
Journal of Artificial Intelligence Research 77 (2023) 487-515 Submitted 01/2023; published 06/2023

Stackelberg Security Games with Contagious Attacks on a Network:
Reallocation to the Rescue

Rufan Bai YB97439@UM.EDU.MO
State Key Laboratory of Internet of Things for Smart City,
University of Macau, Macau, China

Haoxing Lin HAOXING.LIN@COMP.NUS.EDU.SG
School of Computing,
National University of Singapore, Singapore

Xinyu Yang MB95466@UM.EDU.MO
Xiaowei Wu XIAOWEIWU@UM.EDU.MO
State Key Laboratory of Internet of Things for Smart City,
University of Macau, Macau, China

Minming Li MINMING.LI@CITYU.EDU.HK
Department of Computer Science,
City University of Hong Kong, Hong Kong, China, and
School of Mathematical Sciences,
Ocean University of China, Qingdao, China

Weijia Jia JIAWJ@UIC.EDU.CN

BNU-UIC Institute of Artificial Intelligence and Future Networks,
Beijing Normal University (Zhuhai), Guangdong, China

Abstract
In the classic network security games, the defender distributes defending resources to the nodes

of the network, and the attacker attacks a node, with the objective of maximizing the damage
caused. In this paper, we consider the network defending problem against contagious attacks, e.g.,
the attack at a node u spreads to the neighbors of u and can cause damage at multiple nodes.
Existing works that study shared resources assume that the resource allocated to a node can be
shared or duplicated between neighboring nodes. However, in the real world, sharing resource
naturally leads to a decrease in defending power of the source node, especially when defending
against contagious attacks. Therefore, we study the model in which resources allocated to a node
can only be transferred to its neighboring nodes, which we refer to as a reallocation process. We
show that the problem of computing optimal defending strategy is NP-hard even for some very
special cases. For positive results, we give a mixed integer linear program formulation for the
problem and a bi-criteria approximation algorithm. Our experimental results demonstrate that the
allocation and reallocation strategies our algorithm computes perform well in terms of minimizing
the damage due to contagious attacks.

1. Introduction

Recently, studies on Stackelberg security games have attracted enormous attention in artificial intel-
ligence and combinatorial optimization communities (Letchford et al., 2009; Tambe, 2012; Sinha
et al., 2018). Meanwhile, the resulted algorithms have been increasingly deployed to compute the
optimal allocation of defending resources in multiple real-world applications, such as patrolling

©2023 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

BAI, LIN, YANG, WU, LI, & JIA

problems (Yin & Tambe, 2012; Gan et al., 2015), managing energy power system (Paul et al., 2020)
and protecting data privacy (Ye et al., 2022). Among these works, a considerable portion focus on
games on networks (Assimakopoulos, 1987; Gan et al., 2017; Zhang et al., 2017; Schlenker et al.,
2018; Tan & Wang, 2020; Jin et al., 2019), in which a defender needs to allocate resources among
nodes on a graph. Each node of the graph has a specific value (loss) and a defending requirement. If
the defending resource allocated to the node meets the defending requirement then no loss will incur
even if the node is attacked. The defender’s goal is to minimize the loss due to any possible attack
carried out by an attacker. Motivated by the pandemic, in this paper, we consider the case when the
attack is contagious, i.e., when the attacker chooses a node of the graph to attack, the neighbors of
the chosen node are also under attack. Such contagious attack model can also capture other real-
world applications when the attack at a single node may cause loss at multiple (neighboring) nodes,
e.g., the spread of virus among computers, or the spread of harmful information in social networks.
Below we show an example of such a contagious attack and the defending strategy against it.

Figure 1: An example of initial graph network (m
represents million)

Figure 2: Non-contagious attack

Figure 3: Contagious attack Figure 4: Contagious attack (optimal allocation)

Example 1.1 Consider the graph shown in Figure 1, where each node represents a city and has a
certain population (m for million), which represents its value and defending requirement. Suppose

488

STACKELBERG SECURITY GAMES WITH CONTAGIOUS ATTACKS

that some viral disease will outbreak in one of the cities and we are given limited resources, say,
10 million masks, to defend against it. When a city is allocated an amount of masks at least that
of the population, we assume that the city is well defended. The goal is to allocate the resource
to the nodes so that the worst case damage is minimized. To optimize the resource utilization, we
always allocate to a node either the resource equal to the defending requirement or 0 resource. If
the attack is not contagious, the problem can be easily solved by greedily allocating the resource to
the nodes with the highest value (see Figure 2 for the optimal defending strategy). In the example,
we color a city green if it is well defended; we color a city red if it is not well defended and attacked.
If the attack is contagious then the defending strategy shown in Figure 2 might not be optimal. For
example, suppose that when a node is attacked, the attack spreads to all its neighbors. Then when
Chicago is under attack, the total loss will be very large under the greedy allocation strategy (see
Figure 3). Therefore, the optimal (greedy) allocation strategy against non-contagious attack is no
longer optimal for contagious attack. For contagious attack, it can be verified (by enumerating
all subsets of cities with total threshold at most 10m) that the optimal strategy is to allocate the
resources on Toronto, Chicago, Houston, San Diego and Miami (see Figure 4). Under this defending
strategy, no matter which city is attacked, the total loss is at most 8.4m (achieved when New York is
under attack).

From the above example we can see that the optimal defending strategy against contagious
attack can be very different from that for non-contagious attack. Moreover, it can be seen that it
might be difficult to find the optimal defending strategy. In fact, as we will show in this paper,
computing the optimal defending strategy against contagious attack is NP-hard.

For the network security games, many existing works consider the setting when the allocated
resource can be shared between neighboring nodes (Yin et al., 2015). For example, Gan et al. (2015)
considered a network security game in which allocating one unit of resource to some target protects
not only the target but also the neighboring targets. Li et al. (2020) studied the model in which
the defending power of each node u is determined by the resource ru allocated to u, plus a linear
combination of the resources allocated to its neighbors. These models are mainly motivated by
surveillance or patrolling applications (Vorobeychik et al., 2014; Paruchuri et al., 2007), in which
the defending resource, e.g., the patrollers or the surveillance cameras, can often cover a set of
(neighboring) positions instead of a single position. Therefore in these models, when a node u
shares its resource with its neighbors, the defending power of node u remains the same.

However, for defending problems in which the attack is contagious, it is necessary to take into
account the decrease in the defending power of node u, especially when u is at the risk of being
involved in the attack. For example, consider the outbreak of a highly contagious virus at some
city u. At the early stage of the outbreak, it is natural and necessary to borrow medical resources,
e.g., doctors and equipment, from neighboring cities of u to improve the defending status of city u.
Before long, when the virus breaks out on a large scale to the neighboring cities, the deficiencies of
medical resources at these cities are naturally expected. For contagious attack, when evaluating the
damage, it is necessary to include damage caused at each of the node the attack spreads to. Consider
the virus outbreak at some node u. The virus spreads to the neighbors of u and can cause damage at
each of the nodes the attack spreads to, depending on how well the node is defended. In this case, if
we measure the defending power of u by taking into account the resources shared from its neighbor
v, then naturally, we need to consider the decrease in the defending power of v. Ideally, a node v
can only transfer (a fraction of) the resource allocated to v to its neighbor u, which increases the

489

BAI, LIN, YANG, WU, LI, & JIA

defending power of the receiver u but decreases its own defending power1. When defending against
attacks without spreading effects, this assumption is equivalent to being able to duplicate resources
between neighbor nodes, as we can always transfer the maximum possible resources towards the
node under attack. However, when the attack can spread to neighbors of the node under attack, this
assumption demands a stronger defending requirement. Specifically, the following example shows
that when resources can only be transferred (instead of being duplicated), the total resource required
to obtain a good defending result can be much larger.

Example 1.2 Consider a star graph, with node u at the center, and v1, v2, . . . , vn−1 being neigh-
bors of u, where each node requires 1 unit of resource to defend itself. Suppose that node u is
attacked and the attack spreads to all neighbors of u. When resources can be duplicated, allocating
one unit of resource at node u guarantees that every node is well defended, and thus no loss is
incurred. However, when resources can only be transferred, as long as the total resources allocated
are less than n units, there will be nodes that are not well defended.

In this paper, we consider the problem of defending against contagious attacks, in which the
defending resources can only be transferred between neighboring nodes. Specifically, when the at-
tacker attacks a node u in the network, the attack spreads to neighbors of u and may cause damage
at multiple nodes. The defender decides an allocation strategy of defending resources to nodes in
the graph before the attack happens, and is allowed to transfer some resources between neighbor-
ing nodes (subject to some capacity constraints) when the attack happens. Our model is motivated
by real-world applications like defending against virus spreading. In these applications, e.g. out-
break of virus, it is reasonable to assume that we can transfer medical resources or doctors between
neighboring cities or countries in order to minimize the damage when the virus breaks out. Ex-
isting models fail to capture such applications as most of them do not consider the reallocation of
defending resources.

1.1 Our Results

We study the problem of computing optimal allocations and reallocations of defending resources.
Since our main motivation of the problem is defending against virus spreading and, in real world, the
allocation of defending resources is usually public information, we focus only on pure strategies,
i.e., deterministic defending algorithms. We propose a mathematical model that generalizes that
of (Gan et al., 2015; Li et al., 2020), and assume that (1) an attack spreads to a subset of nodes and
may cause damage at each of them; (2) defending resources can be transferred between neighboring
nodes, which we refer to as a reallocation of resources. A defending strategy needs to compute an
allocation strategy before the attack happens, and a reallocation strategy depending on which node
is attacked, subject to the capacity constraints associated with the edges. In this work, we study
the defending strategy under two forms of attack: adaptive attack and uniform attack. For adaptive
attack, the attacker will choose a node to maximize the damage. So the objective of the defender is
to minimize the maximum possible damage due to an attack. For uniform attack, the attacker will
attack each node with equal probability and thus the objective of the defender is to minimize the
expected loss due to the random attack2.

1. Throughout this paper we assume that the resource transfers happen instantaneously, which is different from the
works (e.g., (Yin et al., 2015; Lamballais et al., 2022)) in which the reallocation of resource takes time.

2. It should be noted that under this attack mode, the problem is no longer a Stackelberg Game.

490

STACKELBERG SECURITY GAMES WITH CONTAGIOUS ATTACKS

Our work mainly focuses on the case when the attack is adaptive. In Section 3 and 4, we present
the hardness and algorithms against adaptive attacks. We show that the general model is difficult in
two aspects. We first show that even with a given allocation of resources and a node that is attacked,
computing the optimal reallocation is NP-hard (Section 3). Then we show that if no reallocation
is allowed, the problem of computing the optimal allocation strategy is also NP-hard (Section 4.1).
Regarding positive results, we provide mixed integer linear programs (MILPs) to model the compu-
tation of allocation and reallocation strategies (in Section 4.2). We show that the optimal solutions
for the MILP provide optimal allocation and reallocation strategies. Since solving an MILP is not
guaranteed to terminate in polynomial time, we also propose polynomial time algorithms for spe-
cial cases and approximation algorithms. We give a polynomial time algorithm that decides whether
there exists a defending strategy in which no loss incurs, and outputs one if it exists (Section 4.3).
Then we give a polynomial time bi-criteria (1

1−ϵ ,
1
ϵ)-approximation algorithm, for any ϵ ∈ (0, 1)

(see Section 4.4 for a formal definition of bi-criteria approximations). Specifically, for ϵ = 0.5
we have a bi-criteria (2, 2)-approximation. Moreover, we show that under the Unique Game Con-
jecture (Khot & Regev, 2008), there does not exist (2 − δ, 2 − δ)-approximation, for any constant
δ > 0. We consider the uniform attacks in Section 5, in which we show that computing the optimal
allocation and reallocation strategy is NP-hard. We also show that the MILP formulation and the
approximation algorithm we developed for adaptive attacks can also be applied to defend against
uniform attacks.

Finally, we perform an extensive evaluation of our algorithms on synthetic and real-world
datasets in Section 6. In the experiments, we evaluate the performance of our approximation algo-
rithm by comparing its effectiveness and efficiency with the optimal solution and other algorithms.
By varying the total resources and the contagiousness on different datasets, our experiments demon-
strate that our approximation algorithm outperforms other heuristic algorithms and is always able
to efficiently compute close-to-optimal defending strategies.

Our contributions can be summarized as follows:

• For adaptive contagious attacks, we prove that both the computation of the optimal allocation
and the optimal reallocation strategies are NP-hard.

• We formulate an MILP for computing the optimal defending strategy, based on which we
propose polynomial time algorithms for computing the perfect defending strategy and the
bi-criteria approximation solutions.

• We show that the problem remains NP-hard under uniform contagious attacks and our bi-
criteria approximation algorithm still applies in this setting.

• We perform an extensive evaluation of our algorithms on synthetic and real-world datasets to
verify their effectiveness under different settings.

1.2 Other Related Work

There are existing works that consider security game models in which nodes have arbitrary val-
ues (Kiekintveld et al., 2009; Korzhyk et al., 2010; Conitzer & Sandholm, 2006). However, it is
commonly assumed in these works that the thresholds of nodes are uniform3 and they do not con-

3. Their works often do not specify the “threshold” explicitly. Instead they assume that a single unit of defending
resource suffices to defend one target, which is equivalent to having uniform defending thresholds.

491

BAI, LIN, YANG, WU, LI, & JIA

sider resource sharing. To be more specific, the problem is usually modeled by allocating m units
of resources to n nodes (m < n) in either a deterministic or randomized way. A node is well
protected if it receives one unit of resource. In our model, the threshold of each node can be arbi-
trary. Besides, we also consider resource sharing between neighboring nodes. In contrast, there is
a sequence of existing works in the network security game domain that consider resource sharing
between nodes. Gan et al. (2015, 2017) consider models in which allocating one unit of defending
resource to a node can also protect the neighbors of that node. Yin et al. (2015) also study a model
in which the resource can be transferred, and they assume transferring resources takes time. How-
ever, these existing models do not consider contagious attacks. There are also works that study the
contagion in network security games (Aspnes et al., 2006; Nguyen et al., 2009; Tsai et al., 2012;
Bachrach et al., 2013; Goyal & Vigier, 2014; Vorobeychik & Letchford, 2015; Acemoglu et al.,
2016; Lou et al., 2017). Nevertheless, these works do not model the problem in terms of allocating
defending resources to meet defending requirements and minimizing the loss due to attack, and thus
are incomparable to our model. There are other works that study contagion of attack by assuming
that an insufficiently protected node can affect the defending result of its neighboring nodes (Chan
et al., 2017; Li et al., 2020). Moreover, Zhao et al. (2019) study algorithms for computing optimal
resource allocation on networks in the application of virus propagation. However, resource real-
location is not considered in their model. The problem of efficient resource reallocation has also
been studied in other related works (Bondi et al., 2020; Yedidsion, 2012). However their focus are
different from ours. For example, Bondi et al. (2020) consider the security games with signaling,
with the goal of minimizing the uncertainties in the real-world applications. There are also works
that study other game-theoretic models of the security games (Kunreuther & Heal, 2003; Johnson
et al., 2010; Chan et al., 2012).

To enable a clear comparison of our model with the most closely related existing models, we
summarize the main features of the models in Table 1.

Model Limited Budget Contagious Attacks Resource Sharing
Yes No Yes No Duplicate Reallocate

(Gan et al., 2015) ✓ ✓ ✓
(Li et al., 2020) ✓ ✓ ✓
(Yin et al., 2015) ✓ ✓ ✓
(An et al., 2013) ✓ ✓
(Vorobeychik et al., 2014) ✓ ✓
(Kiekintveld et al., 2009) ✓ ✓
(Korzhyk et al., 2010) ✓ ✓
(Conitzer & Sandholm, 2006) ✓ ✓
(Aspnes et al., 2006) ✓ ✓
Ours ✓ ✓ ✓

Table 1: Summary of existing models.

2. Model Description

We model the network as an undirected4 connected graph G(V,E), where each node u ∈ V has a
threshold θu that represents the defending requirement, and a value αu that represents the possible

4. While we assume the graph is undirected, all our results extend straightforwardly to directed graphs.

492

STACKELBERG SECURITY GAMES WITH CONTAGIOUS ATTACKS

damage due to an attack at node u. We use N(u) := {v : (u, v) ∈ E} to denote the set of neighbors
for node u ∈ V . We use Nk(u) to denote the set of nodes at distance at most k from u ∈ V . By
definition we have N1(u) = {u}∪N(u). We use n and m to denote the number of nodes and edges
in the graph G, respectively.

2.1 Defending Resource and Defending Power

The defender has a total resource of R that can be distributed to nodes in V , where ru is the defend-
ing resource5 allocated to node u, and

∑
u∈V ru = R. Each node u can transfer at most wuv · ru

units of resource to its neighbor v, where wuv ∈ [0, 1] is the weight of edge (u, v), which represents
the efficiency (or willingness) when transferring resource between u and v.

Definition 2.1 (Allocation Strategy) We use ru ≥ 0 to denote the resource allocated to node u.
We use r = {ru}u∈V to denote an allocation strategy.

Definition 2.2 (Reallocation Strategy) We use t(u, v) ≥ 0 to denote the resource node u transfers
to its neighbor v. In general node v can also send resource to node u (which is denoted by t(v, u) ≥
0). We use t = {t(u, v), t(v, u)}(u,v)∈E to denote a reallocation strategy.

The fractions of resource transferred between u and v are upper bounded by the edge weight as
following conditions:

t(u, v) ≤ wuv · ru, t(v, u) ≤ wuv · rv.
That is, each node u can transfer at most wuv fraction of the resource ru to its neighbor v.

Additionally, we need to guarantee that the total resources node u sends out is at most the total
resource allocated to u by the allocation strategy:

∑
v∈N(u) t(u, v) ≤ ru.

Since the resources can be sent and received, the defending power of a node is not fixed. When
evaluating whether a node is well defended or not, we need to look at its defending power after the
reallocation. In other words, the initial allocation of defense resources does not decide the final loss
due to attack, unless no resource is reallocated in the reallocation strategy. Depending on the attack,
the defending power at each node can be adaptive by deciding an appropriate reallocation strategy.

Definition 2.3 (Defending Power) The defending power of node u is defined as the total resource
node u receives after the reallocation, which is given as follows:

pu = ru −
∑

v∈N(u)

t(u, v) +
∑

v∈N(u)

t(v, u).

We use p = {pu}u∈V to denote defending powers of nodes.

Depending on the reallocation, the defending power pu of node u takes values in range [p̄u, p̂u],
where

p̄u = max

1−
∑

v∈N(u)

wuv, 0

 · ru,

p̂u = ru +
∑

v∈N(u)

wuv · rv.

5. Similar to (Li et al., 2020), we assume that the allocated resource can take non-integer values in our model.

493

BAI, LIN, YANG, WU, LI, & JIA

Note that the allocation strategy r (which allocates the defending resources) must be decided
before the attack happens. In contrast, the defender can decide the reallocation strategy depending
on which node is attacked. Specifically, the defender can define n reallocation strategies {tu}u∈V ,
one for each node when it is attacked.

Put differently, there are four sequential steps:

(1) the algorithm decides an allocation strategy r, which allocates a total of R resources;

(2) the attacker picks a node u to attack;

(3) the algorithm decides a reallocation strategy tu to minimize the loss due to the attack. Note
that at this point, the allocation strategy is fixed, but the defending power depends on the
reallocation strategy.

(4) the loss due to the attack is evaluated.

Definition 2.4 (Defending Strategy) We refer to a solution for the defending problem as a defend-
ing strategy (r, {tu}u∈V), which consists of an allocation strategy r = {ru}u∈V and n reallocation
strategies {tu}u∈V .

2.2 Loss Due to An Attack

Next, we define the loss due to an attack. Let p = {pu}u∈V be the defending powers of nodes. Sup-
pose u is attacked, the attack spreads to all nodes in Nk(u), where k is a parameter that represents
the level of contagiousness of the attack. The loss due to the attack is the total damage caused at
nodes in Nk(u), where each node v ∈ Nk(u) suffers from a damage of αv if pv < θv. If pv ≥ θv,
then no damage is caused at v.

Definition 2.5 (Defending Result) Given defending strategy (r, {tu}u∈V), let Loss(u) be the total
damage when u is attacked and the reallocation strategy tu is deployed. The defending result is
defined as the maximum loss due to an attack, i.e., maxu∈V Loss(u).

The objective of the problem is to compute a defending strategy with the minimum defending
result. We use OPT to denote the optimal (minimum) defending result. In the remaining part of the
paper, we use DCA (Defending against Contagious Attack) to refer to the problem of computing the
defending strategy against contagious attack. Note that the decision problem of verifying whether
a defending strategy has result at most some value is in NP. Given the defending strategy, the
verification can be done by computing Loss(u) for every node u and taking the maximum, both of
which take polynomial time.

Remark. When k = 0, there is no spreading effect and we only need to protect the node under
attack by borrowing defending resources from its neighbors. Hence in this case we have pu = p̂u
if node u is attacked. Then the problem degenerates to the single-threshold model of (Li et al.,
2020), which can be solved in polynomial time. However, in general (when k ≥ 1), when the attack
spreads to multiple nodes, the reallocation must be carefully designed so as to protect multiple
nodes, because when a node transfers resource to its neighbors, its own defending power decreases.

494

STACKELBERG SECURITY GAMES WITH CONTAGIOUS ATTACKS

3. Optimal Response to an Attack

As a warm-up towards further analysis, in this section, we first focus on the subproblem of comput-
ing optimal reallocations. That is, given a fixed allocation strategy r = {ru}u∈V and suppose node
u is under attack, we compute the reallocation strategy tu with which Loss(u) is minimized.

The following example shows how an appropriate reallocation of resources helps reduce the
damage due to an attack.

Example 3.1 Consider the graph given in Figure 5(a), and suppose that node a is under attack. For
k = 1, the attack spreads to N1(a) = {a, b, d, e}. Suppose that (1) all edges have weight 0.5; (2)
θa = 4, θb = θd = 2 and θe = 3; and (3) all nodes have defending resource 2. Since the defending
resource ra < θa and re < θe, without any reallocation of resource, we suffer from a total loss of
αa + αe. However, if we are allowed to reallocate resources between neighboring nodes, then we
can transfer some resources as shown in Figure 5(b). For example, node f transfers one unit of
resource to node b and one unit of resource to node e. Note that the transferred resource along each
edge incident to f is upper bounded by 0.5 times rf , and the total transfer is at most rf . Hence
after the reallocation, all nodes in N1(a) are well defended, and no loss incurs.

�� �

�� �

(a)

�� �

�� �

1

1 1

1

1

1

(b)

Figure 5: Example of a reallocation strategy, where a directed edge indicates a transfer of resource.
For example, the edge from b to a with value 1 indicates that node b transfers t(b, a) = 1
unit of resource to node a. While there is an edge between node a and node d, we do not
transfer any resource along this edge.

However, in general, we cannot guarantee that there always exists a reallocation strategy under
which all nodes under attack are well defended. In this case, we need to compute a reallocation
strategy to minimize the total loss. For example, we can choose to protect nodes u with larger value
αu while leaving some nodes v with smaller αv insufficiently defended. Unfortunately, we show
that the problem of computing the optimal reallocation strategy is NP-hard.

Theorem 3.1 Unless P=NP, for any k ≥ 1, there does not exist any polynomial time algorithm that
given an allocation strategy and a node under attack, computes the optimal reallocation strategy.

Proof: We prove this by a reduction from the maximum independent set (MIS) problem, which is
NP-hard (Berman & Fujito, 1999). In the MIS problem we are given a graph Gmis = (Vmis, Emis)
and the problem is to find a maximum size set S ⊆ Vmis such that no two vertices in S are adjacent.
In the following, we construct an instance of DCA for which the well defended nodes under the

495

BAI, LIN, YANG, WU, LI, & JIA

optimal reallocation strategy form a maximum independent set. Intuitively, we would like to design
an instance in which all nodes are insufficiently defended initially under the allocation strategy.
Moreover, the gap between the defending requirement and defending resource on each node is
exactly the degree of the node. By designing the edge weights and the allocation strategy, we can
ensure that after any reallocations, any two well defended nodes are not neighbors of each other.

We first initialize the graph structure G = (V,E) to be the same as Gmis. We set the parameters
as follows. Let n = |Vmis| and d(u) = |N(u)| be the degree of node u in G.

• Let rv = n, θv = n+ d(v) and αv = 1 for all v ∈ V .

• Let wuv = 1
n for all (u, v) ∈ E.

Finally, we insert a new vertex s to V with rs = αs = 0, θs = 1, and let s be connected with
all other nodes with edges with weight 0. Note that the final instance of DCA has n+ 1 nodes and
n+ |Emis| edges.

Suppose that s is under attack. Since N1(s) = V , the attack spreads to the whole graph G,
for k ≥ 1. Observe that for each node u ∈ Vmis, its resource ru = n is lower than its threshold
θu = n+ d(u). Moreover, its maximum possible defending power

p̂u = n+
∑

v∈N(u)

wuv · rv = n+ d(u) = θu

can be obtained only by (1) not transferring any resource to its neighbors; (2) receiving wuv · rv = 1
unit of resource from each of its neighbors. Hence under any reallocation strategy, if a node u is
well defended (pu ≥ θu), then none of its neighbors v ∈ N(u) is well defended (pv < θv). Let
S∗ ⊆ Vmis be the set of well defended nodes under the optimal reallocation strategy, we have

• S∗ is an independent set (by the above argument);

• Loss(s) = n− |S∗|, since each u ∈ Vmis has αu = 1.

Since Loss(s) is minimized in the optimal reallocation strategy, we know that |S∗| is maxi-
mized. In other words, S∗ is a maximum size independent set of Gmis.

Since the reduction is polynomial time, if there exists a polynomial time algorithm to compute
the optimal reallocation strategy, then we can solve the MIS problem in polynomial time, which is
a contradiction. Consequently, computing the optimal reallocation strategy is NP-hard. □

We formulate the computation of the optimal reallocation strategy as a Mixed Integer Linear
Program (MILP). Recall that we are given an allocation strategy r and a node u that is attacked.

minimize
∑

v∈Nk(u)
(1− xv) · αv

subject to rv −
∑

z∈N(v) t(v, z)+
∑

z∈N(v) t(z, v)

≥ θv · xv, ∀v ∈ Nk(u) (1)

0 ≤ t(v, z) ≤ wvz · rv, ∀z, v ∈ V (2)∑
z∈N(v) t(v, z) ≤ rv, ∀v ∈ V (3)

xv ∈ {0, 1}, ∀v ∈ Nk(u).

496

STACKELBERG SECURITY GAMES WITH CONTAGIOUS ATTACKS

For each node v ∈ Nk(u) we introduce an integer variable xv ∈ {0, 1} that indicates whether
pv ≥ θv. We introduce fractional variables t(v, z), t(z, v) for each (v, z) ∈ E. The objective of the
MILP is the total loss due to the attack, which is the sum of values αv for v ∈ Nk(u) that is not well
defended (xv = 0). Constraints (1) guarantee that if we set xv = 1, then v should be well defended,
i.e., pv ≥ θv. Constraints (2) and (3) ensure that the transfers of resources between neighboring
nodes are feasible. Note that {rv}v∈V are given and are not variables.

The optimal solution (x, t) for the MILP gives an optimal reallocation t that minimizes Loss(u),
with the fixed allocation r and node u that is attacked.

Remark. There are redundant variables that can be removed from the MILP. Recall that Nk(u)
are the nodes the attack spreads to. For each v ∈ V \ Nk(u), we have no defending requirements
and thus do not need to transfer any resources towards these nodes. Consequently, it is unnecessary
to introduce variable t(z, v), for any z ∈ N(v). In other words, we only introduce the variable
t(z, v) if v ∈ Nk(u). With this observation, we can reduce the total number of fractional variables
from |E| to

∑
v∈Nk(u)

|N(v)|, which is much smaller when k is small and the graph is sparse.

Note that the MILP cannot be solved exactly in time polynomial in |Nk(u)|. A natural idea is
to relax the integer variables x to take values in [0, 1]. However, the following instance shows that
the integrality gap between the MILP and its LP relaxation is unbounded.

Example 3.2 (Integrality Gap) Consider the trivial graph with only one node u, where θu = αu =
1. Suppose R = ru = 1 − ϵ, where ϵ > 0 is arbitrarily small. Obviously we have Loss(u) = 1.
However, the optimal objective of the LP relaxation is ϵ, by setting xu = 1− ϵ.

Observations. While the integrality gap of the MILP and its LP relaxation is unbounded, we still
have two useful observations. First, the optimal objective of the LP relaxation provides a lower
bound on the optimal objective of the MILP. Second, for a fixed {0, 1}-vector x ∈ {0, 1}Nk(u), the
MILP becomes a feasibility LP, which can be solved efficiently. For example, we use this idea to
compute defending strategies with defending result 0 in Section 4.3. We also extend this idea in
Section 4.4 to compute a polynomial time bi-criteria approximation. The idea is to find a vector
x ∈ {0, 1}Nk(u) for which the induced LP is feasible, and the objective

∑
v∈V (1 − xv) · αv is as

small as possible.

4. Computing the Defending Strategy

In this section, we consider the computation of defending strategies and extend the observations
and ideas from the previous section. Recall that the defending result is maxu∈V Loss(u), and
is uniquely determined by the defending strategy (r, {tu}u∈V). We have shown in Theorem 3.1
that given a fixed allocation strategy and a node under attack, computing the optimal reallocation
strategy is NP-hard. However, the hardness result does not necessarily imply a hardness result for
computing the allocation strategy. In the following, we show that computing the allocation strategy
is NP-hard.

4.1 Hardness

We first define a simple special case of the DCA problem called the isolated model, and then show
that even for this special case, the problem is NP-hard.

497

BAI, LIN, YANG, WU, LI, & JIA

Definition 4.1 (Isolated Model) We refer to the DCA problem where wuv = 0 for all (u, v) ∈ E
as the isolated model.

Note that in the isolated model, the defending strategy consists of only an allocation strategy
since no reallocation is allowed. When k = 0, the special case can be solved trivially by greedily
allocating resources to the nodes with maximum value, because the defending result is defined by
the maximum value of not-well-defended nodes. However, in contrast to the case when k = 0, we
show that when k ≥ 1, the problem even in the isolated model becomes NP-hard.

Theorem 4.1 Computing the optimal defending strategy is NP-hard when k ≥ 1, even for the
isolated model with identical thresholds.

Proof: We prove by a reduction from the (unweighted) vertex cover (VC) problem, which is known
to be NP-hard (Chlebı́k & Chlebı́ková, 2006). Given an instance Gvc = (Vvc, Evc), the problem is
to select a minimum size subset S ⊆ Vvc such that each edge (u, v) ∈ Evc has at least one endpoint
in S. We construct an instance G = (V,E) of the DCA problem in which wuv = 0 for all edges
(u, v) ∈ E and θu = 1 for all nodes u ∈ V as follows (refer to Fig. 6).

(a) (b)

Figure 6: Example: (a) the VC problem instance Gvc; (b) the DCA problem instance G we con-
struct, where solid nodes are splitting nodes and the hollow nodes are original nodes.

Let the instance G of the DCA problem be obtained by inserting a node for every edge (u, v) ∈
Evc, splitting the edge. Specifically, we first initialize G = Gvc. Then for each e = (u, v) ∈ Evc,
we remove e, insert a new node ue and two edges (u, ue), (ue, v) into E. We refer to these nodes
(that split edges) as the splitting nodes, and the other nodes as original nodes. Note that each
splitting node has exactly two neighbors, both of which are original nodes. The neighbors of each
original node are all splitting nodes. Note that we have |V | = |Vvc| + |Evc| and |E| = 2|Evc|. Set
αu = 0 for splitting nodes, and αu = 1 for original nodes. In other words, only the original nodes
are valuable and worth defending. Let θu = 1 for all u ∈ V and k = 1.

Observe that since resources cannot be transferred, the optimal allocation strategy assigns re-
source either 0 or 1 to each original node, and 0 to each splitting node. We call a node u defended if
ru = 1, undefended otherwise. Since k = 1, when the attacker attacks an original node u, the total
loss is 0 if u is defended, 1 otherwise. However, if the attacker attacks a splitting node, the total loss
is the number of undefended neighbors of the splitting node, which can be 2.

Suppose there exists an allocation strategy using total resource R for which the defending result
is at most 1, then there must exist a vertex cover of size at most R for Gvc. Specifically, the
defended original nodes form a vertex cover for Gvc (otherwise, there exists a splitting node whose

498

STACKELBERG SECURITY GAMES WITH CONTAGIOUS ATTACKS

two neighbors are both undefended). Hence if there exists a polynomial time algorithm for the DCA
problem, then we can use binary search on R ∈ {1, 2, . . . , |Vvc| − 1} to identify the minimum R
with which the defending result is 1. Consequently, we can compute a minimum vertex cover in
polynomial time, which is a contradiction. □

Interestingly, we show that the reduction also implies a hardness of approximation.

Corollary 4.1 For any c < 2, computing a c-approximation defending strategy when k ≥ 1 is
NP-hard, even for the isolated model with identical thresholds. Here we call a defending strategy a
c-approximation if its defending result is at most c times the optimal defending result.

Proof: Observe that in the above reduction, for any R < |Vvc|, the defending result is either 1 or
2. Let OPT be the optimal defending result and ALG be that of the c-approximation algorithm,
where c < 2. Note that both OPT and ALG take values in {1, 2}. Observe that for OPT = 1, we
must have ALG = 1 since otherwise the approximation ratio is 2. Similarly, for OPT = 2, we have
ALG = 2. Hence any better-than-2 approximation algorithm is equivalent to an exact algorithm,
and the corollary follows from Theorem 4.1. □

4.2 MILP Formulation

Nevertheless, we show that we can formulate the computation of the optimal defending strategy as
an MILP as we have done in Section 3. Similar as before, we introduce a set of variables for the case
when u is under attack: we introduce an integer variable xuv ∈ {0, 1} for each v ∈ Nk(u), which
indicates whether pv ≥ θv when u is under attack; we also introduce a variable tu(z, v) for each
v ∈ Nk(u) and z ∈ N(v), which represents the resource z sends to v. Unlike before, where the
allocation strategy is given, here we introduce a variable ru to denote the resource allocated to node
u ∈ V . We also change the objective from minimizing Loss(u) to minimizing maxu∈V Loss(u),
by introducing a variable Loss that is at least Loss(u) =

∑
v∈Nk(u)

(1− xuv)αv for all u ∈ V . The
computation of the defending strategy is then formulated as follows.

minimize Loss
subject to

∑
u∈V ru ≤ R,

rv −
∑

z∈N(v)∩Nk(u)
tu(v, z)+

∑
z∈N(v) t

u(z, v)

≥ θv · xuv , ∀u, v (4)

0 ≤ tu(v, z) ≤ wvz · rv, ∀u, v, z (5)∑
z∈N(v)∩Nk(u)

tu(v, z) ≤ rv, ∀u, v, z (6)∑
v∈Nk(u)

(1− xuv)αv ≤ Loss, ∀u (7)

xuv ∈ {0, 1}, ∀u, v.

Similar as before, the set of constraints (4) guarantees that the defending power of a node v
is at least θv when xuv = 1. Constraints (5) and (6) guarantee feasibility of transfers of resource.
Constraints (7) ensure Loss = maxu∈V Loss(u) in the optimal solution. As before, we only need
to introduce variable tu(z, v) if v ∈ Nk(u) and z ∈ N(v). We use MILP(R) to denote the above
program that uses total resource R. Note that in the program ru’s and tu(z, v)’s are fractional
variables while xuv ’s are integer variables. We denote by LP(R) the linear program relaxation when

499

BAI, LIN, YANG, WU, LI, & JIA

we replace each constraint xuv ∈ {0, 1} with xuv ∈ [0, 1]. As Example 3.2 shows, the integrality gap
of LP(R) and MILP(R) is unbounded.

4.3 Existence of Perfect Defending Strategy

While the general problem of computing the optimal allocation strategy is NP-hard, we show in this
section that deciding whether there exists a defending strategy with defending result 0 (which we
refer to as a perfect defending strategy) is polynomial time solvable. Moreover, if they exist, then
we can compute one in polynomial time.

Theorem 4.2 For every k ≥ 0, there exists a polynomial time algorithm that computes a perfect
defending strategy for the DCA , if perfect defending strategies exist.

Proof: Recall that MILP(R) computes the optimal defending strategy. If there exist perfect de-
fending strategies, then we have Loss = 0 in the optimal solution for MILP(R). Since Loss ≥∑

v∈Nk(u)
(1− xuv)αv, we must have xuv = 1 for all integer variables in the optimal solution.

Therefore, by fixing xuv = 1 for all integer variables, MILP(R) must be feasible. Observe that
after fixing an assignment to the integer variables, MILP(R) becomes a feasibility LP, which can be
solved exactly in polynomial time. Any feasible solution (r, {tu}u∈V) for the LP provides a perfect
defending strategy, as claimed. □

4.4 Bi-criteria Approximation

As Example 3.2 indicates, it is impossible to obtain any bounded approximation of the realloca-
tion by rounding the LP relaxation of MILP(R). Therefore, we consider bi-criteria approximate
algorithms, which is a commonly used approximation measurement in the area of scheduling prob-
lems (Yedidsion, 2012; Kloh et al., 2012). To be more specific, instead of comparing the defending
results of different algorithms using the same amount of resource, we allow an algorithm to augment
the amount of resource used, and compare both its defending result and total resource used with the
optimal ones. In contrast to the difficulties for approximation algorithms (as Example 3.2 suggests),
we show that by augmenting the total resource we use slightly, good approximation solutions (in
terms of defending results) can be obtained.

Definition 4.2 (Bi-criteria Approximation) We call a defending strategy (γ, β)-approximate if it
uses R total resource and its defending result is at most γ·OPT, where OPT is the optimal defending
result using R/β resource.

While it is not possible to obtain bounded (standard) approximations by rounding LP(R), we
show that achieving bi-criteria approximations is possible.

Theorem 4.3 For any ϵ ∈ (0, 1), we can compute a (1
1−ϵ ,

1
ϵ)-approximate defending strategy in

polynomial time. In particular, with ϵ = 0.5 we can compute a (2, 2)-approximate solution in
polynomial time.

Proof: Recall that by the definition of bi-criteria approximations, we need to compute a strategy
with the defending result at most 1

1−ϵ ·OPT, where OPT is the optimal defending result of defending
strategies that use ϵ ·R total defending resource, i.e., OPT is the optimal objective of MILP(ϵ ·R).

500

STACKELBERG SECURITY GAMES WITH CONTAGIOUS ATTACKS

We first run LP(ϵ·R) and obtain the optimal (fractional) solution. Note that the optimal objective
of LP(ϵ · R) is at most OPT, but in the solution each xuv can take arbitrary values in [0, 1]. In the
following, we round the optimal solution (x, r, t) of LP(ϵ · R) and construct a feasible solution
(x̂, r̂, t̂) for MILP(R). We show that the objective of the solution is at most 1

1−ϵ · OPT. Since
each feasible solution for MILP(R) corresponds to a defending strategy, the theorem follows. For
each variable xuv ∈ [0, 1], let x̂uv = 1 if xuv ≥ ϵ, and let x̂uv = 0 otherwise. Let r̂u = 1

ϵ · ru and
t̂u(z, v) = 1

ϵ · t
u(z, v), for the corresponding variables. We show that the solution (x̂, r̂, t̂) we have

constructed is feasible for MILP(R). Since originally
∑

u∈V ru ≤ ϵ · R, we have
∑

u∈V r̂u ≤ R,
i.e., the first constraint of MILP(R) is satisfied. Constraints (4) in which x̂uv = 0 are trivially
satisfied. For those with x̂uv = 1, since we increase xuv by a factor of at most 1

ϵ and increase all r
and t variables by a factor of 1

ϵ , Constraints (4) of MILP(R) are satisfied. Since all r and t variables
are scaled by the same factor, Constraints (5) (6) of MILP(R) are all satisfied.

Finally, since we decrease each xuv (to 0) only if xuv < ϵ, by rounding x into x̂, for each u ∈ V ,
we have ∑

v∈Nk(u)

(1− x̂uv)αv ≤ 1

1− ϵ

∑
v∈Nk(u)

(1− xuv)αv.

Hence the objective of solution (x̂, r̂, t̂) for MILP(R), Loss = maxu∈V (
∑

v∈Nk(u)
(1−x̂uv)αv),

is at most 1
1−ϵ · OPT, as claimed. □

Interestingly, we show that under the Unique Game Conjecture (UGC) (Khot & Regev, 2008),
there do not exist strong Pareto improvements over our bi-criteria (2, 2) approximation ratio.

Lemma 4.1 Under UGC, there does not exist polynomial time (2−δ, 2−δ)-approximate algorithm
for the DCA problem, for any constant δ > 0.

Proof: We use the same reduction from the vertex cover problem as in the proof of Theorem 4.1. It
is shown in (Khot & Regev, 2008) that under the Unique Game Conjecture (UGC), there does not
exist (2 − δ)-approximation for the vertex cover problem, for any constant δ > 0. Suppose there
exists a polynomial time (2− δ, 2− δ)-approximate algorithm for the DCA problem, we show that
the DCA problem can be transformed into a (2 − δ)-approximation algorithm for the vertex cover
problem, which contradicts the UGC.

Given any instance Gvc = (Vvc, Evc) of a VC problem instance, we construct an instance
G = (V,E) of DCA as in the proof of Theorem 4.1. Then for each R = 1, 2, . . . , |Vvc| − 1, we run
the (2−δ, 2−δ)-approximate algorithm to compute a defending strategy, and let R∗ be the smallest
such that when R = R∗, the defending result is 1.

Suppose S∗ ⊆ Vvc is the minimum size vertex cover. By the construction of the DCA problem,
when R = |S∗|, the optimal defending result is OPT = 1. Hence with R = (2 − δ)|S∗| total
defending resource, the (2 − δ, 2 − δ)-approximate algorithm computes a defending strategy with
defending result at most (2− δ) ·OPT = 2− δ. Since defending results are integers, the defending
result by the approximation algorithm is 1. Observe that since all nodes have threshold 1 and
resource cannot be transferred, a defending strategy with R = (2 − δ)|S∗| is equivalent to one
with R = ⌊(2 − δ)|S∗|⌋. In other words, when R = ⌊(2 − δ)|S∗|⌋, the defending result of the
approximation algorithm is 1, which implies R∗ ≤ ⌊(2 − δ)|S∗|⌋. Moreover, since the defending
result is 1, the set of defended nodes is a vertex cover. Hence we have found a vertex cover of size

R∗ ≤ ⌊(2− δ)|S∗|⌋ ≤ (2− δ)|S∗|,

501

BAI, LIN, YANG, WU, LI, & JIA

which gives a (2− δ)-approximation for the VC problem, and contradicts the UGC. □

Implementation. In practice, we can enumerate different ϵ ∈ (0, 1) to compute different defend-
ing strategies, and then pick the one with the best defending result. In the following, we show that
we might be able to improve the defending result further by deploying a more aggressive round-
ing on x. Specifically, we first solve LP(ϵ · R) and get the optimal solution. Then we pick some
τ ∈ [0, ϵ], round each x variable that is less than τ to 0, and those at least τ to 1. With the fixed inte-
ger variables, we solve MILP(R), which has become a feasibility LP. If the resulting LP is feasible,
then we obtain a defending strategy with defending result at most 1

1−τ · OPT, where OPT is the
optimal defending result of defending strategies using ϵ ·R resources. Hence the resulting solution
is a (1

1−τ ,
1
ϵ)-approximate defending strategy. For different problem instances, the minimum τ with

which the induced LP is feasible can be different. However, the LP must be feasible when τ = ϵ. As
we will show in our experiments, in all datasets we consider, the defending result after optimizing
τ is much smaller than using τ = ϵ.

5. Defending against Uniform Attacks

In the previous sections, we assume that the attacker always chooses the node that causes maximum
damage to attack. In other words, the attacker is adaptive to our defending strategy. However, as
Theorem 3.1 shows, it is NP-hard to compute the node that causes maximum damage. In this section
we consider the case when the node under attack is chosen uniformly at random. In other words,
each node has an equal probability of being attacked, regardless of how the defending resources
are allocated. This is a reasonable case to consider since in real world, the attack, e.g., the virus
outbreak, may happen equally likely at all places. In the following, we show that the problem of
computing the optimal defending strategy remains NP-hard for uniform attacks.

5.1 Hardness

We prove the following hardness result in this section.

Theorem 5.1 The problem of computing the optimal defending strategy against uniform attacks is
NP-hard, even for k = 0.

Proof: We prove by a reduction from the maximum coverage problem, which is a classic NP-hard
problem (Vazirani, 2013). Every instance of the problem includes a set of n elements U , a collection
of m subsets of elements S ⊆ 2U , and a parameter h. The objective of the problem is to find h sets in
S that cover the maximum number of elements, i.e., find T ⊆ S, |T | = h that maximizes |

⋃
s∈T s|.

Given an instance (U ,S, h) of the maximum coverage problem, we construct the instance of the
DCA problem as follows. Let G(U ∪ V,E) be a bipartite graph, where U and V are the two node
sets. Let |U | = |U| and |V | = |S|. Each node in U corresponds to an element in U . Each node in
V corresponds to a set in S. For each set s ∈ S and element e ∈ s, we create an edge between the
two corresponding nodes in the bipartite graph G (see Fig. 7 for an illustrating example).

We set other parameters of the instance as follows.

• Let θu = 1
h+1 and αu = 1 for all u ∈ U .

• Let θv = 1 and αv = n+ 1 for all v ∈ V .

502

STACKELBERG SECURITY GAMES WITH CONTAGIOUS ATTACKS

𝑠1𝑎

𝑠3𝑐

𝑠2𝑏

𝑠4𝑑

𝑈 𝑉

Figure 7: Suppose the given instance of maximum coverage problem contains four elements
{a, b, c, d} and four sets s1 = {a, b}, s2 = {a, c}, s3 = {b, d}, s4 = {b, c}.

• Let wuv = 1
h+1 for all (u, v) ∈ E.

• Let the total resource R = h.

In the following, we show that the optimal defending strategy of the above instance (under
uniform attacks) can be translated into the optimal solution to the maximum coverage instance,
which proves the NP-hardness. Note that since k = 0, any defending strategy only needs to specify
the allocation strategy: the reallocation can be trivially done by transferring maximum resource to
the node under attack, e.g., as in the resource sharing setting. First, we prove the following useful
lemma, which enables us to look at only the canonical allocation strategies.

Lemma 5.1 For the instance we constructed above, any optimal defending strategy must allocate
all resources to nodes in V .

Proof: Fix any optimal defending strategy. Let hU (resp. hV) be the total resource the algorithm
allocates to nodes in U (resp. V). Then we have h = hU +hV , and it remains to show that hU = 0.
Recall that a node is well-defended if its defending power is at least its threshold. For each v ∈ V
that is well-defended, we have

pv = rv +
∑

u∈N(v)

wuv · ru = rv +

∑
u∈N(v) ru

h+ 1
≥ θv = 1.

On the other hand, since
∑

u∈N(v) ru ≤ hU , we have pv ≤ rv + hU
h+1 . Thus for each well-

defended node v ∈ V we have
rv +

hU
h+ 1

≥ 1. (8)

Recall that αu = 1 for all u ∈ U and αv = n + 1 for all v ∈ V . By picking h arbitrary nodes
from V and allocating one unit of resource to each of them, the defending result is at most

1

m+ n
· (n · 1 + (m− h) · (n+ 1)) <

(m− h+ 1)(n+ 1)

m+ n
.

Hence in any optimal defending strategy, at least h nodes in V are well-defended, as otherwise
its defending result is at least (m−h+1)(n+1)

m+n , which is not optimal. Let T ⊆ V be the set of c
well-defended nodes in V . By inequality (8), we have∑

v∈T

(
rv +

hU
h+ 1

)
≥ |T | = h.

503

BAI, LIN, YANG, WU, LI, & JIA

On the other hand, we have
∑

v∈T rv ≤ hV , which implies

hV +
h

h+ 1
· hU ≥ h = hU + hV .

Observe that the above inequality holds only if hU = 0. □

From Lemma 5.1 we infer that the optimal defending strategy allocates all resources to nodes in
V . Moreover, since no two nodes in V are neighbors, the optimal defending strategy must allocate
the resources to h nodes, each of which receives one unit of resource. Now the problem is to choose
h nodes to allocate the resource, such that a maximum number of nodes in U are well-defended.
By the way we set the parameters, if we have rv = 1 for some node v ∈ V , then each of its
neighbors u ∈ N(v) is well-defended since its defending power pu ≥ wvu · rv = 1

h+1 = θu.
Since the defending result is minimized when a maximum number of nodes in U are well-defended
(conditioned on the fact that h nodes in V are well-defended), the h nodes in V that are well-
defended in the optimal defending strategy correspond to the optimal solution for the maximum
coverage problem. Hence the DCA problem is NP-hard under uniform attacks. □

5.2 Lower Bound for the Defending Result

While computing the optimal defending result is NP-hard, we show that we can compute a lower
bound for the optimal defending result efficiently via linear programming. Similar to the MILP we
have shown in Section 4.2, it is straightforward to show that the computation of optimal defending
strategy can be formulated as the following MILP.

minimize Loss
subject to

∑
u∈V ru ≤ R,

rv −
∑

z∈N(v)∩Nk(u)
tu(v, z) +

∑
z∈N(v)t

u(z, v)

≥ θv · xuv , ∀u, v
0 ≤ tu(v, z) ≤ wvz · rv, ∀u, v, z∑

z∈N(v)∩Nk(u)
tu(v, z) ≤ rv, ∀u, v, z

1
n ·

∑
u∈V

∑
v∈Nk(u)

(1− xuv)αv ≤ Loss,

xuv ∈ {0, 1}, ∀u, v.

Note that compared to the MILP we present in Section 4.2, the objective is changed from mini-
mizing maxu∈V Loss(u)6 to minimizing 1

n ·
∑

u∈V Loss(u), e.g., minimizing the average damage
over all nodes. Given total resource R, we use MILPuni(R) to denote the optimal objective of
above program. Unfortunately, unlike the adaptive attack case, the computation of MILPuni(R)
takes much longer time. This is mainly due to the fact that the optimal solution to the above MILP
(which corresponds to the optimal defending strategy) needs to compute the optimal reallocation
strategy for every node. In contrast, when the attack is adaptive, it is often sufficient to compute
optimal reallocations for a few crucial nodes, when computing the optimal strategy. Nevertheless,
we can relax the integer constraint xuv ∈ {0, 1} of MILPuni(R) to xuv ∈ [0, 1], and obtain the linear
program relaxation LPuni(R). Since the linear program can be solved efficiently, we use the optimal
objective of LPuni(R) as a lower bound for the optimal defending result.

6. Recall that Loss(u) =
∑

v∈Nk(u)
(1− xu

v)αv is the damage the attack on node u causes.

504

STACKELBERG SECURITY GAMES WITH CONTAGIOUS ATTACKS

5.3 Approximation Algorithm

We show that the bi-criteria approximation algorithm we proposed in Section 4.4 applies to the
uniform attack setting.

Theorem 5.2 For any ϵ ∈ (0, 1), we can compute a (1
1−ϵ ,

1
ϵ)-approximate defending strategy in

polynomial time, when the node under attack is chosen uniformly at random.

Proof: Since the proof is almost identical to that of Theorem 4.3, here we only state the key steps in
the analysis. Recall that we need to compute a strategy with the defending result at most 1

1−ϵ ·OPT,
where OPT is the optimal objective of MILPuni(ϵ · R). We first run LPuni(ϵ · R) and obtain the
optimal (fractional) solution (x, r, t). Then we round the solution into a feasible solution (x̂, r̂, t̂)
for MILPuni(R) as follows. For each variable xuv ∈ [0, 1], let x̂uv = 1 if xuv ≥ ϵ, and let x̂uv = 0
otherwise. Let r̂u = 1

ϵ · ru and t̂u(z, v) = 1
ϵ · t

u(z, v). The feasibility of (x̂, r̂, t̂) for MILPuni(R)
follows straightforwardly from the proof of Theorem 4.3.

Since we decrease each xuv (to 0) only if xuv < ϵ, by rounding x into x̂, for each u ∈ V , we
have

∑
v∈Nk(u)

(1− x̂uv)αv ≤ 1
1−ϵ ·

∑
v∈Nk(u)

(1− xuv)αv. In other words, under solution (x̂, r̂, t̂),
the loss at every node is at most 1

1−ϵ times its loss under solution (x, r, t). Since the objective of
MILPuni(R) is the average loss over all nodes, the theorem follows immediately. □

As before, we can optimize the bi-criteria approximation algorithm by enumerating different
parameters ϵ and τ to run the linear program and do the rounding (see Section 4.4). As we will show
by our experiments (see Section 6), the approximation algorithm achieves a defending result that is
very close to the lower bound of the optimal defending result, which implies that our algorithm is
close to optimal.

6. Experimental Evaluation

In this section, we evaluate the effectiveness and efficiency of our algorithms in both synthetic
and real-world datasets. The synthetic datasets include the random graphs (Rand-S, Rand-L) and
the power-law distribution graphs (Pow-S, Pow-L). The real-world datasets include the aviation
networks (Air-US) and social networks (Email-EU, Facebook, Twitter). We summarize the datasets
as follows.

Rand-S Rand-L Pow-S Pow-L Air-US Email-EU Facebook Twitter

Node 200 500 400 700 221 500 600 1000
Edge 803 2569 1579 2087 2166 2468 4638 13476

• Random: We generate the dataset with (n, p) = (200, 0.04) for Rand-S and (n, p) =
(500, 0.02) for Rand-L using the algorithm by (Batagelj & Brandes, 2005), where there are n
nodes and there is an edge between each pair of nodes independently with probability p. The
thresholds θu’s and values αu’s are chosen uniformly at random from integers in [1, 9]. The
edge weights wuv’s are uniformly chosen in [0.3, 1].

505

BAI, LIN, YANG, WU, LI, & JIA

• Power-Law (Pow): We use the graph generator by NetworkX (Hagberg et al., 2008) to gen-
erate the power-law distribution graphs, where we set the parameters7 to be (400, 4, 0.5) for
Pow-S and (700, 3, 0.5) for Pow-L. The parameters θu’s, αu’s and wuv’s are generated ran-
domly as in Rand-S.

• Air-US: We select the flight records in the US from years 2008 to 2010 (Sharma, 2020) to
generate a directed graph where each node represents a city. There is a directed edge from city
u to city v if the number of flights per week from u to v is at least 25. We set the edge weight
as the ratio between the flights-per-week of the edge and the maximum flights-per-week value
of all edges. We set θu and αu as the population (in millions) of city u.

• Communication and Social Network: We include networks from Email-EU-core (directed),
Facebook (undirected) and Twitter (directed) data to generate our datasets (Leskovec & Krevl,
2014). All of them are extracted from the original data by picking a random node in the
network and expand from it by breadth-first-search until the size of the generated network
reaches n = 500 (n = 600 and n = 1000). The parameters θu’s, αu’s are generated randomly
with the same setting as in the random graph datasets. In addition, all edge weights in these
networks are set to 1.

Experiment Environment. We perform our experiments on an AWS Ubuntu 18.04 machine with
32 threads and 128GB RAM without GPU. We use Gurobi optimizer (Gurobi Optimization, 2020)
as our solver for the LPs and MILPs.

6.1 Effectiveness of Reallocation

As we have introduced in the previous sections, the effectiveness of our algorithm relies on the
reallocation of defending resources among different nodes. Such kind of reallocation strategies al-
lows our algorithm to maximize resource utilization according to the attacks. In this subsection, we
compare the defending results between defending strategies with and without resource reallocation
to demonstrate the effectiveness of resource reallocation.

We use the algorithm introduced in Section 4.3 to compute for each dataset the minimum total
resource required in a perfect defending strategy (a strategy with defending result 0). In the case
where the reallocation is not allowed, the resource required for a perfect defending strategy will be
exactly the sum of defending requirement of all nodes, i.e., R =

∑
u∈V θu. In comparison, in the

scenario when reallocation is allowed, the total defending resource required is significantly reduced
(see Figure 8). In general, we observe that the advantage of reallocation is more obvious when the
attack is less contagious, e.g., k = 1, and the graph is highly connected. For example, in dataset
Rand-L, when k = 1, the defending resource required for obtaining a perfect defending result is
reduced by about 85% compared to the setting where reallocation is not allowed. When k = 2, the
reduction is at 60%. This is quite intuitive: since reallocating resources from one node to another
decreases the defending power of the source node, when the contagious level is high, e.g., k = 2, it
is harder to do an effective reallocation, because more nodes are under attack.

7. For the details regarding how the parameters define the graph, please refer to https://networkx.github.io/
documentation/networkx-1.10/reference/generated/networkx.generators.random_
graphs.powerlaw_cluster_graph.html.

506

STACKELBERG SECURITY GAMES WITH CONTAGIOUS ATTACKS

Rand-S Rand-L Power-S Power-L Air-US Email-EU FB Twit

(a) k = 1

0

1000

2000

3000

4000

5000

R
es

ou
rc

e

defending without reallocation defending with reallocation

Rand-S Rand-L Power-S Power-L Air-US Email-EU FB Twit

(b) k = 2

0

1000

2000

3000

4000

5000

R
es

ou
rc

e

Figure 8: Resource required to achieve defending result 0.

6.2 Comparing Different Algorithms

In this section, we evaluate the effectiveness of the bi-criteria approximation algorithm introduced
in Section 4.4, and compare it with the exact solution and different variants of Greedy algorithms.

• Greedy: The algorithm greedily allocates resources to nodes with the maximum value (break
ties arbitrarily) until the resources are exhausted, where the resource allocated to a node u is
equal to its threshold θu.

• Greedy-R: Greedy-R is a variant of Greedy that reallocates resources to nodes as in Greedy
but also uses resource reallocation. Specifically, when node u is attacked, Greedy-R reallo-
cates resource to each undefended v ∈ Nk(u) with the highest value (in decreasing order)
from v’s unattacked neighbor until its defending power is at least θv, or when no more re-
source can be transferred.

• BA(ϵ): The approximation algorithm obtained by rounding the optimal solution for LP(ϵ ·R)
and optimizing ϵ ∈ (0, 1);

• BA(ϵ, τ): Compared to BA(ϵ), BA(ϵ, τ) further optimizes τ ∈ (0, ϵ] in the more aggressive
rounding (see Section 4.4).

• Exact: The baseline algorithm solves the MILP to obtain the exact optimal solution.

In this section, we demonstrate the effectiveness of our bi-criteria approximation algorithm by
comparing it with other algorithms. Specifically, we report the defending results of these algorithms
under different total resource and contagiousness.

507

BAI, LIN, YANG, WU, LI, & JIA

0.1 0.2 0.3 0.4 0.5
0

50

100

D
ef

en
di

ng
 re

su
lt

(a) Rand-S k = 1

Greedy GreedyR BA() BA(,) Exact

0.1 0.2 0.3 0.4 0.5
0

50

100

(b) Rand-L k = 1

0.1 0.2 0.3 0.4 0.5
0

100

200

300

(c) Power-S k = 1

0.1 0.2 0.3 0.4 0.5
0

100

200

300

400

(d) Power-L k = 1

0.1 0.2 0.3 0.4 0.5
150

200

250

300

D
ef

en
di

ng
 re

su
lt

(e) Air-US k = 1

0.1 0.2 0.3 0.4 0.5
0

50

100

150

(f) Email-EU k = 1

0.1 0.2 0.3 0.4 0.5
0

100

200

300

(g) FB k = 1

0.1 0.2 0.3 0.4 0.5
0

100

200

(h) Twit k = 1

0.1 0.2 0.3 0.4 0.5

250

500

750

1000

1250

D
ef

en
di

ng
 re

su
lt

(i) Rand-S k = 2

0.1 0.2 0.3 0.4 0.5
0

200

400

600

800

(j) Rand-L k = 2

0.1 0.2 0.3 0.4 0.5
800

1000

1200

1400

(k) Power-S k = 2

0.1 0.2 0.3 0.4 0.5

1000

1500

2000

(l) Power-L k = 2

0.1 0.2 0.3 0.4 0.5

200

250

300

D
ef

en
di

ng
 re

su
lt

(m) Air-US k = 2

0.1 0.2 0.3 0.4 0.5

250

500

750

1000

(n) Email-EU k = 2

0.1 0.2 0.3 0.4 0.5

400

600

800

1000

(o) FB k = 2

0.1 0.2 0.3 0.4 0.5

500

1000

1500

2000

(p) Twit k = 2

Figure 9: The defending results of different algorithms by varying total resource and contagious-
ness level. The abscissa value in the figure is η (taking values in {0.1, 0.2, 0.3, 0.4, 0.5}),
which represents the ratio between the total resource and sum-of-threshold.

Varying Total Resource. We denote by η the ratio between the total resource and sum-of-threshold,
e.g., R = η ·

∑
u∈V θu. In this comparison, we choose η from {0.1, 0.2, 0.3, 0.4, 0.5}, and com-

pare the defending results of different algorithms under different η. In Figure 9(a) - (h) we report
and compare the defending results for k = 1; in Figure 9(i) - (p) we report the results when k = 2.
Note that for any defending algorithm, the defending result is non-increasing with the total resource.
However, how fast the defending result decreases with respect to the total resource depends on how
efficient the resources are allocated and reallocated in the algorithm. As we can see from Figure 9,
our bi-criteria approximation algorithm BA(ϵ, τ) outperforms other algorithms dramatically in al-
most all datasets8, for every choice of η. For example, the defending result by BA(ϵ, τ) is 30% -
100% lower than that of Greedy-R for different η in dataset Facebook (see Figure 9(g)) and 60% -
100% lower in dataset Twitter (see Figure 9(h)). Moreover, the defending result BA(ϵ, τ) achieves

8. The only exception is on the dataset Air-US, in which the values of nodes differ drastically and thus the Greedy
algorithm is almost optimal.

508

STACKELBERG SECURITY GAMES WITH CONTAGIOUS ATTACKS

decreases very fast when η increases, and is always very close to the optimal one. For example, in
datasets Facebook and Twitter, BA(ϵ, τ) achieves defending results that are within a 10% difference
with the optimal solution. In dataset Power-S and Power-L, the defending results by BA(ϵ, τ) are
almost identical to the optimal one.

There are several other interesting observations that are worth noting. For example, BA(ϵ, τ)
constantly outperforms BA(ϵ) in all datasets and choices of η. Compared with BA(ϵ), the defending
result of BA(ϵ, τ) is 20% - 100% lower, for different η in dataset Facebook (see Fig 9(g)). This
demonstrates the usefulness of the more aggressive rounding method (see Section 4.4 for a detailed
description), in which the potential of the fractional solution for LP(ϵ · R) are better explored. We
also observe that Greedy-R performs better than Greedy, which again demonstrates the critical role
of resource reallocation in the problem.

Varying Contagiousness. Recall that the contagiousness parameter k is used to indicate how far
(in level of neighbors) an attack can spread to from the initial node under attack. In this subsection,
we perform the experiments on different choices of k ∈ {1, 2} to evaluate how the contagiousness
of the attack affects the defending results of different algorithms (see Figure 9). As expected,
compared to the case when k = 1, the defending results of all algorithms increase by a lot when
k = 2. In most datasets9 and η ∈ {0.1, 0.2}, with a higher contagiousness (k = 2), the defending
results by the optimal solution and BA(ϵ, τ) are 6 to 25 times higher than the case when k = 1.

For example, on dataset Rand-S when η = 0.1, when k increases from 1 to 2, the defending
result of the optimal solution increases from 43 to 484; on dataset Twitter when η = 0.1, the
defending result of the optimal solution increases from below 100 to above 2200. We can also
observe that the increase in the defending result (when k increases from 1 to 2) is more dramatic in
graphs with higher edge densities, e.g. Rand-L and Twitter.

For different levels of contagiousness, we can observe that the bi-criteria algorithm BA(ϵ, τ)
constantly outperforms other algorithms, for different values of η. However, its superiority is less
when the contagiousness is higher. For example, in dataset Power-S, while BA(ϵ, τ) achieves de-
fending results that are less than half that of Greedy-R and Greedy when k = 1, for the case when
k = 2, the difference is almost negligible. This is also quite natural: higher contagiousness causes
a larger size of nodes under attack, in which case the space for optimization is much smaller.

Increasing Resources vs. Limiting Contagiousness. In order to reduce the defending result, we
can either invest more defending resources or lower the level of contagiousness. To summarize
the previous results from a different perspective, in the following we compare the effectiveness of
these two approaches. Consider the optimal defending result in dataset Rand-L. When η = 0.2, the
defending result is at around 500 when k = 2. Observe that with the same total resource but with
k = 1, the defending result becomes 0. Alternatively, with k = 2 and η = 0.5, we also achieve a 0
defending result. That is to say, lowering the contagiousness is equivalently effective as increasing
the total resource by a factor of 2.5. This indicates that limiting the contagiousness usually is
much more effective compared with increasing the total resource, which agrees with the real-world
situation, especially when it is unrealistic (or impossible) to increase the defending resource, e.g.,
the medical resources in the current COVID-19 situation. Mapping to the real-world situation, the

9. Again, the only exception is on dataset Air-US (a graph with small diameter), for which the difference between
k = 1, 2 are very small.

509

BAI, LIN, YANG, WU, LI, & JIA

social-distancing and wearing of masks, which limit the contagiousness, have been proved to be the
most effective ways as the containment of the pandemic.

6.3 Efficiency Evaluation

In this subsection, we evaluate the efficiency of our approximation algorithms by comparing their
running time with the running time to compute the exact solutions, i.e., by solving the MILP. The re-
sults are shown in Figure 10, where Exact refers to the algorithm that solves the MILP and BA(ϵ, τ)
refers to our bi-criteria approximation algorithm. In this subsection, we fix the parameter η = 0.5.
To demonstrate how the efficiency of the algorithms are affected by the contagiousness level, we
conduct the experiments by varying k from 1 to 3.

Remark. Since solving the MILP can take a very long time when there is a large number of
variables, in our experiments we limit the running time to be at most 10 hours (3.6× 104 seconds).
In other words, the algorithm will be aborted if it does not terminate after running for 10 hours.

k = 1 k = 2 k = 3
100

102

104

R
un

ni
ng

 T
im

e

(a) Rand-S

Exact BA(,)

k = 1 k = 2 k = 3
100

102

104

(b) Rand-L
k = 1 k = 2 k = 3

100

102

104

(c) Power-S
k = 1 k = 2 k = 3

100

102

104

(d) Power-L

k = 1 k = 2 k = 3
100

102

104

R
un

ni
ng

 T
im

e

(e) Air-US
k = 1 k = 2 k = 3

100

102

104

(f) Email-EU
k = 1 k = 2 k = 3

100

102

104

(g) FB
k = 1 k = 2 k = 3

100

102

104

(h) Twit

Figure 10: Running times (in seconds) of different algorithms.

Recall that the variables and constraints of the MILP increase exponentially when k grows. As
we can see from Fig. 10, in most datasets the running times for computing the optimal solution
when k = 2 are 100 times larger than the case when k = 1. In particular, in dataset Rand-S (see
Fig. 10(a)), the running time increases from 10 seconds to 3000 seconds when k increases from 1
to 2. In most datasets, the computation of exact solutions fails to terminate within 10 hours when
k = 3. In contrast, our algorithm BA(ϵ, τ) is less sensitive to the increase in contagiousness level k
and is always able to compute the approximation solution within 104 seconds.

When k = 1, since the computation of exact solutions is quite efficient, we only observe some
slight advantage in running time of our approximation algorithm, e.g., on datasets Rand-L and
Facebook. However, with a higher contagiousness level (k = 2), our approximation algorithm is
often more than 10 times faster than computing the exact solution. For example, in dataset Rand-L
when k = 2, BA(ϵ, τ) terminates in 100 seconds while the computation of exact solutions fails to
finish within the time limit. In other words, the scalability of our algorithm is much better than the
optimal solution. Recall from Fig 9 that BA(ϵ, τ) achieves defending results that are very close to
the optimal solution, in all datasets and different choices of η and k.

510

STACKELBERG SECURITY GAMES WITH CONTAGIOUS ATTACKS

6.4 Network Structures

In this subsection, we study the correlations between the structure of the network and the defending
results. We use the graph generator by NetworkX to generate a set of power-law distribution graphs.
The parameters of power-law distribution graphs are (n,m, p), where n denotes the number of
nodes (that will be added to the graph one-by-one) and m denotes the number of random edges to
add when each new node is added to the graph. Therefore, the total number of edges in the graph
will be n · m. The parameter p denotes the probability of adding a triangle after adding a random
edge and we do not concern this parameter. In this experiment, we set p to 0.5. We fix n to 400
and choose m from {1, 5, 10, 20, 30}, so that we can generate graphs with different densities. We
let k = 1 and η = 0.3, where η is the ratio between the total resource and sum-of-thresholds (see
Section 6.2). Then we compute the defending result in each graph and show the results in Table 2.

m 1 5 10 15 20 30

Node 400 400 400 400 400 400

Edge 399 1963 3854 5689 7461 10834

BA(ϵ, τ) 25 0 144 263 552 661

Exact 20 0 136 256 550 623

Table 2: Defending results under different network structures.

From Table 2, we observe that the defending result grows rapidly with the density of the net-
work. When m = 1, the defending result is 25 since the graph is sparse. The defending result soars
to 661 when m = 30 because when the density of the network is very high, the attack on one node
will spread to a large set of neighboring nodes. Interestingly, the defending result is 0 when m = 5,
which is less than the result when m = 1. The reason is that, a higher level of connectivity in
the network structure also enables more flexibility for resource reallocations in designing defending
strategies. As the results demonstrate, for different network structures, our bi-criteria approxima-
tion algorithm can always achieve defending results that are close to the optimal, which shows the
robustness of the algorithm against different network structures.

6.5 Uniform Attack vs. Adaptive Attack

Finally, we study the difference between the uniform attack model and the adaptive attack model.
Recall that in the uniform attack model, the node attacked is chosen uniformly at random among
all nodes, regardless of the defending strategy. We explore how the defending results change when
the attacker chooses the node to attack differently under these two models. We also evaluate the
performance of our bi-criteria approximation (see Section 5.3) in the uniform attack model.

Recall that since computing the optimal defending result is time consuming, in Section 5.2 we
propose a method that gives a lower bound on the optimal defending result. We denote by LBuni this
lower bound in this subsection. For a comparison, we use DRadaptive to denote the optimal defending
result in the adaptive attack model. In addition, we use BAuni(ϵ, τ) to denote the defending result
achieved by the bi-criteria approximation algorithm in the uniform attack model. Throughout the
comparisons, we fix η = 0.1, which means R = 0.1 ·

∑
u∈V θu. For each k ∈ {1, 2}, we report the

511

BAI, LIN, YANG, WU, LI, & JIA

value of DRadaptive, LBuni and BAuni(ϵ, τ) for each dataset in Fig. 11. Note that while we are not able
to compute the optimal defending result for the uniform attack model, we do know that its value
is between LBuni and BAuni(ϵ, τ). As we can observe from Fig. 11, in all datasets, BAuni(ϵ, τ) is
very close to LBuni. In other words, the experimental result shows that our approximation solution
is also close-to-optimal under the uniform attack model. We also observe that there is a significant
gap between the defending result DRadaptive under adaptive attacks and the defending results under
uniform attacks. Specifically, in dataset Power-S when k = 1, DRadaptive is above 200, while
BAuni(ϵ, τ) is below 10. This result shows that in the network defending problems, the “worst case”
loss due to attack can be much larger than the “average case” loss.

Rand-S Rand-L Power-S Power-L Air-US Email-EU FB Twit

(a) k = 1

100

101

102

103

D
ef

en
di

ng
 re

su
lt

DRadaptive BAuni(,) LBuni

Rand-S Rand-L Power-S Power-L Air-US Email-EU FB Twit

(b) k = 2

100

101

102

103

104

D
ef

en
di

ng
 re

su
lt

Figure 11: Upper and lower bounds for defending result of uniform attack.

7. Conclusion

In this work we study the problem of defending against contagious attacks in a network. Different
from existing works that consider resource sharing (which might not be applicable against conta-
gious attacks), we consider the model in which the resource can be reallocated between neighboring
nodes. We prove that the problem of computing the optimal strategy is NP-hard, and we formu-
late the computation as an MILP. We further propose a polynomial time bi-criteria approximation
algorithm, which we show, both theoretically and experimentally, is close to optimal.

Our work leaves many interesting problems open. For example, our work assumes that the
contagious level is fixed regardless of the defending strategy, while might not be able to model
applications in which well defended nodes can stop the attack from spreading. It would be inter-
esting to see how our results adapt in this model. In this paper, we focus on the case where only
a single node is attacked. It would also be interesting to consider the scenario in which multiple
nodes may be attacked simultaneously, or when there are multiple independent attackers. However,
as our hardness results suggest, getting non-trivial algorithmic results (even approximately) in these
models can be quite challenging.

512

STACKELBERG SECURITY GAMES WITH CONTAGIOUS ATTACKS

Acknowledgements

This work was supported by the Science and Technology Development Fund (FDCT) Macau SAR
(file no. 0014/2022/AFJ, 0085/2022/A, 0143/2020/A3, SKL-IOTSC-2021-2023). Experiments
were conducted at SICC supported by SKL-IOTSC, University of Macau. Minming Li was sup-
ported by the Fundamental Research Funds for the Central Universities. Weijia Jia’s work was
supported in part by the Guangdong Key Lab of AI and Multi-modal Data Processing, United In-
ternational College (UIC), Zhuhai under Grant 2020KSYS007 sponsored by Guangdong Provincial
Department of Education; in part by the Chinese National Research Fund (NSFC) under Grant
62272050; in part by Institute of Artificial Intelligence and Future Networks (BNU-Zhuhai) and
Engineering Center of AI and Future Education, Guangdong Provincial Department of Science and
Technology, China; Zhuhai Science-Tech Innovation Bureau under Grants ZH22017001210119PWC
and 28712217900001, and in part by the Interdisciplinary Intelligence SuperComputer Center of
Beijing Normal University (Zhuhai).

References

Acemoglu, D., Malekian, A., & Ozdaglar, A. E. (2016). Network security and contagion. J. Econ.
Theory, 166, 536–585.

An, B., et al. (2013). Security games with surveillance cost and optimal timing of attack execution.
In AAMAS, pp. 223–230. IFAAMAS.

Aspnes, J., et al. (2006). Inoculation strategies for victims of viruses and the sum-of-squares parti-
tion problem. J. Comput. Syst. Sci., 72(6), 1077–1093.

Assimakopoulos, N. (1987). A network interdiction model for hospital infection control. Computers
in biology and medicine, 17(6), 413–422.

Bachrach, Y., Draief, M., & Goyal, S. (2013). Contagion and observability in security domains. In
Allerton, pp. 1364–1371. IEEE.

Batagelj, V., & Brandes, U. (2005). Efficient generation of large random networks. Phys. Rev. E,
71, 036113.

Berman, P., & Fujito, T. (1999). On approximation properties of the independent set problem for
low degree graphs. Theory Comput. Syst., 32(2), 115–132.

Bondi, E., Oh, H., Xu, H., Fang, F., Dilkina, B., & Tambe, M. (2020). To signal or not to signal:
Exploiting uncertain real-time information in signaling games for security and sustainability.
In AAAI, pp. 1369–1377. AAAI Press.

Chan, H., Ceyko, M., & Ortiz, L. E. (2012). Interdependent defense games: Modeling interdepen-
dent security under deliberate attacks. In UAI, pp. 152–162. AUAI Press.

Chan, H., Ceyko, M., & Ortiz, L. E. (2017). Interdependent defense games with applications to
internet security at the level of autonomous systems. Games, 8(1), 13.

Chlebı́k, M., & Chlebı́ková, J. (2006). Complexity of approximating bounded variants of optimiza-
tion problems. Theor. Comput. Sci., 354(3), 320–338.

Conitzer, V., & Sandholm, T. (2006). Computing the optimal strategy to commit to. In Proceedings
of the 7th ACM conference on Electronic commerce, pp. 82–90.

513

BAI, LIN, YANG, WU, LI, & JIA

Gan, J., An, B., & Vorobeychik, Y. (2015). Security games with protection externalities. In AAAI,
pp. 914–920. AAAI Press.

Gan, J., An, B., Vorobeychik, Y., & Gauch, B. (2017). Security games on a plane. In AAAI, pp.
530–536. AAAI Press.

Goyal, S., & Vigier, A. (2014). Attack, defence, and contagion in networks. The Review of Economic
Studies, 81(4), 1518–1542.

Gurobi Optimization, L. (2020). Gurobi optimizer reference manual..

Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring network structure, dynamics, and
function using networkx. In Varoquaux, G., Vaught, T., & Millman, J. (Eds.), Proceedings of
the 7th Python in Science Conference, pp. 11 – 15, Pasadena, CA USA.

Jin, R., He, X., & Dai, H. (2019). On the security-privacy tradeoff in collaborative security: A
quantitative information flow game perspective. IEEE Trans. Inf. Forensics Secur., 14(12),
3273–3286.

Johnson, B., Grossklags, J., Christin, N., & Chuang, J. (2010). Uncertainty in interdependent se-
curity games. In GameSec, Vol. 6442 of Lecture Notes in Computer Science, pp. 234–244.
Springer.

Khot, S., & Regev, O. (2008). Vertex cover might be hard to approximate to within 2-epsilon. J.
Comput. Syst. Sci., 74(3), 335–349.

Kiekintveld, et al. (2009). Computing optimal randomized resource allocations for massive secu-
rity games. In Proceedings of The 8th International Conference on Autonomous Agents and
Multiagent Systems-Volume 1, pp. 689–696.

Kloh, H., Schulze, B., Pinto, R. C. G., & Mury, A. R. (2012). A bi-criteria scheduling process with
cos support on grids and clouds. Concurr. Comput. Pract. Exp., 24(13), 1443–1460.

Korzhyk, et al. (2010). Complexity of computing optimal stackelberg strategies in security resource
allocation games. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 24.

Kunreuther, H., & Heal, G. (2003). Interdependent security. Journal of risk and uncertainty, 26(2-
3), 231–249.

Lamballais, T., et al. (2022). Dynamic policies for resource reallocation in a robotic mobile fulfill-
ment system with time-varying demand. Eur. J. Oper. Res., 300(3), 937–952.

Leskovec, J., & Krevl, A. (2014). SNAP Datasets: Stanford large network dataset collection. http:
//snap.stanford.edu/data.

Letchford, J., Conitzer, V., & Munagala, K. (2009). Learning and approximating the optimal strategy
to commit to. In SAGT, Vol. 5814 of Lecture Notes in Computer Science, pp. 250–262.
Springer.

Li, M., Tran-Thanh, L., & Wu, X. (2020). Defending with shared resources on a network. In AAAI,
pp. 2111–2118. AAAI Press.

Lou, J., Smith, A. M., & Vorobeychik, Y. (2017). Multidefender security games. IEEE Intell. Syst.,
32(1), 50–60.

Nguyen, K. C., Alpcan, T., & Basar, T. (2009). Stochastic games for security in networks with
interdependent nodes. In GAMENETS, pp. 697–703. IEEE.

514

STACKELBERG SECURITY GAMES WITH CONTAGIOUS ATTACKS

Paruchuri, P., Pearce, J. P., Tambe, M., Ordóñez, F., & Kraus, S. (2007). An efficient heuristic
for security against multiple adversaries in stackelberg games. In AAAI Spring Symposium:
Game Theoretic and Decision Theoretic Agents, pp. 38–46. AAAI.

Paul, S., Ni, Z., & Mu, C. (2020). A learning-based solution for an adversarial repeated game in
cyber-physical power systems. IEEE Trans. Neural Networks Learn. Syst., 31(11), 4512–
4523.

Schlenker, A., Thakoor, O., Xu, H., Fang, F., Tambe, M., Tran-Thanh, L., Vayanos, P., & Vorob-
eychik, Y. (2018). Deceiving cyber adversaries: A game theoretic approach. In AAMAS, pp.
892–900.

Sharma, A. (2020). Usa airport dataset..

Sinha, A., Fang, F., An, B., Kiekintveld, C., & Tambe, M. (2018). Stackelberg security games:
Looking beyond a decade of success. In IJCAI, pp. 5494–5501. ijcai.org.

Tambe, M. (2012). Security and Game Theory - Algorithms, Deployed Systems, Lessons Learned.
Cambridge University Press.

Tan, S., & Wang, Y. (2020). Graphical nash equilibria and replicator dynamics on complex net-
works. IEEE Trans. Neural Networks Learn. Syst., 31(6), 1831–1842.

Tsai, J., Nguyen, T. H., & Tambe, M. (2012). Security games for controlling contagion. In AAAI.
AAAI Press.

Vazirani, V. V. (2013). Approximation algorithms. Springer Science & Business Media.

Vorobeychik, Y., An, B., Tambe, M., & Singh, S. P. (2014). Computing solutions in infinite-horizon
discounted adversarial patrolling games. In ICAPS. AAAI.

Vorobeychik, Y., & Letchford, J. (2015). Securing interdependent assets. Auton. Agents Multi Agent
Syst., 29(2), 305–333.

Ye, D., Shen, S., Zhu, T., Liu, B., & Zhou, W. (2022). One parameter defense - defending against
data inference attacks via differential privacy. IEEE Trans. Inf. Forensics Secur., 17, 1466–
1480.

Yedidsion, L. (2012). Bi-criteria and tri-criteria analysis to minimize maximum lateness makespan
and resource consumption for scheduling a single machine. J. Sched., 15(6), 665–679.

Yin, Y., Xu, H., Gan, J., An, B., & Jiang, A. X. (2015). Computing optimal mixed strategies for
security games with dynamic payoffs. In IJCAI, pp. 681–688. AAAI Press.

Yin, Z., & Tambe, M. (2012). A unified method for handling discrete and continuous uncertainty in
bayesian stackelberg games. In AAMAS, pp. 855–862. IFAAMAS.

Zhang, Y., An, B., Tran-Thanh, L., Wang, Z., Gan, J., & Jennings, N. R. (2017). Optimal escape
interdiction on transportation networks. In IJCAI, pp. 3936–3944. ijcai.org.

Zhao, D., Wang, L., Wang, Z., & Xiao, G. (2019). Virus propagation and patch distribution in
multiplex networks: Modeling, analysis, and optimal allocation. IEEE Trans. Inf. Forensics
Secur., 14(7), 1755–1767.

515

