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Abstract
A widely-studied deep reinforcement learning (RL) technique known as Prioritized

Experience Replay (PER) allows agents to learn from transitions sampled with non-uniform
probability proportional to their temporal-difference (TD) error. Although it has been
shown that PER is one of the most crucial components for the overall performance of deep
RL methods in discrete action domains, many empirical studies indicate that it considerably
underperforms off-policy actor-critic algorithms. We theoretically show that actor networks
cannot be effectively trained with transitions that have large TD errors. As a result,
the approximate policy gradient computed under the Q-network diverges from the actual
gradient computed under the optimal Q-function. Motivated by this, we introduce a novel
experience replay sampling framework for actor-critic methods, which also regards issues
with stability and recent findings behind the poor empirical performance of PER. The
introduced algorithm suggests a new branch of improvements to PER and schedules effective
and efficient training for both actor and critic networks. An extensive set of experiments
verifies our theoretical findings, showing that our method outperforms competing approaches
and achieves state-of-the-art results over the standard off-policy actor-critic algorithms.

1. Introduction

In off-policy deep reinforcement learning (RL), the experience replay buffer (ji Lin, 1992),
which contains experiences that different policies may collect, is a vital ingredient of policy
optimization (Lazaridis et al., 2020). Experience replay can stabilize and improve policy
optimization by storing many previous experiences (or transitions) in a buffer and reusing
them multiple times to perform gradient steps on policies and value functions approximated
by deep neural networks (Sutton & Barto, 2018). Although the initial proposal of experience
replay considered uniform sampling from the buffer, various sampling methods were shown
to improve the data efficiency by calculating priority scores for the experiences (Schaul et al.,
2015; Oh et al., 2021, 2022).

The use of priority-based non-uniform sampling in deep RL stems from a technique known
as Prioritized Experience Replay (PER) (Schaul et al., 2015), in which high error transitions
are sampled with higher likelihood, allowing for faster learning and reward propagation by
focusing on the most crucial data. In fact, Hessel et al. (2018) demonstrated in an ablation
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study that the performance of the Deep Q-Network (DQN) algorithm (Mnih et al., 2015)
was most significantly improved by the presence of PER, compared to other enhancements.
Although the motivation of PER is intuitive for learning in discrete action spaces, e.g., The
Arcade Learning Environment (Bellemare et al., 2013), many empirical studies showed that
it substantially decreases the performance of off-policy actor-critic methods in continuous
action domains, resulting in suboptimal or random behavior (Fujimoto et al., 2020; Oh et al.,
2021, 2022). Unfortunately, the poor performance of PER in actor-critic lacks a critical
theoretical foundation. In this study, we develop an analysis that provides insights into why
off-policy actor-critic methods for the control of continuous systems are ineffective when
combined with PER. In addition to this analysis, we propose novel modifications to PER to
improve the empirical performance of the algorithm.

In continuous action spaces, the critic cannot be used to select actions due to the
intractable, i.e., infinitely many possible actions (Sutton & Barto, 2018). Actor-critic
methods can overcome this by employing a separate function, called the actor, to choose
actions on the observed states. When combined with PER, the actor and critic networks are
trained with transitions corresponding to large temporal-difference (TD) errors. TD error
is a reasonable proxy that stands as the loss of the critic in Q-learning (Watkins & Dayan,
1992) and indicates the uncertainty and knowledge of the critic on the collected transitions
in terms of the bootstrapped expected future rewards (Moore & Atkeson, 1993). Hence, in
the basis of the TD-learning (Sutton, 1988), a large TD error implies that the critic has little
knowledge and high uncertainty about the experiences (Sutton & Barto, 2018). However,
we argue that actors cannot be effectively trained with experiences that the critic does not
know their future returns well. An intuitive analogy may be that it is infeasible to expect
a student to learn a subject well if the teacher has little knowledge about it. Our main
theoretical contributions in this work justify our hypothesis that if an actor-critic algorithm is
trained with a transition corresponding to a large TD error, the approximate policy gradient,
i.e., computed under the Q-network, can significantly diverge from the actual gradient, i.e.,
computed under the optimal Q-function, for the transition of interest or the subsequent
transition. This finding can be used to improve the performance of PER by training the
actor with different experiences and facilitating the design of novel prioritization methods.
Discoveries of this study can be summarized as follows:

• Actor networks should be trained with low TD error transitions: The critical
implication of this finding is that the policy gradient, either stochastic or deterministic,
depends on the critic. Therefore, it cannot be effectively computed using transitions on
which the critic has high uncertainty. In particular, we find that a large TD error can
correspond to a high Q-value estimation error for some transitions. Such transitions
further causes the approximate policy gradient to diverge from the actual gradient
under the optimal Q-function. To the best of our knowledge, this is the primary reason
behind the poor performance of PER in standard off-policy actor-critic algorithms and
we are the first to show it theoretically. Ultimately, this can only be overcome when
the actor is trained with low TD error transitions in the TD error based prioritized
sampling.

• Actor and critic networks should be optimized with uniformly sampled
transitions for a fraction of the batch size: Training the actor and critic with
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completely different transitions, such as low and high TD error, is in violation of the
actor-critic theory (Konda & Tsitsiklis, 1999). The interdependence between the critic
and actor parameters is a fundamental tenet of this theory, as the actor’s selected actions
are incorporated into the updates and consequently influence the critic’s parameters.
Our empirical studies show that using a set of uniformly sampled transitions for a
fraction of the batch size is extremely important in actor-critic training and ensures
stability in learning.

• Loss functions should be modified to prevent outlier bias leakage in the
prioritized sampling: While the combination of the latter two findings is theoretically
and empirically favorable, prioritized and uniform sampling should not be considered
in isolation from the loss function as outlier and biased transitions may still leak during
sampling (Fujimoto et al., 2020). Notably, we demonstrate that corrections to PER
cannot reach their maximum potential unless the mean-squared error (MSE) in the
Q-network training is corrected. Thus, we leverage the prominent results of Fujimoto
et al. (2020) in our modifications to PER.

In this paper, we introduce a novel experience replay prioritization framework, the Loss-
Adjusted Approximate Actor Prioritized Experience Replay (LA3P) algorithm, to overcome
the mentioned limitations of PER in off-policy actor-critic methods. LA3P effectively
adapts PER to actor-critic algorithms by training the actor network with transitions that
the critic has reliable knowledge of. Moreover, our algorithm considers the issues with
stability and traditional actor-critic theory by not completely separating the actor and critic
networks and adjusting the loss function accordingly. We assess the performance of LA3P
on challenging continuous control benchmarks from OpenAI Gym (Brockman et al., 2016).
Our results indicate that the introduced framework significantly outperforms the competing
PER-correction algorithms by a wide margin, and achieves noteworthy gains over both PER
and state-of-the-art methods in most of the domains tested. Furthermore, an extensive set of
ablation studies verifies that each proposed modification to PER is essential to maintain the
overall performance for actor-critic algorithms. All of our code and results are open-sourced
and provided in the GitHub repository1.

2. Related Work

Prioritized sweeping (Moore & Atkeson, 1993; Andre et al., 1997) for value iteration has
been proposed as a method to enhance the learning speed and optimize computational
resources in the initial studies of experience prioritization. Prioritized sweeping is a model-
based reinforcement learning approach that attempts to focus an agent’s limited computing
resources to get a reasonable analysis of the environment’s state values. It is also employed
in modern RL applications to perform importance sampling over the collected trajectories
(Schlegel et al., 2019) and learning from demonstrations (Hester et al., 2018).

Prioritized Experience Replay, which we investigate in depth in later sections, has
been one of the most remarkable improvements to the DQN algorithm and its derivatives.
Furthermore, it has been widely adopted in various learning algorithms, along with other
notable improvements, such as Rainbow (Hessel et al., 2018), distributed PER (Horgan

1https://github.com/baturaysaglam/LA3P
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et al., 2018), and distributional policy gradients (Barth-Maron et al., 2018). Modifications to
PER have also been proposed, e.g., prioritizing the sequences of transitions (Gruslys et al.,
2018) or optimization of the prioritization scheme (Zha et al., 2019). A counterpart to the
mentioned experience replay approaches is determining which transitions to favor or forget
(Novati & Koumoutsakos, 2019). Moreover, the effects originating from the composition
and size of the experience replay buffers have also been studied by Isele and Cosgun (2018)
and Liu and Zou (2018). The discussed methods usually consider model-based learning in
discrete action domains, aiming at which sources to focus on or which features to select
and store. Conversely, we focus on the challenges that arise from prioritized sampling in
off-policy actor-critic model-free deep RL. Our aim is to devise an approach for determining
which experiences should be replayed or sampled by using the prioritization scheme within
the PER framework.

Lately, the learning-based approaches through deep function approximators have been
proposed to determine which experiences to sample, independent of the experience replay
buffer composition and without deciding which transitions to store. Zha et al. (2019) train
a multi-layer perceptron whose input is the concatenation of reward, time step, and TD
error. The network outputs a Bernoulli distribution to assign priorities to each sample
within the replay buffer. On top of the neural sampler proposed by Zha et al. (2019), Oh
et al. (2021) also considers TD error for prioritization, similar to PER. To train the sampler
network, they employ the REINFORCE trick (Williams, 1992) that measures the increase in
evaluation rewards achieved when the agent is trained with the priorities generated by the
sampler network. The sampler network is then updated accordingly. In contrast to these
learnable sampling strategies, we introduce corrections to the Prioritized Experience Replay
in a rule-based manner.

Recently, corrections to PER have been extensively investigated by Fujimoto et al.
(2020) and Oh et al. (2022). First, Fujimoto et al. (2020) addressed that any loss function
combined with non-uniform probability may be converted into a new uniformly sampled
loss function counterpart with the same expected gradient. By using this finding, they
completely replaces the loss in PER with a modified loss function, which has been shown to
have no effect on empirical performance. By correcting its uniformly sampled loss function
equivalent, this connection provides a new branch of PER improvements called Loss Adjusted
Prioritized (LAP) Experience Replay (Fujimoto et al., 2020). We broadly investigate LAP
in the later sections. Secondly, Oh et al. (2022) argue that sampling from the replay buffer
depending highly on the TD error (or Q-network’s error) may be ineffective due to the
under- or overestimation of the Q-values resulting from the deep function approximators
and bootstrapping. For this reason, they proposed to learn auxiliary features driven from
the components in model-based RL to calculate the scores of experiences. The proposed
method, Model-Augmented PER (MaPER) (Oh et al., 2022), uses the critic network to
improve the effect of curriculum learning for predicting Q-values with minimal memory and
computational overhead compared to vanilla PER. Ultimately, we include the theoretical
results of Fujimoto et al. (2020) in our methodology, while we also compare our method
against uniform sampling, PER, LAP, and MaPER in our empirical studies.
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3. Technical Preliminaries

We first examine the general deep reinforcement framework considered in this study. Next,
we provide some technical aspects of the Prioritized Experience Replay algorithm required
to establish the methodology.

3.1 Deep Reinforcement Learning

This study considers the standard RL setup, described by Sutton and Barto (2018) and
Kaelbling, Littman, and Moore (1996). At every discrete time step t, the agent observes
a state s and chooses an action a. Depending on its action selection, the agent receives
a reward r and observes the next state s′. The RL problem is often framed by a Markov
decision process consisting of a 5-tuple (S,A,R, P, γ), with state space S, action space A, a
reward function R, the environment dynamics model P , and the discount factor γ ∈ [0, 1).

The performance of a policy π is assessed under the action-value function (Q-function
or critic) Qπ, which represents the expected sum of discounted rewards while following the
policy π after performing the action a in state s:

Qπ(s, a) = Eπ[
∞∑
t=0

γtrt+1|s0 = s, a0 = a].

The action-value function is determined through the Bellman equation (Bellman, 2003):

Qπ(s, a) = Er,s′∼P,a′∼π[r + γQπ(s′, a′)],

where a′ is the next action selected by the policy on the observed next state s′.
In deep RL, the critic is approximated by a deep neural network Qθ with parameters

θ. Then, the Q-learning with deep function approximators transforms into the standard
DQN algorithm. Given a transition tuple τ = (s, a, r, s′), DQN is trained by minimizing the
loss δθ(τ) based on the temporal-difference error corresponding to the Q-network Qθ. The
TD-learning algorithm (Sutton, 1988) is an update rule based on the Bellman equation, which
defines a fundamental relationship used to learn the action-value function by bootstrapping
from the value estimate of the current state-action pair (s, a) to the subsequent state-action
pair (s′, a′):

y(τ) = r + γQθ′(s
′, a′),

δθ(τ) = y(τ)−Qθ(τ).

Note that TD error in the latter equation can also be regarded as δθ(τ) = Qθ(τ) − y(τ),
however, it does not affect our analysis. Transitions τ ∈ B are sampled through a sampling
method from the experience replay buffer that contains a previously collected set of experiences
in the form of a batch of transitions B. The target y(τ) in (3.1) employs a separate target
network with parameters θ′ that maintains stability and fixed objective in learning the
optimal Q-function. The target parameters are updated either with the soft or hard update
by copying parameters θ from the Q-network Qθ by a small fraction ζ at every step or to
match θ every fixed period, respectively. In each update step, the loss for the Q-network is
averaged over the sampled batch of transitions B: 1

|B|
∑

τ∈B δθ(τ), where |B| is the number
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of transitions contained in B. Note that the batch size does not affect our analysis on the
prioritization as the expected gradient remains unchanged.

In controlling continuous systems (i.e., continuous action domains), the maximum
maxãQ(s, ã) to select actions is intractable due to an infinite number of possible actions. To
overcome this issue, actor-critic methods employ a distinct network to represent the policy
πϕ, parameterized by ϕ, to determine the actions based on the observed states. The policy
network is commonly referred to as the actor network, and it can be either deterministic
a = πϕ(s) or stochastic a ∼ πϕ(·|s). The next action a′ in the construction of the Q-network
target in (3.1) can be chosen either by the behavioral actor network πϕ (i.e., the policy that
the agent uses for action selection) or a distinct target actor network πϕ′ , depending on
the actor-critic method. Equivalent to the target Q-network, the target actor network with
parameters ϕ′ is used to ensure stability over the updates. Finally, the policy is optimized
with respect to the policy gradient ∇ϕ computed by a policy gradient technique, the loss of
which is explicitly or implicitly based on maximizing the Q-value estimate of Qθ. Additionally,
the Q-network is trained through the DQN algorithm or one of its variants such as the
Clipped Double Q-learning algorithm (Fujimoto et al., 2018).

3.2 Prioritized Experience Replay

Prioritized Experience Replay is a non-uniform sampling strategy for replay buffers in
which transitions are sampled in direct proportion to their absolute TD error. The primary
reasoning for PER is that training on the highest error samples will yield the most significant
performance improvement. PER introduces two modifications over the standard uniform
sampling. First, a stochastic prioritization scheme is used. The motivation is that TD
errors are updated only for replayed transitions. As a result, the initially high TD error
transitions are updated more frequently, resulting in a greedy prioritization. Also, the noisy
Q-value estimates increase the variance due to the greedy sampling. Therefore, overfitting
is inevitable if one directly samples transitions proportional to their TD errors. To remedy
this, a probability value is assigned to each transition τi, proportional to its absolute TD
error |δθ(τi)|, and set to the power of a hyperparameter α to smooth out the extremes:

p(τi) =
|δθ(τi)|α + µ∑
j(|δθ(τj)|α + µ)

, (1)

where a small constant µ is added to avoid assigning zero probabilities to transitions.
Otherwise, they would not be sampled again. This is required since the most recent value of
a transition’s TD error is approximated by the TD error when it was last sampled.

Second, favoring large TD error transitions with the stochastic prioritization shifts the
distribution of s′ to Es′ [Q(s′, a′)]. This can be corrected through importance sampling with
ratios w(τi):

ŵ(τi) =

(
1

|R|
· 1

p(τi)

)β

,

w(τi) =
ŵ(τi)

maxjŵ(τj)
,

LPER(δθ(τi)) = w(τi)L(δθ(τi)), (2)
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where L indicates the TD error under prioritization, |R| is the total number of transitions in
the replay buffer, and the hyperparameter β is used to smooth out the high variance induced
by the importance sampling weights. The latter equation corrects the distribution shift by
employing a ratio between uniform sampling with probability 1

|R| and the ratio specified in
(1). This approach reduces the impact of high priorities on the distribution. At last, the β
value is annealed from a predefined initial value β0 to 1, to eliminate the bias introduced by
the distributional shift.

4. Prioritized Sampling in Actor-Critic Algorithms

We start by building the theoretical foundations for the performance degradation of the
prioritized sampling in actor-critic methods. In Assumption 1, we first demonstrate that
there may exist transitions such that the absolute value of the associated TD error can
increase the absolute Q-value estimation error. Then, using our theoretical implications, we
prove in Theorem 1 that if a policy is optimized using transitions that exhibit large TD error,
the gradient of the approximate actor network computed using the Q-network’s estimates
will deviate from the actual gradient computed under the optimal Q-function, leading to
divergence. In addition to our theoretical investigation, we also tackle the issues highlighted
in a prior study that shed light on the suboptimal performance of PER when used with
standard off-policy actor-critic methods.

Assumption 1. Consider the temporal-difference error δθ associated with the critic net-
work Qθ in off-policy actor-critic algorithms. Then, there exists a transition tuple τi =
(si, ai, ri, si+1) with δθ(τi) ̸= 0 such that if the absolute temporal-difference error on τi
increases, the absolute Q-value estimation error on at least τi or τi+1 will also increase.

Discussion of Assumption 1 To simplify the analysis, we consider that the target
networks do not affect the estimation, as they aim to ensure stability and a fixed objective
over the updates (Mnih et al., 2015). We begin by expanding the temporal-difference error
δθ(τi) in terms of the bootstrapped value estimation:

δθ(τi) = ri + γQθ(si+1, ai+1)−Qθ(si, ai), (3)

where ai+1 ∼ πϕ(si+1) represents the action selected by the policy network πϕ on the observed
next state si+1. We note that the optimal action-value function Qπ under the policy π yields
no TD error:

δπ(τi) = ri + γQπ(si+1, ai+1)−Qπ(si, ai) = 0. (4)

Then, subtracting (4) from (3) results in

δθ(τi) = γ (Qθ(si+1, ai+1)−Qπ(si+1, ai+1))︸ ︷︷ ︸
:=ϵτi+1

− (Qθ(si, ai)−Qπ(si, ai))︸ ︷︷ ︸
:=ϵτi

̸= 0.

Naturally, ϵτi and ϵτi+1 represent the estimation error at the current and subsequent steps,
respectively. We now consider the following cases for different signs of these variables when
the absolute TD error increases, and show that it is possible that if the absolute value of
TD error increases, then the absolute value of at least ϵτi and ϵτi+1 also increases. Note that
γ ≥ 0 is omitted as it is fixed.
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Case 1: |δθ(τi)| increases when δθ(τi), ϵτi , ϵτi+1 > 0. This can happen if ϵτi+1 becomes a
greater positive number as well, which implies that |ϵτi+1 | eventually increases.

Case 2: |δθ(τi)| increases when δθ(τi), ϵτi+1 > 0 and ϵτi < 0. This can be achieved as long
as either ϵτi+1 increases or ϵτi becomes a smaller negative number. Eventually, at least
one of |ϵτi+1 | and |ϵτi | will increase.

Case 3: |δθ(τi)| increases when δθ(τi), ϵτi > 0 and ϵτi+1 < 0. This case is impossible to
occur as δθ(τi) is positive initially.

Case 4: |δθ(τi)| increases when δθ(τi) > 0 and ϵτi , ϵτi+1 < 0. If both estimation error terms
are negative and δθ(τi) is positive initially, it means that the magnitude of ϵτi is larger
than that of ϵτi+1 . If δθ(τi) increases to a greater positive number, ϵτi may become a
smaller negative number. Therefore, |ϵτi | will increase as well.

The remaining cases: |δθ(τi)| increases when δθ(τi) < 0. For the remaining cases where
δθ(τi) becomes a smaller negative number, we will reach the same conclusion as in the
first four cases if we multiply both sides with the minus sign. Therefore, the absolute
value of at least ϵτi or ϵτi+1 can still increase.

It is important to note that this behavior may not always lead to the deduction proved.
However, we infer that there is always a possibility for it to occur under the presence of a TD
error with an increasing magnitude, which is the primary proxy for the prioritized sampling
of interest.

Our assumption is reasonable and likely to occur in practice, as it is based on the
fundamental principles of off-policy actor-critic reinforcement learning. In particular, the TD
error is a key factor in determining the update rule for the critic network (Sutton & Barto,
2018), being the difference between the expected value of the current state-action pair and
the actual observed value. TD error can arise due to various reasons such as errors in the
policy or the approximate Q-function. When the critic network is updated to reduce the TD
error, it also affects the estimation error since the agent’s Q-value estimates are based on the
TD error. A large TD error implies that the predicted Q-value is far from the true value,
which in turn suggests that the Q-value estimation error is likely to be high as well (Sutton
& Barto, 2018, Chapter 6).

Moreover, in off-policy learning, the Q-value estimation error is influenced by the difference
between the behavior policy and the target policy. If the TD error is large, it may indicate
that the difference between the policies is significant, making it more likely that the Q-value
estimation error will also be large. Therefore, our assumption not only reflects the practical
challenges that an agent may face but is also supported by the RL literature. For instance,
Schaul et al. (2015) and Sutton and Barto (2018) discusses the relationship between TD
error and Q-value estimation error, stating that a large absolute TD error indicates poor
prediction and a need for stronger weight updates in the direction of the error. We now
leverage our latter result to explain why policy optimization cannot be effectively performed
using transitions with large TD errors, following the assumption made. Specifically, Theorem
1 highlights the importance of transitions with minimal TD errors during policy optimization,
as transitions with large errors can lead to suboptimal policies and cause the approximate
policy gradient to diverge from its true value.
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Theorem 1. Let τi be a transition such that Assumption 1 is satisfied. Then, if the absolute
temporal-difference error at time step i increases, the computed policy gradient will diverge
from the true policy gradient for at least the current step i or the subsequent step i+ 1.

Proof. The proof relies on the policy gradient theorem of Sutton et al. (2000) in the deep
function approximation setting. To begin, we formally expresses the standard policy iteration
with function approximation in terms of the policy parameters ϕ:

ϕ← ϕ+ η∇ϕ,

where ∇ϕ is the computed policy gradient, and η is the learning rate. A general formulation
for the policy gradient with function approximation is given by

∇ϕ :=

∫
S
dπ(s)

∫
A

∂π(s, a)

∂ϕ
Qθ(s, a),

where Qθ is the function approximation of Qπ, and dπ(s) is a discounted weighting of states
encountered, starting from s0 and then following π: dπ(s) =

∑∞
t=0 γ

tp(st = s|s0, π). In the
latter equation, the gradient is computed by taking the average over the continuous state
and action spaces. However, computing the gradient over the entire state and action space is
often computationally infeasible. Instead, the gradient can be estimated over a subset of
the state and action space, which is equivalent to the sampled mini-batch of transitions in
our case. For simplicity, we consider one-step gradient computation and omit computing the
gradient over the sampled mini-batch of transitions. For the state-action pair (si, ai) ∈ τi,
the policy gradient ∇ϕ(τi) is proportional to dπ(si) multiplied by the gradient of π(si, ai)
with respect to ϕ and weighted by the estimated Q-value of (si, ai). Let k := dπ(si)

∂π(si,ai)
∂ϕ ,

and we have

∇ϕ(τi) = kQθ(si, ai),

∇ϕtrue(τi) = kQπ(si, ai),

for the approximated and true policy gradients, respectively. The same k applies to both
the computed and true policy gradients since it is independent of the Q-value estimates.
Additionally, since k is constant over the range of values of the Q-value estimates, we can treat
it as a constant for the proportionality between the policy gradients and Q-value estimates.
As defined in Assumption 1, we have Qθ(si, ai) = Qπ(si, ai) + ϵτi . Using this, we can write

∇ϕ(τi)−∇ϕtrue(τi) = k(Qθ(si, ai)−Qπ(si, ai))

= k(Qπ(si, ai) + ϵτi −Qπ(si, ai))

= kϵτi .

Taking the absolute value of the latter equation gives

|∇ϕ(τi)−∇ϕtrue(τi)| = |kϵτi |,= |k||ϵτi | = k|ϵτi |.

Although the k term is not a constant, but rather a variable, we can still take it out of the
absolute operator since it is a product of probabilities. Therefore, the equation above implies
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that the absolute difference between the computed and true policy gradients is proportional
to the absolute Q-value estimation error:

|∇ϕ(τi)−∇ϕtrue(τi)| ∝ |ϵτi |,

where we still use k as a constant of proportionality since it does not vary over the Q-value
estimates. Considering that Assumption 1 is satisfied, an increase in the absolute TD error
in the current step leads to a corresponding increase in the absolute estimation error in either
the current or a subsequent step. The latter equation further suggests that an increase in
the absolute estimation error leads to a larger discrepancy between the true and computed
policy gradients in the corresponding step. Hence, we deduce that an increase in the absolute
TD error causes the computed policy gradient to deviate from the true policy gradient, at
least in the current or a subsequent step.

Theorem 1 states that if the actor network is optimized with a transition corresponding
to a large TD error, the resulting policy gradient at the current or subsequent step can
deviate from the true gradient. We formally state this finding in Corollary 1.

Corollary 1. An increase in the absolute value of the temporal-difference error can lead to a
less accurate approximate policy gradient, causing it to deviate from the true policy gradient
corresponding to the optimal Q-function, at least for the current or subsequent transition.

This forms an essential ingredient in the degraded performance of the prioritized sampling
when an actor network is employed. We now address a recent finding that provides an expla-
nation for the poor performance of prioritized sampling in off-policy actor-critic algorithms
and complements our investigation. As previously mentioned, prioritizing transitions with
high TD error via stochastic sampling leads to a shift in the distribution of s′ to Es′ [Q(s′, a′)].
Therefore, this induced bias is corrected by importance sampling expressed in (2). However,
Fujimoto et al. (2020) argued that PER does not entirely eliminate the bias and may favor
outliers when combined with MSE loss in the Q-network updates. Specifically, when MSE is
used in combination with PER, optimizing it using a loss of 1

ρ |δθ(τ)|
ρ, where ρ+α−αβ ̸= 2,

leads to bias in the Q-network target and, consequently, biased Q-network updates. Remark
1 underscores this finding, which was identified by Fujimoto et al. (2020) as one of the
contributing factors to the suboptimal performance of PER when used in conjunction with
standard actor-critic algorithms in continuous action domains.

Remark 1. The PER objective is biased if ρ+ α− αβ ̸= 2 under the loss function 1
ρ |δθ(τ)|

ρ

(Fujimoto et al., 2020).

Based on Remark 1, Fujimoto et al. (2020) inferred that prioritized sampling is subject to
bias when used with MSE because the condition ρ+ α− αβ ̸= 2 is never precisely satisfied,
i.e., if β < 1, then 2+α−αβ > 2 for α ∈ (0, 1]. Moreover, the induced bias is not always the
same. On the contrary, an L1 loss can satisfy this property such that 1 + α− αβ ∈ [1, 2] for
α ∈ (0, 1] and β ∈ [0, 1] since ρ = 1 in the L1 loss. In practice, however, the L1 loss may not
be ideal since each update entails a constant-sized step, which may cause the objective to be
overstepped if the learning rate is too large. To address this issue, Fujimoto et al. (2020)
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opted to employ the Huber loss with κ = 1, a commonly used loss function, in the Q-network
updates instead of the MSE loss:

LHuber(δθ(τi)) =

{
0.5δθ(τi)

2 if |δθ(τi)| ≤ κ,
|δθ(τi)| otherwise. (5)

When the error is below threshold 1, the Huber loss swaps from L1 to MSE and properly
scales the gradient as δθ(τi) approaches zero. When |δθ(τi)| < 1, MSE is applied. Thus,
samples with an error of less than 1 should be sampled uniformly to prevent the bias induced
by MSE and prioritization. This is achieved in the LAP algorithm via the prioritization
scheme, p(τi) = max(|δθ(τi)|α, 1), through which samples with low priority are clipped to be
at least 1. The LAP algorithm resolves the issue outlined in Remark 1 by incorporating a
modified stochastic prioritization scheme in combination with the Huber loss:

p(τi) =
max(|δθ(τi)|α, 1)∑
j max(|δθ(τj)|α, 1)

. (6)

The results presented by Fujimoto et al. (2020) form a complement to our theoretical
conclusions for the poor performance of PER, which we underline in Remark 2. We note
that our emphasis is on the off-policy actor-critic algorithms in which actions are selected by
a separate actor network trained to maximize the action-value estimate of the Q-network.
In contrast, Remark 2 comprises both discrete control and off-policy actor-critic deep RL.
There may be another justification for the poor performance of PER such as inaccurate
Q-value estimates. Nevertheless, such reasons are not PER-dependent and are induced by the
derivatives of the DQN algorithm. Therefore, to the best of our knowledge, Corollary 1 and
Remark 2 establish the basis for the algorithmic drawbacks of PER in off-policy actor-critic.

Remark 2. To further eliminate the bias favoring the outlier transitions in the Prioritized
Experience Replay algorithm, the Huber loss with κ = 1 should be used in conjunction with
the prioritization scheme expressed in (6) (Fujimoto et al., 2020).

5. Adaptation of Prioritized Experience Replay to Actor-Critic Algorithms

First, we introduce a set of modifications to vanilla PER to address the issues induced by
prioritized sampling in actor-critic algorithms. We then explain why these modifications
cannot be directly applied and conclude with the proposed method.

5.1 Inverse Sampling for the Actor Network

We start with Corollary 1, which suggests that training the actor network with a large
TD error transition can cause the approximate policy gradient to diverge from the actual
gradient, at least for the current or subsequent transitions. However, it should be noted
that if the policy gradient diverges only for subsequent transitions that do not correspond to
a large TD error, the performance may not necessarily degrade under the TD error-based
prioritization scheme. Nonetheless, this scenario is unlikely to occur, as the replay buffer
typically contains only a few transitions in the initial optimization steps, which is typically
smaller than the batch size.
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Observation 1. The performance of actor-critic methods may not degrade under the PER
algorithm if the transitions subsequent to the sampled transitions are not used to optimize
the actor network. Nevertheless, this remains a slight possibility in the standard off-policy
actor-critic algorithms.

To address the issue identified in 1, we propose optimizing the actor network using
transitions that have small TD errors. To achieve this, we employ inverse sampling from
the prioritized replay buffer, which involves sampling transitions with low TD errors for
the actor network using the PER approach. To implement this approach, it is necessary to
analyze the PER data structure. One efficient and popular implementation of PER, which
corresponds to proportional prioritization, is based on a “sum-tree” data structure. This
sum-tree data structure is very similar to the array representation of a binary heap, with
the main difference being that instead of the standard heap property, a parent node’s value
is equal to the sum of its children. The internal nodes of the sum-tree data structure are
intermediate sums, with the parent node carrying the sum over all priorities ptotal. In the
meantime, the leaf nodes store transition priorities. This allows for O(log|R|) updates and
sampling while calculating the cumulative total of priorities. For sampling a mini-batch of
size N , the range [0, ptotal] is evenly divided into N ranges. Within each range, a value is
uniformly sampled. The sum-tree data structure is then queried for the transitions that
correspond to each sampled value.

One intuitive approach to sampling transitions with a probability inversely proportional
to the TD error is to create a new sum-tree that contains the global inverse of the priorities.
Although priorities in vanilla PER are updated for every training step through the previously
defined sum tree data structure, inverse sampling for actor updates requires creating a new
sum tree prior to training. In every update step, priorities are calculated using

I ∼ p̃(τi) =
pmax

p(τi)
= maxi

(
max(|δθ(τi)|α, 1)∑
j max(|δθ(τj)|α, 1)

)
·
∑

j max(|δθ(τj)|α, 1)
max(|δθ(τi)|α, 1)

, (7)

where p(τi) is the priority of the ith transition and pmax is the maximum of the previously
determined priorities of the stored transitions. As highlighted in Remark Remark 2, the
use of MSE with PER may still result in varying biases that could potentially favor outlier
transitions. To address this concern, we adopt the prioritization scheme proposed by the LAP
algorithm, expressed by (6), in (7). Notice that (7) does not alter proportional prioritization.
The relative proportions (e.g., the largest over the smallest) do not change as we take the
inverse by multiplication.

This forms the core component of our approach. To mitigate the impact of outlier
bias also in the Q-network updates, we again adopt the Huber loss function with a tuning
parameter of κ = 1, as defined in (5), similar to the LAP algorithm. Consequently, during
each optimization step t, both the Q-network and priorities are updated respectively using

I ∼ p(τi) =
max(|δθ(τi)|α, 1)∑
j max(|δθ(τj)|α, 1)

,

θ ← θ − η · 1

|I|
∑
i∈I
∇θLHuber(δθ(τi)),

p(τi)← max(|δθ(τi)|α, 1) for i ∈ I,
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where I denotes the indices of the prioritized transitions that are sampled to form the
mini-batch. Note that the clipping reduces the likelihood of dead transitions when p(τi) ≈ 0,
which eliminates the need for the µ parameter. It is important to note that the Huber loss
function cannot be employed in the computation of the policy gradient due to several reasons.
First, the priorities are determined by the loss function of the Q-network, which is the TD
error, and the use of MSE loss in conjunction with TD error-based prioritized sampling is the
primary cause of the mentioned outlier bias. Also, the policy loss and gradient are computed
using a class of policy gradient techniques that cannot be substituted by the Huber loss.
Therefore, the outlier bias does not affect the policy gradient, and there is no need to use
the Huber loss in the policy network.

5.2 Optimizing the Actor and Critic with a Shared Set of Transitions

In some cases, optimizing the actor and critic networks with entirely different transitions can
potentially violate the actor-critic theory. Typically, the features used by the critic network
are dependent on the actor parameters and policy gradient since the actor determines the
actions that ultimately lead to the observed state space (Konda & Tsitsiklis, 1999). An
important corollary to this observation is that if the critic is updated using a set of features
that exist in a state-action space where the actor is never optimized, this may lead to
significant instability. This is because the transitions used by the critic are processed through
the actor, and if the actor never sees these transitions, the critic’s updates may not accurately
reflect the actual performance of the actor (Konda & Tsitsiklis, 1999). Therefore, the action
evaluations of the critic might become questionable.

Intuitively, this situation can occur when inverse prioritized and prioritized sampling are
used for the actor and critic networks, respectively, since they may never be optimized with
the same transitions. The reason for this is that the TD error of the critic’s samples may not
decrease to the extent that the actor is unable to observe them. We indicated that there
is not always a direct correlation between TD and estimation errors. Hence, some of the
transitions might initially have low TD errors. If the actor is optimized with respect to these
low TD error transitions throughout the learning and the Q-network only focuses on the
remaining large TD error transitions, samples used in the actor and critic training may not
be the same. Although this remains unlikely, we nevertheless prevent it by updating the
actor and critic networks through a set of shared transitions, being a fraction of the sampled
mini-batch of transitions. However, we could not know the value of such a fraction, and we
will introduce it as a hyperparameter later. We emphasize these deductions in Observation 2
and regulate our approach accordingly.

Observation 2. If the transitions for the actor and critic are sampled through inverse
prioritized and prioritized sampling, respectively, they may never observe the same transitions.
This, in turn, violates the actor-critic theory as outlined by Konda and Tsitsiklis (1999) and
can result in unstable learning. Hence, the actor and critic should be optimized with the same
set of transitions, at least for a fraction of the sampled mini-batch of transitions, in every
update step.

How to choose the set of shared transitions? We inspect the following sampling
alternatives in terms of the TD error. We can additionally investigate auxiliary variables
driven by the components in model-based RL to compute the scores of the experiences,
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similar to the work of Oh et al. (2022). However, learning additional features introduces
additional computational overhead. This aspect, however, is beyond the scope of this study,
as our primary focus is solely on prioritization regarding the TD error and corrections to
vanilla PER in off-policy actor-critic methods.

• Transitions with large TD error: The actor network cannot be optimized with
experiences that have large TD error since the policy gradient significantly diverges
from the actual gradient, as discussed in Corollary 1.

• Transitions with small TD error: Learning from the experiences with small TD
error can be beneficial, yet they decrease the sampling efficiency and waste resources
since the Q-network has little to learn from small TD error transitions in the sense of
prioritized sampling.

• Uniformly sampled transitions: The latter two alternatives imply that uniform
sampling for the set of shared transitions can be a suitable choice. Although large TD
error transitions might be included in the uniformly sampled mini-batch, their effects
are reduced due to averaging in the mini-batch learning.

Following the latter discussion, we determine that uniform sampling for a fraction of
the transitions in the sampled mini-batch is a suitable approach for addressing the issue
highlighted in Observation 2. While we could also consider using transitions with an average
magnitude of TD errors, the use of uniform sampling already encompasses transitions with a
mean TD error in the expectation. Furthermore, relying on random sampling allows for the
inclusion of transitions that cannot be sampled by prioritized and inverse prioritized sampling.
However, other distributions, such as those that encourage mean tendency/variance reduction,
could be promising directions for future research.

As discussed in Remark 2, the combination of Huber loss (κ = 1) with the prioritized
sampling can eliminate outlier bias in the LAP algorithm. Fujimoto et al. (2020) also
introduced the mirrored loss function of LAP, with an equivalent expected gradient, for
uniform sampling from the experience replay buffer. To observe the same benefits of LAP
also in the uniform sampling counterpart, its mirrored loss function, Prioritized Approximate
Loss (PAL), should be employed instead of MSE. Similar to the case of the LAP function,
the PAL loss is also not employed in the policy network’s updates. The PAL function is
expressed by

ξ =

∑
j max(|δθ(τj)|α, 1)

N
,

LPAL(δθ(τi)) =
1

ξ

{
0.5δθ(τi)

2 if |δθ(τi)| ≤ 1,
|δθ(τi)|1+α

1+α otherwise.
(8)

Remark 3. To eliminate the outlier bias in the uniform sampling counterpart, the Prioritized
Approximate Loss (PAL) function should be employed, which has the same expected gradient
as the Huber loss when combined with PER (Fujimoto et al., 2020).

Having the latter component included, this forms our PER correction algorithm, Loss-
Adjusted Approximate Actor Prioritized Experience Replay (LA3P). In summary, our
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approach involves uniformly sampling a mini-batch of transitions, with a size of λ ·N in each
update step. Here, λ ∈ [0, 1] represents the fraction of the transitions that are uniformly
sampled and serves as the only introduced hyperparameter in our approach. Using the
uniformly sampled batch, the critic and actor networks are optimized consecutively. The
critic is updated based on the PAL function expressed in (8), and the priorities are updated
immediately after. Following this, a total of (1 − λ) · N transitions are sampled through
prioritized and inverse prioritized sampling for the critic and actor networks, respectively.
The critic is then optimized using the Huber loss (κ = 1) expressed in (5), while a policy
gradient technique optimizes the actor. Lastly, the priorities are updated again. Overall,
both the actor and critic networks are optimized with N transitions per update step, similar
to standard off-policy actor-critic algorithms. Note that we update the priorities also in
the uniform counterpart since the score of the transitions should be up-to-date whenever
possible. In addition, the order of the prioritized and uniform updates does not alter the
expected gradient. Hence, it does not matter which of them is used first. Nevertheless, in our
implementation and experiments, we employ the structure outlined in Algorithm 1, denoted
through a generic application to off-policy actor-critic methods. A clear summary of the
LA3P framework is also depicted in Appendix A.

Ultimately, we conduct a complexity analysis for our approach. The LA3P framework
introduces an additional sum tree, the LAP, and PAL functions on top of vanilla PER. As
LAP and PAL operate on the sampled batches of transitions, the computational complexity
introduced by these modifications is dominated by the additive sum tree, which operates on
the entire replay buffer. Moreover, the additive sum tree requires a priority update. Setting
the priorities of the nodes has the same complexity as in PER. Additionally, LA3P takes
the inverse of the priorities by multiplication, which takes O(|R|) runtime. Therefore, LA3P
operates in O(log|R|) + O(|R|). As O(|R|) dominates O(log|R|), we conclude that LA3P
has a runtime of O(|R|) in the worst case scenario.

Although the array division in the additive sum tree (i.e., taking the inverse of the
priorities by multiplication) dramatically increases the computational complexity of vanilla
PER. This may raise concerns about the feasibility of our approach. Nevertheless, this
issue can be resolved by Single Instruction, Multiple Data (SIMD) structure embedded
within modern CPUs. In particular, SIMD instructions can simultaneously perform the same
operation, such as the array division required in our case, on all cores in parallel. Fortunately,
this implementation detail is not the user’s concern and can be executed implicitly by the
CPU. As a result, the additional computational efficiency provided by the SIMD instructions
will significantly reduce the computational burden of the LA3P framework.

6. Experiments

Here, we first briefly describe the experimental setup used to produce the reported results.
Then, we compare the proposed method to the baseline methods, and conduct a set of
ablation studies that further validates our theoretical conclusions.

6.1 Experimental Details

With all the mentioned concepts combined, we investigate the extent to which our prioritiza-
tion framework can improve the performance of off-policy actor-critic methods. Thus, we
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Algorithm 1 Actor-Critic with Loss-Adjusted Approximate Actor Prioritized Experience
Replay (LA3P)
1: Input: Mini-batch size N , exponents α and β, uniform sampling fraction λ, target

step-size ζ, and actor and critic step-sizes ηπ and ηQ
2: Initialize actor πϕ and critic Qθ networks, with random parameters ϕ and θ
3: Initialize target networks ϕ′ ← ϕ, θ′ ← θ, if required
4: Initialize pinit = 1 and the experience replay buffer R = ∅
5: for t = 1 to T do
6: Select action at and observe reward rt and next state st+1

7: Store the transition tuple τt = (st, at, rt, st+1) in R with initial priority pt = pinit
8: for each update step do
9: Uniformly sample a mini-batch of transitions: I ∼ p(τi) =

1
|R| , |I| = λ ·N

10: Optimize the critic network: θ ← θ − ηQ · 1
|I|
∑

i∈I ∇θLPAL(δθ(τi))

11: Compute the policy gradient ∇ϕ(τi) for τi where i ∈ I
12: Optimize the actor network: ϕ← ϕ+ ηπ · 1

|I|
∑

i∈I ∇ϕ(τi)
13: Update the priorities of the uniformly sampled transitions:

p(τi)← max(|δθ(τi)|α, 1) for i ∈ I
14: Update target networks if required: θ′ ← ζθ + (1− ζ)θ′, ϕ′ ← ζϕ+ (1− ζ)ϕ′

15: Sample a mini-batch of transitions through prioritized sampling:
I ∼ p(τi) =

max(|δθ(τi)|α,1)∑
j max(|δθ(τj)|α,1) , |I| = (1− λ) ·N

16: Optimize the critic network: θ ← θ − ηQ · 1
|I|
∑

i∈I ∇θLHuber(δθ(τi))
17: Update the priorities of the prioritized transitions:

p(τi)← max(|δθ(τi)|α, 1) for i ∈ I
18: Sample a mini-batch of transitions through inverse prioritized sampling:

I ∼ p̃(τi) =
pmax
p(τi)

= maxi

(
max(|δθ(τi)|α,1)∑
j max(|δθ(τj)|α,1)

)
·
∑

j max(|δθ(τj)|α,1)
max(|δθ(τi)|α,1)

19: Compute the policy gradient ∇ϕ(τi) for τi where i ∈ I
20: Optimize the actor network: ϕ← ϕ+ ηπ · 1

|I|
∑

i∈I ∇ϕ(τi)
21: Update target networks if required: θ′ ← ζθ + (1− ζ)θ′, ϕ′ ← ζϕ+ (1− ζ)ϕ′

22: end for
23: end for
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perform experiments to evaluate the effectiveness of LA3P on the standard suite of MuJoCo
(Todorov et al., 2012) and Box2D (Parberry, 2013) continuous control tasks interfaced by
OpenAI Gym. We evaluate the effectiveness of our method by combining it with the state-
of-the-art off-policy actor-critic algorithms, namely Soft Actor-Critic (SAC) (Haarnoja et al.,
2018a) and Twin Delayed Deep Deterministic Policy Gradient (TD3) (Fujimoto et al., 2018).
We then compare our method against uniform sampling, PER, and the rule-based PER
correction methods of LAP and MaPER. Although PAL combined with uniform sampling
could also be used for comparison, Fujimoto et al. (2020) have demonstrated that it has the
same expected gradient as LAP, suggesting similar empirical performance.

Our implementation of the state-of-the-art algorithms closely follows the hyperparameter
setting and architecture outlined in the original papers. Particularly, we implement TD3
using the code from the author’s GitHub repository2, which contains the fine-tuned version
of the algorithm. The implementation of SAC is precisely based on the original paper. Unlike
the paper, we include entropy tuning, as shown by Haarnoja et al. (2018b) to improve the
algorithm’s overall performance. Moreover, we add 25000 exploration time steps before the
training to increase the data efficiency.

We use the LAP and PAL code in the author’s GitHub repository3 to implement the
algorithm and our framework, which requires a few lines on top of the standard PER
implementation. Moreover, we use the same repository for the PER implementation, which
is based on proportional prioritization through sum trees. To implement LA3P, we cascade
uniform sampling with PAL and PER with LAP. For all experience replay sampling algorithms,
except for uniform, we set β = 0.4, consistent with the original papers. We also set α = 0.6
and α = 0.4 for PER and LAP, respectively. Since we use LAP and PAL functions in our
framework, we set α = 0.4 for LA3P. The implementation of MaPER is obtained from the
code available on the submission website4. Further details on the exact hyperparameter
settings, architecture, and implementation can be found in Appendix B.

Each method is trained for a million steps over ten random seeds of network initialization,
simulators, and dependencies, except for the Ant, HalfCheetah, Humanoid, and Swimmer
environments. We found that the algorithms could benefit from further training in these
environments, and thus, we train them for 2 million steps. Note that we use a replay
buffer size equal to the number of training steps in all experiments. Every 1000 steps, each
method is evaluated in a distinct evaluation environment (training seed + constant) for
ten episodes, where no exploration and learning are performed. To construct the reported
learning curves, we compute the average performance over ten evaluation episodes at each
evaluation period. For easy reproducibility and fair evaluation, we did not modify the
environment dynamics and reward functions of the simulators. Computing infrastructure
(i.e., hardware and software) used to produce the reported results are summarized in our
repository1. Detailed experimental setup is provided in Appendix B.

2https://github.com/sfujim/TD3
3https://github.com/sfujim/LAP-PAL
4https://openreview.net/forum?id=WuEiafqdy9H
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SAC + LA3P (λ = 0.5) SAC + PER SAC + LAP
SAC + MaPER SAC + uniform

Figure 1: Learning curves for the set of MuJoCo and Box2D continuous control tasks under
the SAC algorithm. The shaded region represents a 95% confidence interval over
the trials. A sliding window of size 5 smoothes the curves for visual clarity.

6.2 Comparative Evaluation

Learning curves for the set of OpenAI Gym continuous control benchmarks are reported
in Figures 1 and 2 for the SAC and TD3 algorithms, respectively. For all tasks, we use
uniform fraction value of λ = 0.5. Initially, we tested λ = {0.1, 0.3, 0.5, 0.7, 0.9} on Ant,
HalfCheetah, Humanoid, and Walker2d and found that λ = 0.5 produced the best results. In
the next section, we also present a sensitivity analysis based on the λ parameter. Empirical
complexity analysis is provided in Appendix C.

We additionally report the average of the last ten evaluation returns in Table 1, i.e., the
level where the algorithms converge. Note that for some of the tasks (e.g., HalfCheetah,
Hopper, Walker2d) the baseline competing algorithms performed worse than what was
reported in the original articles. This is due to the stochasticity of the simulators and used
random seeds. Nonetheless, regardless of where the baselines converge, the performance
disparity between the competing approaches would practically remain the same if we employed
different sets of random seeds.

Based on the learning plots, we observe that LA3P performs comparably or better than the
competing approaches in the majority of the tasks tested. However, in the BipedalWalker and
LunarLanderContinuous environments under the SAC algorithm, LAP achieves slightly higher
rewards than our method. Nonetheless, these differences are negligible, and as evidenced
by the learning curves, LA3P converges faster. In these relatively trivial environments,
we observe only a minor improvement. However, in the Swimmer environment, where
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TD3 + LA3P (λ = 0.5) TD3 + PER TD3 + LAP
TD3 + MaPER TD3 + uniform

Figure 2: Learning curves for the set of MuJoCo and Box2D continuous control tasks under
the TD3 algorithm. The shaded region represents a 95% confidence interval over
the trials. A sliding window of size 5 smoothes the curves for visual clarity.

no algorithm could converge, the performance gains resulting from our modifications are
particularly notable. Moreover, we also observe a significant improvement by LA3P in the
HalfCheetah environment relative to the prior approaches. As HalfCheetah and Swimmer
are considered “stable”, that is, episodes terminate only after a prespecified number of time
steps have been reached, these tasks entail the simulation of long horizons. Consequently,
as noted by Fujimoto et al. (2020), the advantages of a corrected prioritization scheme are
more prominent in environments with extended horizons.

In contrast to the learning curves, Table 1 demonstrates a high degree of overlapping
confidence intervals, which may suggest that the results obtained are not significant. However,
this type of hypothesis test could be misleading when there is no apparent margin between the
confidence intervals. Instead, to establish whether the performance improvement provided by
LA3P is substantial, we have followed the statistical testing approach described by Henderson
et al. (2018) to analyze our results in depth. Henderson et al. (2018) recommend using
a 2-sample t-test with a confidence interval of 0.95 as an appropriate choice to compare
the performance of two algorithms. To this end, we have conducted pairwise comparisons
of the last 10 evaluation rewards obtained by our algorithm and those obtained by each
competing method. The resulting p-values are reported in Tables 2 and 3 for SAC and TD3,
respectively. Our null hypothesis is that the difference between the last 10 evaluation returns
of two algorithms is statistically insignificant. A p-value less than 0.05 indicates that there
is sufficient evidence to reject the null hypothesis, leading us to conclude that the mean of
the last 10 rewards for our algorithm is greater than that for the competing algorithm with
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95% confidence. Conversely, if the p-value is greater than 0.05, we fail to reject the null
hypothesis, and we cannot conclude that there is a significant difference the converged levels
of the two algorithms.

The statistical analysis using 2-sample t-tests validates that the performance improvement
offered by LA3P is statistically significant, with p-values lower than 0.05 in most of the
domains tested, except for the LunarLanderContinuous and BipedalWalker environments,
which are relatively trivial. It should also be noted that the difference between LA3P and LAP
algorithms remains statistically insignificant in the Humanoid task under the TD3 algorithm.
Nevertheless, these findings provide strong evidence that LA3P is a promising approach that
can offer better performance compared to other methods. Therefore, the reward curve plots
that show LA3P outperforming the competing approaches can be confidently supported by
the results of the t-test per the deep RL benchmarking standards (Henderson et al., 2018),
indicating the robustness and reliability of the experimental findings.

Additionally, we confirm previous empirical studies by Fujimoto et al. (2020) and Oh
et al. (2022), which found that PER provides no benefits when added to off-policy actor-critic
methods, and performance is usually degraded. While this is attributed to the use of MSE by
Fujimoto et al. (2020), prioritization with corrected loss function (i.e., LAP) appears to have
little impact in Ant, Hopper, and Walker2d compared to LA3P. In fact, the SAC algorithm
is underperformed in Ant and Hopper. This result is consistent with our theoretical analysis
made in Corollary 1, that is, optimizing the actor network with transitions corresponding to
large TD errors can cause the approximate policy gradient to diverge from the one computed
under the optimal Q-function, even if the loss function is corrected. In these environments,
learning curves demonstrate that the performance gain offered by LA3P primarily comes
from the inverse prioritized sampling for the actor network. This suggests that the inverse
sampling in the LA3P framework plays a more significant role than the employed LAP and
PAL functions. Hence, a combined solution, inverse sampling with corrected loss functions,
is superior.

Finally, we notice that the performance of MaPER is not as promising as anticipated, as
it only exhibits marginal enhancements over PER. We primarily attribute this unsatisfactory
outcome to the model prediction structure of the algorithm. As we previously discussed, the
MaPER algorithm focuses on new learnable features driven by the components in model-based
RL to calculate the scores on experiences since critic networks often under- or overestimate
Q-values. However, the Clipped Double Q-learning algorithm proposed by Fujimoto et al.
(2018) already resolves the issues of inaccurate Q-value estimates, which is already employed
in SAC and TD3. Therefore, we conclude that the main drawback of PER is not the
inaccurate Q-value estimates used in the priority calculations but the biased loss function
and training the actor network with large TD error transitions. Furthermore, the model
prediction module in MaPER decreases the convergence rate yet, brings notable stability
to the learning. Nonetheless, the resulting performance is not noteworthy. Consequently,
we believe that LA3P is a preferable and comprehensive way of overcoming the underlying
issues of PER in off-policy actor-critic methods.
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Environment pLAP pMaPER pPER puni

Ant 0.002 0.011 0.012 0.016
BipedalWalker 0.539 0.187 0.106 0.129
HalfCheetah 0.009 0.000 0.000 0.000
Hopper 0.000 0.000 0.000 0.001
Humanoid 0.014 0.000 0.000 0.000
LunarLanderContinuous 0.744 0.335 0.191 0.992
Swimmer 0.017 0.006 0.000 0.000
Walker2d 0.000 0.000 0.000 0.000

Table 2: The resulting p-values from a 2-sample t-test performed over the last 10 evaluation
returns of LA3P and the competing methods over 10 trials under the SAC algorithm.
Subscripts denote the competing method with which LA3P is compared. A p-value
less than the significance level of 0.05 indicates that the difference in performance
is statistically significant. Values are rounded up to three decimal points.

Environment pLAP pMaPER pPER puni

Ant 0.024 0.000 0.000 0.000
BipedalWalker 0.084 0.107 0.024 0.107
HalfCheetah 0.029 0.000 0.000 0.000
Hopper 0.032 0.001 0.000 0.007
Humanoid 0.263 0.054 0.038 0.018
LunarLanderContinuous 0.313 0.045 0.033 0.350
Swimmer 0.026 0.002 0.000 0.000
Walker2d 0.004 0.000 0.000 0.001

Table 3: The resulting p-values from a 2-sample t-test performed over the last 10 evaluation
returns of LA3P and the competing methods over 10 trials under the TD3 algorithm.
Subscripts denote the competing method with which LA3P is compared. A p-value
less than the significance level of 0.05 indicates that the difference in performance
is statistically significant. Values are rounded up to three decimal points.

6.3 Ablation Studies

To better understand the contribution of each component in LA3P, we conduct an ablation
study. The LA3P algorithm introduces several modifications to PER. In summary, LA3P
consists of: (a) inverse sampling for the actor, (b) uniform sampling for the actor and
critic networks to share a set of transitions, (c) the LAP function applied to the prioritized
transitions, and (d) the PAL function applied to the uniformly sampled transitions.
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We proceed to evaluate and discuss the performances obtained upon removing each of these
components. In addition, we examine the performance of LA3P in cases where the shared
transitions are low TD error experiences, instead of uniformly sampled ones, to demonstrate
the reduced data efficiency previously mentioned. Moreover, we perform a sensitivity analysis
for the λ parameter. We do not remove the inverse sampling as it is the backbone of
our algorithm, that is, eliminating the inverse sampling for the actor network would not
relate to any of the modifications introduced by this work as it would be just a mixture
of uniform and prioritized sampling. To this end, we choose four challenging environments
with different characteristics for a comprehensive inference. As outlined by Henderson et al.
(2018) and Fujimoto et al. (2020), we consider the stable environment HalfCheetah, the
unstable environment Walker2d, and the high-dimensional Ant and Humanoid environments.
The latter two are widely considered to be among the most challenging environments in the
MuJoCo suite (Fujimoto et al., 2020).

Table 4 presents the average of the last ten evaluation returns over ten trials for our
ablation studies and sensitivity analysis, and the corresponding learning curves are depicted
in Figures 3 and 4, respectively. The same experimental setup is used to perform the ablation
studies, and λ = 0.5 is used for all experiments unless otherwise stated. Note that λ = 0.0
yields the LA3P setting without shared set of transitions and the evaluation results of which
are already provided in Table 4 and Figure 3. In addition, λ = 1.0 corresponds to uniform
sampling, which we already compare against LA3P in Figures 1 and 2, and Table 1.

First, we deduce that the set of shared transitions is the most crucial component of our
framework. Independently training the actor and critic networks violate their correlation
as the actor is optimized by maximizing the Q-values estimated by the Q-network, and the
Q-network is trained using the actions selected by the actor. Thus, they should not be

Setting Ant HalfCheetah Humanoid Walker2d

LA3P (complete) 5197.46 ± 162.04 11225.14 ± 800.59 5131.11 ± 193.26 4776.68 ± 339.80
Low TD-error 3485.06 ± 834.26 10992.05 ± 467.13 3938.13 ± 1395.00 4438.29 ± 320.47
w/o LAP 3408.55 ± 569.04 4580.27 ± 250.82 3585.06 ± 830.28 3262.49 ± 252.69
w/o PAL 3975.29 ± 1130.62 7560.5 ± 762.22 4879.43 ± 187.23 4543.92 ± 398.97
w/o Uniform Sampling 4431.87 ± 716.48 10483.11 ± 594.31 5058.69 ± 111.42 4254.55 ± 387.41

λ = 0.1 3768.74 ± 1007.13 11203.83 ± 550.87 4695.52 ± 99.62 4562.77 ± 372.07
λ = 0.3 4903.34 ± 385.48 10460.52 ± 933.14 4528.28 ± 1113.55 4425.08 ± 324.29
λ = 0.5 5197.46 ± 162.04 11225.14 ± 800.59 5131.11 ± 193.26 4776.68 ± 339.80
λ = 0.7 4383.97 ± 828.71 10656.92 ± 735.91 4874.5 ± 130.33 4253.76 ± 829.14
λ = 0.9 3882.08 ± 936.85 10547.85 ± 871.63 3757.9 ± 1344.11 4545.97 ± 567.28

Table 4: Average return over the last 10 evaluations over 10 trials of 1 million time steps,
comparing ablation of LA3P under low TD error shared transitions, LA3P without
the LAP function, LA3P without the PAL function, LA3P without the shared
set of transitions, and LA3P under λ = {0.1, 0.3, 0.5, 0.7, 0.9}. ± captures a 95%
confidence interval over the trials. Bold values represent the best-performing
configuration that obtains statistically significant performance improvement over
LA3P under each environment.
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LA3P (complete) LA3P w/ low TD error shared transitions
LA3P w/o LAP LA3P w/o PAL
LA3P w/o shared transitions

Figure 3: Learning curves for the selected MuJoCo continuous control tasks, comparing
ablation of LA3P under low TD error shared transitions, LA3P without the LAP
function, LA3P without the PAL function, and LA3P without the shared set
of transitions. Note that the TD3 algorithm is used as the baseline off-policy
actor-critic algorithm. The shaded region represents a 95% confidence interval
over the trials. A sliding window of size 5 smoothes the curves for visual clarity.

λ = 0.1 λ = 0.3 λ = 0.5

λ = 0.7 λ = 0.9

Figure 4: Learning curves for the selected MuJoCo continuous control tasks, analyzing the
sensitivity of LA3P with respect to λ = {0.1, 0.3, 0.5, 0.7, 0.9}. Note that the TD3
algorithm is used as the baseline off-policy actor-critic algorithm. The shaded
region represents a 95% confidence interval over the trials. A sliding window of
size 5 smoothes the curves for visual clarity.

separated in training, and we empirically verify Observation 2. Although the LAP and PAL
functions apply the same number of transitions in each update step (i.e., λ = 0.5), we observe
that the contribution of LAP is more significant than PAL. As discussed in our comparative
evaluations, the performance improvement by LA3P largely relies on inverse sampling for
the actor network. As expected, correcting the prioritization in inverse sampling for the
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actor network through the LAP approach, i.e., (7), is more crucial than correcting the loss by
PAL for the uniformly sampled batch. Lastly, we infer that using low TD error transitions
instead of uniformly sampled ones substantially degrades the performance. Although this
setting would seem to be a reasonable choice at a first glance, the data efficiency notably
decreases as the Q-network repeatedly trains with transitions that it has already learned
well. In the expectation, the uniformly sampled batch of transitions corresponds to an
intermediate TD error value compared to the transitions contained in the entire replay buffer.
As we experimentally show, this may benefit both the actor and critic networks since inverse
prioritized and prioritized sampling may not include transitions with intermediate TD error
values, compared to the rest of the experiences.

Our sensitivity analysis on the λ parameter suggests that λ = 0.5 produces the best results
across most of the environments by a considerable margin. As λ decreases, the correlation
between the actor and critic networks starts to be ignored, and the performance drops. In
contrast, the larger λ values yield the performance to converge to that of uniform sampling.
Hence, we believe the introduced framework does not require intensive hyperparameter
tuning, and λ = 0.5 can apply to many tasks.

Lastly, we conduct additional 2-sample t-tests to compare the statistical significance of
each LA3P component and the selected λ value. The p-values obtained from the ablation
studies and sensitivity analysis are presented in Tables 5 and 6, respectively. Our findings
suggest that the reward curves obtained from the complete LA3P algorithm and the selected
λ = 0.5 configuration are well-supported by statistical evidence, as confirmed by the significant
contributions of each component in LA3P. Additionally, the full version of LA3P with λ = 0.5
was found to be the most effective configuration on average. Thus, the findings indicate that
the complete LA3P algorithm can be a reliable and effective approach. Overall, it is shown
by our ablation studies that our framework improves over the baseline actor-critic algorithms
due to the structure of the introduced method rather than unintended consequences or any
exhaustive hyperparameter tuning.

Environment pLow-TD pLAP pPAL puni

Ant-v2 0.000 0.000 0.006 0.003
HalfCheetah-v2 0.097 0.000 0.000 0.014
Humanoid-v2 0.029 0.001 0.003 0.032
Walker2d-v2 0.059 0.000 0.164 0.017

Table 5: The resulting p-values from a 2-sample t-test performed over the last 10 evaluation
returns of the complete algorithm and the ablation configuration over 10 trials.
Subscripts denote the ablated component. A p-value less than the significance
level of 0.05 indicates that the difference in performance is statistically significant.
Values are rounded up to three decimal points.
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Environment p0.1 p0.3 p0.7 p0.9

Ant-v2 0.005 0.069 0.028 0.006
HalfCheetah-v2 0.481 0.088 0.126 0.106
Humanoid-v2 0.000 0.128 0.012 0.023
Walker2d-v2 0.175 0.054 0.106 0.221

Table 6: The resulting p-values from a 2-sample t-test performed over the last 10 evaluation
returns of LA3P when λ = 0.5 and the tested λ value over 10 trials. Subscripts
denote the used λ value with which λ = 0.5 is compared. A p-value less than the
significance level of 0.05 indicates that the difference in performance is statistically
significant. Values are rounded up to three decimal points.

7. Conclusion

In this paper, we build the theoretical foundations behind the poor empirical performance of
a widely known experience replay sampling scheme, Prioritized Experience Replay (PER)
(Schaul et al., 2015), in off-policy actor-critic methods. To achieve this, we first show that
some transition tuples with large absolute TD errors can increase the absolute Q-value
estimation error associated with the current or subsequent transition tuples. We use this
finding to further indicate that training actor networks with large TD errors may cause
the approximate policy gradient computed under the Q-network to diverge from the one
computed under the optimal Q-function. This result emphasizes that even if the biased
loss function in the PER algorithm is corrected, optimizing the actor network with low TD
error transitions and Q-network with large TD error transitions can significantly increase the
performance. This enables us to comprehend PER’s poor performance in more detail when
applied to off-policy actor-critic algorithms.

However, training actor and critic networks with different transitions throughout the
learning violates the actor-critic theory since each of them is optimized with respect to each
other, that is, the actor tries to maximize the Q-value estimated by the Q-network and the
Q-network computes its loss based on the actions selected by the actor. This allows us to
develop a novel framework, Loss Adjusted Approximate Actor Prioritized Experience Replay
(LA3P), which mixes training with uniformly sampled, low, and high TD error transitions.
The introduced approach also accounts for the previous findings of Fujimoto et al. (2020),
which practically eliminate the outlier bias introduced by the combination of mean-squared
error with PER. We evaluate the performance of LA3P using standard deep reinforcement
learning benchmarks in the MuJoCo and Box2D control suite, and demonstrate that it
substantially outperforms competing methods, thus improving upon the state-of-the-art. An
extensive set of ablation studies further emphasizes that each LA3P component significantly
impacts the offered performance improvement, and inverse prioritized sampling with corrected
loss functions can increase the performance to the maximum. We firmly believe that the
presented modifications, supported by comprehensive theoretical analysis, effectively address
the issues with PER in off-policy actor-critic algorithms. To facilitate easy reproducibility
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and further research in non-uniform sampling methods, we have made the source code for
our algorithm publicly available on our GitHub repository1.

Acknowledgments

The majority of this work was completed while B. Saglam was affiliated with Bilkent University.
The authors wish to thank the associate editor Prof. Alan Fern and the anonymous reviewers
for their valuable and constructive feedback, which significantly enhanced the validity of the
empirical results.

Appendix A. Summary of the LA3P Framework

uniform sampling
critic training with PAL
priority update
actor training
prioritized sampling
critic training with LAP
priority update
inverse prioritized sampling
actor training

Figure 5: A simplified depiction of the cascaded LA3P framework. Operations run consecu-
tively.

Appendix B. Experimental Details

In B.1, we detail the hyperparameters and network architectures. In B.2, we describe the
implementation of the algorithms used in the empirical studies. Finally, we examine the
experimental setup (e.g., simulation, performance assessment) in B.3.

B.1 Architecture and Hyperparameter Setting

Architecture The off-policy actor-critic methods, TD3 and SAC, employ two Q-networks
following the Clipped Double Q-learning algorithm (Fujimoto et al., 2018), and a single
actor network. All networks feature two hidden layers having 256 hidden units, with ReLU
activation functions after each. Following a final linear layer, the critic networks take state-
action pairs (s, a) as input and output a scalar Q-value. The actor network takes state s
as input and produces a multi-dimensional action a by applying a linear layer with a tanh
activation function scaled with respect to the action scale of the environment.

Network Hyperparameters The Adam optimizer (Kingma & Ba, 2015) is used to train
the networks, with a learning rate of 3×10−4 and a mini-batch size of 256. After each update

665



Saglam, Mutlu, Cicek, & Kozat

step, the target networks are updated using polyak averaging with ζ = 0.005, resulting in
θ′ ← 0.995× θ′ + 0.005× θ.

Terminal Transitions In setting the target Q-value, we use a discount factor of γ = 0.99
for non-terminal transitions and zero for terminal transitions. A transition is deemed terminal
only if it stops due to a termination condition, i.e., failure or exceeding the time limit.

Actor-Critic Algorithms We use the default exploration noise N (0, σN ) for the TD3
algorithm, as suggested by the author, where it is clipped to [0.5, 0.5] with σN = 0.2. The
range of the action space is used to scale both values. For SAC, we use the learned entropy
variant, in which it is optimized to an objective of −action dimensions using an Adam
optimizer with a learning rate of 3× 10−4. To avoid numerical instability in the logarithm
operation, we cut the log standard deviation to (20, 2), and add a small constant 10−6, as
designated by the author.

Prioritized Sampling Algorithms As described by Schaul et al. (2015), we use α = 0.6
and β = 0.4 for PER. As LAP and PAL functions are employed in our algorithm, we directly
use α = 0.4 and β = 0.4. No hyperparameter optimization was performed on the α and β
parameters since they are already fine-tuned (Fujimoto et al., 2020). Since SAC and TD3
use two Q-networks, they introduce two TD errors: δ1 = y −Qθ1 and δ2 = y −Qθ2 , where y
is the target value previously defined in (3.1). To achieve optimal performance, each priority
is determined based on the maximum value of |δ1| and |δ2|, following the approach proposed
by Fujimoto et al. (2020). Similarly, newly generated samples are assigned a priority value
equal to the maximum priority pinit = 1 observed during the learning process, which aligns
with the structure used in PER. Lastly, applying LA3P to SAC and TD3 do not differ in
terms of implementation and algorithmic setup. The main differences between these two
actor-critic algorithms are the computation of the policy gradient (i.e., the use of a stochastic
or deterministic policy), entropy tuning, and the presence of a target actor network. As
discussed previously, Theorem 1 generalizes to both deterministic and stochastic policies.
Therefore, algorithmic differences between SAC and TD3 do not regard the implementation
and operation of LA3P.

Exploration To fill the experience replay buffer, the agent is not trained for the first 25000
time steps, and actions are chosen randomly with uniform probability. After that, TD3
explores the action space by introducing a Gaussian noise of N (0, σ2

E × max_action_size),
where σE = 0.1 is scaled by the action space range. No exploration noise is used for SAC as
it already employs a stochastic policy.

Hyperparameter Optimization No hyperparameter optimization was performed on any
algorithm except for SAC. Having the remaining parameters fixed, we optimized the reward
scale for the BipedalWalker, LunarLanderContinuous, and Swimmer tasks, as they were
not reported in the original article. We tested the values of {5, 10, 20}, and it turned out
that scaling the rewards by 5 produced the best results in these environments. In addition,
all algorithms precisely adhere to the parameter settings and methodology described in
their respective articles or the most recent version of their code available on their GitHub
repositories. Specifically, SAC employs the identical hyperparameter configuration as outlined
in the original paper, with the exception of increased exploration time steps to 25000 and
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entropy tuning. Regarding TD3, we used the code from the author’s repository2, which
introduces minor variations in parameter settings compared to the original paper. In
particular, the repository code increases the number of start steps to 25000 and batch size to
256 for all environments, which has been shown to yield better results. For LA3P, we tested
λ = {0.1, 0.3, 0.5, 0.7, 0.9} on the Ant, Hopper, Humanoid, and Walker2d tasks, and found
that λ = 0.5 exhibited the best results. We provided the results under different λ values in
our ablation studies in Section 6.3. For clarity, all hyperparameters are presented in Table 7.

Hyperparameter Value

Optimizer Adam
Learning rate 3× 10−4

Mini-batch size 256
Discount factor γ 0.99
Target update rate 0.005
Initial exploration steps 25000

TD3 exploration policy σE 0.1
TD3 policy noise σN 0.2
TD3 policy noise clipping (−0.5, 0.5)

SAC entropy target -action dimensions
SAC log-standard deviation clipping (−20, 2)
SAC log constant 10−6

SAC reward scale (except Humanoid) 5
SAC reward scale (Humanoid) 20

PER priority exponent α 0.6
PER importance sampling exponent β 0.4
PER added priority constant 10−4

LAP & PAL exponent α 0.4
LA3P uniform fraction λ 0.5

Table 7: The hyperparameters used in the experiments.

B.2 Implementation

TD3 is implemented using the author’s GitHub repository2, while we use the code from the
same author’s LAP-PAL repository3 to implement PER and the LAP and PAL functions.
The PER implementation is based on proportional prioritization through the sum tree data
structure. We manually implement SAC by following the original paper and adding entropy
tuning (Haarnoja et al., 2018b). Lastly, we directly use the MaPER code from the paper’s
submission files from the OpenReview website4. No changes were made to the MaPER
code. Finally, the implementation of LA3P consists of the cascaded uniform, prioritized,
and inverse prioritized sampling, which precisely follows the pseudocode in Algorithm 1 and
the visual given in Appendix A. We do not update the priorities after the actor update
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with inverse prioritized sampling since the PER implementation with standard actor-critic
algorithms only considers the priority updates after each critic update.

B.3 Experimental Setup

Simulation Environments All agents are assessed on continuous control benchmarks of
the MuJoCo5 and Box2D6 physics engines, which are interfaced by OpenAI Gym7 using v2
environments. The state-action spaces and reward functions of the environments were not
modified or preprocessed for practical reproducibility and fair comparison with the empirical
findings. Each environment has a multi-dimensional action space with values ranging between
[−1, 1], excluding Humanoid, which has a range of [−0.4, 0.4].

Evaluation Every 1000 time steps, an evaluation is performed, each being the average
reward over 10 episodes, using the deterministic policy from TD3 without exploration noise
and the deterministic mean action from SAC. We employ a new environment with a fixed
seed (training seed + constant) for each evaluation to decrease the variation caused by
varying seeds. Hence, each evaluation employs the same set of initial start states.

Visualization of the Learning Curves Learning curves indicate the performance and
are depicted as an average of 10 trials with a shaded region denoting a 95% confidence
interval over the trials. The curves are flattened equally throughout a sliding window of 5
evaluations for visual clarity.

Statistical Testing for the Evaluation Results Consistent with the implementation
outlined by Henderson et al. (2018), we employed Python’s SciPy library8 to conduct
the 2-sample t-test. In the ttest_ind function, we specified the “greater" option for the
alternative parameter to test whether the mean of the last 10 rewards of LA3P is superior
to that of the competing algorithm. Therefore, a p-value less than 0.05 signifies sufficient
evidence to reject the null hypothesis and establish with 95% confidence that the mean of
the last 10 rewards of our algorithm exceeds that of the competing algorithm. Conversely, if
the p-value is greater than 0.05, we cannot reject the null hypothesis, and therefore, cannot
conclude that there is a substantial difference between the means of the two reward curves.

Appendix C. Empirical Complexity Analysis

Upon completion of our evaluation simulations, we conduct a comparative analysis of the
runtime of PER and our algorithm, using an increased experience replay buffer size. Both
sampling methods employed the off-policy actor-critic algorithms, SAC and TD3. Our
analysis is performed on the Ant, HalfCheetah, Humanoid, and Swimmer environments.
Specifically, we recorded the total runtime of each method when trained over 1 million and 2
million steps, using replay buffer sizes equal to the number of training steps. All experiments
are conducted on a single GeForce RTX 2070 SUPER GPU and an AMD Ryzen 7 3700X

5https://mujoco.org/
6https://box2d.org/
7https://www.gymlibrary.ml/
8https://scipy.org/
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8-Core Processor, which is well-suited for SIMD operations. The results of our analysis are
presented in Table 8.

Result PER LA3P

Runtime - 1 million steps (mins) 312.92 ± 1.63 459.18 ± 1.47
Runtime - 2 million steps (mins) 536.46 ± 1.61 858.50 ± 1.50

SA
C

Time Increase (%) 171.44% 186.96%

Runtime - 1 million steps (mins) 145.83 ± 2.09 238.29 ± 2.13
Runtime - 2 million steps (mins) 252.21 ± 2.15 437.18 ± 2.08

T
D

3

Time Increase (%) 172.95% 183.47%

Table 8: Average runtime of PER and LA3P for 1 million and 2 million training steps under
the SAC and TD3 algorithms, and the corresponding percentage increase. Values
are averaged over 10 random seeds and the Ant, HalfCheetah, Humanoid, and
Swimmer environments. A replay buffer size equal to the number of training steps
is used in all experiments. ± captures a 95% confidence interval over the runtime.

First, our results demonstrate that the runtime of SAC is greater than that of TD3.
This can be attributed to the additional entropy tuning required in SAC, which involves
backpropagation and maintaining a stochastic actor. Second, our findings are consistent
with the theoretical upper bound of O(log|R|) for the runtime of PER, which increases
logarithmically with the size of the replay buffer, rather than doubling as observed in Table 8.
When we increased the size of the replay buffer from 1 million to 2 million, we also observe
that the empirical runtime of LA3P increases. However, the increase is not as drastic as
expected based on the theoretical runtime of O(|R|). It is important to note that theoretical
runtime analysis provides an upper bound on the runtime, and actual empirical runtime may
differ due to various practical factors that cannot be captured in the theoretical analysis.
Additionally, SIMD operations could be one of the factors contributing to the observed
behavior. Specifically, the computational complexity induced by LA3P is primarily due
to taking the inverse of each individual element of the array by multiplication to specify
which transitions to sample for training the actor network. This operation can be well-suited
for SIMD operations, provided the inverse operation is well-defined for each element and
there are no division-by-zero errors. In our implementation, we already use the clipping
defined in (5.1) to have non-zero probability values. Therefore, the inverse operation is
always well-defined for each element, and we can attribute the limitation of LA3P’s runtime
to the SIMD operations.
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