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Abstract

In this paper we propose a new model to represent human debates and methods to
obtain collective conclusions from them. This model overcomes two drawbacks of existing
approaches. First, our model does not assume that participants agree on the structure of
the debate. It does this by allowing participants to express their opinion about all aspects of
the debate. Second, our model does not assume that participants’ opinions are rational, an
assumption that significantly limits current approaches. Instead, we define a weaker notion
of rationality that characterises coherent opinions, and we consider different scenarios based
on the coherence of individual opinions and the level of consensus. We provide a formal
analysis of different opinion aggregation functions that compute a collective decision based
on the individual opinions and the debate structure. In particular, we demonstrate that
aggregated opinions can be coherent even if there is a lack of consensus and individual
opinions are not coherent. We conclude with an empirical evaluation demonstrating that
collective opinions can be computed efficiently for real-sized debates.

1. Introduction

This paper is concerned with collective reasoning. By “collective reasoning”, we mean the
process by which a group of individuals — humans, software agents, or a combination of
the two — reach a consensus through a process of debate. In particular, we are interested
in the situation in which participants put forward statements, express their opinion about
statements put forward by others, and then all of these views are aggregated to identify
an opinion that summarises the collective view. This general view of the collective reason-
ing process can be applied to e-participation systems and, in particular, to participatory
democracy, where citizens get involved in decision making about public problems (Noveck,
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2009). In fact, the deployment of these systems is nowadays gaining momentum around the
globe1, and therefore, many platforms have been developed (Consul, 2021; Decidim.Org,
2016).

In studying collective reasoning, we draw on work from three main areas: social choice
theory, judgement aggregation and argumentation. Social choice theory (Aziz et al., 2017;
List, 2018) studies approaches for establishing how a group, facing a choice between many
alternatives, can make that choice. Given a set of alternatives and a set of agents who
possess preference relations over the alternatives, social choice theory focuses on how to
yield a collective choice that appropriately reflects the agents’ individual preferences. A
related line of work, but one which focuses on the acceptability of a single issue, is judgement
aggregation. This tackles the problem of whether to collectively accept a single issue once
the participants have put forward their opinion on it (Endriss & Moulin, 2016; List &
Pettit, 2002). Computational argumentation (Rahwan & Simari, 2009) focuses more on
resolving conflicts in opinions. Given a set of arguments for particular options, and a set
of relations (typically conflicts, but also support) between the arguments, argumentation is
concerned with identifying those arguments that might be accepted by a rational agent, for
different ideas of what makes an argument acceptable. Combining judgement aggregation
and social choice theory with argumentation we find several proposals that structure debates
using arguments and attack relationships (Awad et al., 2017b; Leite & Martins, 2011), or
attack and defence (or support) relationships (Ganzer-Ripoll et al., 2019). These allow
participants to put forward arguments, relations between arguments, and opinions about
these arguments. They then produce an output that is intended to reflect the collective
opinion of the participants on the the debate.

This paper proposes and analyses a new formal model, which we call the “relational
reasoning model”, that provides an alternative approach to collective reasoning. The specific
contributions of this work are:

• A new formal model. We present our relational reasoning model, a formal model which
extends previous frameworks for collective reasoning. It extends argumentation-based
approaches by: providing a more flexible notion of relationships between statements,
not being restricted to attack and support (Awad et al., 2017b; Ganzer-Ripoll et al.,
2019; Leite & Martins, 2011); allowing the structure of opinions to be expressed unlike
approaches based on abstract argumentation (Awad et al., 2017b; Coste-Marquis
et al., 2007; Leite & Martins, 2011); and introducing “coherence” as a less rigid
requirement for the relationship between opinions than the ideas of acceptability used
in argumentation. Our approach is also more flexible in allowing the expression of
opinions about both statements, as the work of Ganzer et al. (2019) and Leite and
Martins (2011), and about the relationships between statements, as in the work by
Dunne et al. (2011)2. No existing model allows both. In a further extension to
approaches like that of Awad et al. (2017b), we allow opinions to be real-valued
rather than discrete valued.

1. For example, regarding participatory democracy https://www.direct-democracy-navigator.org/ reports,
as for October 2022, 1995 legal designs in 106 countries.

2. The paper by Dunne et al. (2011) is not about combining collective opinions on relationships between
arguments, but it provides the groundwork for such a system by studying argumentation where the
relationships between arguments have different weights.
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• Families of aggregation functions. We propose a number of opinion aggregation func-
tions that use the participants’ opinions about a debate to compute a collective view.
These functions make different use of the dependencies between opinions. We pro-
vide two families of functions with members that ignore dependencies at all, and other
members that use dependencies in different ways. These families of functions together
span all the ways in which the dependencies can be taken into account.

• Formal and computational analysis. We assess these families of functions against a
wide-ranging set of properties adapted from the social choice literature (List & Pettit,
2002). The assessment makes use of four scenarios that make different assumptions
about the opinions of participants. We follow the formal analysis with a computa-
tional analysis. This first computes the computational complexity of the aggregation
functions, and then provides an empirical analysis of those functions when computing
collective opinions for a range of scenarios that are larger (in terms of statements and
number of opinions) than any online debates that we are aware of. This analysis shows
that collective opinions can be computed in real time on quite modest hardware.

The structure of this paper is as follows. Section 2 provides an introduction to the rela-
tional reasoning model; and Section 3 and Section 4 provide a formal definition of the model.
Then, Section 5 defines the problem of computing collective coherence and introduces the
properties that will be used to assess aggregation functions, while Section 6 defines a fam-
ily of aggregation functions and Section 7 uses the properties to analyse the functions in
different scenarios (the proofs can be found in Appendix A). Section 8 provides the com-
putational assessment of the model; Section 9 relates the work presented in this paper to
other relevant work in the literature; and Section 10 summarises our conclusions.

2. Introducing the Relational Reasoning Model

The Relational Reasoning Model, RRM for short, is a model designed to represent a de-
bate where participants discuss a proposal by putting forward information and giving their
opinions. In this section we introduce the main elements of the model, and in the following
section we present the full formalisation. As depicted at the top of Figure 2, the RRM is
composed of two main parts: the structural part, representing the relationships between the
information expressed in (or content of) a debate; and the interpretative part, representing
the participants’ opinions about the content of a debate.

Content of a debate. The RRM has two main abstract elements that capture the struc-
ture of a debate: statements and the relationships among them. Statements represent plain
sentences that describe facts such as, for example (in an urban context), s0= “Building
a modern sports centre” or s1=“Diminishing the historical character of the neighbour-
hood”. Relationships represent the reasoning that connects statements. For instance, we
may consider the reasoning r1= “Building a modern sports centre will imply diminishing
the historical character of the neighbourhood” connecting s0 to s1. In general, each rela-
tionship connects a set of source statements to some destination statement. We can think
of relationships as logical inferences that relate the statements in the debate.

In the RRM we consider debates that discuss a particular subject or proposal, and refer
to it as the target τ . The target initiates the debate and thus acts as root of the structure
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of the statements and their relationships. We call this structure a Directed Relational
Framework, or DRF for short. Figure 1 a) illustrates the DRF that results from considering
s0 to be the target τ and relating it to s1 through r1. We graphically represent the DRF as a
graph where nodes correspond to statements and relations to arcs. Relations are directed to
reflect the direction of reasoning (i.e., from premises to conclusions) in the debate structure.

τ

s1

r1

(a)

τ

s1

r1

v1(τ) = 0.9
v2(τ) =−0.5
v3(τ) =−0.5

v1(s1) = 0
v2(s1) =−1
v3(s1) = 0

w1(r1) = 0.2
w2(r1) = 1
w3(r1) = 0.6

(b)

Figure 1: Graphical representation of: a) DRF, the relationship r1 between proposal τ
(“building a modern sports centre”) and statement s1 (“diminishing the historical character
of the neighbourhood”); and b) Opinions over the DRF in a).

Participants’ opinions. Participants provide their opinions about the elements in the
DRF structure. We encode these subjective opinions by means of two functions: the valua-
tion function, which assigns values to statements; and the acceptance function, that assigns
values to the relationships. The valuation function represents the participants’ judgement
about the statements in the debate. As for the acceptance function, it represents the
truth participants see in the statements’ relationships (i.e., the reasoning that connects
statements). Thus, the desirability or undesirability that each participant feels about each
statement of the debate is represented by a positive or negative value assigned with the
valuation function, and the conformity that each participant relates to the connections be-
tween the statements is represented by an acceptance value assigned by the acceptance
function. Following the DRF example in Figure 1 a), Figure 1 b) depicts the opinions of
three participants: participant 1 is an indoor sport practitioner that values the target τ
very positively (v1(τ) = 1), is neutral towards s1 (v1(s1) = 0), and thinks the implication
is somehow weak (w1(r1) = 0.2); Participant 2 loves history (and values it much more than
sports) and fully agrees with relationship r1 (w2(r1) = 1, v2(s1) = −1, and v2(τ) = −0.5);
and participant 3 likes horse riding (rather than indoor sports) and partially agrees with
the reasoning (v3(τ) = −0.5, w3(r1) = 0.6, and v3(s1) = 0). In order to compute a collec-
tive opinion on the proposal, these individual participants’ opinions will be aggregated, as
explained in a subsequent paragraph, into a collective opinion by means of an aggregation
function.

Direct and Indirect Opinion Considering the influence of opinion (i.e., how opinions
about conclusion statements affect the one on their premises), we differentiate direct from
indirect opinions: direct opinion refers to the value directly given to a statement by a
participant; and indirect opinion represents those values given to the related statements
(i.e., conclusions) and its relationships. We assume opinions on conclusions influence those
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on their premises. Although it may seem natural to expect participants to be rational
and, thus, to provide consistent direct and indirect opinions, inconsistencies may arise. We
argue that assuming rationality is too demanding for modelling human debates. In fact,
in our previous urban example, one may well envision that a participant hopes for a new
sports center (valuing τ positively) even if they are concerned with the historical character
of the neighbourhood (valuing s1 negatively) and accepting the reasoning r1 relating both
statements. Thus, by comparing the direct opinion with the indirect opinion about each
statement we can provide a notion of coherence that accounts for consistency between these
opinions.

Opinion Aggregation Once all users have expressed their opinions about statements
and relationships, opinions must be aggregated to calculate a collective opinion. This ag-
gregation can take into account direct opinions, indirect opinions, or a combination of both.
In establishing suitable aggregation functions, we have to take into account that individual
opinions may be incoherent. Nonetheless, we aim to design aggregation functions that can
combine these “imperfect” individual opinions into a “reasonable” collective opinion.

As mentioned in the introduction, the relational reasoning model is more expressive
than existing, related, frameworks (Awad et al., 2017b; Ganzer-Ripoll et al., 2016; Leite
& Martins, 2011) because it can model situations where participants do not agree on the
relationships between different facts. This is captured in the model by the acceptance
function. We argue that this acceptance function makes it possible to be explicit about the
subjectivity that may be associated to those relationships. Thus, subjectivity may not only
be expressed by means of the opinions about statements — i.e., the valuation function —
but also through the acceptance function.

3. Formalising the Relational Reasoning Model

From the informal introduction of debates in previous section, we are now ready to formally
describe its components and associated processes. This section is devoted to specify both
the debate structure and the participants’ opinions. In what follows, Figure 2 serves as a
reference to follow this formalisation.

3.1 Formalising the Structure

First, we introduce the formal notion of a relational framework to capture the relationships
between statements. Our notion of relationship will consider a non-empty set of source
statements and a destination statement. In general, by relating a set of (source) statements
to a (destination) statement, we indicate that the source statements support inferring the
destination statement, though the framework is agnostic about the form that the support
and the inference mechanism takes. For instance, in our example in Figure 3, statements
s2 and s3 support inferring s4. Formally:

Definition 3.1. A relational framework RF is a pair ⟨S,R⟩, where S is a set of statements
and R ⊂ P(S)×S ×N is a relation that does not contain cycles, namely there is no subset
of relationships {(Σ0, s1, c1), . . . , (Σn−1, sn, cn)}⊆R such that si ∈ Σi, i ∈ {1, . . . , n − 1},
and sn ∈ Σ0.
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Figure 2: The basic elements of our relational reasoning model.
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Since the relation R is acyclic, it follows that R is neither reflexive ( ∀s ∈ S, (Σ ∪
{s}, s, c) /∈ R) nor symmetric (∀s1, s2 ∈ S, if (Σ1∪{s1}, s2, c2) ∈ R then (Σ2∪{s2}, s1, c1) /∈
R). Note that we do not impose any restriction on the transitivity of the relationR. The fact
that relational frameworks do not contain cycles is a limitation on what can be represented
using our approach, but we do not think it is a serious limitation — we discuss this further
in Section 10.

Notice also that we include a natural number within the relation in order to differentiate
relationships between the same set of statements Σ and s. From a practical perspective,
this allows to signal that alternative relationships can bear on the very same statements3

(as shown in Figure 3, where target τ is related to statement s1 through relationships r1
and r6).

Now, since debates are aimed at achieving a collective decision on target topics, we
extend our definition above to incorporate the notion of target statements as follows:

Definition 3.2. A directed relational framework (DRF) is a tuple ⟨S,R, T ⟩ such that:

(i) ⟨S,R⟩ is a relational framework;

(ii) T ⊂ S is a set of target statements;

(iii) target statements in T can only be the source of relationships, namely for any rela-
tionship (Σ, s, c) ∈ R, s /∈ T ;

(iv) all non-target statements are connected to targets so that for any statement s ∈ S,
s /∈ T , there is a path {(Σ0, s1, c1), . . . , (Σn−1, s, cn)} ⊂ R such that T ∩ Σ0 ̸= ∅; and

(v) every target statement shares some common descendant with any other target state-
ment, namely for every pair of targets τ, τ ′ ∈ T there is a statement s ∈ S such that
there is a path from τ to s and another path from τ ′ to s.

Note that a DRF is constrained to be a connected acyclic graph, albeit one that can
have several targets. This reflects the idea that, since a DRF represents a single debate,
every statement in that debate should have some connection to the rest of the debate.

In what follows we slightly extend our urban example briefly introduced in Section 2
to produce a graphical representation of a DRF that will help us visualise the information
in a debate. Recall that our example considered statements τ (“Building a modern sports
centre”) and s1 (“Diminishing the historical character of the neighbourhood”), as well as
relationship r1 (“Building a modern sports centre will imply diminishing the historical
character of the neighbourhood”) connecting both. Besides that, next we consider further
statements and relationships as listed in tables 1 and 2 respectively. Finally, figure 3 depicts
the connections between statements through relationships. Note that r4 is a hyperedge,
connecting three statements4.

3. The inclusion of a natural number into the specification of a relationship does not affect the formal con-
tributions of the paper, since, as it will be shown later, relationships are grouped into (and subsequently
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Statement Description

τ Building a modern sports centre

s1 Diminishing the historical character of the neighbourhood

s2 Attraction of more affluent residents to the neighbourhood

s3 Attraction of new business to the neighbourhood

s4 Crime reduction in the neighbourhood

s5 Property values rise in the neighbourhood

Table 1: Statements for the sports centre example.

τ

s1 s2 s3

s4s5

r1

r2

r3

r4

r5

r6

Figure 3: The DRF for the sports centre example.

3.2 Formalising Opinions

Now we address the formalisation of the opinions put forward by participants in a debate.
We consider that opinions can be held both about statements and relationships. We there-
fore define two functions that capture the opinions of individuals: (i) a valuation function
over statements; and (ii) an acceptance function over relationships. On the one hand, a val-
uation function conveys the subjective value that an individual places on each statement.
On the other hand, an acceptance function expresses the subjective plausibility that an in-
dividual assigns to each relationship, representing the reasoning that connects statements.
Formally:

Definition 3.3 (Valuation function). Given a DRF ⟨S,R, T ⟩, a valuation function v :
S −→ I maps each statement to a value in I = [−1, 1].

traversed through) the sets R+ defined in equation 1 (page 1032), without considering any restrictions
on the statements they relate.

4. Notice that one participant could introduce an extra relationship from τ to s5, representing the reasoning
“A new community center will give more relevance to the neighbourhood, that will increase the house
price”, which is not the sum of r2, r3 and r4, but represents a whole new way to connect τ to s5. This
shows that the transitivity allowed in the model, connecting statements from non-consecutive levels of
the debate via a single relationship, is not intended to represent the combined reasoning formed by the
reasoning steps in between.
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Relationship Reasoning Connection

r1 Building a modern sports centre will imply τ to s1
diminishing the historical character of the neighbourhood.

r2 The new sport centre will make the neighbourhood more τ to s2
attractive for wealthy residents because

they are more interested in leisure activities.

r3 A new community centre will attract more τ to s3
businesses to the surrounding area.

r4 Having richer residents and more businesses will {s2, s3} to s4
increase the security measures around the neighbourhood

and therefore, reduce criminal activities.

r5 The reduction of crime will increase the price of s4 to s5
the houses in the neighbourhood.

r6 To build a new sport centre, τ to s1
the existing listed building in that location

will be demolished.

Table 2: Reasoning for the sports centre example.

Given a statement s ∈ S: if v(s) = 1 we say that s counts on full positive valuation; if
v(s) = −1 we say that s counts on full negative valuation; and if v(s) = 0 we say that s has
neutral valuation.

Definition 3.4 (Acceptance function). Given a DRF ⟨S,R, T ⟩, an acceptance function
maps each relationship to a value in I+, w : R −→ I+ = [0, 1].

Given a relationship r ∈ R and an acceptance function w, we will refer to the value w(r)
as the acceptance degree of r. If w(r) = 1 we say that the acceptance function expresses
full agreement with the relationship, whereas if w(r) = 0 we say that it expresses full
disagreement.

Considering our running example, graphically represented in figure 3, figures 4 and 5
show the valuation functions and acceptance functions of agents 1, 2, and 3: v1, v2 and v3
encode agents’ valuations for statements, while w1, w2 and w3 encode agents’ acceptances of
relationships. We consider now the description of agents’ opinions in Section 2 to exemplify
how they translate into valuations and acceptances. Thus, for instance, agent one is “highly
positive” about the target τ (v1(τ) = 0.9), but neutral regarding statement s1 (v1(s1) = 0).
Furthermore, agent one considers that the plausibility of relationship r1 is “little” (w1(r1) =
0.2).
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τ

s1 s2 s3

s4s5

v1(τ) = 0.9
v2(τ) =−0.5
v3(τ) =−0.5

v1(s1) = 0
v2(s1) =−1
v3(s1) = 0 v1(s2) = 0.7

v2(s2) = 1
v3(s2) =−0.8

v1(s3) = 1
v2(s3) = 0.5
v3(s3) = 0.5

v1(s4) = 1
v2(s4) = 1
v3(s4) = 1

v1(s5) =−1
v2(s5) = 1
v3(s5) =−1

Figure 4: Agents’ valuation functions.

τ

s1 s2 s3

s4s5

w1(r1) = 0.2
w2(r1) = 1
w3(r1) = 0.6

w1(r2) = 0.1
w2(r2) = 0.7
w3(r2) = 1

w1(r3) = 1
w2(r3) = 0.8
w3(r3) = 1

w1(r4) = 1
w2(r4) = 1
w3(r4) = 0.3

w1(r5) = 1
w2(r5) = 0.5
w3(r5) = 1

w1(r6) = 0.5
w2(r6) = 1
w3(r6) = 0.2

Figure 5: Agents’ acceptance functions.

Now we are ready to formally introduce the notion of individual opinion over a DRF .

Definition 3.5 (Opinion). Given a DRF = ⟨S,R, T ⟩, an opinion over the DRF is a pair
O = (v, w) such that v is a valuation function and w is an acceptance degree.

For practical purposes, we assume that for each relationship, there is at least one indi-
vidual that provides a non-zero acceptance value for that relationship, otherwise, it would
not influence the debate. Henceforth, we shall note the class of all opinions over a DRF as
O(DRF ).

As depicted in figures 4 and 5, each agent i involved in a debate will have its individual
opinion Oi = (vi, wi).
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Next, we define our notion of an opinion profile, which brings together the opinions of
the individuals involved in a debate. From hereon we use the term “agent” along with the
term “individual” to refer to the participants in the debate.

Definition 3.6 (Opinion profile). Let Ag = {1, . . . , n} be a set of n agents and a DRF =
⟨S,R, T ⟩. An opinion profile is a collection of opinions (O1 = (v1, w1), . . . , On = (vn, wn)) ∈
O(DRF )n over the DRF such that Oi = (vi, wi) stands for the opinion of agent i.

Now, our goal will be to compute a collective opinion from the opinions in an opinion
profile, which contains the opinions issued by the participants in a debate

4. Characterising Coherent Opinions

Previous work on the formal modelling of debates has placed restrictions on the opinions
that individuals can put forward. For example, Awad et al. (2017b) interprets the opinions
expressed by individuals as labels, in the sense of Baroni et al. (2011), for the arguments
that they are expressing opinions about. Thus, an argument can be labelled in, meaning
that the individual thinks that it holds, out, meaning that the individual thinks it does
not hold, or undec, meaning that the individual is not sure whether it holds or not. These
labellings are restricted to be complete labellings (Baroni et al., 2011), broadly meaning
that they conform to a notion of rationality where arguments are out if they are attacked
by arguments that have been established to be in, and are in if they are only attacked by
arguments that are out. We believe that the restrictions imposed by these notions are too
restrictive for modelling human debates, as humans may express opinions that are far from
rational.

Instead, we impose weaker conditions for an individual opinion to be classified as rea-
sonable or coherent, along the lines of our former work (Ganzer-Ripoll et al., 2019). Hence,
given a statement, we contrast opinions expressed about that statement, the direct opinion,
with the opinions expressed about the immediate descendants of the statement, what we call
the indirect opinion, and look for ways in which these may be made somewhat consistent.

Informally, what we do is the following. First, we compute an estimated opinion for a
statement based on the indirect opinion about it. Then, we say that a set of opinions about
a statement are coherent if the estimated opinion for the statement aligns with the direct
opinion about the statement. This will be the case when the opinion (valuations) about the
descendants is close to the overall opinion (valuation) about the statement. Considering
our example in figure 4 again, consider statement τ , its descendants (s1, s2, and s3), and
the opinion of agent 2 (v2). We observe that although the direct opinion about τ is rather
negative (v2(τ) = −0.5), the valuations for its descendants are diverse: while the valuation
for s1 is also rather negative (v2(s1) = −1), and hence in line with τ , the valuations on the
other descendants are rather positive (v2(s2) = 1 and v2(s3) = 0.5), and hence not in line
with τ . Thus, at first sight5 it would seem that the overall estimated opinion is not in line
with the direct opinion.

In what follows, we first formalise our notion of estimation as an aggregated measure
formed from the indirect opinion about a statement — i.e., the collection of values for the

5. Note that we are not considering acceptances at this point.
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descendants and their relationships. This will consider valuations and acceptance degrees
related to a statement and its relationships so that the more accepted a relation between
a statement and its descendants, the more important the opinion about that descendant.
Thereafter, we will formalise our notion of coherence by measuring how close the direct
opinion about a statement is to the estimated opinion about that statement.

First, we introduce some concepts and notations that will aid us in later steps. Given a
DRF = ⟨S,R, T ⟩, we define the set of relationships from s ∈ S as the set of relationships
having s in the set of initial statements. Formally,

R+(s) = {r = (Σ, s′, c) ∈ R | s ∈ Σ}. (1)

We will use the term descendants of a statement s, denoted by D(s), to refer to any state-
ment sr connected to s by a relationship r that has s as one of the initial statements and
sr as final statement. Formally,

D(s) = {sr ∈ S | r = (Σ, sr, c) ∈ R+(s)}.

Next, we define the concept that connects direct and indirect opinion in order to characterise
our notion of coherence. We will use an estimation function to compute an estimate of the
direct opinion using the values gathered for the indirect opinion.

Definition 4.1. Given a DRF = ⟨S,R, T ⟩ and O = (v, w) and opinion over the DRF , the
estimation function is a valuation function mapping each statement to a value in the set I
following the next schematic:

e : S −→ I
s 7−→ e(s) = f(IO(s))

where IO(s) = {(v(sr), w(r))| r ∈ R+(s) and sr is the descendant attached to r}, and,
if |R+(s)| = 0, then e(s) = v(s). Otherwise (if |R+(s)| > 0):

f : D = (I × I+)∗ −→ I

such that

• for any s such that |R+(s)| > 0, D is any (I × I+)|R
+(s)|.

• f is monotonic with respect to the domain D. I.e. f increases or decreases accordingly
to the changes on its inputs, with respect the order endowed in the domain.

In other words, the estimation function computes an estimated value for a statement
using the valuations and acceptance degrees for the indirect opinion about that statement.
For instance, we can estimate the target e(τ) in figure 3 by considering the valuations
of descendant statements s1, s2, and s3 in figure 4 together with the acceptances of their
corresponding relations (r1, r2, r3) in figure 5. However, if the statement has no descendants
— as is the case for s5 — then we simply take its valuation: e(s5) = v(s5). This definition
is designed to be an abstract definition that allows for many estimation functions to be
defined to compute different approximations for the direct opinion. Henceforth, we will
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use the weighted average of the valuations on the descendants, where the weights are the
acceptance degrees on the relations leading to each descendant. In this manner, the more
accepted a relation, the more valued the opinion on the descendant. Formally,

e(s) =


v(s) if R+(s) = ∅ or

∑
r∈R+(s)w(r) = 0,

∑
r∈R+(s) w(r)v(sr)∑

r∈R+(s) w(r) otherwise.

Informally, an opinion is characterised as coherent for a given statement when the value
assigned by the participant (issuing the opinion) to the statement (i.e., its direct opinion)
is aligned with the values and plausibility assigned to its descendants (i.e., its estimate
opinion). Furthermore, given the continuous values allowed on the opinion, we can choose
the degree of coherence by using a parameter ϵ. Formally:

Definition 4.2 (Coherence). Consider a DRF = ⟨S,R, T ⟩ and an ϵ ∈ (0, 1) difference6.
We say that opinion O = (v, w) is ϵ-coherent on s ∈ S when

|v(s)− e(s)| < ϵ.

In general, an opinion O will be ϵ-coherent if it is ϵ-coherent for every statement in
S. From the definition of coherence, this means that for every statement its direct and
indirect opinions are very close, and hence there is an agreement between direct and indirect
opinions.

We will notate as Cϵ(DRF ) the class of all the ϵ-coherent opinions. Thus, if O is an
ϵ-coherent opinion then O ∈ Cϵ(DRF ).

Example 4.1. Following the example, now we can compare the values from the expectation
function and the actual value given by participant 1 to each statement, its direct opinion, see
figure 6. We can see that if ϵ ∈ (0.3, 1) then the opinion of participant 1 for the statements
s1, s2, s3 and s5 is ϵ-coherent but not for statement s4 due to the difference between direct
opinion and estimated value, which is the maximum possible. Because of this statement s4,
the opinion of participant 1 cannot be classified as ϵ-coherent for any ϵ ∈ (0, 1).

6. We choose the interval (0,1) for the value of ϵ as the minimum interval that guarantees that if the direct
opinion is 1 (or -1) then an opinion cannot be classified as coherent when the estimation function value
is of the opposite sign, i.e., e(s) ̸≤ 0 (or e(s) ̸≥ 0 respectively).
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τ

s1 s2 s3

s4s5

v1(τ)− e1(τ) = 0.3

v1(s1)− e1(s1) = 0 v1(s2)− e1(s2) = −0.3 v1(s3)− e1(s3) = 0

v1(s4)− e1(s4) = 2v1(s5)− e1(s5) = 0

Figure 6: Coherence of Agent 1.

5. Formalising the Collective Decision Making Problem

As stated above, our goal is to help agents reach a collective decision on target statements.
This corresponds to the third stage in Figure 2. In Section 5.1 we cast our goal as an
opinion aggregation problem. We propose to solve such problem using an aggregation
function that synthesises a single opinion out of all agents’ opinions. Although opinions
can be aggregated in different ways, here we follow our previous work (Ganzer-Ripoll et al.,
2019) in requiring that the outcome of an aggregation must satisfy desirable social choice
properties. In particular, Section 5.2 introduces desirable social choice properties to help
analyse and compare opinion aggregation functions.

5.1 The Opinion Aggregation Problem

The problem at hand is how to aggregate the opinions in an opinion profile to produce
a single opinion so that single opinion is a reasonable summary of the opinions in the
opinion profile. If the opinion profile represents the views expressed by individuals in a
debate, the combination should represent the collective opinion of all the individuals. The
opinion aggregation function, which we formalise below, is the mechanism for establishing
this collective opinion.

Definition 5.1 (Opinion aggregation function). Given a DRF and a set of n agents, a
function F : D ⊂ O(DRF )n −→ O(DRF ) mapping an opinion profile to a single opinion is
called an opinion aggregation function. Given an opinion profile P in the domain D, F (P )
is called the collective opinion by F and it will be noted as F (P ) = (vF (P ), wF (P )).

In Section 6 we define specific opinion aggregation functions that compute a collective
opinion. Before that, we introduce the properties that we will use to analyse aggregation
functions.
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5.2 Social Choice Properties

Social choice theory provides formal properties to characterise aggregation methods in terms
of outcome fairness (Dietrich, 2007). In what follows, we formally adapt some of the de-
sirable social properties of an aggregation function that were introduced by Awad et al.
(2017b) and in our previous work (Ganzer-Ripoll et al., 2019). Besides adapting proper-
ties, we define some novel properties that characterise aggregation functions motivated by
the fact that here we are considering opinions to be continuous-valued in contrast to the
discrete-valued opinions used previously (Awad et al., 2017b; Ganzer-Ripoll et al., 2019).

First, we characterise aggregation functions in terms of the opinion profiles that they
can take as input. Thus, we adapt from Awad et al. (2017b) the notion of exhaustive
domain to characterise opinion aggregation functions that are defined for any opinion profile.
Thereafter, we modify this property to limit an opinion aggregation function to operate with
ϵ-coherent opinion profiles.

Exhaustive Domain (ED). An opinion aggregation function F satisfies exhaustive do-
main if its domain is D = O(DRF )n, namely if the function can operate over all
profiles.

ϵ-Coherent Domain (ϵ-CD). An opinion aggregation function F satisfies ϵ-coherent
domain if its domain D contains all ϵ-coherent opinion profiles, namely Cϵ(DRF )n ⊆
D.

We will sometimes refer to ϵ-Coherent Domain as “coherent domain”. Note an opinion
aggregation function satisfying exhaustive domain also satisfies ϵ-coherent domain. In this
paper we will just analyse the most general property (e.g., exhaustive domain) being satis-
fied. We also define collective ϵ-coherence as a property characterising opinion aggregation
functions that produce ϵ-coherent collective opinions. Therefore, our notion of collective
ϵ-coherence here is more relaxed than the crisp notion of coherence we used before (Ganzer-
Ripoll et al., 2019).

Collective ϵ-coherence (ϵ-CC). An opinion aggregation function F satisfies ϵ-collective
coherence if for every opinion profile P ∈ D, the opinion produced by aggregation
function F is ϵ-coherent, namely F (P ) ∈ Cϵ(DRF ).

In accordance with our previous work (Ganzer-Ripoll et al., 2019), here we consider ϵ-
CC as the most desirable property that can be satisfied by an aggregation function, since
collective coherence is the foundation of the acceptability of collective decisions (Thagard,
2002). Notice also that, as in (Ganzer-Ripoll et al., 2019), collective coherence can be
regarded as the counterpart of the notion of Awad et al.’s collective rationality (Awad
et al., 2017b), which states that output of the aggregation should be a complete labelling.
It is also worth noticing the difference between the notions of coherence for an opinion and
collective coherence for an aggregation function. On the one hand, deciding on whether a
single opinion is coherent or not (definition 4.2) is based on assessing whether the direct
opinions and indirect opinions agree (are close) for every statement. On the other hand, the
notion of collective coherence refers to the capability of an aggregation function to output
a coherent opinion when aggregating the opinions in a profile.
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Next, anonymity and non-dictatorship characterise the importance of the agents involved
in a debate that yields a collective opinion. On the one hand, anonymity is a social choice
property requiring that the opinions of all the agents involved in a debate are considered to
be equally significant. On the other hand, non-dictatorship requires that no agent overrules
the opinions of the rest of agents.

Anonymity (A) Let P = (O1, . . . , On) be an opinion profile in D, σ a permutation over
Ag, and P ′ = (Oσ(1), . . . , Oσ(n)) the opinion profile resulting from applying σ over P .
An opinion aggregation function F satisfies anonymity if F (P ) = F (P ′).

Non-Dictatorship (ND). An opinion aggregation function F satisfies non-dictatorship
if no agent i ∈ Ag satisfies that F (P ) = Oi for every opinion profile P ∈ D.

Notice that non-dictatorship is a weaker version of anonymity since it follows directly from
it — any aggregation function that satisfies anonymity will satisfy non-dictatorship. Again,
we will just analyse anonymity for the different aggregation functions.

Now we consider how an opinion aggregation function behaves when agents agree on
their opinions about statements. Unanimity is the social choice property that characterises
the behaviour of aggregation functions when there is agreement among agents’ opinions.
The classical notion of unanimity defines unanimity as a situation in which all agents share
the very same opinion. While this is quite possible in settings where agents only have a few
discrete possibilities for expressing their opinion (Awad et al., 2017b; Ganzer-Ripoll et al.,
2019), it is not likely to occur in the setting we are studying here, where opinions can take
a wide range of values. As a result, we propose some relaxed variations which are more
useful for the setting we consider. First, we say that sided unanimity will hold when, for
each statement, either all opinions on it are positive or negative. Formally,

Sided Unanimity (SU). Let P = (O1, . . . , On) be an opinion profile, where P ∈ D. An
opinion aggregation profile F satisfies sided-unanimity if for every s ∈ S:

• if vi(s) > 0 for all i ∈ Ag then vF (P )(s) > 0;

• if vi(s) < 0 for all i ∈ Ag then vF (P )(s) < 0.

We also find a weaker version of sided unanimity to be worth distinguishing:

Weak Unanimity (WU). Let P = (O1, . . . , On) be an opinion profile, where P ∈ D. An
aggregation profile F satisfies Weak unanimity if, for every s ∈ S:

• if vi(s) = 1 for all i ∈ Ag then vF (P )(s) > 0;

• if vi(s) = −1 for all i ∈ Ag then vF (P )(s) < 0.

Although WU requires that all agents agree on fully positive (1) or fully negative (-1)
valuations on statements, it does not require that the output of the opinion aggregation
function takes one of those values, as the usual version of unanimity would (hence the name).
Weak unanimity has value when translating valuations expressed in a discrete model (Awad
et al., 2017b; Ganzer-Ripoll et al., 2019) into our model, and so has value in allowing us to
relate our model to those which came before.

From the definitions above, it follows that the two notions of unanimity are related.
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Proposition 5.1 (Unanimity relationships). If an opinion aggregation function satisfies
Sided Unanimity then it satisfies Weak Unanimity.

Proof. Clearly, if an aggregation function cannot hold the sign of the aggregation when the
assumptions of Weak Unanimity are satisfied, then it is straightforward to see that will fail
to satisfy Sided Unanimity.

As a final unanimity property, we adapt the notion of endorsed unanimity from Ganzer
et al. (2019) to consider unanimity based on indirect opinions. In short, an opinion aggre-
gation function satisfies endorsed unanimity if, for each statement, the collective opinion
on the statement is in line with the unanimous indirect opinion on it. Formally,

Endorsed Unanimity (EU). Let P = (O1, . . . , On) be an opinion profile such that
P ∈ D. An aggregation profile F satisfies endorsed unanimity if for every s ∈ S:

(i) if vi(sd) = 1 for any i ∈ Ag and sd ∈ D(s) (called full positive support), then
vF (P )(s) > 0; and

(ii) if vi(sd) = −1 for any i ∈ Ag and sd ∈ D(s) (called full negative support), then
vF (P )(s) < 0.

Next, we introduce monotonicity properties to study how the result of an opinion aggre-
gation function changes as opinions change. First, we adapt the notion of monotonicity from
Awad et al. (2017b). In particular, Awad et al. (2017b)’s notion of monotonicity states that
if some of the direct opinions about a statement increase (or decrease) the collective opinion
should increase (or decrease) accordingly. That notion only takes into account the direct
opinion about each statement. Since we aim at handling opinion aggregation functions that
merge both direct and indirect opinions, we adapt the notion of familiar monotonicity7

from (Ganzer-Ripoll et al., 2019). In our case, familiar monotonicity requires that when the
direct opinion on a statement increases, the collective opinion does not decrease provided
that the opinions on the descendants of the statement do not change either. Formally:

Familiar Monotonicity (FM). Let s ∈ S be a statement, and P = (O1, . . . , On) and
P ′ = (O′

1, . . . , O
′
n) such that for every opinion i satisfies that vi(s) ≤ v′i(s), and,

wi(r) = w′
i(r) and vi(sr) = v′i(sr) for every relationship r ∈ R(s) and its associated

descendant sr ∈ D(s). We say that an opinion aggregation function F satisfies FM if
vF (P )(s) ≤ vF (P ′)(s).

Having listed these properties, we note that they are not all equally important. For a
multi-party discussion, we believe that the most important property is collective coherence.
If an aggregation function is collectively coherent, the resulting combined opinion will be
coherent regardless of the coherence of the initial opinions that are being merged. In other
words, an aggregation function that satisfies collective coherence will always discover a
coherent overall opinion no matter how incoherent are the opinions on which it is based.
Along with collective coherence, the property that we would like to see for an aggregation
function is exhaustive domain (and, hence, coherent domain) because it allows for broad

7. The name derives from the fact that this form of monotonicity takes into account opinion about the
descendents of a statement which make up its family.
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applicability of the aggregation function. Finally, we regard the usual social choice property
of anonymity (and, by extension, non-dictatorship) as essential.

Among the unanimity properties, we find sided, weak and endorsed unanimity, which
allow some maneuverability when using dependencies to build the collective opinion, to
be more desirable than classical unanimity. Though it is natural to require some form of
monotonicity, we do not consider the classical monotonicity property to be desirable because
it entails discarding indirect opinions. Thus, in its place we prefer familiar monotonicity,
which takes into consideration indirect opinion. Finally, since we focus on the design of ag-
gregation functions towards the use of both direct and indirect opinions, we do not include
independence which, although commonly used in social choice, just depends on direct opin-
ions and disregards indirect opinions. Any reader interested in an analysis of the classical
notions of unanimity, monotonicity and independence for the relational reasoning model
can find it in an extended version of this paper (Ganzer et al., 2020).

6. Aggregation Functions to Enact Collective Decision Making

Since there are dependencies between statements in a relational reasoning model, the ques-
tion when designing an aggregation function is how to exploit dependencies, which funda-
mentally amounts to deciding how to exploit indirect opinions as well as direct opinions.
In this section we design two families of aggregation functions for the relational reasoning
model that allow us to compute collective decisions. Both families use some some combi-
nation of direct and indirect opinions, as introduced in Section 2. On the one hand, the
family of balanced aggregation functions proposes a linear combination of direct opinions
and indirect opinions (from immediate descendants). On the other hand, the family of re-
cursive aggregation functions proposes to further exploit dependencies. Thus, it proposes a
linear combination of direct opinions and indirect opinions, but this time indirect opinions
come from considering all descendants.

Our aim, later on (in Section 7), is to study both families in terms of the social choice
properties that they satisfy. Both families are defined in terms of some base aggregation
functions that we introduce first.

We start by defining a function that only aggregates direct opinions, hence disregarding
indirect opinions. This function obtains a collective opinion by averaging valuations per
statement and acceptance degrees per relation from the individual opinions in an opinion
profile. Formally:

Definition 6.1 (Direct aggregation). Let ⟨S,R, T ⟩ be a DRF and P = (O1, . . . , On) an
opinion profile over theDRF . The direct aggregation of P over theDRF is defined as a func-
tion D(P ) = (vD(P ), wD(P )), where vD(P )(s) =

1
n

∑n
i=1 vi(s) and wD(P )(r) =

1
n

∑n
i=1wi(r)

for any statement s ∈ S and relationship r ∈ R.

Next, we define a function that only aggregates indirect opinions, disregarding direct
opinions. Therefore, it is the converse of the direct aggregation function. The aggregation
of indirect opinions employs the aggregation estimations, hence employing the estimation
functions from definition 4.1. Formally:

Definition 6.2 (Indirect aggregation). ⟨S,R, T ⟩ be a DRF and P = (O1, . . . , On) an
opinion profile over the DRF . The indirect aggregation of P over the DRF is defined as
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a function I(P ) = (vI(P ), wI(P )), where vI(P )(s) =
1
n

∑n
i=1 ei(s), where ei is an estimation

function, and wI(P )(r) =
1
n

∑n
i=1wi(r) for any statement s ∈ S and relationship r ∈ R.

While the direct aggregation function computes the average of individuals’ direct opin-
ions, the indirect aggregation function computes the average of individuals’ indirect opinions
as estimated opinions. Observe that both functions calculate the aggregation of acceptance
degrees likewise. This is the case for all the aggregation functions defined in this section,
and hence the difference between them lies in the aggregation of valuations.

At this point, we are ready to introduce our first family of aggregation functions, which
is based on a linear combination of the direct and indirect aggregation functions.

Definition 6.3 (α-Balanced aggregation). Let ⟨S,R, T ⟩ be a DRF and P = (O1, . . . , On)
an opinion profile over the DRF . Given the direct aggregation D(P ) = (vD(P ), wD(P )), the
indirect aggregation I(P ) = (vI(P ), wI(P )), we define the α-balanced aggregation function
Bα(P ) = (vBα(P ), wBα(P )), with α ∈ [0, 1], for any statement s ∈ S and relationship r ∈ R,
such that:

vBα(P ) = α · vD(P ) + (1− α) · vI(P )

wBα(P )(r) =
1

n

n∑
i=1

wi(r).

By changing the value of α we vary the importance of the direct opinion with respect to
the indirect opinion. The functions resulting from definition 6.3 form a family of balanced
aggregation functions: {Bα}α∈[0,1]. In particular, by setting α to 0 we obtain the indirect
aggregation function, and by setting it to 1 we obtain the direct aggregation function.
Figure 7 shows the valuations of the direct, indirect, and α-balanced aggregation functions
for the opinion profile of our running example in figure 4.

Next, we define another base aggregation function that exploits indirect opinions dif-
ferently. For a given statement, the so-called recursive aggregation function calculates its
aggregated valuation by using the collective opinion on its descendants, which in turn is
recursively computed from their descendants, and so on. This recursive computing ends up
when reaching statements without descendants whose indirect opinion is empty. Therefore,
the recursive aggregation, unlike balanced aggregations, disregards individual valuations in
the indirect opinion, and employs their collective opinions instead.

Definition 6.4 (Recursive aggregation). Let ⟨S,R, T ⟩ be a DRF and P = (O1, . . . , On)
an opinion profile over the DRF . The recursive aggregation of P over the DRF is defined
as a function R(P ) = (vR(P ), wR(P )) for any statement s ∈ S and relationship r ∈ R such
that:

vR(P )(s) =

{
1∑

r∈R+(s) wR(P )(r)

∑
r∈R+(s) vR(P )(sr) · wR(P )(r) if R+(s) ̸= ∅
vD(P )(s) otherwise

and wR(P )(r) =
1
n

∑n
i=1wi(r).

Recall that R+(s) stands for the relationships connecting s to a descendant sr of s
through the relationship r. Thus, the recursive function computes the average of the indirect
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collective opinion computed so far. In fact, we could say that, due to its recursive character,
the function computes the estimated opinion for each statement in a bottom-up manner.
The aggregation of opinions starts considering the direct opinions at the “leaves” of the
debate, namely at the statements with no descendants, and moves up until reaching the
targets.

At this point, we are ready to define our second family of aggregation functions by
combining the direct and recursive aggregation functions.

Definition 6.5 (α-recursive aggregation). Let ⟨S,R, T ⟩ be a DRF and P = (O1, . . . , On)
an opinion profile over the DRF . Given the direct aggregation D(P ) = (vD(P ), wD(P )), the
recursive aggregation R(P ) = (vR(P ), wR(P )), we define the α-recursive aggregation function
Rα(P ) = (vRα(P ), wRα(P )), with α ∈ [0, 1], for any statement s ∈ S and relationship r ∈ R
such that:

vRα(P ) = α · vD(P ) + (1− α) · vR(P )

wRα(P )(r) =
1

n

n∑
i=1

wi(r).

Figure 8 shows the valuations of the direct, recursive, and α-recursive aggregation func-
tions for the opinion profile of our running example in figure 4.

7. Analysing Opinion Aggregation Functions

In this section we compare the aggregation functions introduced in Section 6 in terms of
their satisfaction, or otherwise, of the social choice properties introduced in Section 5. Our
analysis will run along two dimensions: (1) the coherence of an opinion profile; and (2) the
consensus on the acceptance degrees of an opinion profile. Thus, we will consider whether
agents’ opinions are constrained to be coherent (the opinion profile is coherent) or not, and
whether agents agree on acceptance degrees (there is consensus on acceptance degrees) or
not. This results in four debate scenarios to analyse:

1. Unconstrained opinion profiles;

2. Constrained opinion profiles: assuming consensus on acceptance degrees;

3. Constrained opinion profiles: assuming coherent profiles; and

4. Constrained opinion profiles: assuming consensus on acceptance degrees and coherent
profiles.

The analysis of these scenarios will help us assess the price to pay, in terms of social choice
properties, if the opinions stated by participating agents are not necessarily coherent. The
scenarios will also help us assess the price to pay when the relationships between statements
are open for discussion by means of acceptance degrees.

Scenario 2 takes inspiration from multiple debate systems that are already in use, which
do not allow participants to value the relationships between sentences in a debate differ-
ently.. In such systems the relationships, which provide the structure of the debate, cannot
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be questioned. Scenarios 3 and 4 capture debates in which participants act rationally, hence
exhibiting coherence. Finally, scenario 1 represents the most open scenario, where partici-
pants are not expected to act rationally and where even the relationships between sentences
are open to discussion.

For the sake of readability, we do not include the formal analysis in the body of the
paper. Instead, we present the main results of our analysis here while Appendix A details
our formal analysis, including the proofs of the results reported hereafter.

7.1 Unconstrained Opinion Profiles

This is the most general scenario that we consider. We assume unconstrained opinion
profiles, which means that any opinion profile is deemed to be possible input for the ag-
gregation functions introduced in Section 6. In other words, the domain of our aggregation
functions is the class O(DRF )n itself, and hence opinions need not be coherent nor agree
on acceptance degrees.

Table 3 displays the social choice properties fulfilled by the functions defined in Section
6 in this general case. There is one column per aggregation function and one row per social
choice property. In the table, a green square (with a tick) indicates that a property is
fulfilled, while a red square (with a cross) indicates that a property is not fulfilled. As to
the more general aggregation functions, α-B(alanced), and α-R(ecursive), in some cases we
specify the values α for which a given property holds. Notice that, for both families, we
show the results considering α ∈ (0, 1), not considering 0 or 1. The cases for the extreme
values (0 and 1) represent aggregations functions displayed in other columns.

Desirable properties D I R α-B α-R

Collective coherence ✗ ✗ ✓ ✗ α < ϵ/2

Exhaustive domain ✓ ✓ ✓ ✓ ✓
Anonymity ✓ ✓ ✓ ✓ ✓
Sided Unanimity ✓ ✗ ✗ ✗ ✗

Weak Unanimity ✓ ✗ ✗ α > 1/2 α > 1/2

Endorsed Unanimity ✗ ✓ ✗ α < 1/2 ✗

Familiar monotonicity ✓ ✓ ✗ ✓ ✗

Table 3: Social choice properties satisfied by aggregation functions D(irect), I(ndirect),
R(ecursive), α-B(alanced), and α-R(ecursive) for: (i) a general scenario considering uncon-
strained opinion profiles; (ii) a scenario considering constrained opinion profiles: consensus
on acceptance degrees.

Domain and anonymity. Table 3 shows that Exhaustive Domain (ED) (and by extension
Coherent Domain), and Anonymity (and Non-dictatorship) are fulfilled by all the proposed
opinion aggregation functions. Since no constraints are imposed on opinion profiles received
as input, ED is satisfied, and since no agent in an opinion profile receives a special treatment,
Anonymity holds.

Collective coherence. The (D)irect, (I)ndirect and α-Balanced functions do not satisfy
collective coherence. The result of such aggregation methods largely depends on the co-
herence of the opinion profile at hand, and in this scenario that can be incoherent. More
positively, the (R)ecursive aggregation function does satisfy Collective Coherence (CC). Out
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of the family of recursive aggregation functions (α-R), which rely on D and R, those for
which α < ϵ/2, where ϵ is set to assess the coherence of the output, also satisfy CC. This
tells us that the closer is α to 0 (the less the use of the direct opinion), the more coherent
the collective opinion obtained by an α-R function will be. The closer α is to ϵ/2, the less
coherent the collective opinion obtained by an α-R function will be. When α goes beyond
ϵ/2, the α-R function depends too much on the direct opinion (which does not satisfy CC)
and CC does not hold.

Unanimity. Sided and Weak Unanimity are not satisfied by the Indirect and Recursive
aggregation functions. This is because the indirect opinion, employed by all these aggrega-
tion functions, ignores unanimity on the direct opinion of a statement and in some cases
these functions can produce a result in the opposite direction. On the other hand, the
Direct function, which only depends on the direct opinions of a statement, does satisfy all
the unanimity properties. This benefits the Balanced and Recursive families, which satisfy
Weak unanimity for some values of α. Notice that only Balanced and Recursive aggrega-
tion functions for which α is greater than 1/2 satisfy Weak unanimity. Such values of α
lessen the influence of the indirect opinion and sway the result towards the Direct aggre-
gation function, which does satisfy the property. Regarding Sided Unanimity, not even the
influence of the Direct function is enough to guarantee that unanimity is preserved, and
therefore no aggregation function in the Balanced or Recursive families fulfil it for any value
of α ∈ (0, 1).

On the other hand, regarding Endorsed unanimity, the situation changes for the Direct
and Indirect functions. They flip sides so that the Direct function does not fulfill Endorsed
unanimity, but the Indirect function does. This is because unanimity in this case resides in
indirect opinions, and hence it is in line with the Indirect function, which only depends on
indirect opinions. However, this goes against the Direct function, which disregards indirect
opinions, and hence unanimity on its values. Conversely to the Weak unanimity case for the
Balanced family, now we need that the values of α are less than 1/2 to sway the balanced
aggregation towards the Indirect function, and hence, satisfy Endorsed unanimity. Next,
although it might seem reasonable that aggregation functions in the Recursive family also
fulfil Endorsed unanimity, they do not. This is caused by the recursive behaviour of these
aggregation functions, which can overlook unanimity on indirect opinions to use instead
opinions deep in the debate on which there might be no unanimity. And last, due to the
failure of the Direct and Recursive aggregation functions to fulfil Endorsed unanimity, so
do all the aggregation functions in the Recursive family, no matter the value of α.

Monotonicity. The Familiar Monotonicity property is fulfilled by the Direct function (as
a consequence of fulfilling Monotonicity), the Indirect function, and therefore by the whole
family of Balanced functions that are combinations of the Direct and Indirect functions. The
Recursive function, and hence the Recursive family, fails to satisfy Familiar Monotonicity
because, given a statement, the aggregated opinion about its descendants does not solely
depend on the valuations on these descendants alone. Instead, the aggregated opinion
about its descendants recursively depends on descendants down the relational framework.
Thus, changes of opinion on “grandchildren” statements can cause a change of opinion
independently of any change of the direct opinion.

1044



A Formal Model to Support Collective Reasoning

7.2 Constrained Opinions: Assuming Consensus on Acceptance Degrees

As previously mentioned, multiple debate systems that are already in use do not allow
participants to value the relationships between sentences differently because these relation-
ships, which provide the structure of the debate, cannot be questioned. Therefore, we take
inspiration from these systems and consider this second scenario that assumes consensus
on acceptance degrees. Recalling the example introduced in Section 3 (see tables 1 and
2 and Figure 3), this means that participants can value s1 (“diminishing of the historical
character of the neighbourhood”) differently but we assume they all agree in its implication
relationship with τ (“building a modern sports centre”). In this manner, Figure 4 still
holds, but Figure 5 will not be considered.

Assuming consensus on acceptances does not lead to any gain in the fulfilment of social
choice properties with respect to those already claimed in Section 7.1, so previous Table 3
show the results for this scenario as well.

Since this scenario is the closest to be used in current practice, it may be worth noting
that current e-participatory systems have a specific user interface for the representation
of the opinions in a debate. For example, Decidim (2016) allows participants to issue and
relate comments in a forum-like format, and to value those comments through a like/dislike-
sort-of system. Thus, in order to apply our aggregation functions, first we need to transform
its representation into our DRF structure (see Subsection 3.1) and to map likes and dislikes
into our valuation function (see Subsection 3.2). Later on, once all the opinions have been
aggregated with the social choice properties from Table 3, the user interface can also be
adapted to display the overall assessment over the target. This is particularly useful for both
participants and the decision maker, as the aggregated valuation of the target τ provides a
clear guidance for deciding whether the proposal in the target should be accepted. In fact,
the system designers could even establish an automatic acceptance criteria by, for example,
defining a threshold θ ≥ 0 so that τ gets accepted if vF (P )(τ) ≥ θ.

7.3 Constrained Opinions: Assuming Coherent Profiles

In the following, we assume that the opinion profile in a debate is constrained to be coher-
ent at some degree (according to some value ϵ ∈ (0, 1)), so that each of the opinions in the
profile is always coherent. Recall that we consider that coherence occurs when the direct
and indirect opinions are in line. Therefore, assuming coherence is expected to have a pos-
itive impact on aggregation functions that exploit indirect opinions to compute a collective
opinion. Here we assess the gain.

Table 4 shows the properties satisfied by our aggregation functions when assuming co-
herence. The light green squares with check marks identify properties that are now satisfied,
but were not (in Table 3) when not imposing coherence. Therefore, assuming coherence
yields new positive results. More precisely, Table 4 shows that assuming coherence leads to
the satisfaction of desirable unanimity properties for several of the functions. First, given
the coherence assumption, the unanimity on the direct opinion drags the indirect opinion
to become more similar to it, and therefore the Indirect function gains Weak unanimity.
Now, since the Direct function also satisfies it, it follows that all α-Balanced functions now
fulfil it too. Furthermore, thanks to the alignment that the coherence assumption brings
between the direct and indirect opinions, the Direct function fulfils the Endorsed unanimity
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property. Therefore, having Endorsed unanimity fulfilled now by the Indirect and Direct
functions, the aggregation functions in the Balanced family also fulfil it for any α.

Observe that unanimity and the coherence assumption work well together. Coherence
on one sentence brings together its direct and indirect opinions, making it impossible for
both to be far apart, and therefore allowing the Direct and Indirect functions to fulfil more
unanimity properties.

Finally, the family of Recursive function now fulfils Endorsed unanimity, though, not for
any α. Depending on the degree of coherence allowed in the opinion profile, i.e. the value
of ϵ, the interval of α values allowing Rα to fulfil Endorsed unanimity will change. In this
case, α has to be greater than 1/(2− ϵ), representing the need to overcome the bad result
obtained by the Recursive function with respect to the Endorsed unanimity property.

Desirable properties D I R α-B α-R

Collective coherence ✗ ✗ ✓ ✗ α < ϵ/2

Exhaustive domain ✓ ✓ ✓ ✓ ✓
Anonymity ✓ ✓ ✓ ✓ ✓
Sided Unanimity ✓ ✗ ✗ ✗ ✗

Weak Unanimity ✓ ✓ ✗ ✓ α > 1/2

Endorsed Unanimity ✓ ✓ ✗ ✓ α > 1
2−ϵ

Familiar monotonicity ✓ ✓ ✗ ✓ ✗

Table 4: Social choice properties fulfilled when assuming coherent opinions. The light
colours highlight those properties that are fulfilled in addition to those in Table 3.

7.4 Constrained Opinions: Assuming Consensus on Acceptance Degrees and
Coherent Profiles

In what follows we assume both previous constraints on the opinion profiles: coherence
on the opinions and consensus on acceptances degrees. First, consensus on acceptance
degrees on relationships represents an even more simplified debate than that in previous
sections where participants only provide their opinions on sentences. Second, the coherence
assumed on opinions aligns direct and indirect opinions. Overall, both assumptions yield
major benefits in terms of the satisfaction of desired social choice properties, as we discuss
next.

Table 5 shows the gain in fulfilment of desirable properties with respect to Table 4.
Now, all our aggregation functions can guarantee ϵ-coherent aggregated opinions. This
major improvement is because the consensus on acceptance degrees forbids the participants
to value a relationship as 0, which is key to ensure collective coherence for the Direct
and Indirect functions when the opinion profiles are coherent. We assume that, for each
relationship, at least one agent has valued it other than 0, because otherwise it would be as
if the relationship did not exist, and this forces all the participants to have a positive value
too.

7.5 Summary

From the analysis for each debate scenario above, we can draw the following general obser-
vations:
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Desirable properties D I R α-B α-R

Collective coherence ✓ ✓ ✓ ✓ ✓
Exhaustive domain ✓ ✓ ✓ ✓ ✓
Anonymity ✓ ✓ ✓ ✓ ✓
Sided Unanimity ✓ ✗ ✗ ✗ ✗

Weak Unanimity ✓ ✓ ✗ ✓ α > 1/2

Endorsed Unanimity ✓ ✓ ✗ ✓ α > 1
2−ϵ

Familiar monotonicity ✓ ✓ ✗ ✓ ✗

Table 5: Social choice properties fulfilled when assuming coherent opinions and consensus
on acceptance degrees. The light colours highlight those properties that are fulfilled in
addition to those in Table 4.

• The aggregation functions of the recursive family achieve collective coherence provided
that they place little weight on direct opinions (or opinions are coherent and there is
consensus on acceptance degrees).

• Coherence in opinion profiles favours unanimity (specifically, WU and EU), though
in different ways. I and α-Balanced are fully satisfied, while the family of recursive
functions leans on the direct aggregation function to fulfil some unanimity properties
with restrictions. As a result, the α-Recursive family only satisfy WU and EU under
strong conditions on α, because the R function never satisfies them.

• Coherent opinion profiles are not enough for D, I, and α-Balanced functions to achieve
collective coherence. They also require consensus on acceptance degrees. Recursive
functions do not require such consensus (nor even coherent opinion profiles), and
hence, they are robust to the divergence of opinions on the relations between state-
ments in a debate.

• While the D, I, Bα functions manage to achieve familiar monotonicity in all scenar-
ios, the aggregation functions in the recursive family cannot achieve this even when
counting on coherent opinion profiles and consensus on acceptance degrees. This is
because the aggregated opinion on descendants recursively depends on descendants
down the relational reasoning model. Thus, changes of opinion on “grandchildren” or
deeper statements can cause a change of opinion independently of any change of the
direct opinion.

Based on these general observations above, it is the task of the decision maker to decide
the aggregation operator to choose considering: (1) the features of the debate scenario
at hand; and (2) the desirable properties to guarantee. As a rule of thumb, since in real-
world debates we cannot assume individual rationality (coherence), we believe that recursive
aggregation functions are the best choice to achieve collective rationality, though we would
pay the price of losing some other valuable properties, in particular unanimity for values of
α that promote a large use of the direct opinion. Otherwise, if we do not value the coherence
of the collective output, or we can guarantee somehow that the opinions of participants are
coherent and the participatory system at hand does not allow for divergence on acceptance
degrees, then, the Direct function becomes the aggregation function of choice. Within
such constrained settings, the Direct aggregation function fulfils almost every property
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considered, even all of them in the debate scenario in Section 7.4. We conclude that it
seems a good trade-off to consider the Recursive family, which can behave as similar to the
Direct or to the Recursive function as wanted, and set the value of α depending on the
features and goals in hand.

8. Computational Analysis

The purpose of this section is twofold. First, given the opinion aggregation problem in
Section 5.1, we explain the complexity of the different algorithms for computing a collective
decision on its target. In particular, we provide an algorithm for computing the recursive
aggregation function. Thereafter, in Section 8.2, we empirically analyse the use of that
algorithm to solve real-world collective decision problems.

8.1 Computing Aggregation Functions

Algorithm 1 Compute recursive aggregation

1: function ComputeRecursiveAggregation(⟨S,R, T ⟩, (O1, . . . , On))
2: for each relationship r ∈ R do ▷ Compute averaged acceptances
3: aggregated acceptance[r]← average acceptances(w1(r), . . . , wn(r))

4: H(⟨S,R, T ⟩)←DRF to B-hypergraph(⟨S,R, T ⟩) ▷ Generate H : B-hypergraph reprentation of DRF
5: sorted statements← reverse(topological sorting(H(⟨S,R, T ⟩))) ▷ Compute topological sorting of H
6: for s in sorted statements do ▷ Compute aggregated valuations
7: valuation[s] ← 0 ▷ To accumulate aggregated valuations over descendants
8: normaliser[s] ← 0 ▷ To normalise aggregated valuations over descendants
9: compute relationships R(s) to descendants
10: if R(s) ̸= ∅ then ▷ if s has descendants
11: for each relationship r ∈ R(s) do
12: sr ← descendant from relationship r
13: valuation[s] ← valuation[s] + aggregated valuation[sr] · aggregated acceptance[r]
14: normaliser[s] ← normaliser[s] + aggregated acceptance[r]

15: valuation[s] ← valuation[s] / normaliser[s]
16: else ▷ s has no descendants
17: valuation[s] ← average valuations(v1(s), . . . , vn(s))

18: aggregated valuation[s] ← valuation[s]

19: return aggregated valuation,aggregated acceptance

All of the aggregation functions proposed in Section 6 can be calculated by rather effi-
cient algorithms. For example, the direct function calculates the average for all statements
and relationships in a DRF ⟨S,R, T ⟩ considering the direct opinions in an opinion profile
P = (O1, . . . , On). Hence, its complexity is given by O((|R|+ |S|)×|P |), where |R|, |S| are
the number of relationships and statements, respectively; and |P | is the number of opin-
ions in an opinion profile. Computing the indirect and balanced functions can be done by
calculating the aggregated acceptance of each relationship as an average and by calculating
the aggregated valuation of each statement as the average of the estimation function, which
in turn is an average of the indirect opinions for that statement. Hence, their complexity
is given by O(|R| × |S| × |P |). The calculation of the recursive function can be done by
calculating the aggregated acceptance of each relationship as an average and calculating the
aggregated valuation of each statement by starting with statements with no descendants and
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using these results to calculate the aggregated valuation of the statements directly connected
to them. Algorithm 1 contains the pseudocode for the recursive function. In particular, the
algorithm starts by computing aggregated acceptances (wR(P )) as a weighted average (lines
2-3), which has a complexity of O(|R| × |P |). Then, the algorithm computes aggregated
valuations (vR(P )) starting from the statements with no descendants. In order to do that,
we first perform a topological sorting of the DRF. Starting from the statements without
descendants, the algorithm computes aggregated valuations until reaching the statements in
T (lines 5-18). As we will show below, the topological sorting of the DRF has a complexity
of O(|R| × |S|). Hence, the calculation of the aggregated valuations has a complexity of
O(|S|×max(|R|, |P |)). In online debates the number of opinions is usually higher than the
number of relationships, hence, the complexity of the calculation of aggregated valuations
can be typically given by O(|S| × |P |) and the total complexity of the recursive functions
is O(|R| × |P |).
Topological sorting of a DRF. To calculate the topological sorting of a DRF we take
advantage of well known results from hypergraph theory:

1. First we transform the graph associated to the DRF into an acyclic B-hypergraph (as
defined in (Gallo et al., 1993)), which is a directed hypergraph where the head of all
hyperedges has only one node. That transformation is performed in line 4 and the
resulting hypergraph is denoted by H(⟨S,R, T ⟩).
Obtaining an acyclic B-hypergraph from a DRF is straightforward. In fact, the graph
associated with a DRF is an acyclic B-hypergraph with the exception of the relation-
ships that connect the very same statements. For instance, consider relationships r1
and r6 in figure 3 linking τ to s1. Since in a hypergraph there cannot be two or more
hyperedges over the very same nodes, we will only consider one single hyperedge. In
our example, it suffices to consider either r1 or r6. We do not lose anything by do-
ing this simplification because we want to obtain the topological sorting of a DRF,
and hence considering one of the relationships connecting the very same statements
is enough.

2. Performing the topological sorting over the B-hypergraph (line 5). Gallo et al. (1993)
provide an algorithm to calculate the inverse topological sorting in an F-hypergraph
with a complexity of O(|R| × |S|). An F-hypergraph is a directed hypergraph where
the tail of all hyperedges has only one node, and, hence, any given B-hypergraph
can be transformed into a symmetric F-hypergraph by changing the direction of the
hyperedges. Note that the inverse topological sorting of the symmetric F-hypergraph
coincides with the topological sorting in the original B-hypergraph.

In (Ganzer-Ripoll et al., 2020) we provide a publicly-available implementation of algorithm 1
together with all the aggregation functions defined in this paper. Furthermore, we also
provide guidelines on how to reproduce the experiments reported in Section 8.2 below.

8.2 Empirical Analysis

In what follows we empirically analyse the time required by our implementation of algorithm
1 to compute collective decisions. Based on the analysis above, we generated synthetic de-
bates composed of DRFs and opinion profiles. On the one hand, we artificially generated
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DRFs whose statements are the nodes of a directed acyclic B-hypergraph and whose hyper-
edges represent the relationships between statements. We chose the number of statements
in our synthetic DRFs from {100, 150, 200} to represent small, medium and large scenarios.
Regarding the relationships between statements, we considered two parameters:

• Density of relationships. Given a relationship r = (Σ, s), we say that the number
of statements in Σ is the density of r. Since each relationship is represented as a
hyperedge in a B-hypergraph, the density of relationships amounts to the size of the
tails of hyperedges in the hypergraph. The (average) density of relationships in our
artificial DRFs took values from {1, 2, 3}. We set the density value to 1 to generate
DRFs for which there is a one-to-one connection between statements, and so each
DRF is in fact a DAG. As to the other two density values (2 and 3), they allow
us to generate DRFs where each relationship has two statements connected to one
statement, and three statements connected to one statement respectively.

• Density of number of relationships, namely the average number of statements to which
each statement is connected to through relationships. This corresponds to the average
out degree of each statement in the DRF. We chose values for this parameter within
{1, 2.5, 5} to generate DRFs with low, medium, and high density of relationships.

To finish generating a debate, we must generate opinion profiles. We generated profiles with
number of opinions from {106, 3 · 106, 5 · 106}, to represent the largest known actual-world
scenarios8. The values for valuations and acceptances were randomly generated within
[−1, 1] and [0, 1] respectively.

All the computations of collective decisions for our artificially generated debates were
performed on an Ubuntu 16.04 box with an Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz,
with 31GiB system memory, and 8th Gen Core Processor Host Bridge/DRAM R. Fur-
thermore, our experiments only considered the recursive aggregation function (specified in
algorithm 1) because it is the most computationally expensive of those introduced in Section
5.

We performed three types of analysis:

• Sensitivity to number of participants. Figure 9 shows that the time to compute col-
lective decisions increases as the number of participants increases. The figure shows
the results for a medium density of number of relationships and a low density of
relationships (which is the most expensive case as we discuss below).

• Sensitivity to density of number of relationships. Figure 10 shows that the time to
compute collective decisions increases as the density of number of relationships grows.

8. To the best of our knowledge, the Brexit discussion on UK (Petitions, 2019) constitutes the largest such
discussion: news outlets reported when the number of supporters passed 2 million (BBC, 2019) and
the numbers kept growing during the 6 month period that the discussion was open. By the time it
closed, there were 6,103,056 participants. Contrasting numbers of participants can be found for other
popular initiatives such as an environmental proposal in Parlement et Citoyens which had 51,493 votes
(Parlement & Citoyens, 2015) and in the participatory budgeting process in Helsinki (City of Helsinki,
2019) with 54,246 registered people, which represents 10% of the city voters. Note that the Parlement et
Citoyens and Helsinki debates are probably more representative of real online debates than the Brexit
example, where participants were, in effect, just voting on a specific proposal.
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Figure 9: Sensitivity to number of participants in a DRF. Computational time required by
the recursive aggregation function as the number of statements grows.

Figure 10: Sensitivity to density of relationships in a DRF. Density is considered in terms
of the average out degree of statements: low (2.0), medium (5.0), high (10.0). We show the
computational time required by the recursive aggregation function for 3 · 106 opinions as
the number of statements grows.

Notice though most actual-world scenarios would lie between the low and medium
cases, and hence it would take less than one second to solve even the largest debate.

• Sensitivity to density of relationships. Figure 11 shows that the time to compute
collective decisions decreases as the density of relationships increases. The figure
shows the results for 3 ·106 opinions and a medium density of number of relationships.
This indicates that, surprisingly, our algorithm needs more time when relationships
between sentences are one-to-one.

Overall, notice that computing collective decisions in all the artificially generated debates
took less than 1.6 seconds. Therefore, we can conclude that our opinion aggregation func-
tions can be employed to cope with large-scale debates in real time.
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Figure 11: Sensitivity to the number of statements in the source of a relationship (size of
the tail of hypergraph edges). We show the computational time required by the recursive
aggregation function as the number of statements grows and as the size of hyperedges (tails)
grows.

9. Related Work

In this section we review the work from the literature that is closest to the work in this
paper. That includes work on approaches for computing the outcome of a set of arguments
(Section 9.1), on approaches for analysing the behaviour of discussions from the stand-
point of social choice theory (Section 9.2), and on systems for supporting online discussions
(Section 9.3), acknowledging that the allocation of some work into a specific section is
a somewhat arbitrary since it could validly be considered under more than one heading.
Indeed we discuss different aspects of some of the most relevant work in more than one
section. Note that the authors believe that their work is most closely related to work on
social choice, and so Section 9.2 is the most substantial of the three.

9.1 Computational Argumentation

We start with work on computing the outcome of a set of competing arguments, an area of
research known as computational argumentation. Computational argumentation (Rahwan
& Simari, 2009) has a lengthy history within artificial intelligence, going back at least as
far as the work of Fox et al. (1980) and McGuire et al. (1981).

At the time of writing, work in computational argumentation is split into two broad
groups. First, historically, is work which is concerned with the internal structure of argu-
ments — what arguments are constructed from, and how this construction takes place —
as well as how to compute the outcome. This line of work has reached its current endpoint
with structured argumentation systems like logic-based argumentation (Besnard & Hunter,
2001), assumption-based argumentation (Dung et al., 2006) and structured argumentation
systems such as aspic+ (Modgil & Prakken, 2013), and DeLP (Garćıa & Simari, 2004).
Second is the line of work on abstract argumentation, begun by Dung (1995), which focuses
much less on the internal structure of arguments, and instead is mainly concerned with
the relationships between arguments. This has led to a large body of work expanding on
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Dung’s work (Dung, 1995), for example, work by Baroni and Giacomin (2009), Modgil and
Caminada (2009), and Vreeswijk (1997).

In Dung’s original work, (Dung, 1995), the focus is solely on “attack” relations, where
arguments are in conflict, and the only way that one argument can express support for
another is by attacking any attackers of that second argument. However, as in our sports
centre example, in representing human discourse, it is common to find situations in which
one argument is expressed which is in direct support of either the conclusion of another
argument, or some element of that other argument. Bipolar argumentation provides for-
mal models which capture this kind of support (Villata et al., 2012; Polberg & Hunter,
2018; Prakken, 2020; Lagasquie-Schiex, 2023). Key work developing an account of bipolar
argumentation with abstract arguments was carried out by Amgoud et al. (2008), and
Cayrol and Lagasquie-Schiex (2005a, 2005b). Since this initial work on bipolar argumen-
tation can capture all of Dung-style argumentation, it can be viewed as a generalization,
and subsequent work has generalized it further. For example, Brewka et al. (Brewka &
Woltran, 2014; Brewka, Pührer, & Woltran, 2019) introduced the GRAPPA framework —
itself based on abstract dialectical frameworks (Brewka & Woltran, 2010) which are another
generalization of Dung-style systems — which can express a range of classes of argument
that expand on just “support” and “attack”9. Most recently, Escañuela Gonzalez et al.
(2021) have provided a general means of expressing information about support and attack
that allows features such as numerical labels, and elements that allow the combination of
strengths of arguments to propagate to those arguments that are supported or attacked.
Both GRAPPA and the work of Escañuela Gonzalez et al. clearly have strong similarities
with the mechanisms at the heart of our DRFs.

There is another way to, broadly, classify work on argumentation into two groups. One
line of work, again exemplified by Dung (1995), focuses on argumentation as a mechanism
for extracting consistent points of view from an inconsistent knowledge base. The other
line of work deals with how arguments combine, or accrue, in favour of, or against some
conclusion. This distinction cuts across the structured/abstract distinction with, for exam-
ple the work of Baroni and Giacomin (2009) being concerned with consistency in abstract
argumentation, and that of Modgil and Prakeen (2013) dealing with consistency in struc-
tured argumentation. On the other hand, the work of Besnard and Hunter (2001), Prakken
(2005), and Verheij (1995) discusses accrual in structured argumentation, while that of
Cayrol and Lagasquie-Schiex (2005a) looks at accrual in abstract argumentation.

All the work mentioned above uses argumentation as a mechanism for a single entity to
come to a conclusion. However, as Sycara (1990), Walton and Krabbe (1995) and others
have pointed out, argumentation is also a natural mechanism for multiple entities to use to
reach consensus on some topic.

Our work connects to several of these themes in argumentation. First, since we are
interested in aggregating the opinion from a number of participants, our work is clearly
related to the use of argumentation in multiagent interaction. Second, the fact that indi-
vidual steps in the participants’ reasoning process are represented in our approach means
that our work is connected to work on structured argumentation. (We would argue that it

9. The classes in one example in (Brewka & Woltran, 2010) are “strong support”, ”support”, “attack” and
“strong attack”, which are very similar in denotation and in interpretation to the dictionaries in the
work of Fox, for example that used by Krause et al. (1995).
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is more abstract, since the relationships that connect statements are not restricted to be
rules.) Third, our work connects with the idea of argumentation as a means of extracting
a coherent view from a number of conflicting opinions. The fact that this coherent view
takes into account the votes of participants also gives our work a fourth connection with the
argumentation literature, in its relation to work on accrual. Fifth, the fact that we are con-
cerned with opinions for and against target statements clearly connects our work to bipolar
argumentation, and the kinds of labels that we use connects it most closely to the work of
Escañuela Gonzalez et al. (2021) within work on bipolar argumentation. However, our work
also differs from all of that listed so far in that the latter is ultimately focused on applying
some form of the Dung semantics to resolve the conflicts between arguments whereas our
work does not consider the Dung semantics at all. (This latter is part of the reason why we
do not consider our work to be a contribution to the literature on argumentation.)

The voting aspect of DRFs also places our work in close relation to that of social
argumentation, in which Dung-style argumentation has been adapted to capture elements
of online debates. In particular, our work is related to the main line of work on social
argumentation (Correia et al., 2014; Eğilmez et al., 2013; Leite & Martins, 2011), and
previous work on collective argumentation10 (Awad et al., 2017b; Caminada & Pigozzi,
2011; Ganzer-Ripoll et al., 2019). The work on collective argumentation, like our work
here, is heavily influenced by social choice theory, and we will discuss more below when we
outline the connections between our work and other work on social choice. We distinguish
our work from that on social argumentation in that (i) our work deals with structured
reasoning, rather than abstract arguments; (ii) it is not tied to notions of attack between
arguments; and (iii) the underlying mechanism is analysed in terms of properties derived
from social choice theory rather than from argumentation theory. Finally, one might view
our work as being about the combination of different sets of arguments, one for each person
who votes on the arguments or the relationships between them. From that perspective, our
work also connects with that of Coste-Marquis et al.(2007), which takes as input different
sets of arguments and relationships between them, and outputs consistent sets of arguments,
thus “merging” the input sets. See the work of Bodanza et al. (2017) for a survey of
work on this topic, and the work of Chen and Endriss (2019) for an excellent overview of
developments over recent years.

9.2 Social Choice Theory

Given a set of alternatives and a set of agents who possess preference relations over the al-
ternatives, social choice theory focuses on how to yield a collective choice that appropriately
reflects the agents’ individual preferences (Aziz et al., 2017). With this aim, social choice
theory has extensively explored many ways of aggregating agents’ individual preferences
(Gaertner, 2009). Since there is a consensus in the literature on the desirable properties
that a “fair” way of aggregating preferences should satisfy (e.g. no single agent can impose
their view on the aggregate; if all agents agree, the aggregate must reflect the agreement;
and so on (Gaertner, 2009)), aggregation functions can be characterised and compared in

10. Note that our work, and other work on combining the arguments from a group (Awad et al., 2017b;
Caminada & Pigozzi, 2011; Ganzer-Ripoll et al., 2019) has little commonality with the “collective argu-
mentation” studied by Bochman (2003), which is concerned with argumentation in which relationships
exist between sets of arguments.
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terms of the desirable properties they satisfy. Notice though that social choice theory counts
on multiple negative results, namely impossibility results showing the incompatibility of cer-
tain sets of desirable properties such as Arrow’s famous impossibility theorem (Arrow &
Maskin, 2012).

Much of the work in social choice theory has placed little emphasis on the structure of
the objects over which agents are expressing their preferences. However, there is a growing
body of research that considers preferences on arguments in some form or other. This is the
work that we referred to above as “collective argumentation”. Here the foundational work
was that of Rahwan and Thome (2010), later developed by Awad et al. (2017b), which con-
sidered the same problem that we tackle here: given a topic of discussion and a set of agents
expressing their individual opinions about the statements made in the discussion, how can
the agents reach a collectively rational decision? The way that this is tackled by Awad
et al (2017b) is as a version of the “merging” problem mentioned above (Bodanza et al.,
2017). That is, Awad et al. (2017b) consider each participant to have a set of arguments,
and the relationships between them, and an opinion about which arguments are labelled as
being acceptable and which are not. The problem they then solve is how to compute a set
of labels for the arguments that reflect the opinions of all the participants such that the
aggregation of opinions satisfies desirable social choice properties The same problem was
also considered by Caminada and Pigozzi (2011), and more recently by us (Ganzer-Ripoll
et al., 2019). As Awad et al. (Awad et al., 2017a) points out, their earlier work (Awad
et al., 2017b) and that of Caminada and Pigozzi (2011) take different approaches, with
Awad et al. (2017b) considering the opinions as votes, resolved by taking the plurality for
individual arguments, while Caminada and Pigozzi (2011) offers a range of operators that
yield a labelling which confirms to the constraints of argumentation semantics. The recent
work by Chen and Endriss (2019) can be viewed as an extension of the line of research ex-
plored by Awad et a. (2017b) and Caminada and Pigozzi (2011). Like their forebears, Chen
and Endriss (2019) propose methods for aggregating a collection of individual argumenta-
tion frameworks, corresponding to participants in a debate, into a single argumentation
framework that appropriately reflects the views of the group as a whole. Like us, Chen
and Endriss (2019) use techniques from social choice theory to investigate the properties
of the aggregation rules. However, the aim is different. Chen and Endriss (2019) analyse
aggregation rules in terms of their preservation of semantic properties of argumentation
framework, while our focus in this paper is on social choice properties of the aggregation
operators.

From the perspective of argumentation, the major difference between this line of work
(Awad et al., 2017b; Caminada & Pigozzi, 2011; Chen & Endriss, 2019) and ours, is that
we do not start from a set of opinions that are well-formed in an argumentation sense, that
is a a “legal” labelling (Baroni et al., 2011). This is because we want to represent human
opinions that may not be rational in an argumentation-theoretic sense (exactly as argued
by Leite and Martins (2011)).

The next difference between the work in this paper and what has been done before is
the richness of the representation. Here our work provides three main extensions. First,
previous work on collective argumentation (Awad et al., 2017b; Caminada & Pigozzi, 2011;
Chen & Endriss, 2019; Ganzer-Ripoll et al., 2019) all deals with abstract arguments. Here
we deal with structured objects, and, as already mentioned, these are objects that are
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more general than the usual object studied in structured argumentation since we place no
real constraints on the kind of reasoning captured by the relationships that hold between
statements. Second, unlike previous work, we allow opinions to be expressed both about
individual statements and the relations between them. This combines what has been studied
in previous work on collective argumentation (Awad et al., 2017b; Caminada & Pigozzi,
2011; Chen & Endriss, 2019; Ganzer-Ripoll et al., 2019) and social argumentation (Leite
& Martins, 2011), where opinions are expressed about individual arguments, but not the
relations between them (these are assumed to be fixed), and the work of Eğilmez (Eğilmez
et al., 2013), which extends previous work on social argumentation (Leite & Martins, 2011)
to allow opinions to be expressed about the relationships between arguments. Third, we
allow opinions to be real-valued. In this we move away from the labellings studied in
previous work on collective argumentation (Awad et al., 2017b; Caminada & Pigozzi, 2011;
Ganzer-Ripoll et al., 2019), and their grounding in argumentation semantics, and towards
the kind of representation allowed by the work of Leite and Martins (2011)11.

Finally, we neither assume independence between arguments as a fundamental postulate
as is the case in (Awad et al., 2017b; Caminada & Pigozzi, 2011; Chen & Endriss, 2019),
nor do we require the resulting aggregation to agree with an argumentation semantics. We
will deal with these differences in turn.

Dropping the independence of arguments should come as no surprise since Awad et al.
(Awad et al., 2017b) questions the necessity of assuming independence because of the de-
pendencies between arguments that come already encoded in the form of relationships such
as attack. Despite the importance of independence as a fundamental property in the judge-
ment aggregation literature because of its theoretical value in proving strategy-proofness
and strategic manipulation12, we are not alone in regarding independence as too strong a
property. This is because, together with mild further conditions, it implies dictatorship
(Lang et al., 2016) and because it is also considered as not very plausible (Mongin, 2008).
This explains why relaxing independence has been subject of much research (Lang et al.,
2016). This paper goes beyond relaxing independence. Rather, in this paper we introduce
several opinion aggregation functions that use the participants’ opinions to compute a col-
lective opinion while considering dependencies between statements. This is in line with our
former work (Ganzer-Ripoll et al., 2019), but here we allow to express dependencies be-
tween multiple statements per relationship, while our previous work (Ganzer-Ripoll et al.,
2019) (and all the work on collective argumentation which starts with abstract argumenta-
tion frameworks (Awad et al., 2017b; Caminada & Pigozzi, 2011; Chen & Endriss, 2019))
constrain relationships, and thus dependencies, to exist between pairs of arguments, hence
limiting expressiveness.

11. As this discussion hopefully makes clear, the line of work on social argumentation of Leite and Martins
(2011) and Eğilmez et al. (2013) — which also includes a study of efficient computation for the approach
in Correia et al. (2014) — is close to what we have pursued in this paper. However, it remains work on an
argumentation framework, where the focus is on abstract arguments, and on combining votes to establish
the “winning” argument while we claim our work both deals with more general structures and captures a
broader class of relations between those structures. However, our work cannot be a generalization of the
work on social argumentation because that, like much work on argumentation frameworks, can handle
cycles in the argument graph whereas our DRFs are explicitly acyclic.

12. If the independence criterion is not satisfied, then the function aggregating judgements is not immune
to strategic manipulation (Dietrich & List, 2007).
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Turning to the fact that the result of our aggregations do not match an standard ar-
gumentation semantics, we substitute the notion of “coherence of opinions” for the form
of rationality embodied by those semantics. We do this for reasons that we have already
touched on above with respect to the input opinions — we feel that insisting on an output
that is rational in an argumentation theoretic sense is not necessarily realistic given that we
start from opinions that are put forward by human participants who may not be consistent
in their views. Instead of forcing the output of aggregation to be rational in an argumenta-
tion theoretic sense, we instead compute a measure which assesses how much concordance
there is between related opinions, and assess our novel aggregation functions by the degree
to which they can assure that their output ensures collective coherence.

From a pure social choice (not a combined argumentation and social choice) perspec-
tive, notice that it is common in the literature on judgement aggregation and preference
aggregation to impose properties on the objects under aggregation in order that aggregation
operators can guarantee desirable properties. For instance, in the case of distance-based
aggregators, the Kemeny rule (Endriss & Moulin, 2016) only considers consistent judge-
ment sets, and hence disregards those which are not, whereas premise-based aggregators
(Endriss & Moulin, 2016) typically make assumptions on the agenda to guarantee consis-
tency and completeness. Our work does not rely on this structuring of the target objects
of the aggregation operators. Instead, we have introduced aggregation operators capable
of guaranteeing collective coherence when opinions are unconstrained. This is motivated
by the need for disregarding rationality when humans are involved in debates, since their
opinions may eventually contain contradictions and inconsistencies.

Finally, we would like to highlight that there are further interesting connections between
social choice and computational argumentation. This is the case for the work by (Maly &
Wallner, 2021), where the authors draw on social choice theory to study sets of postulates
for lifting operators in structured argumentation. Lifting operators capture the way that
arguments are ranked based on the ranking of their respective sets of defeasible elements,
and so relate to our work in their treatment of arguments of different strengths.

9.3 Tools for Online Discussion

As previously mentioned, public online discussion forums such as Decidim Barcelona (2016),
Better Reykjav́ık (2021), New York City Participatory Budgeting (PBNYC, 2021), and
Parlement et Citoyens (Purpoz, 2015) inspire our work. These particular sites allow partic-
ipants to carry out a structured discussion by offering arguments for and against a (project
or policy) proposal, and vote(/support) for arguments. Other participatory tools have also
proliferated outside the context of public institutions. There, we find: consider.it (Con,
2022), Appgree (2021), Baoqu (2020) Loomio (Jackson & Kuehn, 2016; Loo, 2021), and
Kialo (2021). These tools present varying levels of structure of the discussions they sup-
port. What distinguishes our work from all of these approaches is that we provide a much
more expressive framework as we also allow the expression of opinions about relationships
between statements and support relationships involving multiple statements, hence going
beyond the limiting pairwise relationships supported by current e-participation systems.

There is also a long-standing line of work which develops tools to map the structure of
arguments on some topic, for example (Carr, 2003; Reed & Rowe, 2004; Suthers et al., 1995;
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Van Gelder, 2003). This line of work draws from a range of sources, nicely summarized by
Shum (2003). The focus of this work is on drawing the relationships between arguments
as a means of helping people understand the scenarios rather than to compute an overall
outcome of the decision. Thus, our work could be applied in conjunction with any of the
tools listed above to support structured discussion. In this line, it is worth noting that
Klein’s work on the Deliberatorium (Klein, 2012; Klein & Convertino, 2015) allows for the
presentation of arguments and their interactions, and aggregates the opinions. However,
unlike our work, it fails to check any social choice properties.

10. Conclusions and Future Work

Existing approaches to modelling human debates suffer from two drawbacks. Firstly, they
assume that participants agree on the structure of a debate, that is the pieces of information
that are relevant to particular issues and the relationships among them. This assumption
is encoded in formal models by not allowing participants to express opinions about the
structure. Secondly, existing approaches assume that participants’ opinions are rational.
This assumption is encoded by enforcing consistency on the individual opinions that are
given, and the collective opinions that are computed from the individual ones. To address
these limitations, we have proposed a new formal model. Our model allows participants in a
debate to express agreement or disagreement with the relationships among statements, thus
allowing disagreement with the structure of a debate to be captured. In addition, our model
allows participants to express opinions that are inconsistent, defining a weaker notion of
rationality to characterise coherent participant opinions, and allowing the collective opinions
computed from this to be characterized as coherent as well.

Considering the degree of coherence of individual opinions and the level of consensus
that participants have about the debate structure, we provide a formal analysis of the
outcomes of different opinion aggregation functions in terms of social choice properties.
Our analysis demonstrates that the recursive aggregation method is able to compute a
coherent collective opinion even if individual opinions are incoherent and there is a lack
of consensus on the debate structure. As we impose more restrictions on the coherence
of individual opinions and consensus among participants on the debate structure, more
aggregation methods also compute coherent collective opinions. We conclude our analysis
with a computational evaluation in which we study the computational cost of aggregating
collective opinions and experimentally demonstrate that collective opinions can be computed
efficiently for real-sized debates.

One limitation of DRFs as a representation of debates is that DRFs are acyclic. We
don’t see this commitment to acyclic structures to be problematic. Cycles in reasoning
are generally considered fallacious (Sinnott-Armstrong, 1999), and reasoning that involves
cycles results in situations in which the premises are just as much in need of proof or
evidence as the conclusion, and as a consequence, the argument fails to persuade. In this
sense, we believe that the restriction to acyclic debates will only exclude the representation
of “faulty” or fallacious debates. Indeed, the main participatory platforms such as Decidim
do not allow for cycles in their debates, and so our approach arguably does not need the
ability to handle cycles in order to be useful. Having said that, looking into the consequences
of allowing DRFs to include cycles would be interesting as a way of connecting our work
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more closely to the literature on argumentation, and that could be an interesting line of
future research.

We note that the restriction to being acyclic is in contrast to work on argumentation
frameworks where some semantics allow for conclusions to be drawn from cyclic arguments,
typically by either extracting conclusions that are unaffected by the contradiction that the
cycle of attacks embodies, or identifying a set of extensions which identify the different
consistent ways that the contradiction can be resolved. This contrast arises because what
we are dealing with is not an argumentation framework (where nodes in the graph are
entire arguments) but something closer to an argumentation system like ASPIC+ where
the elements are individual steps in a larger structure. Unlike a system like ASPIC+,
however, we do not “lift” elements into arguments and then establish the overall conclusions.
Rather (from an APSIC+ viewpoint) we build a super-structure from all of the components
of all of the arguments (that is what a DRF is, in ASPIC+ terms) and evaluate that
directly. Studying the relationship between DRFs and structured argumentation systems
like ASPIC+ is another potential line of future work.

There are other interesting possible directions in relating DRFs to argumentation. All
of these are complicated by the lack of a direct map from a DRF into an argumentation
framework, and so would be predicated on establishing some form of mapping. Given this,
there are several directions that one might take the work, and a number of research questions
that could be answered. First, there is the question of how the social choice mechanism we
have suggested for DRFs maps to argumentation semantics. This would close the loop with
work in the tradition of Awad et al. (2017b) which brings social choice mechanisms into
argumentation. Second, there is the related question of how the results of a DRF relate to
those of a social argumentation framework. One way to answer this question would be by
adapting Maly and Wallner’s (2021) approach to lifting preferences over the components
of an argument (adapted to lift the votes for the elements of a DRF) to the preferences
between arguments. Third, there is the question of how to map DRFs into argumentation
frameworks with collective attacks. Again the mapping is not clear, because of the lack of a
clear correspondance between a DRF and an argument, but given that collective arguments
are (in argumentation framework terms) hypergraphs (Bikakis et al., 2021) this may be an
easier mapping to establish than that to more conventional argumentation frameworks.

Another direction for theoretical exploration is to look more at the social choice prop-
erties of DRFs. In this paper we have focused on obtaining positive results regarding our
aggregation rules, and we plan to take a complimentary approach in the future and inves-
tigate impossibility results by analysing whether some combinations of properties are not
possible (in some scenarios).

Finally, we also plan to evaluate the practical impact of using the relational reasoning
model in real online debates. For that, we expect to take advantage of our experience
(Serramia et al., 2019; Lopez-Sanchez et al., 2021) in evaluating a previous model (Ganzer-
Ripoll et al., 2019) using real-world data from Decidim Barcelona (2016). Moreover, and
also thinking in practical terms, we plan to investigate methods to analyse the quality of
a debate represented in the relational reasoning model. For example, we are interested
in studying the use of systematic incoherence in participant opinions as a way to identify
structural problems in a debate. Notice that analysing the quality of a debate is a subject
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of interest (e.g. (Gómez et al., 2008; Gonzalez-Bailon et al., 2010; Aragón, 2019)) when
exploiting debates for deliberation (Friess & Eilders, 2015).
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Appendix A. Formal Proofs and Results

In the following, we prove all the formal results presented in Section 7 regarding the satisfac-
tion of social choice properties by the opinion aggregation functions introduced in Section
6.The section is divided into four parts, one per debate scenario as analysed in Section 7.

1. Unconstrained opinion profiles;

2. Constrained opinion profiles: assuming consensus on acceptance degrees;

3. Constrained opinion profiles: assuming coherent profiles; and

4. Constrained opinion profile: assuming consensus on acceptance degrees and coherent
profiles.

Furthermore, for each scenario, our results will be grouped by aggregation function accord-
ing to the following order: Direct aggregation, Indirect aggregation, Recursive aggregation,
Balanced family aggregation and Recursive family aggregation

A.1 Unconstrained Opinion Profiles

In this section we analyse the social choice properties fulfilled by the aggregation functions
introduced in Section 6: assuming unconstrained opinions profiles (any opinion profile is
deemed to be possible input for the aggregation functions). The results of this section are
summarised in Table 3 in Section 7.1.

Proposition A.1. The aggregation function D satisfies the following properties:

(i) Exhaustive Domain and Coherent Domain;

(ii) Anonymity and Non-Dictatorship;
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(iii) Familiar Monotonicity;

(iv) Sided Unanimity and Weak Unanimity.

And does not satisfy:

(vi) Collective coherence; and

(vii) Endorsed Unanimity.

Proof. (of Proposition A.1)

(i) Exhaustive Domain is straightforward and Collective Domain follows directly.

(ii) Anonymity and Non-Dictatorship. Let P = (O1, . . . , On) be an opinion profile over
a DRF and σ a permutation over a set of agents Ag = {1, . . . , n}. We must show
that D maintains the same collective opinion over the permuted opinion profile P ′ =
(Oσ(1), . . . , Oσ(n)), i.e. that D(P ) = D(P ′). This is the case because the next two
equalities hold:

vD(P )(s) =
1

n

n∑
i=1

vi(s) =
1

n

n∑
i=1

vσ(i)(s) = vD(P ′)(a);

wD(P )(r) =
1

n

n∑
i=1

wi(r) =
1

n

n∑
i=1

wσ(i)(r) = wD(P ′)(r).

Therefore, Anonymity holds and Non-Dictatorship follows from it as we discussed in
Section 5.2.

(iii) Familiar Monotonicity. Let s be a statement and P and P ′ two opinion profiles
satisfying the assumptions in the definition of the property in Section 9.2, i.e. P =
(O1, . . . , On) and P = (O′

1, . . . , O
′
n) are such that vi(s) ≤ v′i(s) for every agent i ∈

{1, . . . , n}. Then, from the definition of D, we obtain the aggregated valuation on s
is:

vD(P )(s) =
1

n

n∑
i=1

vi(s) ≤
1

n

n∑
i=1

v′i(s) = vD(P ′)(s)

Therefore, D satisfies Familiar Monotonicity.

(iv) Sided Unanimity and Weak Unanimity. Let P = (O1, . . . , On) be an opinion profile
over a DRF and a statement s ∈ S such that vi(s) > 0 for every agent in Ag =
{1, . . . , n}. The aggregated opinion on s is:

vD(P )(s) =
1

n

n∑
i=1

vi(s) > 0

The case when vi(s) < 0 for every agent in Ag can be proven similarly.

Hence, Sided Unanimity is fulfilled by D. According to Proposition 5.1 Weak Una-
nimity follows from Sided Unanimity.
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(v) Collective Coherence. To prove that it does not hold, it suffices to find a DRF and an
opinion profile for which there is no collective coherence. Thus, consider the example
depicted below in figure 12.

s a

v(a) = −1v(s) = 1
w(r) = 1

Figure 12

If we check coherence for statement s, we obtain that:

|vD(P )(s)− eD(P )(s)| = v(s)− v(a) = 2 > ϵ.

for any ϵ ∈ (0, 1), and hence collective coherence does not hold for this profile.

(vi) Endorsed Unanimity. Using the opinion profile depicted in figure 12, we observe that
even with full negative support on s (i.e. v(a) = −1), the result of the aggrega-
tion is the opposite (vD(P )(s) = 1). Therefore, this opinion profile also serves as a
counterexample to prove that D does not satisfy Endorsed Unanimity.

Proposition A.2. The aggregation function I satisfies the following properties:

(i) Exhaustive Domain and Coherent Domain;

(ii) Anonymity and Non-Dictatorship;

(iii) Endorsed Unanimity; and

(iv) Familiar Monotonicity.

And does not satisfy:

(v) Collective coherence;

(vi) Sided Unanimity and Weak Unanimity.

Proof. (of Proposition A.2)

(i) Exhaustive and Coherent domain are straighforward.

(ii) Anonymity and Non-Dictadorship. Let P = (O1, . . . , On) be an opinion profile over
a DRF and σ a permutation over the agent in Ag = {1, . . . , n}. We must show
that I maintains the same collective opinion over the permuted opinion profile P ′ =
(Oσ(1), . . . , Oσ(n)), i.e. that I(P ) = I(P ′).

For any i ∈ {1, . . . , n} there is only one j ∈ {1, . . . , n} such that σ(j) = i, and hence
in terms of expectation functions we know that ei = eσ(j). Using that, we can show
that I(P ) = I(P ′) as follows:

1062



A Formal Model to Support Collective Reasoning

vI(P )(s) =
1

n

n∑
i=1

ei(s) =
1

n

n∑
i=1

eσ(i)(s) = vI(P ′)(a);

wI(P )(r) =
1

n

n∑
i=1

wi(r) =
1

n

n∑
i=1

wσ(i)(r) = wI(P ′)(r)

.

(iii) Endorsed Unanimity. Let s be a sentence and P = (O1, . . . , On) an opinion profile
satisfying that vi(sr) = 1 for any agent i and descendant sr ∈ D(s) of sentence s.
Since the expectation over s is:

ei(s) =
1∑

r∈R+(s)wi(r)

∑
r∈R+(s)

wi(r)vi(sr) =
1∑

r∈R+(s)wi(r)

∑
r∈R+(s)

wi(r) = 1,

then the aggregated value for s is:

vI(P )(s) =
1

n

∑
i

ei(s) = 1.

Analogously, if we assume that vi(sr) = −1 for any agent i and descendant sr ∈ D(s)
of sentence s, we would obtain that vI(P )(s) = −1. Since vI(P )(s) > 0 when there
is full positive support (and vI(P )(s) < 0 for negative support), Endorsed Unanimity
holds.

(iv) Familiar Monotonicity. It is straightforward to see that the output of the Indirect
aggregation function, which uses an expectation function, depends only on the values
on descendants and their relationships. So, it is clear that a different opinion profile
maintaining the same values for descendants and their relationships will not change
the output of the function.

(v) Collective Coherence. To prove that it does not hold, it suffices to find a DRF and an
opinion profile for which there is no collective coherence. Thus, consider the example
depicted below in figure 13. Here vI(P )(s) = 1 and vI(P )(a) = −1 = vI(P )(b). Now, if
we check coherence for statement s, we obtain that |vI(P )(s) − eI(P )(s)| = 2 > ϵ for
any ϵ ∈ (0, 1), and hence collective coherence does not hold for this profile.

s a b

v(a) = 1v(s) = 1 v(b) = −1
w(r1) = 1 w(r2) = 1

Figure 13

(vi) Sided Unanimity and Weak Unanimity. Next we build a DRF and an opinion profile
for which Weak Unanimity does not hold despite satisfying the assumptions. Consider
the example in figure 14 with opinion profile P = (O = (v, w)). Although v(s) = 1,
vI(P )(s) = −1 instead of greater than 0, and hence I does not satisfy Weak unanimity.

1063



Ganzer, Criado, Lopez-Sanchez, Parsons & Rodriguez-Aguilar

As discussed in Section 5.2, an aggregation function satisfying Sided Unanimity also
satisfies Weak Unanimity. Thus, since Weak Unanimity does not hold, neither does
Sided Unanimity.

s a v(a) = −1v(s) = 1
w(r) = 1

Figure 14

Proposition A.3. The aggregation function R satisfies the following properties:

(i) Collective Coherence;

(ii) Exhaustive Domain and Coherent Domain;

(iii) Anonymity and Non-Dictatorship;

And does not satisfy:

(iv) Sided Unanimity and Weak Unanimity;

(v) Endorsed Unanimity;

(vi) Familiar Monotonicity.

Proof. (i) Collective Coherence. Since vR(P ) = eR(P ), the collective opinion for R is
exactly the result of applying the estimation function, and hence collective coherence
follows because |vR(P )(s)−eR(P )(s)| = 0 < ϵ for any ϵ ∈ (0, 1) and any sentence s ∈ S.

(ii) Exhaustive Domain and Coherent Domain. Straightforward.

(iii) Anonymity and Non-Dictatorship. Let P = (O1, . . . , On) be an opinion profile over
a DRF and σ a permutation over the agents in Ag = {1, . . . , n}. We must show
that R maintains the same collective opinion over the permuted opinion profile P ′ =
(Oσ(1), . . . , Oσ(n)), i.e. that R(P ) = R(P ′).

We consider first the sentences s ∈ S with no descendants such that R+(s) = ∅. Since
these have no descendants, R computes the collective opinion on them using D. As
shown by Proposition A.1, since D satisfies Anonymity, it will also hold for R when
considering sentences with no descendants. Thus, since these sentences, which are used
at the beginning of the recursive process run by R, will not change through permu-
tations, the collective opinion over any sentence will be the same after permutations.
Therefore, Anonymity holds for R, and from this Non-Dictatorship.

(iv) Weak and Sided Unanimity. The example of DRF depicted in figure 15 with opinion
profile P = (O = (v, w)) will be enough to show that R does not satisfy Weak
unanimity. Although v(s) = 1, and hence the assumptions for Weak Unanimity hold,
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vR(P )(s) = −1 influenced by the valuation on b. Since vR(P )(s) is not positive, Weak
unanimity does not hold for R, and consequently Sided unanimity.

s a b

v(a) = 1

v(s) = 1 v(b) = −1
w(r1) = 1 w(r2) = 1

Figure 15

(v) Endorsed Unanimity. Consider again the opinion profile depicted in figure 15. Clearly,
since v(a) = 1, s has full positive support, but vR(P )(s) = −1. Since vR(P )(s) is not
positive, Endorsed Unanimity does not hold.

(vi) Familiar Monotonicity. We build a DRF and two opinion profiles for which Familiar
Monotonicity does not hold despite satisfying the assumptions. Consider the two
opinion profiles P = (O = (v, w)) and P ′ = (O′ = (v′, w′)) depicted in figures 16 and
17 respectively. Considering s, these two profiles satisfy the assumptions of Familiar
Monotonicity: v(s) ≤ v′(s) and the values on the indirect opinion are the same.
However, P and P ′ differ on the value on b: v(b) = 1 and v′(b) = −1. This leads to a
change of value on the aggregated value on s. Thus, vR(P )(s) ̸≤ vR(P ′)(s), and R fails
at satisfying Familiar Monotonicity.

s a b

v(a) = 1

v(b) = 1v(s) = x
w(r1) = 1 w(r2) = 1

Figure 16

s a b

v′(a) = 1

v′(b) = −1v′(s) = x
w′(r1) = 1 w′(r2) = 1

Figure 17

Next, we provide the proofs for the analysis of the families of α-balanced aggregation
functions {Bα}α∈(0,1) and α-recursive aggregation functions {Rα}α∈(0,1). Before that, we
first introduce some general lemmas that will be useful to build the proofs of the propositions
for both families. To ease notation, these general lemmas that follow consider two generic
aggregation functions F and G, as well as a generic aggregation function H = αF+(1−α)G
instead of vH(P ) = αvF (P ) + (1− α)vG(P ). Hereafter, the following lemmas establish the
social properties fulfilled by H.

Lemma A.1. Let F and G be two opinion aggregation functions satisfying Exhaustive
domain. For any α ∈ (0, 1), aggregation functionH = αF+(1−α)G also satisfies Exhaustive
domain.
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Proof. Straightforward from the fact that both F and G satisfy Exhaustive domain.

Lemma A.2. Let F and G two opinion aggregation functions satisfying Anonymity over
domain D . For any α ∈ (0, 1), aggregation function H = αF + (1 − α)G also satisfies
Anonymity over domain D.

Proof. For any given opinion profile P and its permuted profile P ′, if F (P ) = F (P ′) and
G(P ) = G(P ′), then it follows that H(P ) = H(P ′).

Lemma A.3. Let F and G two opinion aggregation functions satisfying Familiar Mono-
tonicity over domain D. For any α ∈ (0, 1), aggregation function H = αF + (1− α)G also
satisfies Familiar Monotonicity on domain D.

Proof. Let P = (O1 = (v1, w1), . . . , On = (vn, wn)) and P ′ = (O′
1 = (v′1, w

′
1),

. . . , O′
n = (v′n, w

′
n)) be a profile satisfying the assumptions of familiar montonicity for a

statement s, i.e. vi(s) ≤ v′i(s) for any i and for any r ∈ R+(s) then wi(r) = w′
i(r) and

vi(sr) = v′i(sr). Since F and G satisfy familiar monotonicity, then vF (P )(s) ≤ vF (P ′)(s)
and vG(P )(s) ≤ vG(P ′)(s). Thus, since H = αF + (1 − α)G, it follows directly that
vH(P )(s) ≤ vH(P ′)(s), so familiar montonicity holds for H.

Lemma A.4. Let F and G two opinion aggregation functions satisfying Sided unanimity
on domain D. For any α ∈ (0, 1), aggregation function H = αF + (1 − α)G also satisfies
Sided unanimity on D.

Proof. Since Sided unanimity holds for F and G, we know that given any opinion profile P
of agents {1, . . . , n}, i.e. if for any i ∈ {1, . . . , n} vi(s) > 0 then vF (s) > 0 and vG(s) > 0,
and since vH = αvF + (1 − α)vG, it also follows that vH(s) > 0. Likewise for the negative
case, so Sided Unanimity holds for H.

Lemma A.5. Let F and G two opinion aggregation functions satisfying Weak unanimity
on the domain D. For any α ∈ (0, 1), aggregation function H = αF +(1−α)G also satisfies
Weak unanimity over domain D.

Proof. Since Weak unanimity holds for F and G, we know that given any opinion profile
P of agents {1, . . . , n}, for any i ∈ {1, . . . , n}, if vi(s) = 1, then vF (s) > 0 and vG(s) > 0.
Since vH = αvF + (1 − α)vG, it also follows that vH(s) > 0, and hence Weak Unanimity
holds for H. Analogously for the negative case.

Lemma A.6. Let F and G two opinion aggregation functions satisfying Endorsed unanimity
on domain D. For any α ∈ (0, 1), aggregation function H = αF + (1 − α)G also satisfies
Endorsed unanimity on D.

Proof. Since Endorsed unanimity holds for F and G, we know that given any opinion profile
P of agents {1, . . . , n}, for any i ∈ {1, . . . , n} and descendant sr ∈ D(s) of sentence s, if
vi(sr) > 1, then vF (s) > 0 and vG(s) > 0. Since vH = αvF + (1− α)vG, it also follows that
vH(s) > 0, and hence Endorsed Unanimity holds for H. Analogously for the full negative
support case.

We are now ready to prove the results for α-balanced aggregation functions in {Bα}α∈(0,1).
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Proposition A.4. The family of α-balanced aggregation functions {Bα}α∈(0,1) satisfies the
following properties:

(i) Exhaustive Domain and Coherent Domain;

(ii) Anonymity and Non-Dictatorship;

(iii) Weak Unanimity for α ∈ (12 , 1);

(iv) Endorsed Unanimity for α ∈ (0, 12);

(v) Familiar Monotonicity;

and does not satisfy:

(vi) Collective coherence;

(vii) Sided Unanimity.

Proof. (i) Exhaustive Domain and Coherent Domain follow from propositions A.1 and
A.2, and from Lemma A.1.

(ii) Anonymity and Non-Dictatorship follow from propositions A.1 and A.2, and from
Lemma A.2.

(iii) Weak Unanimity. Let P = (O1, . . . , On) be an opinion profile over a DRF for the
agents in Ag = {1, . . . , n}, and s ∈ S a sentence such that vi(s) = 1 for any i. By
Proposition A.1, we know that Unanimity holds for the Direct aggregation function,
and hence vD(P )(s) =

1
n

∑
i∈Ag vi(s) = 1. Note that in that case the balanced function

is given by: vBα(P )(s) = α + vI(P )(s) − αvI(P )(s). Note vI(P )(s) ∈ [−1, 1] and that
vBα(P )(s) takes its minimum value when vI(P )(s) = −1. The DRF and an opinion
profile depicted in figure 18 exemplifies this case.

s a v(a) = −1v(s) = 1
w(r) = 1

Figure 18

Since vD(P )(s) = 1 and vI(P )(s) = −1, vBα(P )(s) = α − (1 − α) = 2α − 1. Thus, by

choosing any value of α such that α ∈ (12 , 1), we ensure that vBα(P )(s) > 0, and Weak
unanimity holds. The proof is analogous for the negative case of Weak unanimity.

(iv) Endorsed Unanimity. Let s be a sentence and P = (O1, . . . , On) an opinion profile
satisfying that vi(sr) = −1 for any agent i and descendant sr ∈ D(s) of sentence s. In
other words, s has full negative support. It follows that vI(P )(s) = −1. Likewise for
our proof for Weak unanimity above, we consider the case where the function takes
its maximum value, which would occur when vD(P )(s) = 1. Figure 18 depicts a DRF
and single-opinion profile illustrating this case. Since vD(P )(s) = 1 and vI(P )(s) = −1,

vBα(P )(s) = α−(1−α) = 2α−1. Thus, by choosing any value of α such that α ∈ (0, 12),
we ensure that vBα(P )(s) < 0, and Endorsed unanimity holds. The proof is analogous
for the positive case (full positive support) of Endorsed unanimity.
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(v) Familiar Monotonicity follows from propositions A.1 and A.2, and from Lemma A.3.

(vi) Collective coherence.To prove that it does not hold, it suffices to find a DRF and an
opinion profile for which there is no collective coherence. Thus, consider the DRF
with one-opinion profile depicted below in figure 19. Computing the aggregations
for the Direct and Indirect functions, we have that vD(P )(s) = 1, vD(P )(a) = 0,
and, vI(P )(s) = 0 and vI(P )(a) = −1. Therefore, vBα(P )(s) = α and vBα(P )(a) =
(−1)(1 − α). And hence, the coherence at sentence s is: |vBα(P )(s) − eBα(P )(s)| =
|vBα(P )(s) − vBα(P )(a)| = 1. Thus, we conclude that, for any ϵ ∈ (0, 1), ϵ-coherence
cannot be satisfied regardless of the value of α. Therefore, Bα does not satisfy ϵ-
coherence.

s a b

v(a) = 0

v(s) = 1 v(b) = −1
w(r) = 1 w(r) = 1

Figure 19

(vii) Sided Unanimity. We will show that for any α ∈ (0, 1) we can find a DRF and an
opinion profile for which Sided unanimity does not hold. Consider then the DRF with
single-opinion profile in figure 20, where x ∈ (0, 1) is such that 0 < x < 1−α

α . Since
v(s) = x > 0, the assumptions for Sided unanimity hold at sentence s. Now, since
vD(P )(s) = x and vI(P )(s) = −1, it follows that vBα(P )(s) = αx + (1 − α)(−1) =

αx+ α− 1 < α1−α
α + α− 1 = 0. Since vBα(P ) ̸> 0, the proof goes analogously for the

negative case of Sided unanimity.

s a v(a) = −1v(s) = x
w(r) = 1

Figure 20

Proposition A.5. The family of α-recursive aggregation functions {Rα}α∈(0,1) satisfies the
following properties:

(i) Collective Coherence for α < ϵ
2 ;

(ii) Exhaustive Domain and Coherent Domain;

(iii) Anonymity and Non-Dictatorship;

(iv) Weak Unanimity for α > 1
2 ;

and does not satisfy:

(v) Sided unanimity;
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(vi) Endorsed Unanimity;

(vii) Familiar Monotonicity.

Proof. (i) Collective Coherence. Given ϵ > 0 and a DRF, we must prove that |vRα(P )(s)−
eRα(P )(s)| < ϵ for any sentence s ∈ S. First, we develop the difference between
valuation and estimation for the collective opinion:

vRα(P )(s)− eRα(P )(s) = vRα(P )(s)−
∑

r∈R+(s)wRα(P )(r)vRα(P )(sr)∑
r∈R+(s)wRα(P )(r)

= [αvD(P )(s) + (1− α)vR(P )(s)]−
∑

r∈R+(s)wD(P )(r)
[
αvD(P )(sr) + (1− α)vR(P )(sr)

]∑
r∈R+(s)wRα(P )(r)

= α
[
vD(P )(s)−

∑
r∈R+(s)wRα(P )(r)vD(P )(sr)∑

r∈R+(s)wD(P )(r)

]
+

+ (1− α)
[
vR(P )(s)−

∑
r∈R+(s)wR(P )(r)vR(P )(sr)∑

r∈R+(s)wR(P )(r)

]
= α

[
vD(P )(s)− eD(P )(s)

]
+ (1− α)

[
vR(P )(s)− eR(P )(s)

]
= α(vD(P )(s)− eD(P )(s)).

Notice that we get rid of vR(P )(s)−eR(P )(s) because is zero. Now the coherence of Rα

directly depends on the coherence of the direct aggregation function D and α. Figure
21 depicts a DRF with a single-opinion profile representing a worst-case scenario for
D because vD(P )(s) − eD(P )(s) = 2. Considering the coherence of Rα, we have that
|vRα(P )(s)− eRα(P )(s)| = α|vD(P )(s)− eD(P )(s)| ≤ 2α for any profile P . Therefore, we
must ensure that α < ϵ

2 so that |vRα(P )(s)− eRα(P )(s)| < ϵ holds for any profile of the
domain, and hence Collective coherence holds for Rα.

s av(s) = 1 v(a) = −1
w(r) = 1

Figure 21

(ii) Exhaustive Domain and Coherent Domain directly follow from propositions A.1 and
A.3 and Lemma A.1.

(iii) Anonymity and Non-Dictatorship follow directly from propositions A.1 and A.3 and
Lemma A.2.

(iv) Weak unanimity. To prove Weak unanimity we can resort to the proof built to prove
Weak unanimity for Bα in Proposition A.4. We simply have to substitute Bα for Rα.
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(v) Sided Unanimity. Consider the DRF and the single-opinion profile depicted in figure
22, where x ∈ (0, 1) is such that 0 < x < 1−α

α . Since x > 0, the assumption for
Sided Unanimity holds at s. However, vRα(P )(s) is not positive, since vRα(P )(s) =

xα− 1 + α < 1−α
α α− 1 + α = 0, and hence Sided unanimity does not hold.

s av(s) = x v(a) = −1
w(r) = 1

Figure 22

(vi) Endorsed Unanimity. Next we build a DRF and an opinion profile for which Endorsed
Unanimity does not hold. Consider the DRF and the opinion profile P depicted in fig-
ure 23. The assumptions for Endorsed unanimity hold at s because s has full negative
support. However, vRα(P )(s) is not negative: since vD(P )(s) = 1 and vR(P )(s) = 1, we
obtain that vRα(P )(s) = 1 for any α ∈ (0, 1). Therefore, Endorsed Unanimity does not
hold.

s a b

v(a) = −1

v(s) = 1 v(b) = 1
w(r1) = 1 w(r2) = 1

Figure 23

(vii) Familiar Monotonicity. We build a DRF and an opinion profile for which Familiar
Monotonicity does not hold despite satisfying the assumptions. Consider the DRF and
single-opinion profile P in figure 23 together with another single-opinion profile P ′ in
figure 24. Clearly, the assumptions of Familiar Monotonicity are fulfilled at s because
vi(s) ≤ v′i(s) and the descendant of s has the same value. However, we will show
that vRα(P )(s) ≤ vRα(P ′)(s) is not true. For both profiles we have that vD(P )(s) =
vD(P ′)(s) = 1, and, vR(P )(s) = 1 and vR(P ′)(s) = 1 − x. Thus, for any α ∈ (0, 1):
vRα(P )(s) = α + (1− α) = 1 and vRα(P ′)(s) = α + (1− α)(1− x) = 1− x(1− α) < 1
for any x ∈ (0, 1). Therefore, vRα(P )(s) > vRα(P ′)(s) and Familiar Monotonicity is not
satisfied.

s a b

v′(a) = −1

v′(s) = 1 v′(b) = 1− x < 1
w′(r1) = 1 w′(r2) = 1

Figure 24
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A.2 Constrained Opinion Profiles: Assuming Consensus on Acceptance
Degrees

This section relates to Section 7.2, where we assume that opinion profiles share consensus
on their acceptance degrees on relationships, i.e. for each relationship r ∈ R of a DRF all
the agents agree on their acceptance degrees: wi(r) = wj(r) ∀i, j ∈ Ag.

In previous Section A.1, each proof and counterexample used to demonstrate that an
aggregation function does or does not satisfy a property uses opinion profiles composed by
one single agent. Thus, those proofs serve as well in this section when assuming consensus
on acceptance degrees. For this reason, adding this assumption does not change any of the
properties fulfilled by the aggregation functions in the general case (Table 3), and therefore
there are no further desirable properties gained in this scenario with respect to the more
general scenario thoroughly analysed in Section A.1.

A.3 Constrained Opinion Profiles: Assuming Coherent Profiles

This section corresponds to the results displayed in Table 4 in Section 7.3. We prove
the results regarding the social choice properties satisfied by the aggregation functions
introduced in Section 6 when assuming the domain of the aggregation functions to be ϵ-
coherent for some ϵ ∈ (0, 1). This means that we consider that our aggregation functions
take in coherent opinion profiles.

Since in the previous section many properties have been proven for the general case,
we will not need to prove them again for this more restrictive scenario. For each opinion
aggregation function, we will prove only those results regarding social choice properties
that change by the addition of the coherence assumption and disprove again, this time for
coherent domains, those properties which are yet not satisfied.

Proposition A.6. D over a coherent domain satisfies:

(i) Endorsed Unanimity;

and does not satisfy:

(ii) Collective coherence.

Proof. (i) Endorsed Unanimity. Let s a statement in a DRF and let R+(s) be the set
of relationships r from s to its descendants sr. Let P be an ϵ-coherent profile for
ϵ ∈ (0, 1) with full positive support on s, i.e. vi(sr) = 1 for any i and descendant
sr ∈ D(s). Then:

ei(s) =
1∑

r∈R+(s)wi(r)

∑
r∈R+(s)

vi(sr)wi(r) =
1∑

r∈R+(s)wi(r)

∑
r∈R+(s)

wi(r) = 1

By the ϵ-coherence of P we have that:

|vi(s)− ei(s)| < ϵ =⇒ vi(s) > ei(s)− ϵ = 1− ϵ.

Therefore, for any ϵ ∈ (0, 1) we can ensure that vi(s) > 0 for any i and the conditions
for Sided Unanimity hold. Now, since D satisfies Sided Unanimity (by Proposition
A.1), we obtain that vD(s) > 0, and hence D fulfils Endorsed Unanimity.
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(ii) Collective coherence. Consider the DRF and the δ-coherent opinion profile P depicted
in figure 25 and any δ ∈ (0, 1). We will show that the collective opinion yield by the
direct function for this example is never ϵ-coherent for any ϵ ∈ (0, 1).

Clearly, this profile is δ-coherent for any δ > 0. Computing the direct function at s
we obtain that: vD(P )(s) = −1, vD(P )(a) = 0 and wD(P )(r) = 1

2 . Now, if we check
collective coherence at s, we see that: |vD(P )(s)− eD(P )(s)| = |−1−0| = 1 > ϵ. Thus,
since 1 is larger than any ϵ value that we take in (0, 1), D does not satisfy ϵ-Collective
coherence.

s a
v1(s) = −1

v2(s) = −1

v1(a) = 1

v2(a) = −1w1(r) = 0

w2(r) = 1

Figure 25

Proposition A.7. I over a coherent domain satisfies:

(i) Weak Unanimity;

and does not satisfy:

(ii) Sided Unanimity.

(iii) Collective Coherence.

Proof. (i) Weak Unanimity. Consider a DRF with a statement s ∈ S and P = (O1 =
(v1, w1), . . . , On = (vn, wn)) an opinion profile such that vi(s) = 1 for every i. Hence,
the conditions for Weak unanimity hold. If the profile P is ϵ-coherent, where ϵ ∈ (0, 1),
then we can conclude that for any i: 1 − ϵ < ei(s) < 1 + ϵ, being 1 − ϵ > 0 for any
ϵ ∈ (0, 1). Now, computing vI at s we get:

vI(P )(s) =
1

n

∑
i

ei(s) >
1

n

∑
i

1− ϵ > 0

Since vI(P )(s) > 0, Weak unanimity holds. The proof for the negative case of Weak
unanimity is analogous.

(ii) Sided unanimity. Consider the DRF and one-opinion profile depicted in figure 26
such that ϵ ∈ (0, 1) and x, y such that 0 < x < y < ϵ. The assumptions of Sided
unanimity are fulfilled at s. We check that the opinion in the profile is ϵ-coherent
because |v(s) − e(s)| = |x − y + ϵ| < ϵ. However, vI(P )(s) = y − ϵ < 0, instead of
positive, and hence Sided Unanimity is not satisfied.

s a v(a) = y − ϵv(s) = x
w(r) = 1

Figure 26
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(iii) Collective Coherence. To prove that this property does not hold, it suffices to find a
DRF and an opinion profile for which there is no ϵ-Collective coherence. Consider
the DRF and opinion profile P in figure 27. Clearly, opinions O1 and O2 of P are
δ-coherent for any δ > 0. Now, we compute the indirect function for all statements:
vI(P )(s) =

−1
2 , vI(P )(a) =

1
2 , vI(P )(b) = 0, and, wI(P )(r1) =

1
2 = wI(P )(r2). If we check

coherence at s we see that:

|vI(P )(s)− eI(P )(s)| = |vI(P )(s)− vI(P )(a)| = |−1

2
− 1

2
| = 1 > ϵ.

Thus, since 1 is larger that any ϵ value that we take in (0, 1), I does not satisfy
ϵ-Collective coherence.

s a b
v1(s) = −1

v2(s) = −1 w1(r1) = 0

w2(r1) = 1

v1(a) = 1

v2(a) = −1

w1(r2) = 1

w2(r2) = 0

v1(b) = 1

v2(b) = −1

Figure 27

Proposition A.8. R over a coherent domain fulfils the following properties:

(i) Weak Unanimity and SidedUnanimity;

(ii) Endorsed Unanimity;

(iii) Familiar Monotonicity.

Proof. (i) Weak Unanimity, and Sided unanimity. To prove that neither of these proper-
ties hold, it suffices to build a DRF and opinion profile to show that Weak Unanimity
does not hold. This is sufficient because Weak unanimity is a weaker variant of Sided
unanimity. Indeed, Proposition 5.1 tells us that Sided unanimity will not hold if Weak
Unanimity does not. Consider the DRF and opinion profile P = ((v, w)) in figure 28
such that w(r) = 1 for any relationship r ∈ R, ϵ ∈ (0, 1) and δ ∈ (0, ϵ) and m ∈ N so
that mδ ≥ 1 > (m− 1)δ.

s a1 · · · am−1 am

v(a1) = 1− δ

v(am−1) = 1− (m− 1)δ

v(am) = 1−mδ

v(s) = 1

Figure 28
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Clearly, the outcome of the recursive function at each sentence is obtained from the
value of the recursive function at the previous sentence, i.e.:

vR(P )(am) = vR(P )(am−1) = ... = vR(P )(a1) = vR(P )(s),

which actually is the value v(am) = 1 − mδ ≤ 0. So, this is an ϵ-coherent opinion
profile fulfilling the assumptions of Weak unanimity at sentence s because v(s) = 1.
However, the value of the recursive function at s is negative. Therefore, R does not
fulfil Weak unanimity.

(ii) Endorsed Unanimity. We build a DRF and opinion profile to show that Endorsed
unanimity does not hold from the example in the previous proof. Figure 29 shows
our example, which extends the one in figure 28 with an additional sentence a. Since
v(ai)− v(ai−1) = δ, likewise in the proof above, we have an ϵ-coherent opinion profile.
Since v(s) = 1 the assumption for Endorsed unanimity at a is satisfied, but since
v(a) = 1−mδ ≤ 0, Endorsed unanimity does not hold.

sa a1 · · · am−1 am

v(a1) = 1− δ

v(am−1) = 1− (m− 1)δ

v(am) = 1−mδ

v(s) = 1

v(a) = x

Figure 29

(iii) Familiar Monotonicity. Consider the opinion profiles P and P ′ over the same DRF
depicted in figures 30 and 31 respectively. Since v(s) = v(a) = v(b) = 1, P is ϵ-
coherent. By setting 0 < x < ϵ, we also obtain that P ′ is ϵ-coherent. Therefore,
both P and P ′ are ϵ-coherent and the assumptions for familiar monotonicity hold at
s. However, since 1 = vR(P )(s) > vR(P ′)(s) = 1 − x, Familiar monotonicity cannot
hold.

s a b

v(a) = 1

v(s) = 1 v(b) = 1
w(r1) = 1 w(r2) = 1

Figure 30

s a b

v′(a) = 1

v′(s) = 1 v′(b) = 1− x
w′(r1) = 1 w′(r2) = 1

Figure 31

Proposition A.9. The family {Bα}α∈(0,1) over a coherent domain satisfies:
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(i) Weak Unanimity; and

(ii) Endorsed Unanimity

and does not satisfy:

(iii) Sided Unanimity;

(iv) Collective Coherence.

Proof. (i) Weak Unanimity follows from propositions A.1, A.7 and Lemma A.5.

(ii) Endorsed Unanimity follows from propositions A.2, A.6 and Lemma A.6.

(iii) Sided Unanimity. It suffices to build a DRF and an opinion profile for which Sided
unanimity does not hold for any values of α and ϵ, where α, ϵ ∈ (0, 1).

Consider the set A = {(x, y) ∈ (0, 1) | 0 < y < ϵ and 0 < x < y − αy}. We check
first, that this set is actually not empty. For α ∈ (0, 1), y − αy > 0, thus y > αy > 0.
So for y ∈ (0, ϵ), there are x ∈ (0, 1) satisfying x < y − αy.

s a v(a) = x− yv(s) = x
w(r) = 1

Figure 32

Now, we consider the DRF and opinion profile depicted in figure 32 where x and y
are values from A, namely (x, y) ∈ A. Since |v(s) − e(s)| = |x − (x − y)| = |y| < ϵ,
the opinion profile in the figure is ϵ-coherent, and satisfies the assumptions for Sided
Unanimity at s because v(s) = x > 0. However,

vBα(P )(s) = αvD(P )(s) + (1− α)vI(P )(s)

= αx+ (1− α)(x− y)

= x− y + αy < 0

since (x, y) ∈ A. So, clearly this example shows that Sided Unanimity does not hold
for the family Bα in an ϵ-coherent profile.

(iv) First, we show that the ϵ-coherence condition for Bα depends on the functions em-
ployed in its definition, namely on D and I:

|vBα(P )(s)− eBα(P )(s)| =
∣∣∣vBα(P )(s)−

∑
r∈R+(s)

(
αvD(P )(rs) + (1− α)vI(P )(sr)

)
wD(P )(r)∑

r∈(R+(s)wD(P )(r)

∣∣∣
=

∣∣∣(α(vD(P )(s) + (1− α)(vI(P )(s)
)
−
(
αeD(P )(s)) + (1− α)eI(P )(s))

)∣∣∣
=

∣∣∣α(vD(P )(s)− eD(P )(s)
)
+ (1− α)

(
vI(P )(s)− eI(P )(s)

)∣∣∣
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Thus, since D and I do not satisfy ϵ-collective coherence for any δ-coherent profile
(by propositions A.6 and A.7 respectively), neither will Bα satisfy the property for
any α ∈ (0, 1). Indeed, consider for instance the DRF and δ-coherent opinion profile
P , with any δ ∈ (0, 1), in figure 27 as employed in Proposition A.7. If we compute
ϵ-collective coherence for Bα at sentence s we obtain that:

|vBα(P )(s)− eBα(P )(s)| =
∣∣∣α(−1− 0) + (1− α)(−1

2
− 1

2
)
∣∣∣ = | − 1| = 1 > ϵ

for any ϵ ∈ (0, 1). So, Bα does not fulfill ϵ-coherence for any α ∈ (0, 1).

Proposition A.10. Let ϵ ∈ (0, 1) such that the domain of Rα is an ϵ-coherent domain,
then the family {Rα}α∈(0,1) satisfies:

(i) Weak Unanimity for α ∈ (12 , 1), and hence independently of ϵ;

(ii) Endorsed unanimity for α ∈ ( 1
2−ϵ , 1); and

(iii) ϵ-Collective coherence for α ∈ (0, ϵ
2).

and does not satisfy:

(iv) Sided Unanimity; and

(v) Familiar Monotonicity.

Proof. (i) Weak Unanimity. Consider a DRF with sentences S, P an opinion profile over
the DRF and s ∈ S a sentence such that vi(s) = 1 for any agent i. We know that

vD(P )(s) =
1

n

∑
i∈Ag

vi(s) = 1.

and hence vD(P )(s) =
1
n

∑
i∈Ag vi(s) = 1. Note that in that case Rα(s) function is given

by α + vR(P )(s) − αvR(P )(s). Note vR(P )(s) ∈ [−1, 1] and vRα(s) takes its minimum
value when vR(P )(s) = −1. The DRF and profile depicted in figure 15 above shows
that, in fact, this scenario exists with vD(P )(s) = 1 and vR(P )(s) = −1, and hence
vRα(P )(s) = α + (1 − α)(−1) = 2α − 1. To fulfil Weak unanimity, we need that
vRα(P )(s) > 0 holds, but we also know that vRα(P )(s) ≥ 2α − 1. Therefore, we can

guarantee Weak Unanimity for those Rα functions for which α ∈ (12 , 1). Hence, Weak
Unanimity holds for the family of functions {Rα}α∈( 1

2
,1). The proof for the negative

case of Weak Unanimity goes analogously.

(ii) Endorsed Unanimity. To prove this property we will build a customised DRF and
opinion profile to demonstrate the worst case that we can find when fulfilling the
assumptions of Endorsed unanimity.

Consider a DRF and let P = (O1 = (v1, w1), . . . , On = (vn, wn)) be an ϵ-coherent
profile with full positive support on statement s ∈ S.
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First, we consider the worst case where vR(P )(s) = −1 can be achieved when s has
full positive support. Figure 33 depicts a DRF and an opinion profile illustrating this
situation.

s a1 a2 · · · am−1 am

v(a1) = 1 v(a2) = 1− x

v(am−1) = 1− (m− 1)x

v(am) = −1

v(s) = 1

Figure 33

By choosing 0 < x < ϵ and m ∈ N such that mx > 2 ≥ (m− 1)x, this example shows
an ϵ-coherent profile where v(a1) = 1 (full positive support) and vR(s) = −1. Next, we
move to the general setting considered by the proof, an opinion profile with n agents,
knowing that the worst case for this property is possible. Since vi(sr) = 1 for any
descendant sr ∈ D(s) and any agent i, the estimation function on s will be ei(s) = 1
for any agent. Therefore, from the coherence condition at s we conclude that

1− ϵ < vi(s) < 1 + ϵ.

Consider that for every i, vi(s) = 1 − δi such that 0 ≤ δi < ϵ. This clearly satisfies
the previous inequality. Now we take δ = maxi{δ1, . . . , δn} to create a new opinion
profile P ′ = (O′

1 = (v′1, w1), . . . , O
′
n = (v′n, wn)) such that vi(a) = v′i(a) for a ∈

S \ {s} and v′i(s) = 1 − δ for any i. Then, since D fulfils Monotonicity, we know
that vD(P ′)(s) ≤ vD(P )(s). Furthermore, from the definition of D, it follows that

vD(P ′)(s) =
1
n

∑n
i=1 v

′
i(s) =

1
n

∑n
i=1 1− δ = 1− δ. And, from the example in figure 33

we know that for any ϵ-coherent opinion profile vR(P )(s) ≥ −1. Therefore,

vRα(P )(s) = αvD(P )(s) + (1− α)vR(P )(s)

≥ αvD(P ′)(s) + (1− α)(−1)

= (1− δ)α− (1− α) = (2− δ)α− 1

So, if we choose α ∈ (0, 1) so that (2 − δ)α − 1 > 0, the Rα aggregation function
will satisfy Endorsed Unanimity. Since δ < ϵ, by choosing a value for α such that
α ≥ 1

2−ϵ >
1

2−δ , then we can ensure that the aggregation function Rα satisfies Endorsed
Unanimity. Therefore, given an ϵ value ϵ ∈ (0, 1), the family of aggregation functions
{Rα}α∈( 1

2−ϵ
,1) satisfies Endorsed Unanimity.

(iii) As seen before in Proposition A.3, the collective coherence of Rα entirely depends on
the collective coherence of D, i.e.:

|vRα(P )(s)− eRα(P )(s)| = α|vD(P )(s)− eD(P )(s)|

Thus, finding the worst case scenario for D will give us the condition on α that ensures
thatRα satisfies ϵ-collective coherence for any ϵ. Next, we consider an example showing
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that |vD(P )(s)− eD(P )(s)| can be as close to 2 as wanted depending on the number of
agents.

s av2(s) = 1

v1(s) = 1

v3(s) = 1
...

vm(s) = 1

w1(r1) = 1

w2(r1) = 0

w3(r1) = 0
...

wm(r1) = 0

v2(a) = −1

v1(a) = 1

v3(a) = −1
...

vm(a) = −1

Figure 34

Let P be the δ-coherent opinion profile over a DRF depicted in figure 34, for any
δ ∈ (0, 1). For any i > 1: vi(s) = 1, vi(a) = −1 and wi(r1) = 0; whereas v1(s) = 1,
v1(a) = 1 and w1(r1) = 1. We check the condition for collective coherence at s to find
that:

|vRα(P )(s)− eRα(P )(s)| = α(1 +
m− 2

m
) < ϵ

if α < ϵ
1+m−2

m

. Thus, by choosing a value for α such that α < ϵ
2 < ϵ

1+m−2
m

we

ensure that Rα satisfies ϵ-coherence for the worst case. Therefore, for any δ-coherent
opinion profile, δ ∈ (0, 1), choosing α ∈ (0, ϵ

2) will ensure that Rα satisfies ϵ-collective
coherence for any ϵ ∈ (0, 1).

(iv) Sided Unanimity. Consider the DRF and opinion profile P depicted in figure 35, where:
x ∈ (0, 1) is such that 0 < x < 1−α

α , 0 < δ < ϵ; m ∈ N satisfies (m− 1)δ ≤ 1+ < mδ;
and for any r ∈ R, w(r) = 1.

s a1 · · · am−1 am

v(a1) = x− δ

v(am−1) = x− (m− 1)δ

v(am) = −1

v(s) = x

Figure 35

Clearly, P is an ϵ-coherent because |v(am) − e(am)| = 0, and for any i < m, |v(ai) −
e(ai)| = v(ai) − v(ai+1) = δ < ϵ, and |v(s) − e(s)| = x − x + δ < ϵ. Further-
more, P satisfies the assumptions of Sided unanimity at s since v(s) = x > 0. It is
straightforward to see that vD(P )(s) = x and vR(P )(s) = vR(P )(am) = −1. Hence,

vRα(P )(s) = xα + (1 − α)(−1) = xα + α − 1. But since x < 1−α
α , we conclude that

vRα(P )(s) <
1−α
α α + α − 1 = 0. We can proceed analogously for the negative case of

Sided Unanimity.
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(v) Familiar monotonicity. The counterexample employed in Proposition A.8 to show that
Familiar monotonicity does not hold for R serves here as well to prove that Rα does
not satisfy Familiar monotonicity for any α ∈ (0, 1). From opinion profiles P and P ′

depicted in figures 30 and 31 respectively, we extract that vD(P )(s) = vD(P ′)(s) = 1
and 1 = vR(P )(s) > vR(P ′)(s) = 1−x. Therefore, it follows that vRα(P )(s) > vRα(P ′)(s),
hence proving that Familiar monotonicity does not hold.

A.4 Constrained Opinion Profiles: Assuming Consensus on Acceptance
Degrees and Coherent Profiles

Next, we show the results regarding our fourth, and last, scenario. We now assume that
opinion profiles are both ϵ-coherent, for some ϵ ∈ (0, 1), and agree on their acceptance
degrees over relationships. The results that follow are summarised in Table 5 in Section 7.4.

Likewise in previous sections, next we only prove per aggregation function those prop-
erties that either were partially satisfied or not satisfied at all in previous scenarios, but do
hold in this new scenario. We do not prove those properties for which the proofs in the
previous sections serves as well for this scenario.

Proposition A.11. Let be a DRF and an opinion profile P = (O1, . . . , On). For any
s ∈ S, assume that for each r ∈ R+(s) wi(r) = λr ∈ (0, 1] for any i, then:

(i) For any ϵ ∈ (0, 1), if 0 < δ ≤ ϵ and the domain D is δ-coherent then D(P ) is ϵ-coherent,
so satisfies ϵ-Collective coherence.

(ii) For any ϵ ∈ (0, 1), if 0 < δ ≤ ϵ and the domain D is δ-coherent then I(P ) is ϵ-coherent,
so satisfies ϵ-Collective coherence.

(iii) For any ϵ ∈ (0, 1), if 0 < δ ≤ ϵ and the domain D is δ-coherent then Bα(P ) is ϵ-coherent
for any α ∈ (0, 1), so satisfies ϵ-Collective coherence.

(iv) For any ϵ ∈ (0, 1), if 0 < δ ≤ ϵ and the domain D is δ-coherent then Rα(P ) is ϵ-coherent
for any α ∈ (0, 1), so satisfies ϵ-Collective coherence.
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Proof. (i) Collective Coherence ofD. Let s ∈ S. We assume that for any i, |vi(s)−ei(s)| <
δ ≤ ϵ. Next we calculate the coherence condition for D at sentence s:

|vD(P )(s)− eD(P )(s)| =
∣∣∣∣∣ 1n ∑

i

vi(s)−
1∑

r∈R+(s)wD(P )(r)

∑
r∈R+(s)

wD(P )(r)vD(P )(sr)

∣∣∣∣∣
=

∣∣∣∣∣ 1n ∑
i

vi(s)−
1∑

r∈R+(s) λr

∑
r∈R+(s)

λr

( 1
n

∑
i

vi(sr)
)∣∣∣∣∣

=

∣∣∣∣∣ 1n ∑
i

(
vi(s)−

1∑
r∈R+(s)wi(r)

∑
r∈R+(s)

wi(r)vi(sr)
)∣∣∣∣∣

=

∣∣∣∣∣ 1n ∑
i

(
vi(s)− ei(s)

)∣∣∣∣∣ ≤ 1

n

∑
i

∣∣∣vi(s)− ei(s)
∣∣∣

Thus, by δ-coherence of the domain we obtain that:

|vD(P )(s)− eD(P )(s)| ≤
1

n

∑
i

∣∣∣vi(s)− ei(s)
∣∣∣ < 1

n

∑
i

δ ≤ ϵ

This proves that the collective opinion by D is ϵ-coherent.

(ii) Collective Coherence of I. We prove collective coherence for I similarly to the proof
above for D. Let s ∈ S. We assume that for any i, |vi(s)−ei(s)| < δ ≤ ϵ. We compute
the condition for the collective coherence of I at sentence s as follows:

|vI(P )(s)− eI(P )(s)| =
∣∣∣∣∣ 1n ∑

i

ei(s)−
1∑

r∈R+(s)wI(P )(r)

∑
r∈R+(s)

wI(P )(r)vI(P )(sr)

∣∣∣∣∣
=

∣∣∣∣∣ 1n ∑
i

ei(s)−
1∑

r∈R+(s) λr

∑
r∈R+(s)

λr

( 1
n

∑
i

ei(sr)
)∣∣∣∣∣

=

∣∣∣∣∣ 1n ∑
i

(
ei(s)−

1∑
r∈R+(s)wi(r)

∑
r∈R+(s)

wi(r)ei(sr)
)∣∣∣∣∣

=

∣∣∣∣∣ 1n ∑
i

∑
r∈R+(s)wi(r)vi(sr)−

∑
r∈R+(s)wi(r)ei(sr)∑

r∈R+(s)wi(r)

∣∣∣∣∣
=

∣∣∣∣∣ 1n ∑
i

∑
r∈R+(s)

wi(r)
(
vi(sr)− ei(sr)

)
∑

r∈R+(s)wi(r)

∣∣∣∣∣
So, by δ-coherence of the domain, we obtain that:
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|vD(P )(s)− eD(P )(s)| ≤
1

n

∑
i

∑
r∈R+(s)

wi(r)
∣∣∣vi(sr)− ei(sr)

∣∣∣∑
r∈R+(s)wi(r)

<
1

n

∑
i

∑
r∈R+(s)wi(r) δ∑
r∈R+(s)wi(r)

=
1

n

∑
i

δ = δ ≤ ϵ

This proves that the collective opinion by I is ϵ-coherent.

(iii) Collective Coherence of Bα. We have just proven that D and I satisfy ϵ-collective
coherence assuming consensus on acceptance degrees and a δ-coherent domain with
δ < ϵ. It directly follows that for any α ∈ (0, 1), then Bα on a δ-coherent domain also
satisfies ϵ-collective coherence.

(iv) Collective Coherence of Rα. We have just proven that D satisfies ϵ-collective coher-
ence assuming consensus on acceptance degrees and a δ-coherent domain. ϵ-collective
coherence also holds for R under the same assumptions following Proposition A.3
(see collective coherence for R). Hence, it follows that for any α ∈ (0, 1), Rα on a
δ-coherent domain also satisfies ϵ-collective coherence.
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