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Abstract

Conditional Independence (CI) graphs are a type of Probabilistic Graphical Models
that are primarily used to gain insights about feature relationships. Each edge represents
the partial correlation between the connected features which gives information about their
direct dependence. In this survey, we list different methods and study the advances in tech-
niques developed to recover CI graphs. We cover traditional optimization methods as well
as recently developed deep learning architectures along with their recommended implemen-
tations. To facilitate wider adoption, we include preliminaries that consolidate associated
operations, for example techniques to obtain covariance matrix for mixed datatypes.

1. Introduction

Let’s assume we have a domain of interest with a set of variables or features {X1, · · · , XD}.
The domain is governed by an unknown distribution P , which generates a dataset X with
M samples and D features. We would like to learn an approximation to P . For all but
the smallest D, fully representing the distribution P is infeasible. Computationally, such
representation would be too large to fit in memory and too expensive to manipulate. Cog-
nitively, it would be impossible to contemplate as many combinations of variable values
would correspond to extremely unlikely events. Moreover, we would need huge datasets
to estimate P accurately. All these problems can be (at least partially) resolved using the
concept of probabilistic conditional independence.

To understand the concept of conditional independence, let’s examine the difference
between a pair of features Xi and Xj that are correlated and a pair of features that are di-
rectly correlated. Consider a universe with only three variables represented as an undirected
graph Gex = [study]—[grades]—[graduation], where we assume that each edge represents a
positive correlation. We can see that if a student studies, then they will get good grades,
which in turn increases their chances of graduation. We can thus conclude that study is cor-
related to graduation. But, if we know a student’s grades, regardless of whether the student
has studied, we can make conclusions about the chances of graduation. Thus, studying is
not directly correlated to the graduation, whereas grades and graduation are directly corre-
lated. Note that in the graph Gex there is no edge between the variable representing study
and the variable representing graduation. Assuming that the size of the parametrization
of P is proportional to the number of edges in the graph, we have achieved considerable
computational and cognitive gains. Taking clue from this toy example, we can envision that
such analysis can be very useful to obtain valuable insights from the input data as well as
leverage the natural interpretability provided by the graph representation.
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Formally, we define the Conditional Independence (CI) graph of a set of random vari-
ables X ′

is to be the undirected graph G = (D,E) where D = {1, 2, . . . , d} are nodes and
(i, j) is not in the edge set if and only if Xi ⊥⊥ Xj |XD\i,j , where XD\i,j denotes the collection
of all of the random variables except for Xi and Xj . We assume that the set of conditional
independence properties encoded in the graph reflects independence properties of the dis-
tribution used to generate input data. More formally, let’s define I(P ) to be the set of
independence assertions of the form (Xi ⊥⊥ Xj |Xk) that hold in the data generating distri-
bution P . If P satisfies all independence assertions encoded by G, that is, I(G) ⊆ I(P ), we
say that G is an I-map (independence map) of P . Since the complete graph is an I-map for
any distribution, we are typically interested in a minimal I-map, that is, an I-map graph
such that a removal of a single edge will render it not an I-map. If I(G) = I(P ), the
graph G is a perfect map of P . However, it is important to keep in mind that not every
distribution has a perfect map.

The second defining property of the Conditional Independence graph is that it is param-
eterized by edge weights that represent partial correlations between the features. In that
case the edge weights will range between ew ∼ (−1, 1). In the rest of the paper, we will use
the term Conditional Independence graphs to denote graphs that are minimal I-maps of the
underlying distribution and use such a parameterization.

CI graphs are primarily used to gain insights about feature relationships to help with
decision making. In some cases, they are also used to study the evolving feature relationships
with time. The focus of this paper is to review different methods and recent techniques
developed to recover CI graphs. We will start by giving a brief overview of algorithms that
recover different types of graphs.

1.1 Graph Recovery Approaches

The field of graph recovery approaches has grown considerably in recent years. Fig. 1 at-
tempts to list popular formulations of graph representations and representative algorithms
to recover the same. The algorithms that recover Conditional Independence graphs param-
eterized to represent partial correlations are the focus of this survey and are discussed in
Sec. 2. For the sake of better understanding of this space, we will briefly describe approaches
that recover graphs, edges of which not necessarily represent partial correlations between
nodes.

Regression Based Methods. This line of research follows the idea of fitting a regression
between features of the input data X to find dependencies among them. This approach
is particularly popular for recovering Gene Regulatory Networks (GRN) where the input
gene expression data have D genes and M samples, X ∈ RM×D. Generally, the objec-
tive function used for graph recovery is a variant of the regression between the expression
value of each gene as a function of the other genes (or alternatively transcription factors)
and some random noise Xd = fd

(
XD\d

)
+ ϵ, ∀d ∈ D. Usually, a sparsity constraint is

also associated with the regression function to identify the top influencing genes for ev-
ery gene. Many methods have been developed specifically for GRN recovery with varied
choice of the regression function fd. TIGRESS (Haury, Mordelet, Vera-Licona, & Vert,
2012) modeled fd as linear, GENIE3 (Van Anh Huynh-Thu, Wehenkel, & Geurts, 2010)
took each fg to be a random forest while GRNBoost2 (Moerman, Aibar Santos, Bravo
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Figure 1: Graph recovery approaches. Methods used to recover Conditional Independence
graphs are the focus of this survey. The recovered CI graph shows partial correlations between the
feature nodes. The algorithms (leaf nodes) listed here are representative of the sub-category and
the list is not exhaustive.

Gonzalez-Blas, Simm, Moreau, Aerts, & Aerts, 2019) used gradient boosting technique.
More recently, neural network based representations like GRNUlar (Shrivastava, Zhang,
Aluru, & Song, 2020; Shrivastava, Zhang, Song, & Aluru, 2022) were developed. Recently
proposed Neural Graphical Models (NGMs) (Shrivastava & Chajewska, 2023b), Neural
Graph Revealers (NGRs) (Shrivastava & Chajewska, 2023a; Shrivastava, 2023) used neural
networks as a multitask learning framework to fit regressions and recover graph for generic
input datatypes.

Markov Networks. Markov networks are probabilistic graphical models defined on undi-
rected graphs that follow the Markov properties (Koller & Friedman, 2009). While Markov
networks follow the conditional independence properties (pairwise, local and global), we
made the distinction from the CI graphs based on the interpretation of edge connections.
There are traditional constraint-based and score-based structure learning methods to learn
Markov networks (Koller & Friedman, 2009). However, these methods suffer from combi-
natorial explosion of computation requirements and often simplifying approximations are
made. Recently, (Belilovsky, Kastner, Varoquaux, & Blaschko, 2017) designed a super-
vised deep learning architecture to learn mapping from the samples to a graph, called
DeepGraph. Their model had a considerable number of learning parameters, while the
performance showed limited success. On the other hand, the deep unfolding or unrolled
algorithm methodology for estimating a sparse vector like Iterative Shrinkage Thresholding
Algorithm (ISTA) (Gregor & LeCun, 2010), ALISTA (Liu & Chen, 2019) and others (Sun,
Li, Xu, et al., 2016; Chen, Liu, Wang, & Yin, 2018; Chen, Chen, Chen, Wang, Heaton,
Liu, & Yin, 2022) that were primarily developed for other applications (e.g., compressed
sensing) have been adopted to recover Markov networks. (Pu, Cao, Zhang, Dong, & Chen,
2021) proposed a deep unfolding approach, named L2G, to learn graph topologies. Their
framework can also unroll a primal-dual splitting algorithm (Komodakis & Pesquet, 2015;
Kalofolias, 2016) into a neural network for their model.
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Directed Graphs. This is a very active area of research with lots of new methods being
developed at a rapid pace. Directed Acyclic Graphs, Bayesian networks, structural equation
models are the prominent types of directed graphs of interest. PC-learning algorithm was
one of the first techniques developed to learn Bayesian Networks (Spirtes & Meek, 1995),
followed by a suite of score-based and constraint-based learning algorithms and their par-
allel variants (Heckerman, Geiger, & Chickering, 1995; Koller & Friedman, 2009). (Zheng,
Aragam, Ravikumar, & Xing, 2018) introduced ”DAG with NOTEARS” method which
converted the combinatorial optimization problem of DAG learning to a continuous one.
This led to development of many follow up works including some deep learning methods
like (Yu, Chen, Gao, & Yu, 2019; Zhang, Jiang, Cui, Garnett, & Chen, 2019; Zheng,
Dan, Aragam, Ravikumar, & Xing, 2020; Pamfil, Sriwattanaworachai, Desai, Pilgerstorfer,
Georgatzis, Beaumont, & Aragam, 2020) to name a few. (Heinze-Deml, Maathuis, & Mein-
shausen, 2018) provide a review of the causal structure learning methods and structural
equation models.

In general, CI graphs are preferred choice of learning underlying graphical represen-
tations as they provide a good balance between representation capability (multivariate
Gaussian distribution), fast and scalable methods for recovery, interpretability and easy
probabilistic inference and querying of the resulting graphical model.

2. Recovering Conditional Independence Graphs

We define the scope of Conditional Independence (CI) graphs as undirected probabilistic
graphical models that show partial correlations between features. In early frameworks,
the Conditional Independence graphs were restricted to continuous variables only, which
severely limited their applicability to real-world data. Before we deep dive into the algo-
rithms that recover CI graphs, covered by the green envelope in Fig. 1, we provide a primer
on handling input data with mixed datatypes. Encountering a mix of numerical (real, or-
dinal) and categorical variables in the input is very common. Since many of the CI graph
recovery models take covariance matrix cov(X) ∈ RD×D as input, one way to accommodate
discrete data is to calculate the covariance matrix with the categorical variables included.

2.1 Covariance Matrix for Mixed Datatypes

We describe ways to calculate the covariance matrix for inputs X with M samples and D
features consisting of variables of numerical and categorical types. The value of each entry
of cov(X) ∈ RD×D depends on the type of interacting features, say Xi, Xj , and will be one
of the following:

(I) numerical-numerical correlation. The obvious choice is the Pearson correlation co-

efficient, with range between [−1, 1], defined as ρXi,Xj =
E
[
(Xi−µXi

)(Xj−µXj
)
]

σXi
σXj

, where σXi

denotes standard deviation and µXi is the mean of the feature Xi and similarly for Xj .
The Pearson correlation assumes that the variables are linearly related and can be quite
sensitive to outliers. To capture non-linear relationships, ordinal association (or rank cor-
relation) based metrics like Spearman’s correlation coefficient, Kendall’s τ (tau), Goodman
and Kruskal’s gamma or Somers’ D can be leveraged.
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(II) categorical-categorical association. The most common measure of association be-
tween two categorical variables is Cramér’s V statistic along with the bias correction. The
association value is in the range of [0, 1], where 0 means no association and 1 is full associa-
tion between categorical features. Consider two categorical features C1 and C2 with sample
size M and have i = {1, · · · , p}, j = {1, · · · , q} be the possible categories for C1 and C2,
respectively. Let mij denote the number of times the values (C1

i , C
2
j ) occur. The Cramér’s

V statistic is defined as V =
√

χ2/m
min (p−1,q−1) , where χ

2 =
∑

ij

(
mij−

mi∗m∗j
m

)2

mi∗m∗j
m

is the chi-square

statistic, mi∗ =
∑

j mij and m∗j =
∑

imij . It has been observed that Cramér’s V statistic
tends to overestimate the association strength. To address this issue, a bias correction mod-

ification was introduced as Ṽ =
√

φ̃2

min (p̃−1,q̃−1) , where φ̃2 = max
(
0, χ2/m− (p−1)(q−1)

(m−1)

)
,

p̃ = p− (p−1)2

(m−1) and q̃ = q − (q−1)2

(m−1) . Some more interesting approaches using Gini index and

word2vec representation are discussed in (Niitsuma & Lee, 2016) and can also be utilized.
(III) categorical-numerical correlation. There are multiple options available like the

correlation ratio (range is [0, 1]) , point biserial correlation (range is [−1, 1]) , Kruskal-Wallis
test by ranks (or H test). Each of these methods have their advantages and drawbacks that
should be considered while selecting the metric. Yet another way can be to bin the numerical
variable and convert it to a categorical variable. Then Cramér’s V can be used to calculate
the correlation.

Refer to (Sheskin, 2003) for details about the aforementioned statistical techniques.

2.2 Methods

Recovery of Conditional Independence graphs is a topic of wide research interest. There
are two popular formulations to recover CI graphs: the first one directly determines partial
correlation values, the second derives them by utilizing matrix inversion approaches. Based
on the formulation chosen, many optimization algorithms have been developed with each
having their own capabilities and limitations.

2.2.1 Direct Calculation of Partial Correlation Values

The definition of the partial correlation between two features Xi and Xj given a set of D−2
controlling variables XD\i,j , written ρXi,Xj .XD\i,j , is the correlation between the residuals
eXi and eXj after fitting a linear regression of Xi with XD\i,j and of Xj with XD\i,j ,
respectively. Poplular approaches used to obtain the partial correlation values directly are
discussed below.

Linear Regression. The regressions for the partial correlation calculations are formulated
using linear functions. Let vectors {wi,wj} ∈ RD−1 and XD\i,j denote the vector of the
other features augmented by 1 to account for bias. Then the regression over the M samples
will be

wk = argmin
w

M∑
m=1

Xm
k − ⟨w,Xm

D\i,j⟩, where k={i, j}. (1)

We then calculate the residuals for each individual sample as emXk
= Xm

k −⟨w,Xm
D\i,j⟩ where

k={i, j}. The partial correlation between Xi, Xj , which is the {i, j} entry of the matrix
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P ∈ RD×D is calculated as the correlation between the residuals,

ρXi,Xj .XD\i,j =
M

∑M
m=1 e

m
Xi
emXj√

M
∑M

m=1(e
m
Xi
)2
√

M
∑M

m=1(e
m
Xj

)2
(2)

Recursive Formulation. The linear formulation is computationally expensive, which is
its major drawback. The recursive formulation uses dynamic programming based algorithm
to recursively calculate the following partial correlation expression, for any Xk ∈ XD\i,j ,

ρXi,Xj .XD\i,j =
ρXi,Xj .XD\i,j,k − ρXi,Xk

.XD\i,j,k × ρXk,Xj .XD\i,j,k√
1− ρ2Xi,Xk

.XD\i,j,k

√
1− ρ2Xk,Xj

.XD\i,j,k

(3)

Refer to (Baba, Shibata, & Sibuya, 2004) for a thorough treatment about partial correlations
as measures of conditional independence between variables.

2.2.2 Graphical Lasso & Variants

Given M observations of a D-dimensional multivariate Gaussian random variable X =
[X1, . . . , XD]

⊤, the sparse graph recovery problem aims to estimate its covariance matrix
Σ∗ and precision matrix Θ∗ = (Σ∗)−1. The ij-th component of Θ∗ is zero if and only if Xi

and Xj are conditionally independent given the other variables {Xk}k ̸=i,j . The general form
of the graphical lasso optimization to estimate Θ∗ is the minimization of the log-likelihood
of a multivariate Gaussian with regularization as

Θ̂ = argminΘ∈SD
++

− log(detΘ) + tr(Σ̂Θ) + Reg(Θoff), (4)

where Σ̂ is the empirical covariance matrix based on M samples, SD
++ is the space of

D×D symmetric positive definite matrices and Reg(Θoff) is the regularization term for the
off-diagonal elements. Once the precision matrix is obtained, the corresponding partial cor-

relation matrix entries can be calculated as ρXi,Xj .XD\i,j = − Θ̂i,j√
Θ̂i,iΘ̂j,j

. Several algorithms

have been developed to optimize the sparse precision matrix estimation problem in Eq. 4
which primarily differ in the choice of regularization and optimization procedure.

Block Coordinate Descent (BCD). (Banerjee, Ghaoui, & d’Aspremont, 2008) formu-
lated the graphical lasso problem of approximating precision matrix as the ℓ1-regularized
maximum likelihood estimation

Θ̂ = argminΘ∈SD
++

− log(detΘ) + tr(Σ̂Θ) + λ ∥Θ∥1,off , (5)

where ∥Θ∥1,off =
∑

i ̸=j |Θij | is the off-diagonal ℓ1 regularizer with regularization parameter
λ. Block-coordinate descent methods, for example (Friedman, Hastie, & Tibshirani, 2008),
update each row (and the corresponding column) of the precision matrix iteratively by solv-
ing a sequence of lasso problems. A variant of this algorithm is the popular GraphicalLasso
function implementation of python’s scikit-learn package (Pedregosa, Varoquaux, Gramfort,
Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cour-
napeau, Brucher, Perrot, & Duchesnay, 2011). It is very efficient for large scale problems
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involving thousands of variables. This estimator is sensible even for non-Gaussian input
data, since it is minimizing an ℓ1-penalized log-determinant Bregman divergence (Raviku-
mar, Wainwright, Raskutti, & Yu, 2011). Different variants of solvers have been proposed
to handle large scale data, some of the prominent ones being BigQUIC, QUIC, SQUIC by
(Hsieh, Sustik, Dhillon, Ravikumar, & Poldrack, 2013; Hsieh, Sustik, Dhillon, Ravikumar,
et al., 2014; Bollhofer, Eftekhari, Scheidegger, & Schenk, 2019) respectively, can handle up
to 1 million random variables.

G-ISTA. The Graphical Iterative Shrinkage Thresholding Algorithm was proposed by
(Rolfs, Rajaratnam, Guillot, Wong, & Maleki, 2012). This method uses proximal gradient
descent based approach to perform ℓ1-regularized inverse covariance matrix estimation spec-
ified in Eq. 5. The basic idea is to separate the continuously differentiable, convex function
(first two terms of Eq. 5) and the regularization term which is convex but not necessarily
smooth. Then the standard updates of general iterative shrinkage thresholding algorithm
(ISTA) (Beck & Teboulle, 2009) can be applied. The G-ISTA algorithm comes with nice
theoretical and stability properties. Similarly, Alternating Direction Method of Multipliers
(ADMM) (Boyd, Parikh, Chu, Peleato, Eckstein, et al., 2011) can be used to optimize the
ℓ1 regularized objective.

Graphical Non-Convex Optimization. (Sun, Tan, Liu, & Zhang, 2018) proposed graph-
ical non-convex optimization for optimal estimation in Gaussian graphical models. They
consider the optimization objective of Eq. 4 with the Reg(Θoff) =

∑
i ̸=j λ(Θi,j), where

λ(·) is a non-convex penalty. This non-convex optimization is then approximated by a
sequence of adaptive convex programs. The experiments demonstrate improvements over
previous methods and thus advocate for development of methods that account for non-
convex penalties. They note that their algorithm is an adaptive version of the SPICE
algorithm by (Rothman, Bickel, Levina, Zhu, et al., 2008). Another recent work by (Zhang,
Fattahi, & Sojoudi, 2018) builds up on prior work that shows that the graphical lasso es-
timator can be retrieved by soft-thresholding the sample covariance matrix and solving a
maximum determinant matrix completion (MDMC) problem. They proposed a Newton-
CG algorithm to efficiently solve the MDMC problem. The authors claim it to be highly
efficient for large scale data. We note that there are many works which model sparsity
constraints differently or provide surrogate objective functions. We list a few prominent
ones here to help the readers get an overview (Loh & Wainwright, 2011; Yang, Lozano,
& Ravikumar, 2014; Sojoudi, 2016; Zhang et al., 2018). A collection of methods, GGMncv,
for Gaussian Graphical models with non-convex regularization can be found in (Williams,
2020).

GLAD. (Shrivastava et al., 2020; Shrivastava, 2020) proposed a supervised deep learning
based model, presented in Fig. 2, to recover sparse graphs based on the graphical lasso
objective. They built up on the theoretically proven advantages of having non-convex
penalty in the graphical lasso objective. They also proved that it is beneficial to have
adaptive sequence of penalty hyperparameters for the regularization term as it leads to
faster convergence. Specifically, they applied the Alternating Minimization (AM) algorithm
to the objective in Eq. 5 and unrolled the AM algorithm to certain number of iterations, also
known as ‘deep unfolding’ technique. Then, the hyperparamters were parameterized using
small neural networks for doing operations like entry-wise thresholding of the precision
matrix. Their deep model GLAD has significantly fewer number of learnable parameters
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along with being fully interpretable as one can inspect the recovered graph at any point of
optimization. GLAD was successful in avoiding any post-processing requirements to maintain
the symmetric and SPD properties of the recovered precision matrix. The training of
GLAD model was done using supervision and the hope was that the model can generalize
over that underlying distribution of graphs. They were first to demonstrate that learning
can help improve sample complexity.

Samples

Λ��

Norm

ZkΣˆ Θ�

Θ�+1

���

Closed
Form

Zk+1 Θ�+1

Thresholding

Σˆ

Graphs

Figure 2: The
recurrent unit
GLADcell. (Taken
from (Shrivastava
et al., 2020))

uGLAD. Proposed by (Shrivastava, Chajewska, Abraham, & Chen,
2022a, 2022b), uGLAD is an unsupervised deep model that circum-
vents the need of supervision which was the key bottleneck of the
GLAD model. They changed the optimization problem by introducing
the glasso loss function and incorporating the regularization in the
deep model architecture (defined by GLAD) itself which is implictly
learned during optimization. The input of uGLAD is the empirical
covariance matrix; it requires no ground-truth information to opti-
mize. It can also perform multitask learning by optimizing multiple
CI graphs at once. Some other prominent methods that recover
multiple graphs include JGL (Danaher, Wang, & Witten, 2014) and
FASJEM (Wang, Gao, & Qi, 2017). Furthermore, uGLAD leverages this
ability to handle missing data by introducing a consensus strategy
and thus have more robust performance. A different approach to han-
dle missing data have been previously explored in MissGLasso (Stadler
& Buhlmann, 2012), (Loh &Wainwright, 2011) among other methods.

Tensor Graphical Lasso. (Greenewald, Zhou, & Hero III, 2019)
proposed TeraLasso that extends the graphical lasso problem to
higher-order tensors. They introduced a multiway tensor generaliza-
tion of the bi-graphical lasso which uses a two-way sparse Kronecker
sum multivariate normal model for the precision matrix to model parsi-
moniously conditional dependence relationships of matrix variate data
based on the Cartesian product of graphs. The Sylvester Graphical
Lasso or SyGlasso model by (Wang, Jang, & Hero, 2020) comple-
ments TeraLasso by providing an alternative Kronecker sum model
that is generative and interpretable. These approaches are typically
very helpful in modeling spatio-temporal data.

2.3 Properties of Recovery Algorithms

While describing individual algorithms, we touched upon some of the desirable properties
that such methods should have. Let’s look at some of them in detail.

Recovering multiple CI graphs at once. Most of the work in learning CI graphs has
focused on estimating a single model. In recent years, however, the framework was extended
to jointly fitting a collection of such models based on data that share the same variables,
with dependency structure varying with some external category. For example, when fitting
a model for data obtained from anaerobic digesters, we may want to learn separate models
for digesters operating at different temperatures. Some of the feature relationships will turn
out to be independent of the temperature setting and stay the same between the graphs, but
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Methods Implementation MG LS MI TS Paper
BCD Scikit-learn package (Pedregosa et al., 2011)

QUIC,BigQUIC Software link (Hsieh et al., 2013, 2014)

ADMM https://github.com/tpetaja1/tvgl (Hallac, Park, Boyd, & Leskovec, 2017)

G-ISTA Python package (Rolfs et al., 2012)

JGL R package (Danaher et al., 2014)

FASJEM https://github.com/QData/FASJEM (Wang et al., 2017)

GGMncv R package (Williams, 2020)

Newton-CG(MDMC) Matlab package (Zhang et al., 2018)

MissGlasso R package (Stadler & Buhlmann, 2012)

TeraLasso https://github.com/kgreenewald/teralasso (Greenewald et al., 2019)

SyGlasso https://github.com/ywa136/syglasso (Wang et al., 2020)

GLAD https://github.com/Harshs27/GLAD (Shrivastava et al., 2020)

uGLAD https://github.com/Harshs27/uGLAD (Shrivastava et al., 2022b)

Table 1: Conditional Independence graph recovery methods with their implementation
links. Additional information about their ability to recover multiple graphs (MG), handle
large scale data (LS), handle missing values in data (MI) and to model time-series (TS) are
mentioned alongside.

some will differ between models. Recovering multiple graphs is also useful while considering
reconstruction of Gene Regulatory Networks from microarray expression data coming from
a cancerous tissue and a benign one. This is because estimating separate graphical models
for cancerous and benign tissues does not exploit the similarity between the true underlying
distributions or graphical representations. If we just estimate a single graphical for both
the tissue types, then we miss the important differences that sets apart cancerous cells.
Additionally, optimizing for multiple graphs together lets us take advantage of the larger
sample size. It also makes the process more robust in case of anomalous data. Methods
for recovering multiple CI graphs, like JGL (Danaher et al., 2014), FASJEM (Wang et al.,
2017) introduce an additional regularization term or a convex penalty term that connects
the multiple optimization tasks. The design of such penalty terms is user dependent and
varies based on the task. Whereas, newer deep learning methods like GLAD (Shrivastava
et al., 2020; Shrivastava, 2020), and uGLAD (Shrivastava et al., 2022a, 2022b) update their
model parameters themselves to optimize the joint graphical lasso objective function. The
newer deep model design inherently accounts for the explicit user-defined penalties by the
earlier methods and thus can be potentially more robust.

Handling mixed data types. As explained in Sec. 2.1, methods that take the empirical
covariance matrix as input, can be extended to handle mixed data types, which makes them
much more widely applicable to real-world problems.

Handling missing data. Missing data are ubiquitous in data modeling. Sensors fail, lab
errors happen, and people refuse to answer some of the questions in surveys. Moreover, in
most real-world situations, data is not missing completely at random (MCAR). None of the
methods for dealing with missing data is completely satisfactory: dropping samples with
missing data can introduce bias and reduce the size of the dataset; even state-of-the-art
imputation methods may have undesirable properties (Chen, Tan, Chajewska, Rudin, &
Caruana, 2023). It is preferable that the algorithms handle missing data natively, rather
than rely on pre-processing steps. Of the algorithms discussed, only MissGLasso (Stadler
& Buhlmann, 2012) and uGLAD (Shrivastava et al., 2022a, 2022b) do that.
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Figure 3: [left] uGLAD graph for archaea at family level in a collection of wastewater processing
digesters. Edge color indicates the sign of the correlation: green - positive, red - negative, edge
weight corresponds to correlation’s strength (taken from (Shrivastava et al., 2022b)). [right] CI
graphs from uGLAD model used to analyse a lung cancer data from (Kaggle, 2022).

Scalability. Most of the algorithms presented in Sec. 2 can scale to a large number of
features and samples. However, for some methods in their base form, for instance G-ISTA, it
is not clear how to run them for a large number of features as they have not been evaluated
extensively on such high-dimensional settings in their original works.

Adapatability to time-series data. The tensor-valued Gaussian distributions opened up
an interesting possibility of modeling time-series data, refer to the TeraLasso method. A
recent work tGLAD by (Imani & Shrivastava, 2023) made use of CI graphs for doing mul-
tivariate time series segmentation. Specifically, they utilized the capability of uGLAD to do
multitask learning and handling of missing data to find pattern similarities in a multivari-
ate time-series. These methods provide an additional component of interpretability to the
analysis in terms of the CI graphs that are recovered, which makes them an attractive tool
for time-series data handling.

Table 1 lists some of the prominent methods for CI graph recovery along with their
recommended implementations. This compilation will help the readers choose the right
models for their applications. Now that we have discussed some of the popular approaches
to recover CI graphs, for the sake of completeness and wider adoption, we list some of the
potential applications that the CI graphs have been applied to in the past as well as hint
at several unexplored opportunities to leverage them.

3. Applications of CI Graphs

CI graph recovery algorithms have been successfully applied in a variety of domains. The list
below includes both actual domains and potential applications where the CI graph recovery
algorithms can be applied with a potential of improvement over the current state-of-the-art.

Life Sciences. CI graphs were successfully used to study the microbials inside an anaer-
obic digester and to help choose system design parameters of the digester, see Fig. 3 (Shri-
vastava et al., 2022b). Recovering GRNs from the corresponding microarray expression
data and possibly extending to ensemble methods (Guo, Jiang, Chen, & Guo, 2016; Aluru,

602



Methods for recovering conditional independence graphs

Shrivastava, Chockalingam, Shivakumar, & Aluru, 2022) can also be interesting to explore
using CI graph recovery methods. Recovered GRNs using GLAD are shown in Fig. 4.
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Figure 4: Recovered graph structures for a sub-network of the E. coli consisting of 43 genes
and 30 interactions with increasing number of samples. GLAD was trained using ground truth
from a synthetic gene expression data simulator. Increasing the number of samples reduces
the FDR by discovering more true edges. Notation: TPR: True Positive Rate, FPR: False
Positive Rate, FDR: False Discovery Rate. (taken from (Shrivastava et al., 2020)).

Medical Informatics. Graphical models have been widely used for making informed med-
ical decisions. For instance, the PathFinder project by (Heckerman, Horvitz, & Nathwani,
1992; Heckerman & Nathwani, 1992) is a prime example of an early system using Bayesian
networks for assisting medical professionals in making critical decisions. The conditional
dependencies for this project were procured by consulting the doctors which can be quite
time consuming and not easily scalable. Since then, many other medical expert systems
based on Bayesian networks (with parameters usually learned from data) have been devel-
oped, see (McLachlan, Dube, Hitman, Fenton, & Kyrimi, 2020) for a survey. CI graphs
can be used as an alternative to approximate a distribution over medical variables. For in-
stance, Fig. 3 shows a CI graph for studying patients’ data for Lung cancer prediction from
a Kaggle dataset. Similarly, CI graphs are the basis of systems for discovering dependencies
between important body vitals of ICU patients (Bhattacharya, Rajan, & Shrivastava, 2019;
Shrivastava, Huddar, Bhattacharya, & Rajan, 2021). Another instance is shown in Fig. 5,
where the authors used a CI graph recovery algorithm to analyse feature connections to
study infant mortality in the US.

Protein Structure Recovery. Deep models for CI graph recovery like uGLAD can be
substituted for predicting the contact matrix from the input correlation matrix between the
amino acid sequences. For instance, Protein Sparse Inverse COVaraince or PSICOV (Jones,
Buchan, Cozzetto, & Pontil, 2012), which uses graphical lasso based approach to predict the
contact matrix in order to eventually predict the 3D protein structure could leverage these
recently developed CI graph recovery deep models. Learnable parameters of these models
can also account for the ground truth data, if available. DeepContact model (Liu, Palmedo,
Ye, Berger, & Peng, 2018) uses a Convolutional Neural Network based architecture to do a
matrix inversion operation for predicting contact map from the co-evolution map obtained
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Figure 5: The CI graph recovered by uGLAD for the Infant Mortality 2015 data from CDC (United
States Department of Health and Human Services, Division of Vital Statistics (DVS), 2015) (taken
from (Shrivastava & Chajewska, 2023b)).
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Figure 6: [left] Potential use of GLAD or uGLAD for contact map prediction to recover protein
structure. [right] A dynamic network inference framework showing three snapshots of the automobile
sensor network measuring eight sensors, taken (1) before, (2) during, and (3) after a standard right
turn. CI graphs were recovered by running a scalable message passing algorithm based on the
Alternating Direction Method of Multipliers (ADMM) to study automobile sensor network (taken
from (Hallac et al., 2017)).

from protein sequences. Deep models for CI graph recovery can potentially augment (or
even replace) the CNNs for improved predictions, refer to the left side of Fig. 6.

Class Imbalance Handling. Correlations discovered by the CI graphs can be helpful in
narrowing down important feature clusters for identifying key features. This will in-turn
improve performance in cases where there is little data or imbalanced data (more data points
for one class than another). Sampling from these graphs can balance out the data, similar
to the SMOTE (Chawla, Bowyer, Hall, & Kegelmeyer, 2002) procedure. CI graphs can act
as preprocessing steps for some of the methods for class imbalance handling like (Rahman
& Davis, 2013; Shrivastava, Huddar, Bhattacharya, & Rajan, 2015; Bhattacharya, Rajan,
& Shrivastava, 2017).

Finance. CI graphs are useful for finding correlations between stocks to see how com-
panies compare (Hallac et al., 2017).

Video Sequence Predictions. Deep models for CI graph recovery, GLAD or uGLAD, can
be integrated into a pipeline for latest models used for generating unseen future video
frames (Denton & Fergus, 2018; Shrivastava & Shrivastava, 2020). Specifically, in con-
junction with the generative deep models, the CI graph recovery model parameters can be
learned to narrow down potential future viable frames from the generated ones.

Gaussian Processes and Time Series Problems. An interesting use case by (Chatrab-
goun, Soltanian, Mahjub, & Bahreini, 2021) combines graphical lasso with Gaussian pro-
cesses for learning gene regulatory networks. Similarly, in a recent work on including nega-
tive data points for Gaussian processes (Shrivastava, Shrivastava, & Shrivastava, 2020), CI
graphs can be used for narrowing down the relevant features for performing GP regression
and for time-series modeling (Jung, Hannak, & Goertz, 2015). An example using an au-
tomobile system is shown in Fig. 6 on the right (Hallac et al., 2017). (Greenewald et al.,
2019) used tensor based formulation of graphical lasso to analyse spatio-temporal data of
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Figure 7: TeraLasso, a tensor based method, used for analysis of a time series data of daily-average
wind speeds of the western grid of North America. [left] Rectangular 10 × 20 latitude-longitude grids
of windspeed locations shown as black dots. Elevation colormap shown in meters. [right] Graphical
representation of latitude (left) and longitude factors (bottom) with the corresponding precision
estimates. Observe the decorrelation (longitude factor entries connecting nodes 1-13 to nodes 14-20
are essentially zero) in the Western longitudinal factor, corresponding to the high-elevation line of
the Rocky Mountains. (taken from (Greenewald et al., 2019)).

Figure 8: The connectivity of the 39 regions in the brain estimated by using 35 subjects. The
CI graph was recovered by the L2G algorithm, which is a deep unfolding approach to learn graph
topologies, refer to (Pu et al., 2021).

daily-average wind speeds as shown in Fig. 7. Another interesting analysis was done by (Pu
et al., 2021) for inspecting brain functional connectivity of autism from blood-oxygenation-
level-dependent time series as shown in Fig. 8. A recent work by (Imani & Shrivastava,
2023) utilized CI graphs for multivariate timeseries segmentation problem. They success-
fully demonstrated their technique on a physical activity monitoring dataset.

Running Graph Neural Networks over CI Graphs. Various GNN based techniques can
be learnt over the CI graph. Especially, methods that are designed to run on Probabilistic
Graphical models like the Cooperative Neural Networks (Shrivastava, Bart, Price, Dai, Dai,
& Aluru, 2018), Bayesian Deep Learning methods (Wilson, 2020) and GNNs developed for
other applications (Duvenaud, Maclaurin, Iparraguirre, Bombarell, Hirzel, Aspuru-Guzik, &
Adams, 2015; Henaff, Bruna, & LeCun, 2015; Battaglia, Hamrick, Bapst, Sanchez-Gonzalez,
Zambaldi, Malinowski, Tacchetti, Raposo, Santoro, Faulkner, et al., 2018) can be poten-
tially adapted to work with CI graphs. A study of attribute propagation over CI graphs
was presented in (Chajewska & Shrivastava, 2023). Neural Graphical Models (Shrivas-
tava & Chajewska, 2023b) can potentially learn richer distributions compared to feature
dependencies discovered in a Conditional Independence graph.
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4. Conclusion

In this survey on the recently developed graph recovery methods, we attempted to build a
case for Conditional Independence graphs for analysis of data from various domains. We
provided a breakdown of different methods, traditionally used, as well as recently developed
deep learning models, for CI graph recovery along with a primer on their implementation
and functioning. In order to facilitate wider adoption, this work also provided various
approaches and best practices to handle input data with mixed datatypes which is a critical
preprocessing step, often tricky to manage. We laid out several use cases for CI graphs with
the hope that they will become one of the mainstream methods for data exploration and
insight extraction.
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