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Abstract

Case-based planning is an approach to planning where previous planning experience pro-
vides guidance to solving new problems. Such a guidance can be extremely useful, or even
necessary, when the new problem is very hard to solve, or the stored previous experience
is highly valuable, because, e.g., it was provided or validated by human experts, and the
system should try to reuse it as much as possible. To do so, a case-based planning sys-
tem stores in a library previous planning experience in the form of already encountered
problems and their solutions.

The quality of such a plan library critically influences the performance of the planner,
and therefore it needs to be carefully designed and created. For this reason, it is also
important to update the library during the lifetime of the system, as the type of problems
being addressed may evolve or differ from the ones the library was originally designed for.
Moreover, like in general case-based reasoning, the library needs to be maintained at a
manageable size, otherwise the computational cost of querying it grows excessively, making
the entire approach ineffective.

In this paper, we formally define the problem of maintaining a library of cases, discuss
which criteria should drive the maintenance, study the computational complexity of the
maintenance problem, and propose offline techniques to reduce an oversized library that
optimize different criteria. Moreover, we introduce a complementary online approach that
attempts to limit the growth of the library, and we consider the combination of offline
and online techniques to ensure the best performance of the case-based planner. Finally,
we experimentally show the practical effectiveness of the offline and online methods for
reducing the library.

1. Introduction

Automated Planning in AI deals with the task of generating a partially ordered set of
actions, called plans, which allows a system to transition from an initial state to a state
satisfying a goal specification (Ghallab, Nau, & Traverso, 2016). Finding a plan solving
a planning problem specified by a simple planning language like STRIPS (Fikes & Nils-
son, 1971) and even only deciding its existence are PSPACE-complete problems, unless very
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severe restrictions are made (Bäckström & Nebel, 1995; Bylander, 1994). An extensive
research has been devoted to developing methods and tools for efficiently deriving plans in
spite of the worst-case intractability. Over time, different approaches and many techniques
have been investigated, such as domain-independent heuristics for guiding the search of a
plan (e.g., Domshlak, Hoffmann, & Katz, 2015; Gerevini & Serina, 2003; Gerevini, Saetti,
& Serina, 2008; Helmert, 2006; Helmert & Domshlak, 2009; Hoffmann, 2001; Richter &
Westphal, 2010), and the learning and use of domain-specific knowledge in various forms
(Jiménez, de la Rosa, Fernández, Fernández, & Borrajo, 2012; Zimmerman & Kambham-
pati, 2003). In this paper, we investigate the approach to planning based on exploiting
learning by case-based reasoning, which is also known as planning by reuse or case-based
planning (Borrajo, Roub́ıčková, & Serina, 2014; Cox, Muñoz-Avila, & Bergmann, 2005;
Hammond, 1989; Liberatore, 2005; Ontañón, Mishra, Sugandh, & Ram, 2010; Spalazzi,
2001).

Case-Based Planning (CBP) is a type of case-based reasoning (CBR) that uses the
stored experiences to lower the difficulty of solving planning problems (Cox et al., 2005;
Hammond, 1989, 1990). CBP relies on the observation that for many real domains the type
of problems that are solved does not vary much, and tends to recur. Thus, one can expect
that previous solutions to similar problems will be useful when solving new problems. For
example, this can be true when a new problem involves goals and an initial state that are
very similar to those of a previously solved one, due to a slight variation of goals during
plan execution, execution time failures, or similar reasons. In those cases, it might be more
efficient to change the existing plan rather than to re-plan from scratch (Hanks & Weld,
1995; Gerevini & Serina, 2010; Gerevini, Saetti, & Serina, 2012; Scala, Micalizio, & Torasso,
2015; Scala & Torasso, 2015). In CBP, a case is a pair consisting of a planning problem
and some reuse information about it. Usually, the reuse information consists of a plan for
solving the problem. The case base (CB) is a set of cases, and in the context of CBP, it
is also called plan library. The planning domain formalization, specified by PDDL (Fox &
Long, 2003) or other planning languages, is an additional part of the case base.

As the experience of the system grows, the competence of the case base is expected
to increase since new solutions are found and stored. In the field of CBR, the notion of
competence intends to define the utility of the case base in terms of “variety of problems the
case base can help solving” (Smyth & McKenna, 2001) or to “a particular set of performance
objectives” (Leake, Kinley, & Wilson, 1997). A suitable measure of this concept in planning
is yet to be defined and will be investigated in this paper.

As in a typical CBR system, the high-level steps of a CBP system and their interactions
with the case base can be organised in the cyclic structure depicted in Figure 1 (Aamodt
& Plaza, 1994). The system queries the case base to retrieve case(s) considered useful for
solving a new problem Π (retrieve); the solution(s) from the retrieved case(s) are applied
to Π in order to find a solution π (reuse); the new solution may need to be revised to
identify and fix possible flaws (revise); the possibly revised solution and problem Π are
used to create a new case that may be introduced to the case base. In addition, the system
may include techniques for analyzing and reorganizing the case base when reaching some
limit conditions (retain). When a CBR system faces a new problem, it performs these
procedures in a sequence that starts by querying the case base and ends by (possibly)
updating it.
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Figure 1: The typical cycle of a CBR system.

The larger the set of problems the plan library can help to address, the higher the quality
of the plan library. The retention phase of the CBP methodology consists of policies to
preserve and improve the quality of the case base. The existing work in CBP has focused
mostly on the reuse and retrieval steps. The retention usually settles with one of the
following extreme policies: either maintaining everything or using a pre-built case base that
is maintained fixed during the lifetime of the system. In this paper, we study the problem
of how to optimise the size and quality of the plan library in order to support efficient plan
retrieval and reuse; we call such a problem plan library maintenance problem. The main
contributions of our work are:

• A discussion on the assumptions underlying the case-based methodology in the con-
text of planning and, in order to formalise these assumptions, the identification of
conditions when an existing plan can be useful to solve a planning problem.

• A suitable measure of the notion of competence for case-based planning, as well as
the identification of some criteria for evaluating the quality of the plan library.

• A formal definition of the problem of maintaining a plan library optimizing either its
size or quality, and a computational complexity characterization of the plan library
maintenance problem.

• A set of policies for maintaining the plan library. Some of them concern with reducing
the size of the library when it becomes too big. They can incur a high computational
cost and hence are suitable for offline usage. Other policies concern bounding the
growth of the library by adding only the most beneficial cases, which can be done
relatively fast, making such policies suitable for online usage.
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• A thorough experimental analysis evaluating our CBP approach using different metrics
for measuring case similarity and the effectiveness of the proposed offline and online
policies addressing the plan library maintenance problem.

The remainder of the paper is structured as follows: Section 2 discusses the assumptions
underlying the case-based methodology in the context of planning. Section 3 formalises the
problem of maintaining the case base, introduces criteria for evaluating its competence, and
proposes different policies for maintaining it. Section 4 studies the complexity of maintaining
a plan library. Section 5 presents experimental results evaluating the proposed techniques.
Section 6 summarises the related work. Finally, Section 7 draws conclusions and mentions
future work.

2. Definitions and Assumptions

The planning problem consists of determining and ordering a set of actions (a plan) whose
execution transforms a given initial state of the world into a new state satisfying some
desired goals. This task is also called generative planning (Ghallab, Nau, & Traverso,
2004). More formally, a generative planning problem Π is a tuple 〈F ,A, I,G〉, where

• F is a set of positive literals called the Facts of Π;

• A is the set of Actions of Π; each action a is a triple 〈pre(a), eff(a)+, eff(a)−〉, where

– pre(a) ⊆ F is a set of positive literals called the preconditions of a,

– eff(a)+ ⊆ F is a set of positive literals called the positive effects of a,

– eff(a)− ⊆ F is a set of negative literals called the negative effects of a;

• I ∈ 2F is the initial world state of Π;

• G ⊆ F is a set of literals called the goals of Π.

For simplicity, in the rest of the paper we refer to this task as the “planning problem”. A
planning problem can be more concisely specified by a set of objects, a set of predicates, and
a set of action schemas. An action schema consists of a precondition formula and an effect
formula. These formulas are conjunctions of predicates, whose arguments are parameters of
the action. The sets of predicates and action schemas form the so-called planning domain.
The sets F and A defining the planning problem can be derived from the planning domain
by instantiating parameters of domain predicates and action schemas with all the possible
combinations of objects. Notably, the same sets of predicates and action schemas can be
used to specify the sets F and A of different instances of planning problems; these instances
are then associated with the same planning domain.

In our work, the language used for the encoding of a planning problem is the well-known
PDDL (Ghallab, Howe, Knoblock, McDermott, Ram, Veloso, Weld, & Wilkins, 1998), and
we focus on propositional planning problems (Fikes & Nilsson, 1971), i.e., planning problems
where world states are sets of literals. Under the closed world assumption, if a literal is not
in a world state then in that state it is false. An action a is executable in a world state s
if the preconditions of a are satisfied in s, i.e., pre(a) ⊆ s. The state s′ resulting from the
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execution of a in s is obtained by adding the positive effects of a to s and removing the
negative effects of a from s, i.e., s′ = (s \ eff(a)−)∪ eff(a)+. For simplicity, we assume that
plans are sequences of actions. A sequence of actions 〈a0, ..., an−1〉 is said to be a plan if,
when iteratively applied starting from I, it is such that each action ai is applicable in the
state si resulting from the plan prefix before it (i.e., si |= pre(ai)), and the last produced
state sn satisfies the goal, i.e., sn |= G.

The core idea of CBP is providing a complementary approach to traditional generative
planning under two assumptions coming from the field of CBR: the world is regular and
similar problems recur over time. The regularity of the world assumes that similar problems
have similar solutions. Such an assumption obviously links together the similarities between
problems and solutions, which also provides a guarantee that a retrieved case containing a
problem similar to the new problem to be solved will provide a plan that can be adapted
without many changes for its reuse.1 The latter assumption that similar planning problems
recur is meant to ensure that, together with the regular assumption, the reuse approach
will eventually pay off. These assumptions of CBR and CBP have not been formally stated
yet. In the following, we introduce some definitions that formalise them in the context of
CBP and allow us to formally characterize the notion of case base maintenance policy.

To design a procedure for the case base maintenance, we start by deciding which param-
eters of the case base define its quality, and thus which criteria should guide the maintenance
policy in determining which experiences to keep and which to discard. Obviously, an im-
portant criterion is the variety of problems that the case base can address, which in CBR is
also referred to as the case base competence (Smyth, 1998), and its interplay with the size,
or cardinality, of the case base. Unfortunately, this simple notion of competence cannot
be directly adopted in the planning context. Differently from CBR, where a case usually
either can or cannot be adapted to solve a new problem instance, the reuse procedure of a
planning system in principle can always adapt the retrieved solution to solve a new problem
(if solvable) by changing any unfit part, or by disregarding the whole stored solution and
attempting to find a new solution from scratch. Hence, an effective CBP system needs to
decide how much a new solution deviates from the one stored in the case base, how expen-
sive the reuse would be, and, consequently, how useful the retrieved solution is. With the
aim of obtaining a plan library that is useful to solve a wide range of problems, the notion
of case quality has to consider the information redundancy within a case, which is captured
by the case diversity or distance w.r.t. the other cases in the library.

We start by considering how well a case fits a new problem instance in terms of its
usability to solve the new instance. Classical planning can be formulated as a search problem
in a space of plans (e.g., Ghallab et al., 2004), where the search starts from an empty plan.
The adaptation of a retrieved plan in CBP can be formulated similarly, with the difference
that the initial plan, instead of the empty plan, is the retrieved one. We can define the
distance between a stored solution and a solution of the new problem as the minimum
number of actions that need to be added/removed in order to convert the stored plan to
the new one.

Let ℘ denote the space of plans for a given planning domain. Ideally, a plan distance
function dπ : (℘ × ℘) → [0, 1] should measure the distance between two plans in terms of

1. During the retrieval phase, the system has no information about the plan it is looking for, and so it
needs to decide solely based on the properties of the problems.
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how hard it is to adapt one of the plans to obtain the other from a computational point
of view. However, computing such a function is infeasible (Liberatore, 2005). Therefore,
we use the following approximation that is easy to compute (Nguyen, Do, Gerevini, Serina,
Srivastava, & Kambhampati, 2012).

Definition 1 (Normalized plan distance). Given two plans πi and πj, the normalized plan
distance function dπ(πi, πj) between two plans πi and πj is the number of actions that are
in πi and not in πj plus the number of actions that are in πj and not in πi, normalized over
the total number of actions in πi and πj, i.e.,

dπ(πi, πj) =
|πi 	 πj |+ |πj 	 πi|

|πi|+ |πj |
. (1)

Operator 	 works as follows. For each action a, let πx and πy contain l and m instances of
a, respectively. If l > m, then πx 	 πy contains l−m instances of a; it contains 0 instances
of a otherwise. Clearly, if the case-based system needs to revert to an empty plan (because
no part of the stored plan can be reused) and search from there, then the provided case
should be considered useless. Hence, we say that a case can be useful to solve a problem if
the distance between the corresponding plans is not larger than the distance from an empty
plan.

Definition 2 (Function addresses). We say that a case ci = 〈Πi, πi〉 can be useful to solve a
problem Π, that is, addresses(ci,Π), if there exists a plan π for Π that is close to πi according
to a threshold distance δ ∈ R, that is, dπ(πi, π) < δ for some δ ∈ R.

The definition of addresses(ci,Π) relies on the distance between the solutions and completely
disregards the relation of the relative problems. However, also the structural properties of
the problems play a considerable role, as the case retrieval step is based on the planning
problem descriptions. Therefore, we also use a distance function dp that is intended to
measure the similarity of problems. Let P denote the space of problems in a given planning
domain, Π ∈ P be a new problem, and Π′ ∈ P be a problem previously solved. It is worth
noting that Π and Π′ can involve different sets of objects, therefore, the reuse of a solution
π′ for Π′ may require defining a matching between the objects of π′ (or the corresponding
solved problem Π′) and those of Π. The following definition of problem distance function
assumes that the matching between the objects of Π and Π′ has been already performed.

Definition 3 (Problem distance). The problem distance function dp : (P × P) → [0, 1]
between two problems Π and Π′ in P is defined as

dp(Π,Π
′) = 1− |I

′ ∩ I|+ |G′ ∩ G|
|I ′|+ |G|

(2)

where I and I ′ (G and G′) are the initial states (sets of goals) of Π and Π′, respectively
(Serina, 2010).2

2. The denominator of dp considers only the initial state of problem Π′ and the goals of the new problem
Π, because the goals in G′−G are irrelevant for the new problem Π, and the facts in I− I ′ are irrelevant
for the executability of the plan solving Π′ that is stored in the library together with Π′.
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Let Π be a new problem and Π1 and Π2 two problems stored in the library. If dp(Π,Π1) <
dp(Π,Π2), we say that Π and Π1 are more similar than Π and Π2. Moreover, the lower
dp(Π,Π1) is w.r.t. dp(Π,Π2), the more similar Π and Π1 are w.r.t. Π and Π2. Consequently,
by the regular world assumption, the library problems with shortest distance w.r.t. Π are
more likely to have similar solutions than other library problems, and so it is useful to
retrieve from the case base the cases with problems that have the shortest distance to Π.
We can say that distance dp is helpful to guide the retrieval phase, while distance dπ can be
used to estimate the plan adaptation effort.

Since a maintenance policy should consider both costs of retrieval and adaptation, the
two functions are combined obtaining a combined distance function d : ((P×℘)×(P×℘))→
[0, 1] measuring distance between cases. The combination of dp and dπ allows us to assign
different importance to the similarity of problems and their solutions, depending on the
application requirements. Specifically, the distance d between two cases c = 〈Π, π〉 and
c′ = 〈Π′, π′〉 is defined as follows:

d(c, c′) = α · dp(Π,Π′) + (1− α) · dπ(π, π′)

where parameter α ∈ [0, 1] allows to assign greater importance to the problem descriptions
(for the domains where the world is strongly regular) or to the stored plans (for the settings
where the stability of the solution matters). The rest of the paper uses such a notion of
case distance.

The assumption of regular world presented at the beginning of this section uses a notion
of similarity between problems and solutions, neither providing details on how the similarity
should be measured nor specifying which solutions are considered. This is an important
concern when a problem may have several significantly different solutions. We formalise
this assumption keeping the notion of similarity undetailed to preserve the generality of the
definition, but establishing the quantification over the solutions as follows.

Definition 4 (Regular World Assumption). Let Π and Π′ be two similar planning problems
of a planning domain with problem space P and plan space ℘ such that Π 6= Π′. If the world
is regular, then

• ∀π ∈ ℘ that is a solution of Π, ∃π′ ∈ ℘ that is a solution of Π′ such that π and π′ are
similar, and

• ∀π′ ∈ ℘ that is a solution of Π′, ∃π ∈ ℘ that is a solution of Π such that π′ and π are
similar.

In our work, the problem and plan similarities are measured by the distance functions dp
and dπ, respectively. Case similarity is interpreted by means of the distance function d.
The next definition formalises the notions of similarity for problems, plans, and cases.

Definition 5 (Similarity). Given a problem distance threshold δp ∈ R, two problems Π and
Π′ are similar iff dp(Π,Π

′) ≤ δp. Given a (normalized) plan distance threshold δπ ∈ R,
two plans π and π′ are similar iff dπ(π, π′) ≤ δπ. Finally, two cases ci and cj are similar,
written similarδ(ci, cj), iff d(ci, cj) ≤ δ, where the value of δ ∈ R depends on the specific
definition choice for d as well as on the domain, similarly to δπ and δp.
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The other assumption that we need to formalise in our context is the notion of problem
recurrence:

Definition 6 (Recurring Problem Assumption). For every problem Π that the CBP sys-
tem encounters, it is likely that its case base contains a case ci = 〈Πi, πi〉 such that
addresses(ci,Π) holds.

Case-based planning relies on the two assumptions formalised in Definitions 4 and 6.
Under these assumptions, the system is likely to produce solutions similar to the retrieved
plans that are reused, as the problems are also assumed to be similar. Therefore, the new
cases added to the library often solve new problem instances that are similar to other cases
already solved. For this reason, it can be expected that the cases in the case base create
groups of elements, that we call case clusters, similar to each other; such clusters could be
reduced to smaller groups without significant loss of information.

Definition 7 (Case Cluster). Given a plan library L and a case-distance threshold δ, a
case cluster of n elements in L is a subset C of L formed by similar elements, i.e., ∀c, c′ ∈
C, ∃c1, . . . , ck ∈ C with k ≤ n such that similarδ(c, c1), similarδ(ck, c

′), and similarδ(ci, ci+1)
for 1 ≤ i < k.

A case base can be represented by a graph where the cases ci form vertices and there is an
edge from ci to cj if and only if similarδ(ci, cj) holds according to the given case-distance
threshold δ. A case cluster is a connected component in such a graph, i.e., between any two
cases c and c′ of the cluster there exists a path from c to c′ in the graph.

3. Maintenance of the Plan Library

The plan library maintenance problem consists of deriving a case base L′ that is smaller
than the original case base L, but that contains (very) similar experiences. Under such
conditions, we say that L′ reduces L. The following notions of case covering and case base
coverage are defined to help formalise this concept.

Definition 8 (Function covers). Given a plan library L and a case-distance threshold δ ∈ R,
a case ci ∈ L covers a case cj ∈ L according to δ, denoted coversδ(ci, cj), if d(ci, cj) ≤ δ.

The relative amount of knowledge provided by the maintained case base L′ compared to
the original (full) case base L is captured by a measure that we call coverage.

Definition 9 (Function coverage). Let L and L′ be two case bases and let C be the set of all
cases in L that are covered by the cases in L′ according to a case-distance threshold δ, i.e.,
C = {ci ∈ L | ∃c′i ∈ L′, coversδ(c

′
i, ci)}. The coverage of L′ over L according to δ, denoted

coverageδ(L′,L), is defined as |C||L| .

We say that a subset L′ of cases of L contains a planning experience similar to L when all
the cases of L are covered by L′. In this sense, L′ can be considered a reduction of L.

Definition 10 (Function reduces). Let L and L′ be case bases. L′ reduces L accord-
ing to a case-distance threshold δ, denoted as reducesδ(L′,L), if and only if L′ ⊂ L and
coverageδ(L′,L) = 1.
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There are many possible ways to reduce a case base, out of which some are more suitable
than others. We introduce two criteria for reducing the case base that can significantly
influence the performance of a case-based system:

• minimising the size of the reduced case base, which can have a significant impact on
the efficiency of the retrieval phase;

• maximising the quality of the reduced case base, which can significantly influence the
cost of adapting the plan in the retrieved case.

Considering the first criterion, the optimal result of the reduction takes into account the
number of elements in the reduced case base:

Definition 11 (Cardinality Case Base Maintenance Problem). Given a case base L and
a case-distance threshold δ ∈ [0, 1], the cardinality case base maintenance problem is to
identify the smallest set L′ ⊂ L which reduces L according to δ.

In the decision version of the Cardinality Case Base Maintenance Problem, the input 〈L, δ, k〉
is the original case base L, a case-distance threshold δ ∈ [0, 1], and a natural number k.
The question to answer is whether there exists a reduction of L according to δ that has a
size less than or equal to k.

Concerning the second criterion, consider three cases c, c1, and c2 ∈ L so that d(c, c1) <
d(c, c2) < δ. By Definition 8, c covers both c1 and c2, however, the expected adaptation
cost of c1 is lower than the one of c2, and therefore c covers c1 better than c2. Therefore,
the (reduced) library obtained by removing c1 is better than the (reduced) library obtained
by removing c2, because d(c, c1) < d(c, c2) and the associated information loss is smaller.

The criterion of maximizing the quality of the reduced case base can be reformulated as
minimizing the coverage information lost when we reduce the case base; such a loss can be
measured as the average distance from the removed cases to the closest kept case, that we
call average coverage information loss. The optimal result according to such a criterion is
a case base L′ reducing L with minimal average coverage information loss. Note, however,
that if only such information loss were considered, then L = L′ would be a special case
of optimal reduced case base. Therefore, the quality measure to optimise is more complex
because it needs to also take the size of the reduced case base into account. In particular,
we define the notion of neighborhood of a case c with respect to a similarity distance value
δ, denoted nδ(c). The similarity is interpreted as proximity in the sense of distance function
d. So, the meaning of δ is the same as in Definition 5.

The idea of the case neighborhood is to group elements which contain redundant infor-
mation and hence that can be reduced to a single case. Note that value δ, together with
the structure and distribution of the cases in the case base, influences the size of the case
neighborhoods and therefore it determines the amount by which L can be reduced.

Definition 12 (Neighborhood). Given a case base L, a case c ∈ L and a case-distance
threshold δ ∈ [0, 1], the neighborhood of c, denoted nδ(c), is the set of cases {ci ∈ L | ci 6= c,
d(c, ci) ≤ δ}.

Given a reduction L′ of L, we define the lost neighborhood Lδ(c) of an element c ∈ L as
its neighbours in L \ L′, i.e.,
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Lδ(c) =
{
cj ∈ L | cj ∈ nδ(c) ∩ L \ L′

}
(3)

and the cost vδ(c) of a case c as the real function

vδ(c) = 1 +
∑

cj∈Lδ(c)

d(c, cj)

|Lδ(c)|
. (4)

The first term in (4), the unit cost, represents the cost of including c in L′, while the second
term corresponds to the average coverage loss of the neighbors of c, i.e., the elements of
L \ L′ that may not to be included in the reduced case base because they are supported
by c.

Definition 13 (Reduction cost). Given a reduction L′ of L and a case-distance threshold
δ, the reduction cost Mδ(L′) of L′ is the sum of costs of all the elements of the reduced set
L′, i.e., Mδ(L′) = Σc∈L′vδ(c).

Therefore, according to the criterion of maximizing the quality of the reduced case base,
the case base maintenance problem can be stated as follows.

Definition 14 (Quality Case Base Maintenance Problem). Given a case-distance threshold
value δ ∈ [0, 1] and a case base L, the quality case base maintenance problem is to identify
a reduction L′ of L according to δ that minimises Mδ(L′).

The Mδ cost function is used with the aim of minimizing both the total number of cases
in the reduction L′ and the distance w.r.t. the corresponding lost neighbors. Given two
reductions derived using the same case-distance threshold δ, we prefer the one with the
lowest Mδ, which takes the size of the reduction into account, and determines how closely
related the cases in the lost neighborhood are; indeed, the lower total average coverage
loss of the neighbors for the cases in the reduction, the better the cases in the reduction
represent the original library.

In the decision version of the Quality Case Base Problem 〈L, δ, q〉, the question is whether
there exists a reduction of L according with δ that has a cost less than or equal to a real
number q. In Section 4 we will show that the decision versions of the considered case
base maintenance problems are NP-complete, and hence also their optimization versions
are intractable. Thus, it is worth investigating ways of computing approximate solutions to
these problems.

3.1 Offline Maintenance

A high-quality approximation of the solution to the maintenance problems defined before
can provide a reduction of the library without losing (too much) of the knowledge contained
within. A policy addressing the maintenance problem needs to be highly informed in order
to select the most suitable subset of the cases from the library, which can incur a high
computational cost. Consequently, such a policy cannot be performed very often or in
periods of high activity of the CBP system, and it is more suitable for offline usage.

This section introduces an uninformed random policy, which is the baseline in our exper-
imental analysis, and two informed policies for offline use, called Distance-Guided Policy and
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Coverage-Guided Policy. While Smyth (1998) considers maximising competence as a nec-
essary property of a case base, our informed policies are guided by minimising the amount
of knowledge that is lost in the maintenance process, where removing a case from the li-
brary implies losing the corresponding knowledge unless the same information is contained
in some other case.

3.1.1 Random Policy

The random policy reduces the case base by randomly selecting elements to remove. The
probability q of removing an element is the ratio between the required size and the current
size. Such a policy is interesting for two reasons: it is easy to implement and very fast
to compute. Moreover, it can provide a case base of reasonable quality (Smyth, 1998).
However, it has the drawback that there are no guarantees about the coverage of the reduced
case base L′ over the original case base L.

Notice also that the random policy heavily relies on the recurring problem assumption.
The removal of a case is independent of the removal of other elements, therefore the prob-
ability that a whole cluster of cases with size m is removed is qm. With q < 1, bigger case
clusters are less likely to be (completely) removed. On the other hand, the probability of
removing an “isolated” case (i.e., a single case cluster corresponding to a problem that has
not recurred yet) amounts to q; consequently, an aggressive policy (with high q) is likely to
significantly decrease the coverage of the case base.

3.1.2 Distance-Guided Policy

Due to the assumption of recurring problems, we expect that the plan library contains a
problem that is similar to a new problem to solve and that the problems in the library can
be grouped into sets of problems that are similar (close in the sense of dp) to each other.
Consequently, by the assumption of regular world, for a new problem Π′ there exists a
solution π′ that is similar to the solution π of a stored case c = 〈Π, π〉, where Π is similar to
Π′. The new case c′ = 〈Π′, π′〉 is then similar to c (close in the sense of d), and its inclusion
in the case base introduces some redundancy because of its similarity with c.

We propose a distance-guided policy that attempts to remove the cases that are mostly
redundant. These cases are those where the distance to other cases is too small. Let c∗i de-
note the case with the minimum distance from a case ci in L, i.e., d(ci, c

∗
i ) ≤ d(ci, cj), ∀cj ∈

L \ c∗i . The next definition formally states the policy.

Definition 15 (Distance-guided Policy). Given a case-distance threshold δ, the distance-
guided policy iteratively selects a case ci ∈ L defined as argmincj∈L d(cj , c

∗
j ) and removes ci

from L if d(ci, c
∗
i ) < δ in the current reduction of L.

Figure 2 gives an example of a reduced plan library obtained by using the distance-
guided policy. In the figure, each circle denotes a case, the grey area is a two-dimensional
hyper-space such that the distance between the case with a red “×” and the cases inside
the dashed circle is lower than a case-distance threshold δ; white circles represent cases that
the policy has already removed from the library, green circles are cases that will be kept in
the library, black circles along with the green ones are cases that are currently part of the
library under reduction. The example shows the removal of three cases from the library. On
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(1) (2)

(3) (4)

Figure 2: Example of the usage of the distance-guided policy; green circles represent the
kept cases; white circles represent the removed cases; the policy is applied to the
black cases.

the top-left part (1) of the figure, case c1 is removed from the library because the distance
with its closest case is the lowest in the current reduction of the library and such a distance
is lower than a case-distance threshold δ (that is here indicated by the dotted line). For
the same reason, the policy discards the cases c2 and c3 in the top-right part (2) and in the
bottom-left part (3); while on the bottom-right part (4) of the figure case c4 is kept in the
library because it is quite far from the other cases kept in the reduction of the library (the
green ones).

Of course, the distance-guided policy can preserve the knowledge in the case base better
than the random maintenance. However, non-redundant cases can still be discarded by
such a policy, as some information is missed when only the minimum distance cases are
considered. For instance, considering the cases c1 and c2 in the bottom-right part (4) of
the figure, they are not redundant in the final library reduction because they are quite far
from the other cases in the reduced plan library (green circles), but they are still removed
by the policy.

3.1.3 Coverage-Guided Policy

In order to overcome the limitations of the distance-guided policy, we generalise such a policy
to consider all the cases that may contain redundant information at once. For that, we use
the notion of case neighborhood nδ and other notions introduced in the previous section.
The resulting policy, which we call Coverage-Guided Policy, has two variants defined as
follows.

Definition 16 (Cardinality-Coverage Policy). Given a case base L and a case-distance
threshold δ, the cardinality-coverage policy finds a minimal set L′ of cases such that the
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CoverageBasedPolicy(L, δ)
Input: a plan library L = {ci | i ∈ 1 ≤ i ≤ n}, a threshold δ ∈ R.

Output: a plan library L′ reducing L.

1. L′ ← ∅;
2. Uncovered← L;
3. repeat
4. select ci ∈ Uncovered that satisfies condition(ci);
5. Uncovered ← Uncovered \nδ(ci);
6. L′ ← L′ ∪ {ci};
7. until Uncovered = ∅;
8. return L′.

Figure 3: Schema of a greedy algorithm computing an approximation of the Coverage-Based
Policy.

union of all their neighborhoods covers all the elements of the given case base L according
with δ, i.e., such that reducesδ(L′,L) holds.

Definition 17 (Quality-Coverage Policy). Given a case base L and a case-distance thresh-
old δ, the quality-coverage policy finds a set L′ of cases such that the union of all their
neighborhoods covers all the elements of the given case base L according with δ and mini-
mizes the reduction cost Mδ(L′).

Unfortunately, as we will show in Section 4, computing the exact reduced case base by
the coverage-guided policy is intractable. Therefore, we propose to compute approximations
of the reduced case bases that solve the cardinality and quality case base maintenance
problems. For this scope, we use the simple greedy algorithm in Figure 3. The algorithm
has two variants that depend on how line 4 is implemented and correspond to the policies
of Definitions 16 and 17:

• For the Cardinality Coverage-Guided Policy, the condition test at line 4 of the algo-
rithm is used to select the uncovered element ci with the greatest |Lδ(ci)|, in order to
maximise the number of uncovered elements in nδ(ci) that can be covered by inserting
ci into L′.

• For the Quality Coverage-Guided Policy, in order to optimise the quality of the reduced
case base L′, the condition of line 4 is used to select the uncovered element ci with
the minimum value for vδ(ci)

|Lδ(ci)| , i.e., the cost vδ(ci) of case ci scaled down by |Lδ(ci)|
to favour the cases that cover a higher number of not yet covered elements.

Figure 4 shows an example of the plan library obtained using the cardinality-coverage
policy. Let the grey area be a two-dimensional hyper-space such that the distance between
the case at the center of the dashed circle and the other cases inside the circle is lower than
a case-distance threshold δ. In this figure, the circles represent the cases in L, the green
circles represent the cases in the reduced case base L′, the orange circles are the cases in set
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(1) (2)

(3) (4)

Figure 4: Example of the usage of the cardinality-coverage policy.

Uncovered of CoverageBasedPolicy. The top-left part (1) of the figure shows that case c2 has
the largest lost neighborhood since, differently from the other uncovered cases (in orange),
it includes two other cases c1 and c3. On the top-right part (2) of the figure c2 is added
to L′, while c1 and c3 are removed from Uncovered. The bottom-left part (3) shows that
case c4 is the only one left in Uncovered; finally, on the bottom-right part (4), c4 is added
to L′. Considering the central cluster, both the distance-guided policy and the cardinality-
coverage policy remove cases c1 and c3 but, differently from the distance-guided policy, the
cardinality-coverage policy correctly keeps case c2 in the reduced library, as without c1 and
c3 it is not redundant.

3.2 Online Maintenance

In general, there are two major tasks related to the library maintenance problem. As we
have already seen, one of them is concerned with how to reduce the size of the library when
it becomes too big. The other task concerns bounding the growth of the library by adding
only those cases that are beneficial to the overall planning process (plan retrieval and its
adaptation for reuse).

Definition 18 (Online Case Base Maintenance Problem). Given a case base L, and a new
case c = 〈Π, π〉, c 6∈ L, decide whether c should be added to L.

If all cases are added and kept in the library, the size of the library may grow very
fast, significantly decreasing the performance of the whole system. Hence, an effective CBP
system needs also to address the online maintenance problem.

The decision whether a new case should be added to the case base or not, and possibly
also whether some other case should be removed, need to be taken relatively fast, as this
is potentially done every time a new problem is presented to the system. The goal of the
online policy is to maintain the case base in a way that supports efficient queries (case
retrieval). To enable a fast retrieval, the case base needs to be small or well structured, and
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BoundedOnlineMaintenance(L, c, δ,N)

Input: a plan library L, a case c /∈ L, a distance threshold δ, a positive integer N

Output: an updated plan library L′

1. find c∗ ∈ L s.t. d(c, c∗) ≤ d(c, c′) ∀c′ ∈ L;
2. if d(c, c∗) > δ then L′ = L ∪ c;
3. if |L′| > N then
4. ci = argmincj∈L′d(cj , c

∗
j );

5. remove ci;
5. update d(c, c∗) ∀c ∈ L;
7. return L′.

Figure 5: Algorithm for the bounded online maintenance policy.

hence the online system should add only new cases of significant “importance” (relatively
to the existing cases) to the plan library.

The optimal criterion for deciding whether a new case is added or not should consider
the deterioration of the retrieval step (the increased cost due to the enlarged case base), as
well as the improvement of the reuse step (the benefit of possibly reusing the new case).
However, such a measure depends not only on the case itself, but also on the rest of the
case base, and hence it changes over time as the case base evolves. It is hard to predict the
actual retrieval cost increase and reuse benefit before future problems are encountered by the
system, without any assumption on the distribution of the planning problems. Therefore,
the policy proposed here works by deciding the addition of the case solely based on the
current state of the case base, allowing to remove this element later if the system identifies
that it has become not useful.

As in the offline maintenance, the insertion of a new case is decided taking into account
the diversity of the case with respect to the library. The case is included in the library
only if it contains a sufficient amount of new information. More formally, let c∗ ∈ L denote
the element of the case base that is the most similar to a new case c according to distance
function d. If d(c, c∗) > δ for some suitable distance threshold δ (that is, c is estimated to
be sufficiently different from the whole case base), then c is inserted into L.

However, such an approach can still lead to an uncontrollable growth of the plan library
if all solved problems differ from each other more than δ. Therefore, we will address the
bounded online maintenance problem defined as follows.

Definition 19 (Bounded Online Case Base Maintenance Problem). Given a case base L,
a bound N ∈ N on the maximum size of L, and a case c = 〈Π, π〉 such that c 6∈ L, decide
whether c should be added to L; if |L| = N and c should be added, find a suitable case in L
to be removed from L ∪ {c}.3

Figure 5 gives the pseudo-code of our algorithm for the bounded online maintenance of the
plan library. The removal of a case is again guided by the case diversity in the case base.

3. Also the newly inserted case c is considered for removal because c might be the least valuable case in
the augmented case base.
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Informally, the policy attempts to identify a case less diverse than the others. Case diversity
is defined by means of the distance function d. Let us recall that c∗i denote the library case
that is the most similar to a library case ci. A case ci is a candidate for removal if it satisfies
d(ci, c

∗
i ) ≤ d(cj , c

∗
j ),∀j ∈ {1, . . . , |L|}. Algorithmically, such an element can be selected as

follows: for every case ci ∈ L, we identify its most similar case c∗i ; we sort the case base
elements by the growing distance with their most similar cases, and we remove the first such
ci. Such a removal can affect the definition of the minimum distance case for the cases that
are still in the library; so, we also need to update the minimum case distance for the cases
in the library such that their minimum case distance was ci. In the worst case, updating
these minimum distance cases requires quadratic time in the number of cases that are in the
library. The algorithm in Figure 5 mimics a single iteration of the distance-guided policy,
and requires only polynomial time if the distances to the most similar case have been stored
during the case insertion phase.

3.3 Combined Maintenance

The offline and online approaches defined above have some complementary advantages and
weaknesses. The offline policies have the potential drawback that between two consecu-
tive maintenance operations the plan library could significantly and quickly grow. On the
other hand, the online policies keep the library size limited to a given bound, but its qual-
ity is likely to degrade over time. In order to overcome these drawbacks and exploit the
complementary advantages, we propose to combine the two approaches as described below.

The combined approach stores every new case in the library, but, in order to increase
the performance during the retrieval, only a subset of the cases are considered; such cases
are called active cases. The system behaves as if only the active elements were present in
the case base, but it can dynamically redefine the set of active elements when a certain
condition is met. The identification of the active elements is performed using the offline
case base maintenance, which can be activated when the size of the case base exceeds a
certain limit. All and only the elements in the reduction computed by the offline policy are
considered active in the complete library.

In order to implement the combined maintenance policy, each case is marked by an acti-
vation flag. When the CBP system loads the library, it filters the cases by their activation.
During the lifetime of the CBP system, for each newly encountered problem, the corre-
sponding case is stored in the case base, and the bounded online maintenance is invoked to
determine the activation flag of the new case and possibly modify the flag of another case.
This is realised by an algorithm similar to the one given in Figure 5 for the bounded online
maintenance, but with few changes:

• step 2 adds case c to the case base regardless of the distance from its closest case, and
marks c active if and only if d(c, c?) > ε, where ε is a distance threshold, and c? is the
active case which is closest to c in the library;

• step 4 considers only the active cases;

• step 5 marks case ci as inactive, instead of removing ci.

When a certain reduction condition is met, such as the system has encountered a maximum
number of problems, or the retrieval time has increased above a specified limit, or the system
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is in a period of low activity, etc., the planner marks every case as active and computes
a suitable reduction of such a complete case base by means of the offline maintenance
technique.

The fact that step 4 considers only the active cases implies that the system does not
compute the distance values between all pairs of cases. Indeed, their computation during the
reduction phase may significantly slow down the process: if the distance values between all
pairs of cases (not only between the new case and the active ones) were computed during the
insertion phase, overall the speed up when dealing with a new case would be less significant,
as only the retrieval phase would be faster, while the insertion phase would take the same
time as for the offline policies.

The main challenge of the combined maintenance is to identify a suitable condition
at which the offline maintenance is invoked; this should not happen too often, due to its
extensive computational costs, but also not too rarely to avoid an excessive deterioration of
performance of the retrieval phase. Our experimental results reported in Section 5 suggest
that even a very simple condition, such as a bound on the number of the encountered
problems, leads to significant improvements.

4. Computational Complexity of Maintaining a Plan Library

In this section, first we study the complexity of the case base maintenance problem; then
we analyze the worst-case time complexity of our policies.

4.1 Complexity of the Case Base Maintenance

We show that both the cardinality variant (Definition 11) and the quality variant of the plan-
library maintenance problem (Definition 14) are NP-hard by proving that the corresponding
decision problem versions are NP-complete. These NP-completeness proofs use reductions
from the Dominating Set Problem (Garey & Johnson, 1990), where a dominating set for a
graph G = (V,E) is a subset V ′ of V such that every vertex not in V ′ is adjacent to at least
one vertex of V ′.

Definition 20 (Dominating Set Problem). Given an undirected graph G = (V,E) and a
natural number κ ≤ |V |, the dominating set problem consists in testing whether there is a
dominating set of size κ or less for G, that is, a subset V ′ ⊆ V , |V ′| ≤ κ, such that for all
u ∈ V \ V ′ there is a v ∈ V ′ for which (u, v) ∈ E.

The dominating set problem is NP-complete even under a number of various restrictions on
the graph G (Garey & Johnson, 1990).

Lemma 1. For every instance 〈G, κ〉 of the Dominating Set Problem there exists an instance
of the Cardinality Case Base Maintenance Decision Problem 〈L, δ, k〉, for some distance
threshold δ ∈ [0, 1] and k = κ, such that 〈G, κ〉 is a positive instance if and only if 〈L, δ, k〉
is a positive instance.

Proof. We show how to create an instance 〈L, δ, k〉 of the Cardinality Case Base Maintenance
Decision Problem from the undirected graph G = (V,E) of the Dominating Set Problem,
such that either both have a positive answer or they both have a negative answer. The
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idea behind the reduction is to construct a plan library L where we have a case c for every
vertex v of G, and encode in the initial state of c which other vertices are connected to v
with an edge. The instance is then constructed as follows.

• For every graph vertex v ∈ V , we create a planning problem initial state Iv defined
as the following set of propositions:

{node(v)} ∪ {edge(u, v) |u ∈ V, (u, v) ∈ E} ∪ {edge(v, u) |u ∈ V, (u, v) ∈ E},

where proposition edge(u, v) means that there is an edge between u and v in G. As
G is an undirected graph, for every pair of vertices u and v connected by an edge
in G both (u, v) and (v, u) are in Iv (and Iu). Let nv be the cardinality of Iv and
n = maxv∈V (nv). We extend every state Iv of cardinality less than n by additional
“dummy” propositions (all different from each other) so that it contains exactly n
propositions. Then the following holds: two initial states Iu and Iv share exactly two
propositions, edge(u, v) and edge(v, u), if (u, v) ∈ E, otherwise their intersection is
empty.

• For every graph vertex v ∈ V , we then construct a planning case cv as follows: the
initial state of cv is Iv, the action set is {act(v)}, the goal set is {goal(v)}, and the
plan is 〈act(v)〉, where act(v) is an action with set of preconditions {node(v)} and set
of effects {goal(v)}. The distance between two planning cases cv and cw constructed
from a pair of vertices v and w such that (v, w) ∈ E is:

d(cv, cw) = α ·
(

1− 2 + 0

n+ 1

)
+ (1− α) ·

(
1 + 1

1 + 1

)
=
n+ 1− 2 · α

n+ 1
,

where α is the coefficient in the distance function definition. Otherwise, if the two
planning case cv and cw correspond to a pair of vertices v and w that are not connected
by an edge in G, their distance is:

d(c, c′) = α ·
(

1− 0 + 0

n+ 1

)
+ (1− α) ·

(
1 + 1

1 + 1

)
= 1.

• The distance threshold δ under which the maintenance policy removes cases is any
value chosen in the interval (n+1−2·α

n+1 ; 1), where the interval lower bound is the distance
of two similar cases, whereas the interval upper bound is the distance between diverse
cases. Note that the construction works for any value of α ∈ (0, 1], because ∀α ∈ (0, 1]
there exists such a value of δ.

By construction of the case base and definition of δ, it is easy to see that, for every
natural number κ ≤ |V | there exists a dominating set V ′ with |V ′| ≤ κ if and only if
the constructed case base can be reduced to a case base of size less than or equal to κ.
Therefore, with k = κ, 〈G, κ〉 is a positive instance of the Dominating Set Problem if and
only if 〈L, δ, k〉 is a positive instance of the Cardinality Maintenance Decision Problem.

The main results of this section are formalised in the following theorems:
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Theorem 1. Given a case base L, a case-distance threshold δ ∈ [0, 1] and an integer k ≤ |L|,
deciding whether there exists a reduced case base L′ ⊆ L according with δ such that |L′| ≤ k
is NP-complete .

Proof. The NP-membership can be proven by the following simple guess-and-check algo-
rithm:

• Guess a subset L′ of L of size |L′| ≤ k.

• Then we check if L′ reduces L, i.e., coverageδ(L,L′) = 1, by building the set Cδ and
verifying that Cδ = L. We can (naively) build Cδ as follows: ∀c′ ∈ L′ compute
d(c′, c), ∀c ∈ L, and if d(c′, c) ≤ δ then add c to Cδ. Constructing Cδ and verifying
that Cδ = L requires O(|L′| · |L|), i.e., O(|L|2).

Hence, given a case base L′, we can decide in polynomial time and space whether L′ indeed
reduces L, which proves the membership in NP.

The NP-hardness follows from Lemma 1, the NP-completeness of the Dominating Set Prob-
lem, and the fact that the reduction used in Lemma 1 requires polynomial time and space.
This is because in the reduction from an instance 〈G, κ〉 of the Dominating Set Problem,
with G = 〈V,E〉, we have that: the total number of initial states, sets of goals, sets of actions
and plans is 4 · |V |; every created initial state Iv contains at most 2 · |E|+ 1 propositions;
every created set Gv of goals contains one proposition; every created set of actions Av and
every created plan πv contains one action. Moreover, this construction examines each state
only twice — once to create it and once to make sure it contains exactly n propositions.

Similarly, we show that finding the reduced case base that minimizes the reduction cost
is intractable, i.e., the Quality Case Base Maintenance Problem is also NP-complete.

Theorem 2. Given a case base L, a case-distance threshold δ ∈ [0, 1], and a real number
k, it is NP-complete to identify whether there exists a reduced case base L′ ⊆ L according
to δ such that the reduction cost of L′ is k or less.

Proof. The NP-membership is proven by a guess-and-check algorithm similar to the one
described in the proof of Theorem 1. The difference is that this algorithm verifies that the
reduction cost of L′ is at most k, instead of |L′| ≤ k. Such a verification can be done in
time that is quadratic in the input size.

The NP-hardness can be proven by using the same method described in the proof of
Lemma 1 to reduce instances of Dominating Set Problem into instances of the Cardinality
Case Base Maintenance Decision Problem. Let 〈G, κ〉 be an instance of the dominating set
problem. Without loss of generality, we can assume that graph G = 〈V,E〉 does not contain
isolated vertices. If it contained a set W of isolated vertices, the instance 〈G, κ〉 would be
equivalent to the instance 〈G′, κ− |W |〉 with G′ = 〈V −W,E〉.

Let L be the case base derived by the reduction of 〈G, κ〉 described in the proof of
Lemma 1. With the same case-distance threshold δ and definition of values n and α as
in proof of Lemma 1, the distance between any case c of L and its neighbors is n+1−2·α

n+1 .
Therefore, it is easy to see that, according to Equations 3 and 4, the value of vδ(c) for any
case c of L is either 1 if Lδ(c) = ∅, or 1 + n+1−2·α

n+1 otherwise.
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We show that 〈G, κ〉 is a positive instance of the Dominating Set Problem iff 〈L, δ, k〉
is a positive instance of the Quality Case Base Maintenance Decision Problem with k =
κ ·
(
1 + n+1−2·α

n+1

)
. Assume that there exists a dominating set of G with at most κ vertices,

and consider the reduction L′ of L corresponding to such a dominating set. I.e., the cases
of L′ are those and only those corresponding to the vertices in the dominating set according
with the construction of the case base described in the proof of Lemma 1. By definition,
reduction cost Mδ(L′) = Σc∈L′vδ(c). Since, |L′| ≤ κ, and vδ(c) is either 1 or 1 + n+1−2·α

n+1 ,

then Mδ(L′) ≤ κ · (1 + n+1−2·α
n+1 ) and hence, with k = κ ·

(
1 + n+1−2·α

n+1

)
, L is a positive

instance of the Quality Case Base Maintenance Decision Problem.

Assume now that 〈L, δ, k〉 is a positive instance of the Quality Case Base Maintenance
Decision Problem with k = κ ·

(
1 + n+1−2·α

n+1

)
. Then, there exists a reduced case base of L

such that its reduction cost is κ ·
(
1 + n+1−2·α

n+1

)
or less. Let L′ ⊆ L be the reduced case base

of L with the minimum reduction cost, and κ′ be the number of cases of L′. The library L
derived from a graph G without isolated vertices by the reduction described in the proof of
Lemma 1 is such that L does not contain cases whose neighborhood is empty. Since L′ ⊆ L,
this property also holds for L′. Suppose that there exists a case c of L′ that covers no case
in L \ L′. We distinguish three possible cases in which this can happen, and we show that
each of them contradicts the hypothesis that L′ is minimal (and thus that every case in L′
covers at least one case in L \ L′).

(1) There exists exactly one case c of L′ that covers no case in L \ L′. This implies that
the non-empty set of cases that are neighbors of c in L are also in L′, Lδ(c) = ∅ and,
according with Equation 4, vδ(c) = 1. So, there would exist a reduction L′ \ {c} of
L with reduction cost that is one unit lower than the minimum reduction cost, as
the cost of the other cases in L′ \ {c} remains the same. Indeed, by the definition of
case cost given in formula (4) and construction of L′, when a case is removed from
L′ the cost of the other cases in L′ can only increase, the maximum cost of a case is
1 + n+1−2·α

n+1 , and all the cases in L′ \ {c} already have such a maximum cost.

(2) There exists a set U of cases of L′ each of which covers no case in L\L′, |U | > 1, and
L′ \U is a reduction of L. Then, all the cases in U are covered by at least one case in
L′ \ U , and hence there would exist a reduction L′ \ U of L with reduction cost that
is |U | units lower than the reduction cost of L′.

(3) This case is the same as case (2) with the difference that L′ \ U is not a reduction of
L. Let U ′ be the minimal set U ′ ⊂ U such that L′ \ (U \ U ′) is still a reduction of L.
Note that U ′ 6= U because, as for case c in (1), each case in U has its neighbor cases
in L′. Let L′′ be the case base derived by removing from L′ the (non-empty) subset
of cases that are covered by a case in either U ′ or L′ \ U , i.e., L′′ = L′ \ (U \ U ′). L′′
is still a reduction of L and we show that M(L′′) < M(L′), which contradicts the
assumption that L′ is a minimal reduction of L.

The maximum possible number q of cases of U that are in L′′ is less than or equal to
the number r of cases that are removed from L′. In particular, we have q cases when
each of them covers exactly one case c among those in U that are removed from L′
to obtain L′′, and such a case c is not covered by another case in L′ \ U ; under these
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conditions, q = r = |U |
2 . Thus, the number of cases in U that are in L′′ are less than

or equal to q, i.e., |U ′| ≤ q. It follows that, if these q cases increase their costs in L′′
(because of the removal of cases in U \U ′ from L′), their costs can globally increase by

at most q · (n+1−2α)
(n+1) . Moreover, since every case in L′ \U cannot increase its cost in L′′

(because by construction of L′ it must already be the maximum cost), we have that

the cost of L′′ decreases by at least q − r · (n+1−2α)
(n+1) > 0 w.r.t. the cost of L′. Hence,

M(L′′) <M(L′), which contradicts the hypothesis that the cost of L′ is minimal.

Finally, we show that from L′ we can build a solution to 〈G, κ〉. By construction of
L and L′, every case ci in L′ corresponds to a vertex vi of G. Let {c1, . . . , ck′} be the
set of cases forming L′. We have that the set of vertices S = {v1, . . . , vk′}, where each vi
corresponds to case ci in L′, is a dominating set solving 〈G, κ〉. This is because: (i) we
have shown that |S| = κ′ ≤ κ; (ii) since L′ is a reduction of L, for each cj ∈ L \ L′, the
corresponding vertex vj of G has an edge (vj , vt) such that ct ∈ L′ (otherwise L′ would not
be a reduction, since cj would be uncovered in L′ by Definition 8 and construction of L).
Thus, for each vj /∈ S there exists an edge (vj , vt) such that vt ∈ S, i.e., S is a dominating
set solving the instance 〈G, κ〉.

In the reminder of this section, we theoretically compare the computational complexity
of the algorithms used to compute an approximate solution of the maintenance problem.

4.2 On the Complexity of the Policies

We distinguish two kinds of policies: informed policies, which define a relationship among
the cases and use the information to select the cases to be kept; and uninformed policies,
which select cases based on other criteria. Specifically, informed policies compute the dis-
tance between any pair of cases, and then reduce the case base on the basis of the computed
distances. As there are two tasks to be performed and not both of them are necessarily per-
formed, we split the complexity accordingly. Remember that the informedness of a policy
comes at a cost of identifying the relationship among cases, which in our context translates
to resolving O(|L|2) instances of the object matching problem, which is NP-hard in the
size of the planning problem (we denote the required time by td). Table 1 summarises the
complexity results related to the offline computation of the reduced case base. The size of
the reduced case base is affected by the probability value q in the random policy and by
the value of δ in the other policies.

The proposed policies vary significantly in the amount of information they take into
account and the operations they apply to decide the set of cases to remove. The random
policy needs to remove cases until a case base of the desired size is derived. Moreover, it
does not care about the distances, and so the computation of the cases distribution can be
avoided. Hence the time required is asymptotically linear in the size of the case base. The
other policies are clearly better informed than the random policy, and they can recognise
cases of high importance for the coverage of the case base (e.g., isolated elements that are
dissimilar to any other case). The better information is however reflected by an increased
computational complexity – the distance-guided policy needs to identify the closest retained
case for every case, which requires the computation of all the distances and hence a work
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Policy (parameter) Retain ci by Informed Complexity D. Complexity M.
random (q) rand(0, 1) ≥ q no – – O(|L|)
distance (δ) d(ci, c

∗
i ) ≥ δ yes O(|L|2) · td O(|L|2)

cardinality coverage (δ) max |Lδ(ci)| yes O(|L|2) · td O(|L|2)

quality coverage (δ) min
{

vδ(ci)
|Lδ(ci)|

}
yes O(|L|2) · td O(|L|2)

Table 1: Offline maintenance policies and their complexity for computing the case distances
(Complexity D.) and the case base reduction (Complexity M.).

Policy CB size Frequency Procedure Complexity

offline finite on request coverage-guided O(|L|2) · td
online finite every time distance-guided O(|L|) · td

bounded online bound every time distance-guided O(|L|2) · td
combined bound

every time distance-guided + O(|L|2) · tdon condition coverage-guided

Table 2: Maintenance frequency, case base size, and complexity for the different considered
strategies.

quadratic in the size of the case base. In addition, the selection of the case with the minimum
distance from any other case in the library requires a work O(|L| · log |L|) time; to check
whether an element has to be removed from L needs computing the distance between the
element and its minimum distance case in the current reduction. This latter operation can
be accomplished in linear time w.r.t. the number of cases in the library, and it has to be
repeated a number of times that is asymptotically linear in the size of the library; hence the
time complexity of the case base reduction done by the distance-guided policy is quadratic
in the size of the case base. Similarly, in addition to the computation of all the distances,
the coverage-guided policies requires running the greedy algorithm described in Figure 3,
whose time complexity is also quadratic in the size of the case base.

We have already said that the offline, online and combined maintenance perform the
same procedures guided by either the distance or the coverage, but differ in the condition
invoking their application. Basically, the offline maintenance is performed upon a request
from the user, the online maintenance is performed in every iteration of the case-based cycle,
and the combined maintenance when a certain condition is met. Therefore, even though
the performed procedures are algorithmically the same, the runs differ in the frequency
with which they are performed, and also in the size of the case base they are reducing,
as summarised in Table 2. The procedure with the best theoretical complexity is the
online policy simply because it applies to only one case, i.e., the new case encountered
by the CBP system. Note that even though the offline, bounded online and combined
strategies have the same theoretical complexity, the size of the case bases may differ greatly,
because the size of the case base in the bounded online and combined strategies is bound.
Concerning the combined maintenance, the size is bounded by the switching condition which
invokes the coverage-guided policy. On the other hand, the offline strategies may witness an
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uncontrolled growth of the case base prior to the maintenance request. This is likely to result
in significant difference in the run-time behavior, where the combined strategies are likely to
reduce smaller case bases, and hence require less time. If the computation of the distances
among the cases is fast, because, e.g., there is no need of matching names of problem
objects, then, in practice, the coverage-guided maintenance may be computationally the
most expensive step in the retain phase.

5. Experimental Results

We present here a thorough collection of experiments. Two different sets of benchmark
problems were used with the aim of evaluating our approach when problems tend to recur
with different chances. The main goals of our experiments are:

• evaluating the importance of measuring the distance between cases as a linear com-
bination of the distance between case problems and between case plans (Section 5.2);

• evaluating the quality and effectiveness of maintaining the case base using different
offline policies (Section 5.3);

• analyzing the usefulness of maintaining the case base using the bounded online policy
and the combined policy (Section 5.4);

• evaluating the efficacy of adapting previously stored plans w.r.t. replanning from
scratch (Section 5.5).

5.1 Experimental Settings

The techniques presented in the previous sections have been implemented in a new version
of the CBP system OAKplan (Serina, 2010) that, to the best of our knowledge, is the state-
of-the-art for CBP systems. In our experiments, the plan retrieved by OAKplan is adapted
using planner LPG-td (Gerevini, Saetti, & Serina, 2003, 2006, 2011; Fox, Gerevini, Long, &
Serina, 2006), which supports planning from an input (partial) plan. However, other plan
adaptation systems, such as ADJ (Gerevini & Serina, 2010), can be used in OAKplan.

The retrieval of a case in OAKplan requires a linear scan of the cases in the library. With
a linear scan, OAKplan makes sure to identify the most promising case in the library. This
procedure is used by several other case-based reasoning systems, such as Rascal (Raymond,
Gardiner, & Willett, 2002). Other CBP systems adopt a hierarchical retrieval. For example,
Far-Off (Tonidandel & Rillo, 2002) and Prodigy/Analogy (Veloso, 1994) use the Footprint-
based method for the retrieval procedure; i.e., they determine a set of footprint cases with
the same competence of the case base. Then, their retrieval procedure consists of two phases:
first, it finds the most promising footprint case among all footprint cases, and second, it
looks for a promising case among the library cases that are similar to the chosen footprint
case. The hierarchical retrieval might be faster than the linear scan of the library used by
OAKplan, at the expense of the possibility of retrieving the most promising case to adapt.
Specifically, the retrieval of a case in OAKplan consists of three main steps:
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(i) for every case 〈Π, π〉 in the library, OAKplan changes the names of the objects in Π to
names of objects in the new encountered problem Π′; as a consequence of the object
renaming, the names of the actions of π are also changed accordingly;

(ii) for every object-renamed library case 〈Π, π〉, OAKplan measures the similarity between
Π and Π′, and derives the set of the library cases with problems mostly similar to Π′;

(iii) for every object-renamed library case 〈Π, π〉 in the set of the mostly similar ones,
OAKplan estimates the heuristic cost of adapting the library plan π to a solution plan
of Π′.

The purpose of step (i) is mapping the object names of different problems into each other
names so that the (structural) similarity of the problems increases. The purpose of (ii) is
identifying the (sub)set of library problems that are mostly similar to the new encountered
problem Π′. The purpose of (iii) is evaluating the library plans for the identified set of
the most similar library problems in order to select the library plan that is most promising
to adapt for deriving a solution of Π′. The problem of computing the object matching
that maximizes the similarity between a pair of planning problems is NP-hard (Serina,
2010). OAKplan approximates the problem of finding the best matching between the objects
of a pair of planning problems Π and Π′ to the (polynomial) problem of computing the
best association between the vertices of two special graphs, called planning problem graphs
of Π and Π′. Planning problem graphs are particular graphs that represent the objects,
predicates, initial state, and goals of a planning problem. Informally, the best association
between the vertices of the planning problem graphs of Π and Π′ is the association that
maximizes the sum of the values of a similarity function between pairs of vertices in the two
graphs (for more details the reader is referred to (Serina, 2010)). Unfortunately, computing
this approximation for many (similar) cases in the library is computationally expensive and
can become the bottleneck of the OAKplan’s CBP process. Indeed, the time required for
adapting a plan is usually relatively low w.r.t. the time required for the retrieval of the plan
from a large library containing many similar cases. Therefore, maintaining a library with
a limited size, and formed by few cases that are representative of a cluster of similar cases,
can help to significantly reduce the time required for the retrieval.

The adaptation of an input plan in LPG-td consists of two main steps. First, LPG-td
constructs a representation of the input plan, called action graph; then LPG-td uses a local
search procedure that iteratively applies some graph modifications to transform the initial
action graph into a solution. At each search step, LPG-td selects a flaw σ (unsupported
precondition) in the current action graph. In order to resolve σ, LPG-td either adds an
action node achieving σ into the current action graph or removes an action node having
the selected flaw as a precondition. Given an action graph A and a flaw σ in A, the local
search neighborhood of A for σ is the set of action graphs obtained from A by applying a
graph modification that resolves σ. At each step of the local search procedure of LPG-td,
the elements of the neighborhood are evaluated according to a heuristic function estimating
their quality, and an element with the best quality is then chosen as the next possible action
graph (search state).

All the experimental tests were run on an Intel Xeon(tm) 2 GHz machine with 20 Gbytes
of RAM. The CPU-time limit for each run of the experimented planners was 30 minutes,
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after which termination was forced. Since LPG-td uses a randomized search algorithm, the
results that we give are median values over five runs. When a problem OAKplan exceeds
the CPU-time limit for more than two of the five runs, the problem is considered unsolved.

5.1.1 Plan Libraries and Benchmarks

The benchmark domains used in our experimental analysis are Driverlog, Logistics, Rovers,
Satellite, Zenotravel and Elevators. The first five domains are from the 3rd international
planning competition, and have been selected for a practical reason: the plan libraries used
in the experimental analysis are constructed by solving many large problems, hand-coded
domain-specific knowledge is available for these domains (Long & Fox, 2003), and this
allows solving these (large) problems in a few seconds. Specifically, the plan libraries of
these domains were generated using planner TLPlan (Bacchus & Kabanza, 2000), which
exploits domain-specific search control knowledge to guide a forward chaining search. The
sixth domain, Elevators, is from the 6th international planning competition (Helmert, Do,
& Refanidis, 2008), and it was used to show that the conclusions derived from the plan
libraries generated by TLPlan do not depend on the use of this specific planner, given that
similar results can be obtained using a radically different planner. In particular, the plans
in the library for Elevators were generated by FF (Hoffmann, 2003), which solves each of
the large Elevators problems forming the library using from 1 to 30 CPU minutes without
domain-specific control knowledge.

With the aim of evaluating our approach when problems tend to recur with different
chances, for each considered domain we generated two sets of 6000 cases each, L1 and L2.
The cases in L1 are grouped into a high number of small and middle-size clusters, while
the cases in L2 are grouped into a much lower number of middle-size and large clusters.
Therefore, in L2 problems tend to recur more often than the problems in L1. Specifically,
first, we generated a number of problems randomly; then, for each of these problems, we
randomly determined a cluster size (from 2 to 100 for L1, and from 200 to 500 for L2) and
generated a problem cluster of such a size; finally, we iterated this process until the case
base contains 6000 elements. As a result, L1 includes a number of cases ranging from 97 to
134 over different domains; each of these cases consists of a randomly generated problem
and its plan, plus, for each case c among these, a random number of cases ranging from 2
to 100 obtained by changing the planning problem Πc of c and solving the changed problem
by either TLPlan or FF. Problem Πc was modified either by randomly changing a number
of literals (initial facts and/or goals) ranging from 1 to 20 or adding/deleting an object
to/from the problem. For each domain, the number of cases of L2 with randomly generated
problems ranges from 18 to 22, while the number of cases of L2 derived by changing the
propositions or adding/deleting an object of the generated problems ranges from 200 to 500.
Overall, the number of problem objects ranges from 25 to 320; the number of literals in the
initial states ranges from 16 to 152; the number of literals in the sets of goals ranges from 8
to 257; the number of actions in the plans ranges from 29 to 664. In the rest of Section 5,
we use L1 and L2 also to indicate the libraries obtained from sets L1 and L2; their specific
meaning will be clear from the context.

Moreover, for each considered domain, we generated 25 test problems obtained from
randomly selected problems in the libraries by (i) changing all object names, and (ii) per-
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forming a number of modifications to the problem propositions (initial facts and/or goals)
ranging from 1 to 10. The test problems were generated starting from the library problems
because the aim of our experimental analysis is studying the effectiveness of the proposed
techniques for domains with recurring problems. It is worth noting that the test problems
generated for our experimental analysis are quite challenging for a domain-independent
generative planning approach, since we observed that the state-of-the-art planners LAMA
(Richter & Westphal, 2010) and BFWS (Lipovetzky & Geffner, 2017) solve only about 75%
of these problems. Further details on the number of problems solved by these planners will
be given in Section 5.5.

The problems and solutions used to construct the libraries, the libraries used for the
experimental study, the test problems, as well as the executable of OAKplan, are made
available from https://lpg.unibs.it/OAKplan/.

5.1.2 Performance Evaluation

Different maintenance policies can compute reduced case bases of different sizes. Comparing
the usefulness of case bases of different sizes could be questionable since they contain a
different amount of knowledge. The maintenance policies presented in Section 3 compute
a reduction of a case base L according to a given distance threshold δ, i.e., a smaller case
base L′ such that coverage(L′,L) = 1 w.r.t. δ. So, we used the maintenance policies to
compute reductions according to different values of δ with the goal of deriving reduced case
bases of a predetermined size. Specifically, a given case base of 6000 cases is reduced to
libraries of 3000, 2000, 1000, 500, 250, and 100 cases using values of δ estimated as the 50th,
67th, 83th, 92th, 96th, and 98th percentiles of the average minimum distance distribution,
respectively. The process of reducing a case base with a value for δ and the corresponding
number n of cases for the reduced case base is stopped when the number of elements in the
reduced case base exceeds n. If the reduced case base has less than n cases, the reduction
process is repeated using an increased value of δ. More precisely, the process is repeated
with a case-distance threshold equal to the least minimum distance case value greater than
δ among those of cases in the library.

The quality of a reduced case base L′ is measured in terms of (a) its coverage over the
original case base with 6000 cases, and (b) number of cases of the original case base that are
not covered by the reduced case base. Both these measures depend on the value δ. For our
analysis, we measured them using a case-distance threshold equal to the average minimum

distance δµ of the cases in the original case base. I.e., δµ is defined as Σci∈L
d(ci,c

∗
i )

|L| , where c∗i
denotes the minimum distance case.4 Obviously, reduced case bases with higher coverage
(or equivalently with fewer uncovered cases) correspond to better maintenance policies.

The effectiveness of a maintenance policy P is evaluated by using OAKplan to retrieve
cases from the case bases reduced by P, and using LPG-td to adapt the retrieved plan cases
to solve the test problems. It is measured in terms of average normalized plan distance and
speed score, which are defined as follows. Given a case plan π′ and a plan π computed by
adapting π′ for a new problem, the plan distance of π with respect to π′ is |π	π′|+ |π′	π|.
The lower the plan distance, the better. Having a low value of plan distance can obviously be

4. The isolated cases are excluded in the computation of δµ. In this policy, a case ci is considered isolated
if distance d(ci, c

∗
i ) ≥ 0.5.
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very important, because, e.g., low distance reduces the cognitive load on human observers of
a planned activity by ensuring coherence and consistency of behaviours (Fox et al., 2006).
Therefore, a good maintenance policy should allow the generation of reduced case bases
from which a CBP system can produce solutions similar to case plans. Given a set of
compared policies, for each policy in the set, the average plan distance is computed over
the test problems that are solved by all the compared policies.

The speed score function used in this paper was introduced by the organisers of the 8th
International Planning Competition (Vallati, Chrpa, Grzes, McCluskey, Roberts, & Sanner,
2015) for evaluating the relative performance of the competing planners, and it has become
a standard method for comparing the performance of planning systems. The speed score
for a maintenance policy P is defined as the sum of the speed scores assigned to OAKplan
using P over all the test problems. The speed score for P with a planning problem Π is
defined as: 0, if Π is unsolved using policy P; 1, if Π is solved within one second; and
1− log(T (P,Π))

T , otherwise, where T (P,Π) denotes the CPU time required to solve problem Π
using the case base reduced through policy P, and T is the CPU-time limit that we used for
our experiments. Higher values of the speed score indicate better performance. Therefore,
a good maintenance policy should allow the generation of reduced case bases from which a
CBP system can quickly solve new encountered problems. Finally, for the comparison with
generative planners, we evaluated the quality of the generated plans in terms of average
plan length and total quality score. The quality score of a planner p for a problem Π is the
ratio between the length of the shortest compared plan and the length of the plan computed
by p for Π. As for the speed score, higher values of the total quality score indicate better
performance.

5.2 Plan Distance versus Problem Distance

All the informed policies we study rely on the distance function d : ((P × ℘)× (P × ℘))→
[0, 1], which measures the similarity between cases. In our work, distance function d is a
linear combination of the problem distance function dp and the normalized plan distance
function dπ, i.e., d = α · dp + (1− α) · dπ. Such a combination allows us to assign different
importance to the similarity of problems and their plans. The first experiment we conducted
evaluates the effectiveness of maintaining the plan library by using function d with three
different values of parameter α. Specifically, we tested:

• α = 1, i.e., the distance between a pair of cases is measured only in terms of similarity
of their case problems,

• α = 0, i.e., the distance between a pair of cases is measured only in terms of similarity
of their case plans;

• α = 0.5, i.e., the importance assigned to the similarity between case problems and
between case plans is the same.

Figure 6 gives the speed score and the average normalized plan distance obtained from
the case bases in sets L1 and L2 derived using the quality coverage-guided policy with the
three considered values of parameter α. These results show that, for libraries reduced from
set L1 with a number of cases lower than 2000, OAKplan is faster and computes plans closer
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Figure 6: Total speed score and average plan distance of OAKplan with plan libraries re-
duced from the original libraries in sets L1 and L2 using three different measures
of the distance between cases corresponding to α = 0, α = 1, and α = 0.5. On
the x-axis, there are the numbers of cases in the reduced plan libraries.

to the retrieved library plans when using α = 1. For most of the reduced libraries obtained
from set L2, OAKplan almost always computes plans closer to the retrieved library plans
using α = 0, while in terms of CPU time the results in Figure 6 show that the value of α
does not impact on the performance of OAKplan significantly. Overall, we can derive the
following conclusion.

Experimental result 1. When the case clusters forming the library are small, the library
cases are well characterized by the problem cases. When the case clusters are large, the
libraries can contain many similar case problems, and hence the library cases tend to be
better characterized by the plan cases than by the problem cases.

In the rest of the paper, the case bases in L1 are reduced by measuring the case distance
with α = 1 (i.e., through the problem distance); on the contrary, for the case bases in L2
the case distance is measured with α = 0 (i.e., through the normalized plan distance).

5.3 Offline Policies

The experimental analysis of this section compares different offline policies with the aim of
evaluating the quality and the effectiveness of maintaining the case base using them. In the
following, R, D, CC and QC abbreviate the random, distance-guided, cardinality coverage-
guided and quality coverage-guided policy, respectively. Figure 7 shows the coverage and
the number of uncovered cases of the plan libraries reduced from the original libraries in
sets L1 and L2 through R, D, CC, and QC.
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Figure 7: Coverage and number of uncovered cases of the plan libraries reduced from the
original libraries in sets L1 and L2 through policies R (Random), D (Distance-
guided), CC (Cardinality Coverage-guided), and QC (Quality Coverage-guided).
On the x-axis, there are the numbers of cases in the reduced plan libraries.

Experimental result 2. In terms of both coverage and number of uncovered cases, for
almost every considered size of the reduced case bases, the cardinality coverage-guided policy
performs as well as the quality coverage-guided policy; both perform better than the distance-
guided and the random policies; finally, as expected, the distance-guided policy performs
better than the random policy.

Figure 8 shows the total speed score and the average plan distance of OAKplan with the
analyzed reduced plan libraries.

Experimental result 3. The speed score obtained using the libraries reduced through CC
is consistently the best.

As for the performance gap between CC and QC, we observe that their retrieval time is
similar, while the adaptation time is usually better for CC. We conjecture that, for our test
problems, the plan library computed by CC selects a set of cases that is more prominent
than QC. For every reduced case base from L1 and L2 with a number of elements lower
than or equal to 1000, we can also observe that the speed score derived using QC is better
than using D and R; and, finally, OAKplan with D performs almost always better than or
similar to with R.
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 70

 75

 80

 85

 90

 95

100250500 1000 2000 3000

L1Speed score 

R
D
CC
QC

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

100250500 1000 2000 3000

L1Average plan distance 

R
D
CC
QC

 65

 70

 75

 80

 85

 90

 95

 100

100250500 1000 2000 3000

L2Speed score 

R
D
CC
QC

 30

 40

 50

 60

 70

 80

 90

 100

100250500 1000 2000 3000

L2Average plan distance 

R
D
CC
QC

Figure 8: Total speed score and average plan distance of OAKplan using plan libraries re-
duced from the original libraries in sets L1 and L2 through policies R (Ran-
dom), D (Distance-guided), CC (Cardinality Coverage-guided), and QC (Quality
Coverage-guided). On the x-axis, there are the numbers of cases in the reduced
plan libraries.

Experimental result 4. The average distance between the adapted plan and the plan
retrieved by OAKplan using the libraries reduced through CC is similar to QC, and better
than using other policies.

Specifically, for library set L1 and every analyzed case base with size lower than or equal to
2000, in terms of average plan distance OAKplan using the plan libraries reduced through
either CC or QC performs better than using D and R; as expected, the average plan distance
using D is better than using R. For library set L2, OAKplan performs similarly using either
CC, QC, or D; for every analyzed case base size lower than or equal to 1000, OAKplan using
R performs again much worse than using any other considered policy.

Remarkably, as shown in Figure 8, for the reduced case bases from set L1 with 3000
elements, OAKplan with the plan libraries reduced by R obtains speed score and average
plan distance similar to those obtained using the informed policies (except for CC in terms
of speed score). The observed performance gaps are similar for the reduced case bases of
the L2 libraries with 3000 and 2000 elements. This happens because the original case base
contains 6000 cases that are grouped into clusters; consequently, for the reduced case bases
with 3000 and 2000 elements, on average, the policies remove half and two thirds of the
elements from each cluster of the original case bases, respectively. Thereby, even using the
random policy, it is likely that, for each cluster of the original case base, the reduced case
base still contains at least one case in the original library that can be reused effectively.
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Figure 9: Coverage and number of uncovered cases of the plan libraries reduced from the
original libraries in sets L1 and L2 through policies CC (Cardinality Coverage-
guided), K (k-medoids clustering) and S (Spectral clustering). On the x-axis,
there are the numbers of cases in the reduced plan libraries.

An approach to maintaining a case base that is alternative to the ones proposed in this
paper is applying clustering analysis to a case base with the aim of building clusters of cases
so that the case base obtained by selecting one prominent case from each cluster is smaller
than the original case base and preserves the competence of the original case base (Smiti &
Elouedi, 2013). In the rest of this section, we compare our maintenance policies with some
known data clustering techniques applied to the plan library maintenance problem.

The intuitive goal of clustering is to divide a given set of data points into several groups
such that points in the same group are similar to each other and points in different groups
are dissimilar. In the context of CBP, data are planning cases. Cases can be represented
in the form of a similarity graph defined as follows. Each vertex in this graph represents a
case. Two cases are connected if the distance between the corresponding cases ci and cj is
smaller than a certain threshold, and the edge is weighted by the value of the case distance
between ci and cj . The problem of clustering can then be reformulated as the problem of
finding a partition of the similarity graph such that the weight of edges between different
groups is high, meaning that points in different clusters are dissimilar from each other, while
the weight of edges within a group is low, meaning that points within the same cluster are
similar to each other (von Luxburg, 2007).

The case base maintenance problem shares with standard clustering techniques the goal
of selecting a representative set of elements. Such a goal is achieved by our approach
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differently from standard clustering techniques. For instance, the k-medoids clustering
technique selects the set of representative elements by minimizing the intra-cluster distances;
such set is selected by the quality case base maintenance problem (without considering the
reduction size) defining a reduction that minimizes the distances to the neighboring elements
outside the reduction. Moreover, a number of standard clustering techniques, including k-
medoids, require that the number of elements in the reduction is specified a priori, and
each case belongs to only one cluster; while in our approach the number of elements in the
reduction is not given, and a case of the original library can be a neighbor of more than
one case of the reduction. This property allows our approach to retrieve more than one
candidate case from the reduced case base when a case of the original plan library recurs
or the CBP system encounters a similar case.

For our experimental analysis, we consider the well-known k-medoids and spectral al-
gorithms for data clustering (von Luxburg, 2007; Sergios & Konstantinos, 2006), which
in the following are denoted by K and S. With these techniques the number of clusters
has to be specified a priori; in our experiments, such a number is equal to the size of the
reduction. Indeed, as a side effect of the clustering, K and S return a prominent example
for each defined cluster, and we can consider the set of these prominent examples as the
reduction of the library. For this comparison, we considered policy CC, which exhibits the
best performance among those proposed. Figure 9 compares the performance of CC w.r.t.
clustering methods K and S.

Experimental result 5. In terms of coverage and number of uncovered cases, for both
library sets L1 and L2 and every size of the reduced libraries, overall the libraries main-
tained using policy CC are better than those derived using our implementations of clustering
algorithms K and S.

Appendix A gives the detailed results of this comparison showing, for every domain,
the coverage and the number of uncovered cases of the maintained plan libraries. For the
libraries in L1, when the size of the reduced plan library is equal to half of the original
library, for almost all the considered domains, the coverage of the libraries maintained by
either CC or QC is almost maximal (close to 1). The coverage of the reduced libraries for
L2 is almost always lower than the coverage of the reduced libraries for L1, but it is still
very high. For every domain and both library sets L1 and L2, when the size of the reduced
plan library has the same order of magnitude as the size of the original plan library, the
coverage obtained by maintaining the libraries using either CC or QC is usually significantly
better than the coverage obtained by the other methods. The only method that sometimes
obtains similar coverage is policy D. Finally, for almost all the considered domains, policies
CC and QC again have the best coverage when the size of the reduced plan library is at
least one order of magnitude lower than the size of the original plan library, although for
these reductions the performance gap with our implementations of clustering methods K
and S is lower.

In terms of the number of uncovered cases in the reduced plan libraries, the results
in Appendix A show that the performance of the compared methods is similar to the
performance we observed for the coverage: for every considered domain, the number of
uncovered cases of the library maintained by policies CC and QC is almost always the
lowest. It is worth noting that the policies we observed to perform best in terms of coverage
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Figure 10: Total speed score and average plan distance of OAKplan using plan libraries
reduced from the original libraries in sets L1 and L2 through policy CC (Cardi-
nality Coverage-guided), clustering algorithms K (k-medoids) and S (Spectral).
On the x-axis, there are the numbers of cases in the reduced plan libraries.

and number of uncovered cases are the same for the libraries with case plans generated
using TLPlan (i.e., the libraries for all the considered domains except Elevators) and the
libraries with case plans generated using FF.

Figure 10 gives the results of the comparison of policy CC and clustering algorithms K
and S in terms of total speed score and average plan distance.

Experimental result 6. In terms of total speed score, for both library sets L1 and L2
and every size of the reduced case bases, OAKplan using policy CC performs much better
than using our implementations of clustering algorithms K and S. In terms of average plan
distance, OAKplan using policy CC performs very often better.

Specifically, in terms of average plan distance, for library set L1, OAKplan using policy CC
performs almost always best. For the libraries in L2, OAKplan using CC performs always
better than using S; moreover, it also performs much better than using K when the number
of cases in the reduced library is 1000, 500, or 250, while it performs slightly worse when
the number of cases in the reduced library is 3000 or 2000.

5.4 Online and Combined Policies

As remarked in Section 3, if every newly encountered planning case were added to the library,
the size of the library could grow very quickly, significantly decreasing the performance of
the whole system. On the other hand, the newly encountered planning cases that are
substantially different from the cases stored in the library should not be discarded. Here,
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Figure 11: Coverage and number of uncovered cases of the plan libraries derived without
maintenance, using online maintenance, and using combined maintenance. The
initial library contains 1000 cases from library sets L1 and L2. The sets of newly
encountered problems taken from L1 and L2 range from 0 to 5000. On the x-axis,
there are the numbers of newly encountered problems.

we empirically evaluate the effectiveness of using our policies for deciding online whether
the new case should be added to the case base or not, possibly removing some other case.
These are the bounded online and the combined methods described in Sections 3.2 and 3.3.
The limit condition of the combined policy is that 1000 new cases are encountered, i.e.,
every time 1000 new cases have been added to the case base, the combined policy invokes
the offline policy. As a baseline of this evaluation, we consider the library obtained by
storing each encountered case, which, in the following, is called the complete library.

Starting from a library containing 1000 cases, the libraries used in the evaluation are
those derived by our policies when 1000, 2000, 3000, 4000, and 5000 new cases are encoun-
tered. These sets of cases are obtained by partitioning the sets L1 and L2 of 6000 elements
into six sets, each of which consists of 1000 elements. It is worth noting that, while the
complete library gradually grows with the newly encountered cases, the number of cases of
the libraries reduced using the bounded online and the combined policies remains 1000.

Figure 11 shows the coverage and number of uncovered cases of the libraries maintained
by the online policy and the combined policy w.r.t. the complete plan libraries. Obviously,
the coverage of the complete libraries is always equal to 1, while the number of cases they
do not cover is always 0. The coverage of the libraries obtained by the online and combined
policies decreases logarithmically, while the number of uncovered cases grows linearly w.r.t.
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Figure 12: Total speed score and average plan distance of OAKplan with plan libraries
derived without maintenance, using online maintenance, and using combined
maintenance. The initial library contains 1000 cases from library sets L1 and
L2. The sets of newly encountered problems taken from L1 and L2 range from 0
to 5000. On the x-axis, there are the number of newly encountered problems.

the number of newly encountered cases. Moreover, we can derive the following expected
result.

Experimental result 7. In terms of both coverage and number of uncovered cases, the
libraries obtained by the combined policy are better than those generated by the online policy.

The results in Figure 12 compare the effectiveness of exploiting the plan libraries used
for the evaluation of Figure 11. While the coverage and the number of uncovered cases of
the complete libraries are optimal, the usage of these libraries does not pay off. Indeed, we
observed the following behavior.

Experimental result 8. The speed score of OAKplan with the complete libraries is always
worse than with the libraries obtained by the online policy, and it is always much worse than
with the libraries obtained by the combined policy. Interestingly, OAKplan with the libraries
obtained by the combined policy is also generally much faster than with the libraries obtained
by the online policy.

The reason why the online and combined policy give better performance than using the
complete library is explained in Figure 13. The figure shows the average retrieval and search
times of OAKplan with our policies and with the complete plan library. Since the complete
library grows with the number of newly encountered cases, as expected, the time required
to retrieve a case from this library also increases with the number of newly encountered
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Figure 13: Average retrieval and search time of OAKplan with plan libraries derived with-
out maintenance, using online maintenance, and using combined maintenance.
The initial library contains 1000 cases from library sets L1 and L2. The sets
of newly encountered problems taken from L1 and L2 range from 1000 to 5000.
“Comp” and “Comb” abbreviate complete libraries (no maintenance) and com-
bined maintenance, respectively.

cases. On the contrary, the time required to retrieve a case from the library reduced by the
combined policy remains the same even though the number of newly encountered problems
increases. This also happens with the libraries reduced by the online policy. The results
in Figure 13 also show that to retrieve a case from the complete library is computationally
more expensive than from the reduced libraries, and this makes the entire CBP system
slower when the case base grows excessively. Moreover, as expected, the case retrieval from
the library reduced using the combined policy is faster than the case retrieval from the
library obtained using the online policy. This confirms that the library reduced using the
combined policy makes CBP with OAKplan perform fastest.

As expected, in terms of average plan distance, the results in Figure 12 show that
OAKplan using the complete libraries performs almost always the best, and in particular it
performs much better than using the libraries obtained by the online maintenance. This
result is somewhat expected since the coverage of the library obtained using the online
policy significantly degrades with the number of new encountered problems. This implies
that it is more frequent in the library maintained by the online policy to need to change
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Figure 14: Average insertion and maintenance CPU times of OAKplan with plan libraries
derived without maintenance, using online maintenance, and using combined
maintenance. The initial library contains 1000 cases from library sets L1 and L2.
The sets of newly encountered problems taken from L1 and L2 range from 1000
to 5000. “Comp” and “Comb” abbreviate complete libraries (no maintenance)
and combined maintenance, respectively.

more the retrieved plans w.r.t. the plans retrieved from the complete library. However, it is
interesting to observe that in terms of plan distances OAKplan using the libraries obtained
by the combined maintenance performs only slightly worse than using the complete library.
Overall, we can derive the following result.

Experimental result 9. The combined maintenance shows the best trade-off between the
computational cost of using the library and the average distance of the computed plans w.r.t.
the retrieved cases.

In our online setting, the tasks of deciding whether a case should be added to the library,
deciding whether some other case should be removed, and adding the case need to be done
quickly, as they are performed every time a new case is presented to the system. Therefore,
we also evaluate the CPU time required to do these three related tasks. Figure 14 shows the
average insertion time and maintenance time using the online and the combined policy w.r.t.
using the complete library. The time required to insert a case into the library grows with
the size of the library, because it includes the time required to compute the distance from
the new case to the cases in the library. Therefore, the time required to insert a case into
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the compete library grows with the number of newly encountered cases. On the contrary, as
expected, for the library reduced by the online and combined policies such a time remains
the same. Obviously, the complete library requires zero maintenance time. Interestingly,
for both the online and combined policies, the maintenance time that is required every time
a new case is presented to the system is very low; hence we derive the following result.

Experimental result 10. The sum of the insertion and maintenance time for the online
policy and the combined policy is much lower than the insertion time for the complete library.

Finally, it is surprising to observe that the average maintenance time of the combined
policy is pretty much the same as the maintenance time of the online policy although,
differently from the online policy, the combined policy invokes the offline policy every time
new 1000 cases are encountered. Given that, according to our experiments, the library
reduced using the combined policy makes CBP with OAKplan more effective than using the
online policy, and that the average insertion and maintenance time of the combined policy
is substantially the same as the online policy, we can conclude as follows.

Experimental result 11. The combined policy should be the preferred maintenance policy.

5.5 Case-Based Planning vs Replanning

The existing literature has already shown that when the problems tend to recur and the
planning domain is regular, adapting a previously generated plan is more effective than
replanning from scratch (Serina, 2010). With the proposed policies, plan libraries keep only
a (small) part of all the previously generated plans. In this section, we answer the question
of whether adapting a previously generated plan that is also contained in the maintained
library is still more effective than replanning from scratch.

The candidates we consider for this analysis as automated approaches that replan from
scratch are planners LAMA (Richter & Westphal, 2010) and BFWS (Lipovetzky & Geffner,
2017). LAMA is very well-known and is often used as a baseline in the literature; BFWS
is another planner in the state-of-the-art, as its variant (called LAPKT-DUAL-BFWS) was
awarded at the 2018 international planning competition. For OAKplan, we consider policy
CC because it is the best trade-off between speed and average plan distance.

For this analysis, we use OAKplan with a library containing 100, 500, and 1000 cases in
the set of already encountered cases, which are the 6000 cases that we generated for our
libraries. Table 3 shows the results, from which we can derive the following conclusion.

Experimental result 12. Even with a library containing much fewer problems than the
previously encountered ones, OAKplan almost always solves more problems than the gener-
ative approaches, and is often faster.

The reason why LAMA and BFWS do not solve every problem in our benchmark is that
sometimes they reach the time out (30 minutes).

We also observe that, in terms of plan quality, OAKplan and LAMA have comparable
performances, and they perform better than BFWS (the total quality scores of OAKplan,
LAMA and BFWS are 263.4, 274.2 and 202.2, respectively). In terms of average plan length,
LAMA performs best (240.7 for LAMA against 286.2 and 285.4 for OAKplan and BFWS,
respectively.) Most importantly, we observed that in our experiments the length of the
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Domain L # solved problems Speed score
BFWS LAMA OAKplan BFWS LAMA OAKplan

100 500 1000 100 500 1000
DriverLog L1 25 25 25 25 25 24.1 16.7 23.1 21.4 20.1

L2 25 25 25 25 25 25.0 17.5 24.0 20.2 18.1
Elevators L1 25 22 23 24 23 11.2 6.0 7.6 8.0 8.1

L2 25 25 25 25 25 23.0 17.0 16.7 15.0 14.4
Logistics L1 19 25 25 25 25 4.3 9.6 17.9 18.0 17.3

L2 4 25 25 25 25 0.1 5.8 13.4 13.4 12.1
Rovers L1 25 25 25 25 25 9.7 12.0 15.3 14.6 13.7

L2 25 25 25 25 25 8.2 11.6 15.5 11.9 9.3
Satellite L1 3 23 25 25 25 0.5 4.6 8.9 9.4 9.1

L2 0 22 25 25 25 - 3.4 8.9 8.5 8.1
ZenoTravel L1 25 25 25 25 25 15.1 10.1 17.3 17.7 17.0

L2 25 25 25 25 25 19.4 10.1 17.8 17.8 17.7
Total - 226 292 298 299 298 140.5 124.4 186.4 175.9 165.0

Table 3: Number of solved problems and speed score of BFWS, LAMA, and OAKplan using
plan libraries reduced by policy CC from the original libraries in sets L1 and L2 to
libraries with 100, 500, and 1000 cases.

plans computed by OAKPlan is quite similar to the length of the library plans (the median
length difference is about 5%). This suggests that the quality of OAKPlan’s plans strongly
depends on the quality of the library plans. Therefore we conjecture that, if the elements
of the plan library were all optimal plans, the plans computed by OAKPlan for the new
encountered (similar) problems would be very often within a reasonable bound from the
optimality.

Note that the analysis in Table 3 does not compare the approaches in terms of average
plan distance because such a measure cannot be defined for the generative approaches. As
pointed out before, computing plans that are not far away from previously encountered plans
is important when humans have already validated the planning activities in these plans, and
the effort required for such a validation may be considerable. Given the importance of this
measure, we did an additional analysis using a special set of test problems derived from
problems in the library without changing the object names, and comparing OAKplan with
the specific generative planners that we used to derive the planning cases in the libraries
(TLPlan and FF). With this setting, we can define the plan distance for TLPlan and FF as
follows. It is defined as the distance between the plan π′ computed for each test problem
Π′ and the library plan π for the library problem Π that we used to generate Π′ from Π. It
is worth noting that this comparison disfavors OAKplan, because plan π is likely the best
plan to adapt for solving Π′, and the correct identification of planning case 〈Π, π〉 is not an
input for OAKplan, but it is rather the possible result of the retrieval process. Moreover,
if the object names were renamed, the plan distance of TLPlan and FF would be the worst
possible (i.e., the sum of the numbers of actions in π and π′).

There is another issue to consider for this analysis. Indeed, differently from OAKplan,
planner TLPlan is not fully automated: it is a domain-dependent planner that, in addition
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Domain L Solved problems Average plan distance
FF or OAKplan FF or OAKplan

TLPlan 100 500 1000 TLPlan 100 500 1000

DriverLog L1 24 25 25 25 53.2 42.5 39.2 35.7
L2 23 25 25 25 32.8 23.4 28.4 24.1

Elevators L1 25 23 24 23 329.3 148.0 166.0 160.9
L2 25 25 25 25 115.5 82.6 92.6 92.6

Logistics L1 25 25 25 25 29.9 59.7 60.5 60.5
L2 25 25 25 25 32.1 42.0 41.9 60.5

Rovers L1 25 25 25 25 51.2 35.6 29.0 30.1
L2 25 25 25 25 33.7 31.4 24.8 25.1

Satellite L1 25 25 25 25 44.2 45.9 34.1 34.4
L2 25 25 25 25 16.9 26.8 24.4 12.2

ZenoTravel L1 22 25 25 25 134.4 88.7 71.8 70.4
L2 22 25 25 25 75.5 78.4 75.3 63.0

Total - 293 298 299 298 948.8 705.0 688.0 669.5

Table 4: Number of solved problems and average plan distance of either TLPlan or FF, and
OAKplan using plan libraries reduced by policy CC from the original libraries in
sets L1 and L2 to libraries with 100, 500, and 1000 cases.

to the problem description, exploits further domain-specific knowledge. Such knowledge
is extremely useful to speed up the search of the planner, but its definition was done by
humans and required a considerable effort to formalize it.

Table 4 shows the comparison between OAKplan and planners TLPlan and FF. For all
domains but Elevators, we used TLPlan for the generation of our libraries and hence for these
domains we compared OAKplan with such a planner. For Elevators, we compared OAKplan
with FF. Even if the setting of this experiment disfavors OAKplan, we can conclude as
follows.

Experimental result 13. OAKplan performs much better than the generative approaches
in terms of plan distance.

We also observed that, as expected, TLPlan is usually much faster than OAKplan. However,
this is not because TLPlan replans from scratch, instead of from a library plan, but because
it exploits the additional domain specific knowledge for controlling the search. Such extra
knowledge, which considerably speeds up the search of TLPlan is available neither for fully
automated generative planners nor for OAKplan.

6. Related Work

While the topic of case base maintenance has been of great interest in the CBR community
for the last two decades, in CBP it has received little attention. Therefore, the related work
mainly falls in the field of CBR. Moreover, in CBR most of the proposed systems for case
base maintenance have been formulated as classification problems (where a case usually can
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or cannot be adapted to solve a new problem), which makes applying these techniques in
the context of CBP complicated.

Leake and Wilson (1998) defined the problem of case base maintenance as “an imple-
mentation of a policy to revise the case base to facilitate future reasoning for a particular
set of performance objectives”. Depending on the evaluation criteria, they distinguish
two types of case base maintenance techniques — the quantitative criteria (e.g., time)
used for performance-driven policies, and the qualitative criteria (e.g., coverage) used for
competence-driven policies.

The quantitative criteria are usually easier to compute; among these performance-driven
policies there are the very simple random deletion policy (Markovitch, Scott, & Porter, 1993)
and a policy driven by a case utility metric (Minton, 1990), where the utility of a case is
increased by its frequent reuse and decreased by costs associated with its maintenance and
matching.

As for the qualitative criteria, in the context of CBR, Reinartz, Iglezakis, and Roth-
Berghofer (2000) suggest to use quality measures reflecting user requirements, such as cor-
rectness, solution’s stability, and diversity, and combine them into a measure that is easy to
compute by a domain-independent computation. However, the most used qualitative crite-
rion in CBR is based on the notion of competence introduced by Smyth (1998). Intuitively,
elements are removed from the case base in reverse order with respect to their importance,
where the importance of a case is determined by the case’s “coverage” and “reachability”.
These two notions capture how many problems the case solves and how many cases solve the
case problem. Note that, however, differently from our approach to CBP, Smyth considers
systems without an underlying generic (generative) solver. With such a solver the CBP
system can solve any problem independently of the quality of the case base, and the notion
of competence needs to be revised.

The notion of competence was also used to define the “footprint deletion” and “footprint-
utility deletion” policies (Smyth & Keane, 1998). Another extension is the RC-CNN algo-
rithm (Smyth & McKenna, 1999), which compresses the case base using the compressed-
nearest-neighbor algorithm (Hart, 1968) and the ordering derived by the relative coverages
of the cases. Furthermore, Leake and Wilson (2000) suggested replacing the relative cov-
erage with the relative performance of a case. Zhu and Yang (1998) however claim that
the competence-driven policies of Smyth and his collaborators do not ensure competence
preservation. They provide a case addition policy which mimics a greedy algorithm for set
covering, always adding the case that has the biggest coverage (resp. high frequency of reuse
and large neighborhood of cases) until the whole original case base is covered or the size
limit is reached. The policies we propose here differ from the approach of Zhu and Yang
(1998) mainly in the condition guiding the selection of the cases to keep in the case base
— Zhu and Yang evaluate the utility of each case on the base of the frequency of its reuse
in comparison with the frequency with which its neighbors are reused.5 Moreover, their
policy does not consider the quality with which the original case base is covered, whereas

5. Intuitively, Zhu and Yang (1998) define the neighborhood of a case c as a set of cases in the case base
that are most similar to c, according to some similarity measure. They evaluate their policies through an
experiment in CBP; in this experiment, the neighborhood of a case c contains only cases with plans that
are plan-suffix extensions of the plan in c. The concept of neighborhood is interpreted very differently
in our work.
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our quality-coverage policy does. In a sense, we generalise the work of Zhu and Yang and
adapt it to the context of planning.

Yang and Wu (2000) propose a competence-driven policy that keeps all the cases, but
identifies similar problems and gathers them into smaller, more focused case bases. The
retrieval is then performed in a two-level hierarchy and is guided by a decision tree forest.
Shiu, Yeung, Sun, and Wang (2001) instead discard the majority of the case base after using
the redundant cases to learn new adaptation rules based on the nature of their redundancy.

Muñoz-Avila (2001) studied the case retention problem in CBP with the aim of filtering
redundant cases, which is closely related to the problem studied here. However, the policy
proposed by Muñoz-Avila is guided by the case reuse effort, called the benefit of the retrieval,
required by a specific “derivational” case-based planner to solve the problem. Intuitively,
a case c is kept only if there is no other case in the case base that could be easily adapted
by the planner to solve the problem represented by c. In our approach, the decision to
keep a case is independent from the adaptation cost of the other cases. Moreover, the
policy proposed by Muñoz-Avila can decide only about problems solved by the adopted
derivational case-based planner; while the policies studied in this paper are independent
from the planner used to generate the solutions of the cases.

In our own previous work, we investigated the problem of case base maintenance and
gave an introduction of the policies presented in this paper (Gerevini, Roub́ıčková, Saetti,
& Serina, 2013b, 2013a). In this paper, we have given a more comprehensive, detailed
and formal treatment of the problem of case base maintenance. The work in this paper
includes substantial new technical material and considerably extends our previous work. In
particular, the new material includes:

• a formal definition and treatment of the problem of maintaining a plan library, opti-
mizing two different criteria: minimizing the size, and maximizing the quality of the
reduced plan library;

• theorems and proofs about the worst-case complexity (NP-hardness) of the investi-
gated maintenance problem;

• a theoretical analysis and comparison of the worst-case complexity of our maintenance
policies for computing approximations of the exact reduction solving the maintenance
problem;

• and a large experimental study comparing our maintenance policies.

The experimental analysis is completely new because previous work compares reduced case
bases that have different sizes. Evaluating the quality and usefulness of reduced case bases
of different sizes is questionable since they contain different amounts of knowledge. In this
paper, the (offline) maintenance policies are used with the aim of deriving reduced case
bases of a predetermined size, so that the experimental comparisons regard reduced case
bases that have the same size. Moreover, the experimental analysis in this paper is much
larger than the analyses in our previous work since here we use many more domains and
problems, the experimental analysis has many more goals, and it is more elaborated (e.g.,
it uses two sets of cases, called L1 and L2, with the purpose of evaluating our approach
when problems tend to recur with different chances).
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Finally, we observe that the issue of deciding a set of representative instances to store
is in common with other research areas, such as instance-based learning (Aha, Kibler, &
Albert, 1991). The goal of instance-based learning is selecting from the training set a num-
ber of exemplars with better generalization properties; these exemplars can be successively
used as a new training set for supervised ML algorithms. One of the most straightforward
instance-based learning algorithms is the nearest neighbor algorithm (Hart, 1968). Cluster-
ing techniques, including those used in our experimental analysis, can be used as a reduction
technique for instance-based learning.

7. Conclusions

The retention of cases is an important phase of CBP. Retaining every encountered case in
the library leads to uncontrolled growth of the library, which increases the retrieval effort till
the point where the CBP approach may become ineffective. We have defined the problem
of maintaining the cases forming a plan library using two different criteria: minimizing the
size of the reduced case base, and maximizing its quality. Under the considered criteria, the
maintenance problem is NP-hard, and hence computing an exact optimized reduction of the
library can incur a high computational cost. Therefore, we have defined and investigated
new policies for computing approximate solutions to the addressed problem.

One of the challenges when reducing a big library is the computational cost of finding
a good-quality reduction, and some techniques are more suitable for offline use as they
are not efficient enough for online library maintenance. The random policy, which is used
in general CBR, is very fast to compute because it does not optimize the case base in
any way. We have introduced two informed policies, the distance-guided policy and the
coverage-guided policy, which attempt to generate reduced case bases by optimizing size
and/or quality. Moreover, we developed an approach complementary to the offline policy,
called online maintenance. This new approach attempts to contain the growth of the library
over the lifetime of the planner by deciding, every time the CBP system encounters a new
problem, whether to discard or to include the problem and its solution in the library.

The online maintenance is able to keep the library size limited to a given bound, but its
quality can degrade over time. To overcome the problem with the quality of the reduced
case base in the online approach, we have proposed a combined policy that has the benefits
of both the online and offline approaches. It stores each new case in the library considering
only certain cases as active; the case base grows slowly and the retrieval time remains low,
with the quality of the case base addressed by a periodical re-evaluation of which cases are
considered active.

An experimental analysis shows that the informed offline policies can be much more
effective than the random policy, in terms of quality of the reduced case base and perfor-
mance of a case base planner using it. We have also compared these policies with two known
methods from clustering analysis that we applied to reduce the case base. The results of
the experimental analysis show that our approach for reducing a plan library can perform
much better than using existing clustering methods. Of course, this may largely depend on
some design choices that we made for implementing the clustering techniques in our exper-
imental analysis; we cannot rule out the possibility that with different choices the relative
performance may be different. Finally, we have answered the question of whether adapting
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a previously generated plan that is contained in the maintained library is more effective
than replanning from scratch. Our experiments show that OAKplan using the maintained
libraries is faster than two state-of-the-art generative planners, and computes plans closer
to the plans retrieved from the library w.r.t. the two generative planners that we used for
generating the library plans.

There are several research directions to extend our work. We intend to investigate
alternative methods for efficiently computing good approximations of the optimally reduced
case base (in terms of size and quality). Moreover, it would be useful to study other aspects
related to online maintenance, such as different criteria that can guide the policy. In this
work, the diversity of a case is only a proxy for the costs of reusing it. However, if the new
problem is solved locally by the CBP system itself, we have access to additional information
about the real effort that is needed to solve the problem. Hence, the policy could take the
observed costs into account, and consider to include the cases that are hard to solve into
the case base. Finally, the benefit of a case can be assessed more accurately if the system
keeps track of which elements of the case base are being retrieved and lead to successful
reuse since the frequency and time of the successful retrievals provide precise information
about the real use of the cases in the system.
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Appendix A. Detailed Experimental Results

The following two tables show, for each domain and reduced library, the coverage (first
table) and the number of uncovered cases (second table) computed using a case-distance
threshold equal to the average minimum distance of the cases in the original case base. Bold
numbers indicate the best performance.
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CB Coverage of the reduced case bases
Size Driverlog Elevators Logistics Rovers Satellite Zenotravel
Policy L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2

3000
R 0.687 0.717 0.775 0.727 0.727 0.743 0.716 0.719 0.891 0.729 0.726 0.725
K 0.774 0.743 0.786 0.744 0.758 0.749 0.739 0.748 0.931 0.742 0.759 0.749
S 0.700 0.599 0.619 0.607 0.726 0.714 0.721 0.654 0.888 0.675 0.662 0.567
D 0.718 0.835 0.584 0.804 0.959 0.987 0.916 0.869 0.864 0.924 0.959 0.858
CC 0.951 0.899 0.977 0.893 0.972 0.988 0.912 0.884 1.0 0.942 0.962 0.887
QC 0.951 0.900 0.976 0.891 0.972 0.987 0.912 0.884 1.0 0.942 0.962 0.886

2000
R 0.534 0.600 0.680 0.621 0.606 0.642 0.619 0.620 0.841 0.620 0.597 0.612
K 0.678 0.638 0.680 0.634 0.666 0.658 0.651 0.645 0.895 0.653 0.674 0.642
S 0.617 0.533 0.549 0.529 0.629 0.715 0.636 0.548 0.848 0.614 0.576 0.454
D 0.557 0.669 0.579 0.638 0.793 0.820 0.762 0.702 0.837 0.757 0.793 0.691
CC 0.786 0.733 0.830 0.726 0.807 0.821 0.768 0.717 1.0 0.775 0.796 0.720
QC 0.786 0.734 0.829 0.725 0.807 0.821 0.768 0.718 1.0 0.776 0.796 0.720

1000
R 0.338 0.460 0.538 0.478 0.446 0.529 0.474 0.479 0.754 0.486 0.436 0.473
K 0.569 0.514 0.537 0.509 0.577 0.578 0.571 0.513 0.864 0.559 0.583 0.512
S 0.501 0.506 0.470 0.455 0.552 0.638 0.548 0.506 0.839 0.547 0.505 0.448
D 0.357 0.502 0.568 0.475 0.626 0.653 0.608 0.535 0.831 0.591 0.627 0.524
CC 0.622 0.566 0.666 0.559 0.643 0.654 0.623 0.551 0.976 0.609 0.630 0.554
QC 0.622 0.567 0.664 0.558 0.643 0.654 0.623 0.551 0.976 0.610 0.630 0.553

500
R 0.221 0.364 0.441 0.378 0.293 0.418 0.352 0.389 0.604 0.415 0.307 0.361
K 0.512 0.431 0.405 0.428 0.528 0.536 0.528 0.446 0.842 0.504 0.534 0.429
S 0.445 0.454 0.393 0.433 0.507 0.551 0.500 0.464 0.817 0.516 0.496 0.418
D 0.238 0.406 0.559 0.389 0.543 0.570 0.531 0.451 0.825 0.507 0.544 0.445
CC 0.540 0.483 0.582 0.476 0.561 0.571 0.550 0.467 0.891 0.526 0.547 0.470
QC 0.540 0.484 0.581 0.475 0.561 0.571 0.551 0.468 0.893 0.526 0.547 0.469

250
R 0.106 0.283 0.300 0.306 0.217 0.346 0.277 0.289 0.460 0.291 0.187 0.269
K 0.466 0.367 0.261 0.379 0.502 0.516 0.499 0.392 0.829 0.467 0.500 0.370
S 0.368 0.402 0.292 0.398 0.486 0.509 0.475 0.421 0.812 0.488 0.475 0.392
D 0.153 0.338 0.507 0.317 0.505 0.528 0.492 0.399 0.819 0.468 0.508 0.392
CC 0.498 0.426 0.541 0.427 0.519 0.529 0.515 0.426 0.839 0.484 0.505 0.429
QC 0.498 0.427 0.539 0.427 0.519 0.529 0.516 0.426 0.851 0.485 0.505 0.428

100
R 0.052 0.200 0.150 0.168 0.067 0.245 0.110 0.186 0.234 0.203 0.092 0.106
K 0.369 0.306 0.148 0.304 0.451 0.500 0.467 0.340 0.718 0.444 0.425 0.312
S 0.275 0.335 0.174 0.337 0.485 0.494 0.486 0.374 0.823 0.443 0.404 0.338
D 0.074 0.291 0.352 0.241 0.360 0.503 0.282 0.317 0.562 0.442 0.430 0.324
CC 0.457 0.359 0.504 0.359 0.486 0.504 0.487 0.381 0.543 0.458 0.467 0.377
QC 0.457 0.361 0.503 0.362 0.486 0.504 0.488 0.381 0.823 0.459 0.467 0.375
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CB Number of uncovered cases in the reduced case bases
Size Driverlog Elevators Logistics Rovers Satellite Zenotravel
Policy L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2

3000
R 1877 1700 1349 1636 1639 1545 1844 1686 656 1626 1648 1652
K 1354 1543 1281 1538 1451 1508 1694 1510 414 1550 1449 1504
S 1800 2408 2286 2356 1645 1716 1806 2077 670 1951 2032 2600
D 1692 988 2495 1173 243 79 545 789 817 456 244 854
CC 295 606 140 644 165 74 568 697 1 350 226 678
QC 295 598 145 652 165 76 568 694 1 346 226 683

2000
R 2797 2403 1918 2273 2362 2145 2469 2280 955 2281 2424 2330
K 1934 2170 1922 2195 2003 2049 2260 2132 627 2080 1961 2145
S 2299 2799 2705 2826 2223 1710 2359 2711 915 2315 2550 3278
D 2660 1988 2525 2173 1243 1079 1543 1789 977 1456 1244 1854
CC 1284 1605 1020 1642 1157 1074 1507 1697 3 1349 1226 1678
QC 1284 1598 1026 1650 1157 1076 1505 1694 3 1344 1226 1683

1000
R 3974 3241 2774 3129 3325 2823 3409 3124 1476 3082 3388 3160
K 2585 2917 2776 2944 2536 2534 2783 2922 815 2648 2509 2926
S 2993 2964 3178 3268 2688 2173 2928 2962 969 2719 2977 3311
D 3860 2988 2591 3147 2243 2079 2543 2789 1016 2456 2244 2854
CC 2270 2603 2006 2643 2143 2073 2447 2696 145 2347 2226 2678
QC 2270 2597 2014 2651 2143 2075 2444 2693 143 2342 2225 2683

500
R 4677 3818 3353 3735 4238 3490 4201 3664 2376 3509 4169 3836
K 2926 3414 3569 3431 2829 2784 3059 3322 949 2977 2799 3426
S 3333 3274 3641 3403 2960 2696 3243 3218 1096 2903 3032 3494
D 4573 3564 2646 3668 2743 2579 3042 3297 1050 2956 2739 3331
CC 2761 3102 2506 3143 2636 2573 2917 3196 651 2846 2726 3177
QC 2761 3096 2514 3151 2636 2575 2912 3193 643 2842 2725 3183

250
R 5366 4300 4198 4164 4698 3922 4688 4266 3243 4251 4886 4388
K 3206 3799 4432 3727 2989 2906 3247 3651 1029 3200 3006 3778
S 3790 3586 4245 3614 3080 2947 3401 3473 1128 3069 3155 3651
D 5079 3972 2958 4099 2970 2829 3294 3605 1087 3191 2957 3650
CC 3009 3446 2756 3440 2885 2823 3147 3446 969 3096 2976 3427
QC 3009 3436 2764 3440 2885 2825 3140 3443 893 3092 2975 3433

100
R 5687 4801 5098 4995 5596 4529 5768 4881 4599 4781 5459 5362
K 3786 4161 5113 4173 3290 2999 3453 3958 1690 3336 3457 4130
S 4350 3992 4953 3981 3090 3034 3333 3757 1064 3341 3583 3970
D 5556 4256 3888 4551 3838 2979 4656 4096 2625 3346 3425 4059
CC 3256 3847 2978 3843 3082 2973 3325 3714 2743 3250 3207 3740
QC 3256 3836 2979 3827 3082 2975 3317 3712 1064 3247 3207 3752
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Bäckström, C., & Nebel, B. (1995). Complexity results for SAS+ planning. Computational
Intelligence, 11, 625–655.
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