., 2020b,
2020a) have hit that milestone. These state-of-the-art methods report a score of about
11k points, which is more than double that of an amateur player and roughly sufficient to
complete the first level of the game. Nevertheless, these results are still far from the best
machine learning solution (Ecoffet et al., 2021), which obtains around 40k points without
prior domain knowledge; and they are not even close to the human world record of 1.3M
points (Ata, 2021).

Over the years, resounding progress was also made by numerous DRL algorithms
designed specifically for handling sparse rewards (Bellemare et al., 2016; Shelhamer et al.,
2016; Osband et al., 2016; Kulkarni et al., 2016; Pathak et al., 2017; Florensa et al., 2017;
Vezhnevets et al., 2017; Racaniere et al., 2017; Machado et al., 2017; O’Donoghue et al.,
2018; Stanton & Clune, 2018; Sukhbaatar et al., 2018; Veeriah et al., 2018; Florensa et al.,
2018; Nachum et al., 2018; Burda et al., 2019b; Eysenbach et al., 2019b; Choi et al., 2019;
Savinov et al., 2019). For instance, RND (Burda et al., 2019b) was the first end-to-end
solution to reach the current state-of-the-art score of around 11k points in Montezuma’s
revenge (a couple of years earlier than general-purpose methods). However, despite their
meritorious achievements, one lingering issue that affects most of these algorithms is their
lack of generality. In other words, their applicability and effectiveness depend heavily on the
specific features of the environment being tackled. This fact has already been pointed out
by Taiga et al. (2020), though phrased slightly differently: good performance in a given hard
exploration environment is not indicative of good performance in other such environments.
To give an example, RND, although outstanding in Montezuma’s revenge, performs poorly
in worlds that contain distractors or that demand it to retrace its steps. Meanwhile, other
algorithms have specialized in exploiting particular environmental features. For instance,
reverse curriculum generation (Florensa et al., 2017) is a rather ingenious solution applicable
only in domains that are resettable and reversible.

To date, the knowledge of these environmental features that have a manifest impact
on the performance of deep reinforcement learning algorithms, especially in sparse-reward
environments, is found dispersed among independent studies. Thus, this work brings a
contribution by composing an overview of such features, with an emphasis on those whose
presence facilitates learning as well as those that make it more challenging. Importantly,
this study focuses exclusively on end-to-end single-agent reinforcement learning methods.
Therefore, other promising techniques (e.g., imitation learning, advice based learning, multi-
agent reinforcement learning) and algorithms (e.g., Baker et al., 2020; Ecoffet et al., 2021)
will mostly not be reviewed. Apart from providing a deeper understanding of the intricacies
of applying reinforcement learning in domains with sparse rewards, with this work we further
expect to offer guidance to researchers for assessing the generality of their newly proposed
solutions. To this end, our overview additionally provides detailed descriptions of how (i.e.,
what mechanisms) and why (i.e., which components of an algorithm confer a weakness) these
features affect learning. Then, equipped with such information, researchers could validate,
from a theoretical standpoint, if analogous mechanisms unfold within their approaches or if
they exhibit the same weaknesses. One last virtue of this study is that it pinpoints several
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Figure 1: Performances achieved by DQN after 50 million frames of experience across various
Atari games (disclosed by Mnih et al., 2015). It can be noticed that while this
method is highly successful in several tasks, it makes not the slightest progress in
the sparse-reward world of Montezuma’s revenge.

1183



Catacora Ocana, Capobianco, & Nardi

open areas of research, which correspond to features whose handling is still out of grasp for
existing algorithms.

2. Background

The next paragraphs provide important definitions concerning reinforcement learning.

2.1 Markov Decision Processes (MDPs)

MDPs (Howard, 1960) are a formalism for modeling sequential decision problems that
concisely encode the interactions between agents and their environments. An MDP is a
tuple ⟨S,A, T ,R, γ⟩, comprising:

• The set S of all states an environment can assume, which includes the set S0 ⊂ S of
initial states and the set SG ⊂ S of terminal states,

• The set A that contains every action an agent can execute,

• A probability distribution over transitions T : S ×A× S → [0, 1] that determines the
next state given the current state and action,

• A reward function R : S ×A× S → R ⊂ R that quantifies with a real scalar value the
immediate goodness of a transition,

• And a discount factor γ ∈ [0, 1] that weighs down the value of future rewards.

An MDP additionally satisfies the Markov property (Sutton & Barto, 1998), such that
the next state and reward depend solely on the state and action at the current time step t,
meaning that the following equality holds true for all feasible pairings of r ∈ R and s′ ∈ S:

Pr{Rt+1=r, St+1=s′|St, At} = Pr{Rt+1=r, St+1=s′|S0, A0, R0, ..., St, At} (1)

Unfortunately, it is often the case that an agent perceives only a small region of its world
at a time (i.e., it has partial observability). In those scenarios, rather than an MDP, it
is more convenient for analysis purposes to phrase the corresponding decision process as
a partially observable MDP (POMDP), which is expressed as the tuple ⟨S,A,O, T ,R, γ⟩.
Where: O is the set of all observations, T is a probability distribution over transitions
T : S ×O ×A× S ×O → [0, 1] that determines the next state and next observation given
the current state and action, while S,A,R, γ maintain the definitions offered for an MDP.

Relative to an MDP, another important concept is that of a policy, which is a generally
stochastic mapping from states to actions π(a ∈ A|s ∈ S) that fully encodes the decision-
making behavior of an autonomous agent. A similar notion also exists in a POMDP; however,
here it is best to be more general and instead represent a policy as a mapping from past
observations, actions and rewards to the present action.

2.2 Reinforcement Learning

Reinforcement learning (RL) is concerned with learning in MDPs without having an a priori
model of the domain (transition and reward functions). The main characteristics of RL are
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that learning is accomplished through raw experience by executing actions and receiving
rewards, and that learning is synonymous with the maximization of rewards collected over
time (Sutton & Barto, 1998). The most common objective of RL is to find at least one
of possibly many optimal policies π∗ for the underlying MDP. In this context, an optimal
policy is one that in every situation yields the highest sum of rewards, typically defined in
terms of the expected cumulative discounted reward (also known as expected return).

Formally, the return G, associated with a single rollout in which an agent is in state s
after t time steps and thenceforth enacts policy π to receive a sequence of future rewards
Rt+1, Rt+2, ..., is expressed as:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∑
k=0

γkRt+k+1 (2)

Naturally, the corresponding expected return is computed as the expectation E[·] over
all possible rollouts involving policy π and state s, as it is seen next:

Eπ[Gt|St = s] = Eπ

[∑
k=0

γkRt+k+1|St = s
]

(3)

The term Eπ[Gt|St = s] is also called the value of s under π. A function vπ(s) that
encodes this information for every state in S is known as a value function. By virtue of the
previous definitions, an optimal policy π∗ is then any one whose values are greater than or
equal to those of every other policy for every state, that is: vπ∗(s) ≥ vπ(s),∀s ∈ S ∧ ∀π ∈ Π;
where Π denotes the space of all plausible policies.

The former notion of value can also be extended to every state-action pair in S × A.
This produces an extremely helpful function called an action-value function or q-function,
which is formalized as:

qπ(s, a) = Eπ

[∑
k=0

γkRt+k+1|St = s,At = a
]

(4)

Given the previous framework, different approaches for solving RL problems then diverge
mainly on how they address the optimization task of finding a policy that maximizes the
expected return. A few broad methodologies include: temporal difference (Sutton, 1988),
policy gradient (Williams, 1992; Sutton et al., 1999a) and actor-critic (Konda & Tsitsiklis,
2000).

When the state or action space of a problem is too large or continuous, it is no longer
feasible to properly perform such an optimization in a tabular manner. In those cases, many
researchers have turned to deep reinforcement learning, which, in a nutshell, leverages deep
neural networks to better approximate the value functions or policies we wish to learn.

2.3 The Difficulty of Learning with Sparse Rewards

Whether working with classical or deep reinforcement learning, we will run into serious issues
when the chances of seeing a reward are next to nothing. To be more concrete, here we
refer strictly to the luck enjoyed by a uniform policy; that is, one in which every action has
an equal probability of being selected. Such low odds can emerge in a number of domains,
the most common situation being when every non-zero incentive is extremely far from any
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initial state (reward sparsity caused by distance). But other scenarios are possible too; for
instance, when a nearby reward has a fleeting existence spanning merely a few time steps
(reward sparsity caused by time).

In this work, we call any domain where the probability of reinforcement is minimal
a sparse-reward environment; and we can easily see why these are problematic. If every
incentive received by a learner is zero; then, from its perspective, the expected return has to
be flat. And here we have already hit a roadblock, because there is no meaningful way to
maximize a flat function; mathematically, it is an ill-defined problem. Or from the point
of view of a gradient descent optimizer, there are no gradients that could sensibly guide
the maximization of such a function. Arguably, the most rational thing to do at this point
is to consider that every state is equally rewarding, and ergo, that every action is equally
good. In other words, to develop an optimal policy that behaves uniformly. Ultimately, such
a policy traps us in an eternal loop of disappointment, as by our initial definition it has
virtually no chance of discovering an incentive; and hence, of wrinkling the landscape of the
expected return.

Notably, the previous recount perfectly illustrates how most reinforcement learning
algorithms respond to the absence of rewards, owing to two reasons. One, they are designed
with the sole objective of maximizing the expected cumulative discounted reward. That
is, the very deed we just said is impossible to do in a sparse-reward environment. And
two, they are endowed with far too basic exploration strategies (e.g., ϵ-greedy, Boltzmann
exploration, entropy regularization or action space perturbations). These, in the presence of
a flat expected return, likewise devolve into selecting actions evenly; therefore, they are of
no help in getting learners out of their entrapment.

3. Approaches to Reward Sparsity

DRL researchers have followed a wide range of avenues to find satisfactory solutions to
sparse-reward tasks. Some of these miscellaneous ideas include. The use of reward bonuses
(oftentimes called intrinsic rewards) that are added to, and thus reformulate, the reward
function of the original task (denoted as task or extrinsic reward). These bonuses need
to be dense (i.e., non-zero in almost every state) in order to overcome the sparsity of
rewards and hence promote an extensive exploration of the environment. Several generally
applicable interestingness measures have been proposed as bonuses, such as: learning progress
(Schmidhuber, 1991), novelty (Bellemare et al., 2016; Burda et al., 2019b), curiosity (Stadie
et al., 2015; Pathak et al., 2017; Houthooft et al., 2016) or empowerment (Mohamed &
Rezende, 2015). In most cases, these measures are computed from experiences encountered
across training episodes, but some methods also compute them from intra-life experiences
seen only within each individual episode (Stanton & Clune, 2018; Savinov et al., 2019). The
generation of an automatic curriculum that presents a sequence of tasks of increasing
reward sparsity to the learning agent, corresponding to simplifications of the original problem.
In this way, the learner can reuse the expertise acquired in simpler tasks to solve more
difficult ones. Such a curriculum has been implemented in a variety of forms. For example,
by requesting the agent to revisit a previously seen state or observation selected at random
from the entire history of past trajectories (Veeriah et al., 2018). Similarly, by soliciting the
agent to reach states or observations (i.e., goals) specified by another model. The latter can
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be a second interacting policy simultaneously trained to set challenging goals (Sukhbaatar
et al., 2018) or a generative adversarial network trained to produce goals of intermediate
difficulty (Florensa et al., 2018). Another idea is to modify each episode’s initial task
configuration. Specifically, to start the agent close to a known solution state in the first
episode of training and to start it in some past state (sampled randomly from a memory) in
each subsequent episode (Florensa et al., 2017). The adoption of hierarchical learning over
skills, options or goals. A skill is a mapping from subsets of states to subsets of actions or
other skills that produces a distinct behavior. An option is a special case of a skill, formally
defined by three components: a policy, an initiation set of states and a termination condition
(Sutton et al., 1999b). Learning a high-level policy directly over these abstractions instead
of primitive actions can improve exploration in sparse-reward domains as the interacting
agent can reach further with fewer decisions. Numerous methods acquire such hierarchies
within two stages; first they discover skills and then they learn a policy over those skills.
Plenty of techniques for skill discovery exist. And these encompass ideas as disparate as
rewarding a set of policies for being distinguishable from each other (Gregor et al., 2016;
Eysenbach et al., 2019b) or extracting skills from the graph Laplacian associated with the
task’s transition matrix (Machado et al., 2017). Studies focused on options usually learn a
predefined finite number of them concurrently with a policy over options that orchestrates
which option is active and when (Bacon et al., 2017). Everything is then trained from the
combined experiences of all options and thanks to the policy gradient theorem (Sutton et al.,
1999a). Analogously, other hierarchical algorithms simultaneously learn a goal-conditioned
policy together with a policy that controls the previous one via goals, which are commonly
expressed as states to reach, (Vezhnevets et al., 2017; Nachum et al., 2018; Levy et al.,
2019). Such a policy over goals is responsible for maximizing extrinsic rewards while the
controlled low-level policy is intrinsically rewarded for fulfilling its commanded goals. Other
original solutions, briefly described next, comprise. The construction of a set of policies
optimized for state covering (Lee et al., 2019). The use of approximations to Bayesian
uncertainty for guiding deep exploration (Osband et al., 2016; O’Donoghue et al., 2018;
Sekar et al., 2020). The self-imitation of an agent’s own past trajectories (Oh et al., 2018),
especially those identified as profitable or unfamiliar. The self-supervised assimilation of
actionable representation or distance models that internalize the number of actions
needed to move between any two states of the world, and whose distance information is
eventually transformed into shaped rewards (Ghosh et al., 2019; Florensa et al., 2019).

4. Impactful Environmental Features

The following subsections elaborate on a number of environmental features that according
to our review of the literature have noticeable effects on the performance of reinforcement
learning algorithms developed for dealing with sparse rewards. In each case, we provide a
definition of the given feature, useful examples and a summary of previous works that have
already looked into such features. Particularly, every study included in the next subsections
makes one of the following contributions. Exploits the occurrence of a feature to facilitate
exploration in sparse-reward problems. Exposes how an algorithm that is otherwise successful
at handling a lack of external reinforcement fails when a certain feature is present. Or,
delivers a description, expressed as an hypothesis or supported by empirical evidence, of the
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Feature Definition Examples

Resettability Designers have control over
each episode’s initial state

Simulated robotic environ-
ments are usually resettable

Reversibility Being able to return to a previ-
ous state during an episode

An unclimbable cliff dividing
the world into two strata is
an irreversibility

Retracing
steps

Having to revisit past states dur-
ing an episode

Searching for a key and then
returning to a locked door
under partial observability

Partially
ordered
subtasks

Having to perform diverse skills
with any ordering being feasible

Multiple radially-expanding
culs-de-sac, each posing a dis-
tinct challenge

Distractors Dynamic elements that are ob-
servable but irrelevant to the
main task

Leaves moving in a breeze

Stochastic
dynamics

Performing the same action in
the same state does not always
lead to the same outcome

Sticky actions

Action-
prediction
degeneracy

Diverse actions lead to the ex-
act same outcome

Pushing a rigid block into the
ground

Deadly states States that produce the early
termination of an episode

Enemies, lava floors, falling
from high elevations, etc.

Procedural
generation

Each episode has a slightly dif-
ferent layout but the abstract
objective remains the same

Varying geometries, textures,
lighting, etc.

Table 1: Summary of environmental features contained in this study.

mechanisms by which a feature impacts the machinery devised to conquer reward sparsity.
Table 1 gives a preview of all the features we have compiled in this study, indicating also
several prototypical domains that internalize them.

4.1 Resettability

A resettable environment lets researchers configure any valid state as the initial state of a
given episode. For example, robotic simulators readily position a robot according to any
desired joint angle and velocity configuration (see Figure 2). As this property explicitly allows
to reformulate the original task, it has been exploited by numerous automatic curriculum
approaches. And thanks to that, they all turned out to be capable of exploring whole
environments while receiving at most just one extrinsic reward at the end of a successful
episode. For instance, Florensa et al. (2017) enforce a reverse curriculum by altering the
initial state distribution of a problem. In particular, this distribution at first is set to occupy
a small volume around a terminal goal, which must be known beforehand. But afterward, it
is consented to gradually grow with every new state encountered, as this algorithm learns to
reach said terminal state from further and further away. Ultimately, the ambition of this
method is to engulf inside such a distribution the entire state space associated with a given
task, while simultaneously developing a policy capable of solving the latter starting from
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anywhere in the world. In practice, this method maintains in memory a set of previously
seen states, which when training starts is manually populated with a few states located
nearby the known goal. This technique then leverages resettability by forcing each episode to
initiate in a state sampled uniformly at random from the previous set. Similarly, Eysenbach
et al. (2019a) establish a curriculum that pushes the learning agent to master its environment
locally. Effectively, this algorithm trains a goal-conditioned policy to connect any two states
that are close to each other. And to this end, in each episode it samples an initial state
(from anywhere in the world) plus a goal state (forced to be within 4 interaction steps of the
start 80% of episodes), and then resets the environment to the former. In this way, during
testing, if the given goal is determined to be near the start, the learned policy is directly
asked to reach such a target. Else, planning is applied to decompose the task by defining an
ordered set of waypoints (i.e., states outlining the shortest path to the target). Of which, the
first one is issued to the policy at the beginning of the episode and the rest are dispensed
one by one each time the immediate sub-goal is achieved. Figure 3 demonstrates how this
method (called SoRB) takes advantage of resettability to outclass a powerful general-purpose
approach such as C51 (Bellemare et al., 2017). Sukhbaatar et al. (2018) also rely on the
aforementioned feature to generate a self-play curriculum (in one of their proposed variants
at least). Such a curriculum emerges from the interaction between two learning agents:
a setter and an imitator. The setter proposes a task by executing a trajectory and it is
rewarded when the task is too complicated for the imitator, which in turn is rewarded for
getting to the same final state as the setter. It is in virtue of this competition that these
agents increasingly explore more of their environment. Critically, for this to work best, the
imitator must be reset to the same or a very similar initial state as the setter, which ensures
that the difficulty of self-play tasks is always the right amount.

4.2 Reversibility

In a reversible environment, if going from state A to state B is feasible for an agent, then
moving from state B to state A is also feasible for any two states (see Figure 4). Moreover,
in such domains, just like in any standard RL problem, the agent has no a priori knowledge
of the transition function, and ergo of the action or the sequence of actions that would
allow it to return to a previous state. Irreversibility is not an uncommon feature; it appears
in many benchmark environments used to test reinforcement learning. For instance, it
happens in videogames (e.g., when an avatar falls off a cliff that it cannot climb back up
or when a car agent rolls over because of an accident) and in robotic tasks (e.g., when a
manipulator throws an object outside its workspace). Reversibility is a necessary condition
for the applicability of the proposal made by Florensa et al. (2017), which when met along
with resettability produces outstanding results (see Figure 6.) As reported in the previous
subsection, this algorithm performs exploration backward, starting from a known goal.
However, if all trajectories connecting the unadulterated initial state distribution to that
target are irreversible (e.g., the goal is at the bottom of an unclimbable cliff, as depicted in
Figure 5), then such a reverse curriculum will never solve the problem in hand. Sukhbaatar
et al. (2018) too exploit reversibility in another of their self-play curriculum variants. As
already described, this method creates a competition between a setter and an imitator.
And in this further variant, after the setter suggests a task, policy control is switched to
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Figure 2: Simulated manipulator environments usually allow the resetting of their initial
state to any desired joint configuration.

the imitator, which is rewarded for moving from the current state to the setter’s initial
state (note that resettability is not required here). Hence, this approach is sensible only in
reversible domains, since in the opposite case the setter would be compelled to always propose
impossible tasks. Another work that puts reversibility in the spotlight is the one formulated
by Grinsztajn et al. (2021). To be clear, this algorithm operates properly independently
of whether or not an environment has irreversibilities. Notwithstanding, concurrently to a
policy, it trains a neural model to predict if a transition between two states is reversible or
not. For that, it uses the temporal ordering found in past trajectories as ground truth. Said
model is then used in one of two ways. To constrain exploration by forbidding irreversible
actions. Or, to guide exploration even in the presence of reward sparsity by allocating large
internally-generated positive bonuses to transitions currently predicted to be easy to reverse.

4.3 Retracing Steps

A learning agent is forced to retrace its steps in any environment that demands revisiting some
states before reaching its goal. For an illustrative example, consider an agent that although
being near a locked door, to open it, it must first search elsewhere for the corresponding key.
Crucially, the agent has to navigate extensively through the world before finding said key,
and then, to return to the locked door, it has no choice but to revisit the same locations seen
along the path leading to the key. In a successful episode, the agent gets one positive reward
for opening the door and possibly another for collecting the key; no other state or transition
gives an incentive. Scenarios like the previous one are problematic for a wide range of
algorithms designed to thoroughly explore sparse-reward domains. Specifically, the fact that
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Figure 3: Comparison between SoRB and C51 in a sparse-reward visual navigation domain
(found in Eysenbach et al., 2019a). The task (top) requires an agent to traverse a
virtual 3D house until arriving at a goal observation presented to it before the
simulation initiates. A positive reward is only handed when the target is reached.
The graphs at the bottom report the success ratio attained when observations are
RGB images (left) and depth images (right). Their x-axes indicate the distance
between start and goal, measured in terms of interaction steps. These results
clearly expose the superiority of SoRB, which as the distance to the target increases
performs progressively better than C51.
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Figure 4: A flat and infinite arena is reversible since an agent that navigates from A to B
sees no obstacle that forbids it to move in the opposite direction, from B to A.

Figure 5: A irreversibility is present in the first level of the original Super Mario Bros, as
Mario cannot jump back up the triangular structure located next to the goal pole.
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Figure 6: Results published by Florensa et al. (2017), comparing their method against TRPO
(Schulman et al., 2015). The tasks are: ring on peg (left) and key insertion (right).
Their objectives are self-explanatory from their names; the former task requires a
7 DOF robot to place a square disk on a round peg (the task is complete when the
disk is within 3 cm of the bottom of the 15 cm tall peg). While the latter asks the
same robot to execute a complex maneuver before properly inserting a key into
a keyhole (i.e., it must first insert the key at a specific orientation, then rotate
90 degrees clockwise, push forward, then rotate 90 degrees counterclockwise).
In both cases, agents receive joint angles as inputs (the disk and the key are
welded to the hand of the robot; hence, extra information about their poses is not
necessary), and are positively rewarded only when finishing a task. Additionally,
the original initial state distribution of both environments is uniform over their
entire state spaces (this is what TRPO faces). The graphs at the bottom display
the evolution of the success ratio as training progresses. They tell us that while an
algorithm like TRPO, which lacks any mechanism for dealing with sparse rewards,
is hopeless in these robotic tasks. When the same technique is coerced to follow
a reverse curriculum that exploits resettability and reversibility, its competence
then skyrockets.
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two very similar states (in fully observable environments) or even two identical observations
(in partially observable environments) correspond to two fundamentally different states (e.g.,
before and after collecting the key) can very well confuse the exploration machinery of said
methods. They could wrongly assume that states belonging to the return trip have already
been visited and that would result in them halting exploration prematurely. For instance,
Roderick et al. (2018) showed that the issue of retracing steps severely impacts algorithms
that employ across-training novelty-based bonus rewards. This work evaluated one of these
approaches, namely DQN-CTS (Bellemare et al., 2016), in a version of Montezuma’s revenge
modified such that the interacting agent is conceded just one life instead of six per episode.
Note that the initial room of this game compels the agent to first find a key, then backtrack
to its initial position and finally leave the room by unlocking one of two doors (as shown
in Figure 7). This experiment reveals that DQN-CTS cannot escape the first room of the
game in the modified setup. The authors argue that this occurs because such a learner is
unable to disassociate a state seen before collecting the key from another seen afterward if
the avatar occupies the same spatial location in both. They are just too alike for this learner
to tell them apart, and as a result, it assigns an equal bonus to both of them; which is true
for every location along the path between the agent’s initial position and the key. A direct
consequence of this bonus conflation is that no round-trip policy can ever procure a higher
return than the most optimal outbound policy. And this is ultimately the most likely cause
of this learner never leaving the initial room; it has little to none motivation to retrace its
steps. Conversely, see that when the avatar is given six lives instead of one as in the original
setup, a second strategy for escaping the initial room becomes viable, which involves killing
itself right after getting the key. An action that instantly places the avatar back in its initial
position while still holding the key. Thus, as backtracking is no longer mandatory here, the
same DQN-CTS learner is now quick to learn to commit tactical suicide and eventually ends
up discovering around 15 rooms per run (see Figure 9). According to Dann et al. (2019),
the inability of the previous algorithm to differentiate between pre- and post-key states even
in the fully observable first room of Montezuma’s revenge is due to the small size of the
key. Therefore, we should expect the problem of retracing steps to be more prominent in
partially observable environments, since it is no longer conditioned by the size of things in
them (see Figure 8). On top of that, methods driven by across-training novelty generally
treat observations the same way they treat states and allocate bonuses directly to them (i.e.,
no internal states, no memory). That is, they lack any mechanism that would allow them to
temporally discriminate between two indistinguishable observations within an episode.

4.4 Partially Ordered Subtasks

This feature is visible in domains that request the learning agent to carry out multiple
distinct subtasks during a single episode, with many of them starting from the same state.
An archetypal environment is one where the agent is initially located in a central spot from
which a number of culs-de-sac expand radially outward (see Figure 10). Each cul-de-sac
imposes a different subtask as it urges the mastering of a specific ability (e.g., swimming,
climbing) and the full task involves visiting every one of them all the way to the end. An
important detail is that the environment provides no indication of the completion of any
subtask. And only when the agent fulfills the whole task, it receives a reward. We say that
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(a) Panama Joe’s journey to the key on the left.

(b) Panama Joe’s journey back to his starting position.

Figure 7: First room of Montezuma’s revenge. To leave it, and if life loss must be avoided,
Panama Joe has no choice but to retrace his steps after collecting the key that
opens any one of the two yellow doors at the top.
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(a) Underhalls map. (b) Red gate is initially locked.

(c) Red card key is found. (d) Red gate is opened with the red key.

Figure 8: The second level of the classic first-person (i.e., partially observable) game Doom
2, named Underhalls, requires the doomguy to unlock a red gate. As seen in the
level’s map, this gate is close to the doomguy’s initial position (red path). But to
open it, he is forced to first travel forth and back through several other sectors of
the world (yellow path) in order to retrieve a red card key.

the previous set of subtasks is partially ordered because the agent is free to attempt them in
any order at any point in time. Nevertheless, the solution to the problem may or may not
depend on the order in which these subtasks are performed. Stanton and Clune (2018) reason
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Figure 9: Scores achieved by a couple of algorithms in Montezuma’s revenge when the avatar
is given 6 lives (left) and one life (right) per episode (reported by Roderick et al.,
2018). We see that in a difficult sparse-reward environment such as this one a
technique like Double DQN (Hasselt et al., 2016), which has not been specifically
designed to handle an overwhelming lack of reinforcement, proves to be utterly
incompetent. In turn, a DQN-CTS agent works fantastically when backtracking is
not compulsory (in the standard setup with 6 lives), but it barely gets any points
when it must retrace its steps (in the single-life setup).

about various mechanisms by which domains comparable to the former example can pose a
complication for across-training bonus-based algorithms (e.g., Bellemare et al., 2016; Pathak
et al., 2017; Burda et al., 2019b). First of all, for most such methods, if not all of them, their
bonus function remains essentially unchanged in the short term (during a single episode). In
other words, if the learning agent stands still, it will receive the same bonus at each time step.
This has a dramatic consequence for said algorithms in the presence of partially ordered
subtasks that do not signal subtask completion. Namely, their optimal policy is always
one that visits the most rewarding cul-de-sac and stays there until the episode terminates.
Under such circumstances, it is unclear whether or not these techniques are at all capable
of learning a policy that concatenates isolated abilities in a controlled manner within an
episode. A second difficulty is catastrophic forgetting (French, 1999), which is when a neural
model loses an acquired ability in response to not performing it recently. Across-training
bonuses are usually designed to decrease over time as the learner keeps reaching the same
states or repeating the same transitions (this happens in the three methods previously
given as an example). In this context, environments with partially ordered subtasks are
especially interesting since they open up the possibility for such approaches (and in fact
any approach) to focus on mastering a single subtask at a time. Assuming that happens,
these algorithms may for instance choose to dedicate themselves solely to learning how to
swim at the beginning of training, becoming good at it after some time. At that point,
the bonuses accredited to swimming would have decreased so much that it would be more
rewarding to stop doing it entirely and start focusing on another activity, like climbing.
And here is where catastrophic forgetting becomes a problem, it would obviously take these
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Figure 10: Idealized scenario that consents an agent to freely explore different subtasks,
such as swimming or climbing.

learners another significant amount of time to pick up climbing, and by the time they do
so they would have forgotten all about swimming. Ultimately, catastrophic forgetting can
be expected to push these algorithms to become specialists, which perform one subtask
with competence and are clueless about all the others. In addition, catastrophic forgetting
would also affect the exploration models of such methods, making them lose memory of
having visited any other cul-de-sac but the one currently being paid attention to. One last
challenge put by environments displaying partially ordered subtasks arises when they further
demand that the latter be performed in a specific order to get a reward. For this analysis,
let’s also consider that the prior issues of learning a composite policy and catastrophic
forgetting have been resolved. In such a scenario, if we again assume that methods guided by
across-training bonuses can fixate on one subtask at a time, then it would be possible though
undesirable for them to focus on the wrong subtask first. For example, while a problem
requires to first go swimming and then go climbing, these learners may unfortunately decide
to master climbing first. After becoming proficient climbers, they will start getting interested
in swimming, which will concentrate higher bonuses by now. Given our initial premises,
these algorithms will then be driven to concatenate climbing and swimming, in that order,
within the same policy and episode. Thus, they will learn to swim while still going climbing
at the start of every episode. And that means that from this point onward the visitations
and bonuses associated with climbing will never become less and higher, respectively, than
those associated with swimming. In the end, these methods will not have enough incentive
to go climbing a second time after going swimming and the full task will not be solved.
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4.5 Distractors

A distractor is a dynamic element that can be observed by the learning agent but is irrelevant
to the resolution of the task in hand. Distractors come in different flavors: stochastic or
deterministic (usually with extremely complex or even chaotic dynamics), controllable or
uncontrollable. Pathak et al. (2017) offer the scenario of an agent observing the movement
of tree leaves in a breeze as a very compelling mental image of a distractor. The motion of
millions of leaves is undoubtedly a complex dynamical system that has an enormous number
of feasible configurations and whose dynamics is impossible to predict purely from visual
information. On top of that, the agent cannot manipulate the wind or the leaves directly;
hence, such observed dynamicity transpires entirely beyond its control. Figure 11 portrays
other examples of distractors. Generally speaking, distractors introduce two important
complications into a reinforcement learning problem: the addition of plenty of purposeless
states as well as transitions and the unpredictability of their dynamics. Given the generality
of these two concerns, distractors have the potential to affect virtually any method known
to tackle sparse rewards. Notwithstanding, all experimental evidence found in the literature
regarding the detrimental presence of distractors is related to bonus-based approaches. It is
clear why these methods experience such hardship when facing distractors. To circumvent
reward sparsity, they generate dense bonuses grounded on the idea of compensating agents
for finding or learning something new in the environment (e.g., novelty, curiosity). Therefore,
since distractors can be designed to produce endless new observations and to embody
unlearnable-to-perfection dynamics, they can easily attract the complete attention of such
algorithms and make them ignore the actual task in full. For example, Kim et al. (2019)
and Song et al. (2020) added pixel-level white noise to each image observation received by
an agent playing Montezuma’s revenge (see Figure 11(a)). In addition, the dynamics of this
noise was kept independent of the agent’s actions (i.e., it could not turn it off or tamper
with it). Results from both these works show that the performance of RND (Burda et al.,
2019b), an across-training novelty-driven approach, falls sharply to nearly zero when such
an uncontrollable stochastic distractor is in place (see Figure 12(a)). And these two studies
agree that such degradation is likely a consequence of the continuous stream of new noise
configurations, which artificially maintains novelty high in every state, and thus, motivates
said learner to stay still. Another distractor with similar characteristics was proposed by
Pathak et al. (2017). In this case, an agent was asked to solve a sparse-reward navigation
task in a visually rich 3D environment. And the distractor was a large region of white
noise stitched next to each image observation sent to the agent, which again had no control
over this distractor. The cited study experimented with an across-training curiosity bonus,
computed directly as the prediction error of a learned one-step forward dynamics model (i.e.,
a model that given the latest observation and action predicts the next observation). And it
reports that such a bonus engenders a policy that reaches the navigation goal merely 60%
of the time. The authors argue that the impossibility of predicting white noise with zero
error keeps this curiosity bonus slightly up everywhere and that discourages the behavior
policy from traveling far. Burda et al. (2019a) and Savinov et al. (2019) investigated the
effects caused by controllable stochastic distractors. Both works adopted a visual navigation
domain, which was augmented with a noisy TV that played the role of a distractor. This TV
was implemented as a region of the environment that always displays some picture retrieved
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from a large dataset. In the first work, this TV was present only in one location of the
environment (a wall whose view could be blocked by others); while in the second, it was
placed on top of every image observation, covering the same area each time (as shown in
Figure 11(b)). Importantly, in either case, the learning agent was endowed with one extra
action that allowed it to change the station of this noisy TV at will. In fact, whenever the
agent chose that action, the current TV picture was replaced with another sampled uniformly
at random from the corresponding dataset. The two studies evaluated the response of ICM
(Pathak et al., 2017) to this noisy TV. To incite exploration, ICM relies on an across-training
curiosity bonus that, exactly as in a method mentioned before, is equal to the prediction
error of a forward dynamics model. But contrastingly, the observation embeddings going
into that model are shared with an inverse dynamics model trained in parallel (i.e., a model
that given the current and next observations infers the action taken). Because of that,
those embeddings will only encode information about elements the agent can control, which
makes ICM immune to uncontrollable distractors (as proven by its authors). In the end,
the findings of both works are consistent with each other, and demonstrate that ICM is not
suitable against a noisy TV (see Figure 12(b)). This is explained by noticing that information
about the noisy TV necessarily leaks into the shared embeddings since it improves the
accuracy of the inverse dynamics model, and that negates all the benefits of incorporating
this extra model. In other words, ICM becomes aware of this TV and, consequently, it
gets pathologically attracted to its constantly surprising transitions. Catacora Ocana et al.
(2022) note that previous works have heavily banked on the difference in dynamics between
distractors and their encompassing domains to design algorithms tailored to ignore dynamic
elements that are uncontrollable or have highly stochastic dynamics. To blur the line between
distractor and environment in terms of dynamics, this study proposed two new benchmark
tasks containing controllable deterministic distractors. In both cases, once again, the main
task involved visual navigation and the distractor was a TV that covered the whole field
of view of the interacting agent, which was given one additional action to turn the TV off
or on. One TV was rendered as an 8 by 8 grid where each cell could take one of 16 colors
(see Figure 11(c)). Seeing that the total number of TV stations is immense, the agent was
supplementary provided with 4 special actions that allowed it to navigate to any station
within an episode. Furthermore, the dynamics of this distractor was made chaotic in the
sense that starting from the same TV station two sequences of actions disagreeing only on
the first one will generate two completely different sequences of stations. Tests carried out
by the authors of this benchmark with RND and ICM reveal that both algorithms invariably
neglect the navigation task and fixate purely on this TV. These two approaches exclusively
learn simple policies that move straight forward in some general direction of the TV space
while almost never observing the same station or transition twice during training. And that
happens thanks to the stochasticity of the policies themselves and the chaotic regime of this
distractor. The second TV was rendered as a 4 by 4 grid where each cell could be one of two
colors. Here, the agent was granted just one extra action to interact with the TV; hence, it
could ever experience only one sequence of stations. The online version of EC (Savinov et al.,
2019) was evaluated in this second scenario. EC incentivizes exploration by means of an
intra-life curiosity bonus. In a nutshell, EC learns a reachability model that predicts if two
states are less or more than a predefined number of actions apart from each other. With the
help of that model, in each episode it keeps a memory of states that when first encountered
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(a) White noise applied to Montezuma’s revenge. (b) Noisy TV displaying animal pictures.

(c) One station of a controllable deterministic TV. (d) An ordinary ball can be a powerful distractor.

Figure 11: Miscellaneous distractors.

are far from every state already in memory and assigns a large bonus to them. Ultimately,
such a distance constraint enables EC to successfully handle a noisy TV. Unfortunately,
when the authors confronted EC with their second deterministic TV, this method became
utterly mesmerized by it. The reason is clear, EC quickly learns the trivial policy of always
changing the station, which collects many bonuses, but it is just a local maximum.

4.6 Stochastic Dynamics

As seen in the previous subsection, the existence of elements with stochastic dynamics can
be a serious inconvenience to some exploration strategies. Sadly, such elements are not
limited to act as distractors, and indeed, they can be an inextricable component of the
task we wish to solve. A good example is the introduction of sticky actions into games of
the Arcade Learning Environment (Machado et al., 2018). Sticky actions are implemented
simply by defining that the action ultimately executed by an avatar is chosen probabilistically
between the one commanded by the learning agent and the action performed in the preceding
interaction step (see Figure 13). This means that, from the learner’s perspective (which
is only ever aware of the action it instructed), facing sticky actions is equivalent to facing
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(a) Montezuma’s revenge + random boxes. (b) 3D Maze + noisy TV.

Figure 12: Two experiments demonstrating that algorithms developed to work under sparse
rewards are sometimes troubled by distractors. The one on the left, run by
Kim et al. (2019), evaluates RND in Montezuma’s revenge without and with
a distraction. The latter is framed as multiple 7x7 boxes filled with pixel-wise
noise that can randomly pop up anywhere within each image observation. The
presented graph convincingly tells us that, even though this algorithm does fairly
well in the standard setup of the game, it just cannot handle an uncontrollable
stochastic distractor. Meanwhile, the experiment seen on the right, described in
Burda et al. (2019a), examines a pair of methods that harness curiosity as a way
to improve exploration. One is in fact ICM, which, as we know, extracts features
from observations with the help of a trained inverse dynamics model (thus, these
features are called IDF). The other simply replaces the observation embeddings
of ICM with random features (RF), which are generated by a neural network
whose weights are initialized at random and then are kept fixed the entire training
session (they are never updated). Both these techniques were tested twice in the
same static 3D maze (containing a single task reward of +1 given at its goal);
once without and another time with a noisy TV. The results of these 4 runs leave
no doubt about the detrimental effects of this TV on these methods. Without it,
they comfortably learn a policy capable of reaching the goal most of the time;
yet, when such a distractor is present, they appear completely lost.

an ubiquitous stochastic distractor; that is, one that partakes of every transition. And an
immediate consequence of this is that when sticky actions are employed it is impossible to
learn a perfectly accurate forward dynamics model of any part of an environment. Burda
et al. (2019a) express their concern regarding the limitations under stochastic dynamics of
across-training curiosity-driven methods, which rely on the prediction error of a forward
dynamics model to compute the bonuses that help them overcome reward sparsity. These
include algorithms built on a rather straightforward usage of the prediction error (Stadie
et al., 2015), but also those applying more elaborated schemes such as ICM (Pathak et al.,
2017). As stated earlier, the unpredictability of the world is detrimental to this family
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(a) Atari joystick. (b) Visual representation of sticky actions.

Figure 13: The implementation of sticky actions emulates a well-known issue occurring
in physical controllers where buttons have a tendency to get stuck. As the
diagram shows, given two actions (green and blue), at each time step either the
one selected by the learning agent (squares) gets executed or the one from the
previous step (circles) is repeated, with probabilities 1− ζ and ζ respectively.

of methods, and when the dynamics of the environment is all-around stochastic it can
cause curiosity bonuses everywhere to remain high. A phenomenon that may hinder the
development of far-reaching exploration policies. In practice, though, these learners will
still conduct some exploration; yet, its overall performance in terms of coverage and sample
efficiency will degrade considerably. That stochastic dynamics, and sticky actions specifically,
has a negative impact on a technique along the lines of ICM is emphatically validated by
Figure 15. There we see the outcomes of two sets of experiments, executed by the authors
of this document, in which said algorithm was asked to solve the maze navigation problem
depicted in Figure 14. In half of the trials, the avatar was restricted to always enact the
actions commanded by the learned policy (non-sticky scenario) and, in the other half, it
was allowed to sometimes ignore such orders and repeat its previous move instead (sticky
scenario). Critically, in both experimental setups the environment and the learner were
configured in exactly the same way. Every single hyperparameter was identical except
obviously for the probability of sticky actions taking place, which was set to 0.0 and to 0.25
in the former and latter scenarios, respectively. These results evidence that the advanced
exploration capabilities offered by ICM are categorically undermined by sticky actions. In
their absence, this technique worked as desired; it discovered all rooms and sectors of the
maze while mastering a policy that arrives at the goal every time. Yet, in the sticky setup,
not only it never found the jewel, but it also barely made it out of the initial room; meaning
that around 80% of the world remained uncharted even after 40 million frames of experience.

4.7 Action-Prediction Degeneracy

The problem of predicting which action caused a given transition is said to be degenerate
when there is no single answer. Such a situation emerges in environments whose dynamics
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Figure 14: Environment used for testing the effects of sticky actions on ICM. At its core,
this domain is a maze structured as a 11x77 gridworld. It is further divided into
seven 11x11 rooms and 35 sectors (groups of adjacent cells of the same color).
The task to be completed here is the following. Starting randomly from any cell
within the carmine sector of the leftmost room, the avatar (single white cell)
must navigate every room and at least 31 sectors of the maze to collect the jewel
(single magenta cell) located in the rightmost room. The moment this gem is
taken, the learning agent is handed a reward of +1 and the episode is terminated.
No other extrinsic reward exists in this domain. Plus, if the jewel remains out of
reach, the ongoing episode automatically ends after 1000 time steps. To interact
with this world, the agent is allowed to see only the room it is currently in (i.e., it
has partial observability). In particular, every observation it receives is a 44x44
image, which means that each cell of the maze is represented as a 4x4 patch of
solid color. In terms of actions, the avatar is entitled to travel exactly one cell
up, down, right or left per time step (4 discrete moves in total). There is no
noop action and, furthermore, to collect the jewel, the avatar just needs to step
over it. Importantly, if the agent tries to move into an impassable wall (black
cells), nothing happens, it simply stays in the same cell.

permit more than one primitive action to produce the exact same transition. The classical
example is that of an agent pressing a solid block straight into the ground or against a
sturdy wall; no matter what the strength of the applied force is, the block will not move
(see Figure 16). This kind of degeneracy becomes a worrying issue for any algorithm that
internalizes an inverse dynamics model anywhere within the machinery that allows it to
thoroughly explore sparse-reward environments. That is, a model that given a sequence of
states or observations gathered from a past trajectory tries to postdict the actions performed
by the interacting agent at each transition. Models of this sort have been employed in
previous works for different purposes. For example, Haber et al. (2018) use one such model
to generate a dense curiosity bonus that guides exploration. Specifically, each transition is
assigned a bonus reward equal to the prediction error of an inverse dynamics model that is
learned alongside a behavior policy. This motivates such a policy to visit those regions of an
environment where its control is less understood. Moreover, since this model is continuously
updated from trajectories executed by the learning agent, the bonus of a region will tend
to decrease as visitations to that region increase. In an ideal scenario, this exploration
mechanism would explore an entire environment, starting with regions closer to the domain’s
initial state and moving to further away regions as the bonuses of the former ones drop to
zero. Unfortunately, that idyllic vision is shattered when degeneracy renders it impossible
to predict with perfect accuracy which action provoked an observed transition. That keeps
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Figure 15: Evaluation of ICM in the maze navigation task shown in Figure 14, in both the
presence and absence of sticky actions. For these experiments, the implementation
of ICM replicated the setup employed by Pathak et al. (2017), but with the
upcoming modifications. During preprocessing, grayscale conversion and frame
stacking of 4 were still applied (to produce 44x44x4 observations); yet, no action
repeat was enforced. The last layer within the embedding network of both, the
policy and the curiosity module, was assigned a stride of 1 and no padding, which
resulted in representation vectors of dimensionality 512. Accordingly, the hidden
layers of the forward and inverse dynamics models as well as the output layer
of the former were also enlarged to 512 units. Within the policy, the previous
embeddings were sent, rather than to an LSTM, to a stack of 4 dense layers,
each with 512 neurons and ReLU activation. PPO was used as base learner;
its parameters were configured as follows: 16 workers, 4 epochs per update, 4
mini batches per epoch, rollout length of 80 steps per worker, γ of 0.99, λ of 1.0,
clipping ϵ of 0.05, value function coefficient of 0.5 and entropy coefficient of 0.01.
Optimization was carried out by Adam with a learning rate of 5 × 10−5 and
a maximum gradient norm of 40. Lastly, all hyperparameters of the curiosity
module remained unchanged except for β, which was lowered to 0.005. The
graphs shown here reveal what happens when the previous instantiation of ICM
is tested in the abovesaid maze environment under two regimes: without sticky
actions and with them (with probability ζ=0.25). Both scenarios were run 3
times, each with a different seed. Correspondingly, these curves report means
and variances across those 3 runs of simple moving averages over 5 million time
steps computed at the level of each individual training session. These results
demonstrate a stark contrast between the performances of ICM due to sticky
actions. When the latter were not integrated into the task, ICM managed to
learn a strategy that gathers the jewel in nearly every episode. Conversely, in
the sticky scenario, this same algorithm not once in 40k episodes landed on said
jewel. Even worse, on average it frequented merely 5 sectors of the maze (i.e.,
just the entire initial room), leaving the remaining 6 rooms and 30 sectors mostly
unexplored (barring a few short-lived shallow incursions into the second room).
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Figure 16: Robot hopelessly pushing a solid block into a thick concrete wall. Even as it
varies the magnitude of the exerted force, no effect is perceptible.

bonuses relatively high all over the world (even near the initial state), which ultimately
disincentivizes the agent from exploring remote locations in the environment. Pathak et al.
(2017) also compute a curiosity bonus that depends on a one-step inverse dynamics model.
However, this time the prediction error of such a model has no direct influence on the
value of the bonus. Instead, this incentive is proportional to the prediction error of another
forward dynamics model, which is trained concurrently with everything else. And the role
of the inverse model is purely to ground a representation shared by both models. Again, a
degenerate action-prediction problem might have some impact here, since this algorithm has
no explicit mechanism that would negate the occurrence of a fluctuating biased policy. That
is, a policy that arbitrarily favors some actions over others at degenerate transitions and
whose preference flip-flops from one update to the next (as doing so changes nothing). In the
end, the variability in the training data induced by such a volatile behavior would cause all
models to oscillate and converge slower. In other words, the inverse dynamics predictor, its
representation and the policy itself would take longer to settle down than otherwise would
in a non-degenerate domain of similar complexity (e.g., with the same number of actions or
transitions).

4.8 Deadly States

This feature’s definition is quite self-explanatory from its moniker (a couple of examples are
shown in Figure 17). Some environments simply possess states where an episode immediately
terminates if the interacting agent visits them, and such termination can happen much
earlier than the episode’s timeout. Furthermore, in sparse-reward environments, the agent
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usually gets no recompense when falling into these deadly states. The presence of these
states can strongly disrupt the exploration behavior of various approaches created to handle
reward sparsity. Indeed, it should not be surprising that a learner that easily covers the
entire state space of a domain without deadly states fails to do the same or works much
more inefficiently when such states are added. For example, Dann et al. (2019) present
the notion of risky exploration. This situation occurs when an environment expects the
learning agent to acquire a complex skill (i.e., a sequence of a few actions highly unlikely to
be performed by chance), but small deviations from a perfect execution lead to life loss. The
authors argue that such a setting appears, for instance, as an agent tries to jump over the
first moving skull in Montezuma’s revenge, which additionally requires the agent to move
toward the deadly skull before doing the jump. According to them, risky exploration poses
a serious challenge to approaches relying on across-training reward bonuses that decrease in
response to increasing visitations (e.g., Bellemare et al., 2016; Pathak et al., 2017; Burda
et al., 2019b). For these agents, seeing that they are internally compensated for every
time step they survive, dying also means that they will miss out on collecting a sizable
cumulative bonus. Therefore, they have a big incentive for staying alive, even if that means
putting the surveying of the environment on the back burner. Going into more detail about
the mechanics of it all; as these algorithms gradually explore their environment, states or
transitions lying just before a recently discovered life-threatening obstacle will necessarily
be associated with higher bonuses. Consequently, such learners will be motivated to revisit
that deadly obstacle. Then, after a few failures they will realize that the obstacle is not
easily surmountable and that their best local policy is to reach its edge and then sit tight,
taking no risky actions while soaking up the bonus of that zone. But as visitations to the
edge increase, the bonus there will get depleted, until eventually it will be more rewarding to
stop a little before the edge and soak up the bonus of preceding states or transitions. This
process will repeat over and over again, pushing these learners further and further away
from the deadly obstacle. Still, at some point, these methods will become interested again
in the obstacle and the cycle will restart. All in all, the phenomenon of risky exploration
induces, at best, a highly inefficient exploration, and at worst, a decisive impasse in which
deadly states are never overcome because of a shortage of experiences.

4.9 Procedural Generation

Some environments dictate that every episode is to present a drastically different scenario
to the interacting agent in terms of: map configuration (geometries, textures, colors, etc.),
existing elements (keys, doors, deadly states, distractors, etc.), dynamics, among other
attributes. But that at the same time, all episodes are to convey the same task at an abstract
level (e.g., maze navigation). In practice, this is achieved by means of a dedicated procedural
generation code that randomizes over a list of attributes and their parameters to create a
unique episode every time. Because of this randomization no two episodes will be alike in
these domains (see Figure 18). And in addition, it will be highly unlikely to observe the
same state or transition twice throughout training. If on top of all that such environments
also have sparse rewards, then we get a very ambitious and exciting problem: learning
exploration strategies with generalization capabilities. Presently, since these domains have
been little studied so far, it is unclear whether or not existing algorithms of any flavor are
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(a) Lava rivers in Doom. (b) Abysses and Bullet Bills in Super Mario Bros.

Figure 17: Examples of states appearing in environments commonly employed by the rein-
forcement learning community that produce the death of an interacting agent.

well suited to dealing with them. For instance, learners seeking new experiences across
training episodes, such as ICM (Pathak et al., 2017) and RND (Burda et al., 2019b), might
not be motivated to do deep exploration as every initial observation or transition is already
brand new by default. Several algorithms that develop an automatic curriculum are also at
odds with procedurally generated environments. Particularly, those that tell the learning
agent which goal to reach at the beginning of each episode and that select such a goal from a
buffer of previously seen states (e.g., Veeriah et al., 2018; Eysenbach et al., 2019a). Clearly,
if all episodes are different from each other, the technique of using past states directly as
goals will mostly produce unattainable ones.

Despite these adversities, a handful of works have already experimented with such
sparse-reward procedurally generated environments, and they have even proposed some
promising solution methods. For example, EC (Savinov et al., 2019) sees a continuous
increase of successful episodes over time when trained in a partially observable 3D visual
navigation task, in which the map layout and the textures of walls and floors change between
episodes. Notably, such an increase rises significantly higher and is more consistent across
runs than what is observed for other algorithms, namely PPO (Schulman et al., 2017) and
ICM (Pathak et al., 2017). As described in Section 4.5, EC uses a learned action distance
classifier (that takes two states or observations as input) together with a memory buffer to
give itself bonuses whenever it reaches observations that are far from most others seen earlier
during the current episode. Arguably, as long as EC is able to generalize such a distance
classifier, it should do well in any given procedurally generated environment. Luckily, in
many domains this is actually feasible and not necessarily hard. Like in the one assessed by
the authors, where observations belonging to rooms with alike and different textures could
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be taken to be close to and far from each other, respectively. A similar solution concept
was employed by Puigdomenech Badia et al. (2020b) to develop NGU, which thoroughly
explores fully observable 2D mazes of varying geometries. NGU multiplies two exploration
bonuses. One rewards novelty across episodes, and it is implemented simply by invoking
RND without any extra modifications. Meanwhile, the second bonus rewards episodic
novelty. Its computation is grounded on a learned controllable representation (similar to
ICM). And, to put it in very simple terms, the bonus assigned to each observation is inversely
related to the sum of the similarities measured between its representation and those of all
previously perceived observations within the current episode. More succinctly, large bonuses
correspond to observations that are less similar to every other one occurring earlier in an
episode. A few extra details: similarities are computed according to a predetermined kernel
function (non-learnable); their sum considers only the k -th nearest neighbors; and past
observations are stored in an episodic memory buffer. RIDE (Raileanu & Rocktaeschel,
2020) shows a good performance in a variety of partially observable 2D visual navigation
domains, whose geometries (rooms dimensions, locations of passages between rooms) and
dynamic elements (positions of keys, doors, boxes, etc.) are readjusted across episodes.
RIDE learns the same forward and inverse dynamics models as ICM, alongside a shared
representation. However, its bonus, named impact-driven reward, is instead defined as
the Euclidean distance between consecutive state representations, divided by the episodic
visitation count associated with the next state. In large or continuous observation spaces,
this count can be estimated thanks to a density model as done by Bellemare et al. (2016).
Again, just like the two previous methods, RIDE is built around an episodic bonus that will
induce a steady coverage-promoting intrinsic reward landscape once its latent representation
stabilizes. A landscape that, in addition, will be perfectly tailored to each procedurally
generated episode of an environment. Another promising algorithm and one that deviates
substantially from the former ones is AGAC (Flet-Berliac et al., 2021), which has been
successfully tested in the same benchmarks as RIDE. AGAC trains a policy and a value
network, as various other methods do, but critically it also trains an adversary network. The
objective ascribed to this adversary is to minimize the Kullback-Leibler divergence between
its own and the policy’s action distribution. Meanwhile, the policy is set to maximize task
reward, as usual, and it also tries to maximize its discrepancy with respect to the adversary
(i.e., difference in action log-probabilities). According to the authors, this formulation
is helpful in sparse-reward settings because it fosters the diversity of trajectories as the
adversary constantly pushes the policy to behave differently from past executions.

Currently, there is a meaningful amount of stimulating benchmark environments that
integrate sparse rewards and procedural generation. At this point, it is important to make
one clarification. To categorize a procedurally generated environment as having sparse
rewards, it is not enough that it awards few incentives in every episode. It is also imperative
that in any episode generated by such a domain the chances of a simple policy (e.g., one that
selects actions at random) finding a reward be extremely low. Otherwise, if the distribution of
episodes ranges smoothly from those where the learning agent obtains a reward easily to those
where this is a herculean feat, then this may create a learning curriculum that can be exploited
even by algorithms lacking advanced exploration mechanisms (as noted by Pathak et al.,
2017; Savinov et al., 2019). That said, the following is a list of sparse-reward procedurally
generated benchmarks used in previous studies. MiniGrid (Chevalier-Boisvert et al., 2018)
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(a) MultiRoomNXSY (MiniGrid).

(b) Heist (Procgen).

(c) Initial observations produced by the random maze domain (DeepMind Lab).

(d) Entrance to the 6th floor (Obstacle Tower).

Figure 18: Side-by-side comparison of procedurally generated episodes from various domains.
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provides various 2D gridworld navigation tasks, where the interacting agent receives partial
egocentric views of the environment (readily convertible into RGB images). The tasks
more frequently employed by researchers are: MultiRoomNXSY, KeyCorridorSXRX and
ObstructedMaze. MultiRoomNXSY rewards a learning agent upon arriving at the other end
of a chain of rectangular rooms connected to each other by means of single-cell unlocked
doors. The main attributes that change from one episode to the next include the dimensions
and the relative position of each room as well as the placement and color of each door
(see Figure 18(a)). KeyCorridorSXRX and ObstructedMaze likewise require the learning
agent to traverse multiple rooms until finding a singular goal location (always found in
a distant room), which also corresponds to the only reward granted by these domains.
Additionally, said scenarios demand slightly more complex interactions, such as: grabbing
a key from a box to open a door or pushing away a ball that is obstructing a door. In
both cases, the map geometry does not vary between episodes, unlike the positions of keys,
doors, boxes, balls and goal. Procgen (Cobbe et al., 2020) is a benchmark suite containing
16 environments, all implemented as 2D worlds with videogame-like visuals. Given that
Procgen has been conceived primarily to assess generalization, only a couple of environments
have sparse rewards. A particularly interesting one is Heist, in which the learning agent
must travel through a network of locks and keys encased within a maze until encountering a
gem. Procedural generation controls the shape of the maze plus the position of all items,
as shown in Figure 18(b). The NetHack learning environment (Kuettler et al., 2020) is a
testing platform framed around the terminal-based dungeon-crawler game of the same name.
In this game, a hero is tasked with retrieving the Amulet of Yendor. To do so, it must
descend over 50 procedurally generated levels of a dungeon and escape from it afterward.
The game’s dynamics is profoundly complex as it is partially observable and comprises 93
actions along with hundreds of unique elements to interact with. Many aspects of the game
are readjusted across episodes, including the dungeon’s layout and the exact location of
places and items of interest. DeepMind Lab (Beattie et al., 2016) offers several visually rich
3D navigation tasks to reinforcement learning researchers. One readily available domain
presents the learning agent with a new 3D maze to solve in each episode. The agent perceives
the world through a first-person view camera (which can be occluded by walls) and receives
a reward solely when it reaches a goal location. Mazes created in separate episodes differ
in their geometry, the agent’s initial position, the goal location and the textures applied
to various sectors of the world (see Figure 18(c)). Likewise, Obstacle Tower (Juliani et al.,
2019) is a 3D environment with high visual fidelity, whose gameplay mimics multi-level
adventure videogames. It consists of up to 100 floors that the learning agent must journey
through. Moreover, each floor is composed of multiple rooms and each room can contain
some taxing subtask, such as: solving a puzzle, defeating enemies, evading obstacles or
finding a key. As information, the agent is given images taken by a third-person camera that
follows it everywhere plus an auxiliary vector encompassing abstract variables (e.g., keys in
its possession, remaining time). Researchers are permitted to choose the reward structure
of the environment; either sparse (+1 per completed floor) or dense (additional +0.1 per
solved subtask). Finally, as seen in Figure 18(d), each floor of Obstacle Tower contains
procedurally generated elements, namely: lighting, textures, room layout and floor plan.
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5. Conclusions

In this study, we have consolidated a thoughtful review of numerous environmental features
that have a heavy impact on the effectiveness of deep reinforcement learning in sparse-reward
environments. In total, we have covered nine features; two, resettability and reversibility, that
have been exploited by previous works and other seven that have been reported as challenging
for one or more families of algorithms with advanced exploration schemes. Pertaining to each
feature, we have delivered clear definitions and useful example environments. In addition, we
have summarized experimental results and discussions found in previous studies that shine
a light on which algorithms and which components are affected by a certain feature and
what mechanisms underlie this interplay. We anticipate that the benefits of this compilation
effort will be twofold. First, the bulk of information contained here could assist researchers
interested in analyzing the generality of their novel proposals. They could do this by
validating from a theoretical perspective if their formulations share the same specificities
or weaknesses as previous ones or if similar mechanisms take place in them. Taking this a
step further, we would also like to see such a generality assessment carried out empirically
in a set of benchmark environments, where each one of them is intentionally crafted to
highlight exactly one of the features herein reported. And second, through its presentation
of demanding environmental features, this work points researchers toward various open
problems involving sparse rewards. Some impact only a reduced group of algorithms (e.g.,
action-prediction degeneracy), while others reveal more ubiquitous shortcomings that enclose
approaches from diverse lines of research. And within this latter category, we regard the
phenomena of retracing steps, distractors and procedural generation as the most fundamental
and stimulating challenges of the lot, whose resolution would lead to the next generation of
exploration strategies.
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