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Abstract

We study the complexity of computing the Shapley value in partition function form games.
We focus on two representations based on marginal contribution nets (embedded MC-nets
and weighted MC-nets) and five extensions of the Shapley value. Our results show that
while weighted MC-nets are more concise than embedded MC-nets, they have slightly worse
computational properties when it comes to computing the Shapley value: two out of five
extensions can be computed in polynomial time for embedded MC-nets and only one for
weighted MC-nets.

1. Introduction

Coalitional games are a standard model of cooperation in multi-agent systems (Chalki-
adakis, Elkind, & Wooldridge, 2011). In the classic form, widely adopted in the literature,
the profit of a coalition is assumed to be independent of the coalitions formed by the other
players. However, this simplifying assumption does not hold in many settings (Dunne,
2005). For example, if agents have conflicting goals then reaching a goal by one coalition
can hinder or block another coalition from achieving its goal (Rosenschein & Zlotkin, 1994).
Similarly, if there are limited resources in the system then a coalition that uses more re-
sources than its members alone will affect agents outside (Sandholm, Larson, Andersson,
Shehory, & Tohmé, 1999). In agent networks, creating a coalition may diminish the role of
an agent as an intermediary, but may also enable to benefit from the interaction with more
distant agents. Also, a cooperation to protect one coalition from attack may make others
more likely to become the target.

Motivated by that, in this work we focus on coalitional games with externalities, also
called partition function form games. In this model, the value of a coalition depends not only
on its members, but also on the partition formed by other players. Coalitional games with
externalities are popular in economic applications where they are used to model oligopolistic
markets (cooperation of some companies affect the profits of the competitors (Yi, 2003)),
international environmental conflicts (economic activities cause side-effects on sovereign
regions (Kóczy, 2018, Chapter 12)) and natural gas networks (transfer profits depends on
the partition formed by other countries (Csercsik, Hubert, Sziklai, & Kóczy, 2019)).

Externalities present new challenges both conceptually and computationally. On the
conceptual side, it is unclear how to extend most solution concepts to games with external-
ities. In particular, there are several non-equivalent well-established methods of extending
the Shapley value to games with externalities proposed by Pham Do and Norde (2007) (EF-
value), McQuillin (2009) (MQ-value), Hu and Yang (2010) (HY-value), Feldman (1996)
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Embedded MC-nets Weighted MC-nets

MQ-value in P (∗) in P (Th.1)
EF-value in P (Th.2) #P-hard (Th.3)
HY-value #P-hard (Th.4) #P-hard (Th.4)
SS-value #P-hard (Th.5) #P-hard (Th.5)
MY-value #P-hard (Th.6) #P-hard (Th.6)

Table 1: Summary of complexity results for computing extended Shapley value in games
represented as embedded and weighted MC-nets. (∗) Proved by Michalak et al.
(2010a).

(SS-value) and Myerson (1977b) (MY-value). On the computational side, externalities
significantly increase the size of the game itself.

To cope with the extensive space requirement of games with externalities, three differ-
ent representations were proposed in the literature. The first two, called embedded MC-
nets (Michalak, Marciniak, Szamotulski, Rahwan, Wooldridge, McBurney, & Jennings,
2010a) and weighted MC-nets (Michalak, Rahwan, Marciniak, Szamotulski, & Jennings,
2010b), are extensions of the well-known logic-based representation: marginal contribution
nets (Ieong & Shoham, 2005). In marginal contribution nets, a game is represented as a
set of rules of the form pattern → weight. A coalition satisfies a rule if it fits the pattern.
Now, the value of a coalition is the sum of weights of rules it satisfies. Embedded MC-nets
and weighted MC-nets extend this formalism in a way that patterns apply not only to the
coalition, but also to the partition it is embedded in. For embedded MC-nets, Michalak
et al. (2010a) proved that one extension of the Shapley value can be computed in polyno-
mial time. For weighted MC-nets, only partial results (polynomial results under restrictive
additional assumptions) have been developed for three extensions (see Section 2 for details).

More recently, Skibski, Michalak, Sakurai, Wooldridge, and Yokoo (2020) proposed a
new representation, named partition decision trees. This new representation, inspired by
the decision diagrams, is less concise than embedded and weighted MC-nets, but, as it
turns out, it has good computational properties. Specifically, the authors showed that all
five extensions of the Shapley value listed above can be computed in polynomial time under
this representation. So far, however, it was unknown whether the same result holds also for
the two other representations or not.

In this paper, we fill the gap in the literature by determining the complexity of computing
all the five extensions of the Shapley value in games represented as embedded and weighted
MC-nets. Specifically, we show that only two out of five extensions (MQ-value and EF-value)
can be computed in polynomial time for embedded MC-nets and only one (MQ-value) can
be computed in polynomial time for weighted MC-nets (unless P = NP). For all other values,
we show on that computation is #P-hard (see Table 1). In this way, our work constitutes
a guideline which representations and extensions of the Shapley value can be used in order
to obtain polynomial time computation.

Our results are based on a common technique that maps embedded and weighted MC-
nets into graphs. Specifically, we first define hybrid rules which are weighted MC-nets
rules similar in their construction to embedded MC-nets rules. Then, we show that every
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weighted MC-nets rule is equivalent to a (polynomial in size) set of hybrid rules and every
embedded MC-nets rule is equivalent to some hybrid rule. This allows us to focus entirely
on hybrid rules.

Furthermore, we show that every hybrid rule can be represented as a graph in which
nodes are labeled with sets of players, and edges indicate which groups of players cannot be
merged. As a result, the game represented as a hybrid rule can be defined based on proper
vertex colorings of the corresponding graph and every extended Shapley value is a weighted
sum over all such colorings.

Building upon these general results, for each value we separately analyze the resulting
weighted sum. In particular, we show that the MQ-value is a weighted sum over 2-colorings,
so it can be computed in polynomial time. On the other hand, the EF-value is a sum over
independent sets in a part of the graph and it is hard to compute unless the graph has a
regular structure. Interestingly, the SS-value under some assumptions is proved to be equal
to the number of matchings in a bipartite graph, hence it is also #P-hard to compute.

The remainder of the paper is structured as follows. Section 2 discusses the related
work. Section 3 introduces the necessary definitions and notation. Section 4 presents
hybrid rules and a technique that allows us to interpret embedded and weighted MC-nets
rules as a collection of graphs. Section 5 builds upon the previous section and presents our
main complexity results. Section 6 concludes the paper and presents some potential future
directions.

2. Related Work

The topic of succinct representation of coalitional games has been actively studied in the
last decades. An essential criterion in the evaluation of a representation is efficiency of com-
putation of solution concepts. Here, most research concentrates on the Shapley value and
core-related questions: checking whether the core is empty or whether a given imputation
is in the core.

There are several important representations for games without externalities. Arguably,
weighted voting games are the most important representation that enables to model simple
0-1 games. In weighted voting games, a game is represented as a list of weights and a
quota; the value of a coalition is 1 if the total weight of players is equal or higher than the
quota. Prasad and Kelly (1990) proved that checking whether the Shapley value is non-
zero is NP-complete. Later on, Deng and Papadimitriou (1994) proved that computing the
Shapley value is #P-complete, but checking emptiness of the core is possible in polynomial
time. Since then, a lot of work has been devoted to the computational analysis of weighted
voting games (Matsui & Matsui, 2000; Elkind, Goldberg, Goldberg, & Wooldridge, 2009a;
Zuckerman, Faliszewski, Bachrach, & Elkind, 2012).

Deng and Papadimitriou (1994) proposed also a new representation, called induced sub-
graph games. Here, a game is represented as a graph in which nodes are players and the
value of a coalition is the sum of weights of edges in the subgraph induced by the coali-
tion. This representation allows to compute the Shapley value in polynomial time, but
core-related questions (checking emptiness of the core, checking whether an imputation is
in the core) are NP-complete.
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Yet another representation, designed for superadditive games only, was proposed by
Conitzer and Sandholm (2006) under the name synergy coalition groups. The conciseness
comes from the fact that the values of only some coalitions are explicitly specified. Now,
the value of a coalition is the maximal value that can be obtained from partitioning it into
coalitions with specified values. The authors proved that checking whether an imputation
is in the core can be done in polynomial time. However, computing the Shapley value or
even getting the value of a coalition is computationally hard.

Marginal contribution nets (Ieong & Shoham, 2005), extensions of which we focus on,
is the first fully expressive representation. The authors showed that under this representa-
tion the Shapley value can be computed in polynomial time, but core-related problems are
computationally hard. This follows from the fact that marginal contribution nets without
negative literals can be considered a generalization of induced subgraph games to hyper-
graphs. Other complexity results for this and a richer version of the MC-nets representation
were obtained by Elkind, Goldberg, Goldberg, and Wooldridge (2009b) as well as Greco,
Malizia, Palopoli, and Scarcello (2011).

Other representations for games without externalities include skill-based representa-
tions (Ohta, Conitzer, Ichimura, Sakurai, Iwasaki, & Yokoo, 2009) and algebraic decision
diagrams (Aadithya, Michalak, & Jennings, 2011; Ichimura, Hasegawa, Ueda, Iwasaki, &
Yokoo, 2011).

For games with externalities, however, only three representations were proposed. The
first two, embedded MC-nets (Michalak et al., 2010a) and weighted MC-nets (Michalak et al.,
2010b), are the topic of this paper. Both representations extend the standard marginal
contribution nets rules by specifying, along the conditions on the coalition in question, the
partition it is embedded in. For embedded MC-nets, the authors proved that the MQ-value
can be computed in polynomial time. For weighted MC-nets, only partial results for the
MQ-value, the EF-value and the MY-value were obtained. Specifically, as we describe in
the next section, a weighted MC-nets rule consists of several blocks, each containing one or
more (standard) marginal contribution nets rules:

(pattern1
1 → value1

1) . . . (pattern1
k → value1

k) | (pattern2
1 → value2

1) . . . | . . . .

Now, the authors designed polynomial algorithms that work under additional assumptions.
For the MQ-value, it is assumed that there exist some patterns that do not apply to singleton
coalitions (with more than one positive literal) and, if they are in the same block, then other
rules in this block are pairwise compatible. For the EF-value, the algorithms assume that
there is more than one block or one block with one rule. For the MY-value, the algorithms
assume that there is only one block and all rules in it are compatible. See (Michalak et al.,
2010b) and (Michalak, 2016) for details. As we show in our paper, without these restrictions,
it is indeed possible to compute the MQ-value in polynomial time, but computing the EF-
value and the MY-value is #P-hard.

In the third representation, named partition decision trees (Skibski et al., 2020), one
rule is a directed tree, where internal nodes are labeled with players’ names, leaf nodes are
labeled with payoff vectors, and edges indicate membership of players in coalitions. In this
way, paths of the partition decision trees are equivalent to simple weighted MC-nets rules
(more precisely, to weighted MC-nets without negative literals in which each block contains
exactly one rule). The authors proved that for this representation the MQ-value, the EF-
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value, the HY-value, the SS-value and the MY-value can all be computed in polynomial
time. This representation, however, is much less concise than embedded and weighted MC-
nets. Specifically, Skibski et al. (2020) proved that embedded and weighted MC-nets are
exponentially more concise than partition decision trees, unless P=NP.

Our results make use of graphs that are labeled with sets of players (we call them
player-graphs, see Section 4.2). In particular, if each set contains exactly one player, we
obtain a graph in which nodes are players and edges represents restrictions in forming
coalitions. Thus, our paper belongs to a line of work on computing solution concepts in
graph-based coalitional games. These include matching games (Greco, Lupia, & Scarcello,
2020; Aziz & De Keijzer, 2011), network flow games (Bachrach & Rosenschein, 2009) and
game-theoretic centralities (Michalak, Aadithya, Szczepański, Ravindran, & Jennings, 2013;
Skibski, Rahwan, Michalak, & Yokoo, 2019), among others.

The idea of player-graphs is also similar to Myerson’s graph-restricted games (Myerson,
1977a) and, even more, to compatibility games (See, Bachrach, & Kohli, 2014) or signed
graph games (Skibski, Suzuki, Grabowski, Sakurai, Michalak, & Yokoo, 2022). The main
difference between player-graphs and these models is that the graph (along with the weight
of a rule) is the source of the values in a game and not an additional structure that affects
values of the existing game. In addition, these models are proposed for games without
externalities while we study games with externalities.

Last but not least, Skibski, Matejczyk, Michalak, Wooldridge, and Yokoo (2016) pro-
posed a model of games with externalities in which at most k coalitions can form. They
proposed an extension of the Shapley value for this model and proved it is #P-hard to com-
pute if the game is represented as a single embedded MC-nets rule. As far as we know, this
is the only paper—other than already mentioned papers that introduce embedded MC-nets,
weighted MC-nets and partition decision trees—that analyzes the complexity of extended
Shapley values.

3. Preliminaries

In this section, we introduce basic notation and definitions. In many definitions we will use
Iverson brackets: [φ] = 1 if statement φ is true, and [φ] = 0, otherwise (e.g., [2 = 1] = 0).
The summary of main notation can be found in the appendix.

3.1 Partition Function Form Games

Let N = {1, . . . , n} be a set of n players, which will be fixed throughout the paper. A
coalition is any nonempty subset of N . The set of all possible partition of N is denoted by
P and the set of all embedded coalitions, i.e., coalitions in partitions, by EC:

EC = {(S, P ) : P ∈ P, S ∈ P}.

In this paper, by a game we mean a coalitional game with externalities in a partition
function form: formally, for a fixed set of players, a game is a function that assigns a real
value to every embedded coalition: g : EC → R. We say that a game has no externalities
if the value of every coalition does not depend on the partition, i.e., g(S, P ) = g(S, P ′) for
every coalition S ⊆ N and (S, P ), (S, P ′) ∈ EC. If a game has no externalities, then there

1241



Skibski

exists a function ĝ : 2N → R with ĝ(∅) = 0 such that g(S, P ) = ĝ(S) for every (S, P ) ∈ EC.
This function is called a characteristic function.

3.2 Extended Shapley Values

A value of a player in a game is a real number that represents player’s importance or
the expected outcome. The Shapley value (Shapley, 1953) is defined for games without
externalities. For a game without externalities defined through a characteristic function ĝ,
the Shapley value of player i ∈ N is defined as follows:

SVi(ĝ) =
∑
S⊆N

ζi(S) · ĝ(S), where ζi(S) =

{
(|S|−1)!(n−|S|)!

n! if i ∈ S,
− |S|!(n−|S|−1)!

n! otherwise.

The Shapley value can be interpreted in the following way. Assume players leave the grand
coalition N one by one in a random order. As the player leaves, she receives the payoff
equal to the marginal contribution to the group of players S she left: ĝ(S) − ĝ(S \ {i}).
Now, the Shapley value is the expected payoff over all orders.

Shapley (1953) famously proved that the Shapley value is a unique value that satisfies
four simple axioms: Efficiency, Symmetry, Additivity and Null-Player. However, in games
with externalities these classic axioms are too weak to guarantee uniqueness (Macho-Stadler,
Pérez-Castrillo, & Wettstein, 2007). Hence, numerous extensions of the Shapley value to
games with externalities have been proposed (see (Kóczy, 2018) for a recent overview).
Most of them, and all that we will focus on, are weighted averages of values of embedded
coalitions:

ϕi(g) =
∑

(S,P )∈EC

ωi(S, P ) · g(S, P ) (1)

for some weights ω : EC ×N → R.
There are six extended Shapley values that satisfies the standard translation of the

Shapley’s axioms. In this paper, we will focus on five of them, leaving the problem open for
the Bolger value (Bolger, 1989). To date, no computational results for the Bolger value are
known. In particular, the Bolger value satisfies (1), but even computing weights ωi(S, P )
seems to be computationally challenging. It is also not known whether the Bolger value can
be computed in polynomial time in games represented as partition decision trees (Skibski
et al., 2020).

Let us describe the remaining five extensions. Recall (1). In order to give the same
values as the (standard) Shapley value for games without externalities, for a fixed coalition
S weights of embedded coalitions (S, P ) ∈ EC should sum up to ζi(S):

∑
P :S∈P ωi(S, P ) =

ζi(S). Hence, such extended Shapley values can be defined by specifying how for a coalition
S weight ζi(S) is distributed among partitions that contain S.

In the simplest approach, the whole weight is assigned to one partition. This is the case
for the first two values:

McQuillin value (MQ-value) (McQuillin, 2009) of player i in game g is defined as

MQi(g) =
∑

(S,P )∈EC

ζi(S)[|P | ≤ 2] · g(S, P ). (2)
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Externality-free value (EF-value) (Pham Do & Norde, 2007) of player i in game g is
defined as

EFi(g) =
∑

(S,P )∈EC

ζi(S)[|P | − 1 = n− |S|] · g(S, P ). (3)

The MQ-value looks only at the value of coalition S in a partition in which all other players
form one coalition. In turn, the EF-value (independently proposed by De Clippel and
Serrano (2008)) looks only at the value of coalition S in a partition in which all other
players form singleton coalitions. As a result, MQ-value and EF-value are equivalent to
the Shapley value of a game without externalities defined for every coalition S ⊆ N as
ĝ(S) = g(S, {S,N \ S}) in the case of MQ-value and ĝ(S) = g(S, {S} ∪ {{i} : i ∈ N \ S})
in the case of EF-value.

The MQ-value and the EF-value ignore values of most embedded coalitions. In turn, the
HY-value and the SS-value for every coalition take a weighted average over all partitions it is
in; the difference is the HY-value assigns greater weights to partitions with more coalitions,
while the SS-value—to partitions with larger coalitions:

Hu-Yang value (HY-value) (Hu & Yang, 2010) of player i in game g is defined as

HYi(g) =
∑

(S,P )∈EC

ζi(S)
ψ(S, P )

|P |
· g(S, P ), (4)

where ψ(S, P ) is the number of partitions of N in which players N \S form partition
P \ {S}: ψ(S, P ) = |{P ′ ∈ P : {T \ S : T ∈ P ′} \ {∅} = P \ {S}}|.

Stochastic Shapley value (SS-value) (Feldman, 1996) of player i in game g is defined
as

SSi(g) =
∑

(S,P )∈EC

ζi(S)

∏
T∈P\{S}(|T | − 1)!

(n− |S|)!
· g(S, P ). (5)

For the HY-value, the value ψ(S, P ) is equal to the number of possible partitions that
can be obtained by inserting players S into partition P \ {S}. Hence, for a fixed S, ψ(S, P )
depends solely on the size of partition P and is larger for larger P .

For the SS-value, first proposed by Feldman (1996), but better known from the work of
Macho-Stadler et al. (2007), the fraction

∏
T∈P\{S}(|T | − 1)!/(n− |S|)! is the probability

that in a random permutation of players N \S each coalition from P \{S} forms a separate
cycle in a cycle decomposition. As a result, weights of small partitions are significantly
larger than weights of large partitions (e.g., g(S, {S,N \S}) is multiplied by ζi(S)/(n−|S|)
and g(S, {S, {{j} : j ∈ N \ S}}) by ζi(S)/(n− |S|)!).

Finally, Myerson (1977b) studied how the Null-player axiom can be strengthen in order
to obtain unique characterization. His analysis based on inclusion-exclusion principle led
to the following value:

Myerson value (MY-value) (Myerson, 1977b) of player i in game g is defined as

MYi(g) =
∑

(S,P )∈EC

(−1)|P |

 ∑
T∈P\{S},i 6∈T

(|P | − 2)!

(n− |T |)

− (|P | − 1)!

n

 g(S, P ). (6)
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ϕ1(e(S,P ))/ζ1(S)
S P \ {S} MQ1 EF1 HY1 SS1 MY1

{1, 2} {{3, 4, 5, 6}} 1 0 5/203 6/24 10

{1, 2} {{3, 4, 5}, {6}} 0 0 10/203 2/24 -6
{1, 2} {{3, 4, 6}, {5}} 0 0 10/203 2/24 -6
{1, 2} {{3, 5, 6}, {4}} 0 0 10/203 2/24 -6
{1, 2} {{3}, {4, 5, 6}} 0 0 10/203 2/24 -6

{1, 2} {{3, 4}, {5, 6}} 0 0 10/203 1/24 -5
{1, 2} {{3, 5}, {4, 6}} 0 0 10/203 1/24 -5
{1, 2} {{3, 6}, {4, 5}} 0 0 10/203 1/24 -5

{1, 2} {{3, 4}, {5}, {6}} 0 0 17/203 1/24 9
{1, 2} {{3, 5}, {4}, {6}} 0 0 17/203 1/24 9
{1, 2} {{3, 6}, {4}, {5}} 0 0 17/203 1/24 9
{1, 2} {{3}, {4, 5}, {6}} 0 0 17/203 1/24 9
{1, 2} {{3}, {4, 6}, {5}} 0 0 17/203 1/24 9
{1, 2} {{3}, {4}, {5, 6}} 0 0 17/203 1/24 9

{1, 2} {{3}, {4}, {5}, {6}} 0 1 26/203 1/24 -24

Table 2: Values ϕ1(e(S,P ))/ζ1(S) for N ={1, . . . , 6}, S = {1, 2}, arbitrary partition P that
contains S and different extended Shapley values ϕ.

What is characteristic for the MY-value, the weight of an embedded coalition (S, P ) may be
negative even if i ∈ S. This implies that the MY-value does not satisfy a basic monotonicity
principle: increasing the value of g(S, P ) may decrease the value of player i ∈ S.

Example 1. Fix N = {1, . . . , 6}, coalition S = {1, 2} and player i = 1. Consider an
elementary game without externalities eS in which only coalition S has non-zero value:
eS(S) = 1 and eS(T ) = 0 for S 6= T . The Shapley value of player 1 in this game equals
SV1(eS) = ζ1(S) = 1/30.

Now, consider elementary games with externalities. For the fixed coalition S = {1, 2},
there are 15 embedded coalitions (S, P ) ∈ EC. For each, we consider an elementary game
e(S,P ) in which only (S, P ) has non-zero value: e(S,P )(S, P ) = 1 and e(S,P )(T,R) = 0 for
(T,R) 6= (S, P ). Note that

∑
P :S∈P e

(S,P ) is equivalent to eS , hence for every considered

extended Shapley value ϕ we have ϕ1(
∑

P :S∈P e
(S,P )) = ζ1(S) = 1/30.

Table 2 presents how value ζ1(S) is distributed among elementary games e(S,P ) by ex-
tended Shapley values. Specifically, it contains values MQ1(g), EF1(g), HY1(g), SS1(g)
and MY1(g) divided by ζ1(S) for games g ∈ {e(S,P ) : (S, P ) ∈ EC}. For example, we have
HY1(e(S,P )) = ζ1(S) · 17/203 for (S, P ) = ({1, 2}, {{1, 2}, {3, 4}, {5}, {6}}).

Since extended Shapley values are the main subject of our work, let us provide some
additional intuition behind them. Every extended Shapley value that satisfies Shapley’s
axioms can be obtained using the process approach, similar to the interpretation of the
Shapley value (Skibski, Michalak, & Wooldridge, 2018). Assume players leave the grand
coalition one by one in a random order and divide themselves into groups outside. As the
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{1, 2, 3} | ∅ {2, 3} | {1}

{3} | {1, 2}

{3} | {1}, {2}

∅ | {1, 2, 3}

∅ | {1, 2}, {3}

∅ | {1, 3}, {2}

∅ | {1}, {2, 3}

∅ | {1}, {2}, {3}

1

α1

α2

β1

β2

γ1

γ2
γ3

Figure 1: An illustration of the process approach for a fixed permutation (1, 2, 3).

player leaves, she chooses one of the coalitions outside or creates a new coalition, each with
some probability. As a result, the player receives the payoff equal to the change in the
value of the coalition she left. Specifically, if player i leaves coalition S (i ∈ S) in partition
P (S ∈ P ) which results in forming S′ = S \ {i} in partition P ′, then the payoff equals
g(S, P )− g(S′, P ′). Now, the extended Shapley value is the expected payoff in this process.

Extended Shapley values differ in probabilities of choices made by the leaving player:

• According to the MQ-value, the player always joins the (unique) existing coalition
outside.

• According to the EF-value, the player always creates a new coalition.

• According to the HY-value, each final partition should have the same probability;
hence, the probability is ψ(S′, P ′)/ψ(S, P ).

• According to the SS-value, the probability of joining a coalition is proportional to its
size; specifically, it joins coalition of size |T | with probability |T |/(|N | − |S|+ 1) and
creates a new one with probability 1/(|N | − |S|+ 1).

• The MY-value can also be obtained using the process approach, but more complex
quasi-probabilities need to be used.

See (Skibski et al., 2018) and (Skibski & Michalak, 2020) for details.1

Figure 1 illustrates the process approach. For the MQ-value the probability of forming
grand coalition outside equals 1; hence, (α1, α2) = (1, 0) and (β1, β2) = (1, 0). In turn, for
the EF-value the probability of forming partition {{1}, {2}, {3}} equals 1; hence, (α1, α2) =
(0, 1) and (γ1, γ2, γ3) = (0, 0, 1). For the HY-value, the probability of each final partition is
equal; hence, (α1, α2) = (2/5, 3/5), (β1, β2) = (1/2, 1/2) and (γ1, γ2, γ3) = (1/3, 1/3, 1/3).
For the SS-value, the probability of joining a larger coalition is larger; hence, (α1, α2) =
(1/2, 1/2), (β1, β2) = (2/3, 1/3) and (γ1, γ2, γ3) = (1/3, 1/3, 1/3). In the case of the MY-
value, we only note that (α1, α2) = (−1, 2).

The discussed extended Shapley values are based on different approaches and may fit
different settings. The EF-value and the MQ-value are two extremes. The EF-value may
be a good choice when forming a new coalition is natural or we can predict that only one

1. Interestingly, if we use equal probabilities of joining each coalition and creating a new one (i.e., equal
to 1/|P |) in the process approach, then we will obtain the extended Shapley value proposed by Bolger
(1989) discussed in the introduction.

1245



Skibski

non-singleton coalition will form; in such a case, the effect of a player leaving a coalition
may be attributed to the effect of creating a new singleton coalition by the leaving player.
In contrary, the MQ-value is more natural when creating new coalitions is rare and a player
leaving a coalition will most likely join existing ones. Similarly, it might be a good choice
when the number of coalitions is restricted.

However, in most cases, other values should be used that account for all potential embed-
ded coalitions. The HY-value adopts a uniform approach and assumes that all partitions are
equally probable, making it a suitable choice when there is no compelling reason to suggest
that some partitions are more likely. Conversely, the SS-value is based on the assumption
that players are more likely to choose the option selected by others. Hence, the SS-value is a
good choice if a player is more likely to join larger groups, as in the preferential attachment
process.

Finally, it is challenging to find an intuitive setting for the MY-value as it violates the
basic principle of monotonicity.

3.3 Representations

We will consider two representations for games with externalities. Both are extensions of
the MC-nets representation.

In all considered representations the game is represented as a set of rules:
Γ = {γ1, . . . , γk}. The rules, however, differ between representations. In what follows,
we will denote the game represented as a single rule γ by gγ and as the set of rules Γ by gΓ.

Marginal contribution nets (MC-nets) (Ieong & Shoham, 2005) are a representation for
games without externalities. The game is represented as a set of MC-nets rules of the form:
(α → c). Here, c ∈ R is the weight of a rule and α is a Boolean expression over N of the
form:

(a+
1 ∧ · · · ∧ a

+
m ∧ ¬a−1 ∧ · · · ∧ ¬a

−
l ), (7)

where a+
1 , . . . , a

+
m ∈ N are called positive literals and a−1 , . . . , a

−
l ∈ N are called negative

literals. We denote sets of positive and negative literals by ⊕(α) and 	(α), respectively,
and assume ⊕(α) ∩ 	(α) = ∅ and ⊕(α) 6= ∅.2 A coalition S satisfies α if it contains all
positive literals and does not contain any negative literal, i.e., ⊕(α) ⊆ S and 	(α)∩S = ∅.
Now, in a game represented as a set of MC-nets rules the value of coalition S is the sum of
weights of all satisfied rules.

Example 2. Assume N = {1, 2, 3, 4} and consider the following MC-nets rules Γ = {γ1, γ2}:

γ1 = (1 ∧ 2→ c1), γ2 = (3 ∧ ¬4→ c2).

A coalition has non-zero value if it satisfies at least one of them. We get:

ĝΓ(S) = c1·[{1, 2} ⊆ S]+c2·[3 ∈ S∧4 6∈ S] =


c1 if S ∈ {{1, 2}, {1, 2, 4}, {1, 2, 3, 4}},
c2 if S ∈ {{3}, {1, 3}, {2, 3}},
c1 + c2 if S = {1, 2, 3},
0 otherwise.

2. Ieong and Shoham (2005) allow rules without positive literals which entails that the empty coalition may
have non-zero value. As standard in the literature, we do not allow such situations.
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3.3.1 Embedded MC-nets (Michalak et al., 2010a)

Embedded MC-nets extend (standard) MC-nets as they allow to specify not only restrictions
on the coalition, but also on the partition this coalition is embedded in.

An embedded MC-nets rule is of the form:

(α1 | α2, α3, . . . , αk)→ c,

where c ∈ R is the weight of a rule and α1, . . . , αk are Boolean expressions as in (7). An
embedded coalition (S, P ) satisfies the rule if S satisfies α1 and for every αi with i > 1
there exists a coalition T ∈ P \ {S} that satisfies it. Now, in a game represented as a set of
embedded MC-nets rules the value of an embedded coalition (S, P ) is the sum of weights
of all satisfied rules.3

Example 3. Assume N = {1, . . . , 6} and consider the following embedded MC-nets rule:

γ = (1 ∧ 2→ 1) | (3 ∧ 5 ∧ ¬4 ∧ ¬6) (4 ∧ ¬6)

An embedded coalition (S, P ) satisfies this rule if S contains 1 and 2, and P \ {S} contains
a coalition with 3 and 5, but without 4 and 6, and a coalition with 4, but without 6. We
get that:

gγ({1, 2}, {{1, 2}, {3, 5}, {4}, {6}}) = 1, gγ({1, 2, 6}, {{1, 2, 6}, {3, 5}, {4}}) = 1

and gγ(S, P ) = 0, otherwise.

3.3.2 Weighted MC-nets (Michalak et al., 2010b)

In weighted MC-nets, one rule is a partitioned set of (standard) MC-nets rules; roughly
speaking, a rule applies to an embedded coalition if all (standard) rules are satisfied at the
same time.

A weighted MC-nets rule is of the form:

(α1
1 → c1

1) . . . (α1
k1 → c1

k1) | · · · | (αm1 → cm1 ) . . . (αmkm → cmkm),

where (αij → cij) for every i ∈ {1, . . . ,m} and j ∈ {1, . . . , ki} is an MC-nets rule. A partition
P satisfies the rule if it can be partitioned into m disjoint subsets P = R1∪̇ . . . ∪̇Rm such
that for every i ∈ {1, . . . ,m} and j ∈ {1, . . . , ki} rule (αij → cij) is satisfied by some coalition
from Ri. Now, in a game represented as a set of weighted MC-nets rules the value of an
embedded coalition (S, P ) is the sum of weights of all MC-nets rules (α→ c) that S satisfies
in all (weighted MC-nets) rules satisfied by P .

If m = 2, k1 = 1 and cij = 0 for i = 2, then the weighted MC-nets rule is equivalent
to an embedded MC-nets rule. If m = 1 and k1 = 1, then the weighted MC-nets rule is a
standard MC-nets rule.

Example 4. Assume N = {1, . . . , 6} and consider the following weighted MC-nets rule:

γ = (1 ∧ 2 ∧ ¬4→ c1) (6 ∧ ¬4→ c2) | (3 ∧ 5 ∧ ¬4→ c3)

Partition P satisfies this rule if P can be divided into two parts P = R1∪̇R2 such that

3. If k = 1, then the embedded MC-nets rule is equivalent to a (standard) MC-nets rule.

1247



Skibski

• in R1 there exists a coalition with both 1 and 2 and a coalition with 6, but both does
not contain 4

• in R2 there exists a coalition with both 3 and 5, but without 4.

We get that only P1 = {{1, 2}, {3, 5}, {4}, {6}} and P2 = {{1, 2, 6}, {3, 5}, {4}} satisfies γ.
By summing weights of all MC-nets rules satisfied by each coalition from these partitions
we get:

gγ({1, 2}, P1) = c1, gγ({3, 5}, P1) = c3, gγ({6}, P1) = c2,
gγ({1, 2, 6}, P2) = c1 + c2, gγ({3, 5}, P2) = c3

and gγ(S, P ) = 0, otherwise. For c1 = 1 and c2 = c3 = 0 the weighted MC-nets rule is
equivalent to embedded MC-nets rule from Example 3.

Embedded and weighted MC-nets are similar representations. They are both designed
for scenarios where the value of a coalition can be determined additively based on the
interactions of its members and externalities caused by others. The main difference is
conciseness of both representations. Firstly, in weighted MC-nets, it is possible to assign
values to multiple coalitions within the same partition. Secondly, in weighted MC-nets, the
rules applied to coalitions with non-zero values can be merged. As we will see, this will
have a significant impact on our complexity results.

4. From MC-Nets to Graphs

The goal of this section is to show that (1) every embedded and weighted MC-nets rule
is equivalent to a set of hybrid rules, (2) every hybrid rule can be represented as a graph
and, as a result, (3) every game represented as embedded or weighted MC-nets rules can
be defined based on (proper vertex) colorings in graphs.

4.1 Hybrid Rules

We begin by introducing a subclass of weighted MC-nets rules under the name hybrid rules.
The name comes from the fact that hybrid rules, while they are formally weighted MC-nets
rules, have a form almost identical to embedded MC-nets rules.

Definition 1. (Hybrid rules) A hybrid rule is a weighted MC-nets rule with m = 1 of the
form:

γ = (α1 → c)(α2 → 0) . . . (αk → 0),

such that every player appears as a positive literal in exactly one expression αi, i.e., ⊕(αi)∩
⊕(αj) = ∅ for 1 ≤ i < j ≤ k and

⋃k
i=1⊕(αi) = N . We will call c ∈ R the weight of rule γ.

Note that for every hybrid rule {⊕(α1), . . . ,⊕(αk)} is a partition of N . Based on the
definition of weighted MC-nets, an embedded coalition (S, P ) has non-zero value in a game
represented as a hybrid rule γ if S satisfies α1 and for every αi with i > 1 there exists a
coalition in P that satisfies it. Note that, unlike embedded MC-nets, S may also satisfy αi
for i > 1.
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In Lemma 1, we show that every weighted MC-nets rule can be expressed using poly-
nomially many hybrid rules. We will use a notion of compatibility: we say that expressions
αi, αj are compatible, denoted by αi ∼ αj , if there exists a coalition that satisfies both of
them, i.e., if (⊕(αi) ∪ ⊕(αj)) ∩ (	(αi) ∪ 	(αj)) = ∅.

Lemma 1. Every weighted MC-nets rule of size S is equivalent to a set of hybrid rules of
size poly(n, S).

Proof. Consider a weighted MC-nets rule:

(α1
1 → c1

1) . . . (α1
k1 → c1

k1) | · · · | (αm1 → cm1 ) . . . (αmkm → cmkm).

Assume ⊕(αij) ∩ ⊕(αi
′
j′) 6= ∅ for some i, i′ ∈ {1, . . . ,m}, j ∈ {1, . . . , ki}, j′ ∈ {1, . . . , ki′}. If

one of the following two conditions holds: (1) i 6= i′ or (2) i = i′ but expressions αij and αi
′
j′

are not compatible, then the weighted MC-nets rule is contradictory; hence it is equivalent
to an empty set of hybrid rules. If i = i′ and αij and αi

′
j′ are compatible, then rules (αij → cij)

and (αi
′
j′ → ci

′
j′) can be combined into (αij ∧ αi

′
j′ → (cij + ci

′
j′)). Hence, in what follows, we

assume that ⊕(αij)∩⊕(αi
′
j′) = ∅ for every i, i′ ∈ {1, . . . ,m}, j ∈ {1, . . . , ki}, j′ ∈ {1, . . . , ki′}.

Define ⊕i =
⋃ki
j=1⊕(αij) for every i ∈ {1, . . . ,m} and ⊕ =

⋃m
i=1⊕i. Now, define βij as αij

with players ⊕ \ ⊕i added as negative literals for every i ∈ {1, . . . ,m} and j ∈ {1, . . . , ki}.
Since βij , β

i′
j′ for i 6= i′ cannot be satisfied by the same coalition, we get that the following

weighted MC-nets rule without bars (”|”) is equivalent to the original one:

(β1
1 → c1

1) . . . (βij → cij) . . . (β
m
km → cmkm).

In each MC-nets rule we added at most S literals, so the size of this rule is O(S2).
Now, we divide the formula into k1 + · · ·+ km separate rules in which only one weight

c is non-zero:
(β1

1 → c1
1)(β1

2 → 0) . . . (βij → 0) . . . (βmkm → 0)

(β1
1 → 0)(β1

2 → c1
2) . . . (βij → 0) . . . (βmkm → 0)

. . .

(β1
1 → 0)(β1

2 → 0) . . . (βij → 0) . . . (βmkm → cmkm).

The size of this set of rules is O(S3).
Finally, for every player p ∈ N \⊕ we add an MC-nets rule ((p)→ 0) to every rule. We

added at most n MC-nets rules to O(S) rules; hence, the total size of the final set of rules
is O(S3 + nS). This concludes the proof.

Example 5. Recall the weighted MC-nets rule from Example 4:

(1 ∧ 2 ∧ ¬4→ c1) (6 ∧ ¬4→ c2) | (3 ∧ 5 ∧ ¬4→ c3).

First, we combine all rules into one block: we have ⊕1 = {1, 2, 6} and ⊕2 = {3, 5}, so we
get:

(1 ∧ 2 ∧ ¬3 ∧ ¬4 ∧ ¬5→ c1) (6 ∧ ¬3 ∧ ¬4 ∧ ¬5→ c2) (3 ∧ 5 ∧ ¬1 ∧ ¬2 ∧ ¬4 ∧ ¬6→ c3).

1249



Skibski

Now, we split this rule into three and add (4 → 0) to each rule, as 4 does not appear as a
positive literal in any rule:

(1∧ 2∧¬3∧¬4∧¬5→ c1) (6∧¬3∧¬4∧¬5→ 0) (3∧ 5∧¬1∧¬2∧¬4∧¬6→ 0) (4→ 0),

(1∧ 2∧¬3∧¬4∧¬5→ 0) (6∧¬3∧¬4∧¬5→ c2) (3∧ 5∧¬1∧¬2∧¬4∧¬6→ 0) (4→ 0),

(1∧ 2∧¬3∧¬4∧¬5→ 0) (6∧¬3∧¬4∧¬5→ 0) (3∧ 5∧¬1∧¬2∧¬4∧¬6→ c3) (4→ 0).

This concludes the construction.

In turn, in Lemma 2, we show that embedded MC-nets rules are equivalent to a subset
of hybrid rules.

Definition 2. (Regular hybrid rules) A hybrid rule is regular if for every αi, αj , (i, j > 1)
compatible with α1 it holds αi ∼ αj and |⊕(αi)| = 1.

Lemma 2. Every embedded MC-nets rule of size S is equivalent to a regular hybrid rule of
size poly(n, S). Moreover, every regular hybrid rule of size S is equivalent to an embedded
MC-nets rule of size poly(n, S).

Proof. Consider an embedded MC-nets rule:

(α1|α2, . . . , αk)→ c.

For this rule we will construct an equivalent regular hybrid rule.
Assume ⊕(αi) ∩ ⊕(αj) 6= ∅ for some 1 ≤ i < j ≤ k. If i = 1 or αi and αj are not

compatible, then the embedded MC-nets rule is contradictory; hence it is equivalent to any
hybrid rule with c = 0. If i, j > 1 and αi and αj are compatible, then αi and αj can be
replaced by αi ∧ αj . Hence, in what follows, we assume that ⊕(αi) ∩ ⊕(αj) = ∅ for every
i, j ∈ {1, . . . , k}.

Let us define expressions β1 as α1 with ⊕(α2) ∪ · · · ∪ ⊕(αk) added as negative literals.
Since β1 and αi for any i > 1 cannot be satisfied by the same coalition, we get that the
following weighted MC-nets rule is equivalent to the original one:

(β1 → c)(α2 → 0) . . . (αk → 0).

Note that this may not be a hybrid rule, since not all players may appear as positive literals.
Hence, we add an MC-nets rule ((p)→ 0) for every player p ∈ N \

⋃k
i=1⊕(αi).

Note that the resulting hybrid rule is regular: only MC-nets rules of the form ((p)→ 0)
are compatible with β1 and indeed each of them has one positive literal and they are all
compatible with each other. For the original embedded MC-nets rule of size S, the size of
the resulting hybrid rule is O(S2 +N).

Now, consider a regular hybrid rule:

(α1 → c)(α2 → 0) . . . (αk → 0).

For this rule we will construct an equivalent embedded MC-nets rule.
Without loss of generality assume expressions αm+1, . . . , αk are compatible with α1. Fix

i ∈ {m+1, . . . , k}. We know that |⊕(αi)| = 1. Assume 	(αi) 6= ∅ and take player p ∈ 	(αi).
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From the definition of hybrid rules, we know that every player appears as a positive literal
somewhere, i.e., there exists αj such that p ∈ ⊕(αj). Hence, we can remove ¬p from αi and
add a player from ⊕(αi) as a negative literal in αj (unless it is already in 	(αj)—in such
a case addition can be omitted) without changing the satisfiability of the rule. From the
definition of regular hybrid rules we get that αj is not compatible with α1; hence, the rule
remains regular.

By doing so for every negative literal of every rule compatible with α1 (other than α1),
we will obtain a rule of the form:

(α1 → c)(β2 → 0) . . . (βm → 0)((p1)→ 0) . . . ((pk−m)→ 0),

in which all β2, . . . , βm are not compatible with α1. Hence, this rule is equivalent to an
embedded MC-nets rule:

(α1|β2, . . . , βm)→ c.

Note that the size of the resulting embedded MC-nets rule is smaller than the size of the
original hybrid rule. This concludes the proof.

Example 6. Recall the embedded MC-nets rule from Example 3:

γ = (1 ∧ 2→ 1) | (3 ∧ 5 ∧ ¬4 ∧ ¬6) (4 ∧ ¬6)

To obtain a hybrid rule we add negative literals to the first MC-nets rule, add (6→ 0) and
get:

(1 ∧ 2 ∧ ¬3 ∧ ¬4 ∧ ¬5→ 1) (3 ∧ 5 ∧ ¬4 ∧ ¬6→ 0) (4 ∧ ¬6→ 0) (6→ 0)

Only the last MC-nets rule is compatible with the first rule and it contains one positive
literal. Hence, the rule is regular.

Note that this rule is equivalent to the first hybrid rule obtained in Example 5.

4.2 Player-Graphs

So far, we have shown the mapping from weighted MC-nets and embedded MC-nets rules
to hybrid rules. In what follows, we show that every hybrid rule can be represented as a
graph and the corresponding game can be defined based on colorings in such a graph. We
will consider undirected graphs with nodes labeled by a partition of players and one node
highlighted. We will call them player-graphs.

Definition 3. (Player-graphs) A player-graph is a tuple G = (V,E, l, v∗), where V is the
set of nodes, E is the set of undirected edges, i.e., subsets of nodes of size 2, l : V → 2N is
a node label function such that node labels form a partition of N (formally: l(v)∩ l(u) = ∅
for every u, v ∈ V and

⋃
v∈V l(v) = N) and v∗ ∈ V is a highlighted node.

Let us introduce some basic graph definitions. Node u is adjacent to v if {u, v} ∈ E.
The set of nodes adjacent to node v, called v’s neighbors, is denoted by N (v). A clique is
a subset of nodes every two of which are adjacent. An independent set is a subset of nodes
no two of which are adjacent.

A (proper vertex) k-coloring of a graph is a function, f : V → {1, . . . , k}, that assigns
colors {1, . . . , k} to nodes in a way that every two adjacent nodes have different colors, i.e.,
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1,2v1

3,5v2

4v3

6v4

Figure 2: Player-graph (V,E, l, v1) and a 4-coloring f with colors: 1 (blue/striped), 2 (yel-
low/checked), 3 (red/plain), 4 (green/dotted). Note that color 2 is not used.

f(v) 6= f(u) for every {v, u} ∈ E. In other words, nodes colored with the same color form
an independent set. The set of all k-colorings of a graph G is denoted by Ck(G).

We will need some additional notation regarding colorings in player-graphs. A k-coloring
f results in the partition of nodes:

V Pf = {f−1(i) : i ∈ {1, . . . , k}, f−1(i) 6= ∅}.

The set in V Pf that contains highlighted node v∗ is denoted by V S∗f . The partition of
nodes V Pf imposes a partition of players in the player-graph, denoted by Pf :

Pf =

{⋃
v∈U

l(v) : U ∈ V Pf

}
.

Clearly, |Pf | = |V Pf |. The set in Pf that correspond to V S∗f , i.e., that contains players
from the label of v∗, will be denoted by S∗f .

We say that f uses exactly p colors if |V Pf | = p. We will denote by #f the number of
all k-colorings that result in the partition V Pf ; note that #f = k(k− 1) · · · (k− |V Pf |+ 1).

Let us now define a player-graph that will represent a hybrid rule.

Definition 4. (Graph Gγ) For a hybrid rule γ, a player-graph Gγ = (V,E, l, v∗) is a graph
where nodes represent expressions α1, . . . , αk and are labeled with sets ⊕(α1), . . . ,⊕(αk)
and edges connect incompatible expressions αi, αj :

• V = {v1, . . . , vk}, v∗ = v1 and l(vi) = ⊕(αi) for every vi ∈ V ; and

• E = {{vi, vj} ⊆ V : αi 6∼ αj}.

We note that a similar construction of a graph for the right-hand side part of the embedded
MC-nets was proposed in (Skibski et al., 2016).

Example 7. Recall a hybrid rule from Example 6: (α1 → 1)(α2 → 0)(α3 → 0)(α4 → 0)
with

α1 = (1 ∧ 2 ∧ ¬3 ∧ ¬4 ∧ ¬5), α2 = (3 ∧ 5 ∧ ¬4 ∧ ¬6), α3 = (4 ∧ ¬6), α4 = (6)

Note that α1 ∼ α4 and αi 6∼ αj for other i, j ∈ {1, . . . , 4}, i 6= j. Hence, we obtain a graph
depicted in Figure 2.
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1v∗

2

5,7

3,6

4

8

9
N (v∗)

Figure 3: The structure of regular player-graphs, i.e., player-graphs that represent embed-
ded MC-nets rule: nodes not connected to v∗ form an independent set and have
singleton labels.

The presented coloring f induces the following partition of nodes and, consequently, of
players:

V Pf = {{v1, v4}, {v2}, {v3}}, Pf = {{1, 2, 6}, {3, 5}, {4}}.

There are #f = 4 · 3 · 2 = 24 different 4-colorings that result in the same partitions. We
have V S∗f = {v1, v4} and S∗f = {1, 2, 6}.

Definition 4 shows that every hybrid rule can be represented as a player-graph. Also,
every player-graph represents some hybrid rule, which we prove in the following lemma.

Lemma 3. For every player-graph G = (V,E, l, v∗) there exists a hybrid rule γ s.t. G = Gγ.

Proof. Let G = (V,E, l, v∗) be a player-graph and without loss of generality assume V =
{v1, . . . , vk} and v1 = v∗. We can construct a hybrid rule γ as follows: for every node vi ∈ V
we create a Boolean expression αi as in (7) with l(vi) as positive literals and

⋃
vj∈N (vi)

l(vj)

as negative literals. Now, for γ = (α1 → 1)(α2 → 0) . . . (αk → 0) we have G = Gγ .

The next lemma states the necessary and sufficient conditions for the graph to represent
a regular hybrid rule. We will call such player-graphs regular as well. See Figure 3 for an
illustration.

Definition 5. (Regular player-graphs) A player-graph G = (V,E, l, v∗) is regular if nodes
from V \ (N (v∗) ∪ {v∗}) form an independent set and have singleton labels, i.e., |l(u)| = 1
for every u ∈ V \ (N (v∗) ∪ {v∗}).

Lemma 4. For a player-graph G = (V,E, l, v∗) there exists a regular hybrid rule γ such
that G = Gγ if and only if the player-graph is regular.

Proof. Fix a regular hybrid rule γ. From the definition we know that all expressions com-
patible with α1 are compatible with each other and have a single positive literal. Hence,
nodes in Gγ not adjacent to v∗ form an independent set and have labels of size 1.

On the other hand, let G = (V,E, l, v∗) be a regular player-graph and without loss of
generality assume V = {v1, . . . , vk} and v1 = v∗. To construct a regular hybrid rule γ we
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repeat the construction from the proof of Lemma 3: for every node vi ∈ V we create a
Boolean expression αi as in (7) with l(vi) as positive literals and

⋃
vj∈N (vi)

l(vj) as negative

literals. Now, it is easy to verify that for γ = (α1 → 1)(α2 → 0) . . . (αk → 0) we have
G = Gγ . Clearly, if vi and vj are not adjacent, then αi and αj are compatible. Hence, from
the definition of regular player-graphs we get that γ is regular.

Based on Lemmas 1–4 we know that every weighted MC-nets rule can be represented
as (one or more) player-graphs and every embedded MC-nets rule can be represented as a
regular player-graph.

Let us now explain how a game represented as a hybrid rule γ can be defined based on
graph Gγ . Fix a hybrid rule γ and consider a partition P that satisfies it. Since every node
in graph Gγ is labeled with a set of players which is equal to the set of positive literals in
some expression αi, it is clear that all these players must appear in the same coalition in
P . This observation combined with the fact that every player appears in exactly one node
implies that P can be associated with a partition of nodes in graph Gγ .

Consider partition V P of nodes that correspond to P . Note that two adjacent nodes
cannot belong to the same coalition in V P , because they represent incompatible expressions
that cannot be satisfied by one coalition. Hence, every set in V P is an independent set. As
a result, we get that V P corresponds to some coloring of a graph.

This analysis is formalized in the following lemma. Recall that k is the number of
Boolean expressions in γ and at the same time nodes in Gγ .

Lemma 5. Partition P satisfies a hybrid rule γ if and only if there exists a k-coloring
f ∈ Ck(Gγ) such that P = Pf . Moreover, if the weight of γ is c, then for every (S, P ) ∈ EC:

gγ(S, P ) =
∑

f∈Ck(Gγ):(S∗f ,Pf )=(S,P )

c

#f
. (8)

Proof. Assume P = {S1, . . . , Sm} satisfies γ. We have that:

(i) every expression αi is satisfied by exactly one coalition (it is not possible that ⊕(αi)
is a subset of two non-overlapping coalitions);

(ii) every coalition Sr satisfies at least one expression (for an arbitrary player p ∈ Sr we
know that there exists an expression αj such that p ∈ ⊕(αj); hence only Sr may
satisfy αj).

Let us define a function f as follows: f(vi) = r such that ⊕(αi) ⊆ Sr (from (i) we know
there exists exactly one such r). Function f is a proper coloring: if f(vi) = f(vj) = r, then
coalition Sr satisfies both αi and αj , hence they are compatible and {vi, vj} 6∈ E. Also, f
is a k-coloring, because m ≤ k (from (i) and (ii)).

Now, take k-coloring f of Gγ and consider Pf . Fix vi ∈ V and let S ∈ Pf be the set
of all players in nodes colored with the same color as node vi. We claim S satisfies αi.
Obviously, ⊕(αi) ⊆ S. On the other hand, 	(αi) ∩ S = ∅, because players from 	(αi) all
appear in nodes which are neighbors of vi in graph Gγ , hence have different colors than vi.

So far, we have proved that P satisfies a hybrid rule γ if and only if there exists a
k-coloring f ∈ Ck(Gγ) such that P = Pf . Now, (S, P ) has non-zero value if and only if P
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satisfies γ and S satisfies α1 which—in a partition satisfying γ—is equivalent to containing
all players from nodes colored with the same color as node v∗. If P = Pf , then there are
#f other k-colorings that results in the same partition. This proves (8).

Example 8. Consider a hybrid rule γ from Example 7 with graph Gγ depicted in Figure 2.
Let us discuss all possible 4-colorings of Gγ :

– There are no colorings of Gγ that use 1 or 2 colors.

– There are 24 colorings that use 3 colors: f(v1) = f(v4) = a, f(v2) = b and f(v3) = c
where a, b, c ∈ {1, . . . , 4} are different colors. Note that for every such coloring f we
have V Pf = {{v1, v4}, {v2}, {v3}} and Pf = {{1, 2, 6}, {3, 5}, {4}}.

– There are 24 colorings that use 4 colors; in these colorings all nodes have different
colors. For every such coloring f we get Pf = {{1, 2}, {3, 5}, {4}, {6}}.

Overall, 48 colorings results in two partitions of players. Now, from Lemma 5, game gγ is
defined as follows:

gγ(S, P ) =


1 if (S, P ) = ({1, 2, 6}, {{1, 2, 6}, {3, 5}, {4}})

or (S, P ) = ({1, 2}, {{1, 2}, {3, 5}, {4}, {6}}),
0 otherwise.

This agrees with Example 3.

5. Computing Extended Shapley Values

In this section, building upon our analysis from the previous section, we consider computing
extended Shapley values in games represented as embedded and weighted MC-nets.

All extended Shapley values considered by us satisfy linearity, i.e., ESV (g + g′) =
ESV (g)+ESV (g′) and ESV (c ·g) = c ·ESV (g) for every two games g, g′ and c ∈ R. Thus,
in our computational analysis we can focus on games represented as a single rule and, based
on Lemmas 1 and 2, as a single hybrid rule. Moreover, we can assume the weight of this
rule is 1 (i.e., c = 1). Hence, from now on, we will assume that game is represented as a
hybrid rule with weight 1.

Fix such a hybrid rule γ. From (1) and Lemma 5 we get the following formula for
extended Shapley values:

ESVi(g
γ) =

∑
(S,P )∈EC

ωi(S, P )
∑

f∈Ck(Gγ):(S∗f ,Pf )=(S,P )

1

#f

 =
∑

f∈Ck(Gγ)

ωi(S
∗
f , Pf )

#f
. (9)

To put it in words, extended Shapley value in game gγ is a weighted sum over all colorings
in graph Gγ . Weights depend on Pf (partition of players resulting from the coloring f),
S∗f (set of players from labels of nodes colored with the same color as node v∗), and player
i ∈ N . For an extensive example, see Table 3.

More generally, we can consider the following counting problem we name Weighted
Coloring Counting. The problem is parametrized with weights ω̃ : C|V |(G) → R that
for each coloring assigns some real value.
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f |Pf | #f S∗f Pf \ {S∗f}
ω1(S∗f , Pf )

MQ EF HY SS MY

1 2 3 4,6 5 2 20 {1,3,4,6} {{2, 5}} 1 0 52 6 5

1 2 3 4,6 5 2 20 {1, 3, 5} {{2, 4, 6}} 1 0 15 4 10

1 2 3 4,6 5 3 60 {1,3,4,6} {{2}, {5}} 0 1 151 6 -4

1 2 3 4,6 5 3 60 {1, 3, 5} {{2}, {4, 6}} 0 0 37 2 -7

1 2 3 4,6 5 3 60 {1, 4, 6} {{2, 5}, {3}} 0 0 37 2 -7

1 2 3 4,6 5 3 60 {1, 4, 6} {{2}, {3, 5}} 0 0 37 2 -7

1 2 3 4,6 5 3 60 {1, 3} {{2, 5}, {4, 6}} 0 0 20 1 -10

1 2 3 4,6 5 3 60 {1, 3} {{2, 4, 6}, {5}} 0 0 20 2 -12

1 2 3 4,6 5 3 60 {1, 5} {{2, 4, 6}, {3}} 0 0 20 2 -12

1 2 3 4,6 5 3 60 {1, 5} {{2}, {3, 4, 6}} 0 0 20 2 -12

1 2 3 4,6 5 3 60 {1} {{2, 4, 6}, {3, 5}} 0 0 30 2 -15

1 2 3 4,6 5 3 60 {1} {{2, 5}, {3, 4, 6}} 0 0 30 2 -15

1 2 3 4,6 5 4 120 {1, 4, 6} {{2}, {3}, {5}} 0 1 77 2 12

1 2 3 4,6 5 4 120 {1, 3} {{2}, {4, 6}, {5}} 0 0 34 1 18

1 2 3 4,6 5 4 120 {1, 5} {{2}, {3}, {4, 6}} 0 0 34 1 18

1 2 3 4,6 5 4 120 {1} {{2, 5}, {3}, {4, 6}} 0 0 40 1 24

1 2 3 4,6 5 4 120 {1} {{2}, {3, 5}, {4, 6}} 0 0 40 1 24

1 2 3 4,6 5 4 120 {1} {{2, 4, 6}, {3}, {5}} 0 0 40 2 28

1 2 3 4,6 5 4 120 {1} {{2}, {3, 4, 6}, {5}} 0 0 40 2 28

1 2 3 4,6 5 5 120 {1} {{2},{3},{4,6},{5}} 0 0 40 1 -66

× 1
60 × 1

60 ×
1

12180 ×
1

7200 ×
1
60

Table 3: Example of weights associated with all possible colorings in a simple graph ac-
cording to extended Shapley values. Graph G = (V,E) has V = {v1, . . . , v5}
and E = {{v1, v2}, {v2, v3}, {v4, v5}} and labels: l(vi) = {i} for i ∈ {1, 2, 3, 5} and
l(v4) = {4, 6}. We consider all 5-colorings f : V → {1, . . . , 5} (isomorphic colorings
are grouped). For each value, the last row contains a common multiplier.
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Definition 6. ω̃-Weighted Coloring Counting
Input: player-graph G = (V,E, l, v∗), i.e., undirected graph (V,E), label function l : V →
2N such that labels of nodes form a partition of N and v∗ ∈ V
Output:

∑
f∈C|V |(G) ω̃(f).

In general, this problem is computationally challenging, as it generalizes the problem of
counting all k-colorings which is #P-hard and allows us to determine whether a graph is
3-colorable which is NP-complete.

Based on (9), computing each extended Shapley value for a fixed player can be considered
a special case of Weighted Coloring Counting. In the following sections, we analyze
these problems one by one. Extended Shapley values are ordered in ascending order by the
complexity of their formula:

• First two values, the MQ-value and the EF-value, take into account only one partition
P for every coalition S; hence, they can be computed by traversing all subsets, not
all partitions of players.

• In the HY-value, considered third, the weight of an embedded coalition (S, P ) depends
solely on |S| and |P |; this allows us to group all colorings that use the same number
of colors.

• Finally, in the last two values, the SS-value and the MY-value, weights depend on
sizes of all coalitions in a partition.

Before we move to the next section, let us roughly explain a technique that we use in
the proofs of Theorems 3, 4 and 6. This technique was used in several complexity results for
the Shapley value in games without externalities (see, e.g., (Aziz, Lachish, Paterson, & Sa-
vani, 2009; Michalak, Rahwan, Szczepański, Skibski, Narayanam, Wooldridge, & Jennings,
2013)).

Assume we want to compute x1, . . . , xk and we have an algorithm that computes the sum
f(j) =

∑k
m=1 aj,mxm for some weights (aj,m)1≤j,m≤k that depend on m and some external

parameter j ∈ {1, . . . , k}. To this end, we can construct a system of linear equations with
the following matrix form:

a1,1 a1,2 . . . a1,k

a2,1 a2,2 . . . a2,k
...

...
. . .

...
ak,1 ak,2 . . . ak,k

 ·

x1

x2
...
xk

 =


f(1)
f(2)

...
f(k)

 (10)

Now, if the matrix (aj,m)1≤j,m≤k has non-zero determinant, then it is invertible. Hence, if
we know f(1), . . . , f(k), then using Gaussian elimination we can compute x1, . . . , xk.

In our case, f(j) will be an extended Shapley value and xm will be the number of
independent sets of size m (Theorem 3), k-colorings that use m colors (Theorem 4) or
matchings in a bipartite graph of size m (Theorem 6). Hence, based on the fact that
computing

∑k
m=1 xm is #P-hard we will get that computing the EF-value, the HY-value

and the MY-value is also #P-hard.
Note that based on (9) each extended Shapley value is a sum over exponentially many

colorings and, in general, two colorings that result in different partitions of nodes may
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have different weights. Hence, the main challenge with this approach is to (1) express an
extended Shapley value as a weighted sum over polynomial number of elements and (2) to
create a system of linear equations that results in a matrix which is invertible.

5.1 Computing the MQ-Value

We begin with the analysis of the MQ-value. Combining (2) and (8) as in (9) we get:

MQi(g
γ) =

∑
f∈Ck(Gγ)

ζi(S
∗
f )

#f
[|Pf | ≤ 2].

As we can see, only colorings that use 1 or 2 colors have non-zero weights. All such colorings
that result in the same partition of players can be grouped and their weights sum up to
ζi(S

∗
f ). Hence, we can go through all 2-colorings instead of k-colorings. By observing that

there are two 2-colorings that result in the same partition we get:

MQi(g
γ) =

1

2

∑
f∈C2(Gγ)

ζi(S
∗
f ). (11)

While in a connected graph there are at most two 2-colorings, in a disconnected graph
it can be exponentially many. Nevertheless, in Theorem 1, we show that this sum can be
easily computed in polynomial time for every graph.

Theorem 1. For a game represented as weighted MC-nets, the MQ-value can be computed
in polynomial time.

Proof. From Lemma 1 we know that it is enough to show that the MQ-value can be com-
puted in polynomial time for a game represented as a single hybrid rule.

Fix a hybrid rule γ. Assume i ∈ l(u) for some u ∈ V . From (11) we have:

MQi(g
γ) =

∑
f∈C2(Gγ)
f(v∗)=f(u)

(|S∗f | − 1)!(n− |S∗f |)!
2(n!)

−
∑

f∈C2(Gγ)
f(v∗)6=f(u)

|S∗f |!(n− |S∗f | − 1)!

2(n!)
.

Let us define two tables T=[1. . .n] and T6=[1. . .n] as follows:

T=[s] = |{f ∈ C2(Gγ) : |S∗f | = s, f(v∗) = f(u)}|.

T6=[s] = |{f ∈ C2(Gγ) : |S∗f | = s, f(v∗) 6= f(u)}|.

To put it in words, for s ∈ {1, . . . , n}, T=[s] + T6=[s] is the number of 2-colorings in which
there are s players in nodes colored with the same color as node v∗. Now, T=[s] counts only
these colorings in which u is colored with the same color as v∗, and T6=[s]—with different
color than v∗. See Figure 4 for an illustration. We have now:

MQi(g
γ) =

n∑
s=1

(s− 1)!(n− s)!
2n!

T=[s]−
n∑
s=1

s!(n− s− 1)!

2n!
T6=[s].
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1, 3

5 2

6

4, 8

7

Figure 4: There are eight 2-colorings of this graph. Fix i = 6. We have T= =
[0, 0, 2, 2, 0, 0, 0, 0] and T6= = [0, 0, 0, 0, 2, 2, 0, 0]. For the presented coloring f ,
it holds |S∗f | = 6 and f(v∗) 6= f(u) for u such that i ∈ l(u), hence f is counted in
T6=[6].

It remains to determine tables T= and T6=. Let us state some basic facts about 2-
colorings in a graph. Graph is 2-colorable if and only if it is bipartite, i.e., nodes can be
partitioned into two groups V = V1∪̇V2, such that V1 and V2 are independent sets. If a
bipartite graph is connected (i.e., there exists a path between any two nodes), then there
exists a unique such partition. It can be found by performing a breadth-first search from
any node, v ∈ V , and putting all nodes at even distance from v in set V1 and all nodes at
odd distance—in set V2. Note that creating such a partition and checking whether both
groups are independent sets is also a good way of checking whether the graph is 2-colorable.
Now, there are two 2-colorings: in the first one, nodes from V1 are colored with color 1, and
in the second one—with color 2.

On the other hand, if the graph is not connected, then it is 2-colorable if its every
connected component (i.e., maximal subset of nodes such that there exists a path between
every pair of nodes) is 2-colorable. In such a case, for each connected component there
exists a unique partition into independent sets. However, in the whole graph there may be
an exponential number of 2-colorings.

Let C1, . . . , Cm be connected components of graph Gγ , and let {Aj , Bj} be a partition of
Cj into two independent sets. If partition {Aj , Bj} does not exist for at least one component
Cj , then there are no 2-colorings and T= and T6= have only zeros. Assume otherwise and
without loss of generality assume v∗ ∈ A1. Let T= and T6= be filled with zeros. We initiate
both tables depending on the position of node u:

• if u ∈ A1, then T=[|l(A1)|] = 2;

• if u ∈ B1, then T6=[|l(A1)|] = 2;

• otherwise, without loss of generality let us assume that u ∈ A2; hence, T=[|l(A1)| +
|l(A2)|] = T6=[|l(A1)|+ |l(B2)|] = 2.

Now, we consider other components (C2), C3, . . . , Cm, one by one, and for each component
Cj consider two cases: either Aj or Bj is colored with the same color as node v1. Thus, in
each step, we update each table T∗ (T= or T6=) by replacing it with a new table T ′∗ defined
as follows:

T ′∗[s] = T∗[s− |l(Aj)|] + T∗[s− |l(Bj)|] for 1 ≤ s ≤ n, (12)
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assuming T∗[s] = 0 for s ≤ 0. After analyzing the m-th component, the calculation is
complete. This concludes the proof.

Theorem 1 implies polynomial computation also for embedded MC-nets.

Corollary 1. For a game represented as embedded MC-nets, the MQ-value can be computed
in polynomial time.

Proof. Directly from Theorem 1. This result was also proved by Michalak et al. (2010a).

5.2 Computing the EF-Value

The EF-value, considered by us next, is complementary to the MQ-value. Combining (3)
and (8) gives:

EFi(g
γ) =

∑
f∈Ck(Gγ)

ζi(S
∗
f )

#f
· [|Pf | − 1 = n− |S∗f |].

Note that condition |Pf | − 1 = n − |S∗f | holds if and only if every player i ∈ N \ S∗f forms
a singleton coalition {i} in Pf , i.e., Pf = {S∗f} ∪ {{i} : i ∈ N \ S∗f}. This means that every
node u ∈ V \ V S∗f has a label of size one and is colored with a different color than all other
nodes. Hence, V Pf is uniquely defined by set V S∗f .

Let us split nodes into three sets:

• V ′ = {v ∈ V : |l(v)| > 1} ∪ {v∗} consists of all nodes with non-singleton labels and
node v∗;

• NV ′ =
(⋃

v∈V ′ N (v)
)
\ V ′ consists of all neighbors of nodes from V ′;

• U ′ = V \ (V ′ ∪NV ′) consists of all the remaining nodes.

See Figure 5 for an illustration. Since nodes with non-singleton labels cannot be in V \V S∗f ,
we know that V S∗f contains V ′. Hence, if V ′ is not an independent set, then the formula
evaluates to zero. Assume otherwise. We know that V S∗f is an independent set, hence it
cannot contain any node from NV ′. As a result, V S∗f is the union of V ′ and a subset of U ′

that is an independent set.

Also, if V S = V S∗f for some coloring f , then there are #f colorings with the same set
V S∗f . Hence, we get the following formula for the EF-value:

EFi(g
γ) =

∑
U∈I(Gγ):U⊆U ′

ζi(l(V
′ ∪ U)) (13)

where I(Gγ) is the set of all independent sets in graph Gγ .

In the following two theorems, we show that this sum is hard to compute in general,
but it is easy to compute if the player-graph is regular.

Theorem 2. For a game represented as embedded MC-nets, the EF-value can be computed
in polynomial time.
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1

4,6

3,7
2

5

8
9

V ′ NV ′ U ′

Figure 5: Partition of nodes into three sets: V ′, NV ′ and U ′ and an example of a coloring
f in which |Pf | − 1 = n − |S∗f |: nodes from V ′ have the same color, each other
color appears at most once in a node with a singleton label.

Proof. Let γ be a regular hybrid rule and Gγ be the corresponding regular player-graph
(from Lemmas 2 and 4 we know that for every embedded MC-nets rule such an equivalent
hybrid rule and a graph exist).

Let us analyze graph Gγ . First, observe that if there exists a node, other than v∗, with
non-singleton label, then since Gγ is regular it is adjacent to v∗. Hence, V ′ does not form
an independent set and, as we already argued, the formula evaluates to zero: EFi(g

γ) = 0
for every i ∈ N .

Assume otherwise, i.e., that all nodes other than v∗ have singleton labels: V ′ = {v∗}.
Since Gγ is regular, we get that U ′ is an independent set. Thus, from (13):

EFi(g
γ) =

∑
U⊆U ′

ζi(l(U ∪ {v∗})).

Note that |l(v∗)| = n− k + 1 and |l(U ∪ {v∗})| = |U |+ n− k + 1 where k is the number of
nodes in graph Gγ . Therefore:

• If i ∈ l(v∗), then:

EFi(g
γ) =

|U ′|∑
s=0

(
|U ′|
s

)
(s+ n− k)!(k − s− 1)!

n!
=

(n− k)!(k − |U ′| − 1)

(n− |U ′|)!
.

• If i ∈ N \ l(U ′ ∪ {v∗)), then

EFi(g
γ) = −

|U ′|∑
s=0

(
|U ′|
s

)
(s+ n− k + 1)!(k − s− 2)!

n!
=

(n− k + 1)!(k − |U ′| − 2)

(n− |U ′|)!
.
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1v1

2v2

3

v3

. . .

k vk

v∗
l(v∗) = k+1, . . . , k+j+1

G

Figure 6: Graph Gγj from the proof of Theorem 3.

• If i ∈ l(U ′), then:

EFi(g
γ) =

|U ′|∑
s=1

(
|U ′|−1

s− 1

)
(s+ n− k)!(k − s− 1)!

n!

−
|U ′|−1∑
s=0

(
|U ′|−1

s− 1

)
(s+ n− k + 1)!(k − s− 2)!

n!
= 0.

These values can be computed in polynomial time. This concludes the proof.

Theorem 3. For a game represented as weighted MC-nets, computing the EF-value is
#P-hard.

Proof. We use a Turing reduction from the problem of counting all independent sets in a
graph which is #P-complete (Valiant, 1979).

Let G = (V,E) be an arbitrary graph with V = {v1, . . . , vk}. Let Im(G) be the set of
independent sets of size m in graph G. We will determine |Im(G)| for every m ∈ {0, . . . , k}.

To this end, let us construct k+1 player-graphs: for j ∈ {0, . . . , k} we label each node vi
with i and add an isolated node v∗ with label of size j+1. Specifically, we construct a player-
graph Gγj = (V ∪{v∗}, E, l, v∗) with l(vi) = {i} for vi ∈ V and l(v∗) = {k+1, . . . , k+j+1}
(see Figure 6 for an illustration). Based on Lemma 3 we know that there exists a hybrid
rule γj for which this graph is Gγj . Note that in this graph we have V ′ = {v∗} and U ′ = V .
Hence, (13) for i = k + 1 and graph Gγj simplifies to:

EFi(g
γj ) =

k∑
m=0

(m+ j)!(k −m)!

(k + j + 1)!
|Im(G)|.

This system of linear equations is equivalent to the following matrix form:
0!k! 1!(k − 1)! . . . k!0!
1!k! 2!(k − 1)! . . . (k + 1)!0!

...
...

. . .
...

k!k! (k + 1)!(k − 1)! . . . (2k)!0!

 ·

|I0(G)|
|I1(G)|

...
|Ik(G)|

 =


(k + 1)!EFi(g

γ0)
(k + 2)!EFi(g

γ1)
...

(2k + 1)!EFi(g
γk)


From (Bacher, 2002, Theorem 1.1), we know that the determinant of matrix A = ((a +
b)!)0≤a,b≤k equals

∏k
a=0(a!)2; hence, the determinant of the above square matrix is

∏k
a=0(a!)3
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(columns of A are multiplied by k!, . . . , 0!). Since the determinant is non-zero, the matrix
is invertible and knowing EFi(g

γ0), . . . , EFi(g
γk) allows us to find I0(G), . . . , Ik(G) in poly-

nomial time using Gaussian elimination. Hence, computing the EF-value is #P-hard.

5.3 Computing the HY-Value

The HY-value is the first value considered by us with non-zero weights of every embedded
coalition. Here, value g(S, P ) is multiplied by ζi(S) · ψ(S, P ), where ψ(S, P ) = |{P ′ ∈ P :
{T \ S : T ∈ P ′} = P \ {S}}|. To put it in words, ψ(S, P ) is the number of partitions that
can be obtained from P \ {S} by inserting players from S.

Let us express values ψ(S, P ) using a notion of generalized Bell numbers. The n-th Bell
number, denoted by Bn, is the number of all possible partitions of n elements. Now, r-Bell
numbers are a generalization of Bell numbers: Bn,r is the number of partitions of n + r
elements such that the first r elements are in distinct subsets (Mezo, 2011). In particular,
B1,2 = 3: we have {{1, 3}, {2}}, {{1}, {2, 3}}, {{1}, {2}, {3}}.

Now, observe that ψ(S, P ) = B|S|,|P |−1. Thus, (4) and (8) yields:

HYi(g
γ) =

1

Bn

∑
f∈Ck(Gγ)

ζi(S
∗
f )

#f
·B|S∗f |,|Pf |−1. (14)

Thus, for a fixed player i and the size of S∗f , the weight of a coloring depends solely on the
number of colors it uses.

We will prove that computing this sum is #P-hard. To this end, we first identify the
determinant of matrix of generalized Bell numbers.

Lemma 6. The determinant of matrix B = (Bj,m)1≤j,m≤k equals (
∏k
i=0 i!) · (

∑k
i=0 1/i!).

Proof. Matrix B looks as follows:

B =


B1,1 B1,2 . . . B1,k

B2,1 B2,2 . . . B2,k
...

...
. . .

...
Bk,1 Bk,2 . . . Bk,k


Let S(n, k) be the Stirling number of the second kind, i.e., the number of partitions of n
elements into k subsets (e.g., S(4, 2) = 7). Consider matrix:

C =


S(1, 1) S(2, 1) S(3, 1) . . . S(k, 1)

0 S(2, 2) S(3, 2) . . . S(k, 2)
0 0 S(3, 3) . . . S(k, 3)
...

...
...

. . .
...

0 0 0 . . . S(k, k)


Since S(i, i) = 1 for every i ∈ N, matrix C is triangular with diagonal 1, so det(C) = 1.
Consider the product A = B · C. Multiplying by C is equivalent to adding to column j
columns 1, 2, . . . , j − 1 with weights S(j, 1), S(j, 2), . . . , S(j, j − 1). Hence, we get that:

A[i, j] = Bi,1 · S(j, 1) + · · ·+Bi,j · S(j, j).
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Let us argue that A[i, j] = Bi+j . Take j first elements from i + j and consider all their
possible partitions. There are S(j,m) partitions of j elements into m subsets which implies
there are S(j,m)Bi,m partitions of i+ j elements in which first j elements form m subsets.
Summing over all m ∈ {1, . . . , j} we get all Bi+j partitions of i + j elements, each exactly
once.

As a result, we get that A = B · C = (Bi+j)1≤i,j≤k. Now, from (Aigner, 1999, Remark

2) we get that the determinant of matrix (Bi+j)1≤i,j≤k is (
∑k

i=0 k!/(k− i)!) ·(
∏k−1
i=0 i!) which

is equivalent to (
∏k
i=0 i!) · (

∑k
i=0 1/i!). Hence, it is also the determinant of matrix B.

We are now ready to state the main theorem.

Theorem 4. For a game represented as embedded MC-nets or weighted MC-nets, computing
the HY-value is #P-hard.

Proof. We use a Turing reduction from the chromatic polynomial problem, i.e., counting
m-colorings in a graph, which is #P-complete (Jaeger, Vertigan, & Welsh, 1990).

Let G = (V,E) be an arbitrary graph with V = {v1, . . . , vk} and m be an arbitrary
number. The task is to determine |Cm(G)|. Let ci be the number of k-colorings that use
exactly i colors. We will determine ci for every i ∈ {1, . . . , k}. From these values it is easy
to compute the number of m-colorings with the following formula:

|Cm(G)| =
k∑
i=1

(
m
i

)(
k
i

) ci =

k∑
i=1

m(m− 1) · · · (m− i+ 1)

k(k − 1) · · · (k − i+ 1)
· ci.

The argument is as follows: Consider an i-coloring f that uses i-colors: {1, . . . , i}. Now,
every k-coloring that uses exactly i colors corresponds to one of these colorings. Specifically,
there are

(
k
i

)
k-colorings that preserves the same partition of nodes and order of colors, i.e.,

g : V → {1, . . . , k} such that g(vi) ≤ g(vj) if and only if f(vi) ≤ f(vj). Analogically, there
are

(
m
i

)
such m-colorings. Hence, if we have the number of k-colorings that use i colors to

obtain the number of m-colorings that use i colors we need to divide by
(
k
i

)
and multiply

by
(
m
i

)
.

Let us construct k graphs: for j ∈ {1, . . . , k} we label each node vi with i and add
node v∗ connected to all nodes from V with label of size j. Specifically, we construct a
player-graph Gγj = (V ∪ {v∗}, E ∪ {{vi, v∗} : vi ∈ V }, l, v∗) with l(vi) = {i} for vi ∈ V and
l(v∗) = {k + 1, . . . , k + j}. Since node v∗ is connected to all other nodes we know that Gγj

is regular, i.e., there exists a regular hybrid rule γj equivalent to some embedded MC-nets
rule such that Gγj is the corresponding graph.

Let us analyze the HY-value of player i = k + 1 in game gγj . We have k + 1 nodes in
graph Gγj , n = k + j and |S∗f | = j for every coloring f . Hence, (14) yields:

HYi(g
γj ) =

(j − 1)!k!

(k + j)!Bk+j

∑
f∈Ck+1(Gγ)

Bj,|Pf |−1

#f

=
(j − 1)!k!

(k + j)!Bk+j

k∑
m=1

∑
f∈Ck+1(Gγ):|Pf |=m+1

(k −m)!

(k + 1)!
Bj,m
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Figure 7: Graph Gγj from the proof of Theorem 4.

Here, we used the fact that if (k+1)-coloring f uses m+1 colors, then #f = (k+1)!/(k−m)!.
The number of (k+ 1)-colorings of graph Gγj that use m+ 1 colors is equal to (k+ 1) (color
of node v∗) times the number of k-colorings of graph G that use m colors:

|{f ∈ Ck+1(Gγ) : |Pf | = m+ 1}| = (k + 1) · cm.

Hence, we get:

HYi(g
γ) =

(j − 1)!

(k + j)!Bk+j

k∑
m=1

(k −m)! ·Bj,m · cm.

This system of linear equations can be presented in the matrix form as follows:
(k − 1)!B1,1 (k − 2)!B1,2 . . . 0!B1,k

(k − 1)!B2,1 (k − 2)!B2,2 . . . 0!B2,k
...

...
. . .

...
(k − 1)!Bk,1 (k − 2)!Bk,2 . . . 0!Bk,k

 ·

c1

c2
...
ck

 =


(k+1)!

0! Bk+1HYi(g
γ1)

(k+2)!
1! Bk+2HYi(g

γ2)
...

(2k)!
(k−1)!B2kHYi(g

γk)


From Lemma 6 we get that the determinant of the square matrix equals (

∏k
i=0 i!)·(

∑k
i=0 1/i!)

multiplied by (
∏k−1
i=0 i!). Since the determinant is non-zero, the matrix is invertible and

knowing HYi(g
γ1), . . . ,HYi(g

γk) allows us to find c1, . . . , ck in polynomial time using Gaus-
sian elimination. This concludes the proof.

5.4 Computing the SS-Value

The SS-value, considered next, is probably the most popular extended Shapley value. Com-
bining (5) and (8) gives:

SSi(g
γ) =

∑
f∈Ck(Gγ)

ζi(S
∗
f )

#f
·

∏
T∈Pf\{S∗f}

(|T | − 1)!

(n− |S∗f |)!
.

In what follows, let us focus on graphs in which every node is labeled with a single
player: |l(v)| = 1 for every v ∈ V . In such a case, we have n = k = |V | and |l(T )| = |T |.
Under this assumption, formula for the SS-value of player i ∈ l(v∗) is as follows:

SSi(g
γ) =

1

n!

∑
f∈Ck(Gγ)

∏
T∈Pf (|T | − 1)!

#f
. (15)
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Figure 8: Graph Gγ (on the left) and Gγ (on the right) from the proof of Theorem 5. The
matching highlighted on graph Gγ corresponds to the coloring from graph Gγ .

As we already mentioned, for a fixed partition P ∈ P, value
∏
T∈P (|T | − 1)! is the number

of permutations in which P is the partition obtained from a cycle decomposition (for a per-
mutation h : N → N such partition is defined as follows: {{i, h(i), h(h(i)), . . . } : i ∈ N}).
Hence, according to (15), the SS-value of player i is equal to the probability that the par-
tition obtained from a cycle decomposition of a random permutation of nodes corresponds
to a (proper vertex) coloring in graph Gγ .

Let us consider a complement of graph Gγ = (V,E):

Gγ = (V, {{u, v} : u, v ∈ V, u 6= v} \ E).

For every coloring f ∈ Ck(Gγ), sets of nodes in V Pf are independent sets in Gγ . Hence,
they are cliques in Gγ . As a consequence, we get that SSi(g

γ) from (15) is equivalently a
weighted sum over clique covers (i.e., partitions of the nodes in a graph into cliques):

SSi(g
γ) =

1

n!

∑
P∈QC(Gγ)

∏
T∈P

(|T | − 1)!, (16)

where QC(G) is the set of all clique covers in graph G. In the following theorem we prove
that computing this sum is #P-hard.

Theorem 5. For a game represented as embedded MC-nets or weighted MC-nets, computing
the SS-value is #P-hard.

Proof. We use a reduction from the problem of counting all matching in a bipartite graph
which is #P-complete (Valiant, 1979).

Let G = (V,E) be an arbitrary bipartite graph with V = {v1, . . . , vk−1} for notational
convenience. Let hG be the number of all matchings in G (called Hosoya index). Our goal
is to determine hG.

To this end, let us construct a graph Gγ = (V ∪{v∗}, E) with l(vi) = {i} for vi ∈ V and
l(v∗) = {k}. See Figure 8 for an illustration. Consider a complement of graph Gγ , denoted
by Gγ . Since node v∗ does not have any edges in Gγ , then it is connected to all nodes
in Gγ ; hence, Gγ is regular and there exists a hybrid rule γ equivalent to some embedded
MC-nets rule such that Gγ is the corresponding graph.
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Now, consider SSi(g
γ) for i = k. From (16) we know that SSi(g

γ) is a weighted sum
over clique covers of Gγ , i.e., partitions of nodes of Gγ into cliques. However, since the graph
is bipartite, there is no clique with more than 2 nodes. Hence, for every such a partition,
P , we have

∏
T∈P (|T | − 1)! = 1. Thus, from (16) we get:

SSi(g
γ) =

1

k!
|QC(Gγ)| = 1

k!
|QC(G)| = 1

k!
hG.

where the last equality comes from the fact that in a bipartite graph every partition of
nodes into cliques corresponds to exactly one matching. This concludes the proof.

5.5 Computing the MY-Value

The last value that we consider is the MY-value which is the first chronologically proposed
extension of the Shapley value. Combining (6) and (8) gives:

MYi(g
γ) =

∑
f∈Ck(Gγ)

(−1)|Pf |(|Pf |−2)!

#f
hi(f), with hi(f) =

1−|Pf |
n

+
∑

T∈Pf\{S∗f}
i 6∈T

1

(n−|T |)
.

We note that both techniques used for the HY-value and the SS-value do not work in this
case.

To cope with this problem, we will exploit the fact that weights of the MY-value have a
form of a sum over all coalitions. Specifically, we will consider a difference between the MY-
value of two players. Let us denote this difference for players i and i′ in game g byMY∆i′

i (g).
Now, for i ∈ S∗f and i′ ∈ T for some T ∈ Pf \ {S∗f} we get hi(f)− hi′(f) = 1/(n− |T |) and

MY∆i′
i (gγ) = MYi(g

γ)−MYi′(g
γ) =

∑
f∈Ck(Gγ)

(−1)|Pf |(|Pf | − 2)!

#f · (n− |T |)
. (17)

For a fixed coloring f , the weight of a coloring depends on |Pf | and T , i.e., coalition in Pf
that contains i′. However, if i′ is in a label of a node adjacent to all other nodes, then the
weight depends solely on the number of colors f uses. In such a case, we can use a technique
described at the beginning of this section (see (10)).

Theorem 6. For a game represented as embedded MC-nets or weighted MC-nets, computing
the MY-value is #P-hard.

Proof. Again, we use a Turing reduction from the problem of counting all matching in a
bipartite graph which is #P-complete (Valiant, 1979).

With the same reasoning as in the SS-value, instead of considering colorings in graph
Gγ we will focus on partitions of a graph into cliques in the complement graph Gγ . Then,
(17) can be rewritten as follows:

MY∆i′
i (gγ) =

∑
P∈QC(Gγ)

(−1)|P |(|P | − 2)!

(n− |T |)
. (18)
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Figure 9: Graph Gγ from the proof of Theorem 6.

Let G = (V,E) be an arbitrary bipartite graph with V = {v1, . . . , vk}. Let hmG be the
number of all matchings in G of size k −m; note that in such a case m is the number of
pairs plus the number of unmatched nodes. We will determine hmG for every m ∈ {1, . . . , k}.
The sum

∑k
m=1 h

m
G is the number of all matchings in G.

To this end, let us construct k player-graphs: for j ∈ {1, . . . , k} we add j+ 1 new nodes
U = {vk+1, . . . , vk+j+1}, label each node vi with i and add yet another node v∗ with label
of size 2k − j. Specifically, we construct a player-graph Gγj = (V ∪ U ∪ {v∗}, E, l, v∗) with
l(vi) = i for every vi ∈ V ∪ U and l(v∗) = {k + j + 2, . . . , 3k + 1}. Consider a complement
of graph Gγj , denoted by Gγj . Since node v∗ does not have any edges in Gγj , then it is
adjacent to all nodes in Gγj ; hence, Gγj is a regular player-graph, i.e., there exists a regular
hybrid rule γj equivalent to some embedded MC-nets rule such that Gγj is the corresponding
graph.

Now, consider MY∆i′
i (gγj ) for i = k+ j + 2 and i′ = k+ j + 1. Since node vk+j+1 that

contains i′ does not have any edges, we have |T | = |l(vk+j+1)| = 1. From (18) for game gγj

we get that:

MY∆i′
i (gγj ) =

k∑
m=1

(−1)m+j+2(m+ j)!

3k
· hmG =

1

3k

k∑
m=1

(−1)m+j(m+ j)! · hmG .

This system of linear equations can be presented in the matrix form as follows:
2! −3! . . . ±(k + 1)!
−3! 4! . . . ∓(k + 2)!

...
...

. . .
...

±(k + 1)! ∓(k + 2)! . . . (2k)!

 ·

h1
G

h2
G
...
hkG

 =


3k ·MY∆i′

i (gγ1)

3k ·MY∆i′
i (gγ1)

...

3k ·MY∆i′
i (gγ1)


Note that by multiplying even rows and then even columns by (−1) we can transform the
square matrix into matrix A = ((i + j)!)1≤i,j≤k. Moreover, since there are as many even
rows as even columns, the determinant of the original matrix is the same as the determinant
of A. Now, from (Bacher, 2002, Theorem 1.1), we know that the determinant of A equals∏k−1
i=0 (i!)(i+ 2)!; hence, the determinant of the original matrix is the same. Since the deter-

minant is non-zero, the matrix is invertible and knowing MY∆i′
i (gγ1), . . . ,MY∆i′

i (gγk) (i.e.,
MYi(g

γ1),MYi′(g
γ1), . . . ,MYi(g

γk),MYi′(g
γk)) allows us to find h1

G, . . . , h
k
G in polynomial

time using Gaussian elimination.
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6. Conclusions

In this paper, we studied the complexity of computing extended Shapley values in games
represented as embedded and weighted MC-nets. Our results show that for both represen-
tations only simplest extended Shapley values, the MQ-value and the EF-value, that ignore
values of most embedded coalitions can be computed in polynomial time (unless P=NP).
Specifically, out of five extensions, only the MQ-value and the EF-value can be computed in
polynomial time for embedded MC-nets and only the MQ-value for weighted MC-nets. This
shows that weighted MC-nets have slightly worse computation properties when it comes to
computing the Shapley value. Also, combined with the work by Skibski et al. (2020), we get
that computational properties of partition decision trees are significantly better than both
MC-nets representations, as they allow the polynomial-time computation of five extended
Shapley values. This, however, comes at the cost of conciseness, as partition decision trees
are exponentially less concise than both embedded and weighted MC-nets (Skibski et al.,
2020).

One of the immediate conclusions of our analysis is the fact that weighted MC-nets
are exponentially more concise than embedded MC-nets (unless P=NP): We constructed
a polynomial size translation from embedded MC-nets to weighted MC-nets (Lemma 2)
and proved that the EF-value can be computed in polynomial time for embedded MC-nets
(Theorem 2). Assume that there exists a polynomial size translation from weighted MC-
nets to embedded MC-nets. This would imply that the EF-value for weighted MC-nets
can be computed in polynomial time (by first translating weighted MC-nets to embedded
MC-nets and then computing it in polynomial time) which contradicts the #P-hardness
result from Theorem 3.

There are several possible directions for further research. It would be natural to study
core-related questions for all three representations. However, as in the case of the Shap-
ley value, there are multiple ways to extend the core to games with externalities which
significantly increases the complexity of this task (Kóczy, 2018).

Another interesting idea would be to analyze hybrid rules and corresponding player-
graphs not as a representation, but as a graph-restriction scheme for games with exter-
nalities (Myerson, 1977a). In this way, considered extensions of the Shapley value can be
interpreted as the extensions of the Myerson value for the analyzed setting. Last but not
least, a combination of games with externalities and graphs can result in new concepts of
game-theoretic network centralities. Our work can constitute a guideline which extensions
should be used in order to obtain tractable measure.
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Appendix A. Summary of Notation

N The set of n players {1, . . . , n}
S, T, . . . A coalition, i.e., a subset of N

P A partition of players
(S, P ) An embedded coalition, i.e., partition P and S ∈ P
EC The set of all embedded coalitions of N
g A coalitional game with externalities, i.e., function EC → R
ĝ A coalitional game without externalities, i.e., function 2N → R

s.t. ĝ(∅) = 0
SVi(ĝ) The Shapley value of player i in game without externalities ĝ
ϕi(g) A value of player i in game g
ζi(S) A weight of coalition S in the SVi(ĝ) formula

ωi(S, P ) A weight of embedded coalition (S, P ) in extended Shapley
values (see (1))

MQi(g) McQuillin value (MQ-value) (see (2))
EFi(g) externality-free value (EF-value) (see (3))
HYi(g) Hu and Yang value (HY-value) (see (4))
SSi(g) Stochastic Shapley value (SS-value) (see (5))
MYi(g) Myerson value (MY-value) (see (6))

γ A rule in a representation
Γ A set of rules in a representation

gγ/gΓ The game represented as a rule γ/set of rules Γ
αi, βi Boolean expression over N of the form (7)

⊕(α),	(α) Sets of positive and negative literals from α
α ∼ β Expressions α and β are compatible

(α→ c) A (standard) MC-nets rule, where c is its weight (c ∈ R)
(α1|α2, . . . , αk)→ c An embedded MC-nets rule
G = (V,E, l, v∗) A player-graph, i.e., graph (V,E) with l : V → 2N and v∗ ∈ V

N (v) Neighbors of node v, i.e., nodes adjacent to v
f A (proper vertex) coloring, i.e., f : V → {1, . . . , k} for some k

V Pf The partition of nodes resulting from coloring f
V S∗f The set in V Pf that contains highlighted node v∗

Pf The partition of players imposed by the partition of nodes V Pf
S∗f The set in Pf that corresponds to V S∗f
#f The number of k-colorings that result in the partition V Pf

Ck(G) The set of all k-colorings of a graph G
[φ] Iverson brackets – 1 if statement φ is true, and 0 otherwise
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