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Abstract

In the past few years, knowledge graphs (KGs), as a form of structured human intelli-
gence, have attracted considerable research attention from academia and industry. In this
very active field of study, a widely explored problem is that of link prediction, the task
of predicting whether two nodes should be connected, based on node attributes and local
or global graph connectivity properties. The state of the art in this area is represented
by techniques based on graph embeddings. However, KGs, especially those acquired us-
ing automated or partly automated techniques, are often riddled with noise, e.g., wrong
relationships, which makes the problem of link deletion as important as that of link pre-
diction. In this paper, we address three main research questions. The first is about the
true effectiveness of different knowledge graph embedding models under the presence of
an increasing number of wrong links. The second is to asses if methods that can predict
unknown relationships effectively, work equally well in recognizing incorrect relations. The
third is to verify if there are systems robust enough to maintain primacy in all experimen-
tal conditions. To answer these research questions, we performed a systematic benchmark
study in which the experimental setting includes ten state-of-the-art models, three com-
mon KG datasets with different structural properties and three downstream tasks: the
widely explored tasks of link prediction and triple classification, and the less popular task
of link deletion. Comparative studies often yield contradictory results, where the same
systems score better or worse depending on the experimental context. In our work, in
order to facilitate the discovery of clear performance patterns and their interpretation, we
select and/or aggregate performance data to highlight each specific comparison dimension:
dataset complexity, type of task, category of models, and robustness against noise.

1. Introduction

Knowledge graphs (KGs) have rapidly emerged as an important area in AI over the last
ten years, both in academia and industry. A KG is commonly defined as a structured
representation of facts, consisting of entities and relationships annotated with semantic
labels (Ji et al., 2022; Hogan et al., 2021).

Essentially, KGs are represented as collections of real-world triples, where each triple or
fact (h, r, t) denotes some relation r between a head entity h and a tail entity t. KGs can
be formalized as directed multi-relational graphs, in which:

• nodes correspond to entities (they can be real-world objects or abstract concepts);
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• edges encode various kinds of relationships and possess semantic meanings based on
the specified label (they represent the relations between entities).

Popular KG examples are both domain-specific, as the GeneOntology (Ashburner et al.,
2000) and generic, like WordNet (Fellbaum, 1998), YAGO (Suchanek et al., 2007), Freebase
(Bollacker et al., 2008), NELL (Carlson et al., 2010) and DBpedia (Lehmann et al., 2015).
There are also a number of popular commercial KGs, such as Google’s Knowledge Graph,
Microsoft’s Satori and Facebook’s Open Graph (Nguyen, 2017).

Recent advances in KG-based research focus on Knowledge Representation Learning
(KRL) or Knowledge Graph Embedding (KGE) by mapping entities and relations into low-
dimensional vectors while capturing their semantic meanings (Ji et al., 2022). Leveraging
their embedded representation, KGs can be used for various tasks, such as: link prediction
(Bordes et al., 2013; Dettmers et al., 2018; Schlichtkrull et al., 2018; Vashishth et al., 2020;
Yao et al., 2019; Daza et al., 2021), triple classification (Wang et al., 2014a; Socher et al.,
2013; Yao et al., 2019), entity recognition (Mehta et al., 2021), clustering (Petzold et al.,
2021), and relation extraction (Lin et al., 2015; Weston et al., 2013).

In link prediction, KGE-based methods represent the large majority.

In real-world scenarios, creating and maintaining KGs is a costly and time-consuming
process involving experts and competencies across different areas of knowledge. To address
the knowledge bottleneck problem and to cope with creation costs, one can rely on au-
tomated ontology learning techniques (Khadir et al., 2021) or on the Semantic Web and
Linked Open Data principles, guidelines, and tools for the interlinking of existing KGs, thus
promoting the reuse of existing dictionaries (Saha & Mandal, 2021; Zeng et al., 2021).

However, automatically acquired or interlinked KGs may present a substantial amount
of wrong (hereafter referred to as “noisy”) and missing information, due to the fact that
knowledge acquisition approaches leverage heterogeneous and often unstructured sources
like Web pages, relational databases, NoSQL databases, other KGs, online forums, etc.
Essentially, the two major problems affecting KGs are incompleteness (missing links) and
incorrectness (wrong links). The root causes of the presence of wrong links in real-world
KGs are many. In general, wrong links are the result of automated mining methodologies
devoted to inducing KGs from scratch or as alignment between existing (and sometimes
heterogeneous) KGs. For instance, during the two editions of the SemEval Taxonomy
Extraction Evaluation task (Bordea et al., 2015, 2016), a relevant portion of noise (ranging
from 51% to 91%) has been estimated1 from the resulting automatically induced taxonomies.
Other popular examples of noisy KGs are, among others, YAGO (Suchanek et al., 2007)
with a 95% accuracy and NELL (Carlson et al., 2010) with about 55% of correct triples in
its original release (after 1K iterations). More recently, (Faralli et al., 2022) have estimated
the presence of about 20% wrong triples in a resource consisting of a large knowledge graph
automatically acquired by linking the Italian cultural heritage entities.

To mitigate these problems, several link prediction and error detection methods have
been proposed. However, few methods explicitly focus on error correction (Melo & Paul-
heim, 2017a), i.e., the task of identifying and deleting wrong links, rather than simply
classifying a link as being correct or wrong - which is referred to as triple classification.
Indeed, while the vast majority of state-of-the-art methods concentrate on link prediction -

1. The evaluation has been carried out by human experts on a sample of triples.
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to reliably extend the KG with new triples - or triple classification, the study of link deletion
did not receive as much attention, as also noted in (Melo & Paulheim, 2017b).

In this study, our main purpose is to investigate whether best-performing state-of-the-
art link prediction and triple classification methods perform equally well in the task of
link deletion, and furthermore, if they are robust with regard to both link prediction and
deletion, in contexts where the KGs contain noise. To this end, differently from previous
literature, we consider the following research questions (RQs):

1. RQ1 : Do methods that can predict unknown relationships effectively (link prediction),
work equally well in recognizing incorrect associations (link deletion)?

2. RQ2 : To what extent are the best-performing Knowledge Graph Embedding (KGE)
methods (according to the literature) robust in the presence of an increasing amount
of noisy triples?

3. RQ3: Are there systems, or categories of approaches, that show primacy over the
others with different tasks, datasets, and increasing levels of noise? If so, what are
their “winning” features?

In particular, our RQs are specifically concerned with studying the effect of noise and
with the task of graph pruning, rather than only graph enrichment (Hogan et al., 2021).

To answer our research questions, we propose a benchmark study of different KGE
models for the three tasks of link prediction, triple classification and link deletion, in the
presence of an increasing level of noise, and on three common KG datasets with different
connectivity properties.

A summary of the contributions of this paper follows:

• We perform a benchmark study of KGE methods with an increasing noise level. Usu-
ally, in other comparative studies, the amount of injected noise is not considered a
high-level hyperparameter. With the proposed experiments, we can analyze the ro-
bustness to noise of single systems, as well as compare systems with respect to their
ability to identify new existing links or to prune wrong ones in complex, real-world
contexts;

• To avoid inconclusive results, as is often the case when comparing different systems on
different tasks and different datasets, and to facilitate the detection and interpretation
of performance patterns, we group the compared systems in three categories of models,
and we analyze the performance along four dimensions: the type of task, the model
category, the amount of injected noise, and the peculiarities of each dataset;

• In line with previous comparative studies (see Section 2), we performed hyperparam-
eter tuning individually for all the analyzed models, applying Bayesian optimization
techniques. Given the dimensions of the considered datasets (KGs), this has implied
the use of intensive computational resources;

• To support the replicability and reproducibility of the study, we provide a package with
all the useful resources: original datasets, noisy datasets, optimized hyperparameters,
trained models, experiments scripts, etc.

39



Faralli, Lenzi, & Velardi

The remaining of this paper is organized as follows: Section 2 describes the literature
about existing benchmarks; Section 3 describes the experimental settings, i.e., the datasets
(see Section 3.1), the generation of incrementally noisy datasets (see Section 3.2), the models
(see Section 3.4) and the hyperparameters tuning (see Section 3.6). Then, in Section 4, we
discuss the results in relation to the three above listed Research Questions, and finally, in
Section 5, we summarize our findings and discuss future research directions.

2. Related Works

As discussed in Section 1, performances of real-world knowledge-based applications strongly
depend on the availability of large formal knowledge representations such as KGs (Feigen-
baum, 1984). To cope with the knowledge bottleneck problem, which mainly affects domain-
specific applications, novel KGs can be automatically acquired (Khadir et al., 2021) or ob-
tained by augmenting and interlinking existing KGs (Saha & Mandal, 2021; Zeng et al.,
2021). Both approaches are error-prone, and as a result, noisy or absent triples are generated
affecting both precision and recall of downstream tasks.

In this Section, we discuss the literature concerned with benchmark studies analyz-
ing state-of-the-art models for link prediction and triple classification. To the best of our
knowledge, no comparative studies have addressed link deletion, as we do.

Kadlec, Bajgar, and Kleindienst (2017) performed an experimental study in which they
compared 29 KGE models using the standard metric of Hits@10 on two standard KG
datasets: WN18 (Dettmers et al., 2018) (see Section 3.1.2) and FB15k (Toutanova &
Chen, 2015) (see Section 3.1.1). They showed that even one of the simplest and oldest
models, such as DistMult (Yang et al., 2015) (see Section 3.4), with a proper and well-
tuned set of hyperparameters, could outperform most models (even the most recent ones).
From their results, it has been questioned whether the performance improvements in recent
models are due to architectural changes, or rather to hyperparameter tuning, opening up
for reconsideration of how model performance should be evaluated and reported in future
research.

Similarly, Ruffinelli, Broscheit, and Gemulla (2020) summarized and empirically quan-
tified the impact of different model architectures and training strategies on model perfor-
mance. To this end, they performed an extensive experimental study using popular KGE
models across a wide range of hyperparameter settings in a common setup. Similarly to
(Kadlec et al., 2017), they showed that when trained appropriately with the right set of
hyperparameters, even the performance of early KGE models can be competitive or supe-
rior to that of more recent architectures. Moreover, they also found that a good model
configuration can be found by exploring relatively few random samples from a large hyper-
parameter space through random search followed by Bayesian optimization. These studies
have inspired our current work, in particular, the way in which we conducted hyperparam-
eter tuning for all compared models (see Section 3.6).

Akrami, Saeef, Zhang, Hu, and Li (2020) conducted a systematic study with the main
objective of assessing the true effectiveness of embedding models when inverted triples are
removed2. Essentially, they illustrated the performance comparison of some representa-

2. (h, r, t) and (t, r−1, h) are two inverted triples. Ex: (avatar, directed by, James Cameron) and (James
Cameron, director, Avatar).
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tive KGE models on the popular datasets WN18 and FB15k and their respective versions
without reverse triples, i.e., WN18RR and FB15k-237 (see Sections 3.1.2 and 3.1.1 for
more details). The experimental results show that these models are much less accurate
than what expected, and their poor accuracy renders link prediction a task without truly
effective automated solutions.

Ali et al. (Ali et al., 2021a) performed a large-scale benchmark study on 21 KGE mod-
els over four datasets on the link prediction task. They performed several thousands of
experiments and 24,804 GPU hours of computation time on link prediction task. Under a
unified framework, they evaluated all the models based on different hyperparameters, train-
ing approaches, loss functions, optimizers, and the explicit modeling of inverse relations.
Once more, they provided evidence that several architectures can obtain competitive results
when configured carefully.

Further details on the datasets and KGE-based models considered in this study are
reported in Sections 3.1 and 3.4 respectively.

To the best of our knowledge, our research represents the first benchmark study ana-
lyzing the performances and the behaviours, in the presence of incremental noise levels, of
state-of-the-art KGE models in link prediction, link deletion and triple classification down-
stream tasks.

3. Experiments

In this Section, we describe the experimental setup and process we designed to answer our
RQs (see Section 1).

To conduct our study, we relied on the PyKEEN 3 (Ali et al., 2021b) Framework. With
respect to PyKEEN and other existing benchmarks (see Section 2), we additionally release:

• a new collection of datasets with an incremental amount of noisy triples;

• the code to reproduce all the steps of our experimental workflow, i.e., tuning, training,
and testing for the three tasks of link prediction, link deletion, and triple classification.

All the resources (i.e., code, datasets, models, hyperparameters configurations) are made
available to the research community at the following url: https://github.com/stefanofaralli/

noisy-kgs-benchmark/. The repository includes the source code and a shared cloud folder4

with datasets, optimal configurations and trained models. The entire experimentation was
carried out on a dedicated cluster5 managed through HTCondor6 (Thain et al., 2005).

Finally, a number of additional fine-tuned experiments and information to ensure the
reproducibility of all experiments are made available in the supplementary material, see
Sections A and B, respectively.

3. PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate Knowl-
edge Graph Embedding models (https://github.com/pykeen/pykeen).

4. https://drive.google.com/drive/folders/1h_B_0Kent6_F9j8xghKmgAejFF2vRyH-?usp=sharing.
5. Experiments were considerably time-consuming, involving about two weeks of intensive computation on

cluster nodes equipped with dedicated graphics processors.
6. HTCondor is an open-source software system that creates a High-Throughput Computing (HTC) en-

vironment. It is used to efficiently manage workload on a dedicated cluster of computers (https:
//github.com/htcondor/htcondor).
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In the remaining of this Section, we describe the considered datasets (see Section 3.1
and Section 3.2 for a description of the original datasets and the generated noisy ones,
respectively), the experimented models (see Section 3.4), the downstream tasks (see Section
3.5), and finally, the hyperparameters tuning methodology (see Section 3.6).

3.1 Datasets

We selected three heterogeneous datasets, thus enabling an evaluation of KGEs’ perfor-
mances with different graph dimensions, i.e., number of nodes and triples, density, and
domain of interest. We selected the following KG datasets frequently used in the litera-
ture: CoDEx Small (see Section 3.1.3), WN18RR (see Section 3.1.2), and FB15k-237 (see
Section 3.1.1). The two latter datasets are an extension of WN18 and FB15k, respectively.
It was first noted by (Toutanova & Chen, 2015) that WN18 and FB15k suffer from test
leakage through inverse relations: a large number of test triples can be obtained simply by
inverting triples in the training set. For example, the test set might contain a triple such as
(Bill Gates, founds, Microsoft), while the training set presents its inverse triple (Microsoft,
founded by, Bill Gates). This undesirable property can lead to performance overestimation.
To create a dataset without this property, (Toutanova & Chen, 2015) and (Dettmers et al.,
2018) respectively introduced FB15k-237 and WN18RR, two improved versions of FB15k
and WN18RR without inverse relations, more suitable for unbiased evaluation of various
algorithms.

The three selected datasets are provided as sets of triples (head, relation, tail), hereafter
(h,r,l), already divided into three splits: training, validation and testing. Further down,
the datasets are described in more detail.

3.1.1 FB15k-237

FB15k-237 (Toutanova & Chen, 2015) is a link prediction dataset created from FB15k
(Bordes et al., 2013). In the same manner of WN18, FB15k (Bordes et al., 2013) suffers
from test leakage through inverse relations. For example, the test set frequently contains
triples such as (s, hyponym, o) while the training set contains its inverse (o, hypernym, s).
To create a dataset without this property, (Toutanova & Chen, 2015) introduced FB15k-237.
FB15k-237 is essentially composed of asymmetric, unreflexive and intransitive relationships
(see the example excerpt in Table 1).

3.1.2 WN18RR

WN18RR (Dettmers et al., 2018) is a link prediction dataset created from WN18 (Bordes
et al., 2013), which is a subset of WordNet7 (a lexical knowledge base in which entities
represent terms and are called synsets, and relations represent conceptual-semantic or lex-
ical relationships) (Fellbaum, 1998). The WN18RR dataset was created to ensure that the
evaluation dataset does not have inverse relation test leakage. From the distribution of rela-
tionship types, it appears that WN18RR is essentially composed of asymmetrical, transitive
and irreflexive relationships (i.e., “ hypernym”. and “ derivationally related from”).

7. https://wordnet.princeton.edu/.
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Table 1: Examples of asymmetric, unreflexive and intransitive relationships from FB15k-
237.

/award/award nominee/award nominations./award/award nomination/award nominee

/film/film/release date s./film/film regional release date/film release region

/award/award nominee/award nominations./award/award nomination/award

3.1.3 CoDEx Small

CoDEx Small (Safavi & Koutra, 2020) is the downsized version of a set of datasets for knowl-
edge graph completion extracted from Wikidata8 and Wikipedia9. These datasets improve
existing benchmarks for completing knowledge graphs with regard to scope and difficulty
level. Regarding the scope, CoDEx includes three knowledge graphs (small, medium, and
large) that vary both in size and structure. In this study, we tested the selected KGE
models on CoDEx small. As pointed out by the authors, CoDEx datasets represent a re-
markably difficult benchmark for link prediction, compared with FB15k-237, since CoDEx
contains fewer skewed10 and fixed-set11 relationships. Furthermore, from the distribution
of relationship types it appears that CoDEx Small is essentially composed of asymmetric,
unreflexive and intransitive relationships (i.e., “occupation”,“dimplomatic relation”).

3.2 Generation of Incrementally Noisy Datasets

To specifically answer RQ2 (see Section 1) and assess the robustness of KGE models with
noisy knowledge graphs, we started from the original datasets described in the previous
Section and generated noisy versions by adding an incremental percentage of noisy triples.

To automatically generate a noisy triple (ĥ, r̂, t̂) with a very high probability of not
being true in the knowledge graph universe, we randomly sampled the head entity ĥ ∈ E,
the relation r̂ ∈ R, and the tail entity t̂ ∈ E. On the training set, we performed balanced
random sampling; while on the validation and test sets we performed random sampling. We
adopted this sampling strategy following (Yu et al., 2010) and (Park & Marcotte, 2011).
According to the authors of these studies, during training, it is preferable to have a balanced
subset to reduce the bias caused by the Pareto distribution of node degrees12. On the other
side, during testing, it is preferable to have a closer-to-reality subset, so that the estimate
of predictive performance can be safely assumed to generalize to the population level. We
remark that rarely this problem is addressed in link prediction experiments, leading to
biased performance estimations.

To address RQ2, for each of the three datasets, we generated four new noisy datasets (see
Table 2 for a detailed structural analysis). The first has a low amount of noisy triples (i.e.,
10%), the second a medium amount of noisy triples (i.e., 20%), the third a high amount

8. https://www.wikidata.org/.
9. https://www.wikipedia.org/.

10. A skewed relation has only one unique tail entity.
11. A fixed-set relation connects entities to fixed sets of values.
12. Unbalanced random sampling would sample with higher probability nodes with the largest degrees, thus

inducing a bias during training.
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of noisy triples (i.e., 30%) and finally a fourth completely random dataset where all the
original triples have been replaced with noisy triples.

Table 2 also summarizes the main structural and semantic (number of different relations)
properties of the datasets.

3.3 Datasets Comparison

From the general descriptions introduced in Section 3.1, and the measurement shown in
Table 2, we observe the following facts:

• CoDEx Small is the densest graph (density 0.008837224), followed by FB15K-237
(density 0.0015191507). The less-dense graph is WN18RR (density 0.0000562817).

• The majority of triples in CoDEx Small and FB15K-237 are asymmetric, irreflexive
and intransitive relationships, while in WN18RR the most frequent relationships are
asymmetric, irreflexive and transitive, such as the “ hypernym” relations which pro-
vides a taxonomic backbone to the entire knowledge graph. Thus, WN18RR is more
structured than the other datasets, which instead exhibit a typical “small world”
network structure.

• WN18RR is the graph with the lowest average degree (2.28), while CoDEx Small and
FB15k-237, when compared to WN18RR, have comparable average degree (i.e., 17.96
and 21.47).

• FB15K-237 has, by large, the highest number of different relationships (about 230
against 11 of WN18RR and around 40 of CoDEx Small).

3.4 Models

Knowledge Graph Embeddings (KGEs) are approaches to transform the nodes and the edges
of a KG into a low dimensional continuous vector space that preserves various topological
and structural features of the graph. By leveraging this embedded representation, it is pos-
sible to perform various sub-tasks on the KG, such as link prediction, triple classification,
entity recognition, clustering, and relation extraction (Ji et al., 2022; Hogan et al., 2021). A
typical KG embedding model generally consists of three steps: (i) representing entities and
relations, (ii) defining a scoring function, and (iii) learning entity and relation representa-
tions (Wang et al., 2017). The first step specifies the form in which entities and relations
are represented in a continuous vector space. Then, in the second step, a scoring function
is defined on each triple (h, r, t) to measure its plausibility (observed triples in KG tend to
have higher scores than unobserved triples). Finally, to learn embeddings representations,
the third step solves an optimization problem that maximizes the total plausibility of all
triples observed in the graph. Numerous KGE models have been proposed in the literature.
As reported by (Wang et al., 2017), such embedding techniques can be broadly classified
into two groups:

• translational models: they exploit distance-based scoring functions, measuring the
plausibility of a triple as the distance between the two entities, usually after a transla-
tion carried out by the relation. The basic idea is that relationships are interpreted as
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Table 2: Structural analysis. For each dataset we report the density and for each dataset
split (i.e., training, test and validation), we report the number of nodes, the number
of relation types, and the total amount of resulting triples with the corresponding
total of correct and wrong (noisy) triples.

Dataset Density and Avg.
Degree

Split Nodes
Relation
Types

Triples Correct
Wrong
(noisy)

CoDEx Small
original

0.0088372241
17.96

train 2,034 42 32,888 32,888 0
test 1,390 36 1,828 1,828 0
validation 1,390 33 1,827 1,827 0

CoDEx Small
10% noisy

0.0097211158
19.76

train 2,034 42 36,177 32,888 3,289
test 1,446 36 2,011 1,828 183
validation 1,450 33 2,010 1,827 183

CoDEx Small
20% noisy

0.0106050075
21.56

train 2,034 42 39,466 32,888 6,578
test 1,496 36 2,194 1,828 366
validation 1,498 33 2,193 1,827 366

CoDEx Small
30% noisy

0.0114888992
23.35

train 2,034 42 42,755 32,888 9,867
test 1,552 36 2,377 1,828 549
validation 1,550 33 2,376 1,827 549

CoDEx Small
random

0.0087356552
17.76

train 2,034 41 32,473 0 32,473
test 1,407 36 1,824 0 1,824
validation 1,391 34 1,826 0 1,826

WN18RR
original

0.0000562817
2.28

train 40,559 11 86,835 86,835 0
test 4,987 11 2,924 2,924 0
validation 4,897 11 2,824 2,824 0

WN18RR
10% noisy

0.0000619109
2.51

train 40,559 11 95,519 86,835 8,684
test 5,423 11 3,217 2,924 293
validation 5,262 11 3,107 2,824 283

WN18RR
20% noisy

0.0000675383
2.73

train 40,559 11 104,202 86,835 17,367
test 5,834 11 3,509 2,924 585
validation 5,674 11 3,389 2,824 565

WN18RR
30% noisy

0.0000731675
2.97

train 40,559 11 112,886 86,835 26,051
test 6,236 11 3,802 2,924 878
validation 6,077 11 3,672 2,824 848

WN18RR
random

0.0000687741
2.55

train 36,255 11 86,800 0 86,800
test 5,056 11 2,924 0 2,924
validation 4,835 11 2,824 0 2,824

FB15K237
original

0.0015191507
21.47

train 14,128 235 266,655 266,655 0
test 10,064 222 19,902 19,902 0
validation 9,571 221 17,074 17,074 0

FB15K237
10% noisy

0.0016710753
23.62

train 14,130 235 293,321 266,655 26,666
test 10,438 230 21,893 19,902 1,991
validation 9,951 232 18,782 17,074 1,708

FB15K237
20% noisy

0.0018229849
25.77

train 14,130 235 319,986 266,655 53,331
test 10,762 233 23,883 19,902 3,981
validation 10,288 234 20,489 17,074 3,415

FB15K237
30% noisy

0.0019749045
27.92

train 14,132 235 346,652 266,655 79,997
test 11,026 234 25,873 19,902 5,971
validation 10,541 235 22,197 17,074 5,123

FB15K237
random

0.0015497862
21.68

train 13,967 235 266,377 0 266,377
test 10,415 235 19,898 0 19,898
validation 10,415 235 17,071 0 19,898

translations in the embedding space: if (h, r, t) holds, then the embedding of the tail
entity t should be close to the embedding of the head entity h plus some vector that
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depends on the relationship (Bordes et al., 2013). All the models in this category are
based on algorithms that train “some” combination of the head and relation vectors
to be equal to the tail vector.

• semantic matching models: they exploit similarity-based scoring functions, mea-
suring the plausibility of triples by matching the latent semantics of entities and
relations embodied in their vector space representations. Basically, these models are
based on tensor factorization. The initial algorithm proposed using this technique
was RESCAL (Nickel et al., 2011). In this model, first, a three-way tensor of size
n × n ×m is constructed13, containing value 1 when there is a relationship between
two entities and value 0 otherwise. Afterward, the embeddings are calculated by fac-
torizing the three-way tensor. Since this approach is computationally expensive for
large graphs, various semantic matching models (DistMult, HolE, ComplEx, etc.) have
been proposed in the literature to overcome this computational problem.

Additionally, there is a third category including models - i.e., AutoSF (see Section 3.4.8)
and ConvE (see Section 3.4.6) models - not belonging to the previous categories. In the
remaining of this paper, we will refer to the third category as others, in line with previous
comparative studies.

In the next Sections, we summarize the ten state-of-the-art KGE models we included in
our benchmark study. In Table 3, we also provide an overview of the models by including
a short description, the dataset and the downstream tasks experimented in the original
studies.

3.4.1 TransE (translational)

Bordes et al. (2013) proposed TransE an energy-based method that models relations by
interpreting them as translations in the embedding space. TransE embodies entities and re-
lations as vectors in the same semantic space of dimension Rd, where d is a hyper-parameter
that represents the dimension of the target space with reduced dimension. The basic idea of
this model is to make the sum of the head vector and relation vector as close as possible to
the tail vector. In the original paper, TransE was tested for link prediction task on WN18,
FB15k and FB1M datasets (Bordes et al., 2013).

3.4.2 TransH (translational)

Wang et al. (2014b) presented TransH a translational model that represents an evolution of
TransE. TransH models a relation as a hyperplane together with a translation operation on
it. In this way, without sacrificing efficiency in the process, this model is able to preserve the
following mapping properties of relations: reflexive, one-to-many, many-to-one, and many-
to-many. In the original paper, TransH was tested for link prediction, triple classification
and relation extraction on the following datasets: WN18, FB15k, FB13 (Socher et al.,
2013), WN11 (Socher et al., 2013), and FB5M (Wang et al., 2014b).

13. n is the number of entities and m is the number of relationships.
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Table 3: Summary of the models included in our experimental setup. For each model, we
report a brief description, the datasets and the downstream tasks experimented in
the original publication.

model approach datasets downstream tasks category

TransE (Bordes et al.,
2013)

models relationships by inter-
preting them as translations op-
erating on the low-dimensional
embeddings of the entities

WN18, FB15K, FB1M link prediction translational

TransH (Wang et al.,
2014b)

models a relation as a hyperplane
together with a translation oper-
ation on it

FB13, FB15k, FB5M,
WN11, WN18

link prediction, triple
classification, relation
extraction

translational

DistMult (Yang et al.,
2015)

a bilinear model based on the fac-
torization of a three-way tensor

WN18, FB15k link prediction, rule ex-
traction

semantic
matching

ComlpEx (Trouillon
et al., 2016)

based on latent factorization that
uses complex-valued embeddings
and the Hermitian dot product

WN18, FB15k link prediction semantic
matching

HolE (Nickel et al.,
2016)

based on holographic embed-
dings and the idea of circular cor-
relation

Countries, FB15k,
WN18

link prediction semantic
matching

ConvE (Dettmers et al.,
2018)

multi-layer convolutional net-
work model able to scale on large
KGs and learn expressive feature

Countries, FB15k,
FB15k-237, WN18,
WN18RR, YAGO3-10

link prediction other

RotatE (Sun et al.,
2019)

defines each relation as a rotation
from the source entity to the tar-
get entity in the complex vector
space

FB15k, FB15k-237,
WN18, WN18RR

link prediction translational

AutoSF (Zhang et al.,
2020)

automatically designs scoring
functions (SFs) for distinct KGs
by the AutoML techniques

WN18, FB15k,
WN18RR, FB15k237,
YAGO3-10

link prediction other

BoxE (Abboud et al.,
2020)

embeds entities as points, and
relations as a set of hyper-
rectangles (or boxes), which spa-
tially characterize basic logical
properties

FB15k-237, WN18RR,
YAGO3-10, JF-17K,
SportsNELL

knowledge graph com-
pletion, knowledge base
completion, rule injec-
tion

translational

PairRE (Chao et al.,
2021)

a model with paired vectors
for each relation representation.
The paired vectors enable an
adaptive adjustment of the mar-
gin in loss function to fit for com-
plex relations

ogbl-wikikg2, ogbl-
biokg, FB15k, FB15k-
237, DB100k, Sport-
sNELL

link prediction translational

3.4.3 DistMult(semantic matching)

Yang et al. (2015) designed DistMult, a bilinear model based on the factorization of a three-
way tensor. It captures the latent semantics of a knowledge graph by associating entities
with vectors. This method represents each relation as a single matrix that models pairwise
interaction between entities. It simplifies RESCAL (Nickel et al., 2011) by restricting the
relations matrix from a general asymmetric and r×r matrix 14 to a diagonal square matrix,
thus reducing the number of parameters per relation. In the original paper, DistMult was
tested for link prediction and rule extraction tasks on WN18 and FB15k datasets.

14. r represents the number of relations in the KG.
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3.4.4 ComlpEx(semantic matching)

Trouillon et al. (2016) presented ComlpEx a method based on latent factorization that
uses complex-valued embeddings and the Hermitian dot product (the complex counterpart
of the standard dot product between real vectors). ComlpEx remains linear in both space
and time. Moreover, The composition of complex embeddings can handle a large variety
of binary relations, among them symmetric and anti-symmetric relations. In the original
paper, ComlpEx was tested for link prediction task on WN18 and FB15k datasets.

3.4.5 HolE(semantic matching)

Nickel et al. (2016) proposed HolE a model based on holographic embeddings and the idea
of circular correlation. It learns compositional vector space representations from the entire
knowledge graphs. This method is related to holographic models of associative memory
in that it employs circular correlation to create compositional representations. By using
correlation as the compositional operator, HolE can capture rich interactions but at the
same time, it remains efficient to compute, easy to train, and scalable to large datasets. In
the original paper, HolE was tested for link prediction task on WN18, FB15k and Countries
(Bouchard et al., 2015) datasets.

3.4.6 ConvE(other)

Dettmers et al. (2018) proposed ConvE a multi-layer convolutional neural network able to
scale on large KGs and learn expressive features. ConvE reshapes the numerical represen-
tations of entities and relations in the form of an image and then applies the convolution
filters to extract the features, thus learning the final embeddings. This model is highly
parameter-efficient, yielding the same performance of DistMult with 8x fewer parameters.
Moreover, it is particularly effective at modeling nodes with high in-degree (these types
of nodes are very common in complex and highly connected KGs). In the original paper,
ConvE was tested for link prediction task on the following datasets: WN18, WN18RR,
FB15k, FB15k-237, Countries, and YAGO3-10 (Mahdisoltani et al., 2015). As remarked
by the authors, in contrast to other models, ConvE requires explicit samples of symmet-
ric triples in the training dataset. In our benchmarks, we do not provide such additional
information, to avoid a positive bias toward this system.

3.4.7 RotatE(translational)

Sun et al. (2019) developed RotatE a method for generating graph embeddings that can
model and infer various relation patterns, including: symmetry/anti-symmetry, inversion,
and composition. Specifically, the RotatE model defines each relation as a rotation from
the source entity to the target entity in the complex vector space. The RotatE model is
trained using a self-adversarial negative sampling technique. Inspired by translational mod-
els, RotatE maps entity representations into complex vector space. The model is motivated
by Euler’s identity and defines relations as rotation from head to tail. In the original paper,
RotatE was tested for link prediction task on the following datasets: WN18, WN18RR,
FB15k and FB15k-237.
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3.4.8 AutoSF (other)

Zhang et al. (2020) proposed AutoSF a method inspired by the recent success of Automated
Machine Learning (AutoML)15. It automatically designs scoring functions (SFs) for distinct
KGs by the AutoML techniques. Many SFs, which target capturing different kinds of
relations in KGs, have been designed by humans in recent years. However, as relations can
exhibit complex patterns that are hard to infer before training, none of them can consistently
perform better than others on existing benchmark data sets. Firstly, AutoSF set up a search
space over popularly used SFs. Then, through a greedy algorithm, it searches in this space
efficiently. In the original paper, AutoSF was tested for link prediction task on the following
datasets: WN18, WN18RR, FB15k, FB15k-237, and YAGO3-10.

3.4.9 BoxE(translational)

Abboud et al. (2020) presented BoxE a spatial-translational model that embeds entities
as points, and relations as a set of hyper-rectangles (or boxes), which spatially characterize
basic logical properties. Facts are scored based on the positions of entity embeddings
with respect to relation boxes. This apparently simple abstraction yields a fully expressive
model offering a natural encoding for many desired logical properties. BoxE simultaneously
addresses all the following limitations: theoretical non-expressivity, lack of support for
prominent inference patterns (e.g., hierarchies), and lack of support for incorporating logical
rules. In the original paper, BoxE was tested for link prediction and rule injection tasks on
the following datasets: WN18RR, FB15k-237, SportsNELL (Wang et al., 2015), and JF17K
(Wen et al., 2016).

3.4.10 PairRE(translational)

Chao et al. (2021) designed PairRE a model with two (paired) vectors for each relation
representation. These two vectors project the corresponding head and tail entities to Eu-
clidean space, where the distance between the projected vectors is minimized. The paired
vectors enable an adaptive adjustment of the margin in the loss function to fit different com-
plex relations. Besides, PairRE is capable of encoding three important relation patterns,
symmetry/antisymmetry, inverse and composition. Given simple constraints on relation
representations, PairRE can encode subrelation further. In the original paper, PairRE was
tested for link prediction task on the following datasets: FB15k, FB15k-237, SportsNELL,
ogbl-wikikg2 (Hu et al., 2020), ogbl-biokg (Hu et al., 2020), and DB100K (Ding et al., 2018).

3.5 Downstream Tasks

Once the KGE models were trained, we evaluated their performance in three different
tasks: link prediction (see Section 3.5.1), link deletion (see Section 3.5.2) and triple classi-
fication(see Section 3.5.3).

The three tasks have been included in our experimental setting, to assess the robustness
of the application of KGE models in the presence of noisy triples (see RQ2 in Section 1).
Moreover, the downstream tasks of link prediction and link deletion have been included

15. https://www.automl.org/
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to specifically address the RQ1 (see Section 1) related to analyzing the interoperability of
these two tasks.

The evaluation has been performed on test sets consisting of triples not included in the
training phase. Hereafter, the three tasks analyzed are described in more detail.

3.5.1 Link Prediction

The task of link prediction is defined in literature as predicting the missing head entity h
in a triple (?, r, t) or the missing tail entity t in a triple (h, r, ?).

On the evaluation side, for each test triple (h, r, t), the head entity h is replaced with
every other entity h′ ∈ E in the dataset, to form corrupted triples. The original test triple
and its corresponding corrupted triples are ranked by their scores according to the score
functions and the rank of the original test triple is denoted rankh. The same procedure
is used to calculate rankt for the tail entity t. A method with the ideal ranking function
should rank the test triple at the top.

Usually, the accuracy of different KGE models is measured using ranking metrics like:
Hits at K (Hits@1, Hits@3, Hits@5, Hits@10), Mean Rank (MR), and Mean Reciprocal
Rank (MRR)):

• Hits@K is the percentage of top K results that are correct;

• MR is the mean of the test triples’ ranks;

• MRR is the average inverse of the harmonic mean of the test triples’ ranks.

See (Akrami et al., 2020) for a formal definition of these metrics. We note that, by defi-
nition, higher Hits@K and MRR indicate better link prediction accuracy; while MR is a
decreasing metric (the lower the better).

3.5.2 Link Deletion

Link deletion represents the symmetric task of link prediction. In the literature, almost all
KGE models are evaluated on the link prediction task (see Table 3). However, in this study,
to answer the second research question, we included in our analysis the link deletion task,
defined as the detection of triples with the wrong head entity (ĥ, r, t) or the incorrect tail
entity (h, r, t̂).

Regarding the evaluation, for each test triple (h, r, t): the correct head entity h is re-
placed with a “fake” (wrong) head entity ĥ ∈ E, to form a synthetic corrupted triple (ĥ, r, t);
afterward, this synthetic fake triple and all the original correct test triples are ranked by
their scores according to the KGE model score function; the rank of the fake test triple is
denoted rankh. In analogy with link prediction, systems should rank the wrong triple with
the highest score. The same procedure is used to calculate rankt for the tail entity t.

For this task, the accuracy of different KGE models can be measured using the same
ranking metrics of the link prediction task (Hits@K, MR, MRR).
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3.5.3 Triple Classification

The triple classification task is used to decide the boolean truth value of an unknown input
triple, and is therefore considered much simpler that the previous two tasks. Given an input
triple, the trained KGE model evaluates the plausibility of the triple to determine if this
triple is true (it belongs to the underlying KG) or false. The decision is made with the KGE
model score function and a given threshold. Note that triple classification represents a much
simpler task with respect to link prediction and link deletion, since it is a binary classification
problem. On the evaluation side, we used a balanced test set (50% of correct triples and
50% of fake triples generated with random permutations) and the standard classification
metrics (F1macro, F1negative, F1positive). Moreover, as an additional metric, we considered
the normalized distance between the mean of the correct testing triples scores and the
mean of the fake testing triples scores as a measure of the degree of separability (see an
example in Figure 1). As a normalization factor, we considered the difference between the
maximum score calculated on the correct training triples and the minimum score computed
on the fake testing triples. Let T be the scores associated with the true (real) triples of
a specific partition (training, validation, testing) and F be the scores associated with the
noisy (wrong) triples of a target partition, then the normalized distance can be defined in
the following way:

norm distance =
|mean{Ttesting} −mean{Ftesting}|
max{Ttraining} −min{Ftesting}

3.6 Hyperparameters Tuning

Building on previous results of link prediction benchmark studies (see Section 2), emphasiz-
ing the fact that often simplest models with a proper and well-tuned set of hyperparameters
could outperform the most recent and complex models (Kadlec et al., 2017), (Ruffinelli et al.,
2020), (Ali et al., 2021a), we performed extensive hyperparameters tuning phase. For all
the considered KGE methods (see Section 3.4), we applied a methodological hyperparam-
eters optimization strategy. To this aim, we exploited the hyperparameter optimization
pipeline provided by PyKEEN (Ali et al., 2021b), which in turn, it is based on Optuna
(Akiba et al., 2019)16. Every model in PyKEEN has default values for its hyperparame-
ters, chosen from the best-reported values in each model’s original paper. Determining the
optimal hyperparameters is not an easy task and requires exploring a complex search area
with multiple experiments. Thus, PyKEEN tries to find a good set of hyperparameters in
a limited number of trials, thanks to Sequential Model-Based Optimization (SMBO) with
Tree of Parzen Estimators (TPE) (Bergstra et al., 2011). For each optimization (target
model for a specific dataset), we ran a simulation consisting of 25 total trials (the initial
start-up phase involved 18 random trials) with a 70th percentile pruner. We remark that,
for ConvE on the FB15k-237 dataset, we did not find a set of hyperparameters capable of
returning a convergent model with significant results.

16. Optuna is an open source optimization framework provided as Python library to automate hyperparam-
eters search for black-box functions (https://github.com/optuna/optuna).
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Figure 1: Diagram showing an example of the distance between the scores of test true triples
and test noisy triples for TransE model on WN18RR dataset with 10% noise.

In the shared remote folder17, the interested reader can access the JSON files provid-
ing detailed information such as optimal parameters identified, computation time, scores
according to various metrics, etc.

4. Results

In this Section, we summarize the results obtained from all the experiments conducted in
our benchmark study. Additional experiments are reported in the Supplementary Material
(Sections A and B).

To make it easier to find and interpret clear performance patterns, each table or graph
presented in this Section focuses on only one or two comparison dimensions, among the four
considered in this study: i) structure of the dataset, ii) type of task, iii) amount of injected
noise during training, iv) category of predictive methods.

4.1 Comparing Link Prediction vs Link Deletion Performance of Individual
Systems on Different Datasets

We begin with Table 4, which helps answer RQ 1: to what extent do systems that perform
well on LP perform equally well on LD? The Table shows a summary excerpt of the per-

17. https://drive.google.com/drive/folders/1h_B_0Kent6_F9j8xghKmgAejFF2vRyH-?usp=sharing.
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Figure 2: Scatter plot depicting the correlation between the performance (Hits@10) of the
LP and LD tasks.

formances obtained by the selected KGE models (see Section 3.4) in the three downstream
tasks of Link Prediction (LP), Link Deletion (LD) and Triple Classification (TC), and the
three datasets.

The Table does not consider the effect of increasing levels of noisy relations and shows
only one performance measure (hits@10 for LP and LD, and f1 macro for TP). The cor-
responding extended tables with additional measures and increasing levels of noise, along
with more detailed discussions, are available in the Supplementary Material (Tables 1, 2, 3,
Sections A.1 and A.2).

Analyzing the Table, we observe the following:

1. The majority of systems individually exhibit similar performance in LP and TC across
different datasets, as shown in the LP table, with a slight decrease with WN18RR.

2. Contrarily, for LD we observe strong differences: for several systems, the performance
may even increase w.r.t. LP with CoDEx, but they decrease with FB15k-237 and
considerably decrease with WN18RR.

3. Comparatively, systems with higher performance in LP and TC, are also the best
in LD. However, we note that performance in LP and LD for all systems are not
statistically correlated, as shown in Figure 2.

4. In general, the best systems are translational, in particular RotatE, TransE, TransH.
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Table 4: Task-wise and dataset-wise performance of all systems when trained with the orig-
inal (uncorrupted) datasets. As remarked in Section 3.6 it was not possible to find
an appropriate set of hyperparameters for ConvE on FB15k-237.

AutoSF BoxE ComplEx ConvE DistMult HolE PairRE RotatE TransE TransH
Link Prediction

CoDEx Small hits@10 .420 .391 .433 .286 .387 .435 .430 .561 .506 .416

WN18RR hits@10 .403 .504 .369 .439 .270 .428 .434 .547 .477 .368

FB15k-237 hits@10 .412 .444 .300 n.a. .321 .322 .429 .487 .344 .450

Link Deletion

CoDEx Small hits@10 .728 .295 .536 .648 .522 .350 .479 .550 .650 .754

WN18RR hits@10 .009 .015 .006 .018 .014 .009 .021 .016 .062 .043

FB15k-237 hits@10 .302 .222 .112 n.a. .446 .095 .269 .160 .270 .413

Triple Classification

CoDEx Small f1 macro .928 .928 .890 .695 .904 .879 .906 .908 .937 .932

WN18RR f1 macro .716 .795 .689 .801 .663 .786 .780 .801 .889 .754

FB15k-237 f1 macro .972 .974 .932 n.a. .975 .943 .965 .943 .976 .981

To interpret these results18, we first recall the main properties of each dataset (see
Section 3.3): CoDEx has the highest density, FB1k-237 the highest number of different
relations, and WN18RR has a prevalence of transitive relations (such as hypernymy). The
taxonomic structure induced on the hypernymy relations produces a single contribution
on the degree of nodes, making the observations “scattered” on single pairs of nodes. It
follows that introducing wrong relationships in WN18RR may have a disruptive impact on
its hierarchical structures, making the task of identifying wrong relationships much more
complicated, especially since all systems rely mainly on an embedded representation of local,
rather than global, topological properties.

We further note that translational models, TransE and TransH in particular, show
comparatively better performance in LD on WN18RR (although still degraded w.r.t. LP).
Our interpretation is that, by forcing a combination of the h and r vectors to be similar
to the t vector, these methods impose a directionality to the learned embeddings, which
seems to be helpful for representing transitive relations. Finally, all systems perform better
in all tasks with the CoDEx dataset. The ability of the various systems to capture local
structural properties of the network is not hindered, but rather favored, by the high density
and small world structure of CoDEx.

4.2 Analysing Performances of All Tasks in the Presence of Increasing Levels
of Noise

Next, we face the second objective of our investigation: (RQ2) how do the various systems
behave in the presence of increasing levels of noise injected in the training data?

In Figure 3 we show, for all translational systems, tasks and datasets, the changes in
performance for hits@10 (LP and LD) and f1 macro (TC). Figure 4 shows the same data
for semantic matching and other systems.

The Figures highlight two results:

18. Note that the considerations of this paragraph apply also to the other performance measures not shown
in Table 4. The interested reader may inspect the complete tables in Appendix A, Tables 1, 2, 3.
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Figure 3: Performance of translational systems with increasing levels of noise in training
data.

1. In general, a performance decay is evident but not particularly strong for almost all
systems, tasks and datasets.

2. However, Link Deletion in general, and particularly on WN18RR, represents an ex-
perimental context in which all systems suffer the most from noise.
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Figure 4: Performance of semantic matching and other systems with increasing levels of
noise in training data. For ConvE on the FB15k-237 dataset, we did not find a
set of hyperparameters capable of returning a convergent model with significant
results. The results of this model on dataset FB15k-237 are not reported.

We also observe that, apart from the case of WN18RR, DistMult is much more robust to
noise than all the other systems, in all tasks, to the point that in some cases, performance
also increases with noise (see Figure 4, the second row of histograms). To shed more light
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Figure 5: Example of the percentage slopes computed between the performance obtained
with a dataset originally containing 0 noisy triples and then incrementally aug-
mented with 10, and 20 noisy triples.

on this and other aspects, in the next Section, we move on to a comparative analysis of all
the systems.

To summarize the performances of all systems also with respect to the injection of noise,
we introduce the notion of slopes. For hits@10 and f1 macro, we compute the percentage
slope of the resulting performance obtained with the addition of noisy triples, with respect
to the original dataset. The percentage slope is obtained as:

100× (
y1 − y0
x1 − x0

) (1)

where: y0 and y1 are the performance measures obtained in the original and the noisy
datasets, respectively, and x0, x1 are the amounts of noisy triples (if x0 refers to the original
dataset, then x0 = 0). The intuition of this formula is depicted in Figure 5: the slopes are
the angular coefficients of the lines shown in the Figure since they are always calculated
with reference to the original dataset.

The results of this analysis are shown in Tables 5, 6 and 7. Colors in all Tables follow the
so-called “objective and key result” (OKR)19 scale, partitioning the performance in three
levels: best (green: 1st, 2nd, 3rd ranks) middle (yellow: 4th, 5th, 6th and 7th ranks) and
worse (red: 8th, 9th and 10th ranks). Note that, since systems in the “other” category
(AutoSF and ConvE ) have near-to-zero performance in some tasks and datasets (see Figure
4), they have been eliminated from the tables20.

19. OKR scales are commonly used by very successful companies: https://www.whatmatters.com/faqs/

how-to-grade-okrs https://conceptboard.com/blog/okr-google-goal-setting-success/.
20. With such bad performance, the slope is also close to zero, which would be misleading.
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Table 5: Average slopes of all systems, aggregated task-wise.
BoxE ComplEx DistMult HolE PairRE RotatE TransE TransH

Link Pred 3.1 6.3 2.9 6.1 5.4 4.8 5.6 5.7

Triple Clf 4.8 4.5 3.4 4.8 7.2 5.5 4.2 7.3

Link Del 3.4 4.2 2.6 2.4 6 5.3 3.5 6.6

Table 6: Average slopes of all systems, aggregated dataset-wise.
BoxE ComplEx DistMult HolE PairRE RotatE TransE TransH

CoDEx Small 2.3 7.3 1.2 5 7.4 5 5 5.3

WN18RR 5.2 2.4 5.8 3.9 4.7 5.1 6.6 7.6

FB15k-237 3.8 5.3 1.9 4.4 6.5 5.5 1.7 6.7

Concerning slopes, which summarize resistance to noise, we note that translational
models lose their primacy. The reason is that these systems project the representation of
relationships onto a latent, dense space. Such compact representation, although it increases
the robustness of translational models with respect to different tasks and features of the
datasets, makes them more fragile in the presence of noise during training. In contrast,
more scattered representations, such as those of semantic matching models, suffer less from
noisy data.

Table 7: Average Ranking of Slopes on KGE Models families.
semantic
matching
models

translation
models

Link Pred 5.1 4.92

Triple Clf 4.23 5.8

Link Del 3.07 4.96

CoDEx Small 4.5 5

WN18RR 4.03 5.84

FB15k-237 3.87 4.84

4.3 Systems Comparison Along Different Dimensions

In the previous Sections, we analyzed the changes in the performance of individual models
when changing the datasets, tasks and noise level in the training data. In order to answer
RQ3 (are there systems with a clear competitive advantage, in which contexts, and why?),
we now concentrate on a comparative analysis of the models. To facilitate comparative
analysis, we tried to summarize all the rankings of the models in the various experiments in
a single measure. For this purpose, for each model, we aggregated their positions in the final
ranking. To do so, we computed the arithmetic mean among the rankings rij obtained with
the considered model i in the three different tasks LP, LD and TC for a subset of selected
metrics. For example, if a system ranked 1st in the first experiment, 4th in a second, etc.,
its final rank over K experiments is:
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Table 8: Aggregated ranking on the CoDEx Small dataset, all tasks.
original noise 10% noise 20% noise 30%

1° TransE (1.542) DistMult (1.667) DistMult (1.667) DistMult (1.208)

2° TransH (2.292) TransE (2.333) TransE (2.083) TransE (2.125)

3° RotatE (2.833) TransH (2.875) TransH (2.792) RotatE (2.792)

4° AutoSF (3.458) RotatE (2.917) BoxE (3.083) TransH (2.958)

5° PairRE (4.667) AutoSF (3.542) RotatE (3.25) BoxE (3.333)

6° BoxE (4.75) BoxE (3.833) AutoSF (4.0) AutoSF (4.583)

7° DistMult (4.792) ComplEx (5.458) HolE (5.625) HolE (5.542)

8° ComplEx (4.917) HolE (5.792) PairRE (5.708) PairRE (5.708)

9° HolE (5.25) PairRE (6.0) ComplEx (6.125) ComplEx (6.333)

10° ConvE (6.417) ConvE (6.75) ConvE (6.833) ConvE (6.667)

K∑
j=1

(
rij
K

)
i = 1 . . .M (2)

where M is the number of different compared models.

We selected MR, MRR and HITS@10 for the link prediction and link deletion tasks;
while, we considered f1 macro and norm dist for the triple classification task. The resulting
rankings achieved with the aggregated position scores are shown in the Tables 8, 9 and 10
for the CoDEx Small, WN18RR and FB15k-237 datasets, respectively.

Table 9: Aggregated ranking on the WN18RR dataset, all tasks.
original noise 10% noise 20% noise 30%

1° TransE (1.5) TransE (1.583) TransE (1.417) TransE (1.833)

2° RotatE (2.333) RotatE (2.042) RotatE (2.0) RotatE (2.167)

3° BoxE (2.583) BoxE (3.292) BoxE (2.75) HolE (2.375)

4° ConvE (3.083) HolE (3.458) PairRE (2.917) PairRE (2.958)

5° PairRE (3.417) PairRE (3.625) ConvE (4.292) BoxE (3.292)

6° HolE (4.417) ConvE (3.833) AutoSF (4.625) ConvE (4.333)

7° TransH (4.708) TransH (5.25) TransH (5.083) AutoSF (5.125)

8° AutoSF (5.625) AutoSF (5.5) ComplEx (5.542) TransH (5.583)

9° ComplEx (6.583) DistMult (6.0) DistMult (5.875) ComplEx (5.917)

10° DistMult (6.75) ComplEx (6.333) HolE (6.583) DistMult (7.417)

The three tables clearly show that the best systems are TransE (translational) and
DistMult (semantic), followed by other translational models, such as RotatE and BoxE. We
also note that DistMult performs quite badly on the WN18RR dataset while it ranks 1st for
six times in the other two datasets, but always in the presence of noise. Our interpretation
is the following: both CoDEx and FB15k-237 have a very high number of different rela-
tionships and a “small world”, local structure. The second property favors all models, on
the contrary, the first penalizes all systems, except DistMult, the only semantic matching
method in which relations are represented as diagonal matrices (see Section 3.4.3). Using
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Table 10: Aggregated ranking on the FB15k-237 dataset, all tasks.
original noise 10% noise 20% noise 30%

1° TransH (1.708) DistMult (2.0) DistMult (1.833) DistMult (1.833)

2° BoxE (2.708) TransE (2.292) TransE (2.042) TransE (1.958)

3° PairRE (3.208) BoxE (2.5) BoxE (2.75) BoxE (2.75)

4° DistMult (3.25) TransH (2.792) TransH (2.958) TransH (3.125)

5° TransE (3.417) AutoSF (3.542) AutoSF (3.5) AutoSF (3.5)

6° RotatE (3.667) PairRE (4.208) PairRE (4.375) PairRE (4.125)

7° AutoSF (3.75) RotatE (4.75) RotatE (4.917) RotatE (4.833)

8° HolE (5.625) HolE (5.375) HolE (5.125) HolE (5.458)

9° ComplEx (6.417) ComplEx (6.167) ComplEx (6.167) ComplEx (6.0)

sparse representations to model KG relations in the presence of noise can offer several ad-
vantages, among which is robustness to noise and improved generalization. As also noted
in (Ahmad & Scheinkman, 2019) (among others), by emphasizing sparse patterns, a model
can filter out irrelevant or noisy information. Furthermore, sparse representations can help
improve generalization capabilities by focusing on the most discriminative features of each
relation, rather than relying on all available information. This can lead to better predictive
performance, especially when dealing with noisy or incomplete data. Concerning the lower
performance of semantic matching systems with WN18RR, this has been already discussed
in Section 4.1.

Getting back to Section 4.2, where we put the magnifying glass on the noise sensitivity
issue, what we just observed on DistMult also explains its relatively stable, and sometimes
increased performance under noise, previously observed in Figure 4.

Next, to further aggregate our experimental results, we grouped the performance of all
systems first, task-wise (Table 11), then, dataset-wise (Table 12), and finally, category-wise,
according to model families (Table 13). The experiments reported in these Tables have been
conducted on the original datasets, without noise.

Table 11: Average rankings of all systems, aggregated task-wise
AutoSF BoxE ComplEx ConvE DistMult HolE PairRE RotatE TransE TransH

Link Pred 5.667 4.444 5.778 6.556 6.889 5.111 4.556 3.667 5.667 6.444

Triple Clf 6.667 2.5 8.333 8 5.833 6.833 5.5 5.333 1.833 4.167

Link Del 5.222 6.222 6.111 5 4.222 7.444 4.778 7,333 4,556 3.556

Table 12: Average rankings of all systems, aggregated dataset-wise
AutoSF BoxE ComplEx ConvE DistMult HolE PairRE RotatE TransE TransH

CoDeX Small 5.75 5.125 5.75 6.125 6.25 7.125 5 5.5 4.125 3.75

WN18RR 6.25 4.5 7 5.125 6.625 5.75 4.25 4.625 4.375 6.125

FB15k-237 5.25 4.25 6.875 7.75 4 6.375 5.375 6.25 4.375 4.5

The results come out rather clearly from the observation of these Tables, especially
from Table 13, and summarize, in a compact way, what we already observed in previous
Sections. Translational systems, and in particular TransE, are the best-performing ones in
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Table 13: Average Ranking on KGE Models families
semantic
matching
models

translation
models

other
models

Link Pred 5.93 4.96 6.11

Triple Clf 7 3.87 7.33

Link Del 5.93 5.29 5.11

CoDEx Small 6.38 4.7 5.94

WN18RR 6.46 4.78 5.69

FB15k-237 5.75 4.95 6.5

absence of noise. TransE is particularly robust with respect to variance in the data (Table
12). Semantic Matching models perform worse, with the exception of DistMult which we
already motivated. The other category lies in between21.

4.4 Discussion

Hereafter, we summarize our results with respect to the initial Research Questions.

Summary for RQ1: Do methods that can predict unknown relationships effectively (link
prediction), work equally well in recognizing incorrect associations (link deletion)?

Answer: Best performing methods are translational methods, which not only create em-
bedded (dense) representations of relationships, but also incorporate a notion of direction of
the relation (see Section 3.4). Since they are able to generate fine-grained representations of
relationships, they obtain better scores both when predicting new links and detecting wrong
ones (see e.g. Table 11). However, depending on the specific features of the dataset, these
systems may degrade their performance (while often keeping their primacy) in the presence
of a very high number of different relationships or in the case of transitive relationships.
The motivations have been provided in Section 4.1. The answer to RQ1 is: yes, best link
prediction methods tend to hold their lead in the link deletion task as well.

Summary for RQ2: To what extent are the best performing Knowledge Graph Embedding
(KGE) methods (according to the literature) robust in the presence of an increasing amount
of noisy triples?

Answer: As we said, translational models project relationships onto a lower-dimensional,
dense, semantic space, generating more precise representations. For the very same reason,
these systems are also more sensitive to the presence of noise in the training data. Contrarily,
semantic matching systems adopt more scattered representations, which turn out to be more
robust to noise. The answer to RQ1 is: best performing methods are less robust to noise in
the data.

Summary for RQ3: Are there systems that individually perform better with different
tasks, datasets, and increasing levels of noise? If so, what are their “winning” features?

21. Note that the primacy of “other” in the LD task occurs in a context in which all models perform more
or less the same, therefore is not particularly significant.
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Answer: No one single system holds the lead when considering all the possible dimen-
sions explored in this paper: different tasks, different structural properties of the datasets,
different representation models, and robustness to increasing levels of noise. However, two
systems clearly emerge above the others. TransE (see Section 3.4.1) adds to the already
summarized advantages of translational systems a simple yet apparently more effective way
of combining the h and r vectors, forcing them to be “similar to” the t vector. This incorpo-
rates a notion of directionality into the representation, which especially helps with datasets,
such asWN18RR, with transitive relations and a hierarchical backbone. The second notable
model is DisMult, the only semantic matching system that occupies competitive positions
in the various rankings presented in this paper. The sparse matrix representation adopted
by DisMult seems to improve both robustness to noise and generalization capabilities. This
results in a competitive advantage particularly for datasets, such as FB15k-237, with a very
high number of relationships (see, among the others, Table 10). The answer to RQ3 is then:
the winning features for the best systems appear to be i) learning representations incorporat-
ing a notion of directionality, and ii) learning sparse matricial representations by relation
type. On the other hand, since all systems train their models exploiting local connectivity
properties, they are equally unable to work well on more structured KGs, such as WN18RR.
The latter represents a missing feature of state-of-the-art systems.

5. Conclusion

In this paper, we conducted a systematic benchmark study with the primary objective of
assessing the true effectiveness of various Knowledge Graph Embedding (KGE) models in
both tasks of graph enrichment and graph pruning. To this end, we defined three specific
RQs (see Section 1) and performed experiments (see Section 3) where, after a systematic
tuning phase, we evaluated alternative KGE models under the presence of an increasing
level of noise on three standard datasets, i.e., CoDEx Small, WN18RR and FB15k-237 (see
Section 3.1). In our benchmark, we considered three different KG downstream tasks, i.e.,
link prediction, triple classification and link deletion (see Section 3.5).

Our benchmark study has a number of unique aspects as compared with other similar
works:

1. First, rather than focusing only on link prediction and triple classification, we compare
systems also with respect to the much less considered task of link deletion.

2. Second, we also analyze the robustness of systems when injecting in the training set
a progressively higher number of wrong links. This is a realistic setting since many
KGs are automatically or semi-automatically acquired.

3. Third, to avoid inconclusive results, with some systems working better or worse de-
pending on specific experimental conditions, we designed experiments that allowed
us to focus on one comparison dimension at a time. We considered four dimensions:
structural characteristics of the KG, type of task, robustness to noise, and category
of the predictive model.
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4. Finally, we made an effort to interpret the results, in order to justify why some cate-
gories of models, or single models, perform better or worse under specific experimental
conditions.

We found that - and explained why - translational models, and in particular TransE, per-
form systematically better than systems based on semantic matching, although slightly
worse in the link deletion task. Furthermore, translational systems maintain their primacy
with datasets with different structural properties. Among semantic matching models, we
found that - and explained why - only one system, DistMult, achieves top performances
when tested against semantically rich knowledge graphs with many different types of re-
lationships, a context in which all the other systems perform poorly. DistMult also shows
higher robustness to increasing levels of noise in training data. Finally, we ascertained
that the effect of noise on highly structured knowledge graphs (i.e., those with a taxonomic
backbone) is dreadful for all systems.

In addition to producing clear answers to our initial research questions, we identified two
“winning” and one “missing” feature (see Section 4.4) that, to date, are not yet integrated
into a single system, paving the way for possible improvement of KGE models.
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