
Journal of Artificial Intelligence Research 78 (2023) 673–707 Submitted 03/2023; published 11/2023

On the Parallel Parameterized Complexity
of MaxSAT Variants

Max Bannach max.bannach@esa.int
European Space Agency, Advanced Concepts Team,
Noordwijk, The Netherlands

Malte Skambath malte.skambath@email.uni-kiel.de
Department of Computer Science, Kiel University,
Kiel, Germany

Till Tantau tantau@tcs.uni-luebeck.de
Institute for Theoretical Computer Science, Universität zu Lübeck,
Lübeck, Germany

Abstract
In the maximum satisfiability problem (max-sat) we are given a propositional formula

in conjunctive normal form and have to find an assignment that satisfies as many clauses as
possible. We study the parallel parameterized complexity of various versions of max-sat
and provide the first constant-time algorithms parameterized either by the solution size
or by the allowed excess relative to some guarantee. For the dual parameterized version
where the parameter is the number of clauses we are allowed to leave unsatisfied, we
present the first parallel algorithm for max-2sat (known as almost-2sat). The difficulty
in solving almost-2sat in parallel comes from the fact that the iterative compression
method, originally developed to prove that the problem is fixed-parameter tractable at
all, is inherently sequential. We observe that a graph flow whose value is a parameter
can be computed in parallel and develop a parallel algorithm for the vertex cover problem
parameterized above the size of a given matching. Finally, we study the parallel complexity
of max-sat parameterized by the vertex cover number, the treedepth, the feedback vertex
set number, and the treewidth of the input’s incidence graph. While max-sat is fixed-
parameter tractable for all of these parameters, we show that they allow different degrees
of possible parallelization. For all four we develop dedicated parallel algorithms that are
constructive, meaning that they output an optimal assignment – in contrast to results that
can be obtained by parallel meta-theorems, which often only solve the decision version.

1. Introduction

Maximum satisfiability problems ask us to find solutions for constraint systems that satisfy
as many constraints as possible. The perhaps best-studied version is max-sat, where the
constraint system is a propositional formula in conjunctive normal form, and the goal is
to find an assignment that satisfies the largest number of clauses possible. The problem is
NP-complete even restricted to formulas with at most two literals per clause (Garey et al.,
1976). It is also the canonical complete problem for the optimization class MaxSNP and
central in the research of approximation algorithms (Papadimitriou & Yannakakis, 1991).
Many real-world problems can be encoded as max-sat instances, which led to the successful
development of exact solvers, see Chapter 23 and 24 in (Biere et al., 2021). Following the

©2023 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Bannach, Skambath, & Tantau

positive example of sat solvers, these tools became ever better over the last decades – reg-
ularly breaking theoretical barriers in practice. In search of an explanation for this phe-
nomenon, theoreticians studied the parameterized complexity of max-sat (Alon et al., 2011;
Crowston et al., 2013; Dell et al., 2017; Iwata et al., 2014; Narayanaswamy et al., 2012;
Reed et al., 2004), resulting in concepts like parameterization above a guarantee (Mahajan
& Raman, 1999) or dual parameterizations (Razgon & O’Sullivan, 2009).

With membership in the class para-P (or FPT) of fixed-parameter tractable problems
settled for many variants of max-sat, a new question has surfaced both in theoretical
and practical research over the last decade: Which problems admit parallel fpt-algorithms,
that is, which problems lie in para-NC, the parameterized version of NC? The vertex
cover problem is the poster child for such a problem as it lies even in para-AC0, which
is the smallest commonly studied parameterized class and can be thought of as “solvable
with fpt-many parallel processing units in constant time” (Bannach et al., 2015). Many of
the important tools underlying fpt-theory, such as search trees, graph decompositions, or
kernelizations, have been adapted to the parallel setting by different research groups (Abu-
Khzam & Kontar, 2020; Bannach et al., 2015; Chen & Flum, 2020; Pilipczuk et al., 2018).

1.1 Contributions of this Article

In this paper we study the parallel complexity of maximum satisfiability problems for var-
ious parameterizations. We show that the parallel fpt-toolkit can be used to establish
parallel algorithms for max-sat parameterized by the solution size or parameterized above
some guarantee. We also develop dedicated algorithms for the problem parameterized by
the structural parameters treewidth, feedback vertex set number, treedepth, and vertex cover
number and observe an ever higher level of achievable parallelization. Our most techni-
cal contribution is a parallel algorithm for pk-almost-2sat, which is max-2sat for the
dual parameterization where we try to satisfy at least m − k clauses in a given 2cnf for-
mula1. This problem has stubbornly resisted all known techniques in the parallel fpt-toolkit:
First, one cannot use algorithmic meta-theorems that are often used to show membership
in para-NC. The algorithmic meta-theorems for second-order logic (Bannach & Tantau,
2016) fail as the underlying incidence graphs generally do not have bounded treewidth, and
those for first-order logic (Chen et al., 2017; Flum & Grohe, 2003; Pilipczuk et al., 2018)
fail as the satisfiability of a 2cnf formula is not first-order definable. Second, the central
tool for showing that it lies in para-P, namely iterative compression (Razgon & O’Sullivan,
2009; Reed et al., 2004), is – as the name suggests – highly sequential.

We develop new tools that go beyond the established toolkits and involve two ideas.
First, we make a simple, but non-trivial, observation concerning the parallel computation
of graph flows. While computing graph flows is P-complete (Goldschlager et al., 1982)
and, thus, most likely not paralellizable and while even computing a 0-1-flow in parallel
is a long standing open problem (Karp et al., 1986), we observe that computing a flow of
parameter value k can be done in k consecutive rounds of a parallel Ford-Fulkerson (Ford &
Fulkerson, 1956) step. The second idea is more complex, as we study a seemingly different

1. In the article m is always the number of clauses, n the number of variables, k a positive integer parameter,
and “p-” indicates a parameterized problem with the index being the parameter. Variables occurring in
problem names such as in dsat are fixed constants

674

On the Parallel Parameterized Complexity of MaxSAT Variants

problem: vertex cover, but not with the sought size of the vertex cover as the parameter,
but with the (smaller and hence less restrictive) parameter “integrality excess of the lp.”
An fpt-reduction from parameterized almost-2sat to this vertex cover version is well
known (Razgon & O’Sullivan, 2009). To compute vertex covers for this “looser” parameter
in parallel, we combine results by Iwata, Oka and Yoshida (Iwata et al., 2014) on the
properties of the Hochbaum network underlying the linear program and apply the earlier-
mentioned observations on graph flows.

Contribution I. We settle the parallel complexity of max-sat for the canonical pa-
rameters k (solution size) and g (solution size minus dm2 e): pk-max-sat ∈ para-AC0,
but pg-max-sat is para-TC0-complete. If we assume that clauses have size exactly d
(max-edsat), we show that an “above average version” lies in para-AC0 as well – a version
that is known to be para-NP-hard if the size of the clauses is unbounded.

Contribution II. We study variants of pk-almost-sat (max-sat parameterized dually)
and present, for the first time, parallel algorithms for this problem on various classes of
cnfs. The main achievement is a para-NC algorithm for the problem restricted to 2cnfs.

Contribution III. The structural parameters vertex cover number, treedepth, feedback
vertex set number, and treewidth are classical graph parameters2 that can be applied to
formulas by considering a graph representation (such as the incidence or primal graph,
formal definitions follow) of the formula. The parameters are partially ordered, meaning
that graphs of bounded vertex cover number have bounded treedepth and so on. It is known
that max-sat is in para-P parameterized by any of these, but the sequential algorithms tend
to hide beneficial properties gained by more restrictive parameterizations. We show that we
obtain a higher level of parallelization for larger parameters (reaching from para-TC0 and
para-TC0↑, over para-TC1↑, up to para-AC2↑). Additionally, our algorithms are constructive
(they output an optimal assignment), which is in contrast to existing parallel meta-theorems.

Table 1 on the next page provides an overview of all results presented within this
manuscript. As byproducts, we establish results that may be of independent interest: First,
we present an alternative characterization of the “up-classes”. Second, we lower the complex-
ity of the feedback vertex set problem to para-L↑, which is obtained “by iterating a para-L
computation parameter-many times.” Third, we obtain para-NC algorithms for problems
that can be reduced to pk-almost-2sat – including the odd cycle transversal problem (can
we make a given graph bipartite by deleting k vertices?).

1.2 Related Work

A conference version of this article was presented at SAT 2022 (Bannach et al., 2022a).
The parameterized complexity of max-sat is an active field of research dating back to
the pioneering work by Mahajan and Raman (Mahajan & Raman, 1999). Since then,
parameterized algorithms for ever looser parameters have been found (Crowston et al.,
2011, 2012; Gutin et al., 2013) or their existence has been refuted (Crowston et al., 2013).
This research has also branched out into the study of preprocessing algorithms (Gaspers

2. Since the main content of this paper is not about graph theory, we refer the reader to the textbook
of Diestel (2012) for an introduction and give only small preliminaries in Section 2. The book by Cygan
et al. (2015) presents these concepts in the context of parameterization.

675

Bannach, Skambath, & Tantau

& Szeider, 2011, 2014), parameterized heuristics (Szeider, 2011), and algorithms utilizing
structural decompositions (Dell et al., 2017; Grohe, 2006). However, to the best of our
knowledge, not yet to parallel parameterized algorithms.

While research on parallel fixed-parameter algorithms dates back to the early 1990s
to the study of the space complexity of parameterized problem (Cai et al., 1997) (via the
inclusion chain NC1 ⊆ L ⊆ NL ⊆ AC1), a systematic study of parallel fixed-parameter
algorithms started only in the last decade (Elberfeld et al., 2015). Since then, a toolbox
has been compiled that contains algorithmic meta-theorems both for monadic second-order
logic (Bannach & Tantau, 2016) and for first-order logic (Chen et al., 2017; Flum & Grohe,
2003; Pilipczuk et al., 2018).

1.3 Organization of this Paper

After some preliminaries in the next section, we study max-sat parameterized by the
solution size and parameterized above a guarantee in Section 3. We continue and study
max-sat variants with a dual parameterization in Section 4. The largest and technical
most involved part here is a parallel algorithm for pk-almost-2sat. Finally, we consider
structural parameterizations of max-sat in Section 5 and establish a connection between
the level of parallelization we can achieve and the used parameter.

2. Background on Parameterized Problems and Classes

We start with the necessary definitions, especially about propositional logic and the opti-
mization variant of the satisfiability problem. This section also provides a light introduction
to the network theory underlying some of our results are based, as well as on parallel pa-
rameterized complexity.

2.1 Propositional Logic and MaxSAT

We assume an infinite supply of propositional variables x1, x2, . . . and call a variable x
or its negation ¬x a literal. A propositional formula in conjunctive normal form (a cnf)
φ is a conjunction of disjunctions of literals, for instance φ = (x1 ∨ x2 ∨ ¬x2) ∧ (x1) ∧
(x1) ∧ (x2 ∨ x2). We write vars(φ) for the set of variables in φ and clauses(φ) for the
multiset of clauses, which are the sets of literals in the disjunctions, e.g., clauses(φ) ={
{x1, x2,¬x2}, {x1}, {x1}, {x2}

}
. We denote |vars(φ)| by n and |clauses(φ)| by m (so n = 2

and m = 4 in the example), and let m∅ be the number of empty clauses.
An assignment β : vars(φ)→ {0, 1} maps every variable of φ to a truth value. It satisfies

a literal ` if ` = x and β(x) = 1 or if ` = ¬x and β(x) = 0. Furthermore, it satisfies a
clause C (denoted by β |= C) if it satisfies at least one literal in it; it nae-satisfies a clause
if it additionally falsifies at least one literal (“not-all-equal-satisfies”).

The max-sat problem asks, given a cnf φ and a number k, whether there is an assign-
ment β that satisfies at least k clauses. If β satisfies all m clauses, then β |= φ, i.e., β is a
model of φ. Variations are obtained by modifying the condition of a clause being satisfied,
e.g., in max-nae-sat we seek an assignment that nae-satisfies at least k clauses.

676

On the Parallel Parameterized Complexity of MaxSAT Variants

Table 1: Variations of the maximum satisfiability problem studied within this paper (formal
definitions of the problems will be given in the sections containing the references).
The lower bounds are the trivial ones, while the upper bounds are proven in
the referenced theorems or lemmas. If the result is marked as constructive, a
corresponding optimal assignment can be produced (this either is proven directly,
or the presented algorithm can be modified in an obvious way).

Complexity Bound Constructive?
Problem Lower Upper Clause Size Reference
Can Be Solved Using Color Coding
pk,t-max-δ-circuit-sat para-AC0 para-AC0 unbounded 3 Theorem 6
pk-max-sat para-AC0 para-AC0 unbounded 3 Corollary 9
pk-max-nae-sat para-AC0 para-AC0 unbounded 3 Corollary 9
pk,d,x-max-exact-sat para-AC0 para-AC0 ≤ d 3 Corollary 9
pk,d-max-dnf para-AC0 para-AC0 ≤ d 3 Corollary 9
pg-max-sat-above-half para-TC0 para-TC0 unbounded 7 Theorem 11
Can Be Solved Using Algebraic Techniques
pg-max-d=sat-above-average para-AC0 para-AC0 = d 7 Lemma 13
Can Be Solved Using Graph Flows
pk-almost-nae-2sat para-L para-NL↑ ≤ 2 3 Theorem 15
pk-almost-2sat para-NL para-NL↑ ≤ 2 3 Theorem 15
Can Be Solved Using Graph Extensions
pk-almost-nae-sat(2) para-L para-L unbounded 7 Theorem 37
pk-almost-sat(2) para-L para-L unbounded 7 Theorem 37
Can Be Solved Using Reduction to Vertex Cover
pk-almost-dnf para-AC0 para-AC0 unbounded 3 Theorem 40
pk-min-sat para-AC0 para-AC0 unbounded 3 Lemma 41
Can Be Solved Using Dynamic Programming
pvc-partial-max-sat para-TC0 para-TC0 unbounded 3 Theorem 42
ptd-partial-max-sat para-TC0 para-TC0↑ unbounded 3 Theorem 42
pfvs-partial-max-sat para-L para-TC1↑ unbounded 3 Theorem 42
ptw-partial-max-sat para-L para-AC2↑ unbounded 3 Theorem 42

2.2 Graphs, Networks, and Flows

In this paper, graphs are pairs G = (V,E) of finite sets of vertices and edges. In this context,
n denotes |V | and m denotes |E|. For undirected graphs, edges are two-element subsets
of V , for directed graphs (digraphs) E ⊆ V × V . A walk in G of length p is a sequence
(v0, . . . , vp) of vertices vi ∈ V with (vi, vi+1) ∈ E (or {vi, vi+1} ∈ E for undirected graphs)
for all i ∈ {0, . . . , p − 1}. A path is a walk in which all vertices (and hence all edges) are
distinct. A cycle is a walk of length at least 3 in which all vertices are distinct expect for
the first and last, which must be identical. For a set S ⊆ V we write G − S for the graph

677

Bannach, Skambath, & Tantau

induced on the set V \ S. For an undirected graph G the neighborhood N(v) of a vertex v
is the set {u ∈ V | {u, v} ∈ E}, the degree of v is |N(v)|.

We think of digraphs G = (V,E) with two designated vertices s, t ∈ V as networks, and
we always assume that in networks between any two different vertices u and v at most one
edge is present (either (u, v) or (v, u)) – if this is not the case we may simply subdivide
each edge. A 0-1-flow from s to t in G is a mapping f : E → {0, 1} such that for all
v ∈ V \ {s, t} we have

∑
(u,v)∈E f(u, v) =

∑
(v,w)∈E f(v, w). The value |f | of a flow is

defined as the amount |f | =
∑

(s,v)∈E f(s, v) −
∑

(w,s)∈E f(w, s) of flow leaving the source
(or, equivalently, arriving at the target). For a flow f in a network G, the residual graph
Rf = (V,Ef) contains all edges of G that are not part of the flow and all reversed edges of
the flow:

Ef = {(u, v) ∈ E | f(u, v) = 0} ∪ {(v, u) ∈ V × V | f(u, v) = 1}.

2.3 Classic Parameterized Problems and Complexity Classes

A parameterized problem is a set Q ⊆ Σ∗×N, where N is the set of non-negative integers. In
an instance (w, k) we call w the input (typically a cnf in this paper) and k the parameter.
For instance, pk-max-sat = {(φ, k) | φ has an assignment satisfying at least k clauses}. We
indicate the parameter as a subscript to the leading “p”.

A parameterized function is a mapping F : Σ∗ × N → Σ∗ × N such that the output
parameter is bounded in terms of the input parameter, i.e., there is a function b : N→ N with
k′ ≤ b(k) whenever F (w, k) = (w′, k′). The characteristic function χQ of a parameterized
problem Q maps (w, k) ∈ Q to (1, 0) and (w, k) /∈ Q to (0, 0).

In parameterized complexity theory, the class para-P (also known as FPT) takes the role
of P in classical complexity theory. A parameterized problem Q is in para-P if there is an
algorithm that decides whether (w, k) ∈ Q holds in time f(k) · nO(1) for some computable
function f . A parallel parameterized algorithm is able to decide the same question by a
logarithmic-time-uniform3 family of unbounded fan-in circuits of depth O(logi n) for some
fixed i (note that the depth does not depend on k) and size f(k) · nO(1). The problem is
then in the class para-ACi or, in the presence of threshold gates, para-TCi. Define para-NC

as the union of all these para-ACi classes or, equivalently, the union of all para-TCi classes.

2.4 Up-Classes

The “up-arrow notation” was originally introduced in the context of parameterized circuit
classes (Bannach et al., 2015) to denote circuits that arise from taking a circuit of a certain
depth (like log n) and then allow “parameter-dependent-many layers” of such circuits (re-
sulting in a depth like f(k) log n). In this paper, we define the notation as the “closure of
a parameterized function class under parameter-dependent-many iterations of linear func-
tions,” which yields the same circuit classes, but also yields natural “up-versions” of para-L
and para-NL. In detail, we take a parameterized function class and allow the functions in it
to be applied to an input not just once, but rather “parameter-dependent-many times.” One
must be a bit careful, though, to ensure that the intermediate results do not get too large:

3. Details about uniformity will not be of importance in our study. We refer the interested reader to (Ban-
nach et al., 2015; Barrington et al., 1990; Chen & Flum, 2016) and abbreviate “logarithmic-time-uniform”
with “uniform” in the following.

678

On the Parallel Parameterized Complexity of MaxSAT Variants

We need to require that the function we apply iteratively causes only a linear increase in the
output size. For this, let us call a parameterized function F linear if |F (w, k)| ≤ f(k) · |w|
for some computable f .

Definition 1. Let para-FC be a class of parameterized functions. A parameterized func-
tion F lies in para-FC↑ if there are

1. an initial function I ∈ para-FC,

2. a linear iterator function L ∈ para-FC, and

3. a computable iteration number function r : N→ N,

such that F (w, k) = Lr(k)(I(w, k)), where Lr is the r-fold composition (or iteration) of L
with itself. A problem lies in para-C↑ if its characteristic function lies in para-FC↑.

As mentioned above, our motivation for this (new) definition of up-classes is that it
naturally yields the classes para-L↑ and para-NL↑ based on para-FL and para-FNL, the
parameterized versions of FL and FNL. These latter classes contain all functions F : Σ∗ → Σ∗

such that a Turing machine (deterministic for L, non-deterministic for NL) with a read-
only input tape and a write-only output tape produces F (w) on input w ∈ Σ∗ using only
O(log |w|) cells on its work tape (in the non-deterministic case, all halting computations
must lead to F (w) on the output tape). It is worth noting that both FL and FNL are
closed under composition (the Immerman-Szelepcsényi Theorem is needed for FNL) and that
they only contain functions F with |F (w)| ≤ |w|O(1). The parameterized function classes
are defined analogously, only they contain parameterized functions F : Σ∗ × N → Σ∗ × N
and the machines may use f(|w|) + O(log |w|) cells on the work tape on input (w, k) for
some computable function f : N → N. Note that the maximum length of F (w) is now
f ′(|w|)·|w|O(1) for some computable function f ′. These classes are closed under composition.

Example 2 (Computing Feedback Vertex Sets Using Logspace-Up-Classes). To help read-
ers get a better feeling for our definition of the up-classes, we argue that on input of a pair
(G, k) a size-k feedback vertex set in G can be computed in para-FL↑, if one exists.

According to the definition, we have to provide two functions I, L ∈ para-FL such that
I maps inputs (G, k) to initial instances (w0, k0) and such that L outputs a new instance
(wi+1, ki+1) on its output tape while reading (wi, ki) from its input tape. Each time the
machine underlying the function L is run, it can freely access the output of the previous
iteration (in a read-only fashion).

We develop a bounded search tree algorithm of depth k. To that end, I simply translates
(G, k) to a list with a single element

(
((G, ∅), k)

)
. We will keep the invariant that the second

part of (G, ∅) is a partial feedback vertex set of G. The iterator function L takes such a
list, processes each item in it, and outputs a potentially larger list.

In detail, for a list
(
((G1, S1), k1), . . . , ((G`, S`), k`)

)
the following logspace operations

are performed on all tuples ((Gj , Sj), kj): First, all degree-1 vertices are removed; secondly,
all paths of degree-2 vertices are contracted. If the resulting graph G′

j contains a vertex v
with a self-loop, any solution has to contain v. Therefore, the machine maps (Gj , kj) to
((G′

j − {v}, Sj ∪ {v}), kj − 1) in the output list. Otherwise the minimum degree of G′
j is 3

and a well-known fact states that any size-kj feedback vertex set of G′
j has to contain one

679

Bannach, Skambath, & Tantau

of the 3kj vertices v1, . . . , v3kj of highest degree (Cygan et al., 2015, Lemma 3.3). Thus, the
machine branches on these vertices (and simulates the corresponding bounded search tree)
by mapping (Gj , kj) to

(
((G′

j−{v1}, Sj∪{v1}), kj−1), . . . , ((G′
j−{v3kj}, Sj∪{v3kj}), kj−1)

)
.

We can check in logspace whether one of the instances in the current list is a forest,
in which case a solution S was found. On the other hand, after at most k iterations all
parameter values fall to 0 and, hence, the machine recognizes that it deals with a no-instance.

Observe that in any iteration, the output list is larger than the input list by a factor of
at most 3k and, hence, the function L is linear in the sense of Definition 1.

It is, of course, important that our new (and arguably more complex) definition of
up-classes is still compatible with the original definition in the literature (Bannach et al.,
2015), where para-ACi↑ is defined as the class of problems decidable by circuits of depth
f(k) · O(logi n) and size f(k) · nO(1). The following lemma shows that, indeed, the two
definitions yield the same classes, and it implies the chain of inclusions shown in Figure 1.
Lemma 3. A problem Q is in para-ACi↑ (in the sense of Defintion 1) iff Q can be decided
by a family of Boolean circuits of depth f(k) · O(logi n) and size f(k) · nO(1) for some
computable function f .
Proof. If Q ∈ para-ACi↑ via functions I, L, and f , where I is implemented by circuit
family CI and L by CL, both of depth O(logi n), the claimed family of circuits simply
consists of CI followed by f(k) copies of CL. For the other direction, let C = (Cn,k)n,k∈N
be a family of depth f(k) · O(logi n) that decides Q. The circuit family CI then maps an
input (w, k) to (C ′, k) where C ′ is the following partially evaluated circuit: It is C|w|,k with
(only) the input gates evaluated to the corresponding bits of w. The iteration function L
then takes a partially evaluated circuit and does O(logi n) “rounds of evaluation,” which
just means that any gate whose inputs have all been evaluated gets evaluated itself. Clearly,
a single round of evaluating gates can be done by an AC0 circuit, so O(logi n) rounds can
be done by an ACi circuit. Putting it all together, we see that after applying Ci and then
f(k) times the iteration function, we map the input to the fully evaluated circuit C|w|,k and
can, thus, obtain the desired output from the output gate in the last iteration.

para-AC0 para-TC0 para-NC1 para-L para-NL para-AC1

para-AC0↑ para-TC0↑ para-NC1↑ para-L↑ para-NL↑ para-AC1↑

para-AC2

Figure 1: Inclusions among parallel parameterized complexity classes within para-P. An
arrow from A to B means A ⊆ B, and a dashed arrow indicates A (B. The in-
clusions between the two rows follow from arguments for the up-classes (Bannach
et al., 2015) and the other inclusions follow from the standard inclusion chain
AC0 (TC0 ⊆ L ⊆ NL ⊆ AC1 ⊆ AC2 ⊆ P.

The following lemma, needed later on, provides evidence that the proposed definition
of up-classes is “well-behaved” (the technical report (Bannach et al., 2022b) contains the
simple-but-technical proof, which does not lie at the heart of the present paper):
Lemma 4 ((Bannach et al., 2022b)). para-FNL↑↑ = para-FNL↑.

680

On the Parallel Parameterized Complexity of MaxSAT Variants

3. MaxSAT Variants Parameterized by Solution Size

A natural parameterization of a problem such as max-sat is to take as parameter k the
size of the sought solution. It is well-known that the corresponding problem pk-max-sat
is in para-P (Mahajan & Raman, 1999). We prove in Section 3.1 that the problem lies in
para-AC0 and that this result generalizes to a broader range of problems. It is also known
that a version with a less restrictive parameter is in para-P as well (Mahajan & Raman,
1999): pg-max-sat-above-half asks whether there is an assignment that satisfies at least
dm−m∅

2 e+ g clauses, where m is the total number of clauses and m∅ the number of empty
clauses in the input. We show in Section 3.2 that this problem is strictly harder than
pk-max-sat, as it is complete for para-TC0.

3.1 Maximum Bounded-Circuit Satisfiability

We consider four variants of max-sat, where we maximize the number of clauses
• for pk-max-sat in which at least one literal is true;
• for pk-max-nae-sat in which at least one literal is true and one is false;
• for pk,d,x-max-exact-sat in which exactly x of the d literals are true;
• for pk,d-max-dnf in which all of the d literals are true.

All of these problems are special cases of Problem 5 below. For its definition, we say that
a Boolean function f : {0, 1}n → {0, 1} is t-robust if for every x ∈ {0, 1}n with f(x) = 1
there is a set of at most t indices such that f(y) = 1 for any y ∈ {0, 1}n that equals x on
these indices. For instance, a clause on d literals is 1-robust, while a term (a conjunction
of literals) is d-robust. We are interested in the following promise problem:

Problem 5 (pk,t-max-δ-circuit-sat).
Instance: Integers k and t, AC-circuits C1, . . . , Cm, all connected to the same n input

variables x1, . . . , xn, all with a single output gate, and all of depth at most δ.
Parameter: k + t
Question: Is there an assignment from the input variables to {0, 1} such that at least k

circuits evaluate to 1?
Promise: All circuits compute a t-robust function.

Theorem 6. pk,t-max-δ-circuit-sat ∈ para-AC0.

Proof. We start with some observations. First, a para-AC0 circuit can, given an assignment
to the input variables, evaluate every input circuit C1, . . . , Cn as these are all of constant
depth at most δ. Second, a para-AC0 circuit can also check whether at least k of these
circuits evaluate to 1 (since para-AC0 circuits can simulate threshold gates with parameter
bounded thresholds (Bannach et al., 2015)). Third, since it is promised that all circuits are
t-robust, we need to set at most t variables correctly in order to let a circuit evaluate to 1.
Hence, if there is a solution that satisfies k circuits, we have to find the correct truth value
for at most tk variables – of course, we do not know of which tk variables.

To find them, we use the well-known color coding technique (Alon et al., 1995) and
its constant-detph derandomization (Bannach et al., 2015). The proof hinges on universal
coloring families and the fact that we can compute them quickly in parallel:

681

Bannach, Skambath, & Tantau

Definition 7 (Universal Coloring Families). For natural numbers n, k, and c, an (n, k, c)-
universal coloring family is a set Λ of functions λ : {1, . . . , n} → {1, . . . , c} such that for
every subset S ⊆ {1, . . . , n} of size |S| = k and for every mapping µ : S → {1, . . . , c} there
is at least one function λ ∈ Λ with ∀s ∈ S : µ(s) = λ(s).

Fact 8 (Theorem 3.2 in (Bannach et al., 2015)). There is a uniform family (Cn,k,c)n,k,c∈N
of AC-circuits without inputs such that each Cn,k,c

1. outputs an (n, k, c)-universal coloring family (coded as a sequence of function tables),

2. has constant depth (independent of n, k, or c), and

3. has size at most O(n log c · ck2 · k4 log2 n).

To solve pk,t-max-δ-circuit-sat, we use a (n, tk, 2)-universal coloring family Λ. In-
tuitively, we “color” the variables with two colors, which we interpret as assigning truth
values to them. Clearly, if the input is a no-instance, no coloring will satisfy k circuits and
we can correctly reject. On the other hand, assume there is some assignment that satisfies
at least k circuits. Then, by the above observations, there are tk variables y1, . . . , ytk that,
if set correctly, satisfy the same k circuits. By Definition 7, there is at least one λ ∈ Λ that
realises exactly this correct assignment and, hence, by testing all colorings of Λ in parallel,
we can decide whether at least one assignment satisfies k or more circuits.

Corollary 9. The problems pk-max-sat, pk-max-nae-sat, pk,d,x-max-exact-sat, and
pk,d-max-dnf are in para-AC0.

3.2 Maximum Satisfiability Above Guarantee

The solution size is a restrictive parameter for problems such as max-sat, because every
instance has relatively large solutions. In particular, if φ is a cnf with m clauses of which m∅
are empty, then φ has an assignment that satisfies at least dm−m∅

2 e clauses: Pick an arbitrary
assignment β and observe that either β or its bitwise complement satisfies half of the
clauses (Mahajan & Raman, 1999). Hence, parallel algorithms should be able to deal with
large k and, thus, require a parametrization that can be small even if k is large.

We start with a problem of the form Q = {(w, k) | opt(w) R k}, where opt(w) is
some property to be evaluated. The new problem has the form Q′ =

{(
(w, π), g

)
| π is an

easily checkable proof for opt(w) ≥ γ(π), and opt(w) R γ(π) + g
}

. Here, γ(π) is called
the guaranteed lower bound proved by π or just the guarantee. For Q = pk-max-sat the
situation is particularly easy, as we can take as proof π a tautology (since there is nothing
to prove in this case) and set γ(π) = dm−m∅

2 e. Note that Q′ is conceptually harder than Q:
An fpt-algorithm for Q′ must find a (possibly large) optimal solution, but may only use
time f(g) · nO(1) for a (possibly small) difference g.

Problem 10 (pg-max-sat-above-half).
Instance: A cnf φ with m clauses of which m∅ are empty, and a difference g ∈ N.
Parameter: g
Question: Is there an assignment that satisfies at least dm−m∅

2 e+ g clauses?

682

On the Parallel Parameterized Complexity of MaxSAT Variants

Algorithms for above-guarantee parameterizations have led to a number of algorithmic
breakthroughs, for instance in the design of algorithms for almost-2sat (Narayanaswamy
et al., 2012), linear-time fpt-algorithms (Iwata et al., 2014), or stricter parameterizations of
vertex-cover (Garg & Philip, 2016). One of them is due to Mahajan and Raman (1999):

pg-max-sat-above-half ∈ para-P.

The following theorem sharpens this result by showing that pg-max-sat-above-half is
para-TC0-complete. This pinpoints the intuition that above-guarantee parameterizations
are harder than their counterparts, as we obtain that pg-max-sat-above-half is strictly
harder than pk-max-sat (since we have unconditionally para-AC0 (para-TC0).

Theorem 11. pg-max-sat-above-half is ≤para-AC0

tt -complete for para-TC0.

Proof. We prove containment with a parallel version of the algorithm from Mahajan and
Raman (1999). The following reduction rules are easily seen to be safe (empty clauses
cannot be satisfied and do not count towards the lower bound; any assignment satisfies
exactly one of the two unit clauses):

Rule 1 (Empty Clauses). If there are empty clauses, remove them.

Rule 2 (Unit Pair). If there are two unit clauses (x) and (¬x), remove both.

An exhaustive application of Rule 2 can be carried out in TC0 by counting for every
variable x ∈ vars(φ) the number of unit clauses that contain x or ¬x, respectively.

Rule 3 (Trivial Decision). Reduce to a trivial yes-instance if there are at least dm/2e + g
unit clauses or at least 4g + 4 non-unit clauses.

Rule 3 is safe if Rules 1 and 2 cannot be applied: The amount of unit clauses alone
would constitute a solution and every cnf on m clauses with m∅ = 0 and p non-unit clauses
has an assignment that satisfies at least dm/2e+p/4−1 clauses (Mahajan & Raman, 1999,
Proposition 8). Hence, every such formula with 4g + 4 non-unit clauses is a yes-instance.

Finally, assume we have a formula φ with m clauses and parameter g, to which the
Rules 1–3 cannot be applied. Then m ≤ (dm/2e+ g − 1) + (4g + 4− 1) = dm/2e+ 5g + 2
and, thus, bm/2c ≤ 5g + 2 and dm/2e ≤ 5g + 3. Hence, the problem has reduced to the
question whether there is an assignment that satisfies at least k = dm/2e + g ≤ 6g + 3
clauses, which we can answer with Corollary 9 as k depends only on the parameter g.

For hardness we perform a truth-table reduction from a parameterized version of the
majority problem: p0-majority (the majority problem ask whether a binary string contains
more 1s than 0s; the trivial parameter does nothing, implying that the problem is complete
for para-TC0 since majority is truth-table complete for TC0). In truth-table reductions we
are allowed to produce polynomial many instances of the target problem, query an oracle
to solve them all at once, and then build a Boolean combination of the results.

Given an instance w = b1 . . . bn of p0-majority, we build a formula φ0 =
∧n

i=1Ci with:

Ci =

{
(x) if bi = 1,
(¬x) else.

683

Bannach, Skambath, & Tantau

From φ0 we build n + 1 instances of pg-max-sat-above-half: Set g = 1 and obtain
φ1, . . . , φn from φ0 by setting φi := φ0 ∧

∧i
j=1(x).

Observe that (φ0, 1) 6∈ pg-max-sat-above-half iff w contains the same amount of 0s
as 1s. Then observe that, if (w, 0) ∈ p0-majority, we have for all i ∈ {0, . . . , n} that
(φi, 1) ∈ pg-max-sat-above-half. On the other hand, if (w, 0) 6∈ p0-majority, then
there is an index ` ∈ {0, . . . , n} such that (φ0, 1), . . . , (φ`−1, 1) are members of the set
pg-max-sat-above-half; but (φ`, 1) is not. We conclude:

p0-majority ≤para-AC0

tt pg-max-sat-above-half.

This result is tight in the sense that relaxing the parameterization further leads to an
intractable problem: Let r1, . . . , rm be the number of literals in the clauses of a cnf φ, then
E[φ] :=

∑m
i=1(1−2−ri) is the expected number of clauses satisfied by a random assignment.

It is well-known that an assignment that satisfies at least E[φ] clauses can be found in poly-
nomial time (Crowston et al., 2013). However, the problem pg-max-sat-above-average,
which asks whether we can satisfy at least E[φ] + g clauses, is intractable:

Fact 12 (Crowston et al.). pg-max-sat-above-average is para-NP-complete.

This result requires clauses of arbitrary size. If all clauses contain exactly d distinct and
non-complementary literals, the problem becomes fixed-parameter tractable (Alon et al.,
2011). Note that E[φ] = (1− 2d)m holds in this case. The corresponding algorithm is quite
simple and can directly be parallelized (however, it requires non-trivial results about alge-
braic representations of formulas that were proven by Alon et al. (2011); see also Section 9.2
in the textbook by Cygan et al. (2015) for details).

Lemma 13. pg-max-d=sat-above-average ∈ para-AC0.

Proof. Let φ with vars(φ) = {x1, . . . , xn} and clauses(φ) = {C1, . . . , Cm} be the input,
where each Ci contains exactly d distinct and non-complementary literals, and let us denote
by vars(Ci) the variables that occur as literals in Ci (i.e., |vars(Ci)| = d). We identify the
truth value “true” with 1 and “false” with −1 (and not with 0, as it standard) and then
consider the following polynomial:

X(x1, . . . , xn) =
∑

1≤i≤m

(
1−

∏
xj∈vars(Ci)

(
1 + sign(xj , Ci)xj

))
,

where sign(xj , Ci) = −1 if xj ∈ Ci and sign(xj , Ci) = 1 if ¬xj ∈ Ci. As observed by Alon
et al. (2011), each product

∏
xj∈vars(Ci)

(
1 + sign(xj , Ci)xj

)
equals 2d if Ci is falsified by

an assignment x1, . . . , xn and equals 0 when it is satisfied. This in turn means that every
satisfied clause contributes 1 towards the sum in X(x1, . . . , xn), while each falsified clause
contributes 1−2d. Thus, X(x1, . . . , xn) = m−2d(m−s) = 2d(s−(1−2−d)m) = 2d(s−E[φ])
where s is the number of clauses satisfied by x1, . . . , xn and E[φ] is the expected number of
satisfies clauses. Thus, X(x1, . . . , xn) ≥ g · 2d iff x1, . . . , xn is an assignment that satisfies g
clauses more than the expected number of clauses satisfied by a random assignment. Note
that in g · 2d the number g is the parameter and d is a constant.

Since the size of the clauses is a fixed constant d, we can write X as sum of at most
(2d + 1)m monomials, which can be produced on input φ by a para-FAC0 circuit. We now
apply the following reduction rule that follows directly from the results of Alon et al.:

684

On the Parallel Parameterized Complexity of MaxSAT Variants

Rule 4 (see Lemma 9.19 and Lemma 9.12 in the textbook by Cygan et al.). If there are at
least 4 · 9d · 4d · g2 monomials, reduce to a trivial yes-instance.

Since d is a constant and g a parameter, a para-AC0 circuit can check whether or not the
rule can be applied. If it applies, we are done. Otherwise at most O(g2) variables appear
in the monomial representation of X and we can solve the problem via “brute-force”.

4. Dual Parameterizations for Variants of MaxSAT

We saw that max-sat can be solved in parallel when parameterized by the solution size.
However, since max-sat instances always only have large solutions, we moved on to seeking
solutions of size dm−m∅

2 e + g and then of size E[φ] + g for parameter g. We saw that the
complexity increases, but also that parallel parameterized algorithms are still possible for
most variants. Now, we consider dual parameterizations where the sought solution size
is m − k. The corresponding problem is called pk-almost-sat or, if the input formula
comes from a family Φ, pk-almost-Φ. These problems can also be seen as distance to
satisfiability (can we delete k clauses to make the formula satisfiable?) and are even harder
as, in order to solve them, we must be able to decide Φ for inputs with k = 0:

Observation 14. If Φ is a family of propositional formulas such that deciding satisfiability
for Φ is hard for a complexity class C, then pk-almost-Φ is hard for para-C.

Hence we have that pk-almost-3sat is para-NP-hard, pk-almost-horn is para-P-hard,
and pk-almost-2sat is para-NL-hard. However, the observation does not provide any
hint on upper bounds. For instance, it is not clear whether pk-almost-2sat ∈ para-NL.
Since we are interested in parallel algorithms, we study families of formulas that can be
decided in subclasses of P: pk-almost-nae-2sat and pk-almost-2sat in Section 4.1
(nae-2sat ∈ L and 2sat ∈ NL), pk-almost-nae-sat(2) and pk-almost-sat(2) in Sec-
tion 4.2 (nae-sat(2) ∈ L and sat(2) ∈ L), and pk-almost-dnf in Section 4.3 (dnf ∈ AC0).

4.1 Dual Parameterization for Krom Formulas

Our first result about dual parameterizations is the technically most involved part:

Theorem 15. pk-almost-nae-2sat and pk-almost-2sat both lie in para-NL↑.

The proof of the theorem is based on the equivalence between pk-almost-2sat and
another member of the family of above-guarantee problems (see Section 3.2):

Problem 16 (pg-vc-above-matching).
Instance: A graph G = (V,E), a matching M ⊆ E, a difference g ∈ N.
Parameter: g
Question: Is there a set S ⊆ V with |S| ≤ |M |+ g and e ∩ S 6= ∅ for every e ∈ E?

While it is known that pk-vertex-cover ∈ para-AC0 (Bannach et al., 2015, Theo-
rem 4.5), we will need the rest of this section to prove the following theorem:

Theorem 17. pg-vc-above-matching ∈ para-NL↑.

685

Bannach, Skambath, & Tantau

Theorem 15 follows directly with the following lemma, which shows that the required
well-known reductions (Cygan et al., 2013; Narayanaswamy et al., 2012) can, firstly, be
implemented in para-FAC0 and, secondly, the last reduction can also compute the necessary
matching as part of its output.

Lemma 18.

pk-almost-nae-2sat ≤para-AC0

m pk-almost-2sat ≤para-AC0

m pg-vc-above-matching.

Proof. Let (φ, k) be the input of pk-almost-nae-2sat. We generate a new formula ψ by
replacing every clause (`∨ `′) ∈ clauses(φ) with (`∨ `′)∧ (¬`∨¬`′). Clearly, ψ is satisfiable
iff φ has an assignment that makes exactly one literal in every clause true (if φ has an nae-
assignment). Since any assignment satisfies at least one of (` ∨ `′) and (¬` ∨ ¬`′), deleting
a clause in φ is equivalent to deleting a clause in ψ. Thus:

(φ, k) ∈ pk-almost-nae-2sat⇔ (ψ, k) ∈ pk-almost-2sat.

For the next reduction, we first establish the following:

pk-almost-2sat ≤para-AC0

m pk-variable-deletion-2sat,

where the latter problem contains all pairs (φ, k) such that φ is a 2cnf formula in which
we can delete k variables together with all clauses containing them in order to make φ
satisfiable. We replace each x ∈ vars(φ) with copies x1, . . . , xm such that each copy occurs
in at most one clause, i.e., if clause Ci originally contains variable x, it will contain xi in the
new formula. We add equality constraints to ensure that all copies obtain the same value:

∧
x∈vars(φ)

m∧
i=1

m∧
j=i+1

(
(¬xi ∨ xj) ∧ (xi ∨ ¬xj)

)
.

It is easy to see that the resulting formula is satisfiable iff φ is satisfiable. Furthermore,
deleting a variable xi has exactly the same effect as deleting the clause Ci from φ.

Finally, we show pk-variable-deletion-2sat ≤para-AC0

m pg-vc-above-matching. Let
again (φ, k) be the input. We construct an undirected graph that contains for every vari-
able x two vertices x+ and x− that are connected by an edge. Furthermore, every clause
(recall that these are binary) is represented by an edge between the vertices of the corre-
sponding literals. The resulting graph has a perfect matching, namely M = {{x+, x−} |
x ∈ vars(φ)}. Thus, if φ has n variables, any vertex cover in G needs to have size at least n.
In fact, if φ is satisfiable, there will be a vertex cover of size n (the satisfying assignment).
Deleting a variable x and all clauses containing x from φ is equivalent to selecting both,
x+ and x−, to the vertex cover. Hence, φ can be made satisfiable by deleting at most k
variables iff G contains a vertex cover of size n+ k. Note that we do not have to compute
the perfect matching but rather obtain it directly from the construction and, hence, this
shows that we can map (φ, k) to ((G,M), k).

The whole reduction chain can be carried out by a para-FAC0 function: We preserve the
parameter (k is always mapped directly to k) and perform otherwise only simple projections.
In fact, we only rename variables and add some fixed additional clauses.

686

On the Parallel Parameterized Complexity of MaxSAT Variants

4.1.1 A Parallel Algorithm to Compute 0-1-Flows

To prove Theorem 17 (which states pg-vc-above-matching ∈ para-NL↑) we develop an
algorithm (in the rest of this section) that relies heavily on repeated flow computations.
Maximum flows can be computed in polynomial time with, say, the Ford–Fulkerson algo-
rithm (Ford & Fulkerson, 1956). However, computing the value of a weighted maximum
flow is P-complete (Goldschlager et al., 1982), and whether we can compute a 0-1-flow in
parallel is a long standing open problem (Karp et al., 1986). It is worth noting that a
maximum 0-1-flow can be computed in randomized NC via a reduction to the maximum
matching problem in bipartite graphs (Karp et al., 1986). Unfortunately, this reduction
is not parameter-preserving and, thus, we may not apply parameterized matching algo-
rithms (Bannach & Tantau, 2018).

Our objective in this section is to show that a flow of value k can be computed in
parallel; more precisely, that there is a function in para-FNL↑ mapping ((G, s, t), k) to a
0-1-flow of value k from s to t, if it exists, and otherwise to a maximum flow (formally, the
output of a parameterized function must be a pair where the second component is a new
parameter value, but we will not need this here and just silently assume that this value is
set to, say, 0).

Computing Paths in FNL. It is well-known that the reachability problem in digraphs is
the canonical complete problem for NL and, thus, it may seem trivial that we should be able
to compute paths in FNL. However, being able to tell whether there is a path form s to t is
not the same as actually finding such a path: For instance, it is known that in tournaments
(digraphs with exactly one edge between any pair of vertices) reachability lies in AC0, the
distance problem is NL-complete, and constructing a path longer than the shortest path by
a factor of 1+ ε can be done in deterministic logarithmic space (Nickelsen & Tantau, 2005)
– meaning that reachability and path construction can have vastly different complexities.
Nevertheless:

Lemma 19. There is a function in FNL that maps (G, s, t) to a shortest path from s to t,
provided it exists.

Proof. Let (G, s, t) with G = (V,E) be given as input. Since the distance problem is
complete for both NL and coNL, an NL-machine can compute the distance d from a given
vertex v ∈ V to t in G. Furthermore, if d < ∞, the machine can also compute all vertices
u ∈ V that are one step nearer to t, i.e., that have distance d − 1. Finally, for each v ∈ V
it can chose one such u (say, the lexicographical smallest) and form a graph H = (V,E′)
where E′ contains all these edges (v, u). Then H is a forest with out-degree at most 1 and
with a unique s-t-path (if one exists in G). The machine may deterministically traverse and
output this path. Note that the result is independent of the nondeterministic choices that
were made during the computation.

Computing 0-1-Flows in para-FNL↑. The most important operation in the Ford–
Fulkerson algorithm is the computation of an augmenting path. An iterated application of
Lemma 19 therefore allows us to compute a small flow:

Theorem 20. There is a parameterized function in para-FNL↑ that maps ((G, s, t), k) to a
flow from s to t in G of value k, if it exists, or to a maximum flow otherwise.

687

Bannach, Skambath, & Tantau

Proof. To show that a function lies in para-FNL↑, we need to specify the initial function,
the iteration function, and the number of iterations, see Definition 1.

The initial function does very little: It just maps ((G, s, t), k) to ((G, s, t, f0), k) where f0
is the empty flow (f0(e) = 0 for all e ∈ E). The interesting part is the iteration function
in para-FNL (actually, it will even lie in FNL), which implements a single step of the Ford–
Fulkerson algorithm: It gets (G, s, t, f) as input, where f is some flow in G from s to t,
and will output (G, s, t, f ′), where f ′ is a flow of value |f |+ 1 (provided such a flow exists,
otherwise f ′ = f). If there is no path from s to t in the residual network Rf (an NL-machine
can easily check this), set f ′ = f . Otherwise, use Lemma 19 to compute such a path (called
an augmenting path) and output the flow f ′ that corresponds to f augmented by the path
(initially set f ′ = f and then for every edge (u, v) on the path set f ′(u, v) = 1 if (u, v) ∈ E;
and f ′(v, u) = 0 otherwise).

By setting r(k) = k, we get a value-k or maximum-value flow from s to t.

Let pk-flow =
{(

(G, s, t), k
)
| there is a 0-1-flow f from s to t in G with |f | ≤ k

}
be

the corresponding parameterized decision problem. Then we have:

Corollary 21. pk-flow ∈ para-NL↑.

The following corollary observes that instead of starting with the empty flow we can
also start with an arbitrary flow f and augment it k times:

Corollary 22. There is a parameterized function in para-FNL↑ that maps ((G, s, t, f), k),
where f is an s-t-flow in G, to an s-t-flow f ′ in G of value |f | + k, if it exists, or to a
maximum flow otherwise.

Remark 23. While Theorem 20 and Corollaries 21 and 22 only speak about 0-1-flows, it is
easy to see that the same techniques can be used to compute flows in networks with fixed
constant capacities: Just replace each edge with capacity c by c parallel edges and divide
each of these edges with a fresh vertex afterwards. In particular, Corollary 22 can also be
used to augment half-integral flows in networks with fixed maximum capacity.

4.1.2 Linear Programs for Vertex Cover and Matching

To prove Theorem 17, we will study a more general problem and obtain the theorem as
corollary: Instead of using matchings as proofs for lower bounds for the vertex cover prob-
lem, we use fractional solutions of LP-relaxations. Let us fix some notations: For a linear
program Π let vars(Π) be the set of variables occurring in Π. A solution for Π is an assign-
ment α : vars(Π)→ Q that satisfies all inequalities, and the solution value (or just value) |α|
of α is the value of the optimization function under α. An optimal solution is an assignment
that has the minimum (or maximum) solution value over all possible assignments. We say
an assignment α is integral if α : vars(Π) → N for all x ∈ vars(Π); α is half-integral if all
α(x) are half-integral, meaning α(x) = i/2 for some i ∈ N; otherwise α is fractional. Let
optQ(Π), optN/2(Π), and optN(Π) denote the optimal value of a fractional, half-integral, and
integral solution for Π, respectively. We are interested in the following two linear programs:

Definition 24 (Linear program ΠVC(G) to find a vertex cover of a graph G = (V,E)).
Minimize

∑
v∈V xv subject to xu + xv ≥ 1 for all {u, v} ∈ E,

0 ≤ xv ≤ 1 for all v ∈ V .

688

On the Parallel Parameterized Complexity of MaxSAT Variants

Definition 25 (Linear program ΠM(G) to find a matching of a graph G = (V,E)).
Maximize

∑
e∈E ye subject to

∑
v∈e ye ≤ 1 for all v ∈ V ,

0 ≤ ye ≤ 1 for all e ∈ E.

A vertex cover of G naturally corresponds to an integral solution αN of ΠVC(G) and a
matching corresponds to an integral solution βN of ΠM(G) (the index “N” emphasizes that
the solution is integral). In particular, optN(ΠVC(G)) and optN(ΠM(G)) are the sizes of a
minimum vertex cover and a maximum matching of G, respectively. The programs are dual
to each other, which implies that their optimal fractional solutions have the same value.

Fact 26 (Nemhauser & Trotter, 1975). Let G = (V,E) be a graph. Then ΠVC(G) and
ΠM(G) have solutions α and β, respectively, with the following properties:

1. optQ(ΠVC(G)) = |α| = |β| = optQ(ΠM(G)),

2. α and β are half-integral,

3. there is an optimal integral solution γ for ΠVC(G) such that for v ∈ V with α(xv) 6= 1/2
we have γ(xv) = α(xv) (that is, γ equals α on its integral part).

Fact 26 implies that the following (in)equalities hold, where αN and αN/2 are arbitrary
integral and half-integral solutions for ΠVC(G) and βN and βN/2 correspondingly for ΠM(G):

|βN|

|βN/2|

optN(ΠM(G))
(∗)︷ ︸︸ ︷

optN/2(ΠM(G)) optN/2(ΠVC(G))

(∗∗)︷ ︸︸ ︷
optN(ΠVC(G)) |αN|

|αN/2|

≤ ≤
= ≤

≤

≤ ≤ (1)

The parameter of pg-vc-above-matching is the difference between the upper left
value |βN|, which is the size of some matching of G, and (∗∗), which is the size of a minimum
vertex cover of G. When working with linear programs, it is natural to work with a different
(“better”) parameter, namely the difference between the lower left value |βN/2| and (∗∗):

Problem 27 (pg-vc-above-relaxed-matching).
Instance: A graph G = (V,E), a half-integral solution βN/2 for ΠM(G), and a number g.
Parameter: g
Question: Is there a set S ⊆ V with |S| ≤ |βN/2|+ g and e ∩ S 6= ∅ for every e ∈ E?

4.1.3 An FPT-Algorithm for Solving VC Above Half-Integral Matching

Let us briefly review how one usually shows pg-vc-above-relaxed-matching ∈ para-P:

Step 0: Computing an Optimal Half-Integral Solution. Compute an optimal half-
integral solution α for ΠVC(G) in polynomial-time (|α| has the value (∗) in (1)).

Step 1: Reduction to the All-1/2-Solution. We turn α into an “all-1/2-solution” such
that α(xv) = 1/2 holds for all vertices. To achieve this, we use Fact 26, which tells
us that vertices v ∈ V with α(xv) = 0 are not part of an optimal vertex cover while
vertices with α(xv) = 1 are. Thus, we can delete all these vertices and continue with
the same parameter g (the integrality excess does not change). Note that α restricted
to the new graph (which we still call G) is constantly 1/2, which we denote as α ≡ 1/2.

689

Bannach, Skambath, & Tantau

Step 2: Making the All-1/2-Solution Unique. Now α ≡ 1/2 is an optimal solution,
but there may be other optimal half-integral solutions. (For instance, the all-1/2-
solution is an optimal solution for any even cycle, but so is α(i) = (i mod 2).) We can
check in polynomial time whether α is the unique optimal solution as follows: Test for
every xv whether optQ(ΠVC(G)) = optQ(ΠVC(G−{v}))+1. If so, there is an optimal
solution other than α that assigns 1 to xv. We remove v from G using Fact 26, leave g
untouched, and repeat until the all-1/2-solution is the only optimal solution.

Step 3: Branching. Suppose we knew that some vertex v ∈ V is part of an optimal vertex
cover of G. Then optN(G−{v}) = optN(G)−1 while optQ(G−{v}) = optQ(G)−1/2.
This means that the integrality excess of G−{v} is reduced by 1/2 compared to G. Of
course, we do not know which vertices are part of an optimal vertex cover, but we can
find them using branching: Pick an arbitrary edge {u, v} ∈ E and recursively run the
whole algorithm (starting from Step 1 once more) for G− {u} and G− {v}, but now
for the parameter g − 1/2 (the parameter should be an integer, but it is convenient
for the recursion to allow integers divided by 2 as parameters in this setting).

It is now easy to see that the depth of the search tree of the above algorithm is 2g, so
the total runtime is 4g · nO(1).

4.1.4 A Parallel Algorithm for Solving VC Above Half-Integral Matching

In this section we parallelize the different steps sketched above for solving Problem 27. This
yields the following theorem, of which Theorem 17 is a corollary and whose formal proof,
where all arguments get assembled, is given at the section’s end:

Theorem 28. pg-vc-above-relaxed-matching ∈ para-NL↑.

While steps 1 and 3 are easy to parallelize (search trees can be traversed in parallel),
steps 0 and 2 are not. They either involve open problems (like computing optimal solutions
for ΠVC(G) in parallel) or are very sequential (like the iterative removal of vertices in step 2).

Parallelizing Step 0: Computing an Optimal Half-Integral Solution. Given a
half-integral solution β of ΠM(G), we wish to compute an optimal half-integral solution α
of ΠVC(G). A para-P-machine could ignore β and solve the linear program, but we only have
a para-NL↑-machine. The idea we use was developed by Iwata, Oka, and Yoshida (2014)
in the context of linear-time algorithms: One can encode an (optimal) solution of ΠM(G)
into a (maximum) flow in the so-called Hochbaum network. More crucially, we can obtain
an (optimal) solution for ΠM(G) and ΠVC(G) from a (maximum) flow in this network.

In detail, for a graph G = (V,E) the Hochbaum network is the digraph H = (V ′, E′)
with V ′ consisting of V1 = {v1 | v ∈ V } and V2 = {v2 | v ∈ V } plus the two vertices s and t.
The edge set is E′ = {(s, v1) | v ∈ V } ∪ {(u1, v2) | {u, v} ∈ E} ∪ {(v2, t) | v ∈ V }, i.e., from
s we get to all vertices in V1, then we can cross from u1 to v2 exactly if {u, v} ∈ E (and
then also from v1 to u2), and from all vertices in V2 we can get to t.

Fact 29 (Hochbaum, 2002; Iwata et al., 2014). Let G = (V,E) be a graph and H = (V ′, E′)
be its Hochbaum network.

690

On the Parallel Parameterized Complexity of MaxSAT Variants

1. If β is a solution of ΠM(G), then fβ(s, v1) = fβ(v2, t) =
∑

w∈N(v) β(y{v,w}) and
fβ(u1, v2) = fβ(v1, u2) = β(y{u,v}) is an s-t-flow with |fβ| = 2|β| in H.

2. If f is an s-t-flow in H, then βf (y{u,v}) =
1
2

(
f(u1, v2) + f(v1, u2)

)
is a solution for

ΠM(G) with |βf | = |f |/2.

Note that, in particular, β is an optimal solution of ΠM(G) iff fβ is maximal and, vice
versa, f is a maximal flow iff βf is an optimal solution. Figure 2 illustrates these definitions
and the interplay between solutions for ΠM(G) and flows in the corresponding Hochbaum
network. Since the translation between flows and solutions is computationally easy, we
freely switch between flows and solutions for ΠM(G) as needed.

Graph G = (V,E) Hochbaum network H = (V ′, E′)

a

b

c

d

e

1/2

1/2

1/2

0

0

1

a1

b1

c1

d1

e1

a2

b2

c2

d2

e2

s t

1/2
1/2

1/2

1/2

1/2
1/2

1

1

1
1

1

1
1

1
1

1

1
1

Figure 2: The left side shows a graph G = (V,E) on five vertices V = {a, b, c, d, e}. On
the edges a half-integral solution β of ΠM(G) of value optN/2(ΠM(G)) = 2.5 is
illustrated. The two red edges constitute an optimal integral solution for ΠM(G).
The right side shows the Hochbaum network H = (V ′, E′) corresponding to G.
The edges are labeled with a maximum flow fβ of value |fβ| = 5 that corresponds
to β. The integral solution (the red maximum matching) corresponds to the flow
of value four that sends one unit over every red edge (which is not maximal).

Lemma 30. There is a function in para-FNL↑ that maps ((G, β), g), consisting of a graph G,
a half-integral solution β of ΠM(G), and a number g, to an optimal half-integral solution
β′ of G, provided such a solution with |β′| ≤ |β|+ g exists.

Proof. The mapping of (G, β) to the Hochbaum network H and the flow fβ from Fact 29
can easily be done in (even deterministic) logarithmic space. The flow fβ does not have
to be a maximal flow, but we can turn it into a maximal flow using Corollary 22: This
corollary states that a para-FNL↑-machine can map fβ to a flow f ′ of value |fβ|+2g+1, if
such a flow exists, or to a maximum flow f ′ otherwise.

If a flow of value |fβ|+2g+1 exists, Fact 31 tells us that βf ′ is a solution of ΠM(G) of value
|βf ′ | = |f ′|/2 = |fβ|/2+g+1/2 = |β|+g+1/2. In particular, |β|+g < |βf ′ | ≤ optQ(ΠM(G))
and, thus, no optimal solution with |β|+g ≥ |β′| exists. Hence, we output the error symbol.

691

Bannach, Skambath, & Tantau

If there is no flow of value |fβ| + 2g + 1, we know that f ′ is a maximum s-t-flow in H
and, by Fact 29, we can output βf ′ as optimal solution for ΠM(G).

Lemma 30 provides a reduction rule for pg-vc-above-relaxed-matching: We can
map ((G, β), g) to ((G, β′), g − |β′| + |β|) such that β′ is optimal. Since we will often use
triples (G,H, f) where G = (V,E) is a graph, H = (V ′, E′) is its Hochbaum network, and f
is a maximum flow in H, let us call such a triple a graph-Hochbaum-flow triple.

We now have a way of computing an optimal solution β′ for ΠM(G), but for the next
steps of our algorithm, we need a half-integral solution α of ΠVC(G). Fortunately, there is
another observation that shows how a maximum flow f can be used to derive an optimal
solution αf for ΠVC(G) (note that this solution is trivially half-integral):

Fact 31 (Hochbaum, 2002; Iwata et al., 2014). Let (G,H, f) be a graph-Hochbaum-flow
triple. Let X ⊆ V ′ be the set of vertices reachable from s in the residual network Rf . Then

αf (xv) =


0 if v1 ∈ X and v2 6∈ X,
1 if v1 6∈ X and v2 ∈ X,
1/2 otherwise,

is an optimal solution for ΠVC(G).

Lemma 32. There is a function in FNL that maps (G, β), consisting of a graph and an
optimal half-integral solution of ΠM(G), to an optimal half-integral solution α of ΠVC(G).

Proof. Use Fact 29 to obtain an optimal flow fβ in the Hochbaum network from β and use
Fact 31 to obtain αfβ from this flow.

Together, Lemmas 30 and 32 clearly allow us to perform Step 0 of the computation
(namely the computation of an optimal solution α of ΠVC(G)) using a para-FNL↑-machine.

Parallelizing Step 1: Reduction to the All-1/2-Solution. The next step turns the
half-integral solution α into an all-1/2-solution by deleting all vertices v with α(xv) 6= 1/2.
Clearly, this can be done in parallel. Note that here we really need an optimal solution α of
ΠVC(G) rather than a solution β of ΠM(G): Only α tells us which vertices can be removed.

Parallelizing Step 2: Making the All-1/2-Solution Unique. The sequential method
described in Section 4.1.3 for implementing Step 2 is exactly that: highly sequential. It is
not difficult to construct a graph for which the number of iterations used by this method is
linear in the graph size – just consider a large matching: The all-1/2-solution is an optimal
solution, but in each iteration only one edge will be removed from the graph. Even worse,
after the removal of a vertex it might be necessary to recompute the optimal solution α.

For a parallel algorithm, we need some further insights from the work of Iwata et al.
(2014). Let us start with some definitions, which adapt their ideas to our context:

Definition 33. Let (G,H, f) be a graph-Hochbaum-flow triple. A set S ⊆ V ′ is loose if the
following holds:

1. S is a strongly connected component of the residual graph Rf = (V ′, E′
f).

692

On the Parallel Parameterized Complexity of MaxSAT Variants

2. {v ∈ V | v1 ∈ S} and {v ∈ V | v2 ∈ S} are disjoint.

We call a loose set removable if the following holds additionally:

3. There are no edges leaving S in Rf , i.e., no edges (x, y) ∈ E′
f with x ∈ S and y /∈ S.

Definition 34. Let (G,H, f) be a graph-Hochbaum-flow triple and S ⊆ V ′ be a removable
set. Removing S yields the following triple (G−S ,H−S , f−S):

1. G−S = G− {v ∈ V | v1 ∈ S ∨ ∃w ∈ N(v)[w1 ∈ S]},

2. H−S = H − S,

3. f−S is the flow induced on the vertices of H−S.

Intuitively, (G−S ,H−S , f−S) should also be a graph-Hochbaum-flow triple and this is
the case, at least if α ≡ 1/2 is an optimal solution:

Fact 35 (Iwata et al., 2014, Corollary 4.2 and the subsequent discussion). Let (G,H, f) be
a graph-Hochbaum-flow triple such that α ≡ 1/2 is an optimal solution of ΠVC(G).

1. If there is no removable set S, then α ≡ 1/2 is the only optimal solution for ΠVC(G).

2. If there is a removable set S, then (G−S ,H−S , f−S) is a graph-Hochbaum-flow triple
and G−S has the same integrality excess as G.

While the fact tells us which vertices we should remove from G, it does not tell us which
will be part of the vertex cover. This can easily be fixed, however: When S is removed, we
can set β(xv) = 0 for all v1 ∈ S and β(xv) = 1 for all v ∈ V for which there is a w ∈ N(v)
with w1 ∈ S, see the discussion after Lemma 4.6 in the work of Iwata et al. (2014).

Using Fact 35, an NL-machine can test whether α ≡ 1/2 is the only optimal solution
of ΠVC(G) by looking for a removable S. Furthermore, the machine can iteratively remove
such sets until the all-1/2-solution is the only optimal half-integral solution. This may seem
similarly sequential as the repetitive removal of vertices in Step 2, but it turns out that we
can remove everything in a single run:

Lemma 36. There is a function in FNL that gets a graph-Hochbaum-flow triple (G,H, f)
as input and outputs the graph-Hochbaum-flow triple (G−,H−, f−) resulting from iteratively
removing removable sets as long as they exist.

Proof. Consider the acyclic digraph D of all strongly connected components C of H. Some
of these components will be loose sets (see Definition 33) and if they are also sinks in D,
they are one of the (initial) removable sets of H. Note that removing one of these loose
sinks does not change the fact that the other loose sinks are (still) removable sets in the
resulting graph-Hochbaum-flow triple. Removing loose sinks from H and D may produce
new loose sinks, but these sets were already loose sets in the original H (Definition 33 is
“local” in the sense that only properties of vertices within the strongly connected component
are relevant).

This leads to a rule for determining the set Q of all vertices that will (eventually) be
removed as part of the iterative removal of removable sets: Q contains all vertices that are
an element of a loose set from which only loose sets are reachable in D. This test can be
implemented by an FNL-machine and the claim follows with (G−Q,H−Q, f−Q).

693

Bannach, Skambath, & Tantau

Parallelizing Step 3: Branching. As mentioned earlier, the branching step is easy to
parallelize, as the two children in the search tree can be explored in parallel. Branching
also fits nicely into our framework of the up-class para-FNL↑, which arises from parameter-
dependent-many iterations of a linear function in para-FNL: In each iteration a list of
instances is on the input tape and this list is mapped to at most twice as many new
instances on the output tape, but with a reduction of the parameter in all these instances.

Proof of Theorem 28. Let ((G, β), g) be given as input, where G = (V,E) is an undirected
graph, β is a half-integral solution of ΠM(G), and g is a parameter.

To show that a problem is in para-NL↑, we must specify an initial function and an
iteration function, both in para-FNL. In our case the initial function simply maps ((G, β), g)
to the single-element list

(
((G, β), g)

)
. This list, which will change after each application of

the iteration function, will satisfy the following invariant: The original instance ((G, β), g)
is a positive instance iff at least one instance in the list is a positive instance. Clearly, after
the application of the initial function, this invariant is true.

The iteration function gets a list
(
((G1, β1), g1), . . . , ((Gl, βl), gl)

)
as input and will out-

put a new list of such pairs that is at most twice as long (which will ensure that the iteration
function is linear, see Definition 1). When processing the pairs, the iteration function may
notice that one of the pairs is a positive instance. Because of the invariant, the iteration
function can now immediately output “yes” (formally, it outputs (1, 0) and further iterations
do nothing except for copying this tuple to their output tape). It may also happen that the
list becomes empty (at the latest after 2g+1 iterations), in which case the invariant implies
that the original instance was a negative instance and the iterations function immediately
outputs “no” in the form of (0, 0) (and once more further iterations do not modify this).

We now describe how the iteration function processes a pair ((Gi, βi), gi) in the list, i.e.,
which new pairs are added to the output list (if any). For Definition 1, we have to implement
the iterator function in para-FNL, but Lemma 4 allows us to use para-FNL↑-transformation
instead, as long as the initial functions are linear (which they are).

Step 0, first part. Apply Lemma 30 to ((Gi, βi), gi). This will yield a new instance
((Gi, β

′), g′) such that β′ is an optimal solution of ΠM(Gi) – or an error symbol,
in which case we know that ((Gi, βi), gi) was a no-instance and we can skip it.

Step 0, second part. Apply Lemma 32 to obtain an optimal solution α for ΠVC(Gi).

Step 1. Remove all vertices v ∈ V from Gi with α(v) 6= 1/2, yielding the graph G′.

Step 2. Compute the graph-Hochbaum-flow triple (G′,H ′, f ′) and apply Lemma 36 to it.
This yields a graph-Hochbaum-flow triple (G−,H−, f−) such that (i) the integrality
excess of G− is the same as that of G and, hence, ((G−, βf−), g′) is an element of
pg-vc-above-relaxed-matching iff ((G′, βf ′), g′) is, and (ii) α ≡ 1/2 is the only
optimal half-integral solution of ΠVC(G

−).

Step 3. If in ((G−, βf−), g′) the graph G− contains no edges and g′ ≥ 0, we have found
a yes-instance and can stop. Likewise, if g′ < 0, we have a no-instance and can
also stop. Otherwise, we branch by picking an arbitrary edge e = {u, v} in G− and,
starting with u, consider the graph Gu = G− − {u}. In the corresponding Hochbaum

694

On the Parallel Parameterized Complexity of MaxSAT Variants

network Hu the vertices u1 and u2 will be missing. Consider the flow fu that is
obtained from f− by removing any flow through u1 or u2. Then |fu| ≥ |f−| − 2
and |fu| can be at most 2 below the value of a maximum flow in Hu. Lemma 30
allows us to restore the maximality by computing a maximum flow f ′u in Hu. We add
((Gu, βf ′

u
), g′−1/2) to the list. Then we repeat the whole process with v and also add

((Gv, βf ′
v
), g′ − 1/2) to the list.

To see that the branching is correct and upholds the invariant, suppose ((G−, βf−), g′)
is a yes-instance, i.e., the integrality excess of G− is at most g′. For the edge {u, v}
one of the vertices must be in a minimal vertex cover – suppose it is u. Then

optN(ΠVC(G
−)) = optN(ΠVC(G

− − {u})) + 1,

optQ(ΠVC(G
−)) = optQ(ΠVC(G

− − {u})) + 1/2.

To see the last equality, observe that if we had

optQ(ΠVC(G
−)) = optQ(ΠVC(G

− − {u})) + 1,

then any optimal solution α for ΠVC(G
− − {u}) could be augmented to an optimal

solution for ΠVC(G
−) by setting α(u) = 1, contradicting the assumption that α ≡ 1/2

is the only optimal solution of ΠVC(G
−). The two equalities taken together show that

the integrality excess of ΠVC(G
− − {u}) is, indeed, 1/2 less than that of G−.

4.2 Dual Parameterization When Every Variables Occur at Most Twice

A formula φ is in cnf(2) if it is a cnf and every variable occurs at most twice (variables may
occur positively and negatively, and clauses may be arbitrarily large). Johannsen showed
that the satisfiability problem and the nae-satisfiability problem for cnf(2) formulas are
complete for L (Johannsen, 2004). We extend this result and observe that the logspace
algorithms can be modified such that they solve the corresponding maximization problem:
Given a cnf(2) formula φ, they output the maximum number of simultaneously satisfiable
clauses. Combined with Observation 14 we obtain:

Theorem 37. pk-almost-nae-sat(2) and pk-almost-sat(2) are complete for para-L.

Lemma 38. There is a function in FL that maps cnf(2) formulas φ to the maximum
number of simultaneously satisfiable clauses of φ.

Proof. We follow the proof by Johannsen and first count and remove all empty clauses
(these can never be satisfied), then we represent φ as a tagged graph G(φ). Such a graph is
a triple (V,E, T) in which

• V = clauses(φ) is the set of vertices,
• E =

{
{Ci, Cj} | ∃x ∈ vars(φ)[x ∈ Ci ∧ ¬x ∈ Cj]

}
is a multiset of undirected edges

that connects clauses that contain complementary literals, and
• T = {Ci | Ci contains a pure literal} ⊆ V is a set of tagged vertices (a literal is pure

if the negated literal is not present in the formula or, equivalently, if the occurrences
of the literal’s variable are either all positive or all negated).

695

Bannach, Skambath, & Tantau

Note that the graph is a multigraph, i.e., if clauses share multiple complementary literals,
they are connected by multiple edges.

Johannsen observed that the satisfiability problem of φ is equivalent to the following
orientation problem of G(φ) (Johannsen, 2004, Proposition 1): Can the edges of G(φ) be
directed such that there is no untagged sink? The intuition is that tagged clauses can greedily
be satisfied by setting the pure literal they contain, and that a variable x ∈ vars(φ) can be
used to satisfy exactly one of the two clauses it connects – orienting an edge {Ci, Cj} as
Ci → Cj thus means to set x such that it satisfies Ci but has no effect on Cj .

Any connected component of G(φ) that contains a tagged vertex v can be oriented in
this way (just perform a depth-first search from v and orient all edges towards the root
of the dfs-tree). If a connected component contains a cycle, we can satisfy all vertices on
that cycle by orienting it as a directed cycle. Then we can virtually contract the cycle, tag
the resulting vertex, and use the previous argument. Hence, Johannsen concluded: φ is
satisfiable iff G(φ) does not contain a connected component without a tagged vertex that is
a tree. Since computing connected components and testing whether a component is a tree
can be done in logarithmic space, it follows that sat(2) ∈ L.

If φ is satisfiable, the FL function that we wish to construct simply outputs m, the
number of clauses. So assume that φ is unsatisfiable. By the above argument, G(φ) then
contains connected components T1, . . . , Tk (k ≥ 1) that are trees and that do not contain
tagged vertices (these are the unsatisfiable cores of φ). To make φ satisfiable, we have to
delete at least one clause per core, thus, we can satisfy at most m− k clauses.

On the other hand, deleting any clause C in a tree Ti will make all literals contained
in C pure and, thus, will tag all neighbors of C in G(φ). Hence, by deleting an arbitrary
clause from Ti we can make the remaining clauses of Ti satisfiable. In conclusion, we can
always satisfy at least m− k clauses and, thus, we can output m− k (taking into account
the clauses removed in the preprocessing step).

Lemma 39. There is a function in FL that maps cnf(2) formulas φ to the maximum
number of simultaneously nae-satisfiable clauses of φ.

Proof. The proof is similar to the proof of Lemma 38: On input φ, we first count and
remove all empty and unit clauses (these can never be nae-satisfied). Then we construct a
tagged graph H(φ) = (V,E, T) as follows, where the dx are fresh dummy vertices:

• V = clauses(φ) ∪ {dx | x ∈ vars(φ) appears positive and negative};
• E =

{
{Ci, Cj} | Ci and Cj contain a common literal

}
∪
{
{C, dx} | x ∈ C or ¬x ∈ C

}
;

• T = {C | C ∈ clauses(φ) contains a variable that does not occur in another clause}.
Johannsen observed that φ is nae-satisfiable iff the edges of H(φ) can be colored with

two colors such that each untagged vertex is adjacent to edges of both colors. (The intuition
is that edges correspond to literals and colors represent truth values of these literals; tagged
vertices can always be nae-satisfied with their private literal.)

Since a tagged graph can be colored in the described way iff (i) every untagged vertex
has degree at least two and (ii) every connected component without tagged vertices is not a
simple odd length cycle (Johannsen, 2004, Lemma 9), we get nae-sat(2) ∈ L (both criteria
can easily be checked in logarithmic space).

As in Lemma 38, if φ is satisfiable, the FL function we construct simply outputs m. So
assume otherwise. Then there are connected components O1, . . . , Ok in H(φ) that do not

696

On the Parallel Parameterized Complexity of MaxSAT Variants

contain a tagged vertex and that are simple odd length cycles (these are the nae-unsatisfiable
cores of φ). Clearly, any assignment can satisfy at most m− k clauses.

However, deleting an arbitrary clause C from an odd cycle Oi will tag all the neighbors
of C (either the neighbor is another clause that now has a private variable, or it is a dummy
vertex that now corresponds to a variable that occurs only once). Hence, we can satisfy at
least m− k clauses and can, thus, output m− k (taking into account the amount of clauses
we have removed in the preprocessing step).

4.3 Dual Parameterization for Formulas in Disjunctive Normal Form

Testing whether a dnf is satisfiable can be done in polynomial time (even in AC0), in
contrast, deciding whether we can satisfy k terms simultaneously (i.e., max-dnf) is NP-
complete (Escoffier & Paschos, 2005). In this section we study max-dnf with a dual
parameterization: pk-almost-dnf asks whether a given dnf φ has an assignment that
satisfies at least m− k terms.

Theorem 40. pk-almost-dnf ∈ para-AC0.

The proof of the theorem boils down to the following reduction and the subsequent
lemma. Construct a cnf ψ from φ by simply negating every term, i.e., if (`1 ∧ · · · ∧ `d)
is a term in φ, we add (¬`1 ∨ · · · ∨ ¬`d) as clause to ψ. Observe that every assignment
that satisfies a term in φ does not satisfy the corresponding clause in ψ. Hence, there is an
assignment satisfying at least m − k terms in φ if there is an assignment that satisfies at
most k clauses in ψ. In other words, we have reduced pk-almost-dnf to pk-min-sat.

Lemma 41. pk-min-sat ∈ para-AC0.

Proof. The following reduction from pk-min-sat to pk-vertex-cover by Marathe and
Ravi (1996) is computable in para-AC0 and is parameter-preserving. It takes an input (φ, k)
and constructs a vertex cover instance (G(φ), k) as follows: The vertex set of G(φ) is
clauses(φ) and two clauses are connected by an edge if they contain complementary literals.
Observe that any variable that occurs both, positively and negatively, satisfies at least one
clause. In other words, every edge in G(φ) connects two clauses such that any assignment
satisfies at least one of them. Therefore, we have (φ, k) ∈ pk-min-sat iff the edges of G(φ)
can be covered by at most k vertices, i.e., if (G(φ), k) ∈ pk-vertex-cover. The claim
follows as pk-vertex-cover ∈ para-AC0 (Bannach et al., 2015, Theorem 4.5).

5. Structural Parameterizations for Partial MaxSAT Variants

The most general incarnation of max-sat is the partially weighted version. The input is a
cnf φ and a function ω : clauses(φ)→ N∪{∞}, in which we call clauses C soft if ω(C) <∞
and hard otherwise. The goal is to find among all assignments β : vars(φ) → {0, 1} that
satisfy all hard clauses the one that maximises the sum of the satisfied soft clauses. We
refer to the decision version, in which a target sum is given, as partial-max-sat.

The usual approach to identify tractable fragments of partial-max-sat is to use struc-
tural parameters, an overview is provided by Dell et al. (2017). Structural parameters are

697

Bannach, Skambath, & Tantau

defined over the incidence graph of the input formula φ, which is the bipartite graph on ver-
tex set vars(φ) ∪ clauses(φ) that contains an edge between x ∈ vars(φ) and C ∈ clauses(φ)
if either x ∈ C or ¬x ∈ C.

Natural parameters are the vertex cover number, the treedepth, the feedback vertex set
number, or the treewidth of the incidence graph, see Figure 3 for an overview of how these
parameters are related. It is well-known that partial-max-sat is in para-P parameterized
by any of these, which follows quite directly from optimization versions of Courcelle’s The-
orem (Courcelle, 1990). By the parallel version of this theorem (Bannach & Tantau, 2016)
it follows that partial-max-sat lies in para-AC2↑ if parameterized by both, the structural
parameter and the solution size.

para-TC0 O(1)twin cover vertex cover

para-TC0↑ f(k)

vertex integrity

treedepth

para-TC1↑ f(k) log nfeedback vertex set

para-TC2↑ f(k) log2 ntreewidth

W[1] intractable

para-NP intractable

neighborhood diversity

modularwidth shrubdepth

odd cycle transversal

cliquewidth

Structural Graph ParameterComplexity Class
Parallel Time Using

f(k) · nO(1) Processors

Figure 3: A Hasse diagram of the major structural graph parameters. An arrow from A
to B here means that for any graph G the parameter B is upper-bounded by a
function in A. Each node corresponds to the complexity of partial-max-sat
parameterized by the corresponding value of the input’s incidence graph. The
darker parameters are the ones mentioned in Theorem 42.

In the remainder of this section we develop handcrafted algorithms for all four structural
parameters that (i) work independently of the solution size (it does not have do be a
parameter), (ii) work with arbitrary weights, and (iii) are constructive in the sense that
an optimal assignment is output. Figure 3 reveals intriguing connections between these

698

On the Parallel Parameterized Complexity of MaxSAT Variants

parameters to the degree of parallelism we can achieve – connections that remain hidden in
the study of sequential para-P algorithms.

Theorem 42.

1. pvc-partial-max-sat ∈ para-TC0,

2. ptd-partial-max-sat ∈ para-TC0↑,

3. pfvs-partial-max-sat ∈ para-TC1↑,

4. ptw-partial-max-sat ∈ para-AC2↑.

For each item of the theorem, we prove a lemma in the following.

Lemma 43. There is a uniform family of constant-depth TC circuits of size f(k) · nO(1)

that, on input (φ, ω, k), either reports that the incidence graph of φ has no vertex cover
of size k, or outputs the assignment of an optimal solution for partial-max-sat on (φ, ω).

Proof. First construct the incidence graph, which is easy in AC0. Subsequent compute a
vertex cover of size at most k2 +2k or decide that there is no vertex cover of size at most k
at all as follows: Run the parallel version of the Buss kernel with parameter k (Bannach
et al., 2015); if the kernelization produces a trivial no-instance (if it “rejects”), then there
is no vertex cover of size k and we may reject as well. Otherwise, we have a kernel with
k2 + k vertices and a set of at most k vertices that were classified by the Buss kernel as
being necessary for any vertex cover (i.e., high-degree vertices). Together we obtain the
desired vertex cover X of size at most k2 + 2k.

Let V1 = vars(φ)∩X and V2 = vars(φ)\V1; S1 = {C ∈ clauses(φ) | ω(C) <∞}∩X and
S2 = {C ∈ clauses(φ) | ω(C) < ∞} \ S1; and H1 = {C ∈ clauses(φ) | ω(C) = ∞} ∩X and
H2 = {C ∈ clauses(φ) | ω(C) =∞} \H1. The circuit runs the following steps in sequence:

1. Brute-force (i.e., test in parallel) all possible partial assignments for the variables
in V1. Discard assignments that leave a clause in H2 unsatisfied.

2. Brute-force (i.e., test in parallel) which clauses of S̃1 ⊆ S1 shall be satisfied.

3. Verify that the current partial solution can be extended to an assignment that satisfies
S̃1 ∪H1. Since |S̃1 ∪H1| ≤ k2 + 2k, we can check if there is an assignment satisfying
all clauses of this subformula using Theorem 6.

Note that the first step already determines the truth value of all clauses in S2 ∪H2. It
remains to determine the sum of the weights of all satisfied clauses, which is easy in TC0.
Observe that all steps are constructive, i.e., at this point we have a list of roughly 2k

2+k

assignments and their weights – we just have to output the one with the largest weight.

Lemma 44. There is a uniform family of TC circuits of depth f(k) and size f(k) · nO(1)

that, on input (φ, ω, k), either reports that the treedepth of the incidence graph of φ exceeds k,
or that outputs the assignment of an optimal solution for partial-max-sat on (φ, ω).

699

Bannach, Skambath, & Tantau

Proof. A treedepth decomposition of an undirected graph G = (V,EG) is a rooted forest
F = (V,EF) (on the same vertex set) such that G is a subgraph of the closure of F . The
treedepth of G is the minimum depth any treedepth decomposition of G must have, see the
textbook by Nesetril and de Mendez (2012) for a detailed introduction to these notations.

A uniform family of para-FAC0↑ circuits is known that maps a pair (G, k) either to
⊥ (in which case the treedepth of G exceeds k) or to a treedepth decomposition F of
depth at most O(2k) (Bannach & Tantau, 2016, Theorem 5). Furthermore, if access to a
depth-f(k) treedepth decomposition is provided, para-FAC0↑ circuits can perform depth-first
and breadth-first searches on G and, thus, can compute connected component (Bannach &
Tantau, 2016, Lemma 6).

Since para-FAC0↑ ⊆ para-FTC0↑, we can assume that we have access to a depth-k′
treedepth decomposition F of the incidence graph of φ (with k′ ∈ O(2k)), and that we can
compute connected components in the incidence graph. For a cnf ψ, a variable x ∈ vars(ψ),
and a bit i ∈ {0, 1} let us denote by ψ|x 7→i the formula obtained by deleting all clauses from ψ
that are satisfied by setting x to i, and by removing all remaining occurrences of x from the
remaining clauses. The claim is proven by running the Davis–Putnam–Logemann–Loveland
(DPLL) algorithm with a variable selection heuristic based on F . Clearly, the algorithm
from Listing 1 correctly solves partial-max-sat.

Listing 1: An algorithm that outputs an optimal partial-max-sat solution on input of a
weighted cnf (φ, ω) and a depth-k′ treedepth decomposition F of the incidence-
graph of φ.

1 function DPLL-TD(φ, ω, F)
2 if φ contains a hard empty clause then return −∞
3 if φ is empty or contains only empty soft clauses then return 0
4 if the incidence graph of φ is unconnected then
5 φ1, . . . , φ` ← the connected subformulas
6 for i ∈ {1, . . . , `} pardo
7 σi ← DPLL-TD(φi, ω, F)
8 return

∑`
i=1 σi

9 else
10 x← the variable in vars(φ) closest to the root of F
11 for i ∈ {0, 1} pardo
12 δi ← the sum of soft clauses satisfied by setting x to i
13 σi ← DPLL-TD(φ|x 7→i, ω, F)
14 return max(σ0 + δ0, σ1 + δ1)

We are left with the task of arguing that a circuit family of depth f(k) and size f(k)·nO(1)

can implement this algorithm. All operations can be computed by para-TC0↑ circuits:
Computing the connected components in line 5 can be done in depth f(k) since the treedepth
is bounded; the sum of multiple binary numbers in line 8 can be computed in constant depth
(using threshold gates) by a result of Chandra et al. (1984); and all remaining operations
are either simple arithmetic or the computation of projections.

700

On the Parallel Parameterized Complexity of MaxSAT Variants

Since the depth of F is k′, the recursion depth of the algorithm is O(k′) ⊆ O
(
2k
)
.

Finally, since F has at most n +m = |vars(φ)| + |clauses(φ)| leaves, the total number of
explored subformulas is bounded by O

(
22

k
(n+m)

)
.

We get the claim by adapting the algorithm such that it does not only return the
maximum solution, but also the corresponding assignment. In detail, we assume a to-
tal order on the variables of φ, i.e., vars(φ) = {x1, . . . , xn}, and represent an assignment
β : vars(φ) → {0, 1} as a bit mask β ∈ {0, 1}n. At the end of the recursion, i.e., in lines 2
and 3, we return an assignment x 7→ 0 in the form of β = 0n. Getting such an assignment
from the recursive call in line 13, we can obtain a corresponding assignment βi by setting
the bit corresponding to x to i. Finally, after the recursion into connected components
following line 5, we return the bitwise or of all obtained assignments in line 8 (note that,
since the formula was disconnected, these assignments modified pairwise different bits).

Lemma 45. There is a uniform family of TC circuits of depth f(k)·log n and size f(k)·nO(1)

that, given (φ, ω, k), either reports that φ’s incidence graph has no size-k feedback vertex
set, or outputs the assignment of an optimal solution for partial-max-sat on (φ, ω).

Proof. A tree decomposition of an undirected graph G = (VG, Eg) is a tuple (T, ι), where
T = (VT , ET) is a tree and ι : VT → 2VG a mapping from nodes of T to subsets of vertices
of G, which we call bags. A tree decomposition has to satisfy the following constraints, see
for instance Chapter 7 in the textbook of Cygan et al. for a detailed introduction:

• The set {x | v ∈ ι(x)} is non-empty and connected in T for every v ∈ VG.
• For every {u, v} ∈ EG there is a y ∈ VT with {u, v} ⊆ ι(y).
The width of (T, ι) is the size of the largest bag minus one, and the treewidth of G is the

minimum width any tree decomposition of G must have.
Clearly, a graph with a feedback vertex setX of size at most k has treewidth at most k+1:

Remove X from G and obtain a tree, then consider the tree as tree decomposition and
add X to every bag. Hence, by Example 2 (and since para-FL↑ ⊆ para-TC1↑), we can
either conclude that the incidence graph of φ has no feedback vertex set of size k, output
this and stop; or we can compute a tree decomposition of width at most k + 1. In order
to make the description of the following dynamic program simpler, we bring (T, ι) into a
standard form called balanced nice tree decomposition. In this form, T is a rooted tree of
depth f(k) ·O(log n) such that every node x has one of the following types:

Leaf Nodes They have no children.

Introduce Nodes They have exactly one child y with ι(x) = ι(y) ∪ {v} for a v ∈ VG.

Forget Nodes They have exactly one child y with ι(x) = ι(y) \ {v} for a v ∈ VG.

Join Nodes They have exactly two children y and z with ι(x) = ι(y) = ι(z).

A uniform family of para-FNC1↑ circuits that maps arbitrary width-k tree decomposition
to balanced nice tree decompositions of width at most 8k+3 is known (Bannach & Tantau,
2016, Lemma 9). Since para-FNC1↑ ⊆ para-TC1↑ we may assume that (T, ι) is in this
special form. Let us, to keep the notation intuitive, denote the size of the largest bag of the
transformed decomposition with k (even though it did, of course, grow a little).

701

Bannach, Skambath, & Tantau

Our task is to describe a family of para-FTC1↑ circuits that obtains as input a tuple(
(φ, ω, T, ι), k

)
(where (T, ι) is a width-(k + 1) tree decomposition of the incidence graph

of φ and k is the parameter) and outputs an assignment that satisfies all hard clauses
while maximising the sum of the weights of satisfied soft clauses (or detects that such an
assignment does not exist). The idea of the following algorithm is a dynamic program that
bubbles up the tree decomposition, assigning configuration sets to the nodes of T . We
think of T as being layered (with f(k) · log n layers). Thus, all we have to do is to design
TC circuits of depth f ′(k) (independent of n) and size f ′(k) · nO(1) for some computable
function f ′, which compute the configuration sets of a node in T , given the configuration
sets of its children.

Assume that there is a total order on the vertices of the incidence graph (for instance,
take the lexicographical order induced by φ). A configuration is a triple (µ, σ, β), where
µ ∈ {0, 1}k is a bit mask, σ ∈ N a weight, and β ∈ {0, 1}n another bit mask (for a node
x ∈ VT we interpret the bit masks as µ : ι(x) → {0, 1} and β : vars(φ) → {0, 1}). For
instance, say we have vars(φ) = {x1, . . . , x100} and assume the incidence graph has width 6.
We encode an assignment β as bit mask β ∈ {0, 1}100 with the ith bit set iff xi is assigned
to 1. For a node x ∈ VT of the tree decomposition we represent the local information
µ : ι(x) → {0, 1} as another bit mask µ ∈ {0, 1}5, where the ith bit corresponds to the
information stored for the lexicographical ith element of ι(x), e.g., if ι(x) = {x1, x3, x42} we
would store the information at the following positions:(bit position: 1 2 3 4 5

information: x1 x3 x42 0 0

)
.

Note that we always set unused positions to the default value 0. During the execution of
the dynamic program, we will encounter new nodes of the tree decomposition that differ
by at most one element of the previous one (i.e., we introduce a vertex to the bag). To
reuse a previous µ, we have to shift its content accordingly. For instance, if y is another bag
with ι(y) = ι(x) ∪ {x2}, then for y we would store the corresponding data at the following
positions, shifting data to the right from position 2 ongoing:(bit position: 1 2 3 4 5

information: x1 x2 x3 x42 0

)
.

We say two configurations (µ1, σ1, β1) and (µ2, σ2, β2) are equivalent if µ1 = µ2. Further-
more, a configuration is better than another if µ1 = µ2 and σ1 > σ2. A configuration set is
a set of pairwise non-equivalent configurations. Note that such a set contains at most 2k el-
ements. For a node x ∈ VT , a configuration (µ, σ, β) fulfills the following invariant:

1. For all v ∈ ι(x) ∩ vars(φ) we have β(v) = µ(x).

2. For all C ∈ ι(x) ∩ clauses(φ) we have β |= C iff µ(C) = 1.

3. The assignment β satisfies all hard clauses in the subtree rooted at x.

4. The sum of the weights of soft clauses satisfied by β in the subtree rooted at x is σ.

Since Leaf Nodes have no children, there is not much to do for them. The configuration
set contains a single configuration (0k, 0, 0n).

702

On the Parallel Parameterized Complexity of MaxSAT Variants

The circuit for Introduce Nodes x obtains as input a configuration set S and an introduced
vertex v, and outputs the following configuration set S′: If v ∈ clauses(φ), construct for
every (µ, σ, β) ∈ S a single new configuration (µ′, σ′, β) ∈ S′ obtained by shifting µ according
to the ordering of the vertices in ι(x), setting µ′(v) = 1 iff β |= v (and µ′(v) = 0 otherwise),
and setting σ′ = σ + ω(v) if v is a satisfied soft clause, otherwise setting σ′ = σ. If
v ∈ vars(φ), we add for every (µ, σ, β) ∈ S configurations (µ0, σ0, β0) and (µ1, σ1, β1) to S′,
where we obtain (µi, σi, βi) for i ∈ {0, 1} from (µ, σ, β) by shifting µ, by setting µi(v) = i,
and by updating βi appropriate. Subsequently, we check for every clause C ∈ ι(x) with
µ(C) = 0 whether βi |= C, in which case we set µi(C) = 1 and update σi as needed.

For Forget Nodes x that forget a vertex v, we construct a new configuration set S′ from S
by initially setting S′ = S. Then in all configurations we remove v from µ by setting the
corresponding bit to 0 and by shifting µ according to the new ordering in ι(x). If v was a
hard clause, we remove all configurations with µ(v) = 0 (i.e., configurations in which v was
not satisfied). Finally, S′ may now contain some equivalent configurations, in which case
we keep just the one that is best.

When joining two bags in a Join Node x, we obtain two configuration sets S1 and S2
as input, and have to construct a new configuration set S′ that fulfils the invariant. Recall
that the children of x have the same bag as x. Define for every X ⊆ vars(φ) ∩ ι(x) and
i ∈ {1, 2}:

SX
i =

{
(µ, σ, β) ∈ Si | for all v ∈ vars(φ) ∩ ι(x) we have µ(v) = 1⇔ v ∈ X

}
.

Build the sets S′(X) by joining SX
1 and SX

2 in the following sense: Take every configuration
(µ1, σ1, β1) ∈ SX

1 and every (µ2, σ2, β2) ∈ SX
2 and build the new configuration:

(µ1 g µ2, σ1 + σ2 − ε, β1 g β2).

Here, “g” is the bitwise or operation and ε the sum of soft clauses in ι(x) that are satisfied
by both assignments, i.e., by β1 and β2. The configuration set S′ is obtained by, firstly,
collecting all S′(X) and, secondly, by removing equivalent configurations from it.

A standard induction shows that, after the process has finished, any configuration stored
in the root bag of T contains an assignment β that satisfies all hard clauses. Furthermore,
the one with maximum σ corresponds to an optimal solution for partial-max-sat.

The statement follows as all four operations can be implemented by TC circuits of
depth f(k) and size f(k) · nO(1). For the part that manipulates µ, this follows as we have
at most 2k configurations and since |µ| = k. Operations modifying σ just have to perform
simple addition and subtraction, which is possible even in a constant number of TC layers
of polynomial size. Regarding β, we perform only trivial bit projections.

Lemma 46. There is a uniform family of AC circuits of depth f(k)·log2 n and size f(k)·nO(1)

that, given (φ, ω, k), either reports that the treewidth of the incidence graph of φ exceeds k,
or outputs the assignment of an optimal solution for partial-max-sat on (φ, ω).

Proof. An optimal tree decomposition can be computed in para-FAC2↑ (Bannach & Tantau,
2016). Afterwards the proof is equivalent to the proof of Lemma 45.

703

Bannach, Skambath, & Tantau

6. Conclusion and Outlook

We presented a comprehensive list of parallel fixed-parameter algorithms for variations of
max-sat. As highlight we presented the first parallel algorithms for pk-almost-nae-2sat
and pk-almost-2sat, which implies parallel fpt-algorithms for various problems such as
the odd cycle transversal problem.

The central method for proving that the latter problem is fixed-parameter tractable –
the iterative compression method – seems to be inherently sequential. Interestingly, our
parallel algorithm builds on another method that seems inherently sequential in general,
namely the computation of maximum flows. However, using properties of the Hochbaum
network allowed us to break the computation of a maximum flow into a series of small flow
computations, which we can perform in parallel using fpt-many parallel processing units.

We remark that from a complexity-theoretic point of view, pk-almost-2sat is a harder
problem than pk-almost-nae-2sat as the former is easily seen to be hard for para-NL
while the latter is easily seen to lie in para-WL (for a discussion of these classes, see the
work of Elberfeld et al., 2015), which suggests that the problems have different complexity.
As open problem we thus leave the question of whether pk-almost-nae-2sat ∈ para-L↑

holds (which would imply that the odd cycle transversal problem lies in this class, too).
While we know of no complexity-theoretic assumption that would contradict this, our proofs
make heavy use of finding augmenting paths in networks and these networks seem to be
inherently directed.

References

Abu-Khzam, F. N., & Kontar, K. A. (2020). A Brief Survey of Fixed-Parameter Parallelism.
Algorithms, 13(8), 197.

Alon, N., Gutin, G. Z., Kim, E. J., Szeider, S., & Yeo, A. (2011). Solving MAX-r-SAT
Above a Tight Lower Bound. Algorithmica, 61(3), 638–655.

Alon, N., Yuster, R., & Zwick, U. (1995). Color-Coding. J. ACM, 42(4), 844–856.
Bannach, M., Skambath, M., & Tantau, T. (2022a). On the parallel parameterized complex-

ity of maxsat variants. In 25th International Conference on Theory and Applications
of Satisfiability Testing, SAT 2022, August 2-5, 2022, Haifa, Israel, pp. 19:1–19:19.

Bannach, M., Skambath, M., & Tantau, T. (2022b). On the parallel parameterized com-
plexity of maxsat variants. Tech. rep. 2202.01280, arXiv.

Bannach, M., Stockhusen, C., & Tantau, T. (2015). Fast Parallel Fixed-Parameter Algo-
rithms via Color Coding. In 10th International Symposium on Parameterized and
Exact Computation, IPEC 2015, September 16-18, 2015, Patras, Greece, Vol. 43 of
LIPIcs, pp. 224–235. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Bannach, M., & Tantau, T. (2016). Parallel Multivariate Meta-Theorems. In 11th Inter-
national Symposium on Parameterized and Exact Computation, IPEC 2016, August
24-26, 2016, Aarhus, Denmark, Vol. 63 of LIPIcs, pp. 4:1–4:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik.

Bannach, M., & Tantau, T. (2018). Computing Kernels in Parallel: Lower and Upper
Bounds. In 13th International Symposium on Parameterized and Exact Computation,

704

On the Parallel Parameterized Complexity of MaxSAT Variants

IPEC 2018, August 20-24, 2018, Helsinki, Finland, Vol. 115 of LIPIcs, pp. 13:1–13:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Barrington, D. A. M., Immerman, N., & Straubing, H. (1990). On Uniformity within NC1.
Journal of Computer and System Sciences, 41(3), 274–306.

Biere, A., Heule, M., van Maaren, H., & Walsh, T. (Eds.). (2021). Handbook of Satisfiability,
Second Edition. IOS Press.

Cai, L., Chen, J., Downey, R. G., & Fellows, M. R. (1997). Advice Classes of Parameterized
Tractability. Annals of Pure and Applied Logic, 84(1), 119–138.

Chandra, A. K., Stockmeyer, L. J., & Vishkin, U. (1984). Constant Depth Reducibility.
SIAM J. Comput., 13(2), 423–439.

Chen, Y., & Flum, J. (2016). Some Lower Bounds in Parameterized AC0. In 41st Interna-
tional Symposium on Mathematical Foundations of Computer Science, MFCS 2016,
August 22-26, 2016 - Kraków, Poland, pp. 27:1–27:14.

Chen, Y., & Flum, J. (2020). Parameterized Parallel Computing and First-Order Logic.
In Fields of Logic and Computation III - Essays Dedicated to Yuri Gurevich on the
Occasion of His 80th Birthday, pp. 57–78.

Chen, Y., Flum, J., & Huang, X. (2017). Slicewise Definability in First-Order Logic with
Bounded Quantifier Rank. In 26th EACSL Annual Conference on Computer Science
Logic, CSL 2017, August 20-24, 2017, Stockholm, Sweden, Vol. 82 of LIPIcs, pp.
19:1–19:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Courcelle, B. (1990). The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of
Finite Graphs. Inf. Comput., 85(1), 12–75.

Crowston, R., Fellows, M. R., Gutin, G. Z., Jones, M., Rosamond, F. A., Thomassé, S., &
Yeo, A. (2011). Simultaneously Satisfying Linear Equations Over F2: MaxLin2 and
Max-r-Lin2 Parameterized Above Average. In IARCS Annual Conference on Foun-
dations of Software Technology and Theoretical Computer Science, FSTTCS 2011,
December 12-14, 2011, Mumbai, India, pp. 229–240.

Crowston, R., Gutin, G. Z., Jones, M., Raman, V., & Saurabh, S. (2013). Parameterized
Complexity of MaxSat Above Average. Theor. Comput. Sci., 511, 77–84.

Crowston, R., Gutin, G. Z., Jones, M., & Yeo, A. (2012). A New Lower Bound on the
Maximum Number of Satisfied Clauses in MaxSAT and Its Algorithmic Applications.
Algorithmica, 64(1), 56–68.

Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk,
M., & Saurabh, S. (2015). Parameterized Algorithms. Springer.

Cygan, M., Pilipczuk, M., Pilipczuk, M., & Wojtaszczyk, J. O. (2013). On Multiway Cut
Parameterized Above Lower Bounds. ACM Transactions on Computation Theory,
5(1), 3:1–3:11.

Dell, H., Kim, E. J., Lampis, M., Mitsou, V., & Mömke, T. (2017). Complexity and Ap-
proximability of Parameterized MAX-CSPs. Algorithmica, 79(1), 230–250.

Diestel, R. (2012). Graph Theory, 4th Edition, Vol. 173 of Graduate texts in mathematics.
Springer.

705

Bannach, Skambath, & Tantau

Elberfeld, M., Stockhusen, C., & Tantau, T. (2015). On the Space and Circuit Complexity
of Parameterized Problems: Classes and Completeness. Algorithmica, 71(3), 661–701.

Escoffier, B., & Paschos, V. T. (2005). Differential Approximation of MinSAT, MaxSAT and
Related Problems. In Computational Science and Its Applications - ICCSA 2005, In-
ternational Conference, Singapore, May 9-12, 2005, Proceedings, Part IV, pp. 192–201.

Flum, J., & Grohe, M. (2003). Describing Parameterized Complexity Classes. Information
and Computation, 187 (2), 291–319.

Ford, L. R., & Fulkerson, D. R. (1956). Maximal Flow Through a Network. Canadian
Journal of Mathematics, 8, 399–404.

Garey, M. R., Johnson, D. S., & Stockmeyer, L. J. (1976). Some Simplified NP-Complete
Graph Problems. Theor. Comput. Sci., 1(3), 237–267.

Garg, S., & Philip, G. (2016). Raising The Bar For Vertex Cover: Fixed-Parameter
Tractability Above a Higher Guarantee. In Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA,
January 10-12, 2016, pp. 1152–1166. SIAM.

Gaspers, S., & Szeider, S. (2011). Kernels for Global Constraints. In IJCAI 2011, Proceed-
ings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona,
Catalonia, Spain, July 16-22, 2011, pp. 540–545.

Gaspers, S., & Szeider, S. (2014). Guarantees and Limits of Preprocessing in Constraint
Satisfaction and Reasoning. Artif. Intell., 216, 1–19.

Goldschlager, L. M., Shaw, R. A., & Staples, J. (1982). The Maximum Flow Problem is
Log Space Complete for P. Theoretical Computer Science, 21, 105–111.

Grohe, M. (2006). The Structure of Tractable Constraint Satisfaction Problems. In Mathe-
matical Foundations of Computer Science 2006, 31st International Symposium, MFCS
2006, Stará Lesná, Slovakia, August 28-September 1, 2006, Proceedings, pp. 58–72.

Gutin, G. Z., Jones, M., Scheder, D., & Yeo, A. (2013). A new Bound for 3-Satisfiable
MaxSat and its Algorithmic Application. Inf. Comput., 231, 117–124.

Hochbaum, D. S. (2002). Solving Integer Programs over Monotone Inequalities in three
Variables: A Framework for Half Integrality and Good Approximations. European
Journal of Operational Research, 140(2), 291–321.

Iwata, Y., Oka, K., & Yoshida, Y. (2014). Linear-Time FPT Algorithms via Network
Flow. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pp. 1749–1761.
SIAM.

Johannsen, J. (2004). Satisfiability Problems Complete for Deterministic Logarithmic Space.
In STACS 2004, 21st Annual Symposium on Theoretical Aspects of Computer Science,
Montpellier, France, March 25-27, 2004, Proceedings, pp. 317–325.

Karp, R. M., Upfal, E., & Wigderson, A. (1986). Constructing a Perfect Matching is in
Random NC. Combinatorica, 6(1), 35–48.

Mahajan, M., & Raman, V. (1999). Parameterizing above Guaranteed Values: MaxSat and
MaxCut. J. Algorithms, 31(2), 335–354.

706

On the Parallel Parameterized Complexity of MaxSAT Variants

Marathe, M. V., & Ravi, S. S. (1996). On Approximation Algorithms for the Minimum
Satisfiability Problem. Inf. Process. Lett., 58(1), 23–29.

Narayanaswamy, N. S., Raman, V., Ramanujan, M. S., & Saurabh, S. (2012). LP can be
a cure for Parameterized Problems. In 29th International Symposium on Theoretical
Aspects of Computer Science, STACS 2012, February 29th - March 3rd, 2012, Paris,
France, pp. 338–349.

Nemhauser, G. L., & Trotter, L. E. (1975). Vertex Packings: Structural Properties and
Algorithms. Mathematical Programming, 8(1), 232–248.

Nesetril, J., & de Mendez, P. O. (2012). Sparsity - Graphs, Structures, and Algorithms,
Vol. 28 of Algorithms and combinatorics. Springer.

Nickelsen, A., & Tantau, T. (2005). The Complexity of Finding Paths in Graphs with
Bounded Independence Number. SIAM Journal on Computing, 34(5), 1176–1195.

Papadimitriou, C. H., & Yannakakis, M. (1991). Optimization, Approximation, and Com-
plexity Classes. J. Comput. Syst. Sci., 43(3), 425–440.

Pilipczuk, M., Siebertz, S., & Torunczyk, S. (2018). Parameterized Circuit Complexity of
Model-Checking on Sparse Structures. In Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018,
pp. 789–798. ACM.

Razgon, I., & O’Sullivan, B. (2009). Almost 2-SAT is Fixed-Parameter Tractable. Journal
of Computer and System Sciences, 75(8), 435–450.

Reed, B. A., Smith, K., & Vetta, A. (2004). Finding Odd Cycle Transversals. Operations
Research Letters, 32(4), 299–301.

Szeider, S. (2011). The Parameterized Complexity of k-flip Local Search for SAT and
MaxSAT. Discret. Optim., 8(1), 139–145.

707

