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Abstract

Goal-conditioned reinforcement learning (RL) with sparse rewards remains a challeng-
ing problem in deep RL. Hindsight Experience Replay (HER) has been demonstrated to be
an effective solution, where HER replaces desired goals in failed experiences with practically
achieved states. Existing approaches mainly focus on either exploration or exploitation to
improve the performance of HER. From a joint perspective, exploiting specific past ex-
periences can also implicitly drive exploration. Therefore, we concentrate on prioritizing
both original and relabeled samples for efficient goal-conditioned RL. To achieve this, we
propose a novel value consistency prioritization (VCP) method, where the priority of sam-
ples is determined by the consistency of ensemble Q-values. This distinguishes the VCP
method with most existing prioritization approaches which prioritizes samples based on the
uncertainty of ensemble Q-values. Through extensive experiments, we demonstrate that
VCP achieves significantly higher sample efficiency than existing algorithms on a range of
challenging goal-conditioned manipulation tasks. We also visualize how VCP prioritizes
good experiences to enhance policy learning.

1. Introduction

Deep reinforcement learning (DRL) has gained significant achievements in solving decision-
making problems such as games (Crespo & Wichert, 2020; Oh et al., 2021; Liu et al., 2022)
and robotics control (Nguyen & La, 2019; Zhu et al., 2021; Colas et al., 2022). Despite these
successes, the sparse reward problem remains challenging. In goal-conditioned tasks with
sparse rewards, the agent receives a positive reward only when it achieves the desired goals.
Consequently, agents have little chance to obtain informative feedback for decision making.
Many widely used RL algorithms, such as TRPO (Schulman et al., 2015), PPO (Schulman
et al., 2017), DQN (Mnih et al., 2015), and DDPG (Lillicrap et al., 2015), etc., often fail
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in the sparse-reward settings (Andrychowicz et al., 2017; Plappert et al., 2018; Mohtasib
et al., 2021).

An effective solution for sparse-reward goal-conditioned tasks is using hindsight knowl-
edge (Andrychowicz et al., 2017). Hindsight Experience Replay (HER) (Andrychowicz
et al., 2017) replaces desired goals of failed trajectories with achieved states to obtain posi-
tive rewards for policy learning, and it has been demonstrated remarkably effective in a wide
range of goal-conditioned tasks (Plappert et al., 2018). Despite the advantage of HER, it
still suffers from the large sample complexity (Plappert et al., 2018). To improve the sample
efficiency of HER, several works are proposed to explore unfamiliar goals (Ren et al., 2019;
Zhao et al., 2019a; Pitis et al., 2020), exploiting collected samples in the buffer (Zhao &
Tresp, 2018; Ghosh et al., 2021; Lin et al., 2020; Yang et al., 2022) or trading off exploration
and exploitation(Fang et al., 2019).

Exploration and exploitation are two long-lasting challenges in RL (Coggan, 2004;
Lazaridis et al., 2020). As concluded by previous works (Oh et al., 2018; Guo et al.,
2019; Zha et al., 2020), exploiting certain past experiences can implicitly drive exploration,
which inspires us to build an efficient framework for goal-conditioned RL based on priori-
tized experience replay (Schaul et al., 2015b). In such a framework, the most crucial part is
the criteria measuring the importance of different samples for different stages of learning. A
few prior works introduce criteria such as trajectory energy (Zhao & Tresp, 2018), entropy
(Zhao et al., 2019b), goal diversity (Yang et al., 2021; Dai et al., 2021), and goal similarity
(Fang et al., 2019) to replace uniform sampling used in HER. However, most of them make
some assumptions about the environments, or they are only suitable for specific types of
environments.

In this paper, we propose a new prioritization algorithm, Value Consistency
Prioritization (VCP), to encourage exploiting past good experiences with or without re-
labeled goals. Specifically, we train an ensemble of neural networks to learn the Q values
and measure the value consistency of each transition by calculating the variance of Q values
outputted by different networks. Unlike most previous works that prioritize experiences
with higher uncertainty (Janz et al., 2019; Lee et al., 2021; Liang et al., 2022), we sample
relabeled experiences with higher value consistency more aggressively. Generally, higher
value consistency can be understood as lower value uncertainty. We also show that in
sparse-reward tasks, value consistency is positively correlated with the value of samples,
which contributes to efficient exploitation and implicitly drives exploration. In our exper-
iments, we demonstrate that assigning higher priority to the relabeled data with higher
value consistency can significantly improve sample efficiency than existing baselines and
other prioritization-based approaches. Furthermore, we conduct a thorough analysis and
visualize how VCP prioritizes good experiences to benefit policy learning.

2. Previous Work

In this section, we review some related works which use prioritized sampling for HER or
are based on ensemble neural networks.

Prioritized Sampling for HER. Our method is related to many HER-based priori-
tization approaches with heuristic measurements. Energy-based HER (HEREBP) (Zhao &
Tresp, 2018) evaluates the priority of trajectories according to the kinetic, potential and ro-
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tational energies in physics. Instead, Maximum Entropy-based Prioritization (MEP) (Zhao
et al., 2019b) assigns the priority according to the entropy of a trajectory. Curriculum-
guided HER (CHER) (Fang et al., 2019) defines the proximity score between the achieved
goal and the desired goal, and diversity score among selected achieved goals to balance
exploration and exploitation. DTGSH (Dai et al., 2021) uses the determinantal point pro-
cesses to model the goal diversity and calculates the transition priority according to the
diversity. Relay-HER (RHER) (Luo et al., 2022) decomposes the original long-horizon task
into new sub-tasks and proposes random-mixed exploration strategy to choose achieved
goals in typical robot manipulation tasks. A disadvantage of these methods is that defining
the criteria requires specific domain knowledge.

Ensemble Approaches. Ensemble neural networks are often used to estimate the
uncertainty of data in deep reinforcement learning (Osband et al., 2016). Essentially, the
ensemble estimates the posterior distribution of the learning target, predicting similarly
on areas with rich data and diversely on areas with insufficient data. Many recent RL
algorithms apply ensemble models to enhance exploration in online RL (Osband et al.,
2016) or enforce pessimism for offline RL (Bai et al., 2022). Bootstrapped DQN (Osband
et al., 2016, 2019) uses an ensemble of random value functions to encourage deep explo-
ration. SUNRISE (Lee et al., 2021) leverages ensemble neural networks to calculate the
upper-confidence bound (UCB) for action selection, and re-weight Bellman backups when
updating Q-values. Besides, in model-based RL, a series of works (Chua et al., 2018; Janner
et al., 2019) adopt ensemble dynamic models for robust dynamics modeling. Considering
goal-conditioned RL, the most relevant approach is VDS (Zhang et al., 2020), which uses
ensemble Q networks to estimate the value disagreement of goals and samples goals with
higher value disagreement for exploration. Our work is orthogonal to VDS because VDS
assigns the desired goal in the data collecting phase while we focus on the policy training
phase.

Other Work. Some recent works develop curriculum learning for efficient learning of
the agent. VACL (Chen et al., 2021) designs curriculum which helps the agent efficiently
switch learning tasks and prevents local optimization over single task. CGI (Feng et al.,
2022) constructs curriculum which prefers to sample goals with high diversity or expected
return to guide the agent to learn from sub-optimal trajectories. Another line of recent
works design intrinsic reward function to benefit learning. In this work (Trott et al., 2019),
they introduce an auxiliary distance-based reward to encourage exploration and prevents
learning from falling into local optima. DRIL (Brantley et al., 2020) use the disagreement
among ensemble policies to predict a cost. The agent prefers to sample the state covered
by the expert. These works propose curriculum learning or reward-based techniques to
improve policy learning, but not applied to HER.

3. Preliminaries

In this section, we introduce preliminaries of goal-conditioned RL and DDPG (Lillicrap
et al., 2015) algorithm which is used as a baseline RL method in HER (Andrychowicz et al.,
2017) and other compared baselines.
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3.1 Goal-Conditioned RL

Reinforcement learning can be described as a Markov Decision Process (MDP) with a tuple
(S,A,R, P, γ). At time step t, the agent executes an action at conditioned on the state st.
After the environment receives at, the state transits to st+1 and returns a reward rt. The
agent learns a policy π(a|s) to maximize the expected discounted return:

π = argmax
π

Eτ,π

[
T∑
t=0

γtrt

]
,

where τ is a trajectory (s0, a0, r0, ..., sT , aT , rT ) and γ is the discount factor.
In goal-conditioned RL, a desired goal g is given by the environment at the beginning

of each episode. Agent’s policy is conditioned on a state-goal pair, such that at ∼ π(·|st, g),
to reach the desired goal. Generally, in the goal-conditioned task with sparse rewards, an
agent receives a reward of 0 only when it achieves the desired goal, otherwise it receives a
reward of -1:

r(s, a, g) = [ψ(s) == g]− 1 (1)

where the ψ(s) is the achieved goal in state s. Due to the sparsity of informative feedback,
it is challenging for the agent to learn from scratch in such settings.

3.2 Deep Deterministic Policy Gradient and HER

DDPG (Lillicrap et al., 2015) is a widely adopted off-policy RL algorithm for continuous
control problems. DDPG learns a Q-function and a deterministic policy parameterized by
ϕ and θ respectively. In DDPG, the Q-function is updated by minimizing the following
objective:

L⌋(ϕ) = E
τ∼B

[(
Qϕ(s, a)−

(
r + γQϕ̄(s

′, µθ̄(s
′)
))2]

, (2)

where B is a replay buffer storing collected samples. Target networks are used to stabilize
training. For instance, Qϕ̄ is the target Q-function and µθ̄ is the target policy. The policy
is optimized by maximizing the following objective:

L⊣(θ) = E
s∼B

[Qϕ(s, µθ(s)] . (3)

We follow (Andrychowicz et al., 2017) to implement HER with the universal value
function approximation (UVFA) (Schaul et al., 2015a). The Q function and policy with
desired goal g are formulated as Qϕ(s, a, g) and µθ(s, g), respectively. HER relabels one
transition (st, at, st+1, rt, g) in a trajectory τ with achieved goals g′ = ψ(st+n), 1 ≤ n ≤ T−t
and the reward r′t = r(st, at, g

′) is calculated according to Eq (1). This relabeling method is
named ‘future’ relabeling and is generally adopted by numerous prior works (Andrychowicz
et al., 2017; Fang et al., 2019; Ghosh et al., 2021; Zhao et al., 2019b; Yang et al., 2022).

4. Methodology

In this section, we introduce Value Consistency Prioritization (VCP), based on an ensemble
version of HER+DDPG with multiple Q function heads and actor heads. These ensemble
Q networks are used to estimate the value consistency for prioritized sampling.
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4.1 The Ensemble Architecture and the Data Flow

Figure 1: (a) The ensemble architecture in our VCP. (b) The data flow in our learning
framework.

The network structure is depicted in Figure 1(a), where both the actor network and
critic network are implemented following the multi-head structure. All critics’ heads share
an underlying embedding network, and all actors’ heads share another underlying network,
respectively. Each actor head is updated according to its corresponding critic head, and the
data used for training each head are sampled independently.

For data collection, all the trajectories collected by different actors are stored in the
same buffer, denoted as the original buffer Bo in Figure 1(b). Then, we uniformly sample a
subset of transitions in the original buffer and relabel them randomly following the ‘future’
method in HER (Andrychowicz et al., 2017). In HER, the sampled data batch consists of
a mixture of relabeled and original transitions, where the proportion of the original data
is 0.2 by default. In our implementation, we create another buffer to store the mixture
of relabeled and selected original transitions and the proportion of original transitions is
also set as 0.2. This buffer is referred to as the HER buffer Bh. In addition to the tuple
(s, a, g), each data point stored in the HER buffer additionally stores a priority score, which
is estimated by the variance of multiple Q-values. Note that we don’t need to save the
reward r since it can be directly calculated by the reward function in Eq (1). The data flow
in our learning framework is illustrated in Figure 1(b).

4.2 Value Consistency Prioritization

Several previous RL algorithms (Janz et al., 2019; Lee et al., 2021; Liang et al., 2022)
have concluded that lower Q-value consistency or higher Q-value uncertainty could benefit
exploration. Differently, we investigate exploiting samples with higher Q-value consistency
for efficient policy learning. Specifically, for the data in the HER buffer Bo, we formally
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define the value consistency as:

pi =

(
σ2max − σ2i + ϵ∑

σ∈Bh
(σ2max − σ2 + ϵ)

)T

, (4)

where σ2i is the variance of the estimated Q-values of a transition i, and σ2max is the largest
variance in the current HER buffer; ϵ is a small positive scalar for numerical stability, and
we set it to 10−6 in our experiments; T is a temperature coefficient used to adjust the
sharpness of the priority distribution. We set the value consistency pi as the priority of the
transition and normalize the priority as the sampling probability. Intuitively, transitions
with larger value consistency would contain smaller Q-value variance.

In the training period, the transitions in the HER buffer are sampled according to the
normalized priority pi to update the policy. Algorithm 1 illustrates how we update the HER
buffer with the latest value consistency during training.

4.3 The Overall Algorithm

The proposed algorithm is referred to as Value Consistency Prioritization (VCP). We
provide the overall algorithm of VCP in Algorithm 2. In our implementation, each head
in ensemble DDPG is updated according to its own target network. Since DDPG is an
off-policy algorithm, we don’t need to distinguish that from which head the data samples in
the HER buffer are generated. Therefore, all the heads share the same HER buffer and are
updated with different data batches. For each epoch, we also update the priority of each
transition in the HER buffer using Algorithm 1.

For data collection, we use all the actor heads to generate multiple trajectories and
store them in the original buffer. When updating the HER buffer by sampling data from
the original buffer, we use the ‘future’ relabeling method in HER, and set the proportion
of keeping the original data as 20%. In the training period, when we sample a mini-batch
from the HER buffer, we normalize the priority by wi = pi/

∑
Bh
pi and re-weight the loss

with wi to make the estimation unbiased.

Algorithm 1 Updating The HER Buffer

1: Input: the original buffer Bo and the HER buffer Bh;
2: while training is not ending do
3: Sample a mini-batch of transitions from Bo;
4: Replace the desired goals with some achieved goals following the ‘future’ strategy in

HER;
5: Calculate the variance of Q-values for each transition in the mini-batch;
6: Store the mini-batch in Bh;
7: Update the priority of each transition in Bh according to Eq. (4);
8: end while
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Algorithm 2 The VCP Algorithm

1: Input: an off-policy RL algorithm A, an original buffer Bo and a HER buffer Bh;
2: for epoch = 0, 1, 2, · · · ,M − 1 do
3: // Data generation
4: for head k = 0, 1, · · · ,K − 1 do
5: Sample an initial goal g as desired goal and initial state so
6: for timestep t = 0, 1, · · · , T − 1 do
7: Task an action at ∼ πk(·|st, g)
8: Observe a new state st+1 and reward rt
9: Store the transition (st, at, rt, g) in Bo

10: end for
11: end for
12: // Training
13: Parallelly run Algorithm 1 in another thread;
14: for head k = 0, 1, · · · ,K − 1 do
15: Sample a mini-batch of transitions according to the normalized priority in Bh

16: Update the k-th head using A with the mini-batch
17: end for
18: end for

5. Experiment

In this section, we conduct comprehensive control tasks to evaluate the performance of our
VCP algorithm and analyze how VCP benefits policy learning. First, we briefly introduce
the experiment settings, and the detailed description can be found in the Appendix A-B.
Next, we present the comparison results between our VCP algorithm and the baselines, and
explain how our algorithm improves exploitation through visual experiments. Finally, we
design multiple ablation experiments to demonstrate the effect of each component of our
algorithm, and in the Section 5.8-5.9 we analyze the effect of ensemble size on our algorithm.

5.1 Experiment Settings

We evaluate the VCP algorithm on 16 challenging goal-conditioned manipulation tasks,
and compare VCP with a set of baselines and other prioritization-based algorithms. Details
about the environments are listed in Appendix A. Most of the common hyper-parameters
such as learning rate, optimizer, updating rate of target networks are set the same as
HER (Andrychowicz et al., 2017). In the stage of data generation, the VCP uses 16 heads
and each head collects one trajectory for its own usage. In order to ensure fairness and
train all algorithms with the same amount of data, we train other baselines using vectorized
environments to run 16 environments in parallel. In this way, the baselines can collect 16
trajectories each time like VCP. After each training epoch, we evaluate each algorithm for
10 episodes, and calculate the average success rate of the 10 episodes. To evaluate VCP
algorithm, we use each head to generate 10 trajectories, and compute the average success
rate for 160 (10 × 16) random repetitions. For more detailed settings about experiment,
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Figure 2: Average success rate (line) with 95% confidence interval range (shaded area) on
all environments across 10 random repetitions.

please refer to Appendix B. Our implementation is available at https://github.com/

jiawei415/VCP.

We compare our algorithm VCP with the following state-of-the-art HER based methods:

• HER (Andrychowicz et al., 2017), which does not use prioritization and uniformly
samples transitions from the relabeled data;

• HEREBP (Zhao & Tresp, 2018), which calculates the energy of transitions as the
sample priority;

• CHER (Fang et al., 2019), which calculates the proximity and diversity of transitions
as the sample priority;

• DTGSH (Dai et al., 2021), which calculates the diversity of the goal with determi-
nantal point processes as the sample priority.

All the compared algorithms are open-sourced, and implemented based on DDPG. So
we can use their original implementations to avoid biased evaluation.
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5.2 Benchmark Results

Figure 2 shows the comparison results of all the algorithms on 16 sparse-reward goal-
conditioned tasks. For each curve in the figure, we average across 10 random seeds
and plot the 95% confidence interval with shaded area. Clearly, our algorithm VCP
outperforms all the other baselines in 15 out of 16 goal-conditioned environments. In
FetchPush-v1, VCP slightly underperforms HEREBP, while it is still competitive com-
pared to other algorithms. In tasks such as HandReach-v0, HandManipulatePenRotate-v0,
HandManipulateEggRotate-v0, and HandManipulateBlockRotateZ-v0, VCP significantly
improves the final success rate with the same amount of training data, which validates our
intuition to exploit samples with higher value consistency.

5.3 Didactic Example

Figure 3: Q-value variance of any state in tra-
jectories.

To illustrate how VCP can improve ex-
ploitation in HER by prioritized sam-
pling, we use a simple environment,
PointMassEmptyEnv-v1, as a didactic
example. In PointMassEmptyEnv-v1,
the goal of the agent is to reach the target
point starting from the starting position.
The target point (i.e. the desired goal)
is randomly sampled in the map after re-
set of the environment. Both the states
and the desired goals are the XY coordi-
nates. So the achieved goals are equal to
the states. For more details about this
environment, please refer to Appendix A.

In Figure 3, we plot five trajectories
collected by an agent. The red dot is
the starting position of the agent and the
green dot is the ending position. We firstly random sampled a state ŝt (black triangle)
in each trajectory. Then we calculated the Q-value variance for the combination of this
state ŝt and all other achieved goals (identical to the states) in the trajectory. As shown in
Figure 3, the smaller the Q-value variance of the achieved goal, the more likely it is to be
selected during the training process. In addition, the achieved goal closer to ŝt has a higher
Q-value, because such an achieved goal is more likely to have a positive reward according
to Equation 1. The result in Figure 3 implies that, state-goal pairs with a smaller distance
between them exhibit a smaller variance in Q-values, where the distance is generally in-
versely related to the expected value of the state-goal pair. In VCP, a smaller variance of
the Q-value increases the likelihood of selection during the training process. Consequently,
our algorithm is more inclined to select data with higher values from the HER buffer to train
the model. In this way, our algorithm can increase the chances of training the agent with
high-quality data that has a greater expected value, thereby alleviating the sparse-reward
problem and improving the exploitation of the relabeled replay buffer.
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Figure 4: Variance of the Q-values estimated from multiple heads in VCP on the
PointMassEmptyEnv-v1 task. The left side denotes the variances of the hindsight tran-
sitions (with modified goals) in the HER buffer, while the right side plots the variances of
the original transitions. In this illustration experiment, the ratio of sampled original data
is set to 50%, and another half of data is composed by the hindsight samples. This is to
eliminate the impact of data imbalance on evaluating the variances. In our formal experi-
ments, this ratio keeps the value as the same in HER.

5.4 Analysis of Replay Prioritization in VCP

In this section, we continue to analyze the replay prioritization in VCP and explore why
sampling data with higher value consistency more aggressively is better for exploitation?
We also use PointMassEmptyEnv-v1 task as an example to visualize the variance of the Q-
values in training. Figure 4 shows that at different training epochs, the Q-value variances
of hindsight transitions are consistently lower than the those of the original transitions.
Recalling the advantage of HER on sparse-reward problems, the results in Figure 4 suggests
that we should sample transitions with lower Q-value variances because we know that
hindsight transitions are generally more informative in the sparse reward setting.

One question here is why the Q-value variances of the hindsight transitions are much
lower than those of the original ones. In fact, this is explainable because hindsight tra-
jectories generally achieves the relabeled goals and have higher expected return. On the
contrary, the original trajectories often fails to reach the desired goals when learning from
scratch. Indeed, when we train the policy for more epochs (i.e., the expected returns of orig-
inal samples increase), the Q-value variances of the original transitions decrease, as shown
in Figure 4. Therefore, we conclude that value consistency is positively correlated with
the expected value of samples. If we assign higher priority in transitions with higher value
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consistency, we can automatically select more valuable samples and enjoy higher sample
efficiency. In this way, our VCP can improve exploitation.

It is worth noting that we are not aiming to replace the original transitions with the
relabeled data; instead, we suggest to sample transitions with higher value consistency from
the HER buffer Bh, which contains both hindsight experiences and original experiences. The
original transitions with higher value consistency (lower Q-value variance) will be sampled
with higher probability as well. In this way, each training batch might contain both original
transitions and hindsight transitions in VCP, but the ratio between them is not fixed.

5.5 Analysis of Data Reuse Density in VCP

Figure 5: In this illustrative experiment, the ratio of sampled original data is set to 50%,
and the sizes of the original buffer and HER buffer are set to 104. Rows represent different
training stages. The first four columns show experiments with lower variance in priority,
and the last four columns show experiments with higher variance in priority. The figures
are plotted using t-SNE method. The blue points represent the data in the original buffer,
the green points represent the data in the HER buffer, and the red points represent the
data sampled for training. In (d) and (h), the green data points (HER buffer) are replaced
with data density heat map to provide clearer density visualization.

in this section we also visualize the data reuse density to further explain how VCP im-
prove exploitation. We have claimed throughout the paper that VCP can improve exploita-
tion in HER. Now, we provide analysis to support this point with PointMassEmptyEnv-v1
as a toy example. That is, we visualize the data reuse density, which is the estimated Gaus-
sian kernel density of the sampled data, in a 2D space. Since the sampled data is drawn
from the hindsight replay buffer, the data points might be re-sampled / reused, we refer to
the estimated density as the data reuse density.

We use t-SNE (Cieslak et al., 2020) for data visualization. Figure 5 shows the results.
Figs. 5(a)-(d) visualize the data reuse density when we sample data points with lower Q-
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value variance in priority, which is the sampling strategy in VCP. By contrast, Figs. 5(e)-(h)
visualize the data reuse density when we switch the sampling strategy by assigning data
points with higher Q-value variance higher priority.

In Figure 5(a), we plot the data distribution of the original buffer, which will be refer-
enced as background in other figures. In Figure 5(b), we plot the data distribution in the
HER buffer over the original data distribution. Figure 5(c) further plots the data sampled
for training, and Figure 5(d) replaces the data points in HER buffer with data density heat
map. As we can clearly observe, in Figure 5(c) and (d) the data points in HER buffer
can cover the entire data space, and so do the sampled data points. The results demon-
strate that (1) hindsight relabeling itself can provide more fake successful data so that the
relabeled data points can cover the entire data space; (2) the sampling strategy focusing
on exploiting well fitted hindsight data won’t harm the performance of HER. That is, the
sampling strategy of lower variance in priority improves exploitation. On the opposite, in
Figure 5(g) and (h), the selected (red) data points are concentrated on some regions where
the hindsight data points are sparse, and the selected data points fail to cover the data
space well. It means that this prioritization replay method cannot exploit the hindsight
data well. By aggressively sampling hindsight data with higher Q-value variance, the se-
lected data points are always rarely seen by the agent in the entire training process, and
as a consequence the neural networks will never be well fitted. Therefore, we should assign
data with lower Q-value variance (i.e., higher value consistency) higher priority.

5.6 Ablation Studies

In this section, we conduct ablation experiments to better understand each components of
our algorithm.

Varying Sampling Strategy. We report the performance curves of different sampling
strategies, including lower variance in priority (i.e., our method VCP), no prioritization
(denoted as VCP w/o prioritization), and the method which samples transitions with higher
variance in priority (denoted as VCP w/ higher variance in priority). It is worth noting
that the VCP w/o prioritization is equivalent to the original HER with ensemble network.
The results are provided in Figure 6. Apparently, VCP significantly outperforms the other
two sampling strategies, especially in difficult environments such as the Hand Manipulation
tasks. In addition, sampling data with higher variance even deteriorates the performance
by a large margin.

Exploration Effect from Multi-Actor. Several previous works show that an ensem-
ble of actors can increase the diversity of sampled trajectories, and this might benefit policy
learning as well. Therefore, it is questionable whether the ensemble actors have effect on
promoting performance in VCP.

To verify this, we conduct more ablation experiments to see whether VCP benefits from
the data diversity introduced by ensemble actors. We design a variant of VCP (denoted as
VCP w/o multi-actor diversity) to remove the effect of data diversity from ensemble actors.
For this variant, our network structure remains unchanged because we still need multiple
heads to calculate the Q-value variance. The difference is that we only use one fixed actor
head to interact with the environment at the data generation stage. This setting would
exclude the effect of ensemble actors on exploration. Figure 6 illustrates that this variant of
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Figure 6: Ablation experiments results on partial environments: average success rate (line)
with 95% confidence interval range (shaded area) across 10 random repetitions.

VCP does not show significant performance degradation. In order to eliminate the influence
of ensemble networks, we also apply the ensemble structure to baselines for additional com-
parison. The comparison results in Section 5.9 demonstrate VCP considerably outperforms
ensemble CHER.

From the above ablation results, it can be concluded that the prioritized sampling and
the prioritization measurement, which is the value consistency, play the most essential roles
in our VCP algorithm.

5.7 Training Time

Compared with HER, VCP requires more computation cost due to the usage of ensemble
networks. In this section, we compare the training time of VCP with other baselines on the
HandReach-v0 task.

Table 1 shows that our VCP algorithm costs a moderate epoch time and is faster than
DTGSH. The computation is mainly introduced by updating all the heads in our ensemble
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Algorithm HER HEREBP CHER DTGSH VCP

Time (min) 1.5 2.74 8.2 34.1 12

Table 1: Average epoch time of VCP and baselines on HandReach-v0 environments.

network. Since VCP achieves considerable improvement over HER, HERBP, CHER and
DTGSH, we think the computational cost is worth the performance gain.

5.8 Comparative Experiment on Ensemble Size

We conducted a comparative experiment to analyze the impact of ensemble size on the
performance of our algorithm. We selected the best ensemble size, denoted as k, from
[2, 4, 8, 16, 32], and the results are shown in Figure 7. As we can see, the VCP with an
ensemble size of 16 achieved the best performance. We had already demonstrated through
ablation experiments (see Section 5.6) that the diversity data brought by ensemble measure
had little impact on our algorithm. Therefore, we explained the impact of ensemble size by
visualizing the variance of the Q-values in the HER buffer.
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Figure 7: Comparative results on different ensemble size

We continue to use the PointMassEmptyEnv-v1 environment as our toy example, with
experimental settings identical to those in Section 5.4. Figure 8 displays the variance of
Q-values in the HER buffer under different ensemble size k at the same training epoch (10).
The results demonstrate that when the ensemble size is small, the Q-value variances of the
hindsight experiences are very low, resulting in the ensemble Q-networks not being able to
estimate the value consistency of the hindsight experience effectively. Moreover, this also
leads to a very small probability of sampling the original experience, which impairs the
learning of the algorithm. This is because the HER (Andrychowicz et al., 2017) has stated
that not using the original data will degrade performance.

In addition, we compare the training time of VCP with different ensemble size k in
Table 2. It can be observed that despite an exponential increase in ensemble size, the
training time does not increase exponentially. This is because we utilize the ensemble
network only for the last layer of the network, resulting in higher performance gains with a
small parameter cost. Overall, we made a balance between computational complexity and
performance, and set the ensemble size k to 16.
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Figure 8: Variance of the Q-values in the HER buffer with different ensemble size. Different
rows are the results of VCP under different ensemble numbers k.

Ensemble size k 2 4 8 16 32

Time (min) 3.2 5.6 8.5 12.0 20.7

Table 2: Average epoch time of VCP with different ensemble size on HandReach-v0 envi-
ronments.

5.9 Comparative Experiment with Ensemble Baselines

Based on Figure 2, our algorithm significantly outperforms the other baselines in 15 out
of 16 goal-conditioned tasks. Our VCP has more parameters due to its ensemble network.
To eliminate the impact of the number of model parameters, we extended the network of
the baselines to the same ensemble structure as ours. In the baselines with an ensemble
network, they also collect data using different actor heads and update their multi-head
critics like VCP using different batch data. It’s worth noting that HER-ensemble k=16 is
equivalent to VCP w/ prioritization in Section 5.6.

Figure 9 shows the comparison results of our algorithm with ensemble baselines, where
our algorithm outperforms the other baselines in 14 out of 16 environments. Particularly,
in the complex Hand Manipulate environment, our VCP algorithm demonstrates significant
advantages. Additionally, we compare the training time of our VCP algorithm with that
of the ensemble baselines, as shown in Table 3. The training time of our VCP algorithm is
competitive with the baselines, and with similar training time, our VCP algorithm achieves
better results in most environments.
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Figure 9: Comparative results with ensemble baselines

Algorithm HER HEREBP CHER DTGSH VCP

Time(min) 9.3 11.0 60.5 253.0 12.0

Table 3: Average epoch time of VCP and baselines with ensemble network on HandReach-v0
environment.

6. Conclusion

In this paper, we propose a new value consistency prioritization (VCP) method to im-
prove the exploitation of goal-conditioned RL with sparse rewards. We use an ensemble
HER+DDPG structure to estimate the value consistency for different samples, and assign
higher priority to the data with higher value consistency. Experimental results show that
our algorithm achieves significantly higher sample efficiency than existing goal-conditioned
algorithms, and we also explicitly explain how our algorithm improves exploitation through
detailed visualization. In addition, our algorithm does not have any assumptions or require-
ments on the environment and can be easily extended to any goal-conditioned environments.
We are interested in applying our method to real robots.
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Appendix A. Environments

We evaluate our algorithm on 16 goal-conditioned manipulation environments, including
9 Hand environments, 4 Fetch environments, 2 Point environments and Reacher-v2. All
environments are described here.

Figure 10: Environment

Hand. These have ethropomorphic robotic hand with 24 degrees of freedom. Of
those 24 joints, 20 can be controlled independently whereas the remaining ones are
coupled joints. Rewards of these environments are sparse and binary: The agent ob-
tains a reward of 0 if the goal has been achieved and −1 otherwise. Actions are 20-
dimensional which are absolute position control for all non-coupled joints of the hand.
Observations include the 24 positions and velocities of the robot’s joints. There are
9 environments: HandReach-v0, HandManipulatePenFull-v0, HandManipulatePenRotate-
v0, HandManipulateEggFull-v0, HandManipulateEggRotate-v0, HandManipulateBlockFull-
v0, HandManipulateBlockRotateParallel-v0, HandManipulateBlockRotateXYZ-v0 and
HandManipulateBlockRotateZ-v0. For a detailed introduction to each environment, please
refer to (Plappert et al., 2018).

Fetch. The Fetch environments are based on the 7-DoF Fetch robotics arm, 2 which
has a two-fingered parallel gripper. The goal is 3-dimensional and describes the desired
position of the object (or the end-effector for reaching). Rewards are sparse and binary
too: The agent obtains a reward of 0 if the object is at the target location and −1 other-
wise. Actions are 4-dimensional vectors including the desired gripper movement in Carte-
sian coordinates with 3 dimensions and state (opening or closing) of the gripper with the
last dimension. There are 4 environments: FetchReach-v1, FetchPush-v1, FetchSilce-v1
and FetchPickAndPlac-v1. For a detailed introduction to each environment, please refer
to (Plappert et al., 2018).

Point. They are point-based environments, in which the bigger circle aims to reach the
smaller point. The state and goal of this environment are both 2-dimensional vectors, which
respectively represent the position of the bigger circle and the smaller point, and the action
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is also a 2-dimensional vectors, which represents the moving distance of the bigger circle
each time. There are two environments in total. PointMassEmptyEnv-v1 : The bigger circle
can reach any position in the environment At the same time, its goal can also randomly
appear anywhere in the environment except the walls. PointMassWallEnv-v1 : There is a
wall in the middle which neither the bigger circle nor the small point can reach.

Reacher. It has a robotic arm with 2 degrees of freedom whose task is to reach a
particular target. Reacher-v2 wasn’t originally a sparse rewards environment. We modified
its state and reward function to make it a goal-conditioned environment with sparse rewards.
Its state is an 8-dimensional vectors, which contains sine and cosine of the two rotational
joint angles, and the position and velocity of the fingertip in the xy direction. Its goal is a
2-dimensional vectors that represents the position of target, and action is a 2-dimensional
vectors, representing the movement of two joints.

Appendix B. Training Details

The hyper-parameters of the HER part of our algorithm are set according to the open source
code∗. The learning rate of actor and critic is 0.001, buffer size is 1e6, polyak averaging
coefficient for target network updating is 0.95, and number of additional goals used for
replay is 4 with the ‘future’ pattern. Each actor and each critic consists of a 3 layers fully
connected network with 256 units in each layer. All actors share the first two layers of the
network, as do the critics. We set 16 heads in our implementation. The priority temperature
coefficient T in our algorithm, was chosen among [1, 5, 9, 11, 15] for each environment for best
performance. We set batch size to 64 in the FetchReach-v1 and Reacher-v2 environments,
and set batch size to 256 for the rest of the environments. We trained for 50 epochs per
environment and did not use MPI for parallel data generation like (Plappert et al., 2018).
In each epoch, we collect data for n times, and each time we generate 16 trajectories with
length 50. We set n to 5 for FetchReach-v1, 15 for Reacher-v2, and 50 for the rest of
environment. In each loop, (Plappert et al., 2018) used MPI to generate 19 ∗ 2 trajectories
in parallel. Since we have 16 heads to collect 16 trajectories each time, we indeed use a
portion of 16/(19 ∗ 2) = 8/19 data of (Plappert et al., 2018) to train our agent. This might
lead to slight inferior performance of HER compared with the original results reported
in (Plappert et al., 2018) in some environments, such as HandManipulateEggFull-v0 and
HandManipulateBlockFull-v0. However, the setup is fair for all the compared methods in
our experiments.

As mentioned in the paper, all baselines are implemented by their open sourced codes.
Since the computational complexity of DTGSH is related to batch size, we keep its original
setting 64 in all environments. For a fair comparison, we increase DTGSH’s update times
to ensure that it uses the same amount of data as other algorithms to update the network.
In addition, we run 16 parallel environments for each baseline to produce the same amount
of transitions in each epoch. These only differ from the original setting in CHER, HEREBP
and DTGSH.

∗. https://github.com/openai/baselines
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