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Abstract

Network alignment techniques that map the same entities across multiple networks
assume that the mapping nodes in two different networks have similar attributes and
neighborhood proximity. However, real-world networks often violate such assumptions,
having diverse attributes and structural properties. Node mapping across such struc-
turally heterogeneous networks remains a challenge. Although capturing the nodes’ en-
tire neighborhood (in low-dimensional embeddings) may help deal with these characteris-
tic differences, the issue of over-smoothing in the representations that come from higher-
order learning still remains a major problem. To address the above concerns, we propose
SAlign: a supervised graph neural attention framework for aligning structurally hetero-
geneous networks that learns the correlation of structural properties of mapping nodes
using a set of labeled (mapped) anchor nodes. SAlign incorporates nodes’ graphlet in-
formation with a novel structure-aware cross-network attention mechanism that trans-
fers the required higher-order structure information across networks. The information
exchanged across networks helps in enhancing the expressivity of the graph neural net-
work, thereby handling any potential over-smoothing problem. Extensive experiments on
three real datasets demonstrate that SAlign consistently outperforms the state-of-the-art
network alignment methods by at least 1.3-8% in terms of accuracy score. The code is
available at https : //github.com/shruti400/SAlign for reproducibility.

1. Introduction

In the Big-data era, dealing with and analyzing large-scale networks such as social networks,
co-authorship networks, and protein interaction networks has gained considerable interest.
Multiple networks of the same domain often exist, and jointly studying their co-related in-
formation solves the sparsity and data insufficiency issue of analyzing from a single network
(Man et al., 2016). Network alignment, which aims to map the same entities across multi-
ple networks, plays a crucial role in distilling entity information. The collective information
from multiple networks has been crucial for downstream tasks like cross-site friend rec-
ommendation, product recommendation, fraud detection, and revealing new interactional
patterns in protein networks (Bayati et al., 2013).

Finding pairwise node correspondences across 2 different networks follows two under-
lying assumptions: (1) the attributes of mapped nodes are similar, which we refer to as
the attribute consistency constraint, and (2) the mapped nodes exhibit a similar neighbor-
hood structure called the structural consistency constraint (Trung et al., 2020). Several
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Figure 1: Neighborhood similarity of some anchor pairs across the Douban dataset. It illustrates
the similarity percentage of anchors having similar graphlet structures.

existing methods often strictly adhere to these constraints by attempting to jointly learn
the node structure similarities across the networks thereby preserving more comprehensive
information about the node correspondences (Xu et al., 2019). However, such structural
consistency assumption is often violated in real-world scenarios. From a global aspect, the
networks can have varying degrees of sparsity, distribution and path lengths, and hence
joint learning strongly based on such structural similarities/dissimilarities may not produce
satisfactory results.

To reinforce the above statement, we study the structural co-relation of some mapped
node pairs (anchor pairs) from the Chinese social networks - Douban Online and Douban
Offline (Trung et al., 2020). We compare the subgraph interactional patterns of these
anchors’ neighborhoods via graphlet information. We only examine graphlets of order three
that capture up to three path lengths of the neighborhood. In Figure 1, G0, G1, and
G2 depict the subgraphs corresponding to order-3 graphlets. We then find the percent
overlap in the count of these graphlet substructures, based on which we plot the anchors’
similarity distribution as shown in Figure 1. The area of the violin plot represents the
relative number of anchors having the corresponding neighborhood similarity percentage
constituted by each of the subgraphs, G0, G1, and G2, respectively. We observe that even
though these are pre-defined anchor pairs, their structural similarity differs significantly.
Most anchor pairs have less than 40% neighborhood similarity majorly contributed by the
similarity in their single path length neighborhood i.e. G0. We see that the same node can
have different interactional patterns in and across multiple networks, which we refer to as
structural heterogeneity.

In this paper, we propose SAlign, a method to align networks in the presence of struc-
tural heterogeneity. We believe that jointly learning node embeddings of the two networks
while being aware of their structural correlates may capture more comprehensive informa-
tion on the node similarities. For example, anchor nodes in one network may be part of
several closed triangles, while the corresponding neighborhood in the other network may
be dominated by higher-length substructures (which leads to structural heterogeneity as
inferred by Figure 1). While capturing these structural correlations would help to increase
performance, existing strategies are not very effective at dealing with these higher-order
substructures. State-of-the-art Graph Neural Network (GNN) based techniques suffer from
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over-smoothing problem (Chen et al., 2020), whereby the node representations tend to be
similar when such higher order structures are captured.

Specifically, we propose SAlign, a supervised graph neural network representation learn-
ing approach that jointly learns from the two networks hierarchically - one at the node level
to capture the intra-network local interactions and one at the graph level to capture the
inter-network interactions. We identify these interactions by the structural characteristics
of the networks captured through graphlets, which represent rich structural features and
play a decisive role in the connection of nodes. The novelty of SAlign is twofold. Along with
capturing a node’s local neighborhood structure in its representation, it also proposes an
attentive aggregation of the structural correlations between the subgraphs surrounding the
node’s corresponding anchor. The attention mechanism focuses more on the discriminative
subgraphs within and across networks, making it less influenced by other noisy neigh-
borhoods that do not significantly contribute to finding the anchor pairs. Furthermore,
attentively aggregating the hierarchical structural features enhances the node expressivity,
thereby overcoming the over-smoothing problem. While some approaches have also used
graphlet information (Almulhim et al., 2019) however, they treat them as node attributes,
as opposed to our method, which uses the graphlets as structural features to determine
their correlation across the networks. Several other existing methods that have also used
higher-order structures (Zhang et al., 2019; Qiu et al., 2021; Xia et al., 2021), to generate
the node representations neither make any attempt to learn the embeddings jointly nor
consider capturing the structural variations across the network.

The main contributions of our work are summarized as follows:

1. To the best of our knowledge, we are the first to leverage the correlation of higher-order
substructures for encoding joint relationships for aligning two structurally heteroge-
neous networks.

2. We facilitate intra-network and inter-network propagation by learning node-level and
graph-level structural features through a hierarchical graphlet-based attention mech-
anism. The attentive aggregation of these structural features enhances node expres-
sivity while addressing the over-smoothing issue.

3. We empirically validate the effectiveness of SAlign on three real-world datasets and
compare it to eight state-of-the-art baselines in terms of Acc@1, Acc@10, MAP , and
AUC. We further perform case studies to validate the effectiveness of the hierarchical
attention mechanism of SAlign in dealing with structural heterogeneity and over-
smoothing issues.

The organization of the paper is as follows. In Section 2, we briefly outline the related
works. In Section 3, we discuss some preliminaries required to understand the problem. In
Section 4, we describe the SAlign framework in detail, followed by the experimental setup
in Section 5. We report and analyze the experimental results in Section 6. Finally, we
conclude and present the future work in Section 7.
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2. Related Works

This section elaborates on the different network embedding approaches followed by the
state-of-the-art network alignment methods.

2.1 Network Embedding

In recent years, deep neural embedding methods to exploit node dependence and develop
node representations have generated promising results, with GNN models receiving the most
attention (Scarselli et al., 2008). Based on different aggregation functions to aggregate node
neighborhood information, GCNs (Kipf & Welling, 2016) and GATs (Velickovic et al., 2018)
are the most prevalent. There are several other proposed variants of GNNs; however, they
are all confined to only capturing low-order graph structures around every node (Li et al.,
2018). GNN models have recently incorporated graphlets (Tu et al., 2018; Feng & Chen,
2020), motifs (Zhao et al., 2018; Sankar et al., 2020; Subramonian, 2021), and anonymous
walks (Long et al., 2020; Jin et al., 2020) to leverage higher-order graph structures. gl-
DCNN (Tu et al., 2018) concatenates node graphlet information and node features for
input to the diffusion-convolutional neural networks. GraphLSP (Jin et al., 2020) captures
the complex structural patterns via random anonymous walks. GraphStone (Long et al.,
2020) additionally builds topic models upon graphs to capture the distributional differences
over the local structural patterns. HM-Modularity (Huang et al., 2018) and HCEMM
(Huang et al., 2023) propose a concept of harmonic motif to capture a slightly higher order
connection structure across various views for multi-view network community detection.
However, the assumption of the same nod set across every view does not hold true when
aligning two networks. Motif-based GNN models use one (Zhao et al., 2018), or more
(Sankar et al., 2017; Chen et al., 2023) motif-based adjacency matrices to perform message
passing. Our work differs from the discussed approaches in several vital points. All of
the above methods primarily focus on a single network, and directly adopting them in
the network alignment task is insufficient. Although a recent approach introduces a GCN
model for cross-network learning (Jiang, 2021), it fails to capture the higher-order complex
structures. Hence, we are the first to propose a higher-order network embedding method
that utilizes novel graphlet vector-based hierarchical attention to model multiple aligned
networks. We design a novel aggregation scheme to transfer more useful information across
networks and overcome network characteristics contradictions.

2.2 Network Alignment

Network alignment is an emerging active area. Using network structures, node attributes,
and edge attributes to integrate complete network information has been beneficial for net-
work alignment. With neural embedding methods gaining popularity, researchers have im-
proved and applied network embedding methods in a multi-network environment. Methods
like PALE (Man et al., 2016), and Deeplink (Zhou et al., 2018) learn the node embeddings
separately and then learn a mapping function to map the embeddings based on the labeled
anchor information. While PALE uses LINE (Tang et al., 2015) or DeepWalk (Perozzi
et al., 2014), Deeplink uses random walk to produce the node embeddings. More recent
approaches use an end-to-end learning framework to jointly train the embeddings of the
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two networks by optimizing a loss function over the dataset (Nguyen et al., 2021; Liu
et al., 2019b). These alignment approaches utilize deep learning-based node embedding
approaches, like adversarial-based training (Hong et al., 2020; Chen et al., 2019), graph
convolutional network (Saxena et al., 2022; Trung et al., 2020; Cheng et al., 2019) for
building node representations of both networks using common trainable parameters. Al-
though these alignment approaches have shown promising results, they lack to jointly learn
and transfer more useful complementary information across the partially aligned networks.
To overcome this, CENALP (Du et al., 2019), and BRIGHT (Yan et al., 2021) capture the
structural properties from separate graphs using a cross-network embedding method em-
ploying random walks. CrossMNA (Chu et al., 2019) expresses network differences through
layer vectors and uses a linear transformation between nodes across networks. CCALP
(Lan et al., 2021), in addition, models community-level inter-network relationships. A re-
cent adversarial learning-based approach, HackGAN (Yang et al., 2022), captures the local
and global node features by solving the Wasserstein Procrustes problem. However, these
methods cannot distinguish nodes with isomorphic low-order graph structures from differ-
ent higher-order structures. Moreover, they do not deal with the network characteristic
differences focused on by our proposed method.

3. Preliminaries

This section covers some fundamental concepts required for comprehending the paper. In
line with the majority of literature, we focus on aligning two unweighted, undirected, and
attributed networks.

3.1 Notations and Problem Formulation

Given two partially aligned networks, a source network Gs = (Vs, Es, Xs, Âs) and a target
network Gt = (Vt, Et, Xt, Ât), network alignment is the task of finding node correspondences
between them. Here V = {v1, v2, ..., vn} is the set of n nodes, E is the set of edges between
nodes, X = [x⃗1, x⃗2, · · · , x⃗n]T ∈ Rn×m is the node attribute matrix, and Â is the adjacency
matrix with self loops. Moreover, A = {(ui, vj) | ui ∈ Vs, vj ∈ Vt} is the set of pre-known
anchor links that are one-to-one mapped node pairs between Gs and Gt. We formulate
network alignment as the calculation of an alignment matrix P ∗, where the (u, v)th element,
P ∗[u, v], represents the degree of similarity between the nodes u ∈ Vs and v ∈ Vt, and thus
provides a measure of the probability of them being anchor nodes.

3.2 Graphlets and Orbits

Graphlets: Graphlets are small, connected, non-isomorphic induced subgraphs represent-
ing connected patterns in a network between k nodes in a graph (Ribeiro et al., 2021).
For example, in Figure 1, G0, G1, and G2 depicts the subgraphs corresponding to order-3
graphlets.

Orbits: The nodes of every graphlet are partitioned into a set of automorphism groups
called orbits (Ribeiro et al., 2021). Two nodes belong to the same orbit if they map to each
other in some isomorphic projection of the graphlet onto itself. In Figure 1, a, b,c and d
are the node orbits of order-3 graphlets.
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Graphlet degree vectors: The graphlet-degree vector (GDV) of a node is a feature vector
specifying the number of times it occurs in each orbit (Ribeiro et al., 2021). Each position
in the GDV corresponds to an orbit.

3.3 Graph Neural Networks

Graph Neural Networks (GNNs) compute a representation for node v by aggregating fea-
tures from its neighborhood through a learnable aggregator function F θ. Let N (i) = {j :
(i, j) ∈ E} denote a set of neighbors of i ∈ V , general GNN message passing rule at layer ℓ
for node i then consists of:

h⃗
(ℓ)
i = F θ

({
h⃗
(ℓ−1)
j , vj ∈ N (vi) ∪ {vi}

})
(1)

F θ defines the message passing mechanism, and a variety of aggregator architectures like
GCN (Kipf & Welling, 2016), GAT (Velickovic et al., 2018), and pooling can be generalised

by Equation 1.⃗h
(l−1)
j denotes the embedding vector of node vj in the (ℓ − 1)-th layer of

GNN.

4. Proposed Approach

This section introduces the SAlign framework in detail. Figure 2 illustrates the overall
alignment architecture. We begin with a general overview of the model, then go over each
component in detail.

4.1 Method Overview

We illustrate the overall alignment framework of SAlign in Figure 2. The key idea of SAlign
is to train the source and target networks jointly to transmit complementary information
among the known anchor links. The anchor node in a source network can show both similar
as well as distinctive structural and attribute features as compared to the corresponding
node in the target network. To precisely capture these variations, we exploit the deeper
neighborhood structure of two nodes rather than solely depending on local structural in-
formation such as common neighbors. Hence the first step of SAlign is to extract the
graphlet features of network nodes to capture the fine-grained features that also compose
their global neighborhood structure. While OC-GAE (Feng & Chen, 2020) proposed con-
catenating these structural features with the node attributes, we argue that it may lead to
information loss. Therefore we propose a novel representation generation strategy that al-
lows for the selective gathering of information necessary to capture complex structures such
as cliques or dense clusters that indicate strong connections. Furthermore, each neighbor
(intra-network) does not contribute equally to generating a node’s representation. Simi-
larly, the relevance of a node’s anchor from another network (inter-network) may vary for
networks of diverse domains and topologies. Hence we propose a hierarchical attention
mechanism for normalizing the intra-network and inter-network information propagation.
The following sections discuss the graphlet feature extraction, SAlign’s aligned network
embedding architecture, optimization, and alignment computation in detail.
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Trained embeddings

Feature Extraction Aligned Embedding Generation

Network alignment

Figure 2: SAlign model architecture. The Feature Extraction module takes graphs Gs and Gt

as input and extracts their corresponding feature matrices S. Â and X are input to the encoder ini-
tialization. The Embedding Generation module iteratively embeds the networks using the combined
intra- and inter-network attention mechanism, optimizing over the loss L. P ⋆ is the final alignment
matrix obtained from the trained embeddings.

4.2 Feature Extraction

Graphlets contain complex non-linear patterns that reflect the higher-order characteristics
of graph nodes. In addition to the lower-order structural features (like node neighbors), cap-
turing these higher-order features leads to a more informative and distinctive representation
of network nodes. Hence, we build a structural feature matrix, S = [s⃗1, s⃗2, · · · , s⃗n]T ∈ Rn×o,
to capture a network’s higher-order structures. Here s⃗i is the GDV of node i, and S[i, j]
represents the number of times node i participates in the orbit j. Each position in the GDV
corresponds to an orbit.

We take a sample graph and find its structural feature matrix for a better understand-
ing. For example, in Figure 3, we only consider order-3 graphlet structures to calculate
the structural feature matrix of graph G. a, b, c, and d represents the orbits of order-3
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Figure 3: Structural feature matrix S obtained by considering graphlet orbits a,b,c, and d.

Table 1: Graphlets of order-k

Graphlet order Number of subgraphs Number of orbits

2 1 1

3 3 4

4 9 15

5 30 73

6 142 480

subgraphs. In particular, if we see S[v], each column entry represents the number of times
node v participates in the orbits a, b, c, and d, respectively. We clearly illustrate that node
v participates two times in the a orbit, one time in the b orbit, and two times in the d orbit.
Similarly, we calculate for all the nodes in G.

We leverage the orca algorithm (Hočevar & Demšar, 2014) that constructs a system
of equations to count the node orbits on graphs. In our experiments, we evaluate the
performance by capturing structures up to 5-order graphlets with 73 orbits. Table 1 gives the
subgraph counts and the orbits count for graphlet size of order-k. For example, S ∈ Rn×73

when we consider graphlet of order-3.

4.3 Aligned Network Embedding Framework

We propose a hierarchical graph attention mechanism at the node and network levels that
pay attention to different neighbor nodes and networks based on their higher-order pat-
terns while building node representations. We introduce a more sophisticated aggregation
of higher-order structural features along with the node-level attributes, rather than just
concatenating them. The proposed attentive aggregation of information enhances the ex-
pressivity of the learned representations while avoiding the over-smoothing issue.

To fulfil the above discussed impacts, we devise the following aggregation function

h⃗
(ℓ)
i = σ (intra (ui) + inter (ui)) + b⃗(ℓ) (2)
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The input to our first layer is the node feature matrix, X ∈ Rn×m. L layers are stacked to

produce new set of node features, Zℓ =
{
h⃗ℓ1, h⃗

ℓ
2, . . . , h⃗

ℓ
n

}
∈ Rn×m′

. We now detail the two

aggregation terms, one for generating intra-network embedding and other for inter-network
embedding with their employed attention mechanisms.
Intra-network embedding: We derive the intra-network embedding vector of a node ui
by aggregating it’s neighbor embeddings. These intra-network neighbors can have varying
importance, shown by their structural patterns. Moreover, we integrate the higher-order
structural features with each neighbor’s node embeddings given as:

intra (ui) =
∑

uk∈N (ui)

w(ui, uk)W
(ℓ)
(1)

(
h⃗
(ℓ−1)
k ⊙ gk

)
(3)

To model the selective aggregation of node structural features in the neighborhood and
avoid the over-smoothing of representations, we have

gi = σ
(
Q(ℓ)s⃗i + r(ℓ)

)
(4)

where W
(ℓ)
(1) , Q

(ℓ) and r(ℓ) are trainable parameters, ⊙ denotes element-wise multiplication

and w(ui, uk) is the attention exerted by a neighbor node uk on node ui, we discuss later
below.
Inter-network embedding: We derive the inter-network embedding vector of node ui by
taking features from its corresponding anchor node vj from the other network as

inter(ui) = w(ui, vj)W
(ℓ)
(2)

(
h⃗
(ℓ−1)
j ⊙ gj

)
(5)

where w(ui, vj) balances the information transfer across the two networks as discussed
below.
Combined Attention mechanism: The intra-network attention co-efficient given to ui
from uk ∈ Nui is given as

α(ui, uk) = σ
(
aT(1)

[
W(1)h⃗i∥W(1)h⃗k

])
(6)

and similarly the inter-network attention co-efficient given to ui from its anchor pair vj in
the other network is given by

α(ui, vj) = σ
(
aT(2)

[
W(1)h⃗i∥W(2)h⃗j

])
(7)

where .T represents transposition and ∥ is the concatenation operation. σ denotes the sig-
moid function and aT(1), a

T
(2) are trainable weight vectors. Besides, to make these coefficients

easily comparable across different nodes, we apply the softmax function as

w (ui, uk/vj) = softmaxuk/vj (α (ui, uk/vj)) (8)

=
exp (α (ui, uk/vj))∑

uk′∈N (ui)

exp (α (ui, uk′)) + exp (α (ui, vj))
(9)
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We further discovered that adopting multi-head attention, as inspired by (Velickovic
et al., 2018), helped stabilize the learning process of node embeddings. Hence we employ
K independent attention mechanisms to carry out this transformation and subsequently
concatenate their embeddings to provide final nodes’ representations given as

h⃗
(ℓ)
i =∥ K

k=1 σ (intra (ui) + inter (ui)) + b⃗(ℓ) (10)

4.4 Model Learning and Alignment

For a node’s embedding to be consistent with respect to its intra-network structure as well
as its inter-network anchor connection, we optimize SAlign by minimizing the following loss
functions jointly over both networks in a unified framework:
Consistency loss: The consistency loss determines if the resulting node embeddings are
consistent with the intra-network topology given as:

Lcons
{s,t} =

∑
ℓ∈[1...L]

∥∥∥Â− σ
(
Z(ℓ)Z(ℓ)T

)∥∥∥
F

(11)

where ∥·∥F denotes the Frobenius norm. The loss function is computed from the embeddings
at all layers to capture a node’s different neighborhood orders.
Alignment loss: We use the alignment loss to enhance the similarity between the true
anchor links. We comprehensively leverage information transfer across the networks to learn
the embeddings by aligning anchor nodes using a negative sampling strategy. We consider
the true anchors, A, as positive anchor links and randomly sample negative anchor links, U,
from the unmapped links across the networks. The aim is to increase the similarity between
the true anchor links and dissimilarity between the sampled negative links. We define the
node alignment loss function as:

Lalign = 1
|A|

∑
(ui,vj)∈A

p (ui, vj) +
1

|U |
∑

(um,un)∈U

(1− p (um, vn))

 (12)

where p (ui, vj) gives a measure of similarity between nodes ui and uj as

p (ui, vj) = σ
(
h⃗Ti · h⃗j

)
(13)

The final loss function of the SAlign model is derived as:

L = Lcons
s + Lcons

t + βLalign (14)

where β is a balancing factor that controls the information flow across networks.
After SAlign converges, the final step is to derive the alignment matrix P ∗ to infer all

pairs of anchor nodes across Gs and Gt. P ∗ is calculated with the generated embeddings
as :

P ∗ = σ
(
ZT
s · Zt

)
(15)

The (u, v)th entry in P ∗ signifies the similarity score between the corresponding nodes.
Hence the highest value corresponding to a node u in the row P ∗(u) most likely represents
the same node in the other network.
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5. Experimental Details

In this section, we discuss the details of datasets and the baseline methods used for compar-
ing the effectiveness of SAlign. We subsequently discuss the metrics used for performance
evaluation and the experimental setup used for implementation.
Datasets: We evaluate the performance of SAlign on three public datasets used in recent
state-of-the-art works, as summarized in Table 1.

• Douban Online-Offline: These are Chinese social networks (Trung et al., 2020; Yang
et al., 2022), one connecting user friends online and the other connecting users based
on offline co-occurrences in social events. It considers user locations as node attributes.

• Allmovie-IMDB: These are online movie guide service networks that connect two films
if they have at least one actor in common (Trung et al., 2020; Saxena et al., 2022). It
treats details like movie genre and cast as node attributes.

• DBLP: It is a network of co-authors of the computer science conferences (Zhang &
Tong, 2016; Du et al., 2019). It treats the number of publications in each conference
as node attributes. We randomly delete 10% of the edges and shuffle the attributes
to generate the target dataset (Zhang & Tong, 2016).

We choose these datasets for their public availability and better reproducibility. Moreover,
all these datasets have high structural heterogeneity, with the network pairs having a sig-
nificant difference in the number of nodes, edges, and higher-order structures, especially the
Douban dataset.
Baseline methods: We compare SAlign with several state-of-the-art baselines. FINAL
(Zhang & Tong, 2016) performs alignment based on first-order neighborhood consistency as
well as node and edge feature similarity. IONE-D (Liu et al., 2019a) considers second-order
node similarity along with community structure for cross-network learning. DANA (Hong
et al., 2020) and GAlign (Trung et al., 2020) are embedding-based approaches employing
GCN. CENALP (Du et al., 2019), and BRIGHT (Yan et al., 2021) learn from multiple
networks using a cross-network embedding method employing random walks. CrossMNA
(Chu et al., 2019) learns two types of node vectors for multiple network alignment using
structural information only. HackGAN (Yang et al., 2022) captures the local and global
network features using an adversarial learning approach.
Evaluation metrics: Similar to several high-quality recent works (Yang et al., 2022; Yan
et al., 2021; Trung et al., 2020), we compare the approaches using Acc@q, which indicates

Table 2: Statistics of the datasets

Networks Nodes Edges Attributes Anchors

Allmovie &
IMDB

6011
5713

124709
119073

14 5176

Douban-Online &
Douban-Offline

3906
1118

8164
1511

538 1118

DBLP &
distributed copy

2151
2151

6306
5699

8 2151
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Table 3: Comparison of network alignment algorithms on real-world datasets

Methods Allmovie-IMDB Douban Online-Offline DBLP

Acc@1 Acc@10 MAP AUC Acc@1 Acc@10 MAP AUC Acc@1 Acc@10 MAP AUC

FINAL 0.765 0.950 0.846 0.989 0.438 0.771 0.554 0.987 0.806 0.913 0.824 0.979

IONE-D 0.418 0.598 0.459 0.879 0.210 0.446 0.281 0.820 0.362 0.537 0.478 0.811

CrossMNA 0.546 0.632 0.589 0.968 0.239 0.437 0.341 0.762 0.395 0.569 0.521 0.870

CENALP 0.486 0.832 0.569 0.958 0.256 0.458 0.303 0.718 0.815 0.934 0.866 0.991

DANA 0.811 0.866 0.794 0.984 0.457 0.692 0.562 0.991 0.781 0.897 0.749 0.978

GAlign 0.775 0.874 0.812 0.993 0.441 0.780 0.554 0.990 0.841 0.926 0.875 0.987

BRIGHT 0.820 0.875 0.786 0.987 0.442 0.753 0.524 0.989 0.858 0.914 0.880 0.989

HackGAN 0.728 0.853 0.788 0.973 0.167 0.432 0.253 0.811 0.765 0.842 0.781 0.952

SAlign 0.831 0.920 0.867 0.996 0.497 0.821 0.587 0.994 0.877 0.958 0.889 0.993

if a node’s true anchor match is present in a list of top-q potential anchors. It is given as

Acc@q =

∑
u∗
s∈Vs

1P ∗[u∗
s ,u

∗
t ]∈R(u⋆

s)

#{ ground truth anchor links }
(16)

where (u∗s, u
∗
t ) ∈ A and R(us) is a list of highest q values in the row P ∗(us). Apart from

this we also observe the Mean Average Precision (MAP) and AUC scores (Trung et al.,
2020; Yang et al., 2022).

Experimental setup: We tune the hyper-parameters using the grid search algorithm
implemented with Hyperopt. We consider order-4 graphlets and obtain the nodes’ structural
feature vectors of size o = 15. We take the number of attention layers L = 2, with K = 4
attention heads in the first layer and K = 1 for the second. The embedding dimension for
all three datasets is 100. The negative sampling size for each anchor in the training set is
|U | = 150. The balancing factor β = 2. We train for 300 epochs using Adam as a gradient
optimizer. The learning rate for the IMDB and DBLP datasets is 0.01 and for Douban
is 0.005. We use the default values of hyper-parameters for the baselines except for the
embedding dimensions for a fair comparison. We report all results averaged over 30 trials
to minimize randomness. We use Pytorch libraries for implementation on a system with an
11GB NVIDIA GeForce GTX 1080 Ti GPU.

6. Results and Model Analysis

In this section, we provide the experimental results and their detailed analysis. Section 6.1
compares the performance of SAlign with the baselines on the evaluation metrics. Section
6.2 performs an ablation study on the model design to verify the importance of each of
its components. Additionally, Section 6.3 investigates the adaptivity of SAlign to various
adversarial conditions like structural noise, attribute noise, and graph size imbalance. We
discuss the parameter sensitivity in Section 6.4, followed by scalability analysis in Section
6.5 and model convergence in Section 6.6. Finally, we perform case studies in Section 6.7
to understand and validate our claims.
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6.1 Comparison with Baselines

The effectiveness of SAlign in comparison to the baselines is shown in Table 3. We report our
findings using 30% training data and observe the Acc@1 values for the supervised methods
in Figure 4 by varying the training ratio from 10 − 80%. We clearly observe that SAlign
performs consistently better than the baselines over all the four considered metrics, Acc@1,
Acc@10, MAP , and AUC. SAlign improves the alignment accuracy, Acc@1, by 1.4− 98%
for the IMDB dataset, 8.8 − 197% for the Douban dataset, and 2.2 − 142% for the DBLP
dataset. IONE-D performs poorly on the Douban and IMDB datasets. It is because of their
diverse structures and varying network sizes. While CrossMNA performs 12.3% better
than CENALP on the IMDB dataset, CENALP outperforms it by 7.1% on the Douban
and 106.3% on DBLP networks. CrossMNA entirely depends on structural similarity and
fails to capture the rich attribute information of the Douban networks. Also, CENALP is
proven to perform better on networks with similar distributions like DBLP. SAlign shows
an 8.6% improvement over FINAL. It justifies that although FINAL captures nodes’ close
relationships, it is necessary to capture higher-order structures for better results. GAlign
and DANA consistently outperform the other studied baselines. GAlign uses different GCN
layers to capture a node’s deeper neighborhood. DANA primarily focuses on capturing
the domain invariant features for the alignment of diverse networks. BRIGHT outperforms
GAlign and DANA by additionally addressing the space disparity issue. SAlign shows
further improvement of 1.3%, 11%, and 2.2% on the IMDB, Douban, and DBLP datasets,
respectively.

One important finding is that the Acc@1 disparity between SAlign and the baselines,
especially HackGAN, is significantly wider for Douban networks, having drastically different
topologies. SAlign performs around 6% better on the Douban dataset in comparison to the
other two datasets. It shows that SAlign, using a hierarchical attention mechanism, can
capture the similarities even in very distinct networks where the alignment consistency
constraints do not necessarily hold. Also, all the networks perform better on the DBLP
networks, most likely owing to their linear node degree distributions and well-formatted user
attributes. From Figure 4, we observe that all the methods’ performance improves with the
increase in the training ratio. However, even with small training ratios, SAlign maintains
a relatively high performance as compared to the baselines. BRIGHT outperforms SAlign
on the IMDB dataset for higher training ratios by a small margin of 1.7− 2%.
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Figure 4: Acc@1 with different sizes of training ratios
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6.2 Ablation Study on Model Design

We compare SAlign with its several variants to evaluate the effectiveness of each model
component. The model variants based on using higher-order structural features and allow-
ing inter-network information transfer are as follows: SAlign-1 employs only intra-network
embeddings with no structural features. SAlign-2 employs only intra-network embeddings
and concatenates the structural features with the node attributes, which are input to the
first layer. SAlign-3 employs intra-network and inter-network embeddings without using
structural features. SAlign-4, in addition, concatenates structural features. SAlign-5 fol-
lows the same pipeline as SAlign but does not employ the proposed attention mechanism,
i.e., the model is trained without using the w(ui, uk) and w(ui, vj) terms in Equations 3
and 5 respectively. The results are shown in Figure 5. SAlign performs the best among
its variants, showing Acc@1 improvement of 0.6 − 5%, 3.7 − 17.4%, and 0.8 − 3.6% on
the IMDB, Douban, and DBLP dataset respectively. Hence it validates the importance of
selectively incorporating structural features along with cross-network learning.

6.3 Model Adaptivity Analysis

Network alignment approaches rely heavily on the network structures and node attributes
for their performance. Hence we study the robustness of SAlign and the baselines in the
presence of different forms of noise, like structural noise, attribute noise, and graph size
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Figure 7: Parameter sensitivity analysis
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Figure 8: Computation analysis
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Figure 9: SAlign convergence on Douban dataset

imbalance. We randomly remove 10 − 40% of edges to induce structural noise, remove
10− 40% of the total nodes of one network while keeping the other unchanged to create a
size imbalanced network, and alter 5−20% of the total attribute values to introduce attribute
noise (Trung et al., 2020; Nguyen et al., 2021). We show results for the Douban dataset in
Figure 6. We observe that although the performance of all the methods degrades with the
increase in noise ratio, SAlign still performs better than the baselines. The performance of
BRIGHT is comparable to that of SAlign in the presence of high noise ratios. The Acc@1
score of SAlign drops by around 3.8−23.1% in the presence of structural noise, 6.2−40.8%
in graph size imbalance, and 41.6 − 75.4% in the presence of attribute noise showing that
SAlign is more sensitive to attribute variations than structural variations.

6.4 Parameter Sensitivity Analysis

We study the sensitivity of SAlign to some critical parameters. We analyze the model
performance on the size of o, i.e., the orbit counts considered for capturing the higher-
order structural features. We observe that the model performance stabilizes after 15 orbits,
showing only slight improvement with 73 orbits. We next analyze the impact of the negative
sampling size, |U |, used in Equation 12 on the alignment performance. We can see that
even a small number of negative samples (i.e., k = [10, 30]) yields a good overall alignment
performance. We also study the impact of the weight of the information transfer objective
β. β ∈ [1, 3] gives stable performance across all the datasets. Alignment performance on
the IMDB dataset is more affected as β increases.
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6.5 Execution Time and Scalability Analysis

We study the execution time and scalability of SAlign and the baselines by computing the
time required to process the input networks as their size increases. We follow (Nguyen et al.,
2021) to use a network-generative model to increase the network size gradually from 1000
to 10000 nodes. According to our observations, as shown in Figure 8, the execution time
of all methods increases with network size, with CENALP and IONE exhibiting exponen-
tial increases, BRIGHT and FINAL showing significant increases, and the others showing
gradual increases. CENALP has the highest execution time, primarily the cost of sampling
random walks. HackGAN is not scalable to dense networks with more than 7000 nodes.
SAlign, similar to the best-performing baseline, DANA, is computationally comparable to
all other methods.

6.6 Model Convergence

We discuss the convergence of SAlign by observing its performance in terms of Acc@1
and total loss L while increasing the number of iterations from 0 − 400. We record our
observations for the Douban dataset as shown in Figure 9. We see that mathcalL gradually
decreases with the number of epochs, and similarly, Acc@1 increases and reaches a maximum
in the first 280 iterations, then stabilizes as the number of epochs increases. This result
clearly indicates the model convergence towards a similar alignment matrix after a fixed
number of iterations. We find similar results in other datasets as well.

6.7 Case Studies

6.7.1 Tackling Structural Heterogeneity with Hierarchical Attention
Mechanism

We demonstrate the effect of taking higher-order structures in the attention mechanism of
SAlign with a toy example. We take two arbitrary graphs and sample two node pairs as
anchors, as shown in Figure 10. One anchor pair (K-8) has a similar neighborhood structure
while the other (A-1) does not, emphasizing the presence of structural heterogeneity across
the networks. In particular, we intuitively understand the embedding generation process of
SAlign:

• Intra-network embedding depends on the node neighbors and the graphlet information
of these neighbors. We see that A neighbors are densely connected, forming 3,4, and
5-length cycles. It means that each neighbor has a higher probability of occurring
more times in each orbit, which the SAlign’s structurally aware attention mechanism
captures. C, B, and D have decreasing importance in the intra-embedding of A. We
observe a similar trend for the other nodes.

• Inter-network embedding depends on the corresponding anchor node and mainly con-
tributes to capturing the mutual structural differences across the two networks. Infor-
mation transfer across an anchor link depends on the structural similarity of the con-
stituent nodes. As a result, attention is higher in A-1 and lower in K-8. Here, the net-
works’ higher order differences captured through graphlets prevent nodes’ embedding
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Figure 10: Toy example to understand the attention mechanism. Higher intensity of colors shows
higher attention.

from losing their distinctive characteristics, thereby preventing the over-smoothing of
representations, as discussed earlier.

• The combined embedding captures nodes’ immediate neighbors’ information, higher-
order information through graphlets, and global information through the anchors, all
mutually adding to their expressivity.

6.7.2 Tackling the Over-smoothing Problem

We experimentally demonstrate how SAlign’s hierarchical higher-order based attention
mechanism tackles the over-smoothing problem. We compute the pairwise similarity scores
of the node representations derived both using SAlign, SAlign-4 in which the graphlet in-
formation is considered as node features (both models use two encoder layers and follow the
same pipeline) and DANA, which is the best-performing baseline. We subsequently plot
the distribution of these pairwise similarity scores for these models in Figure 11. From the
result, we find that for SAlign-4 and DANA, the mass of the distribution is concentrated in
a narrow region on the higher end of the x-axis indicating high similarity values of the rep-
resentations of most node pairs (over-smoothing problem). On the other hand, for SAlign,
the distribution is more uniform, indicating that a large fraction of node representations
are quite distinct from each other. This shows that our method successfully tackles the
over-smoothing problem.

7. Conclusion and Future Work

This paper proposes SAlign, an end-to-end framework for aligning structurally heteroge-
neous networks. SAlign learns characteristic information from both networks and balances
the amount of information transferred among them using a higher-order structure-aware
attention mechanism, thereby increasing the expressivity of the learned representations.
SAlign effectively handles the over-smoothing issue of the node representations that prevail
when capturing higher-order structures in the node representations. Although we evaluate
SAlign on limited datasets, we believe its applicability can be extended to other real-world
networks, including transactions and biological networks. Rigorous empirical evaluations
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Figure 11: Probability distribution of pairwise node similarities using SAlign, its variant
SAlign-4 (left), and the best-performing baseline DANA (right) for the Douban dataset.
The vertical axis represents the similarity score, and the horizontal axes the probability.

reveal that SAlign consistently outperforms state-of-the-art baselines by at least 1.3 − 8%
in terms of Acc@1 score.

As a next step to be worked on, we intend to extend the SAlign framework for align-
ing multiple networks. Learning from several networks may enhance the performance by
generating more discriminate node representations. In addition, we would like to embed
intra-link prediction in the framework and study if it enhances anchor link prediction.
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