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Abstract

Anomaly detection (AD) task corresponds to identifying the true anomalies among a
given set of data instances. AD algorithms score the data instances and produce a ranked
list of candidate anomalies. The ranked list of anomalies is then analyzed by a human
to discover the true anomalies. Ensemble of tree-based anomaly detectors trained in an
unsupervised manner and scoring based on uniform weights for ensembles are shown to work
well in practice. However, the manual process of analysis can be laborious for the human
analyst when the number of false-positives is very high. Therefore, in many real-world
AD applications including computer security and fraud prevention, the anomaly detector
must be configurable by the human analyst to minimize the effort on false positives. One
important way to configure the detector is by providing true labels (nominal or anomaly)
for a few instances. Recent work on active anomaly discovery has shown that greedily
querying the top-scoring instance and tuning the weights of ensemble detectors based on
label feedback allows us to quickly discover true anomalies.

This paper makes four main contributions to improve the state-of-the-art in anomaly
discovery using tree-based ensembles. First, we provide an important insight that explains
the practical successes of unsupervised tree-based ensembles and active learning based on
greedy query selection strategy. We also present empirical results on real-world data to
support our insights and theoretical analysis to support active learning. Second, we develop
a novel batch active learning algorithm to improve the diversity of discovered anomalies
based on a formalism called compact description to describe the discovered anomalies.
Third, we develop a novel active learning algorithm to handle streaming data setting. We
present a data drift detection algorithm that not only detects the drift robustly, but also
allows us to take corrective actions to adapt the anomaly detector in a principled manner.
Fourth, we present extensive experiments to evaluate our insights and our tree-based active
anomaly discovery algorithms in both batch and streaming data settings. Our results show
that active learning allows us to discover significantly more anomalies than state-of-the-art
unsupervised baselines, our batch active learning algorithm discovers diverse anomalies,
and our algorithms under the streaming-data setup are competitive with the batch setup.

1. Introduction

We consider the problem of anomaly detection (AD), where the goal is to detect unusual but
interesting data (referred to as anomalies) among the regular data (referred to as nominals).
This problem has many real-world applications including credit card transactions, medical
diagnostics, computer security, etc., where anomalies point to the presence of phenomena
such as fraud, disease, malpractices, or novelty which could have a large impact on the
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domain, making their timely detection crucial. Anomaly detection poses severe challenges
that are not seen in traditional learning problems. First, anomalies are significantly fewer
in number than nominal instances. Second, unlike classification problems, there may not
be a hard decision boundary to separate anomalies and nominals.

Typically, anomaly detection algorithms train models to compute scores for all instances,
and report instances which receive the highest scores as anomalies. The candidate anomalies
in the form of top-ranked data instances are analyzed by a human analyst to identify the
true anomalies. Prior work has shown that a class of ensemble anomaly detectors trained
in an unsupervised manner and scoring based on uniform weights work very well (Das,
Wong, Dietterich, Fern, & Emmott, 2016). Algorithms based on tree-based ensembles
such as isolation forest (IFOR) consistently perform well on real-world data (Emmott, Das,
Dietterich, Fern, & Wong, 2015). However, purely unsupervised algorithms are usually
ineffective in the following scenarios: a) The underlying model assumptions are not suited
to the real-world task (Chandola, Banerjee, & Kumar, 2009); b) The data volume is so high
that even a detector with low false-positive rate reports a very large absolute number of
potential anomalies; c) The nature/type of anomalies is not known beforehand (unknown
unknowns) and the user wants to explore the data by directing the detector with feedback
in the spirit of collaborative problem solving; and d) the same algorithm is able to identify
multiple types of anomalies but only a subset of them are relevant for a particular domain.
Consider the following simple example. Let us assume that there are three features (say
A, B, and C) and we use a generic unsupervised detector which reports instances which
are outside 2-standard deviation along each axis as anomalies. However, if this rule is
relevant only for features A and B for a particular domain, then the purely unsupervised
algorithm would be less useful for this domain as it would report too many false positives.
As a concrete real-world scenario, assume that in a computer network security application,
the features A, B, and C correspond to total bytes transferred over the network, no. of
unique IP addresses connected to, and no. of logins in off-business hours respectively for a
server. With work from home mandates, the last feature might become irrelevant. Unless
the detector is adjusted to account for this, the number of false positives could be high.

If the candidate set of anomalies contains many false-positives, it will significantly in-
crease the effort of the human analyst in discovering true anomalies. To overcome the above
drawbacks of unsupervised AD algorithms, recent work has explored active learning frame-
work to configure the anomaly detector by the human analyst to minimize the overall effort
on false-positives (Das et al., 2016; Siddiqui, Fern, Dietterich, Wright, Theriault, & Archer,
2018). In this framework, a human analyst provides label feedback (nominal or anomaly)
for one or more data instances during each round of interaction. This feedback is used
by the anomaly detector to change the scoring mechanism of data instances towards the
goal of increasing the true anomalies appearing at the top of the ranked list. Specifically,
prior work employs a greedy query selection strategy by selecting the top-scoring unlabeled
instance for feedback. Similar to unsupervised anomaly detection ensembles, prior work
showed that active learning using tree-based ensembles performs better (Das et al., 2016;
Siddiqui et al., 2018).

The effectiveness of tree-based ensembles for anomaly discovery in both unsupervised
and active-learning settings raise two fundamental questions: (Q1) Why does the average
score across ensemble members perform best in most cases (Chiang & Yeh, 2015) instead
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of other score combination strategies (e.g., min, max, median etc.)?; and (Q2) Why does
the greedy query selection strategy for active learning almost always perform best? In this
paper, we investigate these two fundamental questions related to tree-based ensembles and
provide an important insight that explains their effectiveness for anomaly discovery. We also
provide empirical evidence on real-world data to support our intuitive understanding and
theoretical analysis to support active anomaly discovery. Prior work on active learning for
anomaly discovery has some important shortcomings. First, algorithmic work on enhancing
the diversity of discovered anomalies is lacking (Görnitz, Kloft, Rieck, & Brefeld, 2013).
Second, most algorithms are designed to handle batch data well, but there are few principled
algorithms to handle streaming data setting that arises in many real-world applications. To
fill this important gap in active anomaly discovery, we exploit the inherent strengths of
tree-based ensembles and propose novel batch and streaming active learning algorithms.

Contributions. The main contribution of this paper is to study and evaluate anomaly
discovery algorithms based on tree-based ensembles in both unsupervised and active learning
settings. Specific contributions include:

• We present an important insight into how tree-based anomaly detector ensembles are
naturally suited for active learning, and why the greedy querying strategy of seeking
labels for instances with the highest anomaly scores is efficient. We also provide
theoretical analysis to support active anomaly discovery using tree-based ensembles.

• A novel formalism called compact description (CD) is developed to describe the dis-
covered anomalies using tree-based ensembles. We develop batch active learning al-
gorithms based on CD to improve the diversity of discovered anomalies.

• To handle streaming data setting, we develop a novel algorithm to robustly detect
drift in data streams and design associated algorithms to adapt the anomaly detector
on-the-fly in a principled manner.

• We present extensive empirical evidence in support of our insights and algorithms
on several benchmark datasets. The results show the efficacy of the proposed active
learning algorithms in both batch and streaming data settings. Our results show that
in addition to discovering significantly more anomalies than state-of-the-art unsuper-
vised baselines, our learning algorithm under the streaming-data setup is competitive
with the batch setup. Our code and data are publicly available1.

Outline of the Paper. The remainder of the paper is organized as follows. In Section 2,
we discuss the prior work related to this paper. We introduce our problem setup and
give a high-level overview of the generic human-in-the-loop learning framework for active
anomaly discovery in Section 3. In Section 4, we describe the necessary background on
tree-based anomaly detector ensembles and provide intuition along with empirical evidence
and theoretical analysis to explain their suitability for active anomaly discovery. In Section
5 and 6, we present a series of algorithms to support the framework for batch data and
streaming data settings respectively. Section 7 presents our experimental results and finally
Section 8 provides summary and directions for future work.

1. https://github.com/shubhomoydas/ad_examples
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2. Related Work

Unsupervised anomaly detection algorithms are trained without labeled data and
have assumptions baked into the model about what defines an anomaly or a nominal (Bre-
unig, Kriegel, Ng, & Sander, 2000; Liu, Ting, & Zhou, 2008; Pevný, 2016; Emmott et al.,
2015). They typically cannot change their behavior to correct for the false positives af-
ter they have been deployed. Ensembles of unsupervised anomaly detectors (Aggarwal &
Sathe, 2017) try to guard against the bias induced by a single detector by incorporating
decisions from multiple detectors. The potential advantage of ensembles is that when the
data is seen from multiple views by more than one detector, the set of anomalies reported
by their joint consensus is more reliable and has fewer false positives. Different methods of
creating ensembles include the collection of heterogeneous detectors (Ted, Goldberg, Mem-
ory, Young, Rees, Pierce, Huang, Reardon, Bader, Chow, et al., 2013), feature bagging
(Lazarevic & Kumar, 2005), varying the parameters of existing detectors such as the num-
ber of clusters in a Gaussian Mixture Model (Emmott et al., 2015), sub-sampling, bootstrap
aggregation etc. Some unsupervised detectors such as LODA (Pevný, 2016) are not specif-
ically designed as ensembles but may be treated as such because of their internal structure.
Isolation forest (IFOR) (Liu et al., 2008) is a state-of-the-art tree-based ensemble anomaly
detector. Recently, some prior work looked at the problem of ensemble selection by transfer
learning (Campos, Zimek, & Meira, 2018), ensemble score aggregation methods (Zhao &
Hryniewicki, 2019) by looking at the locality of a data point, approximated neighborhood
creation techniques and combine their scores (Kirner, Schubert, & Zimek, 2017) as outlier
scores, feature selection process in outlier detection (Cheng, Wang, Liu, & Li, 2020) (Mi-
cenková, McWilliams, & Assent, 2014). Zero++ (Pang, Ting, Albrecht, & Jin, 2016) is an
unsupervised approach that works only for categorical data. It is similar to IFOR, but there
is no statistically significant difference in detection accuracy between Zero++ and IFOR
for numerical data that is transformed to categorical data.

Active learning corresponds to the setup where the learning algorithm can selectively
query a human analyst for labels of input instances to improve its prediction accuracy.
The overall goal is to minimize the number of queries to reach the target performance.
There is a significant body of work on both theoretical analysis (Freund, Seung, Shamir, &
Tishby, 1997; Balcan, Broder, & Zhang, 2007; Balcan & Feldman, 2015; Monteleoni, 2006;
Dasgupta, Kalai, & Monteleoni, 2009; Yan & Zhang, 2017; Cao & Tsang, 2022; Cao, Liu,
& Tsang, 2023) and applications (Settles, 2012) of active learning.

Active learning for anomaly detection has been explored by researchers in several
earlier works (Almgren & Jonsson, 2004; Abe, Zadrozny, & Langford, 2006; Stokes, Platt,
Kravis, & Shilman, 2008; He & Carbonell, 2007; Pichara & Soto, 2011; Görnitz et al., 2013).
In this setting, the human analyst provides feedback to the algorithm on true labels (nominal
or anomaly). If the algorithm makes wrong predictions, it updates its model parameters
to be consistent with the analyst’s feedback. Interest in this area has gained prominence
in recent years due to significant rise in the volume of data in real-world settings, which
made reduction in false-positives much more critical. Most of the popular unsupervised
anomaly detection algorithms have been adapted to the active learning setting. Some
of these methods are based on ensembles and support streaming data (Veeramachaneni,
Arnaldo, Korrapati, Bassias, & Li, 2016; Stokes et al., 2008) but maintain separate models
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for anomalies and nominals internally, and do not exploit the inherent strength of the
ensemble in a systematic manner. (Nissim, Cohen, Moskovitch, Shabtai, Edry, Bar-Ad,
& Elovici, 2014) incorporates user feedback into SVM, a classification algorithm. (Das
et al., 2016) and (Das, Wong, Fern, Dietterich, & Siddiqui, 2017), based on LODA and
IFOR respectively, re-weight the components of the ensemble with every user feedback in a
manner similar to our work, however, they do not support streaming data and discovery of
diverse anomalies. (Siddiqui et al., 2018) updates the same model as (Das et al., 2017) in
an online incremental manner when incorporating user feedback.

(Ikeda, Ishibashi, Nakano, Watanabe, Tajiri, & Kawahara, 2018) employs an autoen-
coder as the base anomaly detector and adds a penalty term for the false positives (i.e.,
normal data that are incorrectly reported as anomalies). The user examines the anomalies
reported by the algorithm and labels the false-positives. The model is then retrained with
the new labeled data in an online manner. (Pimentel, Monteiro, Veloso, & Ziviani, 2020)
adds a classifier layer on top of any unsupervised deep network based anomaly detector
and updates the parameters of the deep network based on human feedback. (Trittenbach &
Böhm, 2019) extends SVDD, a one-class classifier model for outlier detection, to multiple
sub-spaces. The multiple sub-spaces are intended to help with interpretability of the out-
liers and support better query strategies for active learning. (Kim, Kim, Yu, & Choi, 2023)
learns an adaptive boundary using a deep SVDD model by searching for locations having
a similar number of normal and abnormal samples. This boundary is iteratively adjusted
by getting labeling feedback from users with an uncertainty based query strategy. Deep
semi-supervised anomaly detection techniques have also been used to incorporate feedback
from users (Ruff, Vandermeulen, Göernitz, Deecke, Siddiqui, Binder, Müller, & Kloft, 2018;
Ruff, Vandermeulen, Görnitz, Binder, Müller, Müller, & Kloft, 2019; Li, Qiu, Kloft, Smyth,
Mandt, & Rudolph, 2023). The performance gain for such techniques on classical tabular
datasets can be quite low in comparison to performance on complex raw data such as im-
ages. SOEL (Li et al., 2023) employs a loss function that has opposing effects on normal
and anomalous data points. Using this loss, SOEL infers latent labels {anomaly, normal}
for each training example using a semi-supervised EM-style algorithm. In this work, we
present a comparison of our algorithm with SOEL in Section 7.3.1.

Our proposed algorithmic instantiation of HiLAD for batch data setting (HiLAD-Batch)
and recent work on feedback-guided AD via online optimization (Feedback-guided Online)
(Siddiqui et al., 2018) both build upon the same tree-based model proposed by (Das et al.,
2017). Therefore, there is no fundamental difference in their performance (7.3). The uniform
initialization of weights employed by both HiLAD-Batch and Feedback-guided Online

plays a critical role in their overall effectiveness. Feedback-guided Online also adopts the
greedy query selection strategy mainly because it works well in practice. In this work, we
present the fundamental reason why greedy query selection strategy is label-efficient for
human-in-the-loop learning with tree-based anomaly detection ensembles.

Anomaly detection for streaming data setting has many real-life applications. Under
this setup, data is sent continuously as a stream to the anomaly detector. (Gupta, Gao,
Aggarwal, & Han, 2014) present a broad overview of this setup and categorize the outlier
detection techniques into three sub-categories: (a) evolving prediction models, (b) distance
based outlier detection for sliding windows, (c) methods for high-dimensional data streams.
Our proposed approach falls under the class of distance based outlier detection in a sliding
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Table 1: Notational convention

Symbol Description

D Dataset
xi A data instance
yi A label (hidden)
E Ensemble
zm Anomaly score from mth ensemble member
H Score matrix of all unlabeled data instances
H+ Score matrix of all positively labeled data instances
H− Score matrix of all negatively labeled data instances
w Weight vector
B Query budget
L Labeled dataset
τ Initial guess on the fraction of anomalous data instances
q Score for τ th ranked anomaly

window. Existing approaches can detect either local anomalies (Breunig et al., 2000; Salehi,
Leckie, Bezdek, Vaithianathan, & Zhang, 2016; Na, Kim, & Yu, 2018) or global anoma-
lies (Angiulli & Fassetti, 2007; Yang, Rundensteiner, & Ward, 2009; Kontaki, Gounaris,
Papadopoulos, Tsichlas, & Manolopoulos, 2011). (Guha, Mishra, Roy, & Schrijvers, 2016)
proposed a tree-based streaming anomaly detector. The key idea is to create a sketch (or
summary) of the data using a random cut forest and to report a data point as anomaly when
the displacement score is high. However, unlike our work, none of these prior streaming
anomaly detection methods incorporate human feedback.

3. Problem Setup and Human-in-the-Loop Learning Framework

We are given a dataset D = {x1, ...,xn}, where xi ∈ Rd is a data instance that is associated
with a hidden label yi ∈ {−1,+1}. Instances labeled +1 represent the anomaly class and
are at most a small fraction τ of all instances. The label −1 represents the nominal class.
We also assume the availability of an ensemble E of m anomaly detectors which assigns
scores z = {z1, ..., zm} to each instance x such that instances labeled +1 tend to have
scores higher than instances labeled −1. Our framework is applicable for any ensemble of
detectors, but we specifically study the instantiation for tree-based ensembles because of
their beneficial properties. We denote the ensemble score matrix for all unlabeled instances
by H. The score matrix for the set of instances labeled +1 is denoted by H+, and the
matrix for those labeled −1 is denoted by H−.

We setup a scoring function Score(x) to score data instances, which is parameterized
by w and ensemble of detectors E . For example, with tree-based ensembles, we consider a
linear model with weights w ∈ Rm that will be used to combine the scores of m anomaly
detectors as follows: Score(x) =w·z, where z ∈ Rm corresponds to the scores from anomaly
detectors for instance x. This linear hyperplane separates anomalies from nominals. We
will denote the optimal weight vector by w∗.
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The generic human-in-the-loop learning framework HiLAD assumes the availability of
an analyst who can provide the true label for any instance in an interactive loop as shown
in Figure 1. In each iteration of the learning loop, we perform the following steps: 1) Select
one or more unlabeled instances from the input dataset D according to a query selection
strategy; 2) Query the human analyst for labels of selected instances; and 3) Update the
weights of the scoring function based on the aggregate set of labeled and unlabeled instances.
The overall goal of the framework is to learn optimal weights for maximizing the number
of true anomalies shown to the human analyst.

HiLAD 
Approach

Unlabeled instance(s) for feedback

Interpretations
(credit score = ‘Low’) and (employed = False)

Update model
(weights of 

scoring function)

Human analyst

Label Feedback
(nominal or anomaly)

Labeled data ℒ

Unlabeled data 𝒰

Figure 1: High-level overview of the human-in-the-loop learning framework for anomaly detection.
Our goal is to maximize the number of true anomalies presented to the analyst.

Algorithm 1 HiLAD Framework

Input: Unlabeled dataset U , Feedback budget B, and Anomaly detection ensembles E
of size m
Initialize weights w ∈ Rm of the linear scoring function Score(x)
Initialize L ← ∅ // Labeled dataset
while |L| < B do

Xquery ← one or more instances selected from U using query selection strategy
Get label feedback for instances in Xquery from the human analyst by showing inter-
pretations of anomalous instances
Add newly labeled examples to L
Update weights w to be consistent with aggregate labeled data L
Update unlabeled set: U ← U \Xquery

end while
return discovered anomalous instances from L
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We provide algorithmic solutions for key elements of this human-in-the-loop framework:

• Initializing the parameters w of the scoring function Score(x) based on a key insight
for tree-based anomaly detection ensembles.

• Query selection strategies to improve the label-efficiency of learning.

• Updating the weights of scoring function based on label feedback.

• Updating ensemble members as needed to support the streaming data setting.

4. Suitability of Tree-based Ensembles for Human-in-the-Loop Learning

In this section, we first provide the background on tree-based anomaly detector ensembles
and describe Isolation Forest (IFOR) in more depth as we employ it for our experimental
evaluation. Subsequently, we provide intuition on how tree-based ensembles are naturally
suited for human-in-the-loop learning and show empirical evidence using isolation forest.

4.1 Tree-based Anomaly Detection Ensembles

Ensemble of tree-based anomaly detectors have several attractive properties that make them
an ideal candidate for human-in-the-loop learning:

• They can be employed to construct large ensembles inexpensively.

• Treating the nodes of tree as ensemble members allows us to both focus our feedback
on fine-grained subspaces2 as well as increase the capacity of the model in terms
of separating anomalies (positives) from nominals (negatives) using complex class
boundaries.

• Since some of the tree-based models such as Isolation Forest (IFOR) (Liu et al., 2008),
HS Trees (HST) (Tan, Ting, & Liu, 2011), and RS Forest (RSF) (Wu, Zhang, Fan,
Edwards, & Yu, 2014) are state-of-the-art unsupervised detectors (Emmott et al.,
2015; Domingues, Filippone, Michiardi, & Zouaoui, 2018), it is a significant gain if
their performance can be improved with minimal label feedback.

In this work, we will focus mainly on IFOR because it performed best across all datasets
(Emmott et al., 2015). However, we also present results on HST and RSF wherever appli-
cable.
Isolation Forest (IFOR) comprises of an ensemble of isolation trees. Each tree partitions
the original feature space at random by recursively splitting an unlabeled dataset. At every
tree-node, first a feature is selected at random, and then a split point for that feature is
sampled uniformly at random (Figure 2). This partitioning operation is carried out until
every instance reaches its own leaf node. The key idea is that anomalous instances, which
are generally isolated in the feature space, reach the leaf nodes faster by this partitioning
strategy than nominal instances which belong to denser regions (Figure 3). Hence, the path

2. In this article, subspace stands for location encompassed by a leaf node of the tree, i.e., it is a rectangle
for 2D space. All the leaf nodes for a tree cover the complete data space. This not to be confused with
subspaces from Linear Algebra.
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Select a random feature 
at each node, and a 

random split point for that 
feature

Leaf instance

Shallower leaf nodes 
have higher anomaly 
scores, whereas, deeper 
leaf nodes have lower 
anomaly scores.

< ≥

Figure 2: Illustration of Isolation tree from (Das et al., 2017).
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Figure 3: Illustration of Isolation Tree on simple data. (a) Toy dataset (Das et al., 2017). (b) A
single isolation tree for the Toy dataset. (c) Regions having deeper red belong to leaf nodes which
have shorter path lengths from the root and correspondingly, higher anomaly scores. Regions having
deeper blue correspond to longer path lengths and lower anomaly scores.

from the root node is shorter to the leaves of anomalous instances when compared to the
leaves of nominal instances. This path length is assigned as the unnormalized score for an
instance by an isolation tree. After training an IFOR with T trees, we extract the leaf nodes
as the members of the ensemble. Such members could number in the thousands (typically
4000− 7000 when T = 100). Assume that a leaf is at depth l from the root. If an instance
belongs to the partition defined by the leaf, it gets assigned a score −l by the leaf, else 0.
As a result, anomalous instances receive higher scores on average than nominal instances.
Since every instance belongs to only a few leaf nodes (equal to T ), the score vectors are
sparse resulting in low memory and computational costs.

HST and RSF apply different node splitting criteria than IFOR, and compute the
anomaly scores on the basis of the sample counts and densities at the nodes. We apply log-
transform to the leaf-level scores so that their unsupervised performance remains similar
to the original model and yet improves with feedback. The trees in HST and RSF have a
fixed depth which needs to be larger in order to improve the accuracy. In contrast, trees
in IFOR have adaptive depth and most anomalous subspaces are shallow. Larger depths
are associated with smaller subspaces, which are shared by fewer instances. As a result,
feedback on any individual instance gets passed on to very few instances in HST and RSF,
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(a) IFOR (b) HST (depth=15) (c) HST (depth=8)

Figure 4: Illustration of differences among different tree-based ensembles. The red rectangles show
the union of the 5 most anomalous subspaces across each of the 15 most anomalous instances
(blue). These subspaces have the highest influence in propagating feedback across instances through
gradient-based learning under our model. HST has fixed depth which needs to be high for accuracy
(recommended 15 (Tan et al., 2011)). IFOR has adaptive height and most anomalous subspaces are
shallow. Higher depths are associated with smaller subspaces which are shared by fewer instances.
As a result, feedback on any individual instance gets passed on to many other instances in IFOR, but
to fewer instances in HST. RSF has similar behavior as HST. We set the depth for HST (and RSF
(Wu et al., 2014)) to 8 (Figure 4c) in our experiments in order to balance accuracy and feedback
efficiency.

but to much more number of instances in IFOR. Therefore, it is more efficient to incorporate
feedback in IFOR than it is in HST or RSF (see Figure 4).

4.2 Beneficial Properties of Tree-based Anomaly Detector Ensembles

In this section, we provide intuition for the effectiveness of unsupervised tree-based anomaly
detector ensembles and list their beneficial properties for human-in-the-loop learning frame-
work. Our arguments are motivated by the active learning theory for standard classification.

(a) C1: Common case (b) C2: Similar to Active Learning theory (c) C3: IFOR case

Figure 5: Illustration of candidate score distributions from an ensemble in 2D. The two axes represent
two different ensemble members. (a) C1 represents the common case where both anomaly detectors
want to score anomalous data points higher, (b) C2 illustrates how active learning helps the model
to learn the slight angle deviation, θ, (c) C3 is specifically for IFOR case where the anomalous data
points has smaller path length. So, anomalous data points will be located at two extremes where
the path lengths are smallest and can be separated by the non-homogeneous hyperplane.
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Without loss of generality, we assume that all scores from the members of tree-based
ensemble of anomaly detectors are normalized (i.e., they lie in [−1, 1] or [0, 1]), with higher
scores implying more anomalous. For the following discussion, wunif ∈ Rm represents a
vector of equal values, and ||wunif || = 1. Figure 5 illustrates a few possible distributions of
normalized scores from the ensemble members in 2D. In each figure, there are two ensemble
members and each member tends to assign higher scores to anomalies than to nominals such
that, on average, anomalies tend to have higher scores than nominals. Let z represent the
vector of anomaly scores for an instance and let m be the number of ensemble members.
Then, the average score for the same instance can be computed as Score= 1

m

∑m
i=1 zi =

1√
m
(wunif · z) ∝ wunif · z. We observe that under this setup, points in the score space

closest to the top right region of the score space have the highest average scores since they
are most aligned with the direction of wunif . When ensemble members are “good”, they
assign higher scores to anomalies and push them to this region of the score space. The most
general case is illustrated in case C1 in Figure 5a. This behavior makes it easier to separate
anomalies from nominals by a hyperplane. Moreover, it also sets a prior on the position
and alignment of the separating hyperplane (as shown by the red solid line). Having priors
on the hyperplane helps determine the region of label uncertainty (anomaly vs. nominal)
even without any supervision, and this, in theory, strongly motivates active learning using
the human analyst in the loop.

Most theoretical research on active learning for classification (Kearns, 1998; Balcan
et al., 2007; Kalai, Klivans, Mansour, & Servedio, 2008; Dasgupta et al., 2009; Balcan &
Feldman, 2015) makes simplifying assumptions such as uniform data distribution over a unit
sphere and with homogeneous (i.e., passing through the origin) hyperplanes. However, for
anomaly detection, arguably, the idealized setup is closer to case C2 (Figure 5b), where non-
homogeneous decision boundaries are more important. More importantly, in order for the
theory to be relevant for anomaly detection, the assumptions behind it should be realizable
with multi-dimensional real-world data and a competitive anomaly detector. We present
empirical evidence (Section 7) which shows that scores from the state-of-the-art Isolation
Forest (IFOR) detector are distributed in a similar manner as case C3 (Figure 5c). C3
and C2 are similar in theory (for active learning) because both involve searching for the
optimum non-homogeneous decision boundary. In all cases, the common theme is that when
the ensemble members are ideal, then the scores of true anomalies tend to lie in the farthest
possible location in the positive direction of the uniform weight vector wunif by design.
Consequently, the average score for an instance across all ensemble members works well for
anomaly detection. However, not all ensemble members are ideal in practice, and the true
weight vector (w∗) is displaced by an angle θ from wunif . Figure 6c shows an illustration of
this scenario on a Toy dataset. In large datasets, even a small misalignment between wunif

and w∗ results in many false positives. While the performance of ensemble on the basis of
the AUC metric may be high, the detector could still be impractical for use by analysts.

The property, that the misalignment is usually small, can be leveraged by active learn-
ing to learn the optimal weights efficiently using a small amount of label feedback. To
understand this, observe that the top-ranked instances are close to the decision boundary
and are therefore, in the uncertainty region. The key idea is to design a hyperplane that
passes through the uncertainty region which then allows us to select query instances by
uncertainty sampling. Selecting instances on which the model is uncertain for labeling is
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efficient for active learning (Cohn, Atlas, & Ladner, 1994; Balcan et al., 2007; Cao et al.,
2023). Specifically, greedily selecting instances with the highest scores is first of all more
likely to reveal anomalies (i.e., true positives), and even if the selected instance is nominal
(i.e., false positive), it still helps in learning the decision boundary efficiently. This is an im-
portant insight and has significant practical implications. We present the label complexity
of this greedy (but efficient) active learning algorithm for anomaly detection below.
Label complexity of active learning with fixed weights: Our trained ensemble of
two anomaly detectors assign scores uniformly distributed over a unit sphere (Fig 5). Since
we have assumed that τ fraction of the data is anomalous, marginal density of anomalies is
then τ

2π . We also have a pool of unlabeled data. For simplicity, we assume that anomalies
have a Gaussian distribution as a function of the angle ω ∈ [−π, π] from u on the unit
sphere: f(y = +1|ω) ∼ N (0, σ2). We query an analyst for the labels of only the top β
fraction of instances sorted on scores, i.e., {z : arccos(w ·z) ≤ βπ}. Let the angle between u
and wunif be θ. Let βl and βr be the minimum and maximum of the values {θ−βπ, θ+βπ}
respectively. As per our query selection strategy, the probability of labeling a true anomaly
is then pθ =

∫ βr

βl
f(y = +1|ω)dω = (Φ(βr

σ )− Φ(βl
σ )), where Φ(·) is the c.d.f of the Gaussian

distribution. If |θ| is large, i.e., wunif and u are not “close”, then pθ will be small.

Proposition 4.1. Let δ ∈ [0, 1]. For the 2D case, the number of labels needed to learn the
decision boundary with probability (1−δ) with pool-based active learning is T = O(log( 1σ )

1
pθ

log(1δ )).

Proof: Essentially, we need to locate the mean of the Gaussian distribution. This can be
done through binary search because the density is highest at the mean and decreases con-
tinuously as we move away from it. For the search, we estimate the density of anomalies at
O(log( 1σ )) locations (for accuracy to one s.d.). For any estimate, at least one anomaly must
be sampled. When the angle is θ (i.e., w=wunif ) at the initial location, then the number
of samples required is, with probability (1− δ): (1− pθ)

l ≤ δ ⇒ l ≥ 1
pθ

log(1δ ). The number
of samples at the initial location sets the baseline estimate; therefore, the total number of
samples is T = O(log( 1σ )

1
pθ

log(1δ )).

Remark. If we ignore the initial location of search, the number of labels required would
be O(log( 1σ )

2π
τ log(1δ )). Thus, initializing at wunif helps when pθ is larger than τ

2π .

Label complexity of active learning with varying weights: In this case, we select
one data instance from the top ranked β fraction of instances at each time step for querying,
and then adjust the weights w in response to the label received from the analyst. We denote
the weight vector and its angular displacement from u at each time step t by wt and θt
respectively, starting with w1 = wunif and θ1 = θ.

Proposition 4.2. Let the algorithm A update the weights with each new label at time t while
learning the decision boundary such that θt+1 ≤ θt. If the label complexity of algorithm A
is T ′, then T ′ ≤ T (where T is defined in Proposition 4.1).

Proof: As in the previous case, we sample at O(log( 1σ )) locations for the binary search. Let
l′ be the number of samples required at the initial location of the binary search for density
estimation, and set θ1 = θ. Now, l′ sets the baseline for the number of samples in each
round of the search. Since, by assumption, θt+1 ≤ θt at each label iteration t, pθt+1 ≥ pθt .
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(a) Toy dataset (b) Anomaly scores (c) Angles

Figure 6: Isolation Tree. (a) Toy dataset (Das et al., 2017) which will be used as the running
example through out the text to illustrate the ideas. Red points are anomalies and black points are
nominals. (b) Anomaly scores assigned by IFOR to the Toy dataset. (c) Histogram distribution
of the angles between score vectors from IFOR and wunif . The red and green histograms show the
angle distributions for anomalies and nominals respectively. Since the red histograms are closer to
the left, anomalies are aligned closer to wunif .

For any estimate, at least one anomaly needs to be selected with probability (1 − δ); i.e.,
(1 − pθ1)..(1 − pθl′ ) ≤ δ. Since, (1 − pθ)

l′ ≥ (1 − pθ1)..(1 − pθl′ ), ∃l ≥ l′ s.t. (1 − pθ)
l ≤ δ.

Therefore, T ′ = O(log( 1σ )l
′) ≤ O(log( 1σ )l) = T .

When the number of members in the ensemble is m, then pθ will be a function of m and
the number of locations for binary search will be O(m log( 1σ )).

Summary. Tree-based anomaly detector ensembles have several beneficial properties for
human-in-the-loop learning for anomaly discovery:

• Uniform prior over weights helps in improving the label-efficiency of discovering true
anomalies. Indeed, in our experiments, we demonstrate the effectiveness of uniform
weights over random weights for initialization in discovering anomalies. We also show
the histogram distribution of the angles between score vectors from IFOR and uniform
weights wunif to demonstrate that anomalies are aligned closer to wunif .

• With uniform prior over weights, the greedy strategy of querying the labels for top
ranked instances is efficient, and is therefore a good yardstick for evaluating the perfor-
mance of other querying strategies as well. This point will be particularly significant
when we evaluate a different querying strategy to enhance the diversity of discovered
anomalies as part of this work.

• Learning the weights of anomaly detector ensembles with human-in-the-loop learning
that generalizes to unseen data helps in limited-memory or streaming data settings.
Indeed, our experimental evaluation corroborates this hypothesis.

5. Algorithmic Instantiation of HiLAD for Batch Data Setting

In this section, we describe a series of algorithms to instantiate the generic human-in-the-
loop learning framework HiLAD for batch data setting (HiLAD-Batch). First, we present
a novel formalism called compact description that describes groups of instances compactly
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using a tree-based model, and apply it to improve the diversity of instances selected for
labeling (Section 5.1). Second, we describe an algorithm to update the weights of the
scoring function based on label feedback in the batch setting, where the entire data is
available at the outset (Section 5.2).

5.1 Compact Description for Diversified Querying and Interpretability

In this section, we first describe the compact description formalism to describe a group of
instances. Subsequently, we propose algorithms for selecting diverse instances for querying
and to generate succinct interpretable rules using compact description.

Compact Description (CD). The tree-based model assigns a weight and an anomaly
score to each leaf (i.e., subspace). We denote the vector of leaf-level anomaly scores by
d, and the overall anomaly scores of the subspaces (corresponding to the leaf-nodes) by
a = [a1, ..., am] = w ◦ d, where ◦ denotes element-wise product operation. The score ai
provides a good measure of the relevance of the i-th subspace. This relevance for each
subspace is determined automatically through the label feedback. Our goal is to select a
small subset of the most relevant and “compact” (by volume) subspaces which together
contain all the instances in a group that we want to describe. We treat this problem as a
specific instance of the set covering problem. We illustrate this idea on a synthetic dataset
in Figure 7. This approach can be potentially interpreted as a form of non-parametric
clustering.

(a) Baseline (b) Active Anomaly Detection (c) Compact Description

Figure 7: Top 30 subspaces ranked by w ◦ d (relevance). Red points are anomalies. (a) shows the
top 30 most relevant subspaces (w.r.t their anomalousness) without any feedback. We can see that
initially these subspaces simply correspond to the exterior regions of the dataset. Our human-in-the-
loop anomaly detection approach learns the true relevance of subspaces via label feedback. (b)
shows that after incorporating the labels of 35 instances, the subspaces around the labeled anomalies
have emerged as the most relevant. (c) shows the set of important subspaces which compactly
cover all labeled anomalies. These were computed by solving Equation 1. Note that the compact
subspaces only cover anomalies that were discovered in the 35 feedback iterations. Anomalies which
were not detected are likely to fall outside these compact subspaces.

Let Z be the set of instances that we want to describe, where |Z| = p. For example,
Z could correspond to the set of anomalous instances discovered by our human-in-the-loop
learning approach. Let si be the δ most relevant subspaces (i.e., leaf nodes) which contain
zi ∈ Z, i = 1, ..., p. Let S = s1 ∪ ... ∪ sp and |S| = k. Denote the volumes of the subspaces
in S by the vector v ∈ Rk. Suppose x ∈ {0, 1}k is a binary vector which contains 1 in
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locations corresponding to the subspaces in S which are included in the covering set, and
0 otherwise. Let ui ∈ {0, 1}k denote a vector for each instance zi ∈ Z which contains 1
in all locations corresponding to subspaces in si. Let U = [uT

1 , ...,u
T
n ]

T . A compact set of
subspaces S∗ which contains (i.e., describes) all the candidate instances can be computed
using the optimization formulation in Equation 1. We employ an off-the-shelf ILP solver
(CVX-OPT) to solve this problem.

S∗ = argmin
x∈{0,1}k

x · v (1)

s.t. U · x ≥ 1 (where 1 is a column vector of p 1’s)

Applications of Compact Description. Compact descriptions have multiple uses including:

• Discovery of diverse classes of anomalies very quickly by querying instances from
different subspaces of the description.

• Improved interpretability of anomalous instances. We assume that in a practical
setting, the analyst(s) will be presented with instances along with their corresponding
description(s). Additional information can be derived from the description and shown
to the analyst (e.g., number of instances in each compact subspace), which can help
prioritize the analysis.

In this work, we present empirical results on improving query diversity and also compare
with another state-of-the-art algorithm that extracts interpretations (Wang, Rudin, Doshi-
Velez, Liu, Klampfl, & MacNeille, 2016).

Algorithm 2 Select-Diverse (X, b, n)

Input: Unlabeled dataset X, # instances to select b, # candidate instances n (n ≥ b)
Let Z = n top-ranked instances as candidates ⊆ X (blue points in Figure 8a)
Let S∗ = subspaces with Equation 1 that contain Z (rectangles in Figures 8b and 8c)
Set Q = ∅
while |Q| < b do
Let x = instance with highest anomaly score ∈ Z s.t. x has minimal

overlapping regions in S∗ with instances in Q
Set Q = Q ∪ {x} (green circles in Figure 8c)
Set Z = Z \ {x}

end while
return Q

Diversity-based Query Selection Strategy. In Section 4, we reasoned that the greedy
strategy of selecting top-scored instances (referred as Select-Top) for labeling is efficient.
However, this strategy might lack diversity in the types of instances presented to the hu-
man analyst. It is likely that different types of instances belong to different subspaces in
the original feature space. Our proposed strategy (Select-Diverse), which is described
next, is intended to increase the diversity by employing tree-based ensembles and compact
description to select groups of instances from subspaces that have minimum overlap.
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(a) Candidate Subspaces (b) Select-Top (c) Select-Diverse

Figure 8: Illustration of compact description and diversity of selected instances for labeling using
IFOR. Most anomalous 15 instances (blue checks) are selected as the query candidates. The red
rectangles in (a) form the union of the δ (= 5 works well in practice) most relevant subspaces across
each of the query candidates. (b) and (c) show the most “compact” set of subspaces which together
cover all the query candidates. (b) shows the most anomalous 5 instances (green circles) selected
by the greedy Select-Top strategy. (c) shows the 5 “diverse” instances (green circles) selected by
Select-Diverse.

Assume that the human analyst can label a batch of b instances, where b > 1, in each
feedback iteration. Algorithm 2 employs the compact description to achieve this diver-
sity. The algorithm first selects n (> b) top-ranked anomalous instances Z and computes
the corresponding compact description (small set of subspaces S∗). Subsequently, per-
forms an iterative selection of b instances from Z by minimizing the overlap in the corre-
sponding subspaces from S∗. Figure 8 provides an illustration comparing Select-Top and
Select-Diverse query selection strategies.

5.2 Algorithmic Approach to Update Weights of Scoring Function

In this section, we provide an algorithm to update weights of the scoring function for
HiLAD-Batch instantiation for batch setting: the entire data D is available at the outset.

Recall that our scoring function is of the following form: Score(x) = w · z, where
z ∈ Rm corresponds to the scores from anomaly detectors for instance x. We extend the
AAD approach (based on LODA projections) (Das et al., 2016) to update the weights
for tree-based models. AAD makes the following assumptions: (1) τ fraction of instances
(i.e., nτ) are anomalous, and (2) Anomalies should lie above the optimal hyperplane while
nominals should lie below. AAD tries to satisfy these assumptions by enforcing constraints
on the labeled examples while learning the weights of the hyperplane. If the anomalies
are rare and we set τ to a small value, then the two assumptions make it more likely that
the hyperplane will pass through the region of uncertainty. Our previous discussion then
suggests that the optimal hyperplane can now be learned efficiently by greedily asking the
analyst to label the most anomalous instance in each feedback iteration. We simplify the
AAD formulation with a more scalable unconstrained optimization objective. Crucially, the
ensemble weights are updated with an intent to maintain the hyperplane in the region of
uncertainty through the entire budget B. The HiLAD-Batch learning approach is presented
in Algorithm 3 and depends on only one hyper-parameter τ .

142



Effectiveness of Tree-based Ensembles for Anomaly Discovery

Algorithm 3 HiLAD-Batch (B, w(0), H, H+, H−)

Input: Query budget B, initial weights w(0), unlabeled instances H,
labeled instances H+ and H−

Set t = 0
while t ≤ B do

Set t = t+ 1
Set a = H ·w (i.e., a is the vector of anomaly scores)
Let q = zi, where i = argmaxi(ai)
Get yi ∈ {−1,+1} for q from analyst
if yi = +1 then

Set H+ = {zi} ∪H+

else
Set H− = {zi} ∪H−

end if
14: Set H = H \ zi

w(t) = learn new weights; normalize ∥w(t)∥ = 1
end while
return w(t), H, H+, H−

(a) Initial scores (b) 8 iterations (c) 16 iterations

(d) 24 iterations (e) 32 iterations (f) 34 iterations

Figure 9: Score contours across 34 HiLAD-Batch feedback iterations on the Toy dataset (Figure 6a).

We first define the hinge loss ℓ(q,w; (zi, yi)) in Equation 2 that penalizes the model when
anomalies are assigned scores lower than q and nominals higher. Equation 3 then formulates
the optimization problem for learning the optimal weights in Line 14 of the batch algorithm
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(Algorithm 3). Figure 9 illustrates how HiLAD-Batch changes the anomaly score contours
across feedback iterations on the synthetic dataset using an isolation forest with 100 trees.

ℓ(q,w; (zi, yi)) =
0 w · zi ≥ q and yi = +1
0 w · zi < q and yi = −1
(q −w · zi) w · zi < q and yi = +1
(w · zi − q) w · zi ≥ q and yi = −1

(2)

λ(t) determines the influence of the prior. For the batch setup, we set λ(t) = 0.5
|H+|+|H−|

such that the prior becomes less important as more instances are labeled. When there are
no labeled instances, λ(t) is set to 1

2 . The third and fourth terms of Equation 3 encourage

the scores of anomalies in H+ to be higher than that of z
(t−1)
τ (the nτ -th ranked instance

from the previous iteration), and the scores of nominals in H− to be lower than that of

z
(t−1)
τ . We employ gradient descent to learn the optimal weights w in Equation 3. Our prior

knowledge that wunif is a good prior provides a good initialization for gradient descent.
We later show empirically that wunif is a better starting point than random weights.

w(t) = argmin
w

∑
s∈{−,+}

 1

|Hs|
∑

zi∈Hs

ℓ(q̂τ (w
(t−1)),w; (zi, yi))

+
1

|Hs|
∑

zi∈Hs

ℓ(z(t−1)
τ ·w,w; (zi, yi))


+ λ(t)∥w −wunif∥2 (3)

where, wunif = [
1√
m
, . . . ,

1√
m
]T , and,

z(t−1)
τ and q̂τ (w

(t−1)) are computed by ranking

anomaly scores with w = w(t−1)

6. Algorithmic Instantiation of HiLAD for Streaming Data Setting

In this section, we describe algorithms to support human-in-the-loop anomaly detection
using tree-based ensembles in the streaming data setting (HiLAD-Stream), where the data
comes as a continuous stream.

In the streaming setting, we assume that the data is input to the algorithm continuously
in windows of sizeK and is potentially unlimited. The HiLAD-Stream instantiation is shown
in Algorithm 4. Initially, we train all the members of the ensemble with the first window of
data. When a new window of data arrives, the underlying tree model is updated as follows:
in case the model is an HST or RSF, only the node counts are updated while keeping the
tree structures and weights unchanged; whereas, if the model is an IFOR, a subset of the
current set of trees is replaced as shown in Update-Model (Algorithm 4). The updated
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Algorithm 4 HiLAD-Stream (K, B, Q, E(0), X0, w
(0), αKL)

Input: Stream window size K, total query budget B,
queries per window Q, anomaly detector ensemble E(0),
initial instances X0 (used to create E(0)), initial weights w(0),
significance level αKL

Set H = H+ = H− = ∅
// initialize KL-divergence baselines

Set q
(0)
KL = Get-KL-Threshold(X0, E(0), αKL, 10)

Set P(0) = Get-Ensemble-Distribution(X0, E(0))

Set t = 0
while <stream is not empty> do
Set t = t+ 1
Set Xt = K data instances from stream
Set Ht = transform Xt to ensemble features

// Update-Model either updates node counts (e.g., for HST and RSF),
// or replaces a fraction of the oldest trees in E with new
// ones constructed using Xt (e.g., for IFOR)

Set E(t), q(t)KL, P(t) = Update-Model(Xt, E(t−1), q
(t−1)
KL , P(t−1), αKL)

// Merge-and-Retain(w, H, K) retains K most anomalous instances in H
Set H = Merge-and-Retain(w(t−1), {H ∪Ht}, K)
Set w(t), H, H+, H− = HiLAD-Batch(Q, w(t−1), H, H+, H−)

end while

model is then employed to determine which unlabeled instances to retain in memory, and
which to “forget”. This step, referred to as Merge-and-Retain, applies the simple strategy
of retaining only the most anomalous instances among those in the memory and in the
current window, and discarding the rest. Next, the weights are fine-tuned with analyst
feedback through human-in-the-loop learning loop similar to the batch setting with a small
budget Q. Finally, the next window of data is read, and the process is repeated until the
stream is empty or the total budget B is exhausted. In the rest of this section, we will
assume that the underlying tree model is IFOR. When we replace a tree in Update-Model,
its leaf nodes and corresponding weights get discarded. On the other hand, adding a new
tree implies adding all its leaf nodes with weights initialized to a default value v. We first
set v = 1√

m′ where m
′ is the total number of leaves in the new model, and then re-normalize

the updated w to unit length. The HiLAD instantiation for streaming data is presented
in Algorithm 4. In all the HiLAD-Stream experiments, we set the number of queries per
window Q = 20, and λ(t) = 1

2 .

HiLAD-Stream approach can be employed in two different situations: (1) limited mem-
ory with no concept drift, and (2) streaming data with concept drift. The type
of situation determines how fast the model needs to be updated in Update-Model. If there
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Algorithm 5 Update-Model (X, E , qKL, P, αKL)

Input: Instances X, anomaly detector ensemble E ,
current KL threshold qKL, baseline distributions P,
significance level αKL

Set T = number of trees in E
Set Q = Get-Ensemble-Distribution(X, E)
Initialize KL = 0 ∈ RT

for t ∈ 1..T do
Set KLt = DKL(Pt||Qt)

end for
Set S = {t : KLt > qKL}
if |S| < 2αKLT then
// the number of trees with divergence is not significant
return E , qKL,P

end if
Set E ′ = replace trees in E whose indexes are in S, with new trees trained using X
// Recompute threshold and baseline distributions
Set q′KL = Get-KL-Threshold(X, E ′, αKL, 10)
Set P ′ = Get-Ensemble-Distribution(X, E ′)
return E ′, q′KL,P ′

is no concept drift, we need not update the model at all. If there is a large change in the
distribution of data from one window to the next, then a large fraction of members need to
be replaced. When we replace a member tree in our tree-based model, all its corresponding
nodes along with their learned weights have to be discarded. Thus, some of the “knowledge”
is lost with the model update. In general, it is hard to determine the true rate of drift in
the data. One approach is to replace, in the Update-Model step, a reasonable number (e.g.
20%) of older ensemble members with new members trained on new data. Although this
ad hoc approach often works well in practice, a more principled approach is preferable.

Drift Detection Algorithm. Algorithm 5 presents a principled methodology that em-
ploys KL-divergence (denoted by DKL) to determine which trees should be replaced. The
set of all leaf nodes in a tree are treated as a set of histogram bins which are then used to
estimate the data distribution. We denote the total number of trees in the model by T , and
the t-th tree by Tt. When Tt is initially created with the first window of data, the data from
the same window is also used to initialize the baseline distribution for Tt, denoted by pt

(Get-Ensemble-Distribution in Algorithm 7). After computing the baseline distributions
for each tree, we estimate the DKL threshold qKL at the αKL (typically 0.05) significance
level by sub-sampling (Get-KL-Threshold in Algorithm 6). When a new window is read,
we first use it to compute the new distribution qt (for Tt). Next, if qt differs significantly
from pt (i.e., DKL(pt||qt) > qKL) for at least 2αKLT trees, then we replace all such trees
with new ones created using the data from the new window. Finally, if any tree in the
forest is replaced, then the baseline densities for all trees are recomputed with the data in
the new window.
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Algorithm 6 Get-KL-Threshold (X, E , αKL, n)

Input: Instances X, anomaly detector ensemble E ,
significance level αKL,
repetitions of KL-divergence computations n

Set T = number of trees in E
Initialize KL = 0 ∈ RT // mean KL-divergence for each tree
for i in 1 · · ·n do
Partition X = {A,B} at random s.t. X = A ∪B and |A| ≈ |B|
for t ∈ 1 · · ·T do
Let Tt = t-th tree in E
Set pA = Get-Tree-Distribution(A, Tt)
Set pB = Get-Tree-Distribution(B, Tt)
Set KLt = KLt +DKL(pA||pB)

end for
end for
Set KL = KL

n // average the values
Set qKL = (1− αKL)× 100 quantile value in KL
return qKL

Algorithm 7 Get-Ensemble-Distribution (X, E)
Input: Instances X, ensemble E
Set T = number of trees in E
Set P = ∅
for t ∈ 1 · · ·T do

Let Tt = t-th tree in E
Set pt = Get-Tree-Distribution(X, Tt)
Set P = P ∪ pt

end for
return P

Algorithm 8 Get-Tree-Distribution (X, T )
Input: Instances X, tree T
Set p = distribution of instances in X at the leaves of T
return p

7. Experiments and Results

Datasets. We evaluate our human-in-the-loop learning framework on ten publicly available
benchmark datasets ((Woods, Doss, Bowyer, Solka, Priebe, & Kegelmeyer, 1993),(Ditzler
& Polikar, 2013),(Harries & of New South Wales., 1999), UCI(Dheeru & Karra Taniskidou,
2017)) listed in Table 2. The anomaly classes in Electricity andWeather were down-sampled
to be 5% of the total.
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Table 2: Description of benchmark datasets used in our experiments.

Dataset Nominal Class Anomaly Class Total Dims Anomalies(%)

Abalone 8, 9, 10 3, 21 1920 9 29 (1.5%)
ANN-Thyroid-1v3 3 1 3251 21 73 (2.25%)
Cardiotocography 1 (Normal) 3 (Pathological) 1700 22 45 (2.65%)
KDD-Cup-99 ‘normal’ ‘u2r’, ‘probe’ 63009 91 2416 (3.83%)
Mammography -1 +1 11183 6 260 (2.32%)
Shuttle 1 2, 3, 5, 6, 7 12345 9 867 (7.02%)
Yeast CYT, NUC, MIT ERL, POX, VAC 1191 8 55 (4.6%)

Covtype 2 4 286048 54 2747 (0.9%)
Electricity DOWN UP 27447 13 1372 (5%)
Weather No Rain Rain 13117 8 656 (5%)

Evaluation Methodology. For each variant of the human-in-the-loop framework HiLAD,
we plot the percentage of the total number of anomalies shown to the analyst versus the
number of instances queried; this is the most relevant metric for an analyst in any real-world
application. A higher plot means the algorithmic instantiation of the framework is better
in terms of discovering anomalies. All results presented are averaged over 10 different runs
and the error-bars represent 95% confidence intervals.

7.1 Human-in-the-Loop Learning for Batch Data Setting

Experimental Setup. All versions of HiLAD-Batch employ IFOR with the number of
trees T = 100 and subsample size 256. The initial starting weights are denoted by w(0).
We normalize the score vector for each instance to unit length such that the score vec-
tors lie on a unit sphere. This normalization helps adhere to the discussion in Section 4,
but is otherwise unnecessary. Figure 10 shows that wunif tends to have a smaller angular
separation from the normalized IFOR score vectors of anomalies than from those of nomi-
nals. This holds true for most of our datasets (Table 2). Weather is a hard dataset for all
anomaly detectors (Wu et al., 2014), as reflected in its angular distribution in Figure 10i.
In all our experiments, Unsupervised Baseline shows the number of anomalies detected
without any feedback, i.e., using the uniform ensemble weights wunif ; HiLAD-Batch (No

Prior - Unif) and HiLAD-Batch (No Prior - Rand) impose no priors on the model, and
start human-in-the-loop learning with w(0) set to wunif and a random vector respectively;
HiLAD-Batch sets wunif as prior, and starts with w(0) = wunif . For HST, we present two
sets of results with batch input only: HST-Batch with original settings (T = 25, depth=15,
no feedback) (Tan et al., 2011), and HST-Batch (Feedback) which supports feedback with
HiLAD-Batch strategy (with T = 50 and depth=8, a better setting for feedback). For RST,
we present the results (RST-Batch) with only the original settings (T = 30, depth=15) (Wu
et al., 2014) since it was not competitive with other methods on our datasets. We also
compare the HiLAD-Batch variants with the AAD approach (Das et al., 2016) in the batch
setting (AAD-Batch). Batch data setting is the most optimistic for all algorithms.
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(a) Abalone (b) ANN-Thyroid (c) Cardiotocography (d) Covtype

(e) Electricity (f) KDDCup99 (g) Mammography (h) Shuttle

(i) Weather (j) Yeast

Figure 10: Histogram distribution of the angles between score vectors from IFOR and wunif for all
datasets. The red and green histograms show the angle distributions for anomalies and nominals
respectively. Since the red histograms are closer to the left, anomalies are aligned closer to wunif .

7.1.1 Results for HiLAD-Batch Instantiation

We set the budget B to 300 for all datasets in the batch setting. The results on the four
smaller datasets Abalone, ANN-Thyroid-1v3, Cardiotocography, and Yeast are shown in
Figure 11. When the algorithm starts from sub-optimal initialization of the weights and with
no prior knowledge (HiLAD-Batch (No Prior - Rand)), more number of queries are spent
hunting for the first few anomalies, and thereafter detection improves significantly. When
the weights are initialized to wunif , which is a reliable starting point (HiLAD-Batch (No

Prior - Unif) and HiLAD-Batch), fewer queries are required to find the initial anomalies,
and typically results in a lower variance in accuracy. Setting wunif as prior in addition to
informed initialization (HiLAD-Batch) performs better than without the prior (HiLAD-Batch
(No Prior - Unif)) on Abalone, ANN-Thyroid-1v3, and Yeast. We believe this is because
the prior helps guard against noise.

Figure 12 shows the relative performance (% of anomalies discovered) compared to the
Unsupervised Baseline. It is clear that HiLAD-Batch discovered up to 250% more anoma-
lies than the baseline algorithm. A key observation to note is that HiLAD-Batch discovers the
biggest portion of anomalies in the early phase of the label collection. For Abalone dataset
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(b) ANN-Thyroid-1v3
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(d) Yeast

Figure 11: Percentage of total anomalies seen vs. the number of queries for the smaller datasets in
the batch setting.

HiLAD-Batch discovered 40-60%more anomalies in the initial phase whereas Loda-AAD-Batch
was under-performing initially and recovered later. The biggest gain we saw was for Thy-
roid dataset where HiLAD-Batch discovered 250% more anomalies compared to the baseline.
Other datasets (Cardiotocography, Yeast) also resulted in higher anomaly discovery using
the HiLAD-Batch method.

7.1.2 Results for Diversified Query Strategy

The diversified querying strategy Select-Diverse (Algorithm 2) employs compact descrip-
tions to select instances. Therefore, the evaluation of its effectiveness is presented first. An
interactive system can potentially ease the cognitive burden on the analysts by using de-
scriptions to generate a “summary” of the anomalous instances.

We perform a post hoc analysis on the datasets with the knowledge of the original classes
(Table 2). It is assumed that each class in a dataset represents a different data-generating
process. To measure the diversity at any point in our feedback cycle, we compute the
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(c) Cardiotocography
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Figure 12: Relative % of anomalies seen compared to the Unsupervised Baseline for smaller datasets
in the batch setting.

difference between the number of unique classes presented to the analyst per query batch
averaged across all the past batches. The parameter δ for Select-Diverse was set to 5 in all
experiments. We compare three query strategies in the batch data setup: HiLAD-Batch-T,
HiLAD-Batch-D, and HiLAD-Batch-R. HiLAD-Batch-T simply presents the top three most
anomalous instances per query batch. HiLAD-Batch-D employs Select-Diverse to present
three diverse instances out of the ten most anomalous instances. HiLAD-Batch-R presents
three instances selected at random from the top ten anomalous instances. Finally, HiLAD-Batch
greedily presents only the single most anomalous instance for labeling. We find that
HiLAD-Batch-D presents a more diverse set of instances than both HiLAD-Batch-T (solid
lines) as well as HiLAD-Batch-R (dashed lines) on most datasets. Figure 13b shows that the
number of anomalies discovered (on representative datasets) with the diversified querying
strategy is similar to the greedy strategy, i.e., no loss in discovery rate to improve diversity.

7.2 Human-in-the-Loop Learning for Streaming Data Setting

Experimental Setup. For HiLAD-Stream instantiation, we employ IFOR with the num-
ber of trees T = 100 and subsample size 256. This is similar to the setup for HiLAD-Batch.
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(b) Discovery performance comparison between
HiLAD-Batch-D and HiLAD-Batch

Figure 13: Results comparing diversified querying strategy HiLAD-Batch-D with baseline query
strategies HiLAD-Batch-T and HiLAD-Batch-R. The x-axis in (a) shows the number of query batches
(of batch size 3). The y-axis shows the difference in the number of unique classes seen averaged
across all batches till a particular batch. The solid lines in (a) show the average difference between
unique classes seen with HiLAD-Batch-D and HiLAD-Batch-T; the dashed lines show the average
difference between HiLAD-Batch-D and HiLAD-Batch-R. (b) presents the discovery performance for
HiLAD-Batch-D (dashed line). And the baseline is HiLAD-Batch (solid line)

In all HiLAD-Stream experiments, we set the number of queries per window Q = 20. The
total budget B and the stream window size K for the datasets were set respectively as
follows: Covtype (3000, 4096), KDD-Cup-99 (3000, 4096), Mammography (1500, 4096),
Shuttle (1500, 4096), Electricity (1500, 1024), Weather (1000, 1024). These values are rea-
sonable w.r.t the dataset’s size, the number of anomalies, and the rate of concept drift. The
maximum number of unlabeled instances residing in memory is K. When the last window
of data arrives, then human-in-the-loop learning is continued with the final set of unlabeled
data retained in the memory until the total budget B is exhausted. The instances are
streamed in the same order as they appear in the original public sources. When a new win-
dow of data arrives: HiLAD-Stream (KL Adaptive) dynamically determines which trees to
replace based on KL-divergence, HiLAD-Stream (Replace 20% Trees) replaces 20% old-
est trees, and HiLAD-Stream (No Tree Replace) creates the trees only once with the first
window of data and only updates the weights of the fixed leaf nodes using feedback.

7.2.1 Results for HiLAD-Stream Instantiation

Limited memory setting with no concept drift. The results on the four larger datasets
are shown in Figure 14. The performance is similar to what is seen on the smaller datasets.
Among the unsupervised algorithms in the batch setting, IFOR (Unsupervised Baseline)
and HST (HST-Batch) are competitive, and both are better than RSF (RSF-Batch). With
feedback, HiLAD-Batch is consistently the best performer. HST with feedback (HST-Batch
(Feedback)) always performs better than HST-Batch. The streaming algorithm with feed-
back, HiLAD-Stream (KL Adaptive), significantly outperforms Unsupervised Baseline
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(c) KDD-Cup-99
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Figure 14: Percentage of total anomalies seen vs. number of queries for the larger datasets in
the limited memory setting. HiLAD-Stream (KL Adaptive) and HiLAD-Stream-D apply the
Select-Top and Select-Diverse query strategies resp. Mammography, KDD-Cup-99, and Shuttle
have no significant drift. Covtype, which has a higher drift, is included here for comparison because
it is large.

and is competitive with HiLAD-Batch. HiLAD-Stream (KL Adaptive) performs better
than HST-Batch (Feedback) as well. HiLAD-Stream-D which presents a more diverse set
of instances for labeling performs similar to HiLAD-Stream (KL Adaptive). These results
demonstrate that the feedback-tuned anomaly detectors generalize to unseen data.

Figure 16 shows drift detection on datasets which do not have any drift. The stream-
ing window size for each dataset was set commensurate to its total size: Abalone(512),
ANN-Thyroid-1v3 (512), Cardiotocography(512), Covtype(4096), Electricity(1024), KDD-
Cup99 (4096), Mammography(4096), Shuttle(4096), Weather(1024), and Yeast(512).

Streaming setting with concept drift. Figure 17 shows the results after integrating
drift detection and label feedback with HiLAD-Stream for the datasets which are expected
to have significant drift. Both Covtype and Electricity show more drift in the data than
Weather (top row in Figure 17). The rate of drift determines how fast the model should
be updated. If we update the model too fast, then we loose valuable knowledge gained
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(a) ANN-Thyroid-1v3 (b) Covtype

Figure 15: Results for drift detection across windows. (a) When there is no drift, such as in ANN-
Thyroid-1v3, then no trees are replaced for most of the windows, and the older model is retained.
(b) If there is drift, such as in Covtype, then the trees are more likely to be replaced.

from feedback which is still valid. On the other hand, if we update the model too slowly,
then the model continues to focus on the stale subspaces based on the past feedback.
It is hard to find a common rate of update that works well across all datasets (such as
replacing 20% trees with each new window of data). Figure 17 (bottom row) shows that
the adaptive strategy (HiLAD-Stream (KL Adaptive)) which replaces obsolete trees using
KL-divergence, as illustrated in Figure 17 (top row), is robust and competitive with the
best possible configuration, i.e., HiLAD-Batch.

7.2.2 Parameter Sensitivity Analysis for HiLAD-Stream

HiLAD-Stream depends on drift detection measure. It has several approaches to replace
ensemble members: i) KL-adaptive, ii) a fixed amount of tree replacement, and iii) no re-
placement. KL-adaptive case, we focused on selection of 95 percentile threshold to discard
less important ensemble members(trees). We changed the decision threshold to observe
HiLAD-Stream’s sensitivity. Similar exploration was performed for fixed tree replacement
parameters from a wide range of parameters 5%, 10%, 15%, 20% 25%. Table 3 presents
our algorithms detection performance with the variation of parameters. KL based thresh-
old selection (95%) is the most stable one. In a real-world scenario, determining the fixed
replacement factors is infeasible, and KL-divergence based threshold approach will be the
recommended choice. We present support for this claim in Tables 7, 6, 8 for various number
of feedback. Our recommended choice seems to discover comparable amount of anomalies
compared to fixed settings. We highlighted the performance of our algorithm bold and un-
derlined the best result achieved with fixed drift amount. In a practical scenario, the amount
of drift is unknown hence setting the right configuration is always a challenging decision.
Whereas, our principled approach HiLAD-Stream determines such thresholds dynamically
and can reduce the burden from human experts on setting the fixed parameter.
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(a) Abalone (b) Cardiotocography

(c) Yeast (d) Mammography

(e) KDD-Cup-99 (f) Shuttle

Figure 16: The last data window in each dataset usually has much fewer instances and therefore, its
distribution is very different from the previous window despite there being no data drift. There-
fore, we ignore the drift in the last window. We did not expect Abalone, Cardiotocography,
KDDCup99, Mammography, Shuttle, Yeast, and ANN-Thyroid-1v3 (Figure 15a) to have much drift
in the data. This can also be seen in the plots where most of the windows in the middle of streaming
did not result in too many trees being replaced (the numbers in the parenthesis are mostly zero).
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(a) Covtype (b) Electricity (c) Weather

(d) Covtype (e) Electricity (f) Weather

Figure 17: Results for integrated drift detection and label feedback with HiLAD-Stream algorithm.
The top row shows the number of trees replaced per window when a drift in the data was detected
relative to previous window(s). The bottom row shows the percentage of total anomalies seen vs.
number of queries for the streaming datasets with significant concept drift.

Table 3: The fraction of total anomalies seen for all three datasets for streaming experiment. We
explored our algorithms tree replacement fraction using both (fixed replacement and KL-threshold)
approaches. It seems that KL-Divergence based technique with 95% showed stable performance
over fixed tree replacement (marked as bold). We also underlined the best results obtained from
all datasets.

Datasets (# of feedbacks)

Tree replacement
technique

Amount
Electricity
(1500)

Weather
(1000)

Covtype
(3000)

Fixed

5% 33.32 26.28 72.26
10% 34.29 27.91 72.59
15% 35.49 27.80 72.90
20% 35.98 29.13 72.64
25% 35.96 28.25 75.03
30% 35.89 27.90 77.86
50% 38.28 25.76 76.21
80% 38.64 20.63 63.49

KL
threhsold

(in percentile)

92.5% 32.70 25.08 80.58
95% 35.33 28.08 80.44
97.5% 35.14 28.32 79.76
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Figure 18: Class-wise feedback experiment with synthetic datasets. Figure (a) and (c) are presenting
two types of anomalies located two corners. And (b), (d) are showing how the algorithm rank data
points across the data space.

7.2.3 Anomaly Characterization From Label Feedback Using HiLAD

HiLAD can identify anomalies from different subspaces based on feedback. It takes into
account the users’ preferences (data point type and spatial location) to re-weight different
subspaces. In contrast, classical anomaly detection approaches always propose candidates
from the same ranked list. We demonstrate the performance of HiLAD on three cases (one
on synthetic, and two others from representative real-world datasets (Yeast and Abalone).

1. Synthetic dataset with two groups of anomalies created to provide controlled feed-
back. It’s clear from the score contour plots (Figure 18) that our algorithm pays
attention where the domain expert is interested.

2. Abalone contains two anomaly classes (Class 3 and Class 21 ). In our experiments, we
provided feedback from one class as anomalies and found that HiLAD ranked anomalies
from that class higher as shown in Figure 19.

3. Yeast contains three anomaly classes (POX, VAC, and ERL). The results of the
experiment where we provide feedback on only one class of anomalies is shown in
Figure 20.

We see similar behavior of the algorithm for classes VAC (Figure 20c) and ERL(Figure
20d) as we did for both classes of the Abalone dataset. However, for class POX we see an
initial higher gain with HiLAD-Batch than the unsupervised baseline before the unsupervised
baseline overtakes HiLAD-Batch. We took a closer look into the cause for this using t-SNE
plots (Figure 21). Here we see that there is one clustered group of anomalies (lower left) that
gets discovered fast initially by HiLAD-Batch and thus explains its initial steeper rise. But
then, rest of the anomalies belonging to POX are mixed within the nominal data and hence
harder to discover. Since these might be spread out among nominals, positive feedback
on one such anomaly does not get propagated to other anomalies efficiently. Moreover,
a negative feedback on a nominal data instance (a very likely scenario for this situation)
lowers the priority of an anomaly that is present in its proximity.
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(a) Abalone
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(b) Abalone(Class 3)
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(c) Abalone(Class 21)

Figure 19: Abalone dataset contains anomalies from two different classes. They are known as Class 3
and Class 21. The above figures are (a) feedback with HiLAD without class preferences (b) domain
expert is interested in examples from Class 21. (c) Class 3 is the point of interest. In all cases, we
notice that getting feedback on a particular class can help us to recognize more anomalies from any
particular class. (Note that for Figure (b) and (c) Y-axis represents what fraction of anomalies were
discovered from that class.)
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(a) Yeast
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(b) Yeast(Class POX)
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(c) Yeast(Class VAC)
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(d) Yeast(Class ERL)

Figure 20: Yeast contains anomalies from three classes known as VAC, POX, ERL. These plots are
presenting HiLAD-Batch is able to identify anomalous examples from a specific type of examples.
(Note that for Y-axis represents what fraction of anomalies were discovered from that class.)

(a) Abalone tSNE with class label (b) Yeast tSNE with class label

Figure 21: tSNE plot for Abalone and Yeast. Samples for each class are marked and color codes.
They are widespread on the data space
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7.3 Comparison with Recent Semi-Supervised Approaches

We propose effective instantiations of the generic human-in-the-loop learning framework
HiLAD for anomaly discovery. Prior works including (Siddiqui et al., 2018), (Das et al.,
2016), (Das et al., 2017) are notable methods in this line of work. All these prior meth-
ods used ensemble based approaches as a black-box system (Pevný, 2016). However, we
used tree-based ensembles / Isolation Forest (Liu et al., 2008) and exploited the inherent
structure of the trees to effectively utilize human feedback. Our experimental evaluation
considers all these works as baselines. Moreover, we did a fine-grained experimental com-
parison with (Siddiqui et al., 2018). Figure 22 shows the comparison of HiLAD-Batch with
feedback-guided anomaly detection via online optimization (Feedback-guided Online)
(Siddiqui et al., 2018). The results for KDDCup99 and Covtype could not be included
for Feedback-guided Online because their code3 resulted in error (Segmentation Fault)
when run with 3000 feedback iterations (a reasonable budget for the large datasets).

7.3.1 Comparison with Limited Labeled Set

In this section, we present a comparison with SOEL using the same experimental setup
followed in (Li et al., 2023). SOEL is a semi-supervised algorithm which, as per its orig-
inal design, does not expect a continuous user feedback cycle. Instead, SOEL assumes
that a limited amount of labeled data is already available. Under the experimental setup,
the datasets are first split into two parts (train, test). Next, a fixed number of labels
B are collected by following one of the nine query strategies from previous works: (1)
Mar (Görnitz et al., 2013), (2) Hybr1 (Görnitz et al., 2013), (3) Pos1 (Pimentel et al.,
2020), (4) Pos2 (Barnabé-Lortie, Bellinger, & Japkowicz, 2015), (5) Rand1 (Ruff et al.,
2018), (6) Rand2 (Trittenbach, Englhardt, & Böhm, 2021), (7) Hybr2, (8) Hybr3 (Ning,
Chen, Zhou, & Wen, 2022), and (9) SOEL (Li et al., 2023). Finally, the F1-score for
each query strategy is reported averaged over five runs. The train-test splits and initial-
ization were random for each experiment run. Hybr2 is attributed to a strategy discussed
in https://github.com/shubhomoydas/ad_examples but was implemented incorrectly in
(Li et al., 2023) with minimum euclidean distance between queried instances. The correct
implementation maximizes the euclidean distance to improve diversity.

Our first set of comparisons with SOEL (Table 4) are based on the four tabular datasets
from (Li et al., 2023). In these datasets, more than 30% samples are considered anomalies,
especially in the test set. HiLAD performed best on two out of four datasets. SOEL
performed best on Satellite, and Hybr1 was best on Ionosphere. Arguably, this setup has
a much higher proportion of anomalies than in real-world scenarios.

Our second set of comparisons with SOEL are based on the seven datasets from Table
2 where % of anomalies present in the test set are more realistic (< 10%). We follow the
same training methodology as in the previous experiment and report the results in Table
5. Here, HiLAD achieved the best F1-score on six out of seven datasets. A key takeaway
from both sets of results (Table 4 and Table 5) is that HiLAD’s performance is consistent
across different datasets.

Our third set of experiments are again based on datasets from Table 2. Here, we compare
the performance of algorithms as the amount of labeled data B during training time is

3. https://github.com/siddiqmd/FeedbackIsolationForest(retrieved on 10-Oct-2018)
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(a) Abalone
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(b) ANN-Thyroid-1v3
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(c) Cardiotocography
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(d) Electricity
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(e) Mammography

0 200 400 600 800 1000 1200 1400

# instances labeled
0

100

200

300

400

500

600

700

800

# 
of

 a
no

m
al

ie
s s

ee
n

HiLAD-Batch
Feedback Guided Online
Unsupervised Baseline

(f) Shuttle
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(g) Weather

0 50 100 150 200 250 300

# instances labeled
0

5

10

15

20

25

30

35

# 
of

 a
no

m
al

ie
s s

ee
n

HiLAD-Batch
Feedback Guided Online
Unsupervised Baseline
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Figure 22: Results comparing HiLAD-Batch with feedback-guided anomaly detection via online
optimization (Siddiqui et al., 2018). HiLAD-Batch is the tree-based model implemented in our
codebase and employs the AAD loss (anomalies score higher than τ -th quantile score and nominals
lower). Feedback Guided Online employs the linear loss in Siddiqui et al., 2018. Unsupervised

Baseline is the unsupervised Isolation Forest baseline. Both approaches perform similar on most
datasets. While HiLAD-Batch has slightly poor accuracy on Mammography than Feedback Guided

Online, HiLAD-Batch performs much better on Weather.

increased in the following order: 10, 20, 30, 40, 50. The results are reported in Figure 23. For
some datasets, we didn’t have 50 anomalous samples present. One interesting observation
is that with 10 labeled samples, HiLAD was not the best performer for Cardiotocography.
However, as more labeled samples were added, HiLAD’s performance improved, unlike other
methods whose performance didn’t.

160



Effectiveness of Tree-based Ensembles for Anomaly Discovery

Table 4: F1-score (%) with standard deviation for anomaly detection on tabular data when the query
budget |B| = 10. HiLAD performs the best on two of the four datasets whereas SOEL and Hybr1
performed the best on the rest two.

Dataset name Mar Hybr1 Pos1 Pos2 Rand1 Rand2 Hybr2 Hybr3 SOEL HiLAD

BreastW 81.6±0.7 83.3±2.0 58.6±7.7 81.3±0.8 87.1±1.0 82.9±1.1 55.0±6.0 79.6±4.9 93.9±0.5 0.958±0.00
Ionosphere 91.9±0.3 92.3±0.5 56.1±6.2 91.1±0.8 91.1±0.3 91.9±0.6 64.0±4.6 88.2±0.9 91.8±1.1 0.843±0.02

Pima 50.1±1.3 49.2±1.9 48.5±0.4 52.4±0.8 53.6±1.1 51.9±2.0 53.8±4.0 48.4±0.7 55.5±1.2 0.635±0.02
Satellite 64.2±1.2 66.2±1.7 57.0±3.0 56.7±3.2 67.7±1.2 66.6±0.8 48.6±6.9 56.9±7.0 71.1±1.7 0.674±0.00

Table 5: F1-score (%) with standard deviation for anomaly detection on tabular data when the query
budget |B| = 10. HiLAD performs the best on six of the seven datasets.

Dataset Rand1 Rand2 Mar Pos1 Pos2 Hybr1 Hybr2 Hybr3 SOEL HiLAD

Abalone 0.28±0.04 0.31±0.15 0.3±0.18 0.14±0.14 0.23±0.2 0.32±0.21 0.25±0.05 0.31±0.1 0.28±0.09 0.47±0.13
ANN-Thyroid-1v3 0.1±0.11 0.15±0.12 0.1±0.11 0.05±0.02 0.11±0.1 0.13±0.13 0.19±0.08 0.09±0.09 0.06±0.03 0.44±0.11
Cardiotocography 0.18±0.13 0.23±0.09 0.29±0.07 0.09±0.12 0.24±0.1 0.27±0.08 0.59±0.1 0.41±0.15 0.46±0.11 0.57±0.08

KDD-Cup-99 0.24±0.12 0.3±0.16 0.15±0.06 0.32±0.15 0.23±0.14 0.29±0.13 0.4±0.1 0.34±0.05 0.3±0.15 0.87±0.01
Mammography 0.02±0.02 0.01±0.01 0±0 0.01±0.02 0±0.01 0.02±0.02 0.01±0.01 0.01±0.02 0.01±0.01 0.34±0.06

Shuttle 0.31±0.14 0.36±0.19 0.42±0.23 0.49±0.4 0.52±0.16 0.46±0.17 0.66±0.29 0.55±0.18 0.63±0.1 0.83±0.04
Yeast 0.24±0.07 0.21±0.09 0.24±0.02 0.17±0.12 0.24±0.05 0.28±0.02 0.21±0.11 0.25±0.09 0.29±0.02 0.33±0.05

7.4 Broader Applicability of Insights and Algorithmic Ideas

We employed the tree-based approach as a device to demonstrate how our generic mecha-
nism for incorporating labeled anomalies can be applied to ensembles of anomaly detectors.
This technique can be applied in situations where an ensemble of detectors can be trained
inexpensively (e.g., using feature bagging (Lazarevic & Kumar, 2005), LODA (Pevný, 2016),
IFOR (Liu et al., 2008) etc.) or with more sophisticated methods (Ted et al., 2013). We
have focused on tree-based methods in this paper due to their popularity and frequent
state-of-the-art performance. Our algorithm makes an assumption that the data is i.i.d..
distributed in the form of tabular data with feature values and hence, we did not apply it
directly to raw data such as text and images. However, this is not a serious limitation. Deep-
learning-based anomaly detection methods that use deep learning to extract features (Pang,
Shen, Cao, & Hengel, 2021) can employ our proposed algorithm on the representation of
the data in the latent space where it is assumed that the data is i.i.d. distributed.

The proposed technique treats the subspaces at the tree leaves to be ensemble compo-
nents. GLAD (Islam, Das, Doppa, & Natarajan, 2020) uses the insights from this algorithm
and extends it to the extreme case where each instance is treated as a subspace; and then,
instead of trees, uses neural networks to incorporate feedback using a conceptually similar
loss function as proposed this paper. The strong results of GLAD algorithm demonstrate
that the key ideas behind the proposed algorithm are versatile.

7.5 Summary of Experimental Findings

We briefly summarize the main findings of our empirical evaluation of HiLAD framework.

• Uniform prior over the weights of the scoring function with tree-based ensembles to
rank data instances is very effective for human-in-the-loop anomaly detection. The his-
togram distribution of the angles between score vectors from Isolation Forest (IFOR)
and wunif show that anomalies are aligned closer to wunif .
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Figure 23: Comparison of F1 scores on the seven datasets with different query budgets (10, 20, 30,
40, and 50). HiLAD performs better as it gets more labeled samples.

• The diversified query selection strategy (Select-Diverse) based on compact descrip-
tion improves diversity over greedy query selection strategy with no loss in anomaly
discovery rate.

• The KL-Divergence based drift detection algorithm is very robust in terms of detecting
and quantifying the amount of drift. In the case of limited memory settings with no
concept drift, feedback tuned anomaly detectors generalize to unseen data. In the
streaming setting with concept drift, our HiLAD-Stream algorithm is robust and
competitive with the best possible configuration, namely, HiLAD-Batch.

• HiLAD can discover higher anomalies with limited labeled feedback. With more
labeled samples, it discovers more anomalies compared to baseline methods.
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8. Summary and Future Work

This paper studied a human-in-the-loop learning framework using tree-based anomaly de-
tector ensembles for discovering and interpreting anomalous data instances. We first ex-
plained the reason behind the empirical success of tree-based anomaly detector ensembles
and called attention to an under-appreciated property that makes them uniquely suitable
for label-efficient human-in-the-loop anomaly detection. We demonstrated the practical
utility of this property by designing efficient learning algorithms to support this framework.
We also showed that the tree-based ensembles can be used to compactly describe groups
of anomalous instances to discover diverse anomalies and to improve interpretability. To
handle streaming data settings, we developed a novel algorithm to detect the data drift
and associated algorithms to take corrective actions. This algorithm is not only robust,
but can also be employed broadly with any ensemble anomaly detector whose members can
compute sample distributions such as tree-based and projection-based detectors.

Our immediate future work includes deploying human-in-the-loop anomaly detection
algorithms in real-world systems to measure their accuracy and usability (e.g., qualitative
assessment of interpretability and explanations). Developing algorithms for interpretability
and explainability of anomaly detection systems is a very important future direction.
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Appendix A. Parameter Sensitivity for Streaming Algorithms

We provide comprehensive experimental results to evaluate the performance of our active
anomaly discovery algorithm for streaming data setting on the dataset described in section
7.2.2. Table 6, 7, 8 show the results for different experimental configurations. These results
demonstrate that irrespective of the label feedback budget and data drift our proposed
KL-based threshold selection approach remains stable.

Appendix B. Comparison with Streaming Anomaly Detectors

We performed a comparison with recent streaming based anomaly detection methods in-
cluding RRCF (Guha et al., 2016) and the classical baseline (Liu et al., 2008). Table 9,
10, and 11 demonstrate the better anomaly discovery performance of our HiLAD-Stream
approach for all three datasets, namely, Electrcity, Covtype, and Weather respectively.
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Table 6: Fraction of total anomalies discovered for Electricity dataset. We varied the fraction of
replaced trees for both fixed and KL-Divergence based approaches. KL-Divergence based approach
with 95% threshold shows stable results compared with other parameter settings (we marked this
row bold). We also underlined the best results obtained for different label feedback budget. Same
observation applies to the other two datasets as well. Therefore, we recommend this setting (KL-
Divergence with 95% threshold) can be used as the default configuration for all datasets.

Feedback received

Tree replacement
technique

Amount 0 250 500 750 1000 1250 1500

Fixed

5% 0.07 12.49 20.98 28.20 31.52 32.93 33.32
10% 0.07 12.60 21.40 28.56 32.21 33.75 34.29
15% 0.07 12.60 21.66 29.15 33.01 34.77 35.49
20% 0.07 12.48 21.65 29.53 33.34 35.42 35.98
25% 0.07 12.27 21.10 29.01 33.18 35.32 35.96
30% 0.07 12.38 21.16 28.78 33.02 35.14 35.89
50% 0.07 12.10 20.55 28.50 33.81 36.76 38.28
80% 0.07 11.84 20.08 27.98 33.83 37.14 38.64

KL
threshold

(in percentile)

92.5% 0.07 12.32 20.89 28.16 31.04 32.32 32.70
95.0% 0.07 12.39 21.33 28.88 32.83 34.58 35.33
97.5% 0.07 12.41 21.60 29.43 32.85 34.56 35.14

Table 7: Fraction of total anomalies discovered for Covtype dataset. We varied the fraction of
replaced trees for both fixed and KL-Divergence based approaches. KL-Divergence based approach
with 95% threshold shows stable results compared with other parameter settings (we marked this
row bold). We also underlined the best results obtained for different label feedback budget.

Feedback received

Tree Replacement 0 500 1000 1500 2000 2500 3000

Fixed

5% 0.04 17.80 35.60 52.55 64.66 70.77 72.26
10% 0.04 17.72 35.10 51.58 65.71 71.47 72.59
15% 0.04 17.64 34.67 50.75 64.99 71.28 72.90
20% 0.04 17.60 34.59 50.29 65.27 71.18 72.64
25% 0.04 17.57 34.59 50.37 66.06 73.16 75.03
30% 0.04 17.55 34.67 50.36 66.72 75.77 77.86
50% 0.04 17.38 33.92 48.78 64.63 74.19 76.21
80% 0.04 17.22 33.70 48.45 59.87 63.13 63.49

KL
threhsold

(in percentile)

92.5% 0.04 17.91 35.84 53.04 68.58 78.03 80.58
95.0% 0.04 17.91 35.85 53.01 69.17 78.42 80.44
97.5% 0.04 17.88 35.80 52.97 68.76 77.85 79.76
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Table 8: Fraction of total anomalies discovered for Weather dataset. We varied the fraction of
replaced trees for both fixed and KL-Divergence based approaches. KL-Divergence based approach
with 95% threshold shows stable results compared with other parameter settings (we marked this
row bold). We also underlined the best results obtained for different label feedback budget.

Feedback received

Tree Replacement
technique

Amount 0 250 500 750 1000

Fixed

5% 0.15 11.22 20.12 24.16 26.28
10% 0.15 11.33 20.43 25.44 27.91
15% 0.15 11.45 20.78 25.46 27.80
20% 0.15 11.60 21.23 26.05 29.13
25% 0.15 11.40 20.95 26.22 28.25
30% 0.15 11.75 20.82 25.44 27.90
50% 0.15 11.20 19.71 23.60 25.76
80% 0.15 11.11 17.39 20.14 20.63

KL
92.5% 0.15 11.01 19.05 22.88 25.08
95.0% 0.15 11.42 20.30 25.38 28.08
97.5% 0.15 11.81 21.13 25.81 28.32

Table 9: Comparison of fraction of total anomalies discovered for the Electricity dataset.

Feedback received

Algorithms 0 250 500 750 1000 1250 1500

IFor 0.07 7.51 15.15 20.59 24.59 27.51 28.99
RRCF 0.00 3.35 6.12 8.6 9.98 12.68 15.30

HiLAD-Stream(KL-95%) 0.07 12.39 21.33 28.88 32.83 34.58 35.33

Table 10: Comparison of fraction of total anomalies discovered for the Covtype dataset.

Feedback received

Algorithms 0 500 1000 1500 2000 2500 3000

IFor 0.04 12.11 17.88 23.99 31.43 36.48 40.90
RRCF 0.00 0.33 0.76 1.20 1.67 2.03 2.62

HiLAD-Stream(KL-95%) 0.04 17.91 35.85 53.01 69.17 78.42 80.44

Table 11: Comparison of fraction of total anomalies discovered for the Weather dataset.

Feedback received

Algorithms 0 250 500 750 1000

IFor 0.15 1.33 4.10 9.10 14.31
RRCF 0.15 2.4 6.10 8.54 11.59

HiLAD-Stream(KL-95%) 0.15 11.42 20.30 25.38 28.08
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