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Abstract

As the interdependence between arbitrary objects in the real world grows, it becomes
gradually important to use chain graphs containing directed and undirected edges to learn
the structure among objects. However, independence among some variables corresponds to
multiple structures and the direction of edges among variables cannot be uniquely deter-
mined. This limitation restricts existing chain graphs structure learning algorithms to only
learning their Markov equivalence class. To alleviate this limitation, we define the block
domain knowledge and propose a block domain knowledge-driven learning chain graphs
structure algorithm (KDLCG). The KDLCG algorithm learns the adjacencies and spouses
of all variables, which are utilized to directly construct the skeleton and orient the edges of
the complexes, thereby learning the Markov equivalence class of the chain graphs. Subse-
quently, the KDLCG algorithm then updates some edges with Meek rules, guided by block
domain knowledge. Finally, the KDLCG algorithm directs some edges by estimating causal
effects between two variables, driven by block domain knowledge. Meanwhile, we conduct
theoretical analysis to prove the correctness of our algorithm and compare it with the LCD
algorithm and MBLWF algorithm on synthetic and real-world datasets. The experimental
results validate the effectiveness of our algorithm.

1. Introduction

A standard assumption in causal inference is the absence of unit interference, which asserts
that giving treatment to a particular unit only affects the response of that unit. While
the assumption in many statistical applications is sensible, there are settings where this
assumption is not reasonable. For example, social media data exhibits homogeneity (friends
are similar due to the fact that they are friends) and contagiousness (friends may causally
influence each other) (Sherman & Shpitser, 2018). Similarly, vaccinating some subset of a
population may confer immunity to the entire population, which is known as herd immunity
in infectious disease epidemiology. This implies that the research subjects do not exist in
isolation but in the interacting network, and the interactions among research subjects can
lead to dependencies in the data.

In the context of causal inference, the dependence data are mostly modeled using
Bayesian Networks (BNs), which are the most well-known subclasses of probabilistic graph-
ical models. BNs represent the relationships among variables using directed acyclic graphs
(DAGs), where the directed edges indicate causal relationships. However, Bayesian Net-
works have certain undesirable limitations when representing independent information for
an actual problem domain (Schäfer & Strimmer, 2005). In order to better model the de-
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pendency data, chain graphs (CGs) are the better choice, which is one of the probabilistic
graphical models.

Chain graphs (CGs) are a class of hybrid graphs that admit both undirected and di-
rected edges but not partially directed cycles. The three following interpretations are the
best known in the literature. The first interpretation (LWF), introduced by Lauritzen,
Wermuth, and Frydenberg (1989), combines directed acyclic graphs and undirected graphs.
The second interpretation (AMP), introduced by Andersson, Madigan, and Perlman (1996),
combines directed acyclic graphs and undirected graphs but with a Markov equivalence
criterion that more closely resembles the one of directed acyclic graphs. The third multi-
variate regression interpretation (MVR), introduced by Cox and Wermuth (2014), combines
directed acyclic graphs and bidirected (covariance) graphs. Sonntag and Peña (2015a) de-
scribe the relationship between the three interpretations in detail. This paper deals with
CGs under the LWF interpretation (LWF CGs), which is the generalization of graphical
models based on Markov networks (MNs, undirected graphs) and Bayesian networks (BNs,
directed acyclic graphs) and have been widely studied (Lauritzen & Wermuth, 1989). The
directed edges of LWF CGs represent causal relationships. The undirected edges of LWF
CGs represent symmetric relationships due to interference (Shpitser, Tchetgen, & Andrews,
2017; Ogburn, Shpitser, & Lee, 2020; Bhattacharya, Malinsky, & Shpitser, 2020). The sub-
sequent references to CGs in the paper refer to LWF CGs. BNs and MNs are subclasses
of LWF CGs. Sonntag et al. (2015) have studied that only a small portion of LWF CGs
models can be represented by BNs and MNs. LWF CGs have received increasing attention
as modeling tools for statistical applications, and CGs models have been applied to some
fields, such as reasoning about correlations among diseases (Lappenschaar, Hommersom,
& Lucas, 2014), recommender systems (Chen, Chang, Li, & Zheng, 2018), causal spillover
effect estimation (Vazquez-Bare, 2023; Yu, Airoldi, Borgs, & Chayes, 2022; Tchetgen Tch-
etgen, Fulcher, & Shpitser, 2021; Bhattacharya et al., 2020), social networks (Ogburn et al.,
2020), neural networks (Shen & Cremers, 2020) and time series(Xu, Fard, & Fang, 2020).

One important and challenging task is the structure learning of models directly from
sampled data. LWF CGs structure learning methods fall into two main categories: the
constraint-based method and the score-based method. Due to the difficulty of finding valid
scoring functions, CGs structure learning uses the constraint-based method, which employs
conditional independence tests to infer the relationship among variables. Similarly, most
of the structure learning methods of AMP CGs and MVR CGs also use constraint-based
methods (Javidian, Valtorta, & Jamshidi, 2020a; Wang & Bhattacharyya, 2022; Javidian,
2019).

Currently, many constraint-based algorithms have been proposed for LWF CGs struc-
ture learning. The largest CG recovery algorithm LCG, presented by Studenỳ (1997), was
the earliest work that learned the structure learning of CGs. Based on the LCG algorithm,
the order-dependent algorithm was proposed by Javidian et al. (2020c). They worked by
first recovering the skeleton of CGs and then orienting the edges. Learning CGs structure
algorithm via decomposition, named LCD, adopted a divide-and-conquer method for recov-
ering the structure of CGs (Ma, Xie, & Geng, 2008). The LCD algorithm first constructed
the separation trees, which may be utilized to decompose the knowledge represented by the
CGs into local subsets, and then learned the local skeleton of each subset. The LCD algo-
rithm determined all complex arrows after acquiring the skeleton. The inclusion optimal
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algorithm (CKES) (Peña, Sonntag, & Nielsen, 2014) introduced for learning CGs structure
is to find an inclusion optimal CG that satisfies the probability distribution of composi-
tion attributes. The answer set programming method (ASP), presented by Sonntag et al.
(2015) for learning an optimal CG, was based on encoding the learning problem using the
answer set programming paradigm without making assumptions on the existing probabil-
ity distribution. The method was proposed by Wang et al. (2019) for the local structure
learning of CGs with false discovery rate control. The MbLWF algorithm was presented
by Javidian et al. (2020b). The authors proved that GSMB (Margaritis & Thrun, 1999),
IAMB (Tsamardinos, Aliferis, Statnikov, & Statnikov, 2003), and its variants (Yaramakala
& Margaritis, 2005) were still sound for MB discovery in LWF CGs under faithfulness and
causal sufficiency assumptions.

However, the above algorithms are limited to learning only the Markov equivalence
classes of the chain graphs. This limitation arises since the independence among certain
variables corresponds to multiple structures in chain graphs structure learning, making it
impossible to determine the direction of edges among these variables uniquely. Fortunately,
domain knowledge or background knowledge can further refine this structure, thereby in-
creasing the number of identifiable causal relationships. Some of the current literature
on causal DAGs learning has been enriched by introducing different types of background
knowledge, such as specifying one variable as the cause of another, giving the order of
variables, or giving a tiered ordering of variables (Meek, 1995; Scheines, Spirtes, Glymour,
Meek, & Richardson, 1998; Eigenmann, Nandy, & Maathuis, 2017; Rothenhäusler, Ernest,
& Bühlmann, 2018; Perkovic, 2020; Andrews, Spirtes, & Cooper, 2020), to enrich its causal
relationships identification in DAGs learning.

To identify more causal relationships in CGs, we define block domain knowledge and
propose a novel block domain knowledge-driven algorithm for learning chain graphs struc-
ture from causally sufficient data, called KDLCG. The KDLCG algorithm first learns the
adjacencies and spouses of all variables, directly constructs the CG skeleton based on the
adjacencies, and orients the edges to obtain the Markov equivalence class of CG by using
the adjacencies and spouses. Subsequently, the KDLCG algorithm directs some edges of
the Markov equivalence class by using Meek rules (Meek, 1995) to obtain the new CG,
driven by block domain knowledge. The KDLCG algorithm, finally driven by block domain
knowledge, orients some undirected edges in the updated CG by estimating the causal ef-
fects between variables to obtain the final global CG structure. In parallel, we theoretically
prove the correctness of our proposed LWF CGs structure learning algorithm, evaluate the
performance of our proposed algorithm on synthetic and real-world datasets, and show the
competitive performance of our algorithm against the state-of-the-art LCD algorithm and
MbLWF algorithm.

The rest of the paper is organized as follows. In Section 2, we give the preliminaries.
Section 3 proposes a novel KDLCG algorithm, uses an example to track the KDLCG al-
gorithm, and theoretically analyzes the correctness of the KDLCG algorithm. Section 4
reports experimental results to illustrate the performance of the KDLCG algorithm and
Section 5 concludes the paper and presents future work.
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2. Preliminaries

Below, we briefly list some of the central concepts covered in the paper, and Table 1 sum-
marizes the notations used in this paper.

Table 1: Summary of Notation.

Symbol Meaning

V a variable set

E an edge set

G a chain graph on V

P a joint probability distribution on V

X, Y, T a node or a variable

W,R, S, Z a set on V

B all blocks in G

Bi a block in G

BiX variables contained in a block in G in G

PaX parents of X

ChX children of X

NeX neighbors of X

BdX boundary of X

DeX descendants of X

AnX ancestors of X

SdX strict descendants of X

AdjX adjacencies of X

CAdjX a candidate set of AdjX

SPX spouse of X

CSPX a candidate set of SPX

CSPX,Y a candidate set of SPX regard to Y

MBX markov blanket ofX

Adj adjacencies of all variables on V

SP spouses of all variables on V

SepSetX,Y separation set of X and Y

SepSet separation set of between two variables on V

X ⊥⊥ Y |S X is conditionally independent of Y given S

X 6⊥⊥ Y |S X is conditionally dependent of Y given S
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2.1 Graphical Terminology

In this paper, we mainly use the terminology proposed by Lauritzen in (Lauritzen, 1996),
and the reader can also find further details in (Lauritzen, 1996).

Definition 1 (Chain graph) A CG is a pair (G,P ). G = (V,E) consists of a nonempty
finite set of variables V and an edge set E, where V represents the random variables. P is
a joint probability distribution on V .

In a CG G, for variable X,Y ∈ V , if (X,Y ) ∈ E and (Y,X) ∈ E, we say that there is
an undirected edge between X and Y denoted by X − Y . If (X,Y ) ∈ E and (Y,X) /∈ E,
we say that there exists a directed edge from X to Y denoted by X → Y . We define the set
of parents, children, neighbors, boundary and adjacencies of a variable X in G as follows,
respectively: PaX = {Y |Y → X ∈ E}, ChX = {Y |X → Y ∈ E}, NeX = {Y |X − Y ∈ E},
BdX = PaX ∪NeX , AdjX = PaX ∪ ChX ∪NeX .

Definition 2 (Block) The blocks B of a CG are the connected components of the
undirected graphs obtained by removing all directed edges from the CG, where an undirected
graph is a block. A CG consists of k blocks, then B = {B1, B2, ..., Bk}. Each block is also
called a chain component. In a DAG, all blocks are singletons.

A path in a CG G is a sequence of distinct variables X1,· · ·,Xn(n ≥ 1), such that Xi and
Xi+1 are adjacent in G for each i = {1,· · ·,n− 1}. A path X1,· · ·,Xn(n ≥ 1) is descending if
Xi → Xi+1 or Xi −Xi+1 in G for all 1 ≤ i ≤ n− 1. If there exists a descending path from
X1 to Xn in G, we say that Xn is a descendant of X1, or X1 is an ancestor of Xn. The
descendants of a variable X in G is denoted by DeX . The ancestors of a variable X in G
is denoted by AnX . We say that Xn is a strict descendant of X1, if Xn is a descendant of
X1, but X1 is not a descendant of Xn. The strict descendants a variable X in G is denoted
by SdX .

Definition 3 (Complex) A complex in a CG G is a path X1,· · ·, Xk(k ≥ 3), such that
X1 → X2, Xi−Xi+1(2 ≤ i ≤ k−2), Xk−1 ← Xk in G, and no additional edges exist among
the variables of X1, · · ·,Xk in G. The variables X1 and Xk are said to be the parents of the
complex and we say that X1 (Xk ) is a spouse of Xk (X1) in G. In a DAG, the complex is
a V-structure.

Defination 3 states that the spouses of a variable X is denoted by SPX . Then, the
Markov blanket (MB) of a variable X is the set of parents, children, neighbors and spouses
(Javidian et al., 2020b), MBX = PaX ∪ ChX ∪NeX ∪ SPX .

The skeleton of a CG G is obtained from G by changing all directed edges of G into
undirected edges. The moral graph of G denoted by Gm is obtained by first connecting the
parents of every complex in G with an undirected edge, and then taking the skeleton of
the resulting graph. We say that two CGs have the same pattern iff they share the same
skeleton and complexes. Two CGs are Markov equivalent iff they have the same pattern.

Studenỳ and Bouckaert introduced the notion of c − separation for chain graphs G
(Studenỳ & Bouckaert, 1998). We say that a path ρ on G is intervented by a subset S of
V if and only if there exists a section σ of ρ such that:

1. either σ is a head-to-head section with respect to ρ, and σ is outside S; or

2. σ is a non head-to-head section with respect to ρ, and σ is hit by S.

P satisfies the Global Markov property, for any disjoint subsets (W,R, S) of V such
that S separates W from R in (GAnW∪R∪S

)m, the moral graph of the smallest ancestral set
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containing, indicated as W ⊥⊥ R|S (read: S c-separates W from R, or W is independent of
R geiven S, where S is said to be c-separation set). P satisfies the Local Markov property
iff X ⊥⊥ V \{X}\SdX\BdX |BdX for all X ∈ V hold.

Assumption 1 (Faithfulness Assumption) Given a CG (G,P ), P and G are faithful
to each other iff the conditional independence between variables in G are captured by P .

Assumption 1 states that in a faithful CG, if X and Y are c-separates by S in G, then
they will be conditionally independent conditioned on S in P .

Example 1. We consider a CG named as Toy graph in Figure 1 (a) presented in
Cowell et al. (Cowell, Dawid, Lauritzen, & Spiegelhalter, 2007). B − D is an undirected
edge, D → F is a directed edge, and D → F −E ← C and F → K ← G are two Complexs.
We obtain the six blocks B (chain components) in Figure 1 (b) after removing all directed
edges in Figure 1 (a), the obtained six blocks are B1 = {C−A−B−D}, B2 = {E−F}, B3 =
{G−H}, B4 = {K}, B5 = {I} and B6 = {J}, see Figure 1 (b).

We consider other CG in Figure 1 (d). D → F − E ← C and F → K ← G are two
Complexs. We obtain the three blocks B (chain components) in Figure 1 (b) after removing
all directed edges in Figure 1 (a), the obtained three blocks are B1 = {C − A − B −D −
G−H}, B2 = {E − F − I − J}, B3 = {K}, see Figure 1 (e).

Let us take the variable F as an example, we can see from Figure 1 (a) and Figure 1
(d) that PaF = {D}, ChF = {K}, NeF = {E}, AdjF = {D,E,K}, SPF = {G}, MBF =
{D,E,G,K}. According to the definition of Markov equivalent, it is clear that Figure 1
(a) and Figure 1 (d) belong to the same Markov equivalent because they have the same
pattern, where Figure 1 (d) is their pattern, Figure 1 (e) shows their skeleton and Figure 1
(f) shows their moral graph.

Figure 1: An example of Toy graph related concepts.

2.2 Causal Effect Terminology

A statistical model associated with a directed acyclic graph is a set of distributions that

factorize as: f(x1, ..., xn) =
n∏

i=1
f(xi|Pa(xi, G)) (Pearl, 2003). In order to obtain the effect
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of an intervention on a target variable, Pearl (Pearl, 1995) employed the do operator to
formulate the post-intervention distribution as follow:

f(x1, ..., xn|do(Xj = xj)) =


n∏

i=1,i 6=j

f(xi|Paxi)|xj=xj , if xj = xj ,

0, otherwise.

(1)

Here, f(x1, ..., xn|do(Xj = xj)) is the post-intervention distribution over V = X1, . . . , Xn

after intervening on Xj , by forcing Xj to equal xj .
The distribution of Y = Xn after an intervention do(Xi = xi) can be found by integrat-

ing out x1, . . . , xn−1 in (1). It can be shown that this simplifies to the following:

f(y|do(Xi = xi)) =

{
f(y), if Y ∈ Paxi ,∫
f(y|Xi = xi, Paxi)f(Paxi)d(Paxi), if Y /∈ Paxi .

(2)

In fact, the expression in Equation 2 for Y /∈ Paxi is a special case of so-called back− door
adjustment, and Paxi is a back − door adjustment set (Neuberg, 2003).

It is common to summarize the distribution generated by an intervention by its mean
(Neuberg, 2003), i.e., the mean of Y w.r.t. f(y|do(X = x)), which is denoted by E(Y |do(X =
x)).

E(Y |do(X = xi)) =

{
E(Y ), if Y ∈ Paxi ,∫
E(Y |xi, Paxi)f(Paxi)d(Paxi), if Y /∈ Paxi .

(3)

And we can define the average causal effect (ACE) of do(X = xi) on Y , i.e., ACE(Y |do(X =
xi)), by

ACE(Y |do(X = xi)) =
∂E(Y |do(X = xi))

∂xi
. (4)

In the remainder of paper, we consider the case that X1, . . . , Xn−1, Y are jointly Gaus-
sian, it is very simple to compute the causal effects (CE) as defined in Equation 4, since
Gaussianity implies that E(Y |xi, Paxi) is linear in xi and Paxi , E(Y |xi, Paxi) = γ0 +γixi+
γTPaxi

Paxi for some values γ0, γi ∈ R and γPaxi
∈ R|Paxi |, where |Paxi | is the cardinality of

the set Paxi (Maathuis, Kalisch, & Bühlmann, 2009). Hence,
∫
E(Y |xi, Paxi)f(Paxi)d(Paxi) =

γixi+
∫
γTPaxi

Paxif(Paxi)d(Paxi) is linear in xi. Combining this with Equation 4, it follows

that the causal effect of xi on Y with Y ∈ Paxi is given by γi, which is simply the regression
coefficient of Xi in the regression of Y on Xi and Paxi . In general, the causal effect of Xi on
Y as defined in Equation 4 is given by βi|Paxi

, where, for any set S ⊂ Xq, . . . , Xn−1, Y \Xi,

βi|S =

{
0, if Y ∈ S,
coefficient of Xi in Y ∼ Xi + S, if Y /∈ S. (5)

3. The Proposed Algorithm

In this section, we present a novel KDLCG algorithm in Section 3.1 and use examples
to track the KDLCG algorithm to increase its readability. Additionally, we theoretically
analyze the correctness of the KDLCG algorithm in detail in Section 3.2.
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3.1 The KDLCG Algorithm

We detail the proposed KDLCG algorithm, dividing it into learning the Adj and SP and
the LWF CG structure. Algorithm 1 and Algorithm 2 give the implementation details of
KDLCG.

3.1.1 Learn the Adj and SP

In this section, we introduce our proposed KDLCG algorithm for learning the Adj and SP
of variables, named learn-AS (Algorithm 1). In the following, we describe the algorithm in
detail in three steps.

Step 1: Learn CAdjT and CSPT (lines 3-24). The learn-AS algorithm adds X ∈ V \{T}
that is conditionally dependent on T ∈ V into CanAdjT (lines 4-7). Then, CanAdjT
is sorted in increasing value of pvalue1 to select the variable with the highest as-
sociation with T to join CAdjT as early as possible (line 8). Starting from line 9,
when Y is added to CAdjT (line 10) and is removed from CanAdjT (line 11), the
learn-AS algorithm checks each variable in CAdjT by conditioning on Z for remov-
ing false positives (lines 12-14) (the first pruning operation on CAdjT ). Then, the
learn-AS algorithm looks for a variable X ∈ CAdjT that unblocks a path from T
to some variable Y ∈ NonAdj (lines 18-24). If such X exists, Y could be a spouse
(line 24), while X could be an adjacency or non-adjacency variable. After checking
at line 21, line 22 removes the found non-adjacencies (the second pruning operation
on CAdjT ).

Step 2: Remove false positives from CSPT (lines 26-30). The learn-AS algorithm tests
whether X in SPT,Y is conditionally independent on T given Z ∪ {Y } (line 29). If
the subset Z exists and X and T are independent, X is removed (line 30).

Step 3: Remove false positives from CAdjT (lines 32-35). The learn-AS algorithm tests
whether X in SPT,Y is conditionally independent on T given a subset of CAdjT ∪
SPT \{X} (line 34). If X and T are independent, X is removed (line 35) (the third
pruning operation on CAdjT ).

Highlights of Algorithm 1: (1) The learn-AS algorithm uses a forward method
to select the variable with the highest dependency on target variable T from V to join
the CAdjT while learning the CAdjT . As long as a variable is added to the CAdjT , the
learn-AS algorithm checks the false positives in the CAdjT and deletes them to reduce the
cascading errors caused by the existence of false positives later. (2) The learn-AS algorithm
simultaneously prunes the false positives from CAdjT and learns spouses, learning true
spouse variables as possible instead of learning some pseudo-spouse variables (false positive
spouse variables) that depend on non-adjacent variables. (3) The learn-AS algorithm learns
the separated Adj and SP , which is very convenient for learning LWF CGs structure.

Example 2. We use the example with F in the Toy graph (Figure 1 (a)) (Cowell
et al., 2007) as the target variable to trace the execution of the learn-AS algorithm, which
enhances its readability when learning AdjF and SPF , see Table 2.

1. The conditional independence tests calculate the pvalue of between variables, which a larger value
indicates more independence between the two variables and vice versa.
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Algorithm 1: learn the Adj and SP (learn-AS)

input : D:data
output: Adj, SP

1 for T ∈ V do
2 /* Step 1: learn CAdjT and CSPT */
3 CAdjT ← φ ;
4 for X ∈ V \X do
5 if T 6⊥⊥ X|φ then
6 CanAdjT ← CanAdjT ∪ {X};

7 Sort CanAdjT in increasing order of pvalue;
8 for Y ∈ CanAdjT do
9 CAdjT ← CAdjT ∪ {Y };

10 CanAdjT ← CanAdjT \{Y };
11 for X ∈ CAdjT do
12 if T ⊥⊥ X|Z, ∃Z ⊆ CAdjT \{X} then
13 CAdjT ← CAdjT \{X};
14 SepSetT,X ← Z ;

15 remove← φ;
16 NonAdjT ← V \CAdjT \{T};
17 for X ∈ CAdjT do
18 for Y ∈ NonAdjT do
19 if T 6⊥⊥ Y |SepSetT,Y ∪ {X} then
20 if T ⊥⊥ X|CAdjT ∪ {Y }\{X} then
21 remove← remove ∪ {X};
22 else
23 CSPT,X ← CSPT,X ∪ {Y };

24 CAdjT ← CAdjT \remove;
25 /* Step 2: remove false positive from CSPT */
26 for Y ∈ CAdjT do
27 SPT,Y ← CSPT,Y ;
28 for X ∈ SPT,Y do
29 if T ⊥⊥ X|Z ∪ Y,∃Z ⊆ CAdjT ∪ SPT,Y \{X} then
30 SPT,Y ← SPT,Y \{X};

31 /* Step 3: remove false positive from CAdjT */
32 AdjT ← CAdjT ;
33 for X ∈ CAdjT do
34 if T ⊥⊥ X|Z, ∃Z ⊆ AdjT ∪ SPT \{X} then
35 AdjT ← AdjT \{X};

36 return Adj, SP ;

(1) Step 1: The learn-AS algorithm adds the variables in {B,C,D,E,G,H, I, J,K} to
CanAdjF given the empty set, because these variables are conditionally dependent
of F given the empty set. Then, CanAdjF is sorted in increasing value of pvalue,
CanAdjF = {K,J, I, E,D,C,G,B,H}. The learn-AS algorithm sequentially adds
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Table 2: Tracking of the learn-AS algorithm.

Step Iteration result of learnAS algorithm

Step 1 1 Condition set: φ

F ⊥⊥ A|φ
F 6⊥⊥ B|φ, F 6⊥⊥ C|φ, F 6⊥⊥ D|φ, F 6⊥⊥ E|φ, F 6⊥⊥ G|φ
F 6⊥⊥ H|φ, F 6⊥⊥ I|φ, F 6⊥⊥ J |φ, F 6⊥⊥ K|φ
Conclusion: {B,C,D,E,G,H, I, J,K} added into CanAdjF

Sort CanAdjF in increasing order of pvalue as {K,J, I, E,D,C,G,B,H}
2 Condition set: the subsets of CAdjF

F ⊥⊥ J |I, F ⊥⊥ I|E,F ⊥⊥ C|{D,E}, F ⊥⊥ G|D,F ⊥⊥ B|D,F ⊥⊥ H|D
Conclusion: {J, I, C,G,B,H} are removed from CAdjF

F 6⊥⊥ K|Z,F 6⊥⊥ E|Z,F 6⊥⊥ D|Z,∀Z ⊆ CAdjF
Conclusion: {K,E,D} are remained in CAdjF

3 Condition set: union of the separated set of variable pairs and

the subsets of CAdjF

F 6⊥⊥ H|{D,K}, F 6⊥⊥ G|{D,K}
F 6⊥⊥ K|Z,∀Z ⊆ CAdjF
Conclusion: {H,G} are added into CSPF

Step 1: the learnAS algorithm outputs CAdjF = {K,E,D} and CSPF = {H,G}.
Step 2 1 Condition set: the subsets of the union of CAdjF and CSPF

F ⊥⊥ H|G, H is removed from SPF

F 6⊥⊥ G|Z, ∀Z ⊆ CAdjF ∪ CSPF , G is added into SPF

Step 2: the learnAS algorithm outputs SPF = {G}.
Step 3 1 Condition set: the subsets of the union of CAdjF and CSPF

F 6⊥⊥ K|Z,F 6⊥⊥ E|Z,F 6⊥⊥ D|Z,∀Z ⊆ CAdjF ∪ CSPF , {K,E,D} is added into AdjF

Step 3: the learnAS algorithm outputs AdjF = {K,E,D}.
Conclusion: the learnAS algorithm outputs AdjF = {K,E,D} and SPF = {G}.

the variables in {K,J, I, E,D,C, G,B,H} to CAdjF , and the learn-AS algorithm
prunes the set for the presence of false positives. Since F ⊥⊥ J |I, F ⊥⊥ I|E,F ⊥
⊥ C|{D,E}, F ⊥⊥ G|D,F ⊥⊥ B|D,F ⊥⊥ H|D, {J, I, C,G,B,H} are removed from
CAdjF . {K,E,D} are always conditionally dependent of F given any set and are
remained in CAdjF . We know that NonAdj = {A,B,C,G,H, I, J}. The algorithm
iterates through the variables in NonAdj to find the spouse variables given CAdjF .
The algorithm operates to remove false positives in CAdjF while finding the spouse
variables. Since F 6⊥⊥ H|{D,K}, F 6⊥⊥ G|{D,K}, {H,G} is added into CSPF . Finally,
CAdjF = {K,E,D}, CSPF = {G,H}.
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(2) Step 2: The learn-AS algorithm prunes CSPF = {G,H} to delete the false positives.
Since F ⊥⊥ H|G, H is not added into SPF . SPF = {G}.

(3) Step 3: Since {K,E,D} are conditionally dependent of F given any set, AdjF =
{K,E,D}.

The learn-AS algorithm iterates over all variables and finally outputs the set of adja-
cencies and spouses of all variables, the Adj and SP .

3.1.2 Learn LWF CG Structure

In this section, we introduce our proposed KDLCG algorithm for learning the LWF CG
structure (Algorithm 2). In the following, we first introduce our proposed concepts of block
domain knowledge and then describe the KDLCG algorithm in detail in three steps.

Algorithm 2: learn LWF CG structure (KDLCG)

input : Adj, SP , block domain knowledge: K
output: The structure of CG

1 /* Step 1: learn the Markov equivalence class of CG G */
2 for T ∈ V do
3 for X ∈ AdjT do
4 T −X; /* add undirected edge */

5 for Y ∈ SPT do
6 if T 6⊥⊥ Y |Z ∪X,∃X ∈ AdjT ,∀Z ⊆ AdjT \{X} then
7 T → X; /* add directed edge */

8 /* Step 2: learn the structure of CG using Meek rules driven by K*/

9 Extraction of the block structure B
′
G from the Markov equivalence class of CG

driven by K;

10 Using Meek rules to update the block structure B
′
G driven by K;

11 Use the valid orientation rule to update the CG structure G;
12 /* Step 3: learn the structure of CG by estimating causal effects between variables

driven by K */

13 Record the information undinfo of the variable pairs with undirected edges in B
′
G;

14 for Ki,Kj ∈ undinfo do
15 cevalue = CE − based(Ki,Kj); /* Estimate the causal effects between Ki and

Kj */
16 if cevalue == 0, X ∈ Ki, Y ∈ Kj and X − Y then
17 X → Y ; /* add directed edge */

18 if cevalue contains 0, X ∈ Ki, Y ∈ Kj, i < j and X − Y then
19 X → Y ; /* add directed edge */

20 return CG G;

It is known from the preliminaries in Section 2 that removing all directed edges in the
chain graph gives k undirected graphs. An undirected graph is called a block in the chain
graph, and each undirected graph is composed of one or more variables. Below, we define
two new concepts: block variables and block domain knowledge.
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Definition 5 (Block variable) Let XB1 , · · · , XBk
be a partition of the variable set V,

where each XBi (i = 1, · · · , k) is referred to as a block variable consisting of the sequence of
variables contained in block Bi. We denote the collection of all block variables as the block
variable set, represented as XB = {XB1 , · · · , XBk

}, k ∈ [1, |V |].
Definition 5 states that if a CG has k blocks, then the CG contains k block variables.

We can consider each block variable as a random variable. Based on the properties of the
blocks in the CG and the directed acyclicity of the CG, we can deduce that the structure
composed of block variables forms a directed acyclic graph, denoted as the block structure
BG corresponding to the CG.

Example 3. Consider the CG in Figure 2(a) and the six blocks of the CG after removing
the directed edges, as shown in Figure 2(b). Then, the CG contains six block variables,
namely XB1 = {A,B,C,D}, XB2 = {E,F}, XB3 = {G,H}, XB4 = {I}, XB5 = {J}, XB6 =
{K}. The block structure BG composed of six block variables is shown in Figure 2(c).

Figure 2: An example of block variable and block structure.

Definition 6 (Block domain Knowledge) Let K = {K1, · · · ,Kk} represent block
domain knowledge, where k ∈ [1, |V |], and K1, · · · ,Kk are the partition of variable set
V (|V | is the number of variables contained in V ). Each Ki represents a block domain
knowledge consisting of the variables in the block Bi. Therefore, block domain knowledge
K can also be expressed as K = {XB1 , · · · , XBk

}.
Definition 6 states that a CG has k block variables, which means that a CG contains

k block domain knowledge, and K = {K1, · · · ,Kk} = {BX1 , · · · , BXk
} = BX ,Ki = BXi =

{Xj , · · · , Xm}, 1 ≤ i ≤ k, 1 ≤ j 6= m ≤ |V |. Based on the properties of chain graphs, we
know that variables within a block domain knowledge Ki (i.e., within a block) are connected
by undirected edges, while variables between different block domain knowledge (i.e., between
different blocks) are connected by directed edges, representing causal relationships. We
assume no selection bias and that the block domain knowledge is correct and ordering.
Correctness implies the existence of a CG that is consistent with the data and block domain
knowledge. The correctness of block domain knowledge is a prerequisite for learning a
reasonable chain graphs structure and an important guarantee for ensuring the accuracy of
causal inference results.

Block domain knowledge arises in various situations, including but not limited to (i)
relationships between units in social networks (Bhattacharya et al., 2020), (ii) the effect
of vaccination of units on other units in epidemiology (Tchetgen Tchetgen et al., 2021;
Vazquez-Bare, 2023), and (iii) relationships between users or between items in recommender
systems (Chen et al., 2018). For instance, when studying the impact of vaccinating specific
diseases among family members on disease transmission, we have come to understand that
the vaccination status of different members influences one another, and the outcomes after
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vaccination or non-vaccination also interact with each other, with each member’s vaccination
affecting their own outcome causally. Based on this research background, we can extract
block domain knowledge, grouping the vaccination statuses of different members into one
block and categorizing the outcomes of members into another block. By utilizing block
domain knowledge, we can establish a more precise causal model between vaccination among
family members and the transmission of diseases, thereby aiding us in accurately assessing
the impact of vaccination on disease spread. The specific details of the KDLCG algorithm
are described below (Algorithm 2).

Step 1: Learn the Markov equivalence class of CG (lines 2-7). The KDLCG algorithm
firstly connects T ∈ V and X ∈ AdjT by undirected edges to construct the local
skeleton of CG (lines 3-4), and then the KDLCG algorithm orients between T and
X by conditional independence tests to obtain the local structure of target variable
T , and finally the KDLCG algorithm integrates the local structure of all variables
into the global structure (lines 5-7). The global structure obtained at this point is
the Markov equivalence class of CG.

Step 2: Learning the structure of CG using Meek rules (lines 9-11). The KDLCG algorithm
first extracts the block structure B

′
G from the Markov equivalence class of CG driven

by the block domain knowledge K (line 9). The definitions of block variables and
block domain knowledge show that the true CG corresponds to the block structure
BG as a directed acyclic graph, and the B

′
G is the Markov equivalent of BG. Next,

the KDLCG algorithm uses Meek rule R1 (citation (Meek, 1995)) to update the
undirected edges in B

′
G (line 10). Finally, the KDLCG algorithm utilizes the valid

orientation rule proposed in this paper to refine the CG, which is to determine the
direction of edges based on the fact that no additional complexes are created in
CG.

The Meek rule R1 is as follows: orient Xj −Xk into Xj ← Xk whenever there is
a directed edge Xi ← Xj such that Xi and Xk are not adjacent (otherwise a new
v-structure is created).

The valid orientation rule: orient X−Y into X → Y whenever Ki−Kj(XBi−
XBj) in B

′
G is oriented as Ki → Kj , X ∈ Ki, Y ∈ Kj .

Step 3: Learning the structure of CG by estimating causal effects between variables (lines
13-19). The KDLCG algorithm first records the information of variable pairs
undinfo that are undirected edges between two variables in the updated B

′
G (line

13), then it iterates through variable pairs Ki and Kj in undinfo and estimates
the causal effect value cevalue of Ki and Kj by using Equation 5 (lines 14-15). If
cevalue = 0 (Ki is a parent of Kj ), the KDLCG algorithm is concluded that Ki

points to Kj in B
′
G. If X ∈ Ki, Y ∈ Kj and X −Y , then X points to Y in G (lines

16-17). If cevalue contains 0 and i < j, then Ki points to Kj in B
′
G. If X ∈ Ki,

Y ∈ Kj and X − Y , then X points to Y in G (lines 18-19). Finally, the KDLCG
algorithm proposed in this paper outputs a global CG structure (line 20).

Highlights of Algorithm 2: (1) The Markov equivalence classes of CGs are learned
using the separated Adj and SP obtained by Algorithm 1. (2) To identify more causal rela-
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tionships in the Markov equivalence classes of CGs, we define the block domain knowledge
to drive CGs structure learning. First, the introduction of block domain knowledge is justi-
fied, as in sociological or epidemiological studies, where such knowledge is usually available
from experts in the field of study to know which units (variables) belong to a group (block
variables, block domain knowledge). The introduction of block domain knowledge provides
a large amount of information for the learning of CGs structure. Second, the block domain
knowledge reduces the search space for structure learning and improves the efficiency of
structure learning. (3) In addition to this, we also refine the CGs by utilizing the Meek
rule and estimating causal effects between the two variables, driven by the block domain
knowledge.

Example 4. We use Toy graph as the example to trace the KDLCG algorithm, which
can increase the readability of algorithm when learning the CG structure, see Figure 3 (F
is orange, adjacencies are green and spouses are blue).

Figure 3: An example of the execution process of KDLCG.

(1) Step 1: The KDLCG algorithm constructs the CG skeleton with the help of Adj
of variables obtained above and learns the CG structure with the help of Adj and
SP . Taking F as an example, the above obtained AdjF = {K,E,D}, the KDLCG
algorithm connects F to {K,E,D} by undirected edges to construct the local skeleton
of F , and then F 6⊥⊥ G|K, which determines F to point to K, and finally obtains the
local structure of F , see Figure 3(a). The KDLCG algorithm traverses all variables
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and integrates the local structure of all variables into a global structure. At this point,
the learned structure is the Markov equivalence class of Toy graphs, see Figure 3(b).

(2) Step 2: Guided by the block domain knowledge, we extract the block structure B
′
G of

the Toy graph from the Markov equivalence class of the Toy graph, see Figure 3(c).
The KDLCG algorithm uses the Meek rule R1 (without creating a new V-structure) to
determine {E,F} → I, I → J in the block structure B

′
G, see Figure 3(d). Finally, the

KDLCG algorithm uses the valid orientation rule to update the direction of undirected
edges in CG, see Figure 3(e).

(3) Step 3: Guided by the block domain knowledge, we record the information of variable
pairs {G,H}−{A,B,C,D} that are undirected edges between variables in the updated
block structure B

′
G, see Figure 3(f). And then the KDLCG algorithm estimates the

value of causal effects of variable pairs {G,H} − {A,B,C,D} using equation (5)
(Maathuis et al., 2009), then {G,H} → {A,B,C,D}, so D → G. After the above
learning, the KDLCG algorithm finally learns the Toy graph, see Figure 3(g).

3.2 Theoretical Analysis

The main focus of this paper is to identify more causal relationships in the Markov equiv-
alence classes of CGs. In this section, we give the theoretical analysis of the KDLCG
algorithm.

Theorem 1. Under the faithfulness assumption, if X and Y are adjacent in a LWF
CG G, iff ∀Z ⊆ V,X 6⊥⊥ Y |Z(Studenỳ, 1997).

Theorem 2. Under the faithfulness assumption, then for X in a LWF CG G, X ⊥⊥
V \{X}\MBX |MBX(Javidian et al., 2020b).

Theorem 3 (Correctness of the learn-AS algorithm) Under the faithfulness as-
sumption, the learn-AS algorithm can correctly learn the Adj and SP from causally suffi-
cient data.

Proof. According to Theorem 1, the learn-AS algorithm adds variables that are condition-
ally dependent of T into CAdjT and removes variables that are conditionally independent
of T from CAdjT . Since the true adjacencies is always dependent on T given any subsets
in V , CAdjT contains all true adjacencies. After the finding of adjacencies, the learn-AS
algorithm looks for the spouse variable with X ∈ CAdjT . Before adding Y to CSPs, the
learn-AS checks whether X is a true adjacencies. If X becomes conditionally independent
on T (line 21), the learn-AS algorithm removes X from CAdjT . If X becomes conditionally
dependent on T (line 21), the learn-AS algorithm adds Y into CSPT by Theorem 2. Steps 2
and 3 only remove false positive Adj and SP variables. After Step 1, CAdjT and CSPT have
included all true AdjT and SPT . The learn-AS algorithm uses Theorem 2 to remove false
positives from CAdjT and CSPT , and true AdjT and SPT will not be removed. Therefore,
the learn-AS algorithm is correct.

Theorem 4 (Correctness of the KDLCG algorithm) Under the faithfulness as-
sumption, the KDLCG algorithm can correctly learn LWF CG structure from causally
sufficient data.
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Proof. After the learn-AS algorithm, AdjT includes all adjacencies of T , and SPT includes
all spouses of T . Step 1 of the KDLCG algorithm is to learn the Markov equivalence class of
CG. The KDLCG algorithm uses undirected edges to connect T variables to each variable
in AdjT to build the local skeleton. And then we know that every ordered variables triple
< T,X, Y > in G, if T → X is a complex arrow, there exists a variable Y ∈ SPT . For
the triple < T,X, Y >, the condition at line 6 is satisfied, T → X is returned on line 7,
while T ← X or T − X is not returned. If T ← X or T − X in G, X ∈ BdT ⊆ AdjT ,
Y ∈ SPT , then Y is not a strict descendant or a adjacent node of T in G. Based on
the local Markov property of CG, there exists a set S ⊆ AdjT including X, such that
T ⊥⊥ Y |S. Consequently, the condition at line 6 is not satisfied, T → X is forbidden in the
output. Hence, The KDLCG algorithm learns the local structure of the target variable. The
KDLCG algorithm integrates the local structure of all variables into the global structure,
and the global structure is the Markov equivalence class of CG at this time. Step 2 of the
KDLCG algorithm refines the CG structure using the Meek rules. The KDLCG algorithm
extracts the block structure B

′
G from the Markov equivalence class of the chain graphs

obtained in the previous step. At this time, the B
′
G is also the Markov equivalence class of

the block structure of true CG, i.e. there are undirected edges in B
′
G. Driven by the block

domain knowledge K, the KDLCG algorithm uses Meek rule R1 to determine the direction
of some edges in B

′
G without creating a new V-structure and then updates the chain graphs

structure by the valid orientation rules. Step 3 of the KDLCG algorithm further refines
the CG structure driven by knowledge. The KDLCG algorithm uses Equation 5 (a causal
effects-based approach) (Maathuis et al., 2009) to estimate the causal effects of variable
pairs that have undirected edges between them in B

′
G. If the condition in line 16 and line

18 is satisfied, the relationship between the pairs of variables can be determined (line 17
and line 19). Finally, the KDLCG algorithm outputs the global chain graphs structure (line
20). Therefore, the KDLCG algorithm is correct.

4. Experimental Evaluation

In this section, we first list the experimental settings on synthetic data required for the
comparison algorithms in Section 4.1, then analyze the experiment on the synthetic data in
Section 4.2, and finally verify the effectiveness of the algorithms on the real-world data in
Section 4.3.

To evaluate the performance of the proposed algorithm, we perform extensive exper-
iments to contrast our proposed KDLCG algorithm against the state-of-the-art LCD al-
gorithm and MbLWF algorithm. We implemented all algorithms in R by extending the
code from the bnlearn (Javidian et al., 2020b), lcd (Ma et al., 2008), and pcalg (Kalisch,
Mächler, Colombo, Maathuis, & Bühlmann, 2012) packages to LWF CGs. We evaluate the
performance of the proposed algorithm in terms of the following six measurements:

(1) The true positive rate (TPR, also known as recall) is the ratio of the number of correctly
identified edges (TP) over total number of edges (Pos),

(2) The false positive rate (FPR) is the ratio of the number of incorrectly identified edges
(FP ) over total number of gaps (Neg),
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(3) The true discovery rate (TDR, also known as precision) is the ratio of the number of
correctly identified edges over total number of edges (both in estimated graph),

(4) Accuracy (ACC) is TP+TN
Pos+Neg ,

(5) The structural Hamming distance (SHD) is the number of legitimate operations needed
to change the current resulting graph to the true CG, where legitimate operations are:
(a) add or delete an edge and (b) insert, delete or reverse an edge orientation. This is the
metric described in (Tsamardinos, Brown, & Aliferis, 2006) to compare the structure
of the learned graphs and the ground truth graphs, and

(6) Running time is the time required to execute the algorithms.

Note that we use TPR, FPR, TDR, and ACC for comparing the skeleton of a learned
structure and a ground truth graph. In principle, a large TPR, TDR, and ACC, a small
FPR, SHD, and Running time indicate good performance.

4.1 The Experimental Setting on Synthetic Data

In this section, we list the data generation procedure in Section 4.1.1 and the experimental
setting in Section 4.1.2.

4.1.1 Data Generation Procedure

First, we discuss how the random chain graphs and the Gaussian distribution are generated
(Ma et al., 2008). Given a variable set V , let p = |V | and N denote the average degree
of edges (including undirected and pointing out and pointing in) for each variable. We
generate a random chain graph on V as follows:

(1) Order the p vertices and initialize a p× p adjacency matrix A with zeros;

(2) For each element in the lower triangle part of A, set it to be a random number generated
from a Bernoulli distribution with probability of occurrence s = N/(p− 1);

(3) Symmetrize A according to its lower triangle;

(4) Select an integer k randomly from {1, ..., p} as the number of chain components;

(5) Split the interval [1, p] into k equal-length subintervals I1, ..., Ik so that the set of vari-
ables falling into each subinterval Im forms a chain component Cm;

(6) Set Aij = 0 for any (i, j) pair such that i ∈ Il, j ∈ Im with l > m.

This procedure then yields an adjacency matrix A for a chain graph with (Aij = Aji = 1)
representing an undirected edge between Vi and Vj and (Aij = 1, Aji = 0) representing a
directed edge from Vi to Vj . Moreover, it is not hard to see that E[vertex degree] = N
where an adjacent vertex can be linked by either an undirected or a directed edge. Given a
randomly generated chain graph G with ordered chain components C1, ..., Cm, we generate
the Gaussian distribution from lcd R package (Ma et al., 2008).
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4.1.2 The Experimental Setting on Synthetic Data

In order to assess the performance of the proposed algorithm, we consider comparing the
performance of algorithms from both low-dimensional settings and high-dimensional set-
tings.

The low-dimensional experimental settings: We consider the Toy graph in Figure 1
(a) and random CGs with p ={10, 20, 40} and N ={2, 3}, in which p is the number of
variables and N represents the average number of adjacent variables per variable (including
undirected, pointing out, and pointing in). For each combination (p,N), we first randomly
generate CGs. Additionally, we generate a random Gaussian probability distribution based
on each CG and obtain training databases with the sample size of n = 500 or 5000 from
this probability distribution. For each sample, the significance levels alpha of the LCD
algorithm, the MbLWF algorithm, and our KDLCG algorithm are respectively set at the
values of 0.005 or 0.05 to perform the hypothesis.

The high-dimensional experimental settings: We consider random CGs with p ={300,
500}, and N = 2, in which p is the number of variables and N represents the average number
of adjacent variables per variable (including undirected, pointing out, and pointing in). For
each combination (p,N), we first randomly generate CGs. Additionally, we generate a
random Gaussian probability distribution based on each CG and obtain training databases
with the sample size of n = 50 or 100 from this probability distribution. For each sample,
the significance levels alpha of the LCD algorithm, the MbLWF algorithm, and our KDLCG
algorithm are respectively set at the values of 0.005 or 0.05 to perform the hypothesis.

4.2 The Experimental Analysis on Synthetic Data

In this section, we evaluate the performance of the proposed algorithm from the low-
dimensional and high-dimensional experimental analysis.

4.2.1 The Low-Dimensional Experimental Analysis

We check the performance in terms of the TPR, FPR, TDR, ACC, SHD, and running
time. Tables 3 − 6 and Figure 4 show the corresponding experimental results on different
CGs. Each reported statistic is the average and standard deviation values obtained by
independently running 100 times the proposed algorithm in Tables 3 − 6. Each reported
statistic is the average value obtained by independently running 100 times the proposed
algorithm in Figure 4. The following conclusions can be obtained from experimental results.

(1) From the perspective of TPR, the TPR values returned by our proposed KDLCG
algorithm, the LCD algorithm, and the MbLWF algorithm increase as n increases. The
TPR values decrease as p increases when N is the same, and the TPR values give better
results at α = 0.05 than at α = 0.005, and the TPR values give better results at N = 2 than
at N = 3 when p is the same. The TPR values of the KDLCG algorithm are large for the
sample size n = 500 and the significance level α = 0.005, see the third column of Table 3.
In other cases, the TPR values of the LCD algorithm are large, see the third column of
Tables 4, 5, 6. This is because the KDLCG algorithm prunes them multiple times when
learning the adjacencies and spouses to learn accurate CG structure, see Algorithm 1. The
pruning operation may make the KDLCG algorithm exclude some ambiguous but true
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Table 3: Performance of our proposed KDLCG algorithm, the LCD algorithm and the
MbLWF algorithm for alpha = 0.005 and n = 500.

Chain graphs Algorithm TPR FPR TDR ACC

Toy graph LCD 0.9450 ± 0.0548 0.0023 ± 0.0070 0.9913 ± 0.0263 0.9862 ± 0.0150

MbLWF 0.9350 ± 0.0636 0.0005 ± 0.0033 0.9985 ± 0.0109 0.9855 ± 0.0137

KDLCG 0.9370 ± 0.0642 0.0005 ± 0.0033 0.9985 ± 0.0109 0.9863 ± 0.0130

p=10, N=2 LCD 0.9400 ± 0.0571 0.0011 ± 0.0057 0.9958 ± 0.0209 0.9858 ± 0.0147

MbLWF 0.9520 ± 0.0579 0.0011 ± 0.0057 0.9960 ± 0.0200 0.9884 ± 0.0144

KDLCG 0.9520 ± 0.0579 0.0011 ± 0.0057 0.9960 ± 0.0200 0.9884 ± 0.0144

p=10, N=3 LCD 0.7893 ± 0.0845 0.0067 ± 0.0135 0.9829 ± 0.0348 0.9253 ± 0.0329

MbLWF 0.7773 ± 0.0708 0.0093 ± 0.0191 0.9775 ± 0.0454 0.9196 ± 0.0298

KDLCG 0.8093 ± 0.0646 0.0120 ± 0.0199 0.9727 ± 0.0456 0.9284 ± 0.0270

p=20, N=2 LCD 0.9300 ± 0.0505 0.0002 ± 0.0012 0.9978 ± 0.0107 0.9924 ± 0.0056

MbLWF 0.9370 ± 0.0472 0.0004 ± 0.0016 0.9959 ± 0.0140 0.9929 ± 0.0052

KDLCG 0.9370 ± 0.0472 0.0004 ± 0.0016 0.9960 ± 0.0139 0.9930 ± 0.0051

p=20, N=3 LCD 0.8553 ± 0.0658 0.0011 ± 0.0030 0.9935 ± 0.0173 0.9762 ± 0.0104

MbLWF 0.8613 ± 0.0483 0.0071 ± 0.0040 0.9583 ± 0.0222 0.9721 ± 0.0079

KDLCG 0.8550 ± 0.0512 0.0001 ± 0.0009 0.9993 ± 0.0052 0.9770 ± 0.0081

p=40, N=2 LCD 0.7670 ± 0.0656 0.0015 ± 0.0016 0.9664 ± 0.0337 0.9866 ± 0.0034

MbLWF 0.7925 ± 0.0639 0.0017 ± 0.0015 0.9625 ± 0.0310 0.9877 ± 0.0033

KDLCG 0.7925 ± 0.0637 0.0015 ± 0.0014 0.9683 ± 0.0298 0.9880 ± 0.0033

p=40, N=3 LCD 0.7750 ± 0.0390 0.0011 ± 0.0013 0.9840 ± 0.0191 0.9817 ± 0.0035

MbLWF 0.7873 ± 0.0399 0.0009 ± 0.0010 0.9867 ± 0.0145 0.9828 ± 0.0034

KDLCG 0.7877 ± 0.0399 0.0009 ± 0.0009 0.9867 ± 0.0145 0.9828 ± 0.0033

positives. Thus, the TPR values of the KDLCG algorithm are lower than the values of the
LCD algorithm in some cases.

(2) From the perspective of FPR, the FPR values returned by our proposed KDLCG
algorithm, the LCD algorithm, and the MbLWF algorithm roughly decrease as n increases.
The FPR values get better results at α = 0.005 than at α = 0.05, and the FPR values
get better results at N = 2 than at N = 3 when p is the same. The FPR values of the
KDLCG algorithm are small in most settings, see the fourth column of Tables 3−6. This is
because the KDLCG algorithm prunes them multiple times when learning the adjacencies
and spouses to learn accurate CG structure, see Algorithm 1. Thus, the FPR values obtained
by the KDLCG algorithm are small.

(3) From the perspective of TDR, the TDR values returned by our proposed KDLCG
algorithm, the LCD algorithm, and the MbLWF algorithm decrease as p increases when N
are the same, and the TDR values give better results at α = 0.005 than at α = 0.05. The
TDR values of the KDLCG algorithm are large for most cases, see the fifth column of Tables
3 − 6. This is because the KDLCG algorithm prunes them multiple times when learning
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Table 4: Performance of our proposed KDLCG algorithm, the LCD algorithm and the
MbLWF algorithm for alpha = 0.005 and n = 5000.

Chain graphs Algorithm TPR FPR TDR ACC

Toy graph LCD 0.9950 ± 0.0200 0.0009 ± 0.0046 0.9969 ± 0.0152 0.9980 ± 0.0060

MbLWF 0.9900 ± 0.0274 0.0000 ± 0.0000 1.0000 ± 0.0000 0.9978 ± 0.0060

KDLCG 0.9900 ± 0.0274 0.0000 ± 0.0000 1.0000 ± 0.0000 0.9980 ± 0.0060

p=10, N=2 LCD 1.0000 ± 0.0000 0.0011 ± 0.0057 0.9964 ± 0.0180 0.9991 ± 0.0044

MbLWF 0.9980 ± 0.0141 0.0000 ± 0.0000 1.0000 ± 0.0000 0.9996 ± 0.0031

KDLCG 0.9980 ± 0.0141 0.0000 ± 0.0000 1.0000 ± 0.0000 0.9996 ± 0.0031

p=10, N=3 LCD 0.9360 ± 0.0538 0.0127 ± 0.0177 0.9743 ± 0.0356 0.9702 ± 0.0240

MbLWF 0.9173 ± 0.0596 0.0240 ± 0.0278 0.9517 ± 0.0536 0.9564 ± 0.0327

KDLCG 0.9280 ± 0.0644 0.0073 ± 0.0139 0.9853 ± 0.0282 0.9711 ± 0.0230

p=20, N=2 LCD 1.0000 ± 0.0000 0.0009 ± 0.0025 0.9925 ± 0.0197 0.9992 ± 0.0022

MbLWF 1.0000 ± 0.0000 0.0006 ± 0.0018 0.9952 ± 0.0143 0.9994 ± 0.0020

KDLCG 1.0000 ± 0.0000 0.0007 ± 0.0019 0.9943 ± 0.0156 0.9994 ± 0.0017

p=20, N=3 LCD 0.9940 ± 0.0129 0.0000 ± 0.0000 1.0000 ± 0.0000 0.9991 ± 0.0020

MbLWF 0.9900 ± 0.0168 0.0133 ± 0.0059 0.9342 ± 0.0273 0.9873 ± 0.0052

KDLCG 0.9780 ± 0.0257 0.0002 ± 0.0012 0.9990 ± 0.0063 0.9996 ± 0.0040

p=40, N=2 LCD 0.9995 ± 0.0035 0.0015 ± 0.0015 0.9730 ± 0.0258 0.9985 ± 0.0014

MbLWF 0.9995 ± 0.0035 0.0013 ± 0.0013 0.9770 ± 0.0216 0.9987 ± 0.0012

KDLCG 0.9995 ± 0.0035 0.0013 ± 0.0013 0.9770 ± 0.0216 0.9987 ± 0.0012

p=40, N=3 LCD 0.9970 ± 0.0065 0.0007 ± 0.0009 0.9922 ± 0.0109 0.9992 ± 0.0009

MbLWF 0.9953 ± 0.0089 0.0010 ± 0.0012 0.9880 ± 0.0130 0.9987 ± 0.0012

KDLCG 0.9953 ± 0.0089 0.0004 ± 0.0009 0.9945 ± 0.0101 0.9992 ± 0.0009

the adjacencies and spouses to learn accurate CG structure, see Algorithm 1. The Pruning
operation also means removing as many false positives as possible from the adjacencies and
spouses and ensuring that the adjacencies and spouses contain as many true positives as
possible. Due to the three pruning of the adjacencies and spouses, the TDR values obtained
by the KDLCG algorithm are large.

(4) From the perspective of ACC, the ACC values returned by our proposed KDLCG
algorithm, the LCD algorithm, and the MbLWF algorithm increase as n increases, and the
ACC values give better results at α = 0.05 than at α = 0.005 when the sample size is 5000
(n = 5000). The ACC values of the KDLCG algorithm are large in most settings, see the
sixth column of Tables 3− 6.

(5) From the perspective of SHD, the SHD values returned by our proposed KDLCG
algorithm, the LCD algorithm, and the MbLWF algorithm decrease as n increases. The
SHD values increase as p increases when N is the same, and the SHD values increase as N
increases when p is the same, and the SHD values give better results at α = 0.005 than at
α = 0.05, see Figure 4. The SHD values of the KDLCG algorithm are relatively small in all
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Table 5: Performance of our proposed KDLCG algorithm, the LCD algorithm and the
MbLWF algorithm for alpha = 0.05 and n = 500.

Chain graphs Algorithm TPR FPR TDR ACC

Toy graph LCD 0.9617 ± 0.0511 0.0088 ± 0.0140 0.9695 ± 0.0478 0.9847 ± 0.0185

MbLWF 0.9600 ± 0.0564 0.0042 ± 0.0102 0.9853 ± 0.0353 0.9880 ± 0.0163

KDLCG 0.9600 ± 0.0564 0.0033 ± 0.0082 0.9883 ± 0.0294 0.9887 ± 0.0155

p=10, N=2 LCD 0.9760 ± 0.0431 0.0080 ± 0.0153 0.9745 ± 0.0483 0.9884 ± 0.0157

MbLWF 0.9740 ± 0.0443 0.0051 ± 0.0138 0.9835 ± 0.0434 0.9902 ± 0.0156

KDLCG 0.9740 ± 0.0443 0.0051 ± 0.0138 0.9835 ± 0.0434 0.9902 ± 0.0156

p=10, N=3 LCD 0.8573 ± 0.0632 0.0127 ± 0.0163 0.9722 ± 0.0361 0.9440 ± 0.0247

MbLWF 0.8387 ± 0.0647 0.0233 ± 0.0303 0.9510 ± 0.0590 0.9307 ± 0.0297

KDLCG 0.8600 ± 0.0508 0.0150 ± 0.0220 0.9673 ± 0.0459 0.9431 ± 0.0242

p=20, N=2 LCD 0.9810 ± 0.0301 0.0094 ± 0.0074 0.9276 ± 0.0547 0.9896 ± 0.0075

MbLWF 0.9780 ± 0.0310 0.0082 ± 0.0072 0.9362 ± 0.0528 0.9903 ± 0.0071

KDLCG 0.9780 ± 0.0306 0.0078 ± 0.0690 0.9396 ± 0.0509 0.9907 ± 0.0070

p=20, N=3 LCD 0.9280 ± 0.0549 0.0055 ± 0.0057 0.9698 ± 0.0308 0.9840 ± 0.0108

MbLWF 0.9260 ± 0.0453 0.0120 ± 0.0055 0.9362 ± 0.0271 0.9782 ± 0.0080

KDLCG 0.9133 ± 0.0467 0.0027 ± 0.0382 0.9845 ± 0.0214 0.9840 ± 0.0084

p=40, N=2 LCD 0.8900 ± 0.0479 0.0190 ± 0.0049 0.7199 ± 0.0570 0.9763 ± 0.0057

MbLWF 0.9000 ± 0.0420 0.0175 ± 0.0049 0.7384 ± 0.0575 0.9782 ± 0.0055

KDLCG 0.9000 ± 0.0415 0.0170 ± 0.0049 0.7441 ± 0.0590 0.9787 ± 0.0055

p=40, N=3 LCD 0.8773 ± 0.0319 0.0120 ± 0.0036 0.8605 ± 0.0367 0.9795 ± 0.0039

MbLWF 0.8833 ± 0.0338 0.0112 ± 0.0041 0.8696 ± 0.0426 0.9807 ± 0.0050

KDLCG 0.8820 ± 0.0348 0.0099 ± 0.0035 0.8828 ± 0.0375 0.9818 ± 0.0043

cases, see Figure 4. It is because the KDLCG algorithm not only performs structure learning
to obtain the Markov equivalence classes of the chain graphs like the LCD algorithm and
the MbLWF algorithm, but the KDLCG algorithm also orients some undirected edges in
the Markov equivalence classes, guided by block domain knowledge. Thus, the KDLCG
algorithm can obtain relatively small SHD values.

(6) From the perspective of running time, The running times returned by our proposed
KDLCG algorithm, the LCD algorithm, and the MbLWF algorithm increase as n increases,
and the running times give better results at α = 0.005 than at α = 0.05, see Figure 5.
Compared with the MbLWF algorithm, the KDLCG algorithm has a short local running
time in learning Markov equivalence classes. In all settings, the KDLCG algorithm has a
longer running time. This is because the KDLCG algorithm further orients some undirected
edges in the Markov equivalence class under the guidance of block domain knowledge.

Summarizing, the KDLCG algorithm outperforms the LCD algorithm and the MbLWF
algorithm in FPR, TDR, ACC and SHD. The experimental results of low-dimensional set-
ting show that the KDLCG exhibits better performance.
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Table 6: Performance of our proposed KDLCG algorithm, the LCD algorithm and the
MbLWF algorithm for alpha = 0.05 and n = 5000.

Chain graphs Algorithm TPR FPR TDR ACC

Toy graph LCD 0.9950 ± 0.0200 0.0102 ± 0.0134 0.9665 ± 0.0434 0.9909 ± 0.0111

MbLWF 0.9933 ± 0.0228 0.0060 ± 0.0103 0.9797 ± 0.0345 0.9938 ± 0.0101

KDLCG 0.9917 ± 0.0252 0.0042 ± 0.0090 0.9860 ± 0.0301 0.9950 ± 0.0090

p=10, N=2 LCD 1.0000 ± 0.0000 0.0086 ± 0.0166 0.9737 ± 0.0500 0.9933 ± 0.0123

MbLWF 1.0000 ± 0.0000 0.0074 ± 0.0127 0.9764 ± 0.0403 0.9942 ± 0.0098

KDLCG 1.0000 ± 0.0000 0.0057 ± 0.0115 0.9818 ± 0.0367 0.9956 ± 0.0089

p=10, N=3 LCD 0.9427 ± 0.0603 0.0167 ± 0.0254 0.9671 ± 0.0481 0.9698 ± 0.0307

MbLWF 0.8387 ± 0.0647 0.0233 ± 0.0303 0.9510 ± 0.0590 0.9307 ± 0.0297

KDLCG 0.9333 ± 0.0659 0.0160 ± 0.0204 0.9679 ± 0.0412 0.9671 ± 0.0281

p=20, N=2 LCD 1.0000 ± 0.0000 0.0116 ± 0.0089 0.9139 ± 0.0598 0.9896 ± 0.0079

MbLWF 1.0000 ± 0.0000 0.0101 ± 0.0087 0.9246 ± 0.0577 0.9909 ± 0.0077

KDLCG 1.0000 ± 0.0000 0.0096 ± 0.0082 0.9278 ± 0.0563 0.9914 ± 0.0073

p=20, N=3 LCD 0.9967 ± 0.0101 0.0054 ± 0.0054 0.9728 ± 0.0268 0.9949 ± 0.0049

MbLWF 0.9920 ± 0.0144 0.0221 ± 0.0088 0.8952 ± 0.0381 0.9801 ± 0.0078

KDLCG 0.9830 ± 0.0215 0.0014 ± 0.0029 0.9930 ± 0.0150 0.9961 ± 0.0041

p=40, N=2 LCD 1.0000 ± 0.0000 0.0196 ± 0.0050 0.7374 ± 0.0522 0.9814 ± 0.0048

MbLWF 1.0000 ± 0.0000 0.0180 ± 0.0047 0.7535 ± 0.0514 0.9829 ± 0.0045

KDLCG 1.0000 ± 0.0000 0.0174 ± 0.0050 0.7606 ± 0.0561 0.9835 ± 0.0048

p=40, N=3 LCD 0.9983 ± 0.0051 0.0117 ± 0.0035 0.8777 ± 0.0314 0.9891 ± 0.0031

MbLWF 0.9980 ± 0.0064 0.0122 ± 0.0034 0.8734 ± 0.0299 0.9886 ± 0.0030

KDLCG 0.9980 ± 0.0064 0.0098 ± 0.0033 0.8957 ± 0.0315 0.9908 ± 0.0030

4.2.2 The High-Dimensional Experimental Analysis

We check the performance in terms of the TPR, FPR, TDR, ACC, and SHD. Figures 6−11
and Tables 7 − 8 show the corresponding experimental results on different CGs. Each
reported statistic is the average and standard deviation values obtained by independently
running 100 times the proposed algorithm in Tables 8 − 9. Each reported statistic is the
average value obtained by independently running 100 times the algorithms in Figure 6.
Each reported statistic is the result of 100 independent runs of the algorithm in Figures
7− 11, where the black line in a box indicates the median of the group and the green point
in a box indicates the average value for that group. The measurement values of the LCD
algorithm in the table are “−”, and the measurement values of the LCD algorithm are not
shown in the figures. Since the CGs that generate the datasets are very sparse (p is large
and N is small), it causes the LCD algorithm to make an error when building the separation
tree. The following conclusions can be obtained from experimental results.
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(a) alpha = 0.005, n = 500 (b) alpha = 0.05, n = 500

(c) alpha = 0.005, n = 5000 (d) alpha = 0.05, n = 5000

Figure 4: The SHD performance of our proposed KDLCG algorithm, the LCD algorithm
and the MbLWF algorithm. To facilitate the presentation of the experimental
results graph, we abbreviate p = 10, N = 2 as ”cg102”. The other abbreviations
are ”cg103, cg202, cg203, cg402, cg403”. The red line indicates the KDLCG algo-
rithm, the blue line indicates the MbLWF algorithm, and the black line indicates
the LCD algorithm.

(1) From the perspective of TPR, the TPR values returned by our proposed KDLCG
algorithm and the MbLWF algorithm increase as n increases, and the TPR values give
better results at α = 0.05 than at α = 0.005. The TPR values of the KDLCG algorithm
are larger for the sample size n = 50, and the TPR values of the KDLCG algorithm are
smaller for the sample size n = 100, see the third column of Tables 7, 8 and Figure 7. This
is because the KDLCG algorithm prunes them multiple times when learning the adjacencies
and spouses to learn accurate CG structure, see Algorithm 1. The pruning operation may
make the KDLCG algorithm delete true false positive when n = 50 (the sample size is small,
which indicates the amount of information contained in the dataset is small) and may make
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(a) alpha = 0.005, n = 500 (b) alpha = 0.05, n = 500

Figure 5: The running time of our proposed KDLCG algorithm, the LCD algorithm, and
the MbLWF algorithm. To facilitate the presentation of the experimental results
graph, we abbreviate p = 10, N = 2 as ”cg102”. The other abbreviations are
”cg103, cg202, cg203, cg402, cg403”. The red line indicates the total time for the
KDLCG algorithm to learn the chain graphs driven by knowledge, The green line
indicates the local time for the KDLCG algorithm to learn Markov equivalence
classes, the blue line indicates the MbLWF algorithm and the black line indicates
the LCD algorithm.

Table 7: Performance of our proposed KDLCG algorithm, the LCD algorithm and the
MbLWF algorithm for p = 500, N = 2 and n = 50.

alpha Algorithm TPR FPR TDR ACC

0.005 LCD − − − −
MbLWF 0.4568 ± 0.0118 0.0002 ± 0.0000 0.8918 ± 0.0184 0.9975 ± 0.0000

KDLCG 0.4694 ± 0.0133 0.0002 ± 0.0000 0.8941 ± 0.0158 0.9976 ± 0.0000

0.05 LCD − − − −
MbLWF 0.4329 ± 0.0243 0.0017 ± 0.0002 0.5068 ± 0.0200 0.9960 ± 0.0001

KDLCG 0.5662 ± 0.0154 0.0011 ± 0.0000 0.6748 ± 0.0193 0.9971 ± 0.0001

the KDLCG algorithm exclude some ambiguous but true positives when n = 100. Thus,
the TPR values of the KDLCG algorithm are lower than the values of the LCD algorithm
in some cases.

(2) From the perspective of FPR, the FPR values returned by our proposed KDLCG
algorithm and the MbLWF algorithm roughly decrease as n increases, and FPR values give
better results at α = 0.005 than at α = 0.05. The TPR values of the KDLCG algorithm
are smaller for most cases, see the fourth column of Tables 7, 8 and Figure 10. This is
because the KDLCG algorithm prunes them multiple times when learning the adjacencies
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Table 8: Performance of our proposed KDLCG algorithm, the LCD algorithm and the
MbLWF algorithm for p = 500, N = 2 and n = 100.

alpha Algorithm TPR FPR TDR ACC

0.005 LCD − − − −
MbLWF 0.6457 ± 0.0147 0.0003 ± 0.0000 0.9116 ± 0.0121 0.9983 ± 0.0000

KDLCG 0.6446 ± 0.0143 0.0002 ± 0.0000 0.9311 ± 0.0118 0.9984 ± 0.0000

0.05 LCD − − − −
MbLWF 0.7529 ± 0.0160 0.0020 ± 0.0001 0.6105 ± 0.0176 0.9970 ± 0.0002

KDLCG 0.7417 ± 0.0133 0.0011 ± 0.0000 0.7296 ± 0.0159 0.9978 ± 0.0001

and spouses to learn accurate CG structure, see Algorithm 1. Because of the three pruning
of the adjacencies and spouses, the FPR values obtained by the KDLCG algorithm are
small.

(a) alpha = 0.005 (b) alpha = 0.05

Figure 6: The SHD performance comparison between our proposed KDLCG algorithm and
MbLWF algorithm for p = 500, N = 2. The red box indicates n = 50 and the
blue box indicates n = 100. The black line in a box indicates the median of the
group. The green point in a box indicates the mean value for that group.

(3) From the perspective of TDR, the TDR values returned by our proposed KDLCG
algorithm and the MbLWF algorithm decrease as p increases when N is the same, and
the TDR values give better results at α = 0.005 than at α = 0.05. The TDR values of
the KDLCG algorithm are larger for most cases, see the fifth column of Tables 7, 8 and
Figure 8. This is because the KDLCG algorithm prunes them multiple times when learning
the adjacencies and spouses to learn accurate CG structure, see Algorithm 1. The Pruning
operation also means removing as many false positives as possible from the adjacencies and
spouses and ensuring that the adjacencies and spouses contain as many true positives as
possible. Thus, the TDR values obtained by the KDLCG algorithm are larger.
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(4) From the perspective of ACC, the ACC values returned by our proposed KDLCG
algorithm and the MbLWF algorithm increase as n increases. The ACC values of the
KDLCG algorithm are larger for most cases, see the sixth column of Tables 7, 8 and
Figure 9. This is because the KDLCG algorithm prunes them multiple times when learning
the adjacencies and spouses to learn accurate CG structure, see Algorithm 1. Thus, the
ACC values obtained by the KDLCG algorithm are larger.

(a) alpha = 0.005 (b) alpha = 0.05

Figure 7: The TPR performance comparison between our proposed KDLCG algorithm and
MbLWF algorithm for p = 300, N = 2. The red box indicates n = 50 and the
blue box indicates n = 100. The black line in a box indicates the median of the
group. The green point in a box indicates the mean value for that group.

(a) alpha = 0.005 (b) alpha = 0.05

Figure 8: The TDR performance comparison between our proposed KDLCG algorithm and
MbLWF algorithm for p = 300, N = 2. The red box indicates n = 50 and the
blue box indicates n = 100. The black line in a box indicates the median of the
group. The green point in a box indicates the mean value for that group.
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(a) alpha = 0.005 (b) alpha = 0.05

Figure 9: The ACC performance comparison between our proposed KDLCG algorithm and
MbLWF algorithm for p = 300, N = 2. The red box indicates n = 50 and the
blue box indicates n = 100. The black line in a box indicates the median of the
group. The green point in a box indicates the mean value for that group.

(a) alpha = 0.005 (b) alpha = 0.05

Figure 10: The FPR performance comparison between our proposed KDLCG algorithm
and MbLWF algorithm for p = 300, N = 2. The red box indicates n = 50 and
the blue box indicates n = 100. The black line in a box indicates the median of
the group. The green point in a box indicates the mean value for that group.

(5) From the perspective of SHD, The SHD values returned by our proposed KDLCG
algorithm and the MbLWF algorithm decrease as n increases. The SHD values increase as
p increases when N is the same, and the SHD values increase as N increases when p is the
same, and the SHD values give better results at α = 0.005 than at α = 0.05, see Figures 6
and 11. The SHD values of the KDLCG algorithm are relatively small in all cases. It is
because the KDLCG algorithm not only performs structure learning to obtain the Markov
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(a) alpha = 0.005 (b) alpha = 0.05

Figure 11: The SHD performance comparison between our proposed KDLCG algorithm
and MbLWF algorithm for p = 300, N = 2. The red box indicates n = 50 and
the blue box indicates n = 100. The black line in a box indicates the median of
the group. The green point in a box indicates the mean value for that group.

equivalence classes of the chain graphs like the LCD algorithm and the MbLWF algorithm,
but the KDLCG algorithm also orients some undirected edges in the Markov equivalence
classes, guided by block domain knowledge. Therefore, the KDLCG algorithm can obtain
relatively small SHD values.

In summary, the KDLCG algorithm outperforms the LCD algorithm and the MbLWF
algorithm in TPR, FPR, TDR, ACC, and SHD. The experimental results of the high-
dimensional setting show that the KDLCG exhibits better performance.

4.2.3 Summary of Experimental Analysis

We verify the performance of the algorithms in low-dimensional and high-dimensional set-
tings, respectively, and conduct experimental analyses. In the overall context, the sample
size n, the density of the chain graphs (the number of variables p and the number of adja-
cent variables N), and the significance level α have an impact on the performance of the
algorithms.

In terms of n, the TPR, TDR, and ACC values increase with increasing n, while the FPR
and SHD values decrease with increasing n. This suggests that as the size of n increases,
the datasets contain richer information, which provides greater certainty for learning the
structure of CGs.

In terms of the density of the chain graphs, when p is held constant, the TPR, TDR, and
ACC values decrease as N increases, while the FPR and SHD values become larger. This
is because an increase in N indicates a denser CG structure and a dense network structure
implies a more complex relationship between variables, making it more challenging to learn
CG. Conversely, when N is held constant, the TPR, TDR, and ACC values generally
decrease as p increases, while the FPR and SHD values tend to increase. This is because
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an increase in p corresponds to a larger CG structure, and the larger the network structure,
the more complex the calculation.

In terms of α, the TPR, TDR, and ACC values increase with increasing α, and the
FPR and SHD values become larger. This is because an increase in α adds possible true
positives to the set when the algorithm conducts conditionally independent tests, resulting
in higher TPR, TDR, and ACC values. However, the inclusion of potential true positives
also introduces additional false positive variables to the set, leading to higher FPR and
SHD values.

In summary, the performance of the algorithms is influenced by n, the density of the
chain graphs, and α, so we conduct experiments on our proposed KDLCG algorithm,
LCD algorithm, and MbLWF algorithm using different parameter settings. In both low-
dimensional and high-dimensional settings, the TPR values of KDLCG are lower than the
other algorithms. This is because our algorithm removes some ambiguous true positives
through pruning operations. In low-dimensional and high-dimensional settings, the FPR,
TDR, ACC, and SHD values of our proposed algorithm outperformed other algorithms in
most cases. In conclusion, our proposed KDLCG algorithm outperforms the comparison
algorithms.

4.3 Experiments with the Real-World Datasets

In this section, we evaluate all algorithms on the insilico size10 dataset in the DREAM4
Network Inference Challenge (Marbach, Schaffter, Mattiussi, & Floreano, 2009; Greenfield,
Madar, Ostrer, & Bonneau, 2010). The DREAM4 datasets use GeneNetWeaver (GNW)
(Schaffter, Marbach, & Floreano, 2011) to extract sub-gene regulatory networks from the
real E.coli transcriptional regulatory network (1502 nodes, 3587 edges) (Gama-Castro,
Jiménez-Jacinto, Peralta-Gil, Santos-Zavaleta, Peñaloza-Spinola, Contreras-Moreira, Segura-
Salazar, Muniz-Rascado, Martinez-Flores, Salgado, et al., 2008) and the Yeast transcrip-
tional regulatory network (4441 nodes, 12873 edges) (Balaji, Babu, Iyer, Luscombe, &
Aravind, 2006). GNW then generates approximately real-world gene expression datasets
corresponding to the sub-networks by considering biological factors such as noise, time
delays, and feedback loops.

In this section, we chose to verify the effectiveness of all algorithms on time series
datasets of insilico size10 1 and insilico size10 2 with feedback loops (n = 105, p = 10). In
addition, the literatures show that LWF CGs can be used to model a network containing
feedback loops (Lauritzen & Richardson, 2002; Sonntag & Peña, 2015b). Therefore, we
group the variables in the network that form a feedback loop into a block and repeat this
process until the set of variables in the entire network is divided into multiple blocks. We
use these blocks as prior domain block knowledge to better guide network Inference.

We check the performance in terms of the TPR, FPR, TDR, ACC, and SHD. Table 9
shows the corresponding experimental results on insilico size10 1 and insilico size10 2. The
experimental results in Table 9 show that our proposed KDLCG algorithm outperforms
the comparison algorithms in terms of TPR, FPR, TDR, ACC, and SHD evaluation met-
rics. Considering the small number of samples in this real-world dataset and the limited
information it can provide, coupled with the presence of noise, time delays, feedback loops,
etc., the data complexity increases. As a result, the LCD and MbLWF algorithms do not
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perform well in inferring network structures from this real-world dataset. However, our pro-
posed KDLCG algorithm gains more information in structure learning guided by domain
block knowledge. Consequently, KDLCG effectively reduces potential errors and improves
the performance of network structure learning. Therefore, our KDLCG algorithm exhibits
superior performance in handling real-world datasets.

Table 9: Performance of our proposed KDLCG algorithm, the LCD algorithm and the
MbLWF algorithm for the insilico size10 datasets in the DREAM4 Network Infer-
ence Challenge.

network α Algorithm TPR FPR TDR ACC SHD

insilico size10 1 0.005 LCD 0.3846 0.0313 0.8333 0.8000 13.0000

MbLWF 0.3077 0.0313 0.8000 0.7778 13.0000

KDLCG 0.3846 0.0313 0.8333 0.8000 10.0000

0.05 LCD 0.4615 0.1407 0.5834 0.7445 16.0000

MbLWF 0.3846 0.0938 0.6250 0.7556 15.0000

KDLCG 0.4615 0.0625 0.7500 0.8000 12.0000

insilico size10 2 0.005 LCD 0.2500 0.1515 0.3750 0.6889 17.0000

MbLWF 0.2500 0.090 0.5000 0.7333 15.0000

KDLCG 0.5000 0.1212 0.6000 0.7778 13.0000

0.05 LCD 0.5000 0.2121 0.4167 0.6889 19.0000

MbLWF 0.3333 0.2424 0.3333 0.6464 20.0000

KDLCG 0.5000 0.2121 0.4615 0.7111 17.0000

5. Discussion and Conclusion

In this paper, we defined the block domain knowledge and proposed the KDLCG algorithm
to identify more causal relationships in the Markov equivalence classes in chain graphs
structure learning. In our work, the KDLCG algorithm firstly uses the learned adjacencies
and spouses by the learn-AS algorithm to learn the Markov equivalence class of the chain
graphs. Then, the KDLCG algorithm oriented the undirected edges in the Markov equiva-
lence class using the Meek rules and the estimation of the causal effects between variables,
driven by block domain knowledge. Meanwhile, the correctness of the KDLCG algorithm is
proved from theoretical analysis, and the effectiveness of the KDLCG algorithm is verified
from experimental tests.

In fact, domain knowledge is crucial for discovering causal relationships in chain graphs.
When dealing with real-world data, the quality of data affects the accuracy of the learned
structures. Incorporating prior domain knowledge can effectively mitigate potential errors.
However, this study has some limitations. The KDLCG algorithm for the utilization of
domain knowledge relies on the assumption that the domain knowledge is consistent with
the chain graph (or the learned graph), and it also assumes no selection bias in the data.
Therefore, in future work, we will consider generalizing chain graphs structure learning

238



Block domain knowledge-driven learning of chain graphs structure

to inconsistent domain knowledge. Additionally, we will explore representing and utilizing
knowledge in systems with selection bias, further improving the performance and expanding
the application scope of chain graphs learning.
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Rothenhäusler, D., Ernest, J., & Bühlmann, P. (2018). Causal inference in partially linear
structural equation models. The Annals of Statistics, 46 (6A), 2904–2938.
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Studenỳ, M. (1997). A recovery algorithm for chain graphs. International Journal of
Approximate Reasoning, 17 (2-3), 265–293.

241



Yang & Cao
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