
Journal of Artificial Intelligence Research 77 (2023) 563-643 Submitted 12/2022; published 06/2023

On Dynamics in Structured Argumentation Formalisms

Anna Rapberger anna.rapberger@tuwien.ac.at
Institute of Logic and Computation,
TU Wien, Austria

Markus Ulbricht mulbricht@informatik.uni-leipzig.de

Department of Computer Science, ScaDS.AI,

Leipzig University, Germany

Abstract

This paper is a contribution to the research on dynamics in assumption-based argumen-
tation (ABA). We investigate situations where a given knowledge base undergoes certain
changes. We show that two frequently investigated problems, namely enforcement of a
given target atom and deciding strong equivalence of two given ABA frameworks, are in-
tractable in general. Notably, these problems are both tractable for abstract argumentation
frameworks (AFs) which admit a close correspondence to ABA by constructing semantics-
preserving instances. Inspired by this observation, we search for tractable fragments for
ABA frameworks by means of the instantiated AFs. We argue that the usual instantiation
procedure is not suitable for the investigation of dynamic scenarios since too much infor-
mation is lost when constructing the abstract framework. We thus consider an extension
of AFs, called cvAFs, equipping arguments with conclusions and vulnerabilities in order
to better anticipate their role after the underlying knowledge base is extended. We inves-
tigate enforcement and strong equivalence for cvAFs and present syntactic conditions to
decide them. We show that the correspondence between cvAFs and ABA frameworks is
close enough to capture dynamics in ABA. This yields the desired tractable fragment. We
furthermore discuss consequences for the corresponding problems for logic programs.

1. Introduction

Computational models of argumentation in Artificial Intelligence (AI) (Bench-Capon &
Dunne, 2007) establish theoretical foundations to automatize argumentative reasoning.
Needless to say, such approaches possess a variety of applications in e.g. legal reasoning,
medical sciences, and e-governmental issues (Atkinson, Baroni, Giacomin, Hunter, Prakken,
Reed, Simari, Thimm, & Villata, 2017) to mention a few. Arguably the most important
booster for this research area was Dung’s seminal paper (Dung, 1995) where he proposed ab-
stract argumentation frameworks (AFs). In Dung-style AFs arguments are viewed as atomic
entities. Dung abstracts away the internal structure of the arguments, i.e., the premises as
well as rules required to derive the arguments, and also their conclusions. Consequently,
conflicts between arguments are viewed as a mere binary relation and thus Dung obtains a
representation of AFs as directed graphs, with the intended meaning of nodes being argu-
ments and edges the attacks between them. AFs have been thoroughly investigated within
the last decades (Baroni, Gabbay, Giacomin, & van der Torre, 2018) and therefore provide
a solid formal groundwork for argumentative reasoning approaches.

A currently highly relevant area of research in knowledge representation and reasoning
is the investigation of dynamic environments, i.e., knowledge bases that change over time

©2023 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Rapberger & Ulbricht

(Gabbay, Giacomin, Simari, & Thimm, 2021). Considering the inherently dynamic nature
of argumentation it is not surprising that researchers in the field of formal argumentation
have taken up this topic in various ways. In the area of abstract argumentation where
argument acceptance is decided solely by looking at conflicts between arguments, several
problems have been investigated.

Among the most prominent problems in this line of research is strong equivalence: Given
a knowledge base K, is it possible to replace a subset H of K by an equivalent one, say H′,
without changing the meaning of K? Within the KR community it is folklore that this is
usually not the case when considering non-monotonic formalisms; there is, however, also
a rigorous study of this issue (Baumann & Strass, 2022). Driven by this observation, the
notion of strong equivalence has been proposed, developed and investigated in various con-
texts (Lifschitz, Pearce, & Valverde, 2001; Oikarinen & Woltran, 2011). Strong equivalence
is a stricter version of ordinary equivalence where the semantical compliance of the given
knowledge bases, even after adding novel information, is required by definition. That is,
F and G are strongly equivalent if, for each conceivable H, the knowledge bases F ∪ H
and G ∪ H agree on their accepted conclusions. Interestingly, it is typically possible to
algorithmically decide strong equivalence without computing any such set H explicitly, see
e.g. the corresponding results for logic programs (LPs) (Lifschitz et al., 2001) or Dung-AFs
(Oikarinen & Woltran, 2011).

While strong equivalence is about comparing the behavior of different knowledge bases,
the enforcement problem (Baumann, 2012b; Wallner, Niskanen, & Järvisalo, 2017; Borg
& Bex, 2021) deals with manipulating a single one in order to ensure a certain outcome.
Research concerned with this issue contributes to predict conceivable future scenarios and
possible outcomes of a debate and can serve as a guidance when trying to defend a certain
point of view.

Both strong equivalence and enforcement have received increasing attention in the realm
of abstract argumentation (Baumann, 2012b; Baumann, Rapberger, & Ulbricht, 2022;
Oikarinen & Woltran, 2011). There are, however, only few studies on the aforementioned
problems in structured argumentation. In structured argumentation formalisms, the argu-
ments are constructed from a given knowledge base K with the goal to explicate conflicts
within K and provide potential solutions. Thus arguments are not viewed as abstract en-
tities, but they have some inner structure. Depending on the nature of the formalism,
arguments require certain premises as well as rules in order to be derived and yield a con-
clusion. Prominent examples of structured argumentation formalisms are assumption-based
argumentation (ABA) (Cyras, Fan, Schulz, & Toni, 2018), ASPIC+ (Modgil & Prakken,
2018), defeasible logic programming (DeLP) (Garćıa & Simari, 2018), and deductive argu-
mentation (Besnard & Hunter, 2018).

In this paper, we study the enforcement and strong equivalence problem for structured
argumentation with a main focus on ABA. More specifically, our main focus is on the
identification of ABA fragments where these two problems are tractable, i.e., can be decided
in polynomial time. Consider for instance strong equivalence. As described above, being
able to decide strong equivalence helps agents to assess whether or not two knowledge bases
agree on their outcome under any conceivable expansion. Technically, awareness of strong
equivalence helps to decide whether or not two knowledge bases are exchangeable in a
given encoding. Intuitively, it helps understanding the represented knowledge and hints at

564

On Dynamics in Structured Argumentation Formalisms

different possibilities to express the same information. Thus, whenever strong equivalence
can be decided efficiently, agents have fast access to this information. In addition, and maybe
even more importantly, fragments of a formalism where strong equivalence is tractable
possess properties ensuring that (in some sense) it is easy to compare knowledge bases.

While for abstract argumentation, deciding strong equivalence as well as the basic ar-
gument enforcement (Baumann, 2012b) is tractable, it is not clear whether, and if so,
how these results survive the transition to structured argumentation formalisms. At first
glance it seems that we can rely on well-established methods: As we already mentioned, we
can construct arguments from a structured argumentation formalism like ABA (Caminada,
Sá, Alcântara, & Dvořák, 2015a) or logic-based argumentation (Gorogiannis & Hunter,
2011). A similar procedure also exists for logic programs (LPs) (Dung, 1995; Caminada,
Sá, Alcântara, & Dvořák, 2015b). Such instantiation procedures provide a unifying frame-
work to study properties that are common to a large class of non-monotonic formalisms; and
one would expect that they can be utilized to prove tractability or identify tractable frag-
ments of the respective problems in the original formalisms – it is for instance well-known
that deciding strong equivalence in the closely related realm of LPs is intractable (Pearce,
Tompits, & Woltran, 2001; Lin, 2002); here, we would hope that transferring the results
from abstract argumentation will facilitate us to identify an LP fragment for which deciding
strong equivalence is tractable.

So, can we just translate a given knowledge base K to an argumentation graph FK
and solve all problems out of the box? We identify two major potential issues with this
approach: (1) First, in many structured argumentation formalisms, the constructed AF FK
is exponential (sometimes even infinite) w.r.t. the size of the knowledge base K. Hence, even
though the problem at hand might be tractable in FK this does not guarantee tractability
in K. (2) The other issues occur due to moving from static to dynamic scenarios. The
obstacle is that the translation from K to FK is tailored for static, but not for dynamical
reasoning environments. We illustrate this in the following example in the context of ABA.
We refer the reader to Section 2 to a formal introduction to AFs and ABA. However, the
example is designed in a way that understanding all details is not necessary at this stage.

Example 1.1. We consider an instantiation of an ABA framework D = (L,R,A,). The
set L = {c, c, m, t, t} is the set of all atoms occurring in the ABA framework and the
set A = {c, t} represents so-called assumptions, i.e., defeasible information. Consequently,
the assumptions c and t have contraries c and t, respectively. We consider two rules stating
that the assumption c entails m and the assumption t entails c, the contrary of c:

r1 : m← c. r2 : c← t.

Intuitively, if we assume that c holds, then we also believe in m; if we assume t is true,
then c is assumed to be false. We construct a corresponding AF FD as follows. An AF is
a directed graph consisting of nodes and directed edges representing arguments and attacked
between them, respectively. Each assumption c and t induces a corresponding argument for
itself; and each rule ri yields an argument xi. That is, x1 is an argument for m which
relies on the assumption m as premise and x2 entails c relying on t. Attacks depend on the
conclusions of arguments, e.g., x2 attacks x1 because c is the contrary of c. We depict FD:

FD : x2x1 c t

565

Rapberger & Ulbricht

This AF FD represents the knowledge encoded in D, as we recall in Proposition 2.6 (Cyras
et al., 2018). It turns out, however, that we have abstracted away too much information to
analyze dynamic reasoning: The rule r2 relying on t can be disabled by adding a fact stating
that t is false, i.e., a rule

r3 : t← .

This is, however, not reflected in FD. To illustrate this, let us consider an adjusted version
D′ of D by replacing r2 with rule “r′2 : c←”, i.e., in this ABA framework c is certain and
does not rely on t anymore. Hence the rules in D′ are

r1 : m← c. r′2 : c← .

Crucially, the instantiation procedure yields the same AF:

FD′ : x2x1 c t

Although D and D′ encode different information we obtain FD = FD′, i.e., the information
whether c is certain or entailed from the assumption t is lost after instantiating. Hence our
AFs do not carry sufficient information to investigate changes to the two ABA frameworks.
Consider the following questions:

� Is it possible to accept assumption c by adding suitable rules? The answer is affirmative
in D, but negative in D′. This information cannot be extracted from FD and FD′.

� What are the stable models1 after adding the fact “t ← .”? In D, {c} is then stable
while in D′ no assumption is acceptable after this modification. We cannot judge the
situation correctly by comparing the AFs.

� More generally, are D and D′ strongly equivalent? The answer is clearly negative when
inspecting D and D′ but again we cannot tell by comparing their associated AFs.

In all of these questions, the missing piece of information is that x2 has a hidden weakness
t in FD but not in FD′. It is thus impossible to attack x2 in FD′ whereas in FD, x2 can be
attacked by an argument with conclusion t.

Striving to circumvent the first issue we mentioned above regarding the size of the
constructed graph FK, we will identify a suitable ABA fragment giving rise to only linearly
many arguments when constructing the graph. To handle the second problem, we identify
the minimal generalization to tailor AFs suitable for dynamic settings: (i) the conclusion
and (ii) the vulnerabilities of an argument. The latter describes all possibilities to attack
an argument, i.e., it contains conclusions of all potential attackers. This means that for
an argument S ⊢R p in the spirit of ABA, (i.e., atom p is derivable from assumptions S
via rules R) the vulnerabilities are the contraries of the assumptions in S while p is the
argument’s conclusion. A potential weakness of the logic-based argument ({α, α → β}, β)
can be the sentence ¬α; its conclusion is β. Considering ASPIC (Modgil & Prakken, 2018),
also a rule can be a vulnerability: an argument B : q ⇒ p with defeasible rule d1 : q ⇒ p
can be attacked by an argument with conclusion ¬d1.

1. A set is stable if it is conflict-free and attacks all other elements, cf. Definition 2.4.

566

On Dynamics in Structured Argumentation Formalisms

Interestingly, the many proposals for extending Dung-AFs focus on enhancing the ex-
pressiveness of AFs, e.g. the addition of supports (Cayrol & Lagasquie-Schiex, 2005), recur-
sive (Baroni, Cerutti, Giacomin, & Guida, 2011) as well as collective (Nielsen & Parsons,
2006) attacks, or probabilities (Thimm, 2012); hence these generalizations are not equipped
with the tools necessary to investigate dynamics of structured argumentation formalisms.
In contrast, our proposal does not aim at the expressive power of the AF formalism, but
its capability to achieve precisely the formerly mentioned goal.

Thus, in this paper we consider a generalization of AFs by augmenting arguments with
vulnerabilities and a conclusion. This formalism is indeed suitable to investigate knowledge
bases that undergo changes. Notably, this approach allows us to identify a fragment of
ABA for which deciding enforcement and strong equivalence becomes tractable; whereas
the general case is not. As an aside, we show how our approach is flexible enough to
immediately obtain similar results for LPs. Our main contributions are as follows:

� We formalize and study enforcement as well as strong equivalence for ABA. We show
that, as anticipated, both problems are intractable, which is in contrast to their coun-
terparts in abstract argumentation.

� We prove a characterization result for deciding strong equivalence for stable semantics
in ABA by means of so-called SE-models, similar in spirit to research conducted in
the context of LPs.

� We present our novel formalism called conclusion and vulnerability augmented AFs
(cvAFs). We show that cvAFs give rise to a faithful generalization of standard in-
stantiation procedures and discuss their relation to ABA.

� We present cvAF characterization results for argument and conclusion enforcement
and show that strong equivalence can be characterized by so-called kernels. Our
results show that both problems are tractable for cvAFs.

� We identify a tractable fragment for ABA by means of our cvAF enforcement and
strong equivalence results. This fragment consists of so-called atomic ABAs with
separated contraries. We show that this fragment has the full expressive power of
ABA (Proposition 5.16 and Remark 6.29)

� We transfer our results to LPs and analogously identify a fragment for which enforce-
ment and strong equivalence is tractable.

A preliminary version of this work has been recently published (Rapberger & Ulbricht,
2022). The present study significantly extends the aforementioned paper. Most notably,
we cover additional enforcement notions in Section 6 which broadens our investigation.
The results regarding LPs in Section 8 are more general: We generalize the sections main
Theorem 8.18 from atomic to arbitrary extension of the given programs. We also added a
characterization result for strong equivalence in general ABA frameworks by means of SE-
models, similar in spirit to SE-models for LPs. Moreover, besides presenting all required
proofs in full details, we provide a more comprehensive selection of examples throughout
the paper. Needless to say, the absence of space limits gives us the chance to better put
our results in context, give a stronger intuition about our formal technicalities, and discuss
related work in more detail.

567

Rapberger & Ulbricht

2. Background

Abstract Argumentation. We fix a countably infinite background set U . An argu-
mentation framework (AF) (Dung, 1995) is a directed graph F = (A,R) where A ⊆ U
represents a set of arguments and R ⊆ A× A models attacks between them. For two AFs
F = (A,R) and G = (B,S), we define their union F ∪G = (A∪B,R∪S). For a set E ⊆ A,
we let E+

F = {x ∈ A | ∃y ∈ E, (y, x) ∈ R}; also, E is conflict-free in F iff for no x, y ∈ E,
(x, y) ∈ R. E defends an argument x if E attacks each attacker of x. A conflict-free set E
is admissible in F (E ∈ ad(F)) iff it defends all its elements. A semantics is a function σ
with F 7→ σ(F) ⊆ 2A; each E ∈ σ(F) is called a σ-extensions. Here we consider so-called
complete, grounded, preferred, and stable semantics (abbr. co, gr , pr , stb).

Definition 2.1. Let F = (A,R) be an AF and E ∈ ad(F).

� E ∈ co(F) iff E contains all arguments it defends;

� E ∈ gr(F) iff E is ⊆-minimal in co(F);

� E ∈ pr(F) iff E is ⊆-maximal in co(F);

� E ∈ stb(F) iff E+ = A \ E.

We will sometimes make use of the characteristic function ΓF of an AF F , defined as
ΓF (E) = {a ∈ A | E defends a}. If clear from context, we omit the subscript F .

Assumption-based Argumentation. We assume a deductive system (L,R), where L
is a formal language and R is a set of inference rules over L. A rule r ∈ R has the form
a0 ← a1, . . . , an, where ai ∈ L for all i ≤ n, head(r) = a0 is the head, and body(r) =
{a1, . . . , an} is the (possibly empty) body of r.

Definition 2.2. An ABA framework is a tuple (L,R,A,), where (L,R) is a deductive
system, A ⊆ L a non-empty set of assumptions, and a contrary function : A → L.

Assumption 2.3. In this work, we focus on ABA frameworks D = (L,R,A,) that are

� flat, i.e., head(r) /∈ A for each rule r ∈ R; and

� finite, i.e., i.e., L, R, A are finite; moreover,

� L is a set of atomic formulas; and

� each rule r ∈ R is stated explicitly (given as input).

The restriction to flat frameworks is widely used. It allows for a clear distinction be-
tween supporting elements (assumptions) and derivable statements. We assume further
restrictions (items 2 to 4) due to our complexity-theoretic analysis. Note that by item 4, we
consider only ABA frameworks with ground rules, that is, no rule contains any variables.

A sentence p ∈ L is tree-derivable from assumptions S ⊆ A and rules R ⊆ R, denoted
by S ⊢R p, if there is a finite rooted labeled tree T such that

� the root of T is labeled with p;

568

On Dynamics in Structured Argumentation Formalisms

� the set of labels for the leaves of T is equal to S or S ∪ {⊤}; and

� there is a surjective mapping from the set of internal nodes of T to R satisfying for
each internal node v there is a rule r ∈ R such that v labelled with head(r) and the
set of all successor nodes corresponds to body(r) or ⊤ if body(r) = ∅.

We note that each assumption derives itself via {a} ⊢∅ a (a tree with no internal nodes).
For a set S of assumptions, we let S = {a | a ∈ S}. We denote by

ThD(S) = {p | ∃S′ ⊆ S : S′ ⊢R p}

the set of all conclusions derivable from an assumption-set S in an ABA D. Observe that
S ⊆ ThD(S) since per definition, each assumption a ∈ A is derivable from {a} ⊢∅ a. We
call ThD(S) \ S the set of proper conclusions of X.

A set of assumptions S attacks a set of assumptions T if there is some a ∈ T s.t.
a ∈ ThD(S). If S attacks {a}, we simply say S attacks a. S is conflict-free, S ∈ cf (D), if
it does not attack itself. A conflict-free set S is admissible, S ∈ ad(D), if it defends itself.
We recall complete, grounded, preferred, and stable semantics (abbr. co, gr , pr , stb).

Definition 2.4. Let D = (L,R,A,) be an ABA framework and let S ∈ ad(D). Then

� S ∈ co(D) iff S contains every assumption set it defends;

� S ∈ gr(D) iff S is ⊆-minimal in co(D);

� S ∈ pr(D) iff S is ⊆-maximal in co(D);

� S ∈ stb(D) iff S attacks each x ∈ A \ S.

For a semantics σ ∈ {co, gr , pr , stb}, we define σTh(D) = {ThD(S) | S ∈ σ(D)}.

We say that an assumption a ∈ A (atom p ∈ L) is credulously accepted w.r.t. a semantics
σ in an ABA D iff there is some S ∈ σ(D) with a ∈ S (p ∈ ThD(S), respectively).

Definition 2.5. The associated AF FD = (A,R) of an ABA D= (L,R,A,) is given by
A = {S ⊢ p | ∃R ⊆ R : S ⊢R p} and attack relation (S ⊢ p, S′ ⊢ p′) ∈ R iff p ∈ S′.

We write

asms(E) =
⋃

S⊢p∈E
S

to denote the set of assumptions of a given set of arguments E ⊆ A. ABA and AFs are
closely related (see (Cyras et al., 2018)).

Proposition 2.6. Given an ABA D = (L,R,A,), its corresponding AF F and a se-
mantics σ ∈ {gr , co, pr , stb}. If E ∈ σ(F) then asms(E) ∈ σ(D); if S ∈ σ(D) then
{S′ ⊢ p | ∃S′ ⊆ S,R ⊆ R : S′ ⊢R p} ∈ σ(F).

569

Rapberger & Ulbricht

Computational Complexity. We assume the reader to be familiar with the basic con-
cepts of computational complexity theory (Arora & Barak, 2009; Papadimitriou, 1994)-
As usual, by P (polynomial time) we denote the class of all problems which can be solved
via a deterministic polynomial-time Turing machine. As usual, we will call these problems
tractable. By NP we denote the class of all problems which can be solved via a (not neces-
sarily deterministic) polynomial-time turing machine and coNP is the complementary class
to NP. We call problems which are hard for NP or coNP intractable (since, according to
standard complexity assumptions, they cannot be solved in polynomial time).

The canonical NP-complete problem is Sat (satisfiability): Given a propositional for-
mula Φ over a set X of atoms in 3-CNF, i.e., Φ can be interpreted as a set of clauses, the
output is “yes” if and only if there is a satisfying assignment ω : X → {0, 1} for Φ. Analo-
gously, Φ as above is a “yes” instance of Unsat (unsatisfiability) if and only if there is no
satisfying assignment ω. The problem Unsat is the prototypical coNP-complete problem.

3. Warm-Up: Enforcement and Strong Equivalence for Dung-AFs

This paper is driven by the observation that research on dynamics in abstract argumentation
theory cannot be applied to structured argumentation directly. Nonetheless, this research
lays relevant foundations for and significantly inspires our investigation. We will develop
similar techniques, tailored to the needs of our setting. It is therefore important to be aware
of the most relevant research for abstract AFs.

3.1 Enforcement

Suppose we are involved in some discussion where our point of view stands to lose. Naturally,
we seek for possibilities to bring forward further arguments which support our claims.
Formalizing situations of this kind leads to the so-called enforcement problem. In the
context of abstract argumentation, the most basic version (Baumann, 2012b) addresses the
issue of ensuring acceptance of a certain target set of arguments. That is, given some AF
F = (A,R) and an arguments S ⊆ A, is it possible to move to some super-framework F ∪H
(i.e., add arguments and attacks) s.t. S is credulously accepted in the updated F ∪ H?
Formally, we obtain the following basic enforcement notion.

Definition 3.1. Let F = (A,R) be an AF, σ any semantics, and S ⊆ A. We say S is
enforceable if there is some AF G s.t. there is some σ-extension E ∈ σ(F ∪G) s.t. S ⊆ E.

It has been formally established that this is possible for any set S of arguments which
does not have any internal conflict. Thereby, we can even restrict our attention to so-called
normal expansions, as formalized next.

Definition 3.2. Let F = (A,R) be an AF. We call G = (A ∪ A′, R ∪ R′) an expansion of
F ; G is a normal expansion if (a, b) ∈ R′ implies a ∈ A′ or b ∈ A′.

Intuitively, G is a normal expansion if each novel attack involves at least one newly
added argument. Applying (Baumann & Brewka, 2010, Theorem 4) to our semantics we
obtain the following result implying that any conflict-free set S can be enforced by means
of a normal expansion.

570

On Dynamics in Structured Argumentation Formalisms

Theorem 3.3. Let F = (A,R) be an AF and S ⊆ A. Let σ ∈ {ad , co, gr , pr , stb}. There
is a normal expansion G of F s.t. S ⊆ E for some extension E ∈ σ(G) iff S ∈ cf (F).

Example 3.4. Let F be given as follows.

x3x2x1F :

Let S = {x2}. Since x2 is not self-attacking we can enforce it by counter-attacking both x1
and x3. We introduce a suitable x4. This corresponds to a normal expansion G of F :

x4x3x2x1G :

We have {x2, x4} ∈ σ(G) for all semantics considered in this paper; thus acceptance of x2
is indeed ensured.

3.2 Strong Equivalence

The idea behind strong equivalence is to develop a notion of equivalence which is robust even
in dynamic scenarios, i.e., when the given knowledge bases undergo changes. Therefore, two
AFs F and G are defined to be strongly equivalent (Oikarinen & Woltran, 2011) if they
output the same extensions even under additional information.

Definition 3.5. Two AFs F and G are strongly evquivalent w.r.t. a semantics σ (denoted
by F ≡σ

s G) if and only if σ(F ∪H) = σ(G ∪H) holds for each conceivable AF H.

That is, the two given AFs are evaluated equivalently under σ even if we are faced with
new arguments and attacks formalized in H. Put differently, if we view F ∪H as a single
AF, then we can replace F with the strongly equivalent G and obtain G∪H possessing the
same σ-extensions.

When merely inspecting the definition of strong equivalence, it appears to be a com-
putationally hard task at first glance: After all, any conceivable H has to be checked. It
turned out, however, that strong equivalence for AFs can be characterized by verifying the
syntactical identity of so-called (semantics-dependent) kernels. We want to stress that these
kernels are obtained by suitable modifications to the attack relation of the given AFs and
do not remove or add any arguments.

Let us recall the kernels for stable, admissible, complete, and grounded semantics
(Oikarinen & Woltran, 2011).

Definition 3.6. For an AF F = (A,R), we define the stable kernel F sk=(A,Rsk); admis-
sible kernel F ak = (A,Rak); the complete kernel F gk = (A,Rgk) and the grounded kernel
F gk = (A,Rgk) with

Rsk = R \ {(a, b) | a ̸= b, (a, a) ∈ R}
Rak = R \ {(a, b) | a ̸=b, (a, a)∈R, {(b, a),(b, b)}∩R ̸=∅};
Rck = R \ {(a, b) | a ̸= b, (a, a), (b, b) ∈ R};
Rgk = R \ {(a, b) | a ̸=b, (b, b)∈R, {(b, a),(a, a)}∩R ̸=∅}.

571

Rapberger & Ulbricht

Example 3.7. Consider the following AFs F and G:

x3x2x1F : x3x2x1G :

When computing the stable kernel F sk we remove outgoing attacks of self-attacking argu-
ments. Hence, for F the attack (x1, x2) does not occur in F sk. The stable kernel of G
coincides with G since there is nothing to remove. We obtain

x3x2x1F sk : x3x2x1Gsk :

Observe the intuition behind the kernel: Since x1 can never occur in a stable extension, it
must be defeated by any E ∈ stb(F). Hence the outgoing attack of x1 is irrelevant.

These kernels serve to characterize strong equivalence as we recall next.

Theorem 3.8 ((Oikarinen & Woltran, 2011)). For any two AFs F and G,

F ≡stb
s G iff F sk = Gsk

F ≡σ
s G iff F ak = Gak for σ ∈ {ad , pr}

F ≡co
s G iff F ck = Gck

F ≡gr
s G iff F gk = Ggk

We write F k(σ) to denote the kernel which characterize strong equivalence w.r.t. σ.

Example 3.9. Heading back to F and G we saw in the previous example that the two stable
kernels coincide; i.e., F sk = Gsk. We deduce F ≡stb

s G.

Note that computing and comparing two kernels is a simple computational task. Hence
deciding strong equivalence for AFs is tractable for all semantics considered in this paper.

3.3 Limitations

When inspecting the proof techniques for the enforcement (Baumann, 2012b) and strong
equivalence (Oikarinen & Woltran, 2011) results it becomes apparent that they heavily
rely on the abstract nature of the arguments. More specifically, it is usually assumed (and
oftentimes used) that a novel argument can simply attack anything within the already given
AFs. This is not only somewhat questionable from an intuitive point of view, but also makes
it hard to apply these results to AFs which stem from instantiating some knowledge base.

To illustrate this, suppose Jane and Antoine discuss their plans for the weekend. For-
mally speaking, they exchange arguments yielding a certain AF at any time. Bringing
forward further arguments naturally induces expansions of the currently given one. Natu-
rally, both argue in favor of the outcome they prefer, i.e., their ultimate goal is to enforce
a certain argument. Jane would like to go to the cinema since she got recommended this
new blockbuster about dynamic reasoning. She therefore brings forward the argument

x1 : “If we go to the cinema, we can watch the movie I heard about.”

572

On Dynamics in Structured Argumentation Formalisms

Antoine does not want to go to the cinema, because he is not sure whether he is interested
in this movie. Looking for an excuse, he brings forward the following argument:

x2 : “If the tickets are too expensive, I would prefer not to go to the cinema.”

However, Jane got a cinema voucher for her last birthday. She happily points out:

x3 : “No worries, we can go there for free.”

If we depict this simple exchange of arguments as a Dung-AF we obtain the following graph
F = (A,R).

F : x2x1 x3

Since Antoine was not honest about his reasoning, he is not satisfied with the way this
discussion went and aims to enforce his argument x2. According to (Baumann, 2012b,
Theorem 4), he could achieve this by bringing forward some novel argument which defeats
x3. However, it is clear that x3 is a fact in this context, i.e., there is no reasonable argument
against it.

Needless to say, in a different context it might be possible for Antoine to enforce his
argument x2. Hence the question arises under which conditions it is indeed possible for him
to achieve his goal? The attentive reader may already anticipate that this question cannot
be answered in the context of abstract Dung-AFs, since here it would always be possible to
add new incoming attacks to any argument.

Our approach is therefore to start our investigation from the point of view of the struc-
tured setting: Given a knowledge base, adding new information induces certain changes
in the instantiated AF. Guided by the possible modifications, we can work out a suitable
abstract framework which abides by the given restrictions. Afterwards, we demonstrate
how to translate our results back to the knowledge base.

4. Dynamics in Assumption-based Argumentation

In this section, we discuss enforcement and strong equivalence notions for ABA. We show
that in contrast to analogous settings in abstract argumentation, deciding enforceability as
well as strong equivalence is intractable.

The expansion of a framework is a central concept to both of our problems: naturally,
expansions are an integral part of strong equivalence; moreover, since we assume that exist-
ing knowledge cannot be deleted, we study claim enforcement under the assumption that we
can only add novel elements to our knowledge representation formalism. Below, we settle
the notion of framework expansions for ABA frameworks. We fix L and a countably infinite
set of assumptions LA ⊆ L and the contrary function : LA → L. We consider expansions
component-wise.

Definition 4.1. Let D = (L,R,A,) and D′ = (L,R′,A′,) be ABA frameworks with
A,A′ ⊆ LA and : LA → L. We call

D ∪D′ := (L,R∪R′,A ∪A′,)

the expansion of D by D′.

573

Rapberger & Ulbricht

For a rule r = p← S, we write D ∪ {r} short for D ∪D′ with D′ = (L, {r}, ∅,). For a
set of assumptions A′ ⊆ LA, we write D ∪ A′ for D ∪D′ with D′ = (L, ∅,A′,).

We note that by fixing the set of sentences L and the contrary function over a fixed set of
assumptions, we avoid the case that framework expansions are not compatible. Moreover, in
this way we guarantee that the expansionD∪D′ is flat as well (recall that by Assumption 2.3,
we focus exclusively on flat ABA frameworks throughout this work). In what follows, we
assume that for all considered ABA frameworks D = (L,R,A,), it holds that A ⊆ LA,
and : LA → L.

4.1 Conclusion Enforcement

We require that a conclusion p cannot be enforced by simply adding conclusion p or elements
that introduce a novel argument with conclusion p since this would trivialize the problem.
Formally, we consider the following problem:

Definition 4.2. Given an ABA framework D = (L,R,A,), a conclusion p ∈ L, and a
semantics σ, we say that p is enforceable with respect to σ iff there is some expansion
D ∪ D′ (and p does not appear as a head in D′) such that there is S ∈ σTh(D ∪ D′) with
p ∈ S (we say, p is credulously accepted with respect to σ in D ∪D′).

Since assumptions are contained in the conclusion-extensions of an ABA framework, we
cover with this notion both conclusion- and assumption-enforceability.

We observe an interesting discrepancy between structured and abstract formalisms:
While it is possible to credulously enforce any argument in a given AF as long as it is not
self-attacking, the problem of claim enforceability is more involved.

Example 4.3. Let us formalize the discussion between Jane and Antoine and why Antoine
loses the argument. We construct the ABA framework D = {L,A,R, } with the occurring
atoms cinema (c), cinema (c̄), expensive (e), expensive (ē), and movie (m):

L = {c, c, e, e, m} A = {c, e} R = {r1 : m← c., r2 : c← e., r3 : e← .}.

If we instantiate the corresponding AF FD we get the following graph (with rule ri inducing
argument xi and the assumptions c and e corresponding ones).

FD : x1 x2 x3 ce

In order for Antoine to win his argument, we would have to enforce x2. However, x3
(stemming from r3) corresponds to a fact and therefore no expansion D ∪ D′ of D would
achieve this. Meanwhile, when inspecting the graph FD, x2 can be simply enforced by adding
an attack against x3 (Baumann, 2012b, Theorem 4). So we see that the abstract point of
view does not yield the desired outcome.

Now suppose Antoine uses the following argument x′2 instead:

x2, revised: “If I do not like the trailer of this movie, I would prefer not to go
to the cinema.”

574

On Dynamics in Structured Argumentation Formalisms

Jane’s voucher is not a counter-argument anymore and we end up with the following ABA
D′ = {L′,A′,R′, } where t is the abbreviation for Antoine not liking the trailer:

L′ = {c, c, m, t, t} A′ = {c, t} R′ = {r1 : m← c., r′2 : c← t.}.

This time, we obtain the following AF (where we do not change the naming convention,
i.e., the second rule induces x2)

FD′ : x1 x2 c t

Now Antoine’s argument is accepted, but Jane’s x1 can be enforced when Antoine likes the
trailer (i.e., t holds). Indeed, if we consider the ABA H = ({t, ∅, {t ← .}, ∅}), then with
r = t← . the corresponding expansion D′ ∪H = {L′,A′,R′ ∪ {r}, } is given as

L′ = {c, c, m, t, t} A′ = {c, t} R′ ∪ {r} = {r1 : m← c., r′2 : c← t., r : t← .}.

Here one can verify directly that m is accepted; hence Jane’s wish is enforced.

This example already hints at the fact that enforcement in ABA involves identifying
suitable claims one could add to the knowledge base. As it turns out, enforcement in ABA
is indeed NP-hard.

Reduction 4.4. For a CNF formula φ with clauses C = {c1, . . . , cn} over variables in X,
we define the corresponding ABA framework D = (L,R,A,) with

� A = {xTa , xFp , xFa , xTp | x ∈ X} ∪ {c, e} where

� xFp = xTa , x
T
p = xFa , and c, e, xTa , x

F
a ∈ L \ A.

Moreover, R contains the following rules:

� φ← c, e,

� for all x ∈ X, R contains a rule e← xTp , x
F
p ;

� for each i ≤ n, R contains a rule of the form c← {xTa | x ∈ ci} ∪ {xFa | ¬x ∈ ci}.

For each variable, we introduce four assumptions, associated to different truth values
on the one hand, and to ‘active’ (xTa , x

F
a) and ‘passive’ (xTp , x

F
p) assumptions on the other

hand, meaning that the ‘passive’ assumptions cannot be defeated by newly introduced
rules because their contrary is itself an assumption (recall that we are operating in flat
frameworks). Figure 1 depicts the resulting AF for the formula (x ∨ y) ∧ (¬x) ∧ (¬y).

Theorem 4.5. Deciding whether a conclusion p (assumption a) is enforceable in a given
ABA framework D w.r.t. a semantics σ ∈ {gr , co, pr , stb} is NP-hard.

Sketch of Proof. We present a reduction from SAT which shows hardness for grounded,
complete, preferred, and stable semantics. Given a CNF formula φ with clauses C =
{c1, . . . , cn} over variables in X, we let D = (L,R,A,) be defined as in Reduction 4.4.

575

Rapberger & Ulbricht

xTa xFa xTpxFp yTa yFa yTpyFp

c c c

e eφ

xFa

Figure 1: Reduction from the Proof of Theorem 4.5 for the formula φ given by clauses
{x, y}, {¬x}, {¬y}; depicted with the argument arising from the additional rule xFa ← (fact),
in white, with dashed attacks.

It holds that φ is enforceable w.r.t. σ iff φ is satisfiable: The reason is that almost all
relevant elements in the construction are assumptions and since we need to stay flat, we
can only add rules with xTa resp. xFa in the head in order to manipulate whether or not φ
is accepted. This simulates the search for a satisfying assignment. Moving to the setting
of assumption-enforcement requires some technical adaptation to the construction, but the
overall idea is analogous. More details can be found in Appendix A.

To summarize, enforcement as defined above is intractable for ABA, although quite
straightforward in the AF case. Note that this happens even though we considered a natural
translation of the very basic notion of enforcement into the realm of ABA. The intuitive
reason is that the abstract investigation of enforcement is free to consider any conceivable
new argument, while we have to abide by rules imposed by the given knowledge base.

4.2 Strong Equivalence

In this section, we discuss strong equivalence for ABA. Notice that we consider strong
equivalence relative to different fragments of ABA.

Definition 4.6. Consider a fragment C of ABA frameworks. Two ABA frameworks D,D′ ∈
C are strongly equivalent to each other with respect to a semantics σ iff

1. σ(D ∪H) = σ(D′ ∪H) for each H ∈ C; and

2. D ∪H and D′ ∪H are instances of C.

Example 4.7. Consider the situation after Antoine changed his argument to x′2, i.e., we
have D′ = {L′,A′,R′, } with

L′ = {c, c, m, t, t} A′ = {c, t} R′ = {r1 : m← c., r′2 : c← t.}

and corresponding AF

FD′ : x1 x2 c t

576

On Dynamics in Structured Argumentation Formalisms

As a final variation of this example, suppose Antoine just says he doesn’t want to go to the
cinema without any condition, i.e., he simply claims

x2, again revised: “I will watch the trailer, but I prefer not to go to the cinema.”

This yields D′′ with

L′′ = {c, c, m, t, t} A′′ = {c, t} R′′ = {r1 : m← c., r′′2 : c← .}

Since at this point there is no counter-argument to t anyway, this does not make any dif-
ference for the underlying AF:

FD′′ : x1 x2 c t

Since FD′ and FD′′ coincide, they are trivially strongly equivalent. However, this is not
true for the underlying ABA frameworks which is shown by our previous expansion with
H = ({t, ∅, {t← .}, ∅}): In D′ ∪H, the atom c is rejected; in D′′ ∪H it is accepted (c is a
fact in D′′).

As the attentive reader might already anticipate, we infer intractability again. By
adapting the proof of Theorem 4.5 we obtain the following result (cf. Appendix A).

Theorem 4.8. Deciding whether two ABA frameworks are strongly equivalent w.r.t. a given
semantics σ ∈ {gr , co, pr , stb} is coNP-hard.

As in the case of enforcement, this is in contrast to the (syntactical and tractable) kernel
characterizations of strong equivalence for the AF case (Oikarinen &Woltran, 2011). Again,
the reason for this discrepancy can be identified by making an analogous observation: Strong
equivalence in the AF case can be decided by a simple syntactical characterization because
the many possible ways to extend the two given AFs will almost always yield some way to
distinguish them. This is why the answer is almost always negative and the procedure from
(Oikarinen & Woltran, 2011) identifies the rare cases where non-identical AFs are strongly
equivalent.

In our setting, however, the given knowledge base restricts the possible expansions and
their impact on the updated knowledge base. This is why the possible modifications are
harder to identify and the problem becomes intractable. Our analysis in this section also
reveals that the research conducted for dynamics in Dung-AFs cannot be applied directly
to the instantiated AF. This observation is the driving force for the subsequent sections.

4.3 Excursus: ABA SE-Models

Strong equivalence for logic programs under stable model semantics has been characterized
using the Logic of Here and There (Lifschitz et al., 2001) and later simplified by means
of so-called SE-models (Turner, 2001). Since ABA is known to be closely related to logic
programming (Sá & Alcântara, 2021), the question arises whether there is a similar charac-
terization for ABA frameworks under stable semantics. In this subsection, before moving
on to developing our instantiation technique for dynamics, we will answer this question
affirmatively.

577

Rapberger & Ulbricht

Both our notion of SE models as well as the proof of the strong equivalence characteri-
zation are similar in spirit to their LP counterparts. In LPs, semantics are constructed by
guessing a suitable set of atoms and then constructing the reduct of the given program w.r.t.
the candidate set. Let us first settle how we can proceed analogously for ABA frameworks.

To this end we use the notion of so-called candidate sets. Intuitively, a candidate set X
corresponds to a set of atoms in L which we view as accepted. Assumptions only occur in
a candidate set whenever they are the contrary of some other assumption. Thus, candidate
sets consist of all kinds of atoms p ∈ L \ A and assumptions a ∈ A whenever necessary in
order to encode some contrary.

Definition 4.9. Let D = (L,R,A,) be an ABA framework. A set X ⊆ L is called a
candidate set if a ∈ X for some a ∈ A implies a ∈ A. A candidate set X is conflict-free if
there is no assumption a ∈ X with a ∈ X.

Example 4.10. Let D = (L,R,A,) be the ABA framework where L = {a, b, p, q, b},
A = {a, b}, and a = b. The set X = {p, q, b} is a conflict-free candidate set which can be
seen since X does not contain any assumption; Y = {b} = {a} is a candidate set since b is
a contrary (the contrary of a); Z = {p, q, a} is no candidate set.

Now the decisive step is to construct the reduct DX of an ABA framework which par-
tially evaluates X and then returns some ABA framework without any assumptions left.

Definition 4.11 (ABA reduct). Let D = (L,R,A,) be an ABA framework and X ⊆ L a
candidate set. The reduct of D w.r.t. X is the ABA framework DX = (L,RX , ∅, ∅) where
the set RX of rules is given as

RX = {head(r)← body(r) \ A | r ∈ R, A ∩ body(r) ∩X = ∅}
∪ {a← . | a ∈ X ∩ A}.

Observe in particular that DX for some candidate set X does not contain any assump-
tions (although it contains atoms which are assumptions in the initial ABA framework D).
Note how DX corresponds to evaluating the assumptions in D according to X: rules relying
on negated assumptions get removed, whereas the assumptions in X are added as facts, i.e.,
they are not considered defeasible anymore in DX . Now we define the notion of a model of
a framework without any assumption.

Definition 4.12 (Model). Let D = (L,R,A,) be an ABA framework with A = ∅. A
candidate set X is a model of D, denoted by X ⊨ D, if ThD(∅) ⊆ X.

Now we can evaluate D in a two-step procedure:

� Guess some conflict-free candidate set X;

� compute DX and check whether X ⊨ DX holds.

Example 4.13. Let D = (L,R,A,) be the ABA framework where L = {a, b, p, q, b},
A = {a, b}, and a = b. Moreover let R be the set

R : p← a. q ← p. b← q.

578

On Dynamics in Structured Argumentation Formalisms

of rules. Consider the candidate set X = {p, q, b}. The reduct w.r.t. X contains the rules

RX : p← . q ← p. b← q.

In particular, X ⊨ DX since ThDX (∅) = {p, q, b}. Moreover, {a} ∈ stb(D) with ThD({a}) =
X ∪{a} corresponding to the candidate set. Analogously, let Y = {a} (which is the assump-
tion b). Then DY contains the rules

RY : q ← p. b← q. a← .

with ThDY (∅) = {a} = Y , i.e., Y ⊨ DY . Note that {b} ∈ stb(D) as well.

Indeed, candidate sets and their relation to the corresponding reduct are related to stable
extensions in D. Before proving this, we require the following auxiliary lemma.

Lemma 4.14. Let D = (L,R,A,) be an ABA framework, let X be a conflict-free candidate
set, and let S = {a ∈ A | a /∈ X}. Then ThD(S) ⊆ ThDX (∅).

Proof. Let p ∈ ThD(S). Then, S ⊢R p for some set R of rules where r ∈ R implies
body(r) ∩ {a ∈ A | ā ∈ X} = ∅. That is, body(r) ∩ A ∩ X = ∅. Hence for each r ∈ R we
have head(r) ← body(r) \ A occurring in RX . Therefore, the same inference can be done
in DX , even without any assumption. Thus p ∈ ThDX (∅).

The relation between candidate sets and stable extensions is as follows.

Proposition 4.15. Let D = (L,R,A,) be an ABA framework.

� Let X be a conflict-free candidate set. If X is a minimal model of DX , then for
S = {a ∈ A | a /∈ X} we have S ∈ stb(D).

� If S ∈ stb(D), then X = ThD(S) \ {a ∈ A | a /∈ A} is a conflict-free candidate set
forming the minimal model of DX .

Proof.

� Suppose X is a as described and let S = {a ∈ A | a /∈ X}.

(conflict-free) Assume a ∈ ThD(S) for some a ∈ A. By Lemma 4.14 a ∈ ThDX (∅).
Since X is a model of DX we get ThDX (∅) ⊆ X. Consequently a ∈ X and thus, a /∈ S
by choice of S.

(stable) Now suppose a /∈ S. By choice of S we must have a ∈ X.

– First suppose a is no assumption, i.e., a ∈ L \ A. Since X is a minimal model
of DX we deduce a ∈ ThDX (∅). Hence a is derivable from the rules satisfying
body(r) ∩ A ∩X = ∅, i.e., a ∈ ThD(S) again by choice of S.

– Now let a ∈ A. Since X is a conflict-free candidate set, the contrary of a does
not occur in X. Hence by construction of S we have a ∈ S.

579

Rapberger & Ulbricht

� Let S ∈ stb(D).

(candidate set) The set X = ThD(S) \ {a ∈ A | a /∈ A} contains only assumptions
which in turn are contrary of other assumptions.

(conflict-free) Since S is stable, ThD(S) does not contain a whenever a ∈ S.

(model of DX) Let p ∈ ThDX (∅). If p ∈ A, then p ∈ X by construction of DX .
Otherwise, p can be entailed from the set {r ∈ R | body(r) ∩ A∩X = ∅} of rules, i.e.,
from rules whose body elements contain no assumption in S. By definition of stable
semantics, p ∈ ThD(S) for all atoms p ∈ L that only rely on the above set of rules.
Since we assume p to be no assumption, p ∈ X follows.

(minimal model) If X and S are as above, then in turn S = {a ∈ A | a /∈ X} and
thus, Lemma 4.14 is applicable. We get

X \ A = ThD(∅) \ A ⊆ ThDX (∅) \ A

and thus the claim for each p ∈ X \A. The case p ∈ A is by construction of DX .

Now let us turn our attention towards dynamic scenarios. First, the notion of candidate
sets and models of ABA frameworks is compatible with the union of ABAs in the following
sense.

Proposition 4.16. Let D and D′ be two ABA frameworks. If X is a candidate set, then

� (D ∪D′)X = DX ∪ (D′)X ,

� X ⊨ (D ∪D′)X iff X ⊨ DX and X ⊨ (D′)X .

Proof. This is clear.

Moreover, the bigger the candidate set X, the fewer atoms can be entailed from DX .
However, observe that this is not the case for assumptions occurring in the candidate set
since they are added to the respective reduct as facts. Formally, we have the following
relation.

Proposition 4.17. Let D = (L,R,A,) be an ABA framework and X ⊆ Y two candidate
sets. Then ThDY (∅) \ A ⊆ ThDX (∅) \ A.

Proof. Let p ∈ ThDY (∅) s.t. p is no assumption. Hence p can be entailed from the set

RY = {head(r)← body(r) \ A | r ∈ R, A ∩ body(r) ∩ Y = ∅}

of rules. Clearly,

RY = {head(r)← body(r) \ A | r ∈ R, A ∩ body(r) ∩ Y = ∅}
⊆ {head(r)← body(r) \ A | r ∈ R, A ∩ body(r) ∩X = ∅}
= RX ,

i.e., p can be entailed from RX as well. We deduce p ∈ ThDX (∅) \ A.

580

On Dynamics in Structured Argumentation Formalisms

Observe that in the previous proposition, A is the set of assumptions occurring in the
initial ABA framework. Hence when removing A from ThDY (∅), we remove those atoms
which are assumptions in D; DY itself does not contain any assumption by construction of
the reduct.

Now let us define SE-models of ABA frameworks. With the notations we have estab-
lished, they are similar to SE-models for LPs.

Definition 4.18. Let D = (L,R,A,) be an ABA framework. Let X and Y be two conflict-
free candidate sets. The tuple (X,Y) is called an SE-model for D if

� X ⊆ Y ,

� X ⊨ DY ,

� Y ⊨ DY .

If (X,Y) is an SE-model of D and X ̸= Y , then X ⊊ Y and hence, Y is no minimal
model of DY . On the other hand, if (Y, Y) is the only SE-model with Y in the second
component, then Y is indeed a minimal model of DY . Hence given Proposition 4.15, a
candidate set Y corresponds to some stable extension of D iff (Y, Y) is an SE-model and
there is no other SE-model of D of the form (X,Y) with X ̸= Y .

Next we show that SE-models indeed characterize strong equivalence of ABA frame-
works. We require one further auxiliary results before proving the main theorem of this
subsection.

Lemma 4.19. Let D = (L,R,A,) be an ABA framework and (X,Y) be an SE-model of
D. Then X ∩ A = Y ∩ A.

Proof. Due to X ⊆ Y , the ⊆-direction is immediate. For (⊇), suppose a ∈ Y is an
assumption. Then a ∈ ThDY (∅) and hence, X ⊨ DY implies a ∈ X.

Theorem 4.20. Two ABA frameworks D = (L,R,A,) and D = (L,R′,A,) are strongly
equivalent w.r.t. stb semantics iff they have the same SE-Models.

Proof. (⇐) Given H we have to show that D ∪H and D′ ∪H are equivalent.

Let X be conflict-free and a minimal model of (D∪H)X . Then X is a model of DX∪HX

and hence a model of both DX and HX . From X ⊨ DX it follows that (X,X) is an SE-
model of D. By assumption, (X,X) is also an SE-model of D′ and thus, X is a model of
(D′)X . Thus, it is a model of (D′ ∪H)X (as shown above, X is a model of HX).

Suppose X is not minimal. Then there is some Z ⊊ X s.t. Z is a model of (D′ ∪H)X .
Then Z is a model of (D′)X . From Z ⊆ X and the two conditions Z ⊨ (D′)X andX ⊢ (D′)X

it follows that (Z,X) is an SE-model of D′. Hence it is an SE-model of D by assumption
and thus, Z is a model of (D ∪H)X , contradicting the choice of X.

(⇒) Suppose (X,Y) is an SE-model of D, but not of D′.

(case 1: Y is no model of (D′)Y). Let H be the ABA framework induced by the rules
{y ← . | y ∈ Y \ A}, i.e., H = (Y,RH , ∅, ∅) with

RH = {y ← . | y ∈ Y \ A}.

581

Rapberger & Ulbricht

Since Y is no model of (D′)Y , it is also no model of the Y -reduct (D′ ∪H)Y = (D′)Y ∪HY .
On the other hand, Y is a minimal model of D and hence also a minimal model of the Y -
reduct (D ∪H)Y , i.e., by applying Proposition 4.15 we find that H is our counter-example
for strong equivalence of D and D′.

(case 2: Y is a model of (D′)Y).
Recall that due to Lemma 4.19, X and Y agree on their assumptions, i.e., if p ∈ Y \X,

then p /∈ A. Let H be the ABA framework induced by the rules

RH = {x← . | x ∈ X \ A} ∪ {p← q | p, q ∈ Y \X},

i.e., H = (X \ A ∪ Y \X,RH , ∅, ∅). Since X ⊆ Y , we infer that Y is a model of HY and
thus, a model of (D′ ∪H)Y as well.

Suppose Z ⊆ Y is a model of (D′ ∪H)Y = (D′)Y ∪HY . By choice of H, we must have
X \ A ⊆ Z \ A; otherwise Z would not be a model of HY . Since (X,Y) is no SE-model of
D′, X is no model of (D′)Y (the other conditions are met). Since X and Y agree on their
assumptions, the reason must be some ordinary atom. Thus X \ A ̸= Z \ A, i.e., there is
some p ∈ Y \X with p ∈ Z, but p /∈ A. Hence, the rules “p ← q” with p, q ∈ Y \X in H
are active in Z and thus, we must have Y \X ⊆ Z since otherwise Z would not be a model
of H. We therefore have Y \A ⊆ Z \A. Moreover, Y ∩A ⊆ Z ∩A must hold by definition
of (D′ ∪H)Y , for otherwise Z would not be a model of the reduct. Consequently, Y ⊆ Z.
Hence we deduce that Y is a minimal model of (D′ ∪H)Y .

On the other hand, X ⊊ Y s.t. X is a model of (D ∪H)Y , i.e., Y is no minimal model
of (D ∪H)Y = DY ∪H and H is the required counter-example.

Example 4.21. Let D = (L,R,A,) and D′ = (L,R′,A,) be the ABA frameworks where
L = {a, b, p, a, b}, A = {a, b}, and the rules are given as

R : a← b. b← a. b← p.

R′ : a← b. b← a.

As adding a novel rule p← . would witness, D and D′ are not strongly equivalent. Therefore,
their SE models must differ. Indeed, consider (Y, Y) with Y = {a, p}. This is no SE model
of D since DY contains the rules

RDY : a← . b← p.

and hence b ∈ ThDY (∅), but b /∈ Y , i.e., Y ⊭ DY . On the other hand, (D′)Y contains only
the rule

R(D′)Y : a← .

So Y ⊨ (D′)Y and (Y, Y) is an SE-model of D′. It is therefore rightfully spotted that D and
D′ are not strongly equivalent (and the SE model Y of D′ also reflects the responsibility of
the atom p).

Due to the close relation between our ABA fragment of consideration and LPs, it is
not surprising that a characterization of strong equivalence of this kind can be found. The
additional difficulty lies in the handling of the assumptions in our candidate set X, but for
the most part, our proof technique follows (Turner, 2001).

582

On Dynamics in Structured Argumentation Formalisms

5. An Abstract Instantiation Procedure for Dynamic Reasoning

In this section we will augment the standard ABA instantiation procedure with some addi-
tional information in order to make it better suitable for dynamic scenarios. Thereby, we
will obtain so-called cvAFs (“claim and vulnerability augmented AFs”) which extend AFs
with additional information concerning the occurring arguments. It is, however, clear that
an exact correspondence of the reasoning problems in ABA and cvAFs would again yield
an intractable notion of enforcement and strong equivalence. This is why our cvAFs will
be developed in a way that they carry just enough information in order to correspond to a
meaningful fragment of ABA, while the aforementioned tasks stay tractable. This way, we
obtain tractable fragments for Theorems 4.5 and 4.8.

Instantiated Arguments. Our cvAFs incorporate a crucial observation regarding the
instantiations of knowledge bases which adhere well-formedness: arguments are typically
characterized by their claim and their potential weaknesses (vulnerabilites) on which they
can be attacked. In contrast, usual AF instantiations of knowledge bases disregard this
information and output an abstract AF.

In ABA, the claim cl(x) of an instantiated argument x is the conclusion of an argument
(as expected) and the vulnerabilities vul(x) correspond to the contraries of the assumptions
used to derive the claim: for an argument S ⊢ p we have cl(x) = p and vul(x) = S.

However, note that this representation is not restricted to ABA. The vulnerabilities of
arguments obtained from logic programs correspond to the negated atoms of the rules used
in the construction. For logic-based argumentation, the vulnerabilities of an argument can
correspond to the set of negated premises or even all formulas equivalent to it, also the con-
clusion of an argument can be a vulnerability (Gorogiannis & Hunter, 2011); for ASPIC+,
we furthermore consider the negation of defeasible rules as part of the vulnerabilities. In-
stantiated arguments thus provide a uniform representation for arguments with claims and
defeasible elements.

Definition 5.1. Given a set L of sentences, an instantiated argument is a tuple x =
(vul(x), cl(x)) where vul(x) ⊆ L are the vulnerabilities and cl(x) ∈ L is the conclusion
of x. For a set X of instantiated arguments we let cl(X) =

⋃
x∈X{cl(x)}.

As mentioned above, in ABA frameworks we obtain instantiated arguments as follows:

for an ABA argument S ⊢ p, we obtain the instantiated argument (S, p).

We are ready to formally introduce cvAFs as generalization of AFs by replacing abstract
arguments with instantiated arguments.

Definition 5.2. A cvAF is a tuple F = (A,R) where A is a set of instantiated arguments
and R ⊆ A×A.

An example of a cvAF is given by the representation of our running example as cvAF
(cf. FD below). Here, each argument contains its vulnerabilities (left) and its conclusion
(right, in boldface), e.g., argument x1 has a single vulnerability c and conclusion m.

FD : x1 x2 a b 7→ FD : c | m
x1

t | c
x2

c | c
c

t | t
t

583

Rapberger & Ulbricht

cvAFs and AFs. When we remove claim and vulnerabilities of the cvAF and interpret
the arguments as abstract entities we obtain a direct correspondence between cvAFs and
usual Dung-style AFs. Hence our cvAFs are a proper generalization of AFs.

Notation 5.3. For a cvAF F = (A,R), we let F = (A,R) denote the corresponding AF.

The basic concepts we introduced for AFs naturally transfer to cvAFs, simply because
they can be viewed as AFs themselves (by ignoring the structure of the instantiated argu-
ments). For example, the set E+ of arguments attacked by E ⊆ A in a cvAF F = (A,R)
is E+ = {a ∈ A | ∃e ∈ E : (e, a) ∈ R}. Analogously, the characteristic function of F is
defined as ΓF (E) = {a ∈ A | E defends a}. We also define the semantics of F by means of
the underlying AF. This can be done in terms of arguments or claims.

Definition 5.4. Given an cvAF F and an AF semantics σ. We let

� σ(F) = σ(F) denote the σ-argument-extensions and

� σcl (F) = {cl(E) | E ∈ σ(F)} denote the σ-conclusion-extensions of F .

Well-formed cvAFs. We consider a crucial property based on the following observation
that appears in many structured argumentation formalisms: outgoing attacks usually de-
pend on the conclusion of the attacking argument while incoming attacks are characterized
by the vulnerabilities. This means that arguments with conclusion p attack all arguments
with vulnerability p. We call a cvAF adhering to this property well-formed.

Definition 5.5. A cvAF F = (A,R) is called well-formed if (x, y) ∈ R iff cl(x) ∈ vul(y)
for each x, y ∈ A.

Remark 5.6. The term well-formedness has been coined in the context of claim-focused
argumentation (Dvořák & Woltran, 2020) and formalizes that arguments with the same
conclusion attack the same arguments. We note that a cvAF can be well-formed in the sense
of (Dvořák & Woltran, 2020) without adhering to the requirement from Definition 5.5. In
our formulation, we exclude situations in which arguments are attacked without having the
claim of the attacker as vulnerability. Hence, the adaption of the concept of well-formedness
to cvAFs as presented in Definition 5.5 is more restrictive; however, it takes the attack
construction of the underlying knowledge base into account. With our adaption, we capture
the intuition that an attack must be justified by the presence of vulnerabilities.

cvAFs and ABA frameworks. Let us now see or formalism at work when applied to
ABA frameworks. We adapt the standard instantiation (cf. Definition 2.5) as follows.

Definition 5.7. For an ABA framework D, FD = (A,R) is the cvAF with instantiated
arguments A = {(S, p) | S ⊢ p} and (x, y) ∈ R iff cl(x) ∈ vul(y).

Our cvAF instantiation is a faithful generalization of the usual one. By construction of
the attack relation in ABA we obtain that each cvAF is well-formed.

Proposition 5.8. For each ABA D, its associated cvAF FD is well-formed.

Moreover, the instantiation preserves the semantics from the original instance.

584

On Dynamics in Structured Argumentation Formalisms

Proposition 5.9. Let D be an ABA framework and FD its associated cvAF. For each
σ ∈ {gr , co, pr , stb}, it holds that σTh(D) = σcl (FD) and σ(D) = {S ∩ A | S ∈ σcl (FD)}.

Proof. Since our cvAF instantiation generalizes the standard instantiation, the results also
apply to our case. By Proposition 2.6, it holds that (i) if E ∈ σ(FD) then asms(E) ∈ σ(D);
and (ii) if S ∈ σ(D) then {S′ ⊢ p | ∃S′ ⊆ S,R ⊆ R : S′ ⊢R p} ∈ σ(FD). By definition
of ThD, we obtain σTh(D) = σcl (FD). Moreover, when restricting the extensions to the
conclusions that correspond to assumptions, we obtain σ(D) = {S ∩A | S ∈ σcl (FD)}.

Example 5.10. When instantiating our ABA frameworks D and D′ from Example 1.1 as
cvAFs, we obtain the following results:

FD : c | m
x1

t | c
x2

c | c
c

t | t
t

FD′ : c | m
x1

| c
x2

c | c
c

t | t
t

Comparing these with our AF instantiations from Example 1.1, we observe a crucial differ-
ence: while the AFs corresponding to D and D′ are identical, the cvAFs FD and FD′ differ:
the argument x2 has vulnerability vulD(x2) = {t} in FD but no vulnerabilities in FD′.

Since our formalism of interest yields well-formed cvAFs, we restrict our studies to
well-formed cvAFs only.

Assumption 5.11. In the remainder of this work, we assume that each cvAF is well-
formed.

cvAFs and Dynamics. We are ready to investigate dynamics in structured argumenta-
tion by means of cvAFs. Suppose we are given a knowledge base K and the instantiated
cvAF FK. If we want to move to a superset K∪H we can construct FK∪H immediately by
inspecting the relevant conclusions and vulnerabilities.

Definition 5.12. Given a cvAF F = (A,R) and an instantiated argument x we define the
expansion fe(F , x) of F with x by letting fe(F , x) = (A ∪ {x}, Rx) be the cvAF where

Rx = R ∪ {(x, y) | y ∈ A, cl(x) ∈ vul(y)}
∪ {(y, x) | y ∈ A, cl(y) ∈ vul(x)}.

We stipulate that fe(F , X) is a shorthand for successively expanding F with each x ∈ X in
an arbitrary order.

Example 5.13. Consider the cvAF F with mutually attacking arguments x1 = ({a, b}, c)
and x2 = ({c, d, e}, a). The expansion of F with argument x3 = ({a}, c) induces the attacks
(x3, x1) and (x2, x3). We depict both cvAFs below.

F : a, b | c
x1

c, d, e | a
x2

fe(F , x3) : a, b | c
x1

c, d, e | a
x2

a | c
x3

585

Rapberger & Ulbricht

cvAFs and Atomic ABA Frameworks. Our cvAFs are closely related to a certain
class of ABA frameworks.

Definition 5.14. Let (L,R,A,) be an ABA framework. A rule r is atomic if body(r) ⊆ A.
The ABA framework is atomic if each rule r ∈ R is atomic.

There are several decisive observations we make about atomic ABA frameworks.

Lemma 5.15. Given an atomic ABA D = (L,R,A,) and the corresponding cvAF FD.

� for each atomic rule r = p← S, in D we have FD∪{r} = fe(FD, x) with x = (S, p);

� for each x = (S, p), we have FD∪H = fe(FD, x) with H = (L, {p← S}, S,).

By moving from general to atomic ABA we do not lose expressive power; each framework
can be transformed into an atomic one, which makes this fragment particularly interesting.

Proposition 5.16. For each ABA D there is an atomic ABA D′ such that σ(D) = σ(D′)
for each semantics under consideration.

Proof. The underlying idea is that for a given ABA D = (L,R,A,), we can construct a
corresponding atomic ABA D′ = (L,R′,A,) by iteratively replacing rules r : p ← S that
contain non-assumptions in their body, i.e., some s ∈ S \ A, by rules r′ : p ← (S \ {s}) ∪
body(s), until a fixed point is found.

We prove this statement via a small detour over cvAF instantiations: First, instantiate
D as cvAF FD and mark all arguments that stem from non-assumptions (i.e., all arguments
that are not of the form (a, a) for some a ∈ A). Second, by Lemma 5.15, each argument
x = (S, p) in FD corresponds to an atomic ABA H = (L,R′′,A′′,) with R′ = {p ← S}
and A′ = S. We extract our atomic ABA by transforming each argument that stems from
a non-assumption to an atomic ABA H and form the union of all such ABAs to obtain
D′. Lastly, we add potentially missing assumptions (assumptions that do not appear in
the body of any rule) to our set of assumptions. Proposition 5.8 guarantees the semantical
correpondence of D and D′.

We mention, however, that this transformation might result in an exponential blow-up
in the number of rules. However, given an atomic ABA framework D we can be sure that
the instantiated cvAF FD is of linear size in D.

Proposition 5.17. If D = (L,R,A,) is atomic, then the cvAF FD consists of |R|+ |A|
arguments.

Example 5.18. Let D be our running example and FD its instantiated cvAF as depicted
above. Adding a fact “t.” yields an additional instantiated argument x3 = (∅, t): Since FD

rightfully encodes that conclusion t is a threat to x2, the instantiation of the resulting ABA
framework can be directly computed from FD by adding the argument x3 = (∅, t).

fe(FD, x3) : c | m
x1

t | c
x2

c | c
c

t | t
t

| t
x3

586

On Dynamics in Structured Argumentation Formalisms

If we consider instead the expansion of FD′ instantiated from the ABA framework D′ from
Example 1.1 with the same argument x3, we obtain the following picture:

fe(FD′ , x3) : c | m
x1

| c
x2

c | c
c

t | t
t

| t
x3

We obtain a similar cvAF, but x2 does not have any vulnerability. Hence we are indeed able
to distinguish the two instantiations as desired.

6. Making the Enforcement Problem Tractable

In this section we develop a notion of the enforcement problem for cvAFs and establish
criteria for deciding enforceability. At first glance, this yields results applicable to atomic
ABAs due to Lemma 5.15; however, we will discuss some subtle details of the notions which
one needs to be aware of.

We note that we do not restrict the space of possible expansions in our analysis. That
is, we assume that each potential argument can be added to a given cvAF.

6.1 Claim and Argument Enforcement in cvAFs

In line with our enforcement notion from Definition 4.2, we define conclusion enforcement
for cvAFs by requiring that no new argument with the target conclusion is introduced. In
addition, we introduce a natural notion of argument enforcement.

Definition 6.1. Let F = (A,R) be a cvAF and σ a semantics. We say that

� a conclusion p is σ-enforceable in F if there is a set X of instantiated arguments s.t.
p /∈ cl(X) and p is credulously accepted in fe(F , X);

� an argument x ∈ A is σ-enforceable in F if there is a set X of instantiated arguments
s.t. cl(x) /∈ cl(X) and x is credulously accepted in fe(F , X).

Example 6.2. Let FD be our running example cvAF and consider the expansion fe(FD, x3)
with x3 = (∅, t) (cf. Example 5.18). Since co(fe(FD, x3)) = {{c, x1, x3}} with cl(x1) = m
we obtain that conclusion m is co-enforceable.

In the following we establish criteria to decide whether arguments and conclusions are
enforceable in cvAFs. By definition, it suffices to focus on argument enforcement:

Proposition 6.3. Let F = (A,R) be a cvAF and σ a semantics. A conclusion c ∈ cl(A)
is enforceable iff there is some x ∈ A with cl(x) = c s.t. x is enforceable.

The possible modifications of a cvAF are determined by the conclusions and vulnerabil-
ities of its arguments. It is thus not possible to consider arbitrary expansions. We already
saw this for our running example FD′ where a is not enforceable since it is attacked by some
argument without any vulnerability (cf. Example 5.18).

In general, arguments without any vulnerability will always be accepted in complete-
based semantics; and thus, all arguments they attack will be defeated. This is not only
the case within the given cvAF, but also for any conceivable expansion. Motivated by this
observation, we call the affected arguments strongly defeated.

587

Rapberger & Ulbricht

Definition 6.4. For a cvAF F = (A,R), x ∈ A is strongly defeated if there is y ∈ A with
(y, x) ∈ R and vul(y) = ∅.

Example 6.5. In our running example involving the cvAF that results from an instantiation
of D′, the argument x1 is strongly defeated. In fact, it is verifiable with reasonable effort
that x2 is part of the grounded extension in any possible expansion fe(F , X).

The following proposition formalizes that the behavior we observed in the previous
example generalizes to any cvAF and verifies our intuition about strong defeat.

Proposition 6.6. Let F = (A,R) be a cvAF. If x ∈ A is strongly defeated, then for each
set X of instantiated arguments, the grounded extension of fe(F , X) attacks x.

Consequently, we infer that strongly defeated arguments can never be enforced. It
is therefore a reasonable conjecture that an argument is enforceable iff it is not strongly
defeated. However, as the following example illustrates, the notion of strong defeat is not
yet general enough.

Example 6.7. Consider the cvAF F depicted below.

F : p, q | r
x1

q | p
x2

s | q
x3

q | s
x4

Suppose we want to enforce x1. In order to achieve this goal we have to add an argument
defeating x2. However, the only vulnerability of x2 is q and due to q ∈ vul(x1), such an
argument would defeat x1 as well.

In general, if there is some argument y with (y, x) ∈ R and vul(y) ⊆ vul(x), then x can
never be defended by a conflict-free set. We call arguments of this kind strongly unacceptable
since this holds also true for any expansion.

Definition 6.8. For a cvAF F = (A,R), x ∈ A is strongly unacceptable if there is
y ∈ A with (y, x) ∈ R and vul(y) ⊆ vul(x). In this case, we call y the witness for strong
unacceptability of x.

By definition, each strongly defeated argument is strongly unacceptable. For σ ∈
{co, pr , stb} we are now ready to state our enforcement results.

Theorem 6.9. Let F = (A,R) be a cvAF and suppose σ ∈ {co, pr , stb}. An argument
x ∈ A is σ-enforceable if and only if it is not strongly unacceptable.

Proof. (⇒) Suppose x is strongly unacceptable and let x ∈ A with (y, x) ∈ R and vul(y) ⊆
vul(x). Assume that in some expansion fe(F , X) we have x ∈ E for E ∈ ad(fe(F , X)).
Since E defends x, E attacks y. Due to vul(y) ⊆ vul(x), E attacks x as well; contradiction.

(⇐) Suppose x is not strongly unacceptable. First consider σ ̸= stb. Then x is no
self-attacker since otherwise it would be strongly unacceptable: Let y := x and we get
(y, x) ∈ R and vul(y) ⊆ vul(x). So let y1, . . . , yn be the set of arguments in F attacking
x which are not counter-attacked by x, i.e., we have cl(x) /∈ vul(yi). Moreover, for each
i we have vul(yi) \ vul(x) ̸= ∅ since x is not strongly unacceptable. Consider some pi ∈

588

On Dynamics in Structured Argumentation Formalisms

vul(yi) \ vul(x) ̸= ∅ for each i. Let xi = (pi, ∅) be unattacked instantiated arguments with
the pi as respective claim. Set X = {x1, . . . , xn}. It is straightforward to see that x ∪X is
admissible in fe(F , X). By choice of the yi, cl(x) /∈ cl(X).

Now let σ = stb. Here in addition we need to ensure that there is at least one extension
in our expansion. We will proceed by taking care of each self-attacker as well as each odd
cycle in the given cvAF.

� Let z1, . . . , zm be the set of self-attacking arguments in F (not attacked by x). Suppose
for some i we have vul(zi) ⊆ vul(x). Then since (z, z) ∈ R we also have (z, x) ∈ R
and we infer strong unacceptability of x; contradiction. So we infer vul(zi) ⊈ vul(x)
for each i. Therefore, we can find qi ∈ vul(zi) \ vul(x) ̸= ∅ for each i. Let x′i = (qi, ∅)
be unattacked instantiated arguments with the qi as respective claim. Set X ′ =
{x′1, . . . , x′n}; due to X ′ we have considered each self-attacking argument in F .

� Let O = {o1, . . . , on} be an arbitrary but fixed set of arguments forming an odd cycle
in F (not attacked by x). We argue that there is some oi ∈ O satisfying the usual
condition, i.e., vul(oi) ⊈ vul(x). Otherwise each oi ∈ O attacks x since (oi, oj) ∈ R
implies (oi, x) ∈ R due to vul(oj) ⊆ vul(x) (we get (oi, oj) ∈ R from the fact that
O is a cycle). Then x is strongly unacceptable; a contradiction. So take oi ∈ O
with vul(oi) ⊈ vul(x) and construct an argument x′′ attacking it as usual. Since O
was arbitrary, we proceed like this for each odd cycle, obtaining a third set X ′′ of
arguments.

In fe(F , X ∪X ′ ∪X ′′) the set x∪X ∪X ′ ∪X ′′ is admissible and each odd cycle is resolved.
Due to (Baumann & Ulbricht, 2021, Theorem 5.7), x ∪X ∪X ′ ∪X ′′ can be extended to a
stable extension of F .

For grounded semantics, however, we need to consider further unacceptability notions.
The reason why Theorem 6.9 does not hold for grounded semantics is that an argument
might be capable of defending itself, but still not be part of the iterative procedure which
yields the grounded extension. To illustrate this we consider the following example.

Example 6.10. Suppose we aim to gr-enforce x1 in F :

F : q | p
x1

p | q
x2

Since gr(F) = ∅ we would have to introduce an argument defeating x2 in order defend x1
from the incoming attack. However, such an argument has conclusion p which we want to
avoid for this version of the enforcement notion. Indeed, x1 is not gr-enforceable.

In general, for grounded semantics we require a notion which is similar to strong unac-
ceptability, while taking the special case we just illustrated into account.

Definition 6.11. For a cvAF F = (A,R), x ∈ A is strongly gr -unacceptable if there is
y ∈ A with (y, x) ∈ R and vul(y) \ {cl(x)} ⊆ vul(x). In this case, we call y the witness for
strong gr-unacceptability of x.

589

Rapberger & Ulbricht

Indeed, this condition is violated in Example 6.10: We observe that in this case, we have
vul(x2) \ cl(x1) = {p} \ {p} = ∅. We see that strong gr -unacceptability formalizes that the
only conceivable attacker of y is x itself; any other conclusion attacking y would result in
attacking x as well, similar in spirit to the strong unacceptability notion from above.

The following condition characterizes gr -enforceability for cvAFs. Unfortunately, we
do not get a straightforward characterization of the form “enforceable iff not strongly
gr -unacceptable”. The intuitive reason is as follows. Even though x1 is strongly gr -
unacceptable in Example 6.10, it might be enforceable if another argument z with claim
p was present: In this case, we could try to enforce y which could then in turn defend x1
from x2. For this to be possible, we would have to check our usual requirements for this
conceivable argument y, i.e., can we defend y without also attacking x1? The following
proposition formalizes this intuition.

Proposition 6.12. Let F = (A,R) be a cvAF. An argument x ∈ A is gr-enforceable if and
only if one of the following two conditions hold:

� x is not strongly gr-unacceptable,

� there is some y ∈ A with cl(y) = cl(x) = q such that

– if z attacks y, then vul(z) \ (vul(x) ∪ vul(y) ∪ {q}) ̸= ∅,
– if z attacks x, then q ∈ vul(z) or vul(z) \ (vul(x) ∪ vul(y)) ̸= ∅.

Proof. (⇐) First suppose x is not gr -unacceptable. As usual let w1, . . . , wn be the set
of attackers of x. We have (vul(wi) \ {cl(x)}) \ vul(x) ̸= ∅, so we take one conclusion
pi ∈ (vul(wi)\{cl(x)})\vul(x), introduce corresponding instantiated arguments (pi, ∅) and
obtaining a set X s.t. x is defended by X in fe(F ,W).

Now suppose the second condition is true and consider y ∈ A as described.

� Let z1, . . . , zn be the set of arguments attacking y. As usual, we take conclusions
pi ∈ vul(zi) \ (vul(x) ∪ vul(y) ∪ {q}).

� Let z′1, . . . , z
′
m be the set of arguments attacking x. For each z′i with q /∈ vul(z′i)

consider a conclusion qi ∈ vul(z) \ (vul(x) ∪ vul(y)).

Let Z be the set of instantiated arguments with the considered conclusions as claims and
no vulnerabilities. By construction, Z defends y in fe(F , Z) and defeats each attacker of x
not having q as vulnerability; arguments of this kind are defeated due to y being defended.
That is, Z ∪ {x, y} is part of the grounded extension of fe(F , Z).

(⇒) Suppose both conditions are false, i.e., x is strongly gr -unacceptable and there is
no y satisfying the two mentioned conditions. If x is even strongly unacceptable, we are
done since this would even prevent us from enforcing x w.r.t. co semantics.

So suppose x is not strongly unacceptable, but strongly gr -unacceptable. Then there
is some argument z attacking x and vul(z) \ {q} ⊆ vul(x). Hence, in order for x to be in
the grounded extension, we need to ensure defense of some argument different from x with
claim q. Take some y with cl(y) = q (if none exists, we are done). By assumption, at least
one of the mentioned conditions is wrong.

590

On Dynamics in Structured Argumentation Formalisms

� Suppose vul(z) \ (vul(x) ∪ vul(y) ∪ {q}) = ∅ for some attacker z of y. However, this
means by introducing an argument not having q as conclusion we can never ensure
defeat of z without also defeating either x or y. We cannot introduce arguments which
defeat x and defeating y means we need to move to another y′ having claim q.

� Now suppose some z attacking x with q /∈ vul(z) satisfies vul(z)\(vul(x)∪vul(y)) = ∅.
As before, this means we cannot defend x from z without introducing arguments which
also defeat either x or y; again this means that we need to move to another y′.

Let us now discuss corresponding results for conclusion enforcement. To enforce a
conclusion p ∈ cl(A) we need to enforce an argument x ∈ A with cl(x) = p. Thus, as
a corollary of Theorem 6.9 and Proposition 6.12 we obtain:

Corollary 6.13. Let F = (A,R) be a cvAF and σ ∈ {ad , co, pr , stb}. A conclusion p ∈
cl(A) is σ-enforceable if and only if there is an argument x ∈ A with cl(x) = p and x is not
strongly unacceptable; it is gr-enforceable if and only if there is an argument x ∈ A with
cl(x) = p and x is not strongly gr-unacceptable.

Example 6.14. Recall our introductory examples.

FD : c | m
x1

t | c
x2

c | c
c

t | t
t

FD′ : c | m
x1

| c
x2

c | c
c

t | t
t

In both FD and FD′, x2 and t are accepted on their own. Moreover, in FD we have that

� x1 and c can be enforced by introducing an argument with claim t̄;

� no argument is strongly gr-unacceptable.

In FD′ we have that

� x1 and c are both strongly unacceptable and gr-unacceptable (even strongly defeated)
and thus cannot be enforced.

6.2 Enforcing Sets in cvAFs

In the previous subsection, our investigation was focusing on enforcement of a single claim
resp. argument. Let us now go one step further and consider enforcing sets instead. Inter-
estingly, the results we obtained so far do not generalize to this setting.

Definition 6.15. Let F = (A,R) be a cvAF and σ a semantics. We say that

� a set C of conclusions is σ-enforceable if there is a set X of instantiated arguments
s.t. cl(X) ∩ C = ∅ and C ⊆ E for some E ∈ σcl (fe(F , X));

� a set Y ⊆ A of arguments is σ-enforceable if there is a set X of instantiated arguments
s.t. cl(X) ∩ cl(Y) = ∅ and Y ⊆ E for some E ∈ σ(fe(F , X)).

591

Rapberger & Ulbricht

Again, let us start with argument enforcement. Naturally, our strategy is to utilize our
previously developed techniques in order to enforce all of them simultaneously. For this,
recall strong unacceptability: If x is not strongly unacceptable, then for each attacker y of
x we have

vul(y) \ vul(x) ̸= ∅

which ensures that we can introduce a novel argument z with claim p ∈ vul(y) \ vul(x)
which defends x against y. Now suppose we want to enforce x′ as well. In this case, we
need to defend x against y while also not defeating x′, i.e., we require that

vul(y) \ (vul(x) ∪ vul(x′)) ̸= ∅

in order to proceed analogously.
We turn these observations into a general notion as follows.

Definition 6.16. For a cvAF F = (A,R), x ∈ A is C-compatibly enforceable if for each
attacker y of x we have that vul(y) \ C ̸= ∅.

This notion generalizes strong unacceptability in the sense that x is not strongly unac-
ceptable iff it is vul(x)-compatibly enforceable. We obtain the following characterization
for enforcing sets of arguments. Observe that we do not yet make any statement about gr
semantics. This will be done later.

Theorem 6.17. Let F = (A,R) be a cvAF and suppose σ ∈ {co, pr , stb}. A set X of
arguments is σ-enforceable if and only if each x ∈ X is vul(X)-compatibly enforceable.

Proof. The proof is analogously to the one for Theorem 6.9. Observe that the stronger
condition of vul(X)-compatibility ensures that we can enforce each x ∈ X without defeating
the other arguments we seek to accept.

In view of these results regarding argument enforcement, one might now anticipate the
following procedure for claim enforcement:

� Given a set C of claims, consider a set of arguments X s.t. cl(X) = C;

� check in polynomial time whether X can be enforced.

While the second part is indeed a simple check according to Theorem 6.17, the first item
involves searching for a suitable set X of arguments. This guess indeed renders the problem
intractable. To this end consider the following reduction which will serve as the basis for
our lower bound.

Reduction 6.18. For a CNF formula φ with clauses C = {c1, . . . , cn} over variables in X =
{x1, . . . , xm}, we define the corresponding cvAF F = (A,R) with A = C ∪ {v1, . . . , vm} ∪
{v̄1, . . . , v̄m} where

∀c ∈ C : cl(c) = c vul(c) = {xj | xj ∈ c} ∪ {x̄j | ¬xj ∈ c}
∀1 ≤ i ≤ m : cl(vi) = Ti vul(vi) = C ∪ {x̄i}
∀1 ≤ i ≤ m : cl(v̄i) = Ti vul(v̄i) = C ∪ {xi}

and the induced attack relation. An example of this reduction can be found in Figure 2.

592

On Dynamics in Structured Argumentation Formalisms

c1, . . . , cn, x̄1 | T1

v1

c1, . . . , cn, x1 | T1

v̄1

c1, . . . , cn, x̄2 | T2

v2

c1, . . . , cn, x2 | T2

v̄2

x̄1, x2 | c1
c1

x1, x̄2 | c2
c2

x̄1, x̄2 | c3
c3

Figure 2: Reduction 6.18 applied to the formula ϕ consisting of clauses c1 = {¬x1, x2},
c2 = {x1,¬x2}, c3 = {¬x1,¬x2}

Theorem 6.19. Deciding whether a set C of claims is σ-enforceable for a given cvAF
F = (A,R) and semantics σ ∈ {co, gr , pr , stb} is NP-hard.

Proof. Given a formula ϕ in CNF we construct F = (A,R) as described in Reduction 6.18.
We claim that ϕ is satisfiable iff {T1, . . . , Tm} can be enforced in F .

(⇒) Suppose ω : X → {0, 1} is a satisfying assignment for ϕ. Let

W = {(∅, xi) | ω(xi) = 1} ∪ {(∅, x̄i) | ω(xi) = 0}

be a set of m instantiated arguments. Consider the expansion fe(F ,W). Since the vulnera-
bilities of the ci arguments correspond to satisfying literals, each ci is defeated in fe(F ,W).
Moreover, since W corresponds to a satisfying assignment, for each 1 ≤ i ≤ m we have that
either vi or v̄i is not attacked by W . Hence, cl(W) ∪ {T1, . . . , Tm} ∈ σcl (fe(F ,W)).

(⇐) Let W be s.t. {T1, . . . , Tm} is enforced in fe(F ,W). Then, for each 1 ≤ i ≤ n, we
have xi /∈ cl(W) or x̄i /∈ cl(W) (or both), i.e., cl(W)∩(X∪X̄) corresponds to some (partial)
assignment. Since W must defend the vi arguments against c1, . . . , cn, cl(W) ∩ (X ∪ X̄)
must even correspond to a satisfying assignment. We therefore let

ω : X → {0, 1} ω(xi) = 1⇔ xi ∈ cl(W) ω(xi) = 0⇔ xi /∈ cl(W)

and by this obtain a satisfying assignment ω for ϕ.

We are left to discuss grounded semantics. Indeed, in this case argument enforcement
is already intractable which can be shown by a suitable adjustment to Reduction 6.18. The
intuitive reason why this problem is intractable can be found in the proof of Proposition 6.12:
Recall that in case we cannot defend x directly, we might have to move to some other
argument y having the same claim and then try to defend y additionally. So the procedure
involves guessing a suitable candidate y. By moving to enforcement of sets of arguments,
we would consequently have to guess a set of suitable candidates Y first. Proof details can
be found in Appendix B.

Theorem 6.20. Deciding whether a set X of arguments is gr-enforceable for a given cvAF
F = (A,R) is NP-hard.

593

Rapberger & Ulbricht

6.3 Constrained Enforcement

So far, our enforcement notions were guided by the idea that acceptance of a certain claim
shall be ensured and therefore it makes sense to stipulate that the target claim itself cannot
be introduced. However, from a mere technical point of view, one could forbid any set of
claims, a notion which we consider next. This will, however, turn out to be NP-hard in any
case. While this is bad news on its own, this insight provides important inspirations for the
later Section 6.4 where we find our tractable ABA fragment.

Let us delve into the technicalities.

Definition 6.21. Let F = (A,R) be a cvAF and σ a semantics. We say that

� a set C of conclusions is D-eluding σ-enforceable if there is a set X of instantiated
arguments s.t. cl(X) ∩D = ∅ and C ⊆ E for some E ∈ σcl (fe(F , X));

� a set Y ⊆ A of arguments is D-eluding σ-enforceable if there is a set X of instantiated
arguments s.t. cl(X) ∩D = ∅ and Y ⊆ E for some E ∈ σ(fe(F , X)).

It follows immediately by definition that D-eluding σ-enforceability coincides with the
vanilla enforcement notion if we let D = cl(X); we therefore face a faithful generalization
of the previous version. This observation immediately yields the following lower bounds.

Corollary 6.22. The following problems are NP-hard:

� deciding whether a set X of arguments is D-eluding gr-enforceable for a given cvAF
F = (A,R);

� deciding whether a set C of claims is D-eluding σ-enforceable for a given cvAF F =
(A,R) and semantics σ ∈ {co, gr , pr , stb}.

However, this also holds for the remaining cases and hence, this notion is intractable
for any semantics for both claim and argument enforcement. We can prove this by simply
using the AF complexity standard reduction (Dvořák & Dunne, 2018, Reduction 3.6) and
choosing D in a way that no relevant conclusion can be added. The proof can be found in
Appendix B.

Theorem 6.23. Deciding whether a set X of arguments (a set C of claims) is D-eluding
σ-enforceable for a given cvAF F = (A,R) and semantics σ ∈ {co, gr , pr , stb} is NP-hard.

6.4 Consequences for Assumption-based Argumentation

Let us now head back to ABA. Recall the close correspondence between expansions within
an atomic ABA framework D and expansions of the corresponding cvAF FD as formalized
in Lemma 5.15: Adding an atomic rule to D can be captured by a natural expansion of FD

and vice versa. Hence we would now hope to be able to transfer the tractable enforcement
cases to atomic ABA as well. However, there is still a subtle issue which we did not yet take
into consideration. First of all, although somewhat unexpected given the cvAF results,
any enforcement notion we consider is intractable also for atomic ABAs. Indeed, when
inspecting the construction for the proof of Theorem 4.5 we see that the constructed ABA
framework is itself atomic.

594

On Dynamics in Structured Argumentation Formalisms

Corollary 6.24. Deciding whether assumption a (conclusion p) is enforceable w.r.t. σ ∈
{co, gr , pr , stb} is NP-hard even for atomic ABA frameworks.

So, how is this no contradiction to tractability in cvAFs? The reason is that we always
assume our ABA frameworks to be flat, that is, we are not allowed to augment some
framework D with a rule of the form a← . for some assumption a ∈ A. However, for cvAFs
we do not take this into consideration: Any set X of instantiated arguments induced a valid
expansion fe(F , X). Thus, it might happen that the resulting cvAF does not correspond
to a flat ABA framework anymore due to cl(X) ∩ A ≠ ∅. From a formal perspective this
means there is a set of conclusions (namely the assumptions A) which we are not allowed
to introduce. Thus, translating the cvAF results to ABA would actually yield A-eluding
enforceability which we proved to be intractable in the previous subsection.

So, where is the tractable ABA fragment? To ensure that it is not necessary to introduce
arguments with assumptions as conclusion when enforcing an argument x ∈ A, we consider
a particular fragment of ABA where assumptions do not have outgoing attacks.

Definition 6.25. Let D = (L,R,A,) be an ABA framework. We say D has separated
contraries if A ∩A = ∅.

Now, it follows from the way our enforcement results are derived that we never rely on
introducing arguments without any outgoing attacks. Hence, if D has separated contraries,
we can apply our cvAF results while being certain that our expansions correspond to flat
ABA frameworks, i.e., cl(X) ∩ A ≠ ∅ always holds for any necessary fe(F , X).

Theorem 6.26. Deciding whether an argument or conclusion is enforceable w.r.t. σ ∈
{co, gr , pr , stb} for atomic ABA frameworks with separated contraries is tractable.

Proof. Let (L,R,A,) be an atomic ABA framework with separated contraries. Recall that
by Assumption 2.3, D is flat. We apply Lemma 5.15; from Proposition 2.6 formalizing the
semantics correspondence we can infer that for each p ∈ L we have that p is enforceable
in D iff the conclusion p is enforceable in FD = (AD, RD) disregarding any expansion
fe(F , X) where cl(X) ∩ A ≠ ∅. The proofs given for the enforcement results for cvAFs
only require addition of arguments with outgoing attacks. Since D has separated contraries,
vul(AD)∩A = ∅ and we can assume cl(X)∩A ≠ ∅ in each expansion fe(F , X) without loss of
generality, i.e., the conclusion p is enforceable in FD = (AD, RD) disregarding any expansion
fe(F , X) where cl(X) ∩ A ̸= ∅ iff the conclusion p is enforceable in FD = (AD, RD). We
hence infer p is enforceable in D iff the conclusion p is enforceable in FD = (AD, RD).
Now the claim follows since constructing FD as well as the basic enforcement problem
(Corollary 6.24) is tractable for atomic ABA frameworks.

We also want to mention that by analogously applying Theorem 6.17 we make the same
observation for enforcing sets of arguments (for σ ̸= gr).

Theorem 6.27. Deciding whether a set X of arguments is enforceable for atomic ABAs
with separated contraries is tractable for σ ∈ {co, pr , stb}.

We want to emphasize that moving from ABA to atomic ABA does not change the
complexity class of the basic enforcement problem from Definition 6.1; but additionally
requiring separated contraries does, i.e., we found a rather minor condition pushing the
enforcement problem over the edge to tractability.

595

Rapberger & Ulbricht

Example 6.28. Recall ABA framework D = {L,A,R, } from the discussion between Jane
and Antoine, with the occurring atoms cinema (c), cinema (c̄), expensive (e), expensive
(ē), and movie (m):

L = {c, c, e, e, m} A = {c, e} R = {m← c., c← e., e← .}.

If we instantiate the corresponding cvAF FD we get the following graph.

FD : c | m
x1

e | c̄
x2

| ē
x3

c̄ | c
c

ē | e
e

We now see that x2 is strongly defeated and thus infer that Antoine’s argument x2 is im-
possible to enforce.

Recall that Antoine could also use the following argument x′2 instead:

x′2 : “If I do not like the trailer of this movie, I would prefer not to go to the
cinema.”

Recall D′ = {L′,A′,R′, } where t is the abbreviation for Antoine not liking the trailer:

L′ = {c, c, m, t, t} A′ = {c, t} R′ = {m← c., c← t.}.

This time, we obtain:

FD′ : c | m
x1

t | c̄
x′2

c̄ | c
c

t̄ | t
t

Indeed, we see that now Antoine’s argument is accepted, but Jane can enforce x1 by con-
vincing Antoine that the trailer is nice (bringing forward some argument for t).

Recall the third variant where Antoine just says he doesn’t want to go to the cinema
without any condition. This would yield

FD′′ : c | m
x1

| c̄
x′′2

c̄ | c
c

t̄ | t
t

with strongly defeated x1 and c, i.e., they cannot be enforced.

We therefore see that the results we obtain from modeling the discussion as ABA frame-
work and applying the cvAF results match our intuition.

Remark 6.29. As a final remark in this section, let us mention that we do not lose any
expressive power when insisting on separated contraries; if b = a, then we can always
add a fresh atom p as well as the rule p ← a. and let b = p instead. After this little
modification, a is not a contrary anymore. We note that this modification preserves the
semantics considered in this work under projection to the set of original literals. Combined
with Proposition 5.16 this yields that atomic ABA frameworks with separated contraries
have the same expressiveness as ABA in general.

596

On Dynamics in Structured Argumentation Formalisms

7. Making Strong Equivalence Tractable

In this section, we establish methods to decide strong equivalence for two given cvAFs F
and G. We define further unacceptability notions, tailored for this setting. In accordance
with the standard literature on strong equivalence we then can decide this problem for
two cvAFs by comparing their so-called kernels, that is, we transform both cvAFs into a
semantics-dependent normal form.

Let us point out the following crucial difference: In contrast to strong equivalence char-
acterizations in Dung AFs (Oikarinen & Woltran, 2011), Argumentation frameworks with
collective attacks (SETAFs) (Dvořák, Rapberger, & Woltran, 2019), and claim-augmented
argumentation frameworks (CAFs) (Baumann et al., 2022) where kernels are constructed
by removing redundant attacks, we identify redundant arguments. The kernels in cvAFs are
constructed by removing as well as manipulating arguments that fall in certain redundancy
categories.

We start by defining an appropriate strong equivalence notion for cvAFs.

Definition 7.1. Two cvAFs F , G are strongly equivalent w.r.t. a semantics σ, denoted
F ≡σ

s G, if for each set X of instantiated arguments σcl (fe(F , X)) = σcl (fe(G, X)) holds.

Example 7.2. Consider again the cvAFs FD and FD′ from Example 1.1. Judging from
earlier results we anticipate that they are not strongly equivalent to each other.

Indeed, if we recall the expansions of FD and FD′ from Example 5.18 where we add the
argument x3 = (∅, b) to both frameworks, we obtain that {a, p, b} is stable in fe(FD, x3) but
not in fe(FD′ , x3). Hence FD and FD′ are not strongly equivalent w.r.t. stable semantics.

In the above example, it was quite easy to come up with an appropriate counterexam-
ple. Not only that finding a counterexample might be more involved in other situations,
it is usually not possible to verify strong equivalence by testing all possible expansions be-
cause there might be infinitely many of them. Instead, for each semantics we identify a
specific kernel – checking strong equivalence then reduces to computing and comparing the
respective kernels.

7.1 Redundancies

Let us start with some general observations regarding redundancies of cvAFs. For this, we
first recall a redundancy notion which is also mentioned in the context of claim-augmented
argumentation frameworks (CAFs) (Dvořák & Woltran, 2020). Here redundant arguments
are identified and it is shown that we can safely delete them without changing (some)
semantics. An argument x in a CAF F is called redundant w.r.t. argument y iff they have
the same claim and attack the same arguments, but x is attacked by strictly more arguments
than y, i.e., y− ⊊ x−. This concept is naturally adapted to cvAFs as follows:

Definition 7.3. For a cvAF F = (A,R) and argument x ∈ A is redundant if there is y ∈ A
with cl(y) = cl(x) and vul(y) ⊊ vul(x). In this case, y is called the witness for redundancy
of x.

Example 7.4. The argument x2 from the cvAF FD from our running example is redundant
w.r.t. x = (∅, a) because cl(x) = cl(x2) = a and vul(x) = ∅ ⊊ {b} = vul(x2).

597

Rapberger & Ulbricht

As shown in the literature (Dvořák, Rapberger, & Woltran, 2020), redundant arguments
can be removed without changing the conclusion-σ-extensions of a given CAF for σ ∈
{gr , co, pr , stb}. This immediately translates to cvAFs.

Proposition 7.5. For a cvAF F = (A,R), a semantics σ ∈ {gr , co, pr , stb} and a redun-
dant argument x ∈ A, it holds that σcl (F) = σcl (F \ {x}).

Next, we reconsider the unacceptability notions from Section 6. We have shown that
strongly defeated arguments cannot be enforced; in fact, they can be removed without
changing the σ-extensions.

Proposition 7.6. For a cvAF F = (A,R), semantics σ ∈ {gr , co, pr , stb}, and a strongly
defeated argument x ∈ A, it holds that σcl (F) = σcl (F \ {x}).

Proof. Let F ′ = F \ {x}, and let y with vul(y) = ∅ denote some argument which strongly
defeats x. Observe that y is contained in the grounded extension of both F and F ′. It is
easy to see that the grounded extension of F and F ′ coincide since y ∈ ΓF (∅) defeats x.
Therefore,

Γi
F (∅) ⊆ Γi

F ′(∅) and Γi
F ′(∅) ⊆ Γi+1

F (∅).

We obtain

gr(F) =
⋃
i∈N

Γi
F (∅) =

⋃
i∈N

Γi
F ′(∅) = gr(F ′).

Moreover, E+
F \{x} = E+

F ′ for every set of arguments E which is a superset of the (coinciding)
grounded extension G. Hence ΓF (E) = ΓF ′(E) for each set G ⊆ E. Since each complete
extension is a superset of G, we obtain co(F) = co(F ′). It follows also that preferred
semantics coincide. Regarding stable semantics, we argue analogously since each stable
extension is a superset of G.

For stable semantics we can make an even stronger assertion: Not only strongly defeated,
but also strongly unacceptable arguments can be deleted without affecting the outcome.

Proposition 7.7. For a cvAF F = (A,R) and a strongly unacceptable argument x∈A, it
holds that stbcl (F) = stbcl (F \ {x}).

Proof. Let F ′ = F \ {x} and let x be strongly unacceptable w.r.t. y ∈ A, i.e., cl(x) = cl(y)
and vul(y) ⊆ vul(x). Observe that E ∈ cf (F) iff E ∈ cf (F ′) for every E with x /∈ E;
moreover, x does not belong to any admissible extension of F and F ′, because if E defends
x, then E defeats y and due to vul(y) ⊂ vul(x), E defeats x as well. We obtain that x is
either attacked by an admissible set or undecided. If y is contained in a stable extension,
x is defeated; in case y is not contained in a stable extension, y is attacked and thus also
x is attacked using vul(y) ⊆ vul(x). Consequently, the argument x can be safely removed
without changing the stable extensions of F .

Considering grounded, complete, and preferred semantics, we observe that strongly un-
acceptable arguments are not necessarily defeated – removing them thus potentially results
in a change of the σcl -extensions.

598

On Dynamics in Structured Argumentation Formalisms

Example 7.8. Consider cvAF F from Example 6.7 and a new argument x0 = ({r}, t):

fe(F , x0) : r | t
x0

p, q | r
x1

q | p
x2

s | q
x3

q | s
x4

The resulting cvAF fe(F , x0) has three complete conclusion-extensions: ∅ (the grounded
extension), {s, p, t}, and {q, t}. Recall that x1 is strongly unacceptable w.r.t. x2. Removing
x1 would render x0 unattacked and thus change the grounded extension to {t}.

Strongly unacceptable arguments can neither be enforced nor deleted in such situations.
This means that on the level of semantics, it is not possible to distinguish if such arguments
are self-attacking or not. We show this by proving that the semantics of the cvAF remain
unchanged after turning x into a self-attacker. Formally, this is achieved by removing it
and expanding the resulting cvAF with some argument x′ which is analogously to x, except
having also its claim as vulnerability; formally, x′ = (vul(x) ∪ {cl(x)}, cl(x)).

Proposition 7.9. For a cvAF F = (A,R), a semantics σ ∈ {gr , co, pr , stb}, and a strongly
unacceptable argument x ∈ A, it holds that σcl (F) = σcl (fe(F \ {x}, x′)) for x′ = (vul(x) ∪
{cl(x)}, cl(x)).

Proof. Let F ′ = fe(F \ {x}, x′) and assume x is strongly unacceptable w.r.t. y ∈ A. As
outlined in the proof of Proposition 7.7, x can never appear in an admissible extension. We
moreover observe that E+

F = E+
F ′ for every conflict-free set E, y /∈ E, since (x, x) is the

only attack which has been introduced. We thus obtain adcl (F) = adcl (F ′). Moreover,
the grounded extension is preserved by adding this self-attack since it does not remove nor
introduce new unattacked arguments (or any arguments defended by them). We thus obtain
σcl (F) = σcl (F ′) for σ ∈ {co, gr , pr , stb}.

7.2 Complete Kernel for cvAFs

High level point of view. Strong equivalence for complete semantics can be charac-
terized by comparing the complete kernels we define in this section, i.e., F ≡co

s G iff their
complete kernels coincide (Theorem 7.20). The complete kernel can be computed by the
following procedure: Given F ,

1. turn each strongly unacceptable argument x into a self-attacker (i.e., formally add
cl(x) to the vulnerabilities vul(x)),

2. from the resulting cvAF remove all strongly defeated as well as redundant arguments.

This procedure yields the so-called complete kernel Fck. The main Theorem 7.20 of this
section states that F ≡co

s G iff Fck = Gck.

Technical details. Let us now formally introduce our first kernel. Following Proposi-
tion 7.9, the first adjustment we carry out is a modification on vulnerability level: Each
strongly unacceptable argument x is turned into a self-attacker by adding cl(x) to vul(x).
In the next step, we remove all strongly defeated and redundant arguments.

599

Rapberger & Ulbricht

Definition 7.10. For a cvAF F = (A,R), let X denote the set of all strongly unacceptable
arguments in A and let

(A′, R′) = fe(F \X, {(vul(x) ∪ {cl(x)}, cl(x)) | x ∈ X}).

We define the complete kernel Fck = (Ack, Rck) with

Ack = A′ \ {x ∈ A′ | x is strongly defeated or redundant},
Rck = R′ ∩ (Ack ×Ack).

Example 7.11. The cvAF FD from our running example coincides with its complete kernel
since no arguments are strongly defeated, unacceptable or redundant. That is, we obtain
Fck
D = FD. For FD′, we obtain the following picture:

FD′ : c | m
x1

| c
x2

c | c
c

t | t
t

Fck
D′ : | c

x2

t | t
t

The goal of the following considerations is to show that the complete kernel characterizes
strong equivalence for co semantics, i.e., F ≡co

s G iff Fck = Gck. Our first step is to show
that each cvAF is strongly equivalent to its kernel.

Proposition 7.12. F ≡σ
s Fck for every cvAF F and for σ ∈ {co, gr , pr , stb}.

Proof. Consider a set X of instantiated arguments. First, by Proposition 7.9, we can modify
all strongly unacceptable arguments of F without changing semantics. Let Aunac ⊆ A
denote the set of unacceptable arguments in F . For

F ′ = (A′, R′) = (F \Aunac) ∪ {(vul(x) ∪ {cl(x)}, cl(x)) | x ∈ Aunac}

we obtain σcl (fe(F ′, X)) = σcl (fe(F , X)). By Propositions 7.5 and 7.6, we can delete
redundant and strongly unacceptable arguments as well. Let Ared ⊆ A′ and Asdef ⊆ A′

denote the set of redundant and strongly defeated arguments of F ′, respectively. Then for

F ′′ = F ′ \ (Ared ∪Asdef)

we obtain σcl (fe(F ′′, X)) = σcl (fe(F , X)). By definition of the complete kernel, it holds
that F ′′ = Fck. We obtain σcl (fe(Fck, X)) = σcl (fe(F , X)), hence F ≡co

s Fck.

In particular, this implies that the complete kernel of a cvAF preserves its semantics.
This follows from the previous result by simply considering the empty expansion.

Corollary 7.13. σcl (F) = σcl (Fck) for every cvAF F and for σ ∈ {co, gr , pr , stb}.

Next we show that kernelization behaves as expected: the complete kernel does not con-
tain redundant and strongly defeated arguments; and each strongly unacceptable argument
is self-attacking. For this, we consider the syntactical effects of our modifications. Let us
start with the following fundamental observation.

Observation 7.14. Removing arguments from a given cvAF F does not add novel redun-
dant, strongly unacceptable, or strongly defeated arguments.

600

On Dynamics in Structured Argumentation Formalisms

Next we show that the modification of unacceptable arguments can be done iteratively.

Lemma 7.15. Given a cvAF F = (A,R) and a strongly unacceptable argument x ∈ A.
Let x′ = (vul(x) ∪ {cl(x)}, cl(x)) and let F ′ = fe(F \ {x}, x′) = (A′, R′). Then, for all
y ̸= x ∈ A, y is strongly unacceptable in F iff y is strongly unacceptable in F ′.

Proof. Consider a strongly unacceptable argument y ∈ A in F . Then there is z ∈ A
with vul(z) ⊆ vul(y) and (z, y) ∈ R in F . First assume z ̸= x. Then it holds that
z ∈ A′, witnessing unacceptability of y in F ′. Otherwise, in case z = x, there is z′ ∈ A
with vul(z′) ⊆ vul(x) = vul(z) such that (z′, x) ∈ R. Consequently, (z′, y) ∈ R with
vul(z) ⊆ vul(y), showing that y is strongly unacceptable in F ′.

For the other direction, consider a strongly unacceptable argument y ∈ A′ in F ′. It holds
that there is a witness z ∈ A′ of the strong unacceptability of y in F ′. By construction, z
is also a witness in F .

We observe that we might obtain novel redundant arguments when turning unacceptable
arguments into self-attackers.

Example 7.16. Consider three arguments x, y, z with claims cl(x) = cl(y) = c and cl(z) =
d and vulnerabilities vul(x) = {d, e, f}, vul(y) = {c, d, e}, and vul(z) = {e}. The arguments
x and y are strongly unacceptable w.r.t. z because z attacks both of them and vul(z) is a
subset of both vul(x) and vul(y). The argument y is already a self-attacker. Turning x into
a self-attacker yields the modified argument x′ = ({c, d, e, f}, c) which is redundant w.r.t. y.

We show that redundant and strongly defeated arguments can be removed iteratively.

Lemma 7.17. Given a cvAF F and arguments x, y ∈ A, x ̸= y. Let y be redundant or
strongly defeated in F . Then x is redundant or strongly defeated in F iff x is redundant or
strongly defeated in F \ {y}.

Proof. In case x is redundant or strongly defeated in F \ {y} then there is a witness z in
F \ {y}. As mentioned in Observation 7.14, the claim-attacks are not affected by removing
certain arguments. We thus obtain that z witnesses that x is redundant or strongly defeated
in F . Also, in case x is strongly defeated in F , it is clear that x is contained in F \ {y}
since y cannot serve as witness of x being strongly defeated since vul(y) ̸= ∅.

Now, let y be strongly defeated in F . In case x is redundant w.r.t. y in F , there is some
z ∈ A with (z, y) ∈ R. We obtain x is strongly defeated (using vul(y) ⊆ vul(x)).

Let y be redundant in F and let x be redundant w.r.t. y in F . Then there is z ∈ A with
vul(z) ⊆ vul(y) and cl(z) = cl(y), thus witnessing the redundancy of x.

We remark that the disjunction of the properties is preserved. That is, a redundant
argument can turn into a strongly defeated argument when removing y.

Combining the previous Lemmata, we can be sure that the complete kernel is capable
of taking care of all redundant, strongly defeated, and strongly unacceptable arguments.
Formally, we make the following observation.

Proposition 7.18. The complete kernel Fck of a cvAF F does not contain redundant nor
strongly defeated arguments, and each strongly unacceptable argument is self-attacking.

601

Rapberger & Ulbricht

fe(F , VZ):

s, u | c
x

u,m | s

s, p | s

c | u | m

| p
fe(G, VZ):

u,m | s

s, p | s

c | u | m

| p

Figure 3: Illustration of Case 1 in the proof of Lemma 7.19 with VZ = {(∅,m), (∅, p)}.

Proof. We first modify strongly unacceptable arguments. By Lemma 7.15, the modification
does not add novel strongly unacceptable arguments, thus this procedure can be done itera-
tively and it is guaranteed that each strongly unacceptable argument is self-attacking after
this modification. Next, we iteratively delete redundant and strongly defeated arguments.
By Observation 7.14, the deletion of arguments does not introduce novel strongly unaccept-
able, redundant, or strongly defeated arguments. Moreover, by Lemma 7.17, redundant
and strongly defeated arguments can be removed without producing novel redundant or
strongly defeated arguments.

The most sophisticated auxiliary result we require is that complete kernels of strongly
equivalent cvAFs contain the same claims.

Lemma 7.19. For two cvAFs F and G, F ≡co
s G implies cl(AFck) = cl(AGck).

Proof. Consider an argument x ∈ AFck with claim cl(x) = c. Towards a contradiction,
assume that there is no argument y ∈ AGck with cl(y) = c. We may assume cocl (Fck) =
cocl (Gck), hence we deduce that x does not occur in any complete extension of Fck. Hence
it does not occur in any admissible extension. Consequently, x receives incoming attacks.

Case 1 Suppose x is no self-attacker. The overall idea is as follows: We construct a set of
instantiated arguments X in order to deal with all arguments that attack x. We introduce
isolated arguments attacking (most of) them; this is possible due to our definition of the
kernel. Then fe(Fck, X) has an admissible extension containing the argument x with claim
c, where in Gck claim c does not occur at all, showing that the two cvAFs cannot be strongly
equivalent. So consider the set

Z = {z ∈ AFck | (z, x) ∈ RF}

of arguments attacking x. Since x is no self-attacker, we have vul(z) ⊈ vul(x), i.e., vul(z) \
vul(x) ̸= ∅ for each z ∈ Z (otherwise, vul(z) ⊆ vul(x) and (z, x) ∈ R implies that x is
strongly unacceptable, hence x would be self-attacking in the kernel). We let

VZ = {ve = (∅, e) | e ∈ vul(z) \ vul(x), z ∈ Z, e ̸= c},

i.e., we defeat these attackers as long as this would not require introducing claim c. Having
c as claim, x can now defend itself, i.e., {x} ∪ VZ is admissible in the obtained cvAF. See
Figure 3 for an example of the construction.

Since c does not occur in Gck this is a witness for the absence of strong equivalence.

602

On Dynamics in Structured Argumentation Formalisms

fe(F , VY ∪ VZ):

s, c | c
x

u, c | c

v, c | c

c | c∗ x∗| u

| v

m | s

p | s

m | m

p | p

Figure 4: Illustration of Case 2.1 in the proof of Lemma 7.19. Novel arguments are in
color with dashed attacks; left we depict arguments with claim c, i.e., the set Y, and the
novel arguments VY defeating them; right, we depict arguments attacking x and the novel
self-attacking arguments which attack them. The novel argument x∗ (in red) is undecided
in the cvAF F and unattacked (hence accepted) in the cvAF G.

Case 2 Now suppose each argument with claim c is a self-attacker and fix such x. Since
x occurs in the kernel Fck, each attacker of x must itself possess attacking arguments.

The first step is to get rid of arguments with the same claim c. Consider the set

Y = {y ∈ AFck | cl(y) = c, y ̸= x}

of arguments with claim c. We consider arguments which defeat them; i.e., we let

VY = {ve = (∅, e) | e ∈ vul(y) \ vul(x), y ∈ Y, e ̸= c}
= {ve = (∅, e) | e ∈ vul(y) \ vul(x), y ∈ Y}.

Now consider the set

Z = {z ∈ AFck | (z, x) ∈ RFck} \ Y

of arguments attacking x. We introduce self-attacking arguments that attack (most of) the
arguments z ∈ Z; i.e., we let

VZ = {ve = ({e}, e) | e ∈ vul(z), z ∈ Z, e ̸= c}.

This ensures that all z ∈ Z with vul(z) ̸= {c} are undecided in the resulting cvAF.

Case 2.1: Suppose there is no argument z attacking x with x ̸= z and vul(z) = {c},
i.e., if (z, x) ∈ RFck , then vul(z) \ {c} ≠ ∅. Hence introducing a self-attacker for each claim
except c as done before ensures that x is undecided in each admissible extension; moreover,
bear in mind that there is no other realization of c left after introducing VY .

Now, consider some fresh argument x∗c∗ = ({c}, c∗) with novel claim c∗ which is attacked
by c. This way, we ensure that x∗c∗ is attacked by the (always undecided) self-attacker x in
fe(Fck, X), but unattacked in fe(Gck, X). See Figure 4 for an illustrative example.

Case 2.2: Suppose there is some z ∈ Z attacking x with x ̸= z and vul(z) = {c}.
Suppose cl(z) = d and consider

Yz = {y ∈ AFck | cl(y) = d = cl(z)}

603

Rapberger & Ulbricht

fe(F , VY ∪ VZ):

s, c, d | c
x

u, c | c

v, c | c

c | d
z

| u

| v

m | s

p | s

m | m

p | p

d | d s | d
s | s

Figure 5: Illustration of Case 2.2 in the proof of Lemma 7.19. Novel arguments are in blue
with dashed attacks. The argument ({c}, d) is not grounded in the expansion of F but
unattacked (thus grounded) in the expansion of G.

Observe that Yz ⊆ Z (since d ∈ vul(x) by assumption z attacks x). Hence for each y ∈ Yz,
for each vulnerability e ∈ vul(y) with e ̸= c, we have introduced self-attacking arguments
({e}, e) which attack y on e. Hence z = ({c}, d) is the only argument with claim d which is
not undecided (i.e., attacked by self-attacking arguments) in fe(Fck, VY∪VZ). Hence there is
no argument with claim d which is contained in the grounded extension of fe(Fck, VY ∪VZ).
For an example of a cvAF F expanded by VY ∪ VZ see Figure 5.

In fe(Gck, VY ∪VZ), on the other hand, the argument z is unattacked and thus contained
in the grounded extension.

We are now ready to prove the main result of this subsection: Indeed, the co kernel
serves to characterize strong equivalence for two cvAFs w.r.t. co semantics.

Theorem 7.20. For two cvAFs F and G, F ≡co
s G iff Fck = Gck.

Proof. First assume Fck = Gck holds. By Proposition 7.12, it holds that Fck ≡co
s F and

Gck ≡co
s G. Thus we obtain F ≡co

s G by transitivity.
For the other direction, assume F ≡co

s G. We show that in this case, the kernels of F
and G coincide. It suffices to show that they contain the same arguments, that is, we show
that for all x ∈ AFck there is y ∈ AGck with cl(y) = cl(x) and vul(y) = vul(x).

By Lemma 7.19, Fck and Gck contain the same claims. We show that for all arguments
x in Fck there is some argument y in Gck such that cl(x) = cl(y) = c and vul(y) ⊆ vul(x).

Let x ∈ AFck with cl(x) = c. Then there is some argument y with claim c in Gck.
Towards a contradiction, assume that for all y ∈ AGck with cl(y) = c we have vul(y) ⊈
vul(x). Let Y = {y ∈ AGck | cl(y) = c} denote all arguments with claim c in AGck . Then
for all y ∈ Y there is a claim e ∈ vul(y) with e /∈ vul(x). We introduce arguments

VY = {ve = (∅, e) | e ∈ vul(y) \ vul(x), y ∈ Y, e ̸= c}

in order to defeat all arguments in Gck with claim c without introducing a novel argument
with claim c. Now let F ′ = fe(Fck, VY) and G′ = fe(Gck, VY).

Case 1 Suppose c ∈ vul(x) , i.e., x is self-attacking. Then each argument with claim c
in Gck is attacked by arguments in VY . The cvAF G′ has no argument with claim c since all

604

On Dynamics in Structured Argumentation Formalisms

such arguments are strongly defeated by VY . On the other hand, x is contained in the kernel
of F ′. By Lemma 7.19, F ′ and G′ are not strongly equivalent to each other, contradicting
our assumption.

Case 2 Now assume x is not self-attacking. In this case, G′ might still contain a single
argument y with claim c and vul(y) = vul(x)∪{c}. Thus the conclusion c does not appear in
any conflict-free extension of (G′)ck. We proceed analogously as in the proof of Lemma 7.19,
Case 1, and introduce arguments to defend x in (F ′)ck in order to guarantee that x appears
in an admissible extension in the resulting cvAF. Then Fck and Gck do not yield the same
admissible extensions after expansion.

We obtain that for every argument x ∈ AFck there is exactly one argument y ∈ AGck

such that cl(x) = cl(y) and vul(x) = vul(y): Consider an argument y ∈ AGck such that
cl(x) = cl(y) = c and vul(x) ⊇ vul(y). By symmetry, there is z ∈ AFck with cl(z) = c such
that vul(y) ⊇ vul(z). Thus vul(x) ⊇ vul(y) ⊇ vul(z). Since Fck is redundancy-free, we
obtain vul(x) = vul(y) = vul(z). We conclude x = z (by well-formedness, x and z attack
the same arguments and are thus equivalent).

We thus obtain that Fck and Gck contain the same arguments in case F and G are
strongly equivalent w.r.t. complete semantics. Since all attacks in cvAFs are determined by
the claims and vulnerabilities of the arguments they contain, we conclude Fck = Gck.

Example 7.21. Consider the two cvAFs

FD : c | m
x1

t | c
x2

c | c
c

t | t
t

FD′ : c | m
x1

| a
x2

c | c
c

t | t
t

Recall that for X the set of all strongly unacceptable arguments in A we let

(A′, R′) = fe(F \X, {(vul(x) ∪ {cl(x)}, cl(x)) | x ∈ X}).

and then define

Ack = A′ \ {x ∈ A′ | x is strongly defeated or redundant},
Rck = R′ ∩ (Ack ×Ack).

The cvAF FD does not contain any arguments of one of these kinds; hence FD coincides
with its own kernel, as we already discussed:

Fck
D : c | m

x1

t | c
x2

c | c
c

t | t
t

In the complete kernel of FD′, on the other hand, two arguments are strongly defeated:

Fck
D′ : | c

x2

t | t
t

Clearly, Fck
D and Fck

D′ differ and therefore, according to Theorem 7.20 the two cvAFs are
not strongly equivalent w.r.t. complete semantics.

605

Rapberger & Ulbricht

7.3 Preferred Kernel for cvAFs

In this section, we present the preferred kernel Fpk for cvAFs which characterizes strong
equivalence under preferred semantics. The main Theorem 7.26 of this section states that
F ≡pr

s G iff Fpk = Gpk. The proofs proceed similarly to the case for complete semantics
and can be found in Appendix C. Below, we highlight the central concepts.

Towards a kernel for preferred semantics, we consider a special case of strong unaccept-
ability that affects only preferred semantics.

Definition 7.22. For a cvAF F = (A,R), x ∈ A is strongly pr -unacceptable if x is
strongly unacceptable w.r.t. y ∈ A and vul(y) = {cl(x)}. In this case, we call y the witness
for strong pr-unacceptability of x.

Since x is strongly unacceptable w.r.t. y we have (y, x) ∈ R and vul(y) ⊆ vul(x). From
{cl(x)} = vul(y) ⊆ vul(x) it follows that x is a self-attacker.

Example 7.23. Consider the following cvAF G

G : c | m
x1

t | c
x2

c, t | t
x3

c | c
c

t | t
t

Here x3 is strongly pr-unacceptable: It is strongly unacceptable w.r.t. x2 since x2 attacks
x3 and has strictly fewer vulnerabilities since vul(x2) = {t} ⊆ {c, t} = vul(x3). Moreover,
vul(x2) = {t} which is indeed the claim of x3.

Note the semantical intuition of this notion: Usually, a mutual attack between two
arguments x and y leaves the AF with choices (take x, take y, or take none of them),
but in the particular situation of pr-unacceptability, the pr-unacceptable argument does not
contribute any choice. Indeed, G has the same preferred extensions as our running example
FD

FD : c | m
x1

t | c
x2

c | c
c

t | t
t

i.e., the absence of x3 does not matter for preferred semantics.

Strongly pr -unacceptable arguments can always be removed without affecting the pre-
ferred extensions. Note that in contrast to usual strong unacceptability, the argument can
be removed entirely, not just modified.

Proposition 7.24. For a cvAF F = (A,R) and a strongly pr-unacceptable argument x ∈ A,
prcl (F) = prcl (F \ {x}).

The preferred kernel refines the complete kernel and can be computed by the following
procedure: given a cvAFF ,

1. compute the complete kernel Fck

2. from the resulting cvAF remove all strongly pr -unacceptable arguments.

606

On Dynamics in Structured Argumentation Formalisms

This procedure yields the preferred kernel Fpk.

Definition 7.25. For a cvAF F = (A,R), let Fck = (Ack, Rck) be as in Definition 7.10.
We define the preferred kernel Fpk = (Apk, Rpk) with

Apk = Ack \ {x ∈ Ack | x is strongly pr-unacceptable},
Rpk = Rck ∩ (Apk ×Apk).

To show that the preferred kernel characterizes strong equivalence for preferred seman-
tics, we proceed as in the previous section. First we show that each cvAF is strongly
equivalent to its preferred kernel. As a corollary, we obtain that the preferred extensions of
a cvAF and its preferred kernel coincides. Moreover, the preferred kernel of a cvAF does
neither contain redundant, non-self-attacking strongly unacceptable, strongly defeated or
strongly pr -unacceptable arguments. We obtain our main result of this section:

Theorem 7.26. For two cvAFs F and G, F ≡pr
s G iff Fpk = Gpk.

Example 7.27. Consider the two cvAFs

FD : c | m
x1

t | c
x2

c | c
c

t | t
t

FD′ : c | m
x1

| a
x2

c | c
c

t | t
t

and G from above:

G : c | m
x1

t | c
x2

c, t | t
x3

c | c
c

t | t
t

For computing the preferred kernels, we first compute the complete kernels and the remove
the pr-unaccepted arguments. The cvAf FD coincides with its complete kernel. Moreover,
it has no strongly pr-unaccepted arguments and thus, Fpk

D = FD.

Fpk
D : c | m

x1

t | c
x2

c | c
c

t | t
t

After removing the strongly unaccepted arguments in FD′ (complete kernel), we end up with

Fck
D′ having no strongly pr-unaccepted argument, i.e., Fpk

D′ = Fck
D′.

Fpk
D′ : | c

x2

t | t
t

The cvAF G does not contain any strongly unacceptable arguments except x3 which is already
a self-attacker, i.e., Gck = G. As we already saw, x3 is strongly pr-unacceptable in G and
hence gets removed when computing the kernel:

607

Rapberger & Ulbricht

Gpk : c | m
x1

t | c
x2

c | c
c

t | t
t

Applying Theorem 7.26 yields strong equivalence w.r.t. preferred semantics of FD and G.
None of those is strongly equivalent to the cvAF FD′.

7.4 Grounded Kernel for cvAFs

In this section, we present the grounded kernel Fgk for cvAFs which characterizes strong
equivalence under grounded semantics. As in the previous subsection, the grounded kernel
refines the complete kernel; in this case, by taking gr -unacceptable arguments into account.
The main Theorem 7.30 of this section states that F ≡gr

s G iff Fgk = Ggk. The proofs
proceed similarly to the case for complete semantics and can be found in Appendix C.

First we recall our notion of strong gr -unacceptability of some argument x (see Defini-
tion 6.11). It states that there is y ∈ A with (y, x) ∈ R and vul(y)\{cl(x)} ⊆ vul(x). Anal-
ogously to strongly unacceptable arguments for the other semantics (see Proposition 7.9),
we can turn these arguments into self-attackers.

Proposition 7.28. Given a cvAF F = (A,R) and a strongly gr-unacceptable argument
x ∈ A and let x′ = (vul(x) ∪ {cl(x)}, cl(x)). Then gr(F) = gr((fe(F \ {x}, x′)).

The grounded kernel can be computed by the following procedure: given F ,

1. turn each strongly gr -unacceptable argument x into a self-attacker (i.e., formally add
cl(x) to the vulnerabilities vul(x)),

2. from the resulting cvAF remove all strongly defeated as well as redundant arguments.

Hence, it is defined analogously to the complete kernel by replacing X with the set of all
strongly gr -unacceptable arguments in A.

Definition 7.29. For a cvAF F = (A,R), let X denote the set of all strongly gr-unacceptable
arguments in A and let

(A′, R′) = fe(F \X, {(vul(x) ∪ {cl(x)}, cl(x)) | x ∈ X}).

We define the grounded kernel Fgk = (Agk, Rgk) with

Agk = A′ \ {x ∈ A′ | x is str. defeated or redundant},

and Rgk = R′ ∩ (Agk ×Agk).

We proceed as for complete semantics. First we show that each cvAF is strongly equiv-
alent to its grounded kernel. As a corollary, we obtain that the grounded extension of a
cvAF and its grounded kernel coincides. Moreover, it holds that the grounded kernel of a
cvAF does neither contain redundant nor strongly defeated arguments, and each strongly
gr -unacceptable argument is self-attacking. With this, we can state the desired kernel
characterization.

Theorem 7.30. For two cvAFs F and G, F ≡gr
s G iff Fgk = Ggk.

608

On Dynamics in Structured Argumentation Formalisms

Example 7.31. Consider our three cvAFs from before, i.e., the cvAF G:

G : c | m
x1

t | c
x2

c, t | t
x3

c | c
c

t | t
t

and the two cvAFs FD and FD′:

FD′ : c | m
x1

| c
x2

c | c
c

t | t
t

FD : c | m
x1

t | c
x2

c | c
c

t | t
t

There is no strongly gr-unacceptable argument in FD and FD′, so their gr-kernels coincide
with the co-kernels:

Fgk
D : c | m

x1

t | c
x2

c | c
c

t | t
t

Fgk
D′ : | c

x2

t | t
t

In G we have that x2 is strongly gr-unacceptable (although not strongly unacceptable): It
holds that (x3, x2) ∈ RG and

vul(x3) \ {cl(x2)} = {c, t} \ {c} ⊆ {t} = {vul(x2)}.

Therefore, x2 can be turned into a self-attacker and we obtain

Ggk : c | m
x1

c, t | c
x2

c, t | t
x3

c | c
c

t | t
t

By Theorem 7.30, these cvAFs are pairwise not strongly equivalent w.r.t. grounded seman-
tics.

7.5 Stable Kernel for cvAFs

In this section, we present the stable kernel Fsk. The main Theorem 7.38 of this section
states that F ≡stb

s G iff Fsk = Gsk. The proofs proceed similarly to the case for complete
semantics and can be found in Appendix C.

Strong equivalence w.r.t. stable semantics can be characterized in the same manner as
in the previous subsections, but somewhat surprisingly, the corresponding kernel is by far
the most involved one. We start with the crucial observation that the particular conclusion
of self-attacking arguments is not of importance.

Example 7.32. Consider the following two cvAFs F and G:

F : a, p | q
x1

p, q, s | q
x2

G : a, p | q
x1

p, q, s | s
x2

609

Rapberger & Ulbricht

The only difference between F and G is the claim of the self-attacker x2. Both F and G
have the same unique stable extension {q}. As we will see, this is not a coincidence: for
stable semantics, self-attacking arguments are indistinguishable w.r.t. their claims.

Proposition 7.33. Given a cvAF F = (A,R) and a self-attacking argument x ∈ A. For
any s ∈ vul(x), it holds that stbcl (F) = stbcl (fe(F , {(vul(x), s)})).

Proof. Let F ′ = fe(F , {(vul(x), s)}) and let y = (vul(x), s). Then x, y /∈ E for all stable
extensions E in F and F ′. The statement thus follows by observing that y is attacked by
a stable extension E ∈ stb(F ′) iff E attacks x in F ′ iff E attacks x in F .

Hence we can add all such self-attackers without changing stable semantics.

Example 7.34. By adding all self-attackers (vul(x2), s) with s ∈ vul(x2) to our cvAFs F
and G from Example 7.32 we obtain the following identical frameworks:

F ′ : a, p | q
x1

p, q, s | q
x2

p, q, s | s
x3

p, q, s | p
x4

G′ : a, p | q
x1

p, q, s | s
x2

p, q, s | q
x3

p, q, s | p
x4

Observe that for constructing the stable kernel, we have to add all of these self-attackers
instead of deleting the initial one, even though this makes the resulting cvAF larger. The
reason is that the self-attackers impose constraints on the stable extensions of the given
framework, and thus need to be preserved. In order to ensure syntactical equivalence of the
kernels, we have no choice but adding each version of a self-attacker, as demonstrated in
the above example.

We also require a refinement of strong unacceptability called strict strong unacceptability
to identify further arguments which can be deleted.

As shown in Proposition 7.7, strongly unacceptable arguments can be removed under
stable semantics. However, as we observe in the above example, all of the arguments x2, x3,
x4 are strongly unacceptable w.r.t. to each other. Hence we consider the notion of strictly
strongly unacceptable arguments to guarantee that our kernel is well-defined.

Definition 7.35. For a cvAF F = (A,R), x ∈ A is strictly strongly unacceptable if there
is y ∈ A with (y, x) ∈ R and vul(y) ⊊ vul(x).

To ensure that we catch all redundancies we need to take care of another issue which
we illustrate in the following example.

Example 7.36. Consider the cvAF F given as depicted below.

F : p, q, s | b
x1

p, q, s | s
x2

610

On Dynamics in Structured Argumentation Formalisms

The argument x1 is not strictly strongly unacceptable w.r.t. x2 hence it might be unsafe
to remove it as observed above. However, if we apply the usual modification x1 7→ x′1 for
strongly unacceptable arguments—adding the claim to the set of vulnerabilities—we obtain
vul(x2) ⊊ vul(x′1) for x′1 = ({p, q, s, b}, b). Hence, the argument is now strictly strongly
unacceptable w.r.t. x2.

The many unacceptability and redundancy notions have to be treated carefully because
they might interact with each other. Hence the order in which we proceed is crucial. To
catch all redundancies we first have to add all ‘missing’ self-attackers. The stable kernel
can be computed by the following procedure: given a cvAF F ,

1. turn each strongly unacceptable argument x into a self-attacker (i.e., formally add
cl(x) to the vulnerabilities vul(x)),

2. to the resulting cvAF, for each self-attacking argument x, add arguments (vul(x), c)
for all c ∈ vul(x);

3. from the resulting cvAF remove all redundant, strongly defeated, and strictly strongly
unacceptable arguments.

Formally, we construct the stable kernel as follows.

Definition 7.37. For a cvAF F = (A,R), let X denote the set of all strongly unacceptable
arguments in A and let

F ′ = (A′, R′) = fe(F \X, {(vul(x) ∪ {cl(x)}, cl(x)) | x ∈ X}).

Now, let Y denote the set of all self-attacking arguments in A and let

F ′′ = (A′′, R′′) = fe(F ′, {(vul(x), s) | x ∈ Y, s ∈ vul(x)}).

We define the stable kernel Fsk = (Ask, Rsk) with

Ask = A′ \ {x ∈ A′′ | x is str. defeated, strictly str. unacceptable, or redundant},
Rsk = R′′ ∩ (Ask ×Ask).

We are ready to present our characterization result for cvAF strong equivalence with
respect to stable semantics (the proof proceeds analogously to the proof of Theorem 7.20).

Theorem 7.38. For two cvAFs F and G, F ≡stb
s G iff Fsk = Gsk.

Example 7.39. Consider the cvAFs F and G given as depicted below.

F : q, s | p
x1

q, s | q
x2

q | b
x3

G : q, s | s
x1

q | b
x2

q, t | b
x3

We construct the kernel of F . First, we identify the set of all strongly unacceptable argu-
ments X = {x1} of F . We perform the first step in the kernel construction and turn x1
into a self-attacker:

611

Rapberger & Ulbricht

F ′ : p, q, s | p
x′1

q, s | q
x2

q | b
x3

Next, we add all missing self-attackers for each self-attacking argument in Y = {x′1, x2}.

F ′′ : p, q, s | p
x′1

p, q, s | q
x4

p, q, s | s
x5

q, s | q
x2

q, s | s
x6

q | b
x3

Now, we identify all defeated, strictly strongly unacceptable, and redundant arguments and
remove them. The argument x4 is redundant w.r.t. x2: it has the same claim as x2 and
vul(x2) ⊂ vul(x4). Likewise, the argument x5 is redundant w.r.t. x6. Moreover, the argu-
ment x′1 is strictly strongly defeated by x2: it is attacked by x2 and vul(x2) ⊊ vul(x′1). Note
that x′1 is also strictly strongly defeated by x6 (in fact, the arguments x′1, x4, and x5 are
strictly strongly defeated by both x2 and x6).

We remove the arguments x′1, x4, and x5 and obtain the following stable kernel of F :

Fsk : q, s | q
x2

q, s | s
x6

q | b
x3

Now, let us construct the kernel of G. The cvAF has no strongly unacceptable arguments,
hence we can directly proceed with the next step and add all missing self-attackers:

G′′ :

q, s | q
x4

q, s | s
x1

q | b
x2

q, t | b
x3

We proceed by removing all strongly defeated, strictly strongly unacceptable, and redundant
arguments. In G, only the argument x3 is redundant. Hence we obtain the following kernel:

Gsk :

q, s | q
x4

q, s | s
x1

q | b
x2

Hence it turns out that this kernel coincides with the kernel of F , i.e., Fsk = Gsk. By
Theorem 7.38 conclude that F and G are strongly equivalent to each other w.r.t. stable
semantics.

612

On Dynamics in Structured Argumentation Formalisms

7.6 Consequences for Assumption-based Argumentation

We have now established the desired (syntactical) strong equivalence characterizations for
cvAFs. As it was the case for our enforcement notion, we first observe that deciding strong
equivalence is intractable, even for atomic ABAs. More specifically, our construction used
for Theorem 4.8 based on Reduction 4.4 yields an atomic ABA. So we obtain the following.

Corollary 7.40. Deciding whether two given ABA frameworks D and D′ are strongly
equivalent coNP-hard even for atomic ABA frameworks.

Therefore, we again focus on ABA frameworks with separated contraries. As we already
observed in our discussion regarding enforcement, the way we tailored cvAFs ensures that
these results are now ready to be applied to ABA. By transferring the above results in the
context of ABA we obtain that deciding strong equivalence for atomic ABA frameworks
with separated contraries is tractable.

For this, we first discuss a slight modification of the standard instantiation in which we
instantiate proper arguments only, i.e, arguments whose claims are not assumptions.

Definition 7.41. For an ABA framework D = (L,R,A,), we define the associated cvAF
Fp
D = (A′, R′) by constructing (A,R) via Definition 5.7 and restrict the arguments to non-

assumptions, i.e., A′ = A \ {(X, p) | p ∈ A} and R′ = R ∩ (A′ ×A′).

We remark that even for a flat ABA framework D, the instantiations FD and Fp
D differ:

the cvAF FD contains the arguments ({a}, a) corresponding to assumptions a ∈ A since
each assumption derives itself via {a} ⊢∅ a. These arguments are removed in Fp

D.
We call arguments that do not correspond to assumptions proper arguments. Likewise,

we call conclusions of arguments that do not correspond to assumptions proper conclusions.
Although the translation does not preserve the semantics in general, we obtain that for
ABA frameworks with separated contraries, this is indeed the case.

Proposition 7.42. For an ABA framework D = (L,R,A,) with separated contraries, for
σ ∈ {gr , co, pr , stb}, it holds that σcl (Fp

D) = {S \ A | S ∈ σcl (FD)}.

Proof. Let a cvAF F = A,R) be arbitrary. We first show that (i) for any argument a ∈ A
with a+ = ∅, any set of arguments E ⊆ A \ {a}, and semantics σ ∈ {cf , ad , gr , co, pr , stb},
it holds that E ∈ σ(F \ {a}) iff E ∈ σ(F) or E ∪ {a} ∈ σ(F). We note that this holds true
for each AF.

First, let σ = cf and consider a set E not containing a. First, E ∪ {a} ∈ cf (F) implies
E ∈ cf (F); moreover, E is conflict-free in F \ {a} iff E is conflict-free in F . If E is
admissible, then it attacks the same arguments b ∈ A \ {a} in F and F \ {a}. Moreover,
since a has no outgoing attacks the statement extends to the set E ∪ {a}, i.e., E+

F\{a} =

E+
F \ {a} = (E ∪{a})+F \ {a}. Since a has no outgoing attacks, it follows that E defends the

same arguments b ∈ A\{a} in F and F \{a}. Thus the statement holds true for admissible,
complete, grounded, and preferred semantics. For stable semantics, we furthermore observe
that removing a only causes the removal of a from the range of a stable set E; moreover, a
is not undecided if a stable set exists in F \ {a}, thus the statement follows.

By observation (i), it holds that the removal of an argument a ∈ A with no outgoing
attacks in a given AF F corresponds to the removal of a from each extension E of F .

613

Rapberger & Ulbricht

Coming back to our cvAF instantiation FD, we obtain E ∈ σ(FD \ A′) iff E ∈ σ(FD) or
E \ A′ ∈ σ(FD) for A′ = {a ∈ A | cl(a) ∈ A}. Since we focus on flat ABA in this work,
the set A′ corresponds to the set {({a}, a) | a ∈ A}. Since D is flat by Assumption 2.3, the
cvAF FD \ A′ does not contain any arguments with claims in A. The result thus carries
over to claim-level: S ∈ σcl (FD \A′) = σcl (Fp

D) iff S ∈ σcl (FD) or S \A ∈ σcl (FD) for each
set of claims S ⊆ cl(A). By Proposition 5.9, we have σTh(D) = σcl (FD). The result follows
when restricting σcl (FD) to the set of proper conclusions.

We are ready to prove the main theorem of this section, stating that deciding strong
equivalence for two ABA frameworks within our usual fragment is tractable. Our goal is
to apply our kernel characterizations for cvAFs. Our first step is to handle the assumption
arguments {({a}, a) | a ∈ A} manually. Afterwards, we move from FD to Fp

D and thereby
apply Proposition 7.42. Then we are ready to utilize our cvAF results.

Theorem 7.43. For two atomic ABA frameworks D and D′ with separated contraries,
deciding D ≡σ

s D′ is tractable.

Proof. Let D = (L,R,A,) and D′ = (L′,R′,A′, ′). We construct their corresponding
cvAFs FD and FD′ .

Let us first consider the instantiated arguments corresponding to assumptions, i.e.,
XD = {({a}, a) | a ∈ A} in FD resp. XD′

= {({a}, a) | a ∈ A′} in FD′ . We make
the following observation: for each assumption-argument x ∈ XD ∪ XD′

, it holds that x
is either i) strongly defeated or ii) strongly unacceptable, or iii) remains unchanged in the
kernel of the corresponding cvAF. Let us discuss all other cases.

� In case x is strictly strongly unacceptable, it is strongly defeated: because vul(x) =
{a} is a singleton, strict unacceptability implies that x is attacked by some argument
with no vulnerabilities.

� Strong gr -unacceptability is equivalent to strong unacceptability for ABA frameworks
which separate contraries; hence it suffices to discuss the latter.

� It cannot be redundant because cl(x) does appear as conclusion of some other argu-
ment (we consider flat ABA frameworks).

� It cannot be strongly pr -unacceptable because cl(x) cannot appear as vulnerability
of any argument since we assume that D and D′ separate contraries.

So let us consider the cases i), ii), and iii) mentioned above.

i) Suppose x ∈ XD ∪XD′
is strongly defeated. By our previous results, we can remove

the assumption from the corresponding ABA framework without changing the seman-
tics (even considering arbitrary expansions). Hence, we can w.l.o.g. assume that no
assumption is strongly defeated in D or D′.

ii) Let XD
su and XD′

su denote the set of assumption-arguments that are strongly unaccept-
able in FD and FD′ , respectively. We show that XD

su ̸= XD′
su implies that D ̸≡σ

s D′

and hence, we can assume XD
su = XD′

su . By symmetry, it suffices to consider some
x ∈ XD

su \XD′
su

614

On Dynamics in Structured Argumentation Formalisms

First note that if x = ({a}, a) ∈ XD
su is strongly unacceptable, there must be some

argument y occurring in FD which attacks x (i.e., cl(y) = a) and satisfies vul(y) ⊆
vul(x) (i.e., vul(y) = ∅ or vul(y) = {a}), where the case vul(y) = ∅ is excluded since
x is not strongly defeated. Thus, y is of the form y = ({a}, a).
Since D is atomic, the only way to induce such an argument y is due to the rule
a← a. If this rule occurs in D′ as well, then a ∈ A′ since D′ is atomic; thus x ∈ XD′

su

contradicting our assumption. So a ← a. does not occur in D′, and we proceed as
follows:

(a) Suppose a ∈ ThD′(∅) (i.e., a must be a fact since D′ is atomic). Then a is a fact
in D′, but by assumption not in D. Then consider

RH = {b← . | b ∈ (A ∪ A′) \ {a}}

and let H = {L ∪ L′,RH ,A ∪ A′, ∪ ′}. This ABA framework shows that D
and D′ are not strongly equivalent (a is accepted in D′ ∪H, but not in D ∪H;
for any semantics considered in this paper).

(b) Suppose a /∈ ThD′(∅); and assume for the moment a ∈ A′. Since the rule a← a.
does not occur in D′, our reasoning from above shows that a is neither strongly
unacceptable nor strongly defeated in D′ (and the other cases cannot occur).
Therefore, our enforcement results show that a can be enforced in D′, but not
in D (yielding a suitable counter-example for strong equivalence). Finally, if
a /∈ A′, then first add H = ({a}, ∅, {a}, {a 7→ a}) and apply the same argument
afterwards.

Hence XD
su ̸= XD′

su implies that D ̸≡σ
s D′, i.e., we can assume XD

su = XD′
su .

iii) Let XD
n and XD′

n denote the set of assumption-arguments that remain unchanged in
the kernel of FD and FD′ , respectively. By our enforceability results we can enforce
each of them, hence we immediately obtain that XD

n ̸= XD′
n implies that D ̸≡σ

s D′.

To summarize, we may w.l.o.g. assume A = A′, otherwise we can handle the ABA frame-
works with the above arguments. Now we are ready to apply our cvAF results. Analogously
as for AFs, we write Fk(σ) to denote the kernel which characterize strong equivalence for
the semantics σ. Given A = A′, the following holds.

(Fp
D)

k(σ) = (Fp
D′)

k(σ) ⇔ Fp
D ≡

σ
s F

p
D′ (1)

⇔ for each set of inst. args X : σcl (fe(Fp
D, X)) = σcl (fe(Fp

D′ , X))
(2)

⇔ for each ABA H : σcl (Fp
D∪H) = σcl (Fp

D′∪H) (3)

⇔ for each ABA H : σcl (FD∪H) = σcl (FD′∪H) (4)

⇔ for each ABA H : σTh(D ∪H) = σTh(D
′ ∪H) (5)

⇔ D ≡σ
s D′ (6)

(2) By Theorems 7.20, 7.30, 7.26, and 7.38 for the respective semantics.

615

Rapberger & Ulbricht

(3) By definition of strong equivalence for cvAFs.

(4) The crucial observation is that each rule r with assumptions that appear in the frame-
works at hand corresponds to an instantiated argument and vice versa.

(⇒) Given ABA H = (L,R′′,A′′,), we let X = {(A, p) | p← A ∈ R′′, A ⊆ A ∪A′′}.
By Lemma 5.15, it holds that Fp

D∪{r} = fe(Fp
D, {(A, p)}) for each rule r = p ← A

with A ⊆ A ∪ A′′. We obtain Fp
D∪H = fe(Fp

D, X) and Fp
D′∪H = fe(Fp

D′ , X). Since
σcl (fe(Fp

D, X)) = σcl (fe(Fp
D′ , X)) we thus obtain σcl (Fp

D∪H) = σcl (Fp
D′∪H).

(⇐) Given a set of arguments X, we consider an expansion H = (L,R′′,A′′,) such
that all arguments in X are instantiated. For this, we need to ensure that D ∪ H
contains all necessary assumptions, that is, we let A′′ =

⋃
(A,p)∈X A. Now, we add a

rule for each argument in X, i.e., we let R′′ = {p← A | (A, p) ∈ X}. By Lemma 5.15,
we obtain Fp

D∪H = fe(Fp
D, X). Thus the statement follows.

(5) (⇒) Consider a ABA H. Let H ′ = H ∪ HA where HA is the ABA framework
consisting of the assumptions (and their contraries), i.e., HA = (A ∪ A, ∅,A,). By
our assumption it holds that σcl (Fp

D∪H′) = σcl (Fp
D′∪H′). Hence we can add the

assumptions to the instantiation: it holds that

σcl (Fp
D∪H∪HA

) = σcl (FD∪H) = σcl (FD′∪H) = σcl (Fp
D′∪H∪HA

).

(⇐) By Proposition 7.42, we can remove the assumptions from the extensions.

(6) By definition of strong equivalence for ABA frameworks.

Thus, to decide strong equivalence between D and D′, it suffices to check

(i) A \ {a ∈ A | a ←∈ R} = A′ \ {a ∈ A′ | a ←∈ R′}; if this is not the case, we have
D ̸≡σ

s D′; otherwise, we check

(ii) syntactical equivalence of the σ-kernels of Fp
D and Fp

D′ .

As in the case of enforcement, we want to emphasize that moving from ABA to atomic
ABA does not change the complexity class of this problem. However, if we additionally
require that the frameworks have separated contraries we obtain the desired tractable frag-
ment.

As a final remark in this section, let us head back to Jane and Antoine.

Example 7.44. Recall that the ABA framework where Antoine used the excuse of having
no money was given via

L = {c, c, e, e, m} A = {c, e} R = {m← c., c← e., e← .}

and induced the instantiated cvAF

FD : c | m
x1

e | c̄
x2

| ē
x3

c̄ | c
c

ē | e
e

616

On Dynamics in Structured Argumentation Formalisms

On the other hand, the “trailer” version was given as

L′ = {c, c, m, t, t} A′ = {c, t} R′ = {m← c., c← t.}.

with cvAF

FD′ : c | m
x1

t | c̄
x′2

c̄ | c
c

t̄ | t
t

Since Jaine’s voucher argument x3 renders x2 and e strongly unacceptable, for all considered
semantics the kernel is given as

Fk(σ)
D : c | m

x1

| ē
x3

c̄ | c
c

In the second version, there is no argument to be modified or removed, i.e., Fk(σ)
D′ = FD′.

Hence, w.r.t. no semantics, these two discussions correspond to strongly equivalent ABA
frameworks, which matches our intuition.

8. Tractability Results for Logic Programs

We inferred our tractability results by changing the instantiation from AFs to cvAFs and
then applying results for cvAFs instead of directly investigating ABA frameworks as de-
ductive systems. While this technique seems cumbersome at first glance, the established
results for cvAFs turn out to be a convenient tool which we can now apply to logic programs
almost immediately. This section demonstrates this approach.

8.1 Background

A logic program P consist of rules of the form

r : c← a1, . . . , an, not b1, . . . , not bm (7)

where 0 ≤ n,m and the ai, bi and c are ordinary atoms. We let head(r) = c, pos(r) =
{a1, . . . , an} and neg(r) = {b1, . . . , bm}; L(P) is the set of all atoms occurring in P . Given a
rule r and an atom a, we write r∪{not a} to denote the rule that results from the addition
of a to neg(r). For a set B = {b1, . . . , bn} of atoms we write not B as a shorthand for the
conjunction not b1, . . . , not bn. If pos(r) = neg(r) = ∅ we simply write head(r). to denote
the rule and call it a fact.

Let us now define the semantics of an LP P . The first step is the notion of an interpre-
tation I = (T, F) where one can intuitively think of “true” and “false” atoms, respectively.

Definition 8.1. A 3-valued Herbrand Interpretation I of an LP P is a tuple I = (T, F)
with T ∪ F ⊆ L(P) and T ∩ F =∅.

The reduct P/I if an LP P w.r.t. some interpretation I evaluates the default negated
literals according to I, where the body of each rule is interpreted as a conjunction: i) If a
rule contains “not b” for some b ∈ T , then the rule is not applicable; ii) each occurrence

617

Rapberger & Ulbricht

of “not b” for some b ∈ F is evaluated to true and can be removed from the corresponding
body; iii) otherwise, if b /∈ T ∪ F , then it is undecided - and so is “not b”.

Formally, given P with interpretation I = (T, F) we define the reduct P/I of P w.r.t. I
as follows: Starting from P ,

i) remove each rule r from P with T ∩ neg(r) ̸= ∅,

ii) remove “not b” from each remaining rule whenever b ∈ F , and

iii) replace each occurrence of “not b” from each remaining rule with a fresh atom u.

Example 8.2. Let P be the LP given as follows.

P : a← not b. b← not a. c← b. d← a, not e. e← a, not d.

For I = (T, F) with T = {a} and F = {b, c} the reduct P/I is given as

P/I : a← . c← b. d← a, u. e← a, u.

By ΨP (I) = (TΨ, FΨ) we denote the least 3-valued model of P/I, i.e., TΨ is minimal and
FΨ maximal s.t.

a) a ∈ TΨ iff there is a rule r ∈ P/I with a ∈ head(r) and pos(r) ⊆ TΨ,

b) a ∈ FΨ iff for each rule r ∈ P/I with a ∈ head(r) we have pos(r) ∩ FΨ ̸= ∅.

Example 8.3. For the previously computed reduct

P/I : a← . c← b. d← a, u. e← a, u.

we have ΨP (I) = (TΨ, FΨ) = ({a}, {b, c}).

Definition 8.4. A 3-valued interpretation I=(T, F) of P is

� P -stable, I ∈ pstb(P), if I = ΨP (I);

� well-founded, I ∈ wf(P), if I is P -stable with minimal T ;

� regular, I ∈ reg(P), if I is P -stable with maximal T ;

� stable, I ∈ stb(P), if I is P -stable and T ∪ F = L(P).

Since stable models are two-valued, we sometimes identify I with T , i.e., we write T ∈ stb(P)
whenever there is a stable model I = (T, F) of P .

Example 8.5. For our program from above I = ({a}, {b, c}) is a P-stable model; it is not
stable since c and d are neither in T nor F (interpreted as “undefined”). The reader may
check that I ′ = ({a, d}, {b, c, e}) is a stable model of P .

Atomic LPs (Janhunen, 2004) are similar in spirit to atomic ABA frameworks.

Definition 8.6. A rule r of the form (7) is called atomic if pos(r) = ∅; a logic program P
is atomic if each r ∈ P is.

618

On Dynamics in Structured Argumentation Formalisms

8.2 LPs and cvAFs

LPs can be translated into AFs and vice versa. Let us briefly recall the most relevant
results from the literature. Given an LP P , we can construct a corresponding AF as follows
(Caminada et al., 2015b).

Definition 8.7. For an LP P , A is an argument in P , denoted by A ∈ Args(P), with

� Conc(A) = c,

� Rules(A) =
⋃

i≤nRules(Ai) ∪ {r}, and

� Vul(x) =
⋃

i≤nVul(Ai) ∪ {b1, . . . , bm}

if and only if there are A1, . . . , An ∈ Args(P) and a rule r ∈ P with

r = c← Conc(A1), . . . ,Conc(An), not b1, . . . , not bm.

and r /∈ Rules(Ai) for all i ≤ n. An argument A attacks another argument B if Conc(A) ∈
Vul(B). All arguments and the induced attacks form the corresponding AF FP = (AP , RP).

Naturally, we obtain a cvAF FP corresponding to some LP P by constructing an in-
stantiated argument (Vul(A),Conc(A)) for each A ∈ Args(P) as well as the induced
attack relation. It has been shown that the aforementioned translation to AFs preserves
the semantics of the underlying LP (Caminada et al., 2015b). For cvAFs, we get this result
from corresponding observations for claim-augmented AFs (König, Rapberger, & Ulbricht,
2022, Proposition 4.5); although the mentioned result does not make any statement about
cvAFs, the translation is the same except that we add the vulnerabilities explicitly. We
thus obtain:

Proposition 8.8. Let P be an LP and FP the corresponding cvAF. If I = (T, F) is

� stable in P , then T ∈ stb(FP),

� P-stable in P , then T ∈ co(FP),

� regular in P , then T ∈ pr(FP),

� well-founded in P , then T ∈ gr(FP),

Vice versa, given a cvAF F = (A,R) we define the corresponding LP PF as the set

PF = {Conc(x)← not Vul(x) | x ∈ A}

of rules. Again we can borrow from previous research (König et al., 2022, Proposition 4.5).

Proposition 8.9. Let F = (A,R) be a cvAF and PF the corresponding LP. If E ⊆ A is

� stable in F , then there is some I ∈ stb(PF) of the form I = (E,F),

� complete in F , then there is some I ∈ pstb(PF) of the form I = (E,F),

� preferred in F , then there is some I ∈ reg(PF) of the form I = (E,F),

� grounded in F , then there is some I ∈ wf(PF) of the form I = (E,F).

619

Rapberger & Ulbricht

8.3 Dynamics in LPs

Let us now turn to our dynamic scenarios. We proceed as for ABA frameworks by applying
the cvAF results. We give an LP version of Lemma 5.15.

Lemma 8.10. Given an atomic LP P .

� For each atomic rule r = c← not B, we have FP∪{r} = fe(FP , x) with x = (B, c).

� For each argument x = (B, c), it holds that FP∪{r} = fe(FP , x) with r = c← not B.

We are now ready to efficiently investigate our two problems we considered before.
The relation is even much closer since we do not need to handle additional assumptions.
In accordance with our general definitions of enforcement and strong equivalence in non-
monotonic reasoning formalisms, we define the LP enforcement problem as follows.

Definition 8.11. Let P be an LP and σ a semantics. An atom p is σ-enforceable if there
is a set R of rules s.t. head(r) ̸= p for all r ∈ R and p is credulously accepted in P ∪ R
w.r.t. semantics σ.

As for ABA, we get intractability in the general case.

Proposition 8.12. Consider a semantics σ. Deciding atom-enforceability w.r.t. σ for the
class of normal LPs is NP-hard.

Proof. Let φ be a boolean formula given by clauses C over variables in X. The correspond-
ing logic program P contains the following rules:

� the atomic rule ‘pφ ← not C’;

� rules ‘pc ← {l | ¬l ∈ c}, not {l ∈ X | l ∈ c}’ for each clause c ∈ C.

Intuitively, a clause-atom c is contained in a stable model M iff c is false in M . Hence we
can accept φ iff c /∈M for all c ∈ C. It can be shown that φ is satisfiable iff pφ is enforceable
in P (proof details can be found in Appendix D).

Our cvAF results yield tractability for atomic LPs. We can apply our results directly.

Theorem 8.13. For atomic LPs, deciding whether some atom is enforceable is tractable.

Proof. By Corollary 6.13, we have for any atom a: a is enforceable in P iff a is credulously
accepted in P ∪H for some H iff a is credulously accepted in fe(FP , X) for some X iff a is
enforceable in FP . By Theorem 6.9 and Proposition 6.12, the latter is tractable.

Let us next discuss strong equivalence for atomic LPs. In general, we define strong
equivalence for LP relative to a LP-fragment C as follows.

Definition 8.14. Two LPs P, P ′ ∈ C are strongly equivalent w.r.t. a semantics σ in the
fragment C, for short P ≡σ P ′, if for each LP R ∈ C, it holds that σ(P ∪R) = σ(P ′ ∪R).

Without the requirement of P, P ′, and R being atomic, intractability of strong equiva-
lence is well-known (Pearce et al., 2001; Lin, 2002). Due to our cvAF results, we obtain a
tractable fragment here as well.

620

On Dynamics in Structured Argumentation Formalisms

Theorem 8.15. Deciding strong equivalence in the class of atomic LPs is tractable.

Proof. Immediate from Theorems 7.20, 7.30, 7.26, and 7.38: for two LPs P and P ′ it holds
that P is atomic strongly equivalent to P ′ iff σ(P ∪ R) = σ(P ′ ∪ R) for each atomic set of
rules R iff σ(fe(FP , H)) = σ(fe(FP ′ , H)) for H =

⋃
{(B, c) | c← not B ∈ R} for each R iff

σ(fe(FP , X)) = σ(fe(FP ′ , X)) for each set X of instantiated arguments iff Fk(σ)
P = cvF

k(σ)
P ′ ,

where Fk(σ) denotes the kernel which characterize strong equivalence for semantics σ.

For stable model semantics, we obtain an even more general result: strong equivalence
between two atomic LPs is tractable even if we consider expansions with rules that are
non-atomic. For this, we will first show that each atomic LP P is strongly equivalent to the
program obtained by re-translating the stable kernel Fsk

P w.r.t. stable semantics.

Proposition 8.16. Let P be an atomic LP and let P sk denote the logic program PFsk
P
. It

holds that P and P sk are strongly equivalent w.r.t. stable semantics.

Proof. In the following, we use the terms instantiated arguments and atomic rules in-
terchangeably. For simplicity, we will talk about redundant, strongly unacceptable, and
strongly defeated rules instead of formally switching between the formalisms. By Lemma 8.10,
these concepts are indeed transferrable to the realm of atomic LPs.

Consider a set H of rules. We show that M is a stable model of P ′ = P ∪H iff M is
a stable model of P ′′ = P sk ∪H. The underlying observation is that the reduct of P ′/M
coincides with P ′′/M in case M is a model of P ′ or P ′′.

(⇒) First assume M is a stable model of P ′, i.e., let M ∈ stb(P ∪H) = stb(P ′).
We show that P ′/M = P ′′/M . We first observe that each rule r ∈ H undergoes the same

changes in P ′/M and P ′′/M because the set of true facts (M) coincides in both reducts.
That is, for each rule r ∈ H, we have r′ = r′′ where r′ ∈ P ′/M denotes the modification
of r in P ′/M , and r′′ denotes the modification of r in P ′′/M (in case M ∩ neg(r) = ∅),
and r /∈ P ′/M iff r /∈ P ′′/M (if M ∩ neg(r) ̸= ∅). Moreover notice that all other rules
not originating from rules in H are facts because P is atomic. Assume a. ∈ P ′/M but
a. /∈ P ′′/M . Let r ∈ P denote some rule with head(r) = a which has survived the reduct
modifications. That is, each negated literal in the body of r is false, i.e.,

neg(r) ∩M = ∅. (8)

Now since a. /∈ P ′′/M we have either (1) r is deleted when building the kernel of P or (2)
r is strongly unacceptable in P and thus the modified rule r′ = a ← neg(r) ∪ {not a} is
deleted when building the reduct of P sk ∪H.

� Let us first deal with case 2: let t ∈ P be a rule witnessing unacceptability of r in P .
That is, neg(t) ⊆ neg(r) and head(t) ∈ neg(r). We therefore infer from (8)

neg(t) ∩M ⊆ neg(r) ∩M = ∅,

hence the rule head(t). is contained in P ′/M . Since M is a stable model of P ′, it holds
that head(t) ∈M . Consequently, M ∩neg(r) ̸= ∅ contradicting our above assumption
(8), i.e., this case cannot occur.

621

Rapberger & Ulbricht

� In case 1, rule r is deleted when constructing the kernel P sk. That is, r is either i)
strongly defeated, ii) strictly strongly unacceptable, or iii) redundant in P .

i) In the former case, there is some fact b. ∈ P such that b ∈ neg(r). Hence b ∈M
and we obtain that r is deleted when constructing the reduct P ′.

ii) In case r is strictly strongly unacceptable, we proceed as in case 2.

iii) In case r is redundant, consider a rule s ∈ P with neg(s) ⊊ neg(r) and head(r) =
head(s). W.l.o.g., let s be minimal in that aspect (i.e., there is no rule s′ with
neg(s′) ⊊ neg(r) and head(r) = head(s′) and neg(s′) ⊊ neg(s)). If s is contained
in P sk, then we have neg(s) ∩M = ∅ (due to (8)) and head(s) = a, hence we
have found a witness showing that the fact a. is contained in P ′′ as well. In case
s is not contained in P sk, it holds that s is either strictly strongly unacceptable
(we proceed as in case 2) or strongly defeated (we proceed as above).

Hence we obtain that P ′/M ⊆ P ′′/M .

For the other direction, assume a. ∈ P ′′/M but a. /∈ P ′/M . Let r ∈ P denote some
rule with head(r) = a which has survived the reduct modifications in P ′′/M . That is,
each negated literal in body(r) is false, i.e., neg(r) ∩M = ∅, so have again the condition
from (8) as before. Now since a. /∈ P ′/M we have either (1) r is not contained in P but
r′ = a ← neg(r) \ {not a} is unacceptable in P or (2) r is a self-attacker which has been
added when building the kernel of P . In any other cases, r would be contained in P as
well. In both cases, not a ∈ body(r) implies M ∩ neg(r) ̸= ∅; this is a contradiction to r
witnessing a. ∈ P ′′/M .

We obtain P ′/M = P ′′/M for each stable model M of P ′ which implies that M is a
stable model of P ′′ as well.

(⇐) For the other direction, consider a stable model M of P ′′, i.e., let

M ∈ stb(P sk ∪H) = stb(P ′′).

We show again that P ′/M = P ′′/M . For each rule in the reduct obtained from some rule
r ∈ H, the statement holds true. Moreover notice that all other rules not originating from
rules in H are facts. In case a. ∈ P ′′/M but a. /∈ P ′/M we proceed as above (notice that
we did not make use of the fact that M was a model of P ′ and not of P ′′).

For the other direction, let us assume a. ∈ P ′/M but a. /∈ P ′′/M . Let r ∈ P denote
some rule with head(r) = a which has survived the reduct modifications. That is, each
negated literal in body(r) is false, i.e., our condition (8) stating that neg(r)∩M = ∅ holds.

Again, we distinguish the cases (1) r is deleted when building the kernel of P or (2) r is
strongly unacceptable in P and thus the modified rule r′ = a← neg(r)∪{not a} is deleted
when building the reduct of P sk ∪H.

� In case 2 we let t ∈ P be a rule witnessing unacceptability of r in P which is minimal
in this aspect, i.e., {head(t)} ∪ neg(t) is ⊆-minimal among all such rules. Then
it holds that t′ = head(t) ← body(t) ∪ {not head(t)} is contained in P sk. Moreover,
neg(t′) ⊆ neg(r). Since M is a model of P ′′ we obtain that neg(t′)∩M ̸= ∅ (otherwise,
it holds that head(t) ∈M and head(t) /∈M by definition of stable model semantics).
Hence neg(r) ∩M ̸= ∅, contradiction to our assumption.

622

On Dynamics in Structured Argumentation Formalisms

� For case 1 we perform only syntactical modifications, that is, we can proceed analo-
gously to case 1 for the other direction. This concludes the proof of the statement.

By our above results, we obtain that strong equivalence w.r.t. stable semantics coincides
in the class of atomic and normal LPs when we compare atomic LPs.

Theorem 8.17. P ≡stb Q in the class of atomic LPs iff P ≡stb Q in the class of normal
LPs for any two atomic LPs P and Q.

Proof. In case P and Q are not strongly equivalent in the class of atomic LPs we obtain
that they are not strongly equivalent in the class of normal LPs as the former is a special
case. Now assume P and Q are strongly equivalent in the class of atomic LPs. Then their
stable kernels coincide (by Theorem 7.38). By Proposition 8.16, we obtain P ≡stb P sk =
Qsk ≡stb Q in the class of normal LPs.

Corollary 8.18. Deciding whether two atomic LPs P and Q are strongly equivalent w.r.t.
stable semantics in the class of normal LPs is tractable.

9. Discussion

Let us conclude by summarizing the present paper as well as discussing related and con-
ceivable future work directions.

9.1 Summary & Technical Take-Aways

In this paper, we investigated two of the most important dynamic reasoning tasks, namely
strong equivalence and enforcement within the context of assumption-based argumentation.
We showed that in general, a very basic notion of enforcement (Theorem 4.5) as well as the
natural notion of strong equivalence (Theorem 4.8) are intractable in ABA. Since the cor-
responding problems are known to be tractable within the realm of abstract argumentation
(see Theorems 3.3 and 3.8), we identified two reasons for the mismatch in the computational
complexity: i) the relation between the arguments in the instantiated AF and the rules in
the knowledge base is too loose; ii) usual AFs are tailored for a static translation from a
knowledge base into an AF, but not suitable for dynamic scenarios. Regarding i), we iden-
tified atomic ABAs (see Definition 5.14) as a promising, but nonetheless expressive ABA
fragment. However, regarding ii) we had to readjust the instantiation procedure for our
purpose. It turned out that the usual instantiation via AFs as proposed by Dung (Dung,
1995) abstracts away too much information for this endeavor, because one cannot know if
and how an argument can be attacked in future scenarios since the AF only reflects the
current, static situation. We therefore proposed claim and vulnerability augmented AFs
(cvAFs; see Definition 5.2) which carry enough information to anticipate the role of an
argument after the underlying knowledge base is updated.

Regarding the enforcement problem we observed that indeed, the most basic notions
are tractable for cvAFs (Theorem 6.9, Proposition 6.12, and Corollary 6.13). Investigating
variations of the enforcement notion showed that there is a gap in computational complexity
in enforcing a set of arguments vs. a set of conclusions (Theorem 6.17 vs. Theorem 6.19),
except for grounded semantics where both are intractable (Theorem 6.20). In a version

623

Rapberger & Ulbricht

where we want to enforce an argument without introducing a given set of claims in order
to achieve this goal, the problem is intractable for any semantics (Theorem 6.23).

We showed that strong equivalence for two cvAFs F and G can be decided similar in
spirit to the analogous problem for Dung-AFs by calculating semantics-dependent kernels.
We want to emphasize that for all of our kernels, i.e., the complete in Definition 7.10,
preferred in Definition 7.25, grounded in Definition 7.29, as well as stable in Definition 7.37,
we mostly focus on modifications of the arguments rather than the attack relation (which is
the case for abstract AFs). Since it suffices to compare the kernels of two cvAFs in order to
decide strong equivalence (Theorems 7.20, 7.26, 7.30, and 7.38), this problem is tractable.

Finally, we translated the results into the realm of ABA. Interestingly, the two afore-
mentioned problems are still intractable for atomic ABAs (Corollaries 6.24 and 7.40) and
we had to additionally impose separated contraries (Definition 6.25). It was then possible
to apply our cvAFs to obtain tractability for the enforcement problem (Theorem 6.26) and
strong equivalence (Theorem 7.43) within this ABA fragment.

Take-Away 9.1. The tractable ABA fragment consists of atomic, flat ABA frameworks
with separated contraries. Each such ABA framework satisfies the following conditions:

(i) each rule corresponds to an argument in the instantiated framework, and

(ii) the attacking elements (claims) and the defeasible elements (assumptions) of all ar-
guments are strictly separated.

Point (i) is guaranteed by the restriction to atomic frameworks which prevents the chain-
ing of rules. Each ABA framework can be transformed into an atomic one; as shown
in (Rapberger, Ulbricht, & Wallner, 2022) this can even be achieved in polynomial time
while preserving the semantics under projection.

The restriction to flat ABA frameworks with separated contraries guarantees point (ii).
In flat frameworks, assumptions cannot be derived. Together with the condition that the
assumptions and their contraries are separated, this implies that all attacks are undermining
attacks that arise from the claim (a non-assumption) and target an element in the body of
the attacked argument (an assumption). Each ABA framework can be translated into a
ABA framework with separated contraries, as discussed in Section 6.4.

Emphasizing the generality of our approach using cvAFs, we applied our techniques to
LPs as well. The high level point of view is that for LPs, the behavior is rather similar:
Both enforcement (Proposition 8.12) and strong equivalence (known from the literature)
are intractable in the general case, but become tractable for atomic LPs, as we can show by
applying our cvAF results (Theorems 8.13 and 8.15). The LP results can be even entailed
more straightforwardly, since the additional handling of the assumptions is not necessary.

Take-Away 9.2. The tractable LP fragment consists of atomic LPs. Similar as for ABA
frameworks, each rule corresponds to an argument in the instantiated framework. Moreover,
the sets of attacking elements (atoms) and defeasible elements (default negated atoms) are
disjoint in LPs by definition.

Notably, we could show that for stable semantics, deciding strong equivalence for two
atomic LPs is tractable even if we allow arbitrary expansions (Theorem 8.18).

624

On Dynamics in Structured Argumentation Formalisms

Along the way (and independent of our cvAF techniques) we characterized strong equiv-
alence in ABA under stable semantics by means of SE-models, similar in spirit to analogous
research for LPs.

9.2 Related Work

Our cvAFs generalize Dung-style AFs with a particular focus on instantiation-based set-
tings. Apart from several notable generalizations of AFs that have been considered in the
literature, e.g., AFs with collective attacks (Nielsen & Parsons, 2007), preference-based
AFs (Kaci, van der Torre, Vesic, & Villata, 2021), or incomplete AFs (Baumeister, Neuge-
bauer, Rothe, & Schadrack, 2018; Baumeister, Järvisalo, Neugebauer, Niskanen, & Rothe,
2021), we mention a particular generalization that is closely related to our cvAFs, called
claim-augmented argumentation frameworks (CAFs) (Dvořák & Woltran, 2020). CAFs
generalize AFs by assigning a claim to each argument and are therefore well suited to inves-
tigate instantiation-based settings; they are closely related to ABA frameworks and logic
programs (Rapberger, 2020; König et al., 2022). Their properties in terms of expressive-
ness and computational complexity is well-studied (Dvořák et al., 2020; Dvořák, Greßler,
Rapberger, & Woltran, 2023). However, when considering them in a dynamic setting, we
observe similar issues as with AFs.

Example 9.3. Let us consider our ABA frameworks D and D′ from our introductory
example (cf. Example 1.1) once again. This time, we instantiate both frameworks as CAF
by keeping track of the claims of the arguments:

FD : x2

c
x1

m

c
c

t

t

FD′ : x2

c
x1

m

c
c

t

t

Both CAFs FD and FD′ are identical. This is fine when considering static scenarios,
however, when moving from static to dynamic settings, we experience the same issues as
with AFs: we cannot identify differences between the two frameworks by looking at the
abstract representation only.

Our cvAFs go one step further as CAFs and keep also track of the vulnerabilities of the
arguments. By doing so, we are able to distinguish our running examples D and D′ on the
abstract level. Hence our generalization captures changes in a natural way.

A notion similar to the vulnerabilities of an argument has recently been studied (Prakken,
2022). In this work, Prakken investigates the dialectical strength of an argument in terms
of possible attacks in framework expansions. In contrast to CAFs where each argument is
labeled with its own claim, he equips each argument with a set of so-called attack points
which correspond to its vulnerabilities, i.e., to the defeasible elements in the structure of the
argument. Since we study enforcement and strong equivalence in terms of the conclusion-
based outcome of ABA frameworks and LPs, it is crucial in our setting to consider not only
the vulnerabilities but also the claim on the abstract level.

625

Rapberger & Ulbricht

Dynamics. Our work extends research on dynamics in argumentation (Rotstein, Mogu-
illansky, Garćıa, & Simari, 2010; Rotstein, Moguillansky, Falappa, Garćıa, & Simari, 2008;
Snaith & Reed, 2017; Ulbricht & Baumann, 2019; Baumann, 2012a; Odekerken, Bex, Borg,
& Testerink, 2022). In the context of AFs, both enforcement and strong equivalence are
well-studied (Oikarinen & Woltran, 2011; Wallner et al., 2017; Baumann, 2012a).

Our characterization results for strong equivalence are similar to existing studies for
other abstract representations such as AFs (Oikarinen & Woltran, 2011), CAFs (Baumann
et al., 2022), or AFs with collective attacks (Dvorák, Fandinno, & Woltran, 2019). As for
cvAFs, deciding strong equivalence can be characterized via semantics-dependent kernels.
However, in contrast to the aforementioned abstract formalisms, the kernels for cvAFs are
constructed by removing and modifying arguments. In logic-based approaches, a similar be-
havior has been observed: it is shown (Amgoud, Besnard, & Vesic, 2014) that under certain
conditions on the underlying logic, unnecessary arguments can be removed while retaining
(strong) equivalence. Although our work focuses on assumption-based argumentation, our
cvAFs are constructed in a way such that they are independent of the underlying formal-
ism, making them applicable in a more general setting. Our strong equivalence character-
izations for ABA in terms of SE-models are inspired by similar characterizations for logic
programs (Turner, 2001), simplifying the characterization via the Logic of Here and There
(Lifschitz et al., 2001). In this regard, we furthermore mention Baumann and Strass (Bau-
mann & Strass, 2022) who provide logic-based characterization results of strong equivalence
in non-monotonic knowledge representation formalisms in a similar spirit. Moreover, strong
equivalence is similar in spirit to stability (Testerink, Odekerken, & Bex, 2019).

Enforcement has received much attention in the argumentation community in recent
years (Wallner et al., 2017; Baumann, 2012a). Enforcement in abstract models is typi-
cally easy to characterize; often, research in this matter takes certain minimality criteria
into account. In structured approaches, studies on enforcement have received increasing
attention. In a recent paper (Borg & Bex, 2021) the authors study under which conditions
in a structured argumentation formalism a given formula can be enforced. Similarly to
our setting, another study considers situations where an AF undergoes certain changes,
but the permitted modifications are constrained (Wallner, 2020). Similarly to our set-
ting, Wallner’s motivation are AFs instantiated from a knowledge base, specifically from
assumption-based argumentation. He considers different types of constraints and dynamic
operators, with focus on minimal changes of the knowledge base. Constraints on the possi-
bly reachable expansions of a given cvAF are intrinsic to our approach. In contrast to those
results (Wallner, 2020), we focus on establishing existence criteria and identifying tractable
fragments. A further approach (Moguillansky, Rotstein, Falappa, Garćıa, & Simari, 2008)
considers argumentative revision operators in the context of defeasible logic programming
in order to warrant a desired conclusion. In contrast to our enforcement approach, their
objective lies in revising a program such that an argument with the desired conclusion ends
up undefeated.

More generally speaking, our work considers changes of knowledge bases, which is closely
related to the area of belief revision (Alferes, Leite, Pereira, Przymusinska, & Przymusinski,
2000). Argumentation and belief revision are closely related (Falappa, Kern-Isberner, &
Simari, 2009). Revising knowledge in argumentation has received some attention in recent
years. Snaith and Reed (2017) study several revision operator with main focus on ASPIC+;

626

On Dynamics in Structured Argumentation Formalisms

Hadjisoteriou and Kakas (2015) develop a framework to express logic- based reasoning about
actions and change; and Rotstein et al. (2008, 2010) develop a model to handle change in
argumentation. In their model, they keep track of the structure of the arguments and
their sub-argument relation at the abstract level; hence, we observe certain parallels to
our cvAFs. In contrast to our approach, they consider both the addition and the removal
of arguments and study associated interactions. Indeed, the main focus of our work are
operations that are based on framework expansions. In this regard, we want to highlight
in particular the work by Cayrol et al. (Cayrol, de Saint-Cyr, & Lagasquie-Schiex, 2010)
who study framework expansions in the context of AFs. They consider several types of
revision operators that impose certain properties of the outcome and establish conditions
under which a given property is satisfied.

Redundancies. The redundancy notions we discussed are similar in spirit to the line of
research on syntactic transformations for LPs (Brass & Dix, 1997; Eiter, Fink, Tompits,
& Woltran, 2004; Wang & Zhou, 2005; Lin & Chen, 2007), that gave rise to alternative
characterizations of strong equivalence (Osorio, Pérez, & Arrazola, 2001; Cabalar, 2002)
and set the ground for further complexity analysis of LP fragments (Eiter, Fink, Tompits,
& Woltran, 2007). We already have mentioned redundancy studies in logic-based argumen-
tation (Amgoud et al., 2014). Redundancies have also been considered for CAFs (Dvořák
et al., 2020) and AFs with collective attacks (Dvořák, Rapberger, & Woltran, 2020).

9.3 Future Work

Future work directions include exploring further formalisms where cvAFs are applicable,
i.e., investigating suitability for e.g. ASPIC (Modgil & Prakken, 2018) or logic-based argu-
mentation (Besnard & Hunter, 2001). As demonstrated in our LP section, utilizing cvAFs is
a promising technique. Since ASPIC frameworks are not necessarily flat, i.e., the derivations
are in general not constrained, it will be particularly interesting to identify the correspond-
ing tractable fragment and to generalize our results to capture the considered dynamic tasks
in ASPIC with our cvAFs. Similarly, finding more reasoning tasks where we can benefit
from cvAFs would contribute to this line of research. It would also be interesting to see
under which conditions the requirement of atomic frameworks can be dropped. As a further
future research direction we identify the design of efficient algorithms since our tractability
results serve as a promising starting point for such an endeavor. We also want to mention
that formalisms which incorporate preferences, e.g., ASPIC+ (Modgil & Prakken, 2018) or
ABA+ (Cyras et al., 2018), do not always yield well-formed cvAFs when instantiating, so
one could investigate whether it is possible to apply similar proof techniques to this setting.

As we have mentioned at the beginning of Section 6, our enforcement results for cvAFs
rely on the assumption that each possible expansion is permitted. However, it can be the
case that not every expansion is allowed (Prakken, 2022), for instance, because the un-
derlying knowledge base imposes constraints on the argument construction or inclusion.
Taking these considerations into account would be a challenging avenue for future research.
More broadly, research on dynamics benefits from a solid understanding of the expressive
power of the given formalism. This is well-studied in the the realm of abstract argumen-
tation (Baumann & Strass, 2013; Dunne, Dvořák, Linsbichler, & Woltran, 2015; Ulbricht,
2021), however, for ABA this line of research has mostly been neglected so far.

627

Rapberger & Ulbricht

We extended the research on SE-models from LPs to ABA, but only for stable semantics.
The crucial feature of stable semantics (both in ABA and LPs) is that the models are two-
valued. It is not clear how to characterize strong equivalence for three-valued semantics in
a similar way. We are convinced this is an interesting avenue for future research.

We furthermore note that studies related to our redundancy notions in the context
of structured approaches or logic programs could be an interesting avenue for future re-
search. As demonstrated in Section 8, our redundancy notions are easily transferable to
atomic instances. It would be interesting to generalize these notions to general LPs or ABA
frameworks.

Acknowledgements

We all thank reviewers of previous versions of this paper for their thorough feedback and
helpful comments which significantly contributed to the current version of this work. This
research has been supported by Vienna Science and Technology Fund (WWTF) through
project ICT19-065, the Austrian Science Fund (FWF) through projects P32830 and W1255-
N23 as well as by the German Federal Ministry of Education and Research (BMBF,
01/S18026A-F) by funding the competence center for Big Data and AI “ScaDS.AI” Dres-
den/Leipzig.

Appendix A. Computational Complexity of Dynamic Tasks for ABA

Theorem 4.5. Deciding whether a conclusion p (assumption a) is enforceable in a given
ABA framework D w.r.t. a semantics σ ∈ {gr , co, pr , stb} is NP-hard.

Proof. We present a reduction from SAT which shows hardness for grounded, complete,
preferred, and stable semantics. Given a CNF formula φ with clauses C = {c1, . . . , cn} over
variables in X, we let D = (L,R,A,) be defined as in Reduction 4.4.

We show φ is enforceable w.r.t. σ iff φ is satisfiable.
First assume φ is satisfiable and let M ⊆ X be a model of φ. For each x ∈ M , we

introduce rules of the form “xTa ←” and for each x /∈ M , we add rules “xFa ←”. Each
of these conclusions is contained in the grounded extension (is derivable by the empty set
of assumptions E). Moreover, for each x ∈ X, if E ⊢ xTa then xFa is unattacked and thus
contained in the grounded extension G (since we have introduced a fact precisely for each
atom). G contains the assumptions c and e: Since M is a satisfying assignment of φ, each
clause-rule with head c is attacked by the newly introduced rules, thus we have c ∈ G.
Moreover, for every x ∈ X, either xTp or xFp is attacked by G, thus e ∈ G. We obtain G ⊢ φ.

We observe that the AF arising from D is acyclic (clearly, also after adding facts to
D), thus gr(D) = co(D) = pr(D) = stb(D). Consequently, φ is satisfiable implies the
conclusion φ is enforceable under all considered semantics.

Now assume φ is unsatisfiable. Towards a contradiction, assume φ is enforceable w.r.t.
σ. That is, there is a set of rules R′, there is a σ-assumption-set A ⊆ A, such that φ is
derivable by A in D′ = (L,R∪R′,A,). This is the case if A defends φ against all attacks.
Consequently, (a) for each x ∈ X, R′ contains either rules with conclusion xTa or xFa but not
both, otherwise both xTa , x

F
a are not contained in G and thus the attack on e from {xTp , xFp }

stays undefeated; also, (b) for each i ≤ n, R′ contains some rule with conclusion a for some

628

On Dynamics in Structured Argumentation Formalisms

a ∈ Ai, that is, either xTa or xFa for some x ∈ X. Thus for all ci, either G ⊢ xTa in case x ∈ ci
or G ⊢ xFa in case ¬x ∈ ci. We obtain that M = {x | G ⊢ xTa } is a satisfying assignment of
φ, contradiction to the assumption φ is unsatisfiable.

To show NP-hardness of assumption-enforcement, we adapt Reduction 4.4 as follows:
For a CNF formula φ with clauses C = {c1, . . . , cn} over variables in X, we define the
corresponding ABA framework D = (L,R,A,) with

� A = {xTa , xFp , xFa , xTp | x ∈ X} ∪ {φ};

� xFp = xTa , x
T
p = xFa , and xTa , x

F
a , φ ∈ L \ A.

Moreover, R contains the following rules:

� for all x ∈ X, R contains a rule φ← xTp , x
F
p ;

� for each i ≤ n, R contains a rule of the form φ← {xTa | x ∈ ci} ∪ {xFa | ¬x ∈ ci}.

Considering the example in Figure 1, we have replaced all arguments concluding e or c with
arguments concluding φ without changing the incoming attacks. The remaining part of the
proof is analogously to the proof for conclusion-enforcement as outlined above.

Theorem 4.8. Deciding whether two ABA frameworks are strongly equivalent w.r.t. a given
semantics σ ∈ {gr , co, pr , stb} is coNP-hard.

Proof. We present a reduction from UNSAT: Given a CNF formula φ with clauses C =
{c1, . . . , cn} over variables in X, we let D = (L,R,A,) be defined as in Reduction 4.4,
and D′ = (L,R′,A,) with R′ = R \ {φ ← c, e}, that is, we consider two independent
frameworks that differ in a single rule: D′ has no argument for φ. If some expansion
of D′ has a σ-assumption-extension concluding φ this is only because an argument with
conclusion φ has been added when expanding D′. By our results from Theorem 4.5, we
have that φ is satisfiable iff there is a set of rules R′′ such that (L,R ∪ R′′,A,) admits
a σ-assumption-extension that concludes φ. Consequently, φ is satisfiable iff there is some
expansion D′′ of D and D′ such that σ(D ∪ D′′) ̸= σ(D′ ∪ D′′), i.e., D and D′ are not
strongly equivalent to each other.

Appendix B. Computational Complexity of Dynamic Tasks for cvAFs

Theorem 6.20. Deciding whether a set X of arguments is gr-enforceable for a given cvAF
F = (A,R) is NP-hard.

Sketch of proof. Consider the following reduction.

Reduction B.1. For a CNF formula φ with clauses C = {c1, . . . , cn} over variables in
X = {x1, . . . , cm}, we define the corresponding cvAF F = (A,R) with

A = C ∪ {v1, . . . , vm} ∪ {v̄1, . . . , v̄m} ∪ {U1, . . . , Um} ∪ {p1, . . . , pm}

629

Rapberger & Ulbricht

c1, . . . , cn, x̄1 | T1

v1

c1, . . . , cn, x1 | T1

v̄1

c1, . . . , cn, x̄2 | T2

v2

c1, . . . , cn, x2 | T2

v̄2

x̄1, x2 | c1
c1

x1, x̄2 | c2
c2

x̄1, x̄2 | c3
c3

T1 | p̄1

U1

T2 | p̄2

U2

p̄1 | T1

p1

p̄2 | T2

p2

Figure 6: Reduction B.1 applied to the formula ϕ consisting of clauses c1 = {¬x1, x2},
c2 = {x1,¬x2}, c3 = {¬x1,¬x2}

where

∀c ∈ C : cl(c) = c vul(c) = {xj | xj ∈ c} ∪ {x̄j | ¬xj ∈ c}
∀1 ≤ i ≤ m : cl(vi) = Ti vul(vi) = C ∪ {x̄i}
∀1 ≤ i ≤ m : cl(v̄i) = Ti vul(v̄i) = C ∪ {xi}
∀1 ≤ i ≤ m : cl(Ui) = p̄i vul(Ui) = Ti

∀1 ≤ i ≤ m : cl(pi) = Ti vul(pi) = {p̄i}

and the induced attack relation. An example of this reduction can be found in Figure 6.

The reduction is an extension of Reduction 6.18 (see also the proof of Theorem 6.19).
Given a formula ϕ in CNF we construct F = (A,R) as described in Reduction B.1. We
claim that ϕ is satisfiable iff {p1, . . . , pm} can be enforced in F . For this, recall the proof
of Theorem 6.19: {T1, . . . , Tm} can be enforced iff ϕ is satisfiable. However, since we
cannot introduce {T1, . . . , Tm} directly, in order to ensure p1, . . . , pm occurs in the grounded
extension, we have to defeat U1, . . . , Um by proceeding as in the proof of Theorem 6.19.

Theorem 6.23. Deciding whether a set X of arguments (a set C of claims) is D-eluding
σ-enforceable for a given cvAF F = (A,R) and semantics σ ∈ {co, gr , pr , stb} is NP-hard.

Proof. For claim-enforceability and for σ = gr , we obtain the result from Corollary 6.22.
Hence let us focus on argument enforcement for the semantics σ ∈ {co, pr , stb}. For a CNF
formula φ with clauses C over variables in Y , we let Ȳ = {ȳ | y ∈ Y }. We construct
arguments corresponding to the clauses as follows:

CA = {(Z, c) | c ∈ C,Z = {y | y ∈ c ∩ Y } ∪ {ȳ | ¬y ∈ c ∩ Y }}.

We define the corresponding cvAF F = (A,R) with

A =(Y × Ȳ) ∪ (Ȳ × Y) ∪ CA ∪ {(C,φ)}

630

On Dynamics in Structured Argumentation Formalisms

and the induced attack relation R. Let a = (C,φ). The cvAF corresponds to the standard
reduction (Dvořák & Dunne, 2018, Reduction 3.6). As discussed in (Dvořák & Dunne,
2018), φ is satisfiable iff the argument a is credulously accepted. We will make use of this
result for our enforcement scenario as follows:

We set X = {a} and D = Y ∪ Ȳ ∪{φ}. That is, we aim to enforce the argument a (cor-
responding to the formula φ) and we are not allowed to introduce any claim corresponding
to literals or φ. Hence we cannot defend φ against the attacks from the clause arguments
C (to do so, we would need to introduce claims from Y ∪ Ȳ). Therefore, it holds that a is
D-eluding σ-enforceable iff a is already credulously accepted in F . From the results for the
standard reduction we discussed above we obtain that a is D-eluding σ-enforceable iff φ is
satisfiable. This proves our desired lower bounds.

Appendix C. Strong Equivalence

We present the omitted proofs for preferred, grounded, and stable semantics.

C.1 Preferred Kernel

Proposition 7.24. For a cvAF F = (A,R) and a strongly pr-unacceptable argument x ∈ A,
prcl (F) = prcl (F \ {x}).

Proof. Let F ′ = F \ {x} and recall that x can never appear in an admissible extension
as it it strongly unacceptable. Let x be strongly pr -unacceptable w.r.t. y ∈ A. Then
ΓF ({z}) ⊆ ΓF ′({z}) for every z ∈ A \ {x}, i.e., every argument z ̸= x defends the same
arguments in F ′ which are defended by z in F . We obtain adcl (F) ⊆ adcl (F ′).

To prove prcl (F) = prcl (F ′) we show that for every E ∈ ad(F ′), there is D ∈ ad(F)
such that E ⊆ D. In case E ∈ ad(F), we are done (taking D = E). In case E /∈ ad(F),
there is z ∈ E such that (x, z) ∈ R and z is not defended by E in F . In case E∪{y} ∈ cf (F)
we are done (note that in this case, D = E ∪ {y} is admissible). Now assume E ∪ {y} is
not conflict-free. Observe that (y, y) /∈ R by assumption vul(y) = {cl(x)}. In case there
is v ∈ E such that (v, y) ∈ R we have cl(v) = c and thus (v, x) ∈ R by well-formedness,
contradiction to E /∈ ad(F). In case (y, v) ∈ R for some v ∈ E we have some w ∈ E which
defends v against w (since E is admissible in F ′) thus we arrive again at a contradiction
since (w, y) ∈ R implies (w, x) ∈ R. It follows that D = E ∪ {y} is an admissible superset
of E in F . We have shown that the preferred extensions of F and F ′ coincide.

To show Theorem 7.26 we proceed similarly to the case of complete semantics. First,
we show that each cvAF is strongly equivalent to its preferred kernel.

Proposition C.1. F ≡pr
s Fck for every cvAF F .

Proof. Consider a set X of instantiated arguments. By Proposition 7.12, we have that
prcl (fe(Fck, X)) = prcl (fe(F , X)). Let Let Apunac ⊆ Ack denote the set of strongly pr -
unacceptable arguments of Fck. By Proposition 7.24, we can delete strongly pr -unacceptable
arguments iteratively without changing preferred extensions. We obtain prcl (fe(F ′, X)) =
prcl (fe(F , X)) for F ′ = F \ Apunac. By definition of the preferred kernel, it holds that
F ′ = Fpk. Hence we obtain F ≡pr

s Fpk.

631

Rapberger & Ulbricht

As a corollary, we obtain that preferred semantics of each cvAF and its preferred kernel
coincides.

Corollary C.2. prcl (F) = prcl (Fck) for every cvAF F .

Next, we show that the preferred kernel does not contain redundant, strongly defeated,
and strongly pr -unacceptable arguments; moreover, each strongly unacceptable argument is
self-attacking. While the latter follows by Lemma 7.15, it remains to show that redundant,
strongly defeated, and strongly pr -unacceptable arguments can be removed iteratively.

Lemma C.3. Given a cvAF F and arguments x, y ∈ A, x ̸= y. Let y be redundant,
strongly defeated, or strongly pr-unacceptable in F . Then x is redundant, strongly de-
feated, or strongly pr-unacceptable in F iff x is redundant, strongly defeated, or strongly
pr-unacceptable in F \ {y}.

Proof. We first observe that if x is redundant, strongly defeated, or strongly pr -unacceptable
in F \{y} then there is a witness z in F \{y}. As mentioned in Observation 7.14, the claim-
attacks are not affected by removing certain arguments. We thus obtain that z witnesses
that x is redundant, strongly defeated, or strongly pr -unacceptable in F . Also, in case x is
strongly defeated in F , it is clear that x is contained in F \ {y} since y is not unattacked
and thus cannot witness that x is is strongly defeated.

Let y be strongly defeated in F . In case x is redundant w.r.t. y in F , there is some
unattacked z ∈ A with (z, y) ∈ R. Thus we obtain that also x is strongly defeated (using
vul(y) ⊆ vul(x), i.e., (z, x) ∈ R). In case x is strongly pr -unacceptable w.r.t. y in F , there
is some unattacked z ∈ A, (z, y) ∈ R, moreover, cl(z) = cl(x) (using vul(y) = {cl(x)}.
Consequently we obtain that x is redundant in F and in F \ {y}.

Let y be redundant in F and let x be redundant w.r.t. y in F . Then there is z ∈ A
with vul(z) ⊆ vul(y) and cl(z) = cl(y), thus witnessing the redundancy of x. In case x
is strongly pr -unacceptable w.r.t. y in F , there is z ∈ A with cl(z) = cl(y) and vul(z) ⊂
vul(y) = {cl(x)}, thus vul(z) = ∅; moreover, (z, x) ∈ R using cl(z) = cl(y) ∈ vul(x). We
obtain that x is strongly defeated.

We remark that the lemma states that the disjunction of the three properties is pre-
served. Similar as in Lemma 7.17, a redundant argument can turn into a strongly defeated
argument when removing y.

Similarly as in the case of the complete kernel, we obtain that computing the preferred
kernel of a given cvAF does not ‘forget’ any redundancies. By Lemma 7.15, Observa-
tion 7.14, and Lemma C.3, we obtain the following result, which is proven analogously to
Proposition 7.18.

Proposition C.4. For any cvAF F , the kernel Fpk does neither contain redundant, non-
self-attacking strongly unacceptable, strongly defeated or strongly pr-unacceptable arguments.

Again, the next auxiliary result is to establish that preferred kernels of two strongly
equivalent cvAFs contain the same claims.

Lemma C.5. For two cvAFs F and G, F ≡pr
s G implies cl(AFpk) = cl(AGpk).

632

On Dynamics in Structured Argumentation Formalisms

Proof. Let x ∈ AFpk with cl(x) = c. Towards a contradiction, assume that there is no
argument y ∈ AGpk with cl(y) = c. Since we may assume prcl (Fpk) = prcl (Gpk) in this case
we deduce that x does not occur in any preferred extension of Fpk. Hence it does not occur
in any admissible extension. Consequently, x receives incoming attacks.

We proceed similarly as in the proof of Lemma 7.19.
Case 1 First, we suppose that x is no self-attacker. This case is analogously to the proof

of Lemma 7.19.
Case 2 Now suppose each argument with claim c is a self-attacker and fix such x. Since

x occurs in the kernel Fpk, each attacker of x must itself possess attacking arguments. This
case is analogously to Case 2.1 in the proof of Lemma 7.19. Since the preferred kernel does
not contain pr -unacceptable arguments, it holds that each attacker z of x contains some
vulnerability e ∈ vul(z) with e ̸= c. Hence a case analogously to Case 2.2 in the proof of
Lemma 7.19 can never occur.

We are ready to prove our main result of this section.

Theorem 7.26. For two cvAFs F and G, F ≡pr
s G iff Fpk = Gpk.

Proof. To prove the statement, we proceed analogously to the proof of Theorem 7.20 for
complete semantics.

First assume Fpk = Gpk holds. By Proposition C.1, it holds that Fpk ≡pr
s F and

Gpk ≡pr
s G. Thus we obtain F ≡pr

s G by transitivity.
For the other direction, assume F ≡pr

s G. By Lemma C.5, it holds that Fpk and Gpk
contain the same claims. Analogously to the proof of Theorem 7.20, it can be shown that
for all arguments x in Fpk there is some argument y in Gpk such that cl(x) = cl(y) = c and
vul(y) ⊆ vul(x). Hence we conclude that Fpk and Gpk contain the same arguments. We
obtain that Fpk = Gpk.

C.2 Grounded Kernel

Proposition 7.28. Given a cvAF F = (A,R) and a strongly gr-unacceptable argument
x ∈ A and let x′ = (vul(x) ∪ {cl(x)}, cl(x)). Then gr(F) = gr((fe(F \ {x}, x′)).

Proof. Let F ′ = fe(F \ {x}, x′) and assume x is strongly gr -unacceptable w.r.t. y ∈ A.
In case x /∈ gr(F) we are done (turning x into a self-attacking argument does not change
the grounded extension). In case x ∈ gr(F) there is z ∈ gr(F) such that (z, y) ∈ R. If
cl(z) ̸= cl(x) we have cl(z) ∈ vul(x) by assumption vul(y) \ {cl(x)} ⊆ vul(x), that is, z
attacks x, contradiction to {x, z} ⊆ gr(F). In case cl(z) = cl(x), we have cl(x) ∈ grcl (F ′),
and z attacks the same arguments as x by well-formedness, hence grcl (F) = grcl (F ′).

Let us now infer the usual auxiliary results leading to Theorem 7.30.

Proposition C.6. F ≡gr
s Fck for every cvAF F .

Proof. By Proposition 7.28, we can modify all strongly gr -unacceptable arguments of F
without changing semantics. Next, we iteratively remove all redundant and strong unac-
ceptable arguments (cf. Proposition 7.5 and 7.6).

Corollary C.7. grcl (F) = grcl (Fck) for every cvAF F .

633

Rapberger & Ulbricht

Lemma C.8. For a cvAF F = (A,R) and a strongly gr-unacceptable argument x ∈ A.
Let x′ = (vul(x) ∪ {cl(x)}, cl(x)) and let F ′ = fe(F \ {x}, x′) = (A′, R′). Then, for all
y ̸= x ∈ A, y is strongly gr-unacceptable in F iff y is strongly gr-unacceptable in F ′.

Proof. Let y ∈ A be strongly gr -unacceptable in F . Then there is z ∈ A with vul(z) \
{cl(y)} ⊆ vul(y) and (z, y) ∈ R in F . In case z ̸= x we are done (then z ∈ A′). In case z = x,
we have cl(x) ∈ vul(y). Replacing x in F ′ with x′, we obtain vul(x′) = vul(x) ∪ {cl(x)},
thus vul(x′) \ {cl(y)} ⊆ vul(y) and (x′, y) ∈ R showing that y is strongly (gr -)unacceptable
in F ′. In case y ∈ A′ is strongly gr -unacceptable in F ′, there is a witness z ∈ A′ in F .
Recall that A′ \ {x} ⊂ A \ {x}. We proceed by case distinction: First assume z ̸= x′. Then
z ∈ A and thus we obtain that y is strongly gr -unacceptable in F . Now assume z = x′.
Then x attacks y in F and vul(x) \ {cl(x)} = vul(x′) \ {cl(x)} ⊆ vul(y). This shows that
y is strongly gr -unacceptable in F .

Analogously to Proposition 7.18, we obtain the following result.

Proposition C.9. The grounded kernel Fck of a cvAF F does not contain redundant nor
strongly defeated arguments, and each strongly gr-unacceptable argument is self-attacking.

Similarly as for complete and preferred semantics, we show that the grounded kernels
of two strongly equivalent cvAFs contain the same claims.

Lemma C.10. For two cvAFs F and G, F ≡gr
s G implies cl(AFgk) = cl(AGgk).

Proof. Let x ∈ AFgk with cl(x) = c. Towards a contradiction, assume that there is no
argument y ∈ AGgk with cl(y) = c. Since we may assume grcl (Fgk) = grcl (Ggk) in this
case we deduce that x does not occur in the grounded extension of Fgk. Consequently, x
receives incoming attacks.

Case 1 Suppose x is no self-attacker. Consider the set Z = {z ∈ AFgk | (z, x) ∈ RF}
of arguments attacking x. Since x is no self-attacker, by definition of the kernel we have
vul(z) \ (vul(x) ∪ {cl(x)}) ̸= ∅ for each z ∈ Z. Thus by letting

VZ = {ve = (∅, e) | e ∈ vul(z) \ (vul(x) ∪ {cl(x)}), z ∈ Z},

we defeat these attackers without introducing claim c. Thus c appears in the grounded
extension of fe(Fgk, VZ) but not in fe(Ggk, VZ).

Case 2 Now suppose each argument with claim c is a self-attacker and fix such x. Since
x occurs in the kernel Fgk, each attacker of x must itself possess attacking arguments.

First, we get rid of arguments with the same claim c. Let Y = {y ∈ AFgk | cl(y) =
c, y ̸= x} denote the set of arguments with claim c. We consider arguments which defeat
them; this time we can get rid of all of them via

VY = {ve = (∅, e) | e ∈ vul(y) \ vul(x), y ∈ Y, e ̸= c}
= {ve = (∅, e) | e ∈ vul(y) \ vul(x), y ∈ Y}.

Now by introducing a self-attacker to each claim except c we ensure that all arguments
except the unattacked ones are attacked and hence undecided in the unique grounded ex-
tension; in particular, x is. Thus consider V = {ve = (∅, e) | e ∈ cl(Fgk), e ̸= c}.

With the usual technique—introducing a fresh argument attacked by claim c—we sep-
arate the two cvAFs.

634

On Dynamics in Structured Argumentation Formalisms

We are ready to state the desired kernel characterization.

Theorem 7.30. For two cvAFs F and G, F ≡gr
s G iff Fgk = Ggk.

Proof. First assume Fgk = Ggk holds. By Proposition 7.12, it holds that Fgk ≡gr
s F and

Ggk ≡gr
s G. Thus we obtain F ≡gr

s G by transitivity.

For the other direction, assume F ≡gr
s G. By Lemma C.10, it holds that Fgk and Ggk

contain the same claims. To show that for all arguments x in Fgk there is some argument
y in Ggk such that cl(x) = cl(y) = c and vul(y) = vul(x), we proceed analogously to the
proof of Theorem 7.20. Hence we obtain that Fgk and Ggk contain the same arguments,
which yields Fgk = Ggk.

C.3 Stable Kernel

Towards proving Theorem 7.38, we proceed by the usual steps. Iterative application of
Proposition 7.33, 7.5, 7.7, and 7.6 shows that each cvAF is strongly equivalent to its stable
kernel.

Proposition C.11. F ≡gr
s Fsk for every cvAF F .

Next we show that the deletion of strongly unacceptable, redundant, or strongly defeated
arguments does not change strong unacceptability, redundancy, or strong defeat of other
arguments. Hence such arguments can be iteratively removed.

Lemma C.12. For a cvAF F = (A,R) and a strongly unacceptable, redundant, or strongly
defeated argument y ∈ F , y ̸= x ∈ A is strongly unacceptable, redundant, or strongly
defeated in F iff x is strongly unacceptable, redundant, or strongly defeated in F \ {y}.

Proof. (⇐) We first observe that if x is strongly unacceptable, redundant, or strongly
defeated in F \ {y} then there is a witness z in F \ {y}. As mentioned in Observation 7.14,
the claim-attacks are not affected by removing certain arguments. We thus obtain that z
witnesses that x is strongly unacceptable, redundant, or strongly defeated in F . Also, in
case x is strongly defeated, it is clear that x is contained in F \{y} since y is not unattacked
and thus cannot serve as witness for x being strongly defeated.

(⇒) To prove the other direction, we proceed by case distinction.

� Let y be strongly unacceptable.

First, let x be strongly unacceptable in F . In case y witnesses strong unacceptability
of x in F , there is z with vul(z) ⊆ vul(y) and cl(z) ∈ vul(y). Then z witnesses
unacceptability of x in F since vul(z) ⊆ vul(x) and cl(z) ∈ vul(x). W.l.o.g., let z be
minimal in the sense that there is no u ∈ A with vul(u) ⊂ vul(y) and cl(u) ∈ vul(y).
Then z is not strongly unacceptable in F (otherwise, we find such an u, contradiction
to the minimality assumption), and thus z witnesses the unacceptability of x in F\{y}.

In case x is redundant in F w.r.t. y, there is z with vul(z) ⊆ vul(y) and cl(z) ∈ vul(y).
Thus vul(z) ⊆ vul(x) and cl(x) ∈ vul(y) shows that x is strongly unacceptable in F .
We obtain x is strongly unacceptable in F \ {y}.

635

Rapberger & Ulbricht

� Let y be strongly defeated. In case x is redundant w.r.t. y in F , there is some
z ∈ A with (z, y) ∈ R. Thus we obtain that also x is strongly defeated (using
vul(y) ⊆ vul(x), i.e., (z, x) ∈ R). In case x is strongly unacceptable w.r.t. y in F ,
also x is strongly defeated (using vul(y) ⊆ vul(x)).

� Let y be redundant. First, let x be redundant w.r.t. y. Then there is vul(z) ⊆ vul(y)
and cl(z) = cl(y), thus witnessing the redundancy of x. In case x is unacceptable
w.r.t. y in F . There is z ∈ A satisfying vul(z) ⊆ vul(y) and cl(z) = cl(y), and thus z
witnesses unacceptability of x in F \ {y}.

We remark that the lemma states that the disjunction of the properties is preserved.
Similar as in Lemma 7.17, a redundant argument can turn into a strongly defeated argument
when removing y.

The stable kernel is constructed by (1) modifying all strongly unacceptable arguments;
(2) adding all self-attacking arguments with conclusions s ∈ vul(x) for each self-attacking
argument x; and (3) removing all redundant, strictly unacceptable, and strongly defeated
arguments; by Lemma C.12, we obtain the following.

Proposition C.13. For a cvAF F , the stable kernel Fsk does not contain redundant,
strictly strongly unacceptable, and strongly defeated arguments.

We show that the stable kernels of two strongly equivalent cvAFs contain the same
claims.

Lemma C.14. For two cvAFs F and G, F ≡stb
s G implies cl(AFsk) = cl(AGsk).

Proof. Let x ∈ AFsk with cl(x) = c. Towards a contradiction, assume that there is no
argument y ∈ AGsk with cl(y) = c. Since we may assume stbcl (Fsk) = stbcl (Gsk) in this
case we deduce that x does not occur in any stable extension of Fsk.

Case 1 Suppose x is no self-attacker. We have to deal with three kinds of arguments:

� same claim as c (we block these arguments),

� attacking x (we block these arguments, whenever x cannot do this on its own),

� odd cycles (we disrupt all of them).

Then c appears in a stable extension of F but not in G, because we will never add claim c.

Consider the set Y = {y ∈ AFsk | cl(y) = c, y ̸= x} of arguments with claim c. By
assumption, none of these arguments attacks x. We consider arguments which defeat them
unless this would require either defeating x as well or adding claim c. We let

VY = {ve = (∅, e) | e ∈ vul(y) \ vul(x), y ∈ Y, e ̸= c}.

The remaining arguments y ∈ Y which are not attacked by VY must satisfy vul(y) \
vul(x) = {c} and are therefore attacked by x (self-attackers).

Now consider the set Z = {z ∈ AFsk | (z, x) ∈ RF , (x, z) /∈ RF} of arguments attacking
x without receiving a counter-attack. For z ∈ Z it holds that cl(z) ∈ vul(x) and therefore,

636

On Dynamics in Structured Argumentation Formalisms

by our definition of the stable kernel, it cannot be the case that vul(z) ⊆ vul(x). Moreover,
c /∈ vul(z) since that would imply a counterattack from x. Therefore with

VZ = {ve = (∅, e) | e ∈ vul(z) \ vul(x), z ∈ Z}

we get rid of them and we have now already ensured that {x} becomes admissible. Observe
that if Z is empty, then VZ is empty as well.

Now consider the set S = {s ∈ AF | (s, s) ∈ RF} of self-attacking arguments. By
definition of the stable kernel, we have vul(s) ⊈ vul(x) for all s ∈ S. Therefore with
VS = {ve | e ∈ vul(s) \ vul(x), s ∈ S} we get rid of them without attacking x.

Now consider any odd cycle O = {o1, . . . , on} occurring in Fsk. Our goal is to argue that⋃
vul(oi) ⊆ vul(x) is impossible; i.e., we can disrupt the odd cycle without attacking x.

Assume the contrary, i.e., suppose
⋃
vul(oi) ⊆ vul(x). Then cl(oi) ∈ vul(x) for each i.

Since vul(oi) ⊆ vul(x) this implies that x is unacceptable contradicting the construction
of the stable kernel Fsk. Thus, by adding appropriate arguments we can disrupt the odd
cycles and therefore, the admissible set {x} can be extended to a stable extension.

Case 2 Now suppose each argument with claim c is a self-attacker and fix such x. Again,
we have to deal with three kinds of arguments:

� same claim as c (block these arguments),

� attacking x (we block all of these arguments),

� odd cycles (we disrupt all of them).

Then F has no stable extension, but one after we add claim c, where in G adding c does
not change anything.

Consider the set Y = {y ∈ AFsk | cl(y) = c, y ̸= x} of arguments with claim c. We
consider arguments which defeat them; this time we can get rid of all of them via

VY = {ve = (∅, e) | e ∈ vul(y) \ vul(x), y ∈ Y, e ̸= c}
= {ve = (∅, e) | e ∈ vul(y) \ vul(x), y ∈ Y}.

Now consider the set Z = {z ∈ AFsk | (z, x) ∈ RFsk} \ Y of arguments attacking x and not
having claim c. For z ∈ Z it holds that cl(z) ∈ vul(x) and therefore, by our definition of
the stable kernel, it cannot be the case that vul(z) ⊆ vul(x). Moreover, c ∈ vul(x) implies
c /∈ vul(z) \ vul(x). Therefore with

VZ = {ve = (∅, e) | e ∈ vul(z) \ vul(x), z ∈ Z}

we get rid of them without introducing claim c. Moreover, we deal with the set of self-
attackers S = {s ∈ AF | (s, s) ∈ RF} as before via VS = {ve | e ∈ vul(s) \ vul(x), s ∈ S}.

Now consider any odd cycle O = {o1, . . . , on} occurring in Fsk. Again, our goal is to
argue that

⋃
vul(oi) ⊆ vul(x) is impossible. Towards a contradiction, suppose

⋃
vul(oi) ⊆

vul(x). Then cl(oi) ∈ vul(x) for each i. Since vul(oi) ⊆ vul(x) this would, however, imply
that x is unacceptable contradicting the construction of the stable kernel Fsk. Thus, by
adding appropriate arguments we ensure that F has no stable extension, but with the
self-attacker x being the only odd cycle.

Therefore, fe(Fsk, X) has no stable extension, but adding an isolated argument with
claim c resolves this; meanwhile, adding this argument to fe(Gsk, X) does not influence
whether or not there is a stable extension.

637

Rapberger & Ulbricht

Appendix D. Logic Programs

Proposition 8.12. Consider a semantics σ. Deciding atom-enforceability w.r.t. σ for the
class of normal LPs is NP-hard.

Proof. Let φ be a boolean formula given by clauses C over variables in X. The correspond-
ing logic program P contains the following rules:

� the atomic rule ‘pφ ← not C’;

� rules ‘pc ← {l | ¬l ∈ c}, not {l ∈ X | l ∈ c}’ for each clause c ∈ C.

Intuitively, a clause-atom c is contained in a stable model M iff c is false in M . Hence we
can accept φ iff c /∈ M for all c ∈ C. We show φ is satisfiable iff pφ is enforceable in P .
Since each stable model is well-founded in P it suffices to focus on stable semantics.

First assume φ is satisfiable. Assume M is a model of φ. We add each x ∈ M as fact.
We show that Q = M ∪ {pφ} is a stable model of P ∪M . Consider c ∈ C. If c ∩M ̸= ∅
then the rule r with head(r) = pc contains not x for some x ∈ c ∩M . Hence the rule r is
satisfied by Q. Likewise, if c ∩M = ∅ we have some x ∈ X with x /∈M and ¬x ∈ c. Hence
the rule r with head(r) = pc satisfies x ∈ body(r). Hence Q satisfies r.

For the other direction, assume pφ is enforceable. Let R denote the set of rules which
enforce pφ, and let M denote the model of R ∪ P which contains pφ. Then M does not
contain any c ∈ C (otherwise, pφ would not be acceptable). Now, we show that N = M ∩X
is a model of φ. Again, for each rule r ∈ P correspondig to a clause in c ∈ C, there is either
some x ∈ N with not x ∈ body(r)—in this case, x ∈ c hence c is satisfied; or there is some
x ∈ X \N with x ∈ body(r)—then ¬x ∈ c and thus c is satisfied.

References

Alferes, J. J., Leite, J. A., Pereira, L. M., Przymusinska, H., & Przymusinski, T. C. (2000).
Dynamic updates of non-monotonic knowledge bases. The journal of logic program-
ming, 45 (1-3), 43–70.

Amgoud, L., Besnard, P., & Vesic, S. (2014). Equivalence in logic-based argumentation.
Journal of Applied Non-Classical Logics, 24 (3), 181–208.

Arora, S., & Barak, B. (2009). Computational Complexity - A Modern Approach. Cambridge
University Press.

Atkinson, K., Baroni, P., Giacomin, M., Hunter, A., Prakken, H., Reed, C., Simari, G. R.,
Thimm, M., & Villata, S. (2017). Towards artificial argumentation. AI Magazine,
38 (3), 25–36.

Baroni, P., Cerutti, F., Giacomin, M., & Guida, G. (2011). AFRA: Argumentation frame-
work with recursive attacks. International Journal of Approximate Reasoning, 52 (1),
19–37.

Baroni, P., Gabbay, D. M., Giacomin, M., & van der Torre, L. (Eds.). (2018). Handbook of
Formal Argumentation. College Publications.

Baumann, R. (2012a). Normal and strong expansion equivalence for argumentation frame-
works. Artificial Intelligence, 193, 18–44.

638

On Dynamics in Structured Argumentation Formalisms

Baumann, R. (2012b). What does it take to enforce an argument? Minimal change in
abstract argumentation. In Proceedings of the 20th European Conference on Artificial
Intelligence (ECAI 2012), pp. 127–132.

Baumann, R., & Brewka, G. (2010). Expanding argumentation frameworks: Enforcing
and monotonicity results. In Proceedings of the 3rd Conference on Computational
Models of Argument (COMMA 2010), Vol. 216 of Frontiers in Artificial Intelligence
and Applications, pp. 75–86. IOS Press.

Baumann, R., Rapberger, A., & Ulbricht, M. (2022). Equivalence in argumentation frame-
works with a claim-centric view - Classical results with novel ingredients. In Pro-
ceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI 2022), pp.
5479–5486. AAAI Press.

Baumann, R., & Strass, H. (2013). On the maximal and average numbers of stable exten-
sions. In Theory and Applications of Formal Argumentation - Second International
Workshop, TAFA 2013, Beijing, China, August 3-5, 2013, Revised Selected papers,
Vol. 8306 of Lecture Notes in Computer Science, pp. 111–126. Springer.

Baumann, R., & Strass, H. (2022). An abstract, logical approach to characterizing strong
equivalence in non-monotonic knowledge representation formalisms. Artificial Intelli-
gence, 305, 103680.

Baumann, R., & Ulbricht, M. (2021). On cycles, attackers and supporters - A contribution
to the investigation of dynamics in abstract argumentation. In Proceedings of the 30th
International Joint Conference on Artificial Intelligence (IJCAI 2021), pp. 1780–1786.
ijcai.org.

Baumeister, D., Järvisalo, M., Neugebauer, D., Niskanen, A., & Rothe, J. (2021). Accep-
tance in incomplete argumentation frameworks. Artificial Intelligence, 295, 103470.

Baumeister, D., Neugebauer, D., Rothe, J., & Schadrack, H. (2018). Verification in incom-
plete argumentation frameworks. Artificial Intelligence, 264, 1–26.

Bench-Capon, T. J. M., & Dunne, P. E. (2007). Argumentation in artificial intelligence.
Artificial Intelligence, 171 (10-15), 619–641.

Besnard, P., & Hunter, A. (2001). A logic-based theory of deductive arguments. Artificial
Intelligence, 128 (1-2), 203–235.

Besnard, P., & Hunter, A. (2018). A review of argumentation based on deductive arguments.
In Handbook of Formal Argumentation, chap. 9, pp. 437–484. College Publications.

Borg, A., & Bex, F. (2021). Enforcing sets of formulas in structured argumentation. In
Proceedings of the 18th International Conference on Principles of Knowledge Repre-
sentation and Reasoning, pp. 130–140.

Brass, S., & Dix, J. (1997). Characterizations of the disjunctive stable semantics by partial
evaluation. The Journal of Logic Programming, 32 (3), 207–228.

Cabalar, P. (2002). A three-valued characterization for strong equivalence of logic programs.
In Proceedings of the 18th National Conference on Artificial Intelligence and Four-
teenth Conference on Innovative Applications of Artificial Intelligence (AAAI/IAAI
2002), pp. 106–111. AAAI Press / The MIT Press.

639

Rapberger & Ulbricht

Caminada, M., Sá, S., Alcântara, J., & Dvořák, W. (2015a). On the difference between
assumption-based argumentation and abstract argumentation. IfCoLog Journal of
Logic and its Applications, 2 (1), 15–34.

Caminada, M., Sá, S., Alcântara, J., & Dvořák, W. (2015b). On the equivalence between
logic programming semantics and argumentation semantics. International Journal of
Approximate Reasoning, 58, 87–111.

Cayrol, C., de Saint-Cyr, F. D., & Lagasquie-Schiex, M. (2010). Change in abstract ar-
gumentation frameworks: Adding an argument. Journal of Artificial Intelligence Re-
search, 38, 49–84.

Cayrol, C., & Lagasquie-Schiex, M.-C. (2005). On the acceptability of arguments in bipolar
argumentation frameworks. In Proceedings of the 8th European Conference on Sym-
bolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2005),
Vol. 3571 of Lecture Notes in Computer Science, pp. 378–389. Springer.

Cyras, K., Fan, X., Schulz, C., & Toni, F. (2018). Assumption-based argumentation: Dis-
putes, explanations, preferences. In Handbook of Formal Argumentation, chap. 7, pp.
365–408. College Publications. Also appears in IfCoLog Journal of Logics and their
Applications 4(8):2407–2456.

Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence,
77 (2), 321–358.

Dunne, P. E., Dvořák, W., Linsbichler, T., & Woltran, S. (2015). Characteristics of multiple
viewpoints in abstract argumentation. Artificial Intelligence, 228, 153–178.

Dvorák, W., Fandinno, J., & Woltran, S. (2019). On the expressive power of collective
attacks. Argument and Computation, 10 (2), 191–230.

Dvořák, W., & Dunne, P. E. (2018). Computational problems in formal argumentation
and their complexity. In Handbook of Formal Argumentation, chap. 14, pp. 631–687.
College Publications. Also appears in IfCoLog Journal of Logics and their Applications
4(8):2557–2622.

Dvořák, W., Greßler, A., Rapberger, A., & Woltran, S. (2023). The complexity landscape
of claim-augmented argumentation frameworks. Artificial Intelligence, 317, 103873.

Dvořák, W., Rapberger, A., & Woltran, S. (2019). Strong equivalence for argumentation
frameworks with collective attacks. In Proceedings of the 42nd German Conference
on AI (KI 2019), Vol. 11793 of Lecture Notes in Computer Science, pp. 131–145.
Springer.

Dvořák, W., Rapberger, A., & Woltran, S. (2020). Argumentation semantics under a claim-
centric view: Properties, expressiveness and relation to SETAFs. In Proceedings of
the 17th International Conference on Principles of Knowledge Representation and
Reasoning (KR 2020), pp. 341–350.

Dvořák, W., & Woltran, S. (2020). Complexity of abstract argumentation under a claim-
centric view. Artificial Intelligence, 285, 103290.

640

On Dynamics in Structured Argumentation Formalisms

Dvořák, W., Rapberger, A., & Woltran, S. (2020). On the different types of collective
attacks in abstract argumentation: equivalence results for SETAFs. Journal of Logic
and Computation, 30 (5), 1063–1107.

Eiter, T., Fink, M., Tompits, H., & Woltran, S. (2004). Simplifying logic programs under
uniform and strong equivalence. In Proceedings of the 7th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR 2004), Vol. 2923 of
Lecture Notes in Computer Science, pp. 87–99. Springer.

Eiter, T., Fink, M., Tompits, H., & Woltran, S. (2007). Complexity results for checking
equivalence of stratified logic programs. In Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI 2007), pp. 330–335.

Falappa, M. A., Kern-Isberner, G., & Simari, G. R. (2009). Belief revision and argumenta-
tion theory. In Argumentation in Artificial Intelligence, pp. 341–360. Springer.

Gabbay, D., Giacomin, M., Simari, G. R., & Thimm, M. (Eds.). (2021). Handbook of Formal
Argumentation, Vol. 2. College Publications.

Garćıa, A. J., & Simari, G. R. (2018). Argumentation based on logic programming. In
Handbook of Formal Argumentation, chap. 8, pp. 409–435. College Publications.

Gorogiannis, N., & Hunter, A. (2011). Instantiating abstract argumentation with classical
logic arguments: Postulates and properties. Artificial Intelligence, 175 (9-10), 1479–
1497.

Hadjisoteriou, E., & Kakas, A. C. (2015). Reasoning about actions and change in argumen-
tation. Argument and Computation, 6 (3), 265–291.

Janhunen, T. (2004). Representing normal programs with clauses. In Proceedings of the
16th Eureopean Conference on Artificial Intelligence (ECAI 2004), pp. 358–362. IOS
Press.

Kaci, S., van der Torre, L. W. N., Vesic, S., & Villata, S. (2021). Preference in abstract ar-
gumentation. In Handbook of Formal Argumentation, Volume 2, pp. 211–248. College
Publications.

König, M., Rapberger, A., & Ulbricht, M. (2022). Just a matter of perspective: Intertrans-
lating expressive argumentation formalisms. In Proceedings of the 10th International
Conference on Computational Models of Argument (COMMA 2022), Vol. 353 of Fron-
tiers in Artificial Intelligence and Applications, pp. 212–223. IOS Press.

Lifschitz, V., Pearce, D., & Valverde, A. (2001). Strongly equivalent logic programs. ACM
Transactions on Computational Logic (TOCL), 2 (4), 526–541.

Lin, F. (2002). Reducing strong equivalence of logic programs to entailment in classical
propositional logic. In Proceedings of the 8th International Conference on Princi-
ples and Knowledge Representation and Reasoning (KR 2002), pp. 170–176. Morgan
Kaufmann.

Lin, F., & Chen, Y. (2007). Discovering classes of strongly equivalent logic programs.
Journal of Artificial Intelligence Research, 28, 431–451.

641

Rapberger & Ulbricht

Modgil, S., & Prakken, H. (2018). Abstract rule-based argumentation. In Handbook of
Formal Argumentation, chap. 6, pp. 287–364. College Publications. Also appears in
IfCoLog Journal of Logics and their Applications 4(8):2319–2406.

Moguillansky, M. O., Rotstein, N. D., Falappa, M. A., Garćıa, A. J., & Simari, G. R. (2008).
Argument theory change applied to defeasible logic programming. In Proceedings of
the 23rd AAAI Conference on Artificial Intelligence (AAAI 2008), pp. 132–137. AAAI
Press.

Nielsen, S. H., & Parsons, S. (2006). A generalization of Dung’s abstract framework for
argumentation: Arguing with sets of attacking arguments. In 3rd International Work-
shop on Argumentation in Multi-Agent Systems (ArgMAS 2006), Revised Selected and
Invited Papers, Vol. 4766 of Lecture Notes in Computer Science, pp. 54–73. Springer.

Nielsen, S. H., & Parsons, S. (2007). An application of formal argumentation: Fusing
bayesian networks in multi-agent systems. Artificial Intelligence, 171 (10-15), 754–
775.

Odekerken, D., Bex, F., Borg, A., & Testerink, B. (2022). Approximating stability for
applied argument-based inquiry. Intelligent Systems with Applications, 16, 200110.

Oikarinen, E., & Woltran, S. (2011). Characterizing strong equivalence for argumentation
frameworks. Artificial Intelligence, 175 (14-15), 1985–2009.

Osorio, M., Pérez, J. A. N., & Arrazola, J. (2001). Equivalence in answer set programming.
In Proceedings of the 11th International Workshop on Logic Based Program Synthesis
and Transformation (LOPSTR 2001), Vol. 2372 of Lecture Notes in Computer Science,
pp. 57–75. Springer.

Papadimitriou, C. H. (1994). Computational complexity. Addison-Wesley.

Pearce, D., Tompits, H., & Woltran, S. (2001). Encodings for equilibrium logic and logic
programs with nested expressions. In Progress in Artificial Intelligence, Knowledge
Extraction, Multi-agent Systems, Logic Programming and Constraint Solving, Pro-
ceedings of the 10th Portuguese Conference on Artificial Intelligence (EPIA 2001),
Vol. 2258 of Lecture Notes in Computer Science, pp. 306–320. Springer.

Prakken, H. (2022). Formalising an aspect of argument strength: Degrees of attackability.
In Toni, F., Polberg, S., Booth, R., Caminada, M., & Kido, H. (Eds.), Proceedings of
the 10th International Conference on Computational Models of Argument (COMMA
2022), Vol. 353 of Frontiers in Artificial Intelligence and Applications, pp. 296–307.
IOS Press.

Rapberger, A. (2020). Defining argumentation semantics under a claim-centric view. In
Proceedings of the 9th European Starting AI Researchers’ Symposium (STAIRS 2020),
Vol. 2655 of CEUR Workshop Proceedings. CEUR-WS.org.

Rapberger, A., & Ulbricht, M. (2022). On dynamics in structured argumentation for-
malisms. In Proceedings of the 19th International Conference on Principles of Knowl-
edge Representation and Reasoning (KR 2022), pp. 288–298.

Rapberger, A., Ulbricht, M., & Wallner, J. P. (2022). Argumentation frameworks induced
by assumption-based argumentation: Relating size and complexity. In Proceedings

642

On Dynamics in Structured Argumentation Formalisms

of the 20th International Workshop on Non-Monotonic Reasoning (NMR 2022), Vol.
3197 of CEUR Workshop Proceedings, pp. 92–103. CEUR-WS.org.

Rotstein, N. D., Moguillansky, M. O., Falappa, M. A., Garćıa, A. J., & Simari, G. R. (2008).
Argument theory change: Revision upon warrant. In Proceedings of the 2nd Interna-
tional Conference on Computational Models of Argument: Proceedings of (COMMA
2008), Vol. 172 of Frontiers in Artificial Intelligence and Applications, pp. 336–347.
IOS Press.

Rotstein, N. D., Moguillansky, M. O., Garćıa, A. J., & Simari, G. R. (2010). A dynamic
argumentation framework. In Proceedings of the 3rd International Conference on
Computational Model of Argument (COMMA 2010), Vol. 216 of Frontiers in Artificial
Intelligence and Applications, pp. 427–438. IOS Press.

Sá, S., & Alcântara, J. F. L. (2021). Assumption-based argumentation is logic programming
with projection. In Proceedings of the 16th European Conference on Symbolic and
Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2021), Vol. 12897
of Lecture Notes in Computer Science, pp. 173–186. Springer.

Snaith, M., & Reed, C. (2017). Argument revision. Journal of Logic and Computation,
27 (7), 2089–2134.

Testerink, B., Odekerken, D., & Bex, F. (2019). A method for efficient argument-based
inquiry. In Proceedings of the 13th International Conference on Flexible Query An-
swering Systems (FQAS 2019), pp. 114–125. Springer.

Thimm, M. (2012). A probabilistic semantics for abstract argumentation. In Proceeedings
of the 20th European Conference on Artificial Intelligence (ECAI 2012), Vol. 242 of
Frontiers in Artificial Intelligence and Applications, pp. 750–755. IOS Press.

Turner, H. (2001). Strong equivalence for logic programs and default theories (made easy).
In Proceedings of the 6th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR 2001), Vol. 2173 of Lecture Notes in Computer Sci-
ence, pp. 81–92. Springer.

Ulbricht, M. (2021). On the maximal number of complete extensions in abstract argumen-
tation frameworks. In Proceedings of the 18th International Conference on Principles
of Knowledge Representation and Reasoning (KR 2021), pp. 707–711.

Ulbricht, M., & Baumann, R. (2019). If nothing is accepted - Repairing argumentation
frameworks. Journal of Artificial Intelligence Research, 66, 1099–1145.

Wallner, J. P. (2020). Structural constraints for dynamic operators in abstract argumenta-
tion. Argument and Computation, 11 (1-2), 151–190.

Wallner, J. P., Niskanen, A., & Järvisalo, M. (2017). Complexity results and algorithms for
extension enforcement in abstract argumentation. Journal of Artificial Intelligence
Research, 60, 1–40.

Wang, K., & Zhou, L. (2005). Comparisons and computation of well-founded semantics
for disjunctive logic programs. ACM Transactions on Computational Logic, 6 (2),
295–327.

643

