
Journal of Artificial Intelligence Research 78 (2023) 619-639 Submitted 04/2023; published 11/2023

Research Note
Maximisation of Admissible Multi-Objective Heuristics

Patrik Haslum PATRIK.HASLUM@ANU.EDU.AU

Ryan Xiao Wang RYAN.WANG@ANU.EDU.AU

The Australian National University, Canberra, Australia

Abstract
In multi-objective (MO) heuristic search, solution costs, as well as heuristic values, are sets of

multi-dimensional cost vectors, representing possible non-dominated trade-offs between objectives.
The maximum of two or more such vector sets, which is an important operation in creating informa-
tive admissible MO heuristics, can be defined in several ways: Geißer et al. recently proposed two
MO maximum operators, the component-wise maximum (comax) and the anti-dominance max-
imum (admax), which represent different trade-offs between informativeness and computational
cost. We show that the anti-dominance maximum is not admissibility-preserving, and propose an
alternative, the “select one” maximum (somax). We also show that the comax operator is the
greatest admissibility-preserving MO maximum, and briefly investigate its efficient implementa-
tion. The conclusion of our experimental results is that somax achieves a trade-off similar to that
intended with admax – cheaper to compute but less informed – also when compared to an improved
comax implementation.

1. Introduction

A multi-objective (MO) optimisation problem has some number k of objective functions, without
an a priori specified trade-off between them. The cost of a solution is not a single value but a vector
of values, one for each objective, and solutions that achieve better values on different objectives –
for example, a schedule that is slower but cheaper vs. one that is faster but more expensive – are
incomparable. Therefore, the optimal solution to such a problem is a set of solutions representing
all non-dominated solution cost vectors, known as the Pareto cover set (PCS) (Roijers, Vamplew,
Whiteson, & Dazeley, 2013). The multi-objective version of deterministic, discrete sequential de-
cision problems, such as classical planning, can be solved by MO heuristic search algorithms, such
as NAMOA? (Mandow & Pérez-de-la-Cruz, 2010), which make use of multi-objective admissible
heuristics. In the multi-objective setting, the heuristic value of a state is also a set of (k-dimensional)
cost vectors, like the solution set it lowerbounds. Recently, Geißer, Haslum, Thiébaux, and Trevizan
(2022) proposed MO generalisations of several families of admissible classical planning heuristics.

In single-objective heuristic search, taking the maximum of heuristic values is an important
operation: the maximum of two admissible heuristics is also admissible, and at least as informed as
either of the two heuristics. Maximisation plays a key role in effective combination of abstraction
heuristics (e.g., Holte, Felner, Newton, Meshulam, & Furcy, 2006; Haslum, Helmert, Bonet, Botea,
& Koenig, 2007; Seipp, Keller, & Helmert, 2020), and in the definition of planning heuristics such
as hmax and hm (often known as critical path heuristics). In the multi-objective setting, however,
it is not obvious how to define the maximum of two heuristic values, as these are sets of cost
vectors that are only partially ordered by the dominance relation. Geißer et al. (2022) proposed two
different MO maximum operators, the component-wise maximum (comax) and the anti-dominance

©2023 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

HASLUM & WANG

maximum (admax), representing different trade-offs between complexity of computing the MO
maximum and its informativeness. Empirically, heuristics using comax performed better on the
majority of domains and problems in their benchmark suite.

In this paper, we show that the admax operator proposed by Geißer et al. (2022) is in fact not
admissibility-preserving. We examine the reason for this flaw, and arrive at a new MO maximum
operator, the “select one” maximum (somax), which preserves admissibility. Although somax lacks
most other theoretical guarantees, canonical MO PDB heuristics using it have lower total runtime
compared to their counterparts using comax on a majority of the suite of benchmark MO planning
problems used in Geißer et al.’s (2022) evaluation.

We also investigate the comax operator further, showing it is in fact the strongest possible MO
maximum. The potential disadvantage of comax, which motivates the continued search for alter-
native MO maximum operators, is its computational cost. We show that comax can be computed
efficiently (in linear time) in the special bi-objective case, and investigate some improvements to its
computation in the general case. Still, in the final experimental comparison, neither of heuristics
using the improved comax implementation nor somax consistently outperform the other.

2. Background

We adopt the following statement of the multi-objective planning problem from Geißer et al. (2022):
A multi-objective planning (MOP) task is a STRIPS planning task with k cost functions, c1, . . . , ck.
Each action a is associated with a k-dimensional cost vector, ~c(a) ∈ Nk, where the ith component,
denoted ~c(a)i, is a’s contribution to ci. The cost of a plan π = a1, . . . , an is also a vector, ~c(π) =∑n

i=1 ~c(ai), where the sum is taken with vector addition. We apply ~c also to sets of plans: if Π is a
set of plans, then ~c(Π) = {~c(π) | π ∈ Π} is the set of cost vectors of plans in Π.

Given two cost vectors ~v1, ~v2, ~v1 Pareto dominates ~v2, denoted ~v1 ≺ ~v2, iff for all i = 1 . . . k :
~vi1 ≤ ~vi2 and ~v1 6= ~v2. Dominance is a strict partial order, i.e., it is transitive and asymmetric. Given
a set of cost vectors, V , ND(V) denotes the set of vectors in V that are not dominated by any other
in V , i.e., ND(V) = {~v ∈ V | 6∃~v′ ∈ V ~v′ ≺ ~v}. We say ~v1 dominates or equals ~v2, denoted
~v1 � ~v2, iff ~v1 ≺ ~v2 or ~v1 = ~v2. A plan π1 dominates (resp. dominates or equals) plan π2 if
~c(π1) ≺ ~c(π2) (resp. ~c(π1) � ~c(π2)). With slight abuse of notation, we use ND(·) to denote the
subset of non-dominated plans in a set of plans as well.

A MOP task can have multiple solution plans whose cost vectors are mutually non-dominating,
and not equal, representing different possible trade-offs between the k objectives. The solution to
a MOP task is defined as computing a set of plans including one representative of each such non-
dominated cost vector; this known as a Pareto coverage set. If T is a MOP task and Π(T) the set of
all plans for T , a Pareto coverage set, PCS(T), is a set of plans such that: (i) PCS(T) ⊆ ND(Π(T));
and (ii) ∀π′∈Π(T) ∃π∈PCS(T) ~c(π) � ~c(π′). An alternative solution concept is to compute the
Pareto front, PF(T) = ND(Π(T)), i.e., the set of all non-dominated plans.

We will use PCS(s) and PF(s), where s is any state in T , to denote the Pareto coverage set and
Pareto front, respectively, starting from the given state s instead of the initial state of T .

The Pareto coverage set of a task (or state) does not have to be unique, since there may be
different plans for each non-dominated cost vector. However, ~c(PCS(T)) is unique, i.e., whatever
representatives are chosen they collectively have the same set of cost vectors. In the special case
that k = 1, computing the PCS reduces to finding a plan with minimum cost, i.e., classical optimal
planning.

620

MAXIMISATION OF ADMISSIBLE MO HEURISTICS

3. MO Heuristics

A multi-objective heuristic function maps states of the planning problem to sets of k-dimensional
cost vectors. Like a heuristic in the classical, single-objective case, it represents an estimate of
the cost of solution plans from the state, but since there can exist several plans, with distinct non-
dominated cost vectors, the heuristic estimate is also a set. To compare such cost vector sets, we
extend the notion of dominance:

Definition 1. Let V and U be sets of k-dimensional cost vectors.
V � U iff ∀~u∈ND(U) ∃~v∈V ~v � ~u.
V ≺ U iff V � U and ∃~u∈ND(U) ∃~v∈V ~v ≺ ~u.

This definition of domainance between cost vector sets mirrors the defintion of dominance between
cost vectors: V � U iff for every cost vector in U there is one in V that is at least as good (~v � ~u),
and V ≺ U iff in addition there is at least one essential cost vector in U (not dominated by another
vector in U) such that there is a strictly better cost vector in V (~v ≺ ~u). In Section 3.2 below, we
show that dominance is indeed a partial order over a suitably defined set of cost vector sets.

Definition 2. A MO heuristic H is admissible iff H(s) � ~c(PCS(s)) for all states s.

The definition of admissibility given by Mandow and Pérez-de-la-Cruz (2010), and also used by
Geißer et al. (2022), is slightly different: ∀s ∀π∈PF(s) ∃~v∈H(s) ~v � ~c(π), but equivalent since
~c(PF(s)) = ~c(PCS(s)).

Admissibility of an MO heuristic requires the weak dominance relation (�) between the heuris-
tic set and the true cost set, while strict dominance between admissible heuristic sets implies that
the dominated set is, in a sense, more informed. This mirrors the case in classcial single-objective
heuristics, where admissibility requires h(s) ≤ h?(s) and h(s) < h′(s) implies that h′ is a stronger
heuristic than h when both are admissible.

Because dominance is transitive (cf. Section 3.2), H(s) � ~c(PCS(s)) implies ND(H(s)) �
~c(PCS(s)). That is, we can remove from the heuristic set for any state any dominated cost vectors
without compromising admissibility.

Conversely, because admissibility is defined as the existence of some cost vector ~v ∈ H(s) that
dominates or equals each solution cost vector, an admissible heuristic set also remains admissible
when enlarged by any set of cost vectors, i.e., if H(s) � ~c(PCS(s)) then H(s) ∪ V � ~c(PCS(s))
for any set V ; this holds even if V contains cost vectors that do not dominate or equal any solution
cost in ~c(PCS(s)).

3.1 Size of the Heuristic Set

In general, there is no relationship between the size of the Pareto cover set and that of an admissible
heuristic set. A small (PCS) set can be dominated-or-equalled by a much larger (heuristic) set. For
k ≥ 3, a set of integer cost k-vectors V such that V � {~v}, for a given k-vector ~v > ~0, and such
that V contains no cost vector dominated by another in V , i.e., V = ND(V), can be arbitrarily
large, though finite. Conversely, any cost vector set V is dominated-or-equalled by its so-called
ideal point, 〈min~v∈V ~v

1, . . . ,min~v∈V ~v
k〉, and therefore by a singleton set.

There are some trivial limits: m(2n), wherem and n are the number of actions and propositions,
respectively, in the problem, bounds the number of possible non-redundant plans, and therefore the
size of the PCS. This applies also to abstraction heuristics, where the bound is determined by the

621

HASLUM & WANG

number of abstract actions and states, respectively. Geißer et al. (2022) gave a similar bound on the
size of the heuristic set for MOIP operator counting heuristics.

3.2 Vector Set Dominance

In this section, we show that dominance between cost vector sets has the properties of a partial
order.

Lemma 3. Both weak and strict vector set dominance are transitive.

Proof. Follows from transitivity of the vector dominance relations. Suppose V � U � W , and
~w ∈W : there must exist ~u ∈ U such that ~u � ~w, and ~v ∈ V such that ~v � ~u; this implies ~v � ~w.

Suppose V � U ≺W . Because strict dominance implies weak dominance and from the above,
we have V � W . There exists a ~w ∈ ND(W) such that ~u ≺ ~w for some ~u ∈ U . We also have
~v � ~u for some ~v ∈ V , and therefore ~v ≺ ~w. Hence V ≺ W . The proof that V ≺ U � W implies
V ≺W is essentially the same.

Note that V � U is not equivalent to (V ≺ U) ∨ (V = U): we can have V � U and U � V
with V 6= U , if V and U contain different dominated cost vectors. However, their subsets of
non-dominated cost vectors must be the same:

Lemma 4. If V � U and U � V then ND(V) = ND(U).

Proof. Let ~v ∈ ND(V). U � V implies ∃~u ∈ U such that ~u � ~v; V � U then implies ∃~v′ ∈ V
such that ~v′ � ~u � ~v. This means either ~v′ = ~u = ~v or ~v′ ≺ ~v, but the latter contradicts that
~v ∈ ND(V). Thus ~v ∈ U , and ND(V) ⊆ U . The proof that ND(U) ⊆ V is symmetric.

Suppose there is some ~v ∈ ND(V) such that ~v 6∈ ND(U). Since ND(V) ⊆ U , this means ~v is in
U but is dominated by another cost vector ~u ∈ ND(U). However, since we also have ND(U) ⊆ V ,
~u ∈ V , so ~v is dominated also in V , contradicting that ~v ∈ ND(V). Thus ND(V) ⊆ ND(U) and,
symmetrically, ND(U) ⊆ ND(V), leading to ND(V) = ND(U).

Corollary 5. Let Pk = 2N
k
, i.e., the power set of the set of k-dimensional cost vectors, and PND

k =
{V ∈ Pk | ND(V) = V }, i.e., PND

k is the subset of vector sets that do not contain any cost vector
dominated by another cost vector in the same set. Then weak set dominance is a partial order over
PND
k .

In Section 4.1.1 we will show that comax is the least upper bound operator in this partially ordered
set. We end this section by showing that strict vector set dominance is asymmetric, and therefore a
strict partial order:

Lemma 6. V ≺ U implies U 6� V .

Proof. Since V ≺ U there exists ~u ∈ ND(U) such that there exists ~v ∈ V such that ~v ≺ ~u. Suppose
U � V : then there must exist ~u′ ∈ U such that ~u′ � ~v. By transitivity of cost vector dominance,
~u′ � ~v ≺ ~u implies ~u′ ≺ ~u, contradicting that ~u ∈ ND(U). Hence U 6� V .

622

MAXIMISATION OF ADMISSIBLE MO HEURISTICS

3.3 NAMOA?

Finally, we briefly describe two properties of the NAMOA? MO heuristic search algorithm, and
their implications for the effectiveness of MO heuristics.

NAMOA? processes an queue of “open”, as-yet non-dominated, paths in the search space; each
path is represented by a tuple (s,~gs, Fs), where s is the state at the end of the path, ~gs the path cost,
and Fs = {~gs + ~h | ~h ∈ H(s)} a set of estimated cost vectors for the completion of this path to a
goal state. Paths are taken from the queue, following a priority rule, expanded by appending possible
successor transitions, and moved to a closed list. This is analogous to classical single-objective A?.

If the cost ~gs of a new path found to state s is dominated by the cost of a path to s that has already
been expanded (i.e., that is in the closed list), then successors of the new path do not need to be
explored, and it is not added to the open queue. Mandow and Pérez-de-la-Cruz (2010) showed that
the NAMOA? algorithm, like classical single-objective A?, has the property that if the MO heuristic
is consistent, then the algorithm will not find a dominated path before the path that dominates it,
and therefore no path once closed will be reopened. Consistency of an MO heuristic was defined by
Stewart and White (1991), as follows: H is consistent iff for all states s, t and every non-dominated
s–t-path P , ∀~v∈H(t) ∃~u∈H(s) (~u � ~c(P) + ~v) holds. They also showed that consistency holds
iff it holds for all paths of length 1, i.e., state transitions.

A path (s,~gs, Fs) to a non-goal state s is pruned from the open queue when a set of plans Π has
been found such that for each ~fs ∈ Fs there exists a plan π ∈ Π such that~c(π) � ~fs. (This pruning is
applied when the path is generated as well as to paths in the queue when a new non-dominated plan
is found.) It follows that if H(s) ⊂ H ′(s), using heuristic H ′ in place of H can not result in a path
through s being pruned earlier (assuming paths are explored in the same order), or, in other words,
a heuristic set that is a strict superset can not be more informed. That is not the same as saying
a smaller heuristic set is to be preferred; indeed, as shown by Geißer et al. (2022) the so-called
ideal point heuristic, which consists of a single cost vector of independent admissible estimates for
each objective, is often outperformed by MO heuristics that estimate the Pareto coverage set more
accurately with a set of cost vectors. But simply adding more cost vectors to an already admissible
heuristic set cannot improve it.

4. MO Maximum Operators

4.1 Component-Wise Maximum (comax)

Let ~v and ~u be cost vectors of equal dimension. We define max(~v, ~u) = 〈max(~v1, ~u1),max(~v2, ~u2),
. . . ,max(~vk, ~uk)〉. The component-wise maximum is defined by Geißer et al. (2022) as follows:

Definition 7. Let V1 and V2 be sets of cost vectors of dimension k. The component-wise maximum
of V1 and V2 is comax(V1, V2) = ND({max(~v1, ~v2) | ~v1 ∈ V1, ~v2 ∈ V2}).

The following proposition summarises properties of comax that were stated by Geißer et al. (2022):

Proposition 8. Let H1 and H2 be MO heuristics.
(i) If H1 and H2 are admissible, so is H(s) = comax(H1(s), H2(s)).

(ii) If H1 and H2 are consistent, so is H(s) = comax(H1(s), H2(s)).

(iii) comax is commutatitve and associative.

(iv) V1 � comax(V1, V2) and V2 � comax(V1, V2).

623

HASLUM & WANG

Proof. Proofs of (i) and (ii) were given by Geißer et al. (2022). Note that (i) also follows from
Proposition 9 below, since admissibility implies ~c(PCS(s)) is an upper bound on H1(s) and H2(s).
(iii) Follows from commutativity and associativity of max.
(iv) Consider ~u ∈ comax(V1, V2): ~u is the result of combining, by coordinate-wise maximum,
vectors ~v1 ∈ V1 and ~v2 ∈ V2. Since ~ui = max(~vi1, ~v

i
2) we have ~vi1 ≤ ~ui and ~vi2 ≤ ~ui, for

i = 1, . . . , k. Hence ~v1 � ~u and ~v2 � ~u.

4.1.1 comax IS THE GREATEST ADMISSIBLE MAXIMUM

Recall from Corollary 5 that PND
k is the set of all sets of k-dimensional cost vectors that contain no

dominated cost vector, and that this set is partially ordered by weak set dominance.

Proposition 9. comax is the least upper bound of any pair of elements in PND
k .

Proof. Note that comax by definition excludes dominated cost vectors; thus, comax(V,U) ∈ PND
k

for any V,U ∈ PND
k . That comax is an upper bound was shown by Proposition 8(iv). LetW ∈ PND

k

be any upper bound on V and U , i.e., such that V �W and U �W , and let ~w ∈W . Since V �W
and U � W there exists ~v ∈ V and ~u ∈ U such that ~v � ~w and ~u � ~w. Consider the ith objective:
Since ~v � ~w and ~u � ~w, we have ~vi ≤ ~wi and ~ui ≤ ~wi, and therefore max(~vi, ~ui) ≤ ~wi. Since this
holds for all k objectives, max(~v, ~u) � ~w. Either max(~v, ~u) ∈ comax(V,U) or there is another
~x ∈ comax(V,U) such that ~x � max(~v, ~u); in either case, there is a cost vector in comax(V,U)
that dominates or equals ~w. Hence comax(V,U) �W .

If H1 and H2 are admissible MO heuristics, then for any state s H1(s) � ~c(PCS(s)) and H2(s) �
~c(PCS(s)), i.e., ~c(PCS(s)) is an upper bound on H1(s) and H2(s). Given only this information,
it is possible that ~c(PCS(s)) is also equal to the least upper bound on H1(s) and H2(s), i.e., equal
to comax(H1(s), H2(s)). Therefore, no MO maximum operator that is strictly greater than comax
can be guaranteed to preserve admissibility.

Corollary 10. Let H1 and H2 be admissible MO heuristics, and momax′ : Pk × Pk → Pk any
binary operator on cost vector sets. If comax(H1(s), H2(s)) ≺ momax′(H1(s), H2(s)), then
momax′(H1(s), H2(s)) cannot be guaranteed to be admissible.

Given the superiority of comax, why search for alternative MO maximum operators? The potential
disadvantage of comax is its computational cost: | comax(V1, V2)| can be as large as the product of
|V1| and |V2|. A simple example in k = 4 dimensions is V1 = {〈i, n − i, 0, 0〉 | i = 1, . . . , n − 1}
and V2 = {〈0, 0, i, n− i〉 | i = 1, . . . , n− 1}. All cost vectors are mutually non-dominating in both
sets, and the maximum contains all n2 cost vectors of the form 〈i, n− i, j, n−j〉, with 1 ≤ i, j < n,
none of which dominate each other. For the special bi-objective case, we can show the following:

Proposition 11. If k = 2, then | comax(V1, V2)| ≤ |V1|+ |V2|.

The proof of this proposition is in Appendix A. What is the worst case size bound when k = 3 is
an open question.

4.1.2 COMPUTING comax EFFICIENTLY

A naive implementation of comax first constructs the set of all pair-wise vector maximums and then
filters out dominated cost vectors. This has a complexity of O((|V1||V2|)2), regardless of the size

624

MAXIMISATION OF ADMISSIBLE MO HEURISTICS

of the resulting set. An implementation that constructs comax(V1, V2) incrementally, adding only
cost vectors not dominated by any already in the set, and removing any dominated by each newly
added cost vector, will be more efficient on average if the non-dominated set is small, in particular
if non-dominated cost vectors are added early, but has the same complexity in the worst case. Ren,
Zhan, Rathinam, Likhachev, and Choset (2022) show that a set of 3-dimensional cost vectors that
is generated incrementally can be stored as a balanced binary search tree, such that the complexity
of testing whether a cost vector is dominated by or equal to any in the set is logarithmic in the
size of the set. This representation could also be used to compute the comax set. However, the
complexity of updating the set representation when a new cost vector that dominates some already
in the set is added remains linear in the size of the set, so the worst case total complexity of the
comax computation does not change.

There is also the potential that the additional structure of the comax set can be exploited to
compute it more efficiently. In Appendix A we propose a linear-time algorithm for the special
bi-objective case (k = 2). Here we make only two observations that hold in the general case.

Lemma 12. If ~v ≺ ~v′, then max(~v, ~u) � max(~v′, ~u); symmetrically, if ~u ≺ ~u′, then max(~v, ~u) �
max(~v, ~u′);

Proof. max(~v, ~u)i equals either ~vi or ~ui. If max(~v, ~u)i = ~vi, then ~vi ≥ ~ui; since ~v ≺ ~v′, ~v′i ≥ ~vi,
and thus max(~v′, ~u)i = ~v′i ≥ max(~v, ~u)i. If max(~v, ~u)i = ~ui, then ~ui ≥ ~vi; since max(~v′, ~u)i ≥
~ui, we also have max(~v′, ~u)i ≥ max(~v, ~u)i. The symmetric claim follows from same argument,
since the maximum is commutative.

Corollary 13. comax(V1, V2) = comax(ND(V1),ND(V2)).

That is, comax(V1, V2) can be computed from the subsets of non-dominated cost vectors in V1 and
V2 respectively. This is significant because the complexity of finding the non-dominated cost vectors
in these two sets isO(|V1|2+|V2|2), while the complexity of finding the non-dominated cost vectors
in the set of all pair-wise maximums is O((|V1||V2|)2). Unfortunately, the converse of Lemma 12
does not hold: combining cost vectors that are non-dominated in V1 and in V2, respectively, can
still yield dominated cost vectors. For a simple example, consider V1 = V2 = {〈i, n − i〉 | i =
0, . . . , n}. As in the earlier example, all cost vectors in this set are mutually non-dominating. From
Lemma 14 below, each of these cost vectors is (non-dominated) in comax(V1, V2). However, every
combination max(〈i, n − i〉, 〈j, n − j〉), where i 6= j, results in a cost vector 〈max(i, j), n −
min(i, j)〉 which is strictly dominated by both 〈i, n− i〉 and 〈j, n− j〉.

Lemma 14. If ~v1 ∈ ND(V1), ~v2 ∈ ND(V2) and ~v1 � ~v2, then ~v2 ∈ comax(V1, V2).

Proof. ~v1 � ~v2 means that ~vi1 ≤ ~vi2 for all dimensions i; thus max(~v1, ~v2) = ~v2, which means
~v2 ∈ comax(V1, V2) unless it is dominated by another pair-wise maximum. Suppose there exists
~w ∈ comax(V1, V2), such that ~w ≺ ~v2. ~w = max(~v, ~u) for some ~v ∈ V1 and ~u ∈ V2, and hence
~u � ~w. But ~u � ~w and ~w ≺ ~v2 implies ~u ≺ ~v2, contradicting that ~v2 ∈ ND(V2).

As a special case, Lemma 14 implies that any ~v ∈ ND(V1) ∩ ND(V2) is in the comax set.

4.2 Anti-Dominance Maximum (admax)

The anti-dominance maximum is defined by Geißer et al. (2022) as follows:

625

HASLUM & WANG

V1: · · · ~v · · · V2: · · · ~ui · · · ~uj · · ·

PCS: · · · • · · · • · · ·

Figure 1: Example of dominance between cost vectors in V1, V2 (both admissible) and PCS.

Definition 15. Let V1 and V2 be sets of k-dimensional cost vectors. The anti-dominance maximum
of V1 and V2 is admax(V1, V2) = {~v1 ∈ ND(V1) | ∀~v2 ∈ ND(V2) : ~v1 6≺ ~v2} ∪ {~v2 ∈ ND(V2) |
∀~v1 ∈ ND(V1) : ~v2 6≺ ~v1}.

The intuition behind admax is that if ~v1 ∈ V1 strictly dominates a non-dominated cost vector
~v2 ∈ V2, then including ~v1 in the union unnecessarily weakens it; admissibility of V2 should ensure
that any cost vector ~u ∈ ~c(PCS(s)) is still dominated by or equal to some vector in V2. The flaw in
Definition 15 is that this is done to both sets independently. The following counterexample shows
how this can lead to inadmissibility.

Example 16. Let V1 = {〈1, 2〉, 〈3, 1〉}, V2 = {〈2, 1〉, 〈1, 3〉}. Then admax(V1, V2) = {〈3, 1〉, 〈1, 3〉}.
If ~c(PCS(s)) = {〈2, 2〉, 〈3, 1〉, 〈1, 3〉} then V1 and V2 are both admissible heuristic sets for state

s, but admax(V1, V2) is not, since no cost vector in it dominates or equals 〈2, 2〉.

When we remove a cost vector ~v ∈ V1 from the union of V1 and V2, then given only the knowledge
that V1 is an admissible heuristic set, for each cost vector ~w ∈ ~c(PCS(s)) such that ~v � ~w, we
cannot know if any cost vector other than ~v in V1 also dominates or equals ~w. Therefore, to ensure
admissibility, we have to keep at least one vector ~uj ∈ V2 such that ~uj � ~w. Figure 1 illustrates
the situation. If ~v ≺ ~ui, then ~v ≺ ~w for any ~w such that ~ui � ~w, but the reverse does not hold.
Thus, we have to keep from V2 also any cost vector ~u that is incomparable with ~v. This means if
we remove ~v ∈ V1 from the union, we can only remove from V2 any vector ~u′ such that ~u′ � ~v.
But since the reason for removing ~v is that ~v ≺ ~ui ∈ ND(V2), there can be no ~u′ ∈ V2 such that
~u′ ≺ ~v, since that would imply ~u′ ≺ ~ui and hence ~ui 6∈ ND(V2). Consequently, any admissible
union of subsets of V1 and V2 must include at least one of V1 or V2 in full. This, together with the
observation that enlarging an admissible heuristic set, while still admissible, cannot make it a more
informed heuristic, motivates the new MO maximum operator, which we define in the next section.

4.3 Select-One Maximum (somax)

The idea of the select-one maximum is that if V1 and V2 are both admissible heuristic sets for a state
s, then selecting either one of them to be their maximum is also admissible. The reason why we can
still expect this maximum of two admissible heuristics to be more informed than using just one of
them is that the selection is done per state, and that if one of the two sets is, in some sense, “strictly
better” than the other, we select the better one; only if the two sets are incomparable is the choice
arbitrary.

626

MAXIMISATION OF ADMISSIBLE MO HEURISTICS

Definition 17. The select-one maximum of V1 and V2 is

somax(V1, V2) =


V1 (i) if V2 ≺ V1
V2 (ii) if V1 ≺ V2
Vi (iii) where i ∈ {1, 2} chosen by some tie-breaking condition otherwise

The choice of vector set dominance as “strictly better” is natural, but not the only choice. All that
is really needed is that the condition is asymetric, so that at most one of cases (i) or (ii) hold. The
tie-breaking condition can be arbitrary, including always choosing one of the two arguments. The
following proposition shows admissibility.

Proposition 18. Let H(s) = somax(H1(s), H2(s)). If H1 and H2 are admissible, then so is H .

Proof. (a) Let ~v ∈ ~c(PCS(s)). By definition, H(s) = Hi(s), for some i ∈ {1, 2}. Since H1 and
H2 are admissible, there exist ~u1 ∈ H1(s) such that ~u1 � ~v and ~u2 ∈ H2(s) such that ~u2 � ~v. At
least one of ~u1 and ~u2 is in H(s). Hence, H is admissible.

Note that Proposition 18 is independent of the tie-breaking condition in Definition 17; in fact, it
is independent of cases (i) and (ii) as well. It follows simply because when applied to admissible
heuristics, somax selects, for each state, one of two admissible heuristics to use in that state.

Compared to comax, somax has very weak theoretical guarantees. In general, we cannot guar-
antee that Vi � somax(V1, V2) for both i = 1, 2, since the non-selected set may be incomparable.
If the tie-breaking condition depends only on the content (not index) of the two vector sets, then
somax is commutative. Without further assumptions on the tie-breaking order, however, somax
is not associative: Let A, B and C be vector sets, and suppose A ≺ C but A and C are both
incomparable to B. Furthermore, suppose the tie-breaking condition prefers A to B and B to C.
Then we have somax(A,B) = A, somax(B,C) = B and somax(A,C) = C, and therefore
somax(A, somax(B,C)) = A 6= C = somax(somax(A,B), C).

somax is not guaranteed to preserve MO heuristic consistency. In fact, there is no tie-breaking
rule under which such a guarantee can be obtained, as the following counterexample shows.

Example 19. We have three states, s1, s2 and t, with transitions from s1 to t and from s2 to t, both
with cost 〈1, 1〉. Heuristics H1 and H2 assign values as follows:

s1 s2 t

H1 {〈2, 3〉} {〈1, 1〉} {〈1, 2〉}
H2 {〈1, 1〉} {〈3, 2〉} {〈2, 1〉}
somax(H1, H2) {〈2, 3〉} {〈3, 2〉} ?

Note that both heuristics assign singleton cost vector sets to all three states.
H1 is consistent w.r.t. the s1–t transition because 〈2, 3〉 � 〈1, 1〉 + 〈1, 2〉 and w.r.t. the s2–t

transition because 〈1, 1〉 � 〈1, 1〉+ 〈1, 2〉.
H2 is consistent w.r.t. the s1–t transition because 〈1, 1〉 � 〈1, 1〉 + 〈2, 1〉 and w.r.t. the s2–t

transition because 〈3, 2〉 � 〈1, 1〉+ 〈2, 1〉.
somax(H1(s1), H2(s1)) = H1(s1) = {〈2, 3〉}, because there exists a cost vector in H2(s1),

namely 〈1, 1〉, which dominates all in H1(s1). Likewise, somax(H1(s2), H2(s2)) = H2(s2) =
{〈3, 2〉}.

627

HASLUM & WANG

However, somax(H1(t), H2(t)) can be either H1(t) = {〈1, 2〉} or H2(t) = {〈2, 1〉}, since
neither vector set dominates the other.

Suppose somax(H1(t), H2(t)) = H1(t) = {〈1, 2〉}. Then the maximum of the two heuristics
is inconsistent w.r.t. the s2–t transition, since 〈3, 2〉 6� 〈2, 3〉 = 〈1, 1〉 + 〈1, 2〉. If, on the other
hand, somax(H1(t), H2(t)) = H2(t) = {〈2, 1〉}, then the maximum is inconsistent w.r.t. the s1–t
transition, since 〈2, 3〉 6� 〈3, 2〉 = 〈1, 1〉+ 〈2, 1〉.

Hence, there is no choice of tie-breaking rule that will ensure somax preserves consistency.

5. Experimental Comparison

We compare the use of comax and somax in the canonical MO PDB, the MO Hmax and MO
H2 heuristics defined by Geißer et al. (2022) on their collection of 437 benchmark MO planning
problems. We use their MO planner implementation, modifying only the MO maximum operators,
and like them we use all non-redundant patterns of 2 or 3 variables for the PDB heuristic.

Comparing somax and comax. The number of problems solved is summarised in Table 1. Fig-
ure 2(a–c) shows a comparison of node expansions and runtime between the two operators in each
heuristic on pairwise commonly solved problems. Comparisons are shown as cumulative distribu-
tions of the log2 of the ratio “alternative/baseline”, where the baseline is (a naive implementation
of) comax, and the alternative is somax. For example, a value of −1 on the x-axis means the value
plotted (expansions or runtime) achieved by the alternative is 1

2 that of the baseline; a corresponding
y-value of p means that the alternative achieves this, or better, in p percent of the problem instances.

Replacing comax with somax reduces the informativeness, as measured by node expansions,
of all the compared MO heuristics to varying degrees. In the canonical MO PDB heuristic, where
node expansions often do not increase, using somax does frequently reduce total runtime.

Improved comax implementations. We also compare improved implementations of comax. These
have no effect on expansions, since the maximum, and therefore the heuristic, computed is always
the same, but have an effect on runtime. Figure 2(d) shows the result. Runtime ratio distributions
for PDB(2), PDB(3) and Hmax using somax – i.e., the curves from Figure 2(c) – are shown in gray
to make comparison easier.

The baseline (naive) implementation computes all pair-wise vector maximums first, and then
filters out dominated ones. (This is the implementation that was used in the experiments reported by
Geißer et al.) The first improved version (“v.1”) filters dominated cost vectors on-the-fly, as each
pair-wise maximum is added to the result set. The second improved version (“v.2”) does the the
same, but also filters dominated cost vectors from both input sets before computing the maximum.
In Hmax and H2, where each input to the maximum is a minimum, this is already the case, since
the MO minimum of two cost vector sets V1 and V2 is defined as ND(V1∪V2). Hence, in Hmax and
H2 versions 1 and 2 are the same (we label them both “v.2”). The baseline version of comax used
in Hmax and H2 does not perform filtering of dominated cost vectors at all, since the maximums
are recursively input to the minimum operator. In the canonical PDB heuristic, however, inputs
to the maximum are sums: these are dominance-filtered in version 2. The third improved version
(“v.3”) checks for cost vectors common to V1 and V2 first, and adds these directly to the result set
(by Lemma 14). This can be done in time O(|V1| + |V2|) because the set implementation sorts set
elements in lexicographic order. It then computes the remaining cost vectors in comax(V1, V2),
with on-the-fly dominance filtering. It is also applied to dominance-filtered input sets.

628

MAXIMISATION OF ADMISSIBLE MO HEURISTICS

In the MO Hmax heuristic, introducing any dominance filtering of the MO maximum has a
runtime overhead and little or no benefit. In the canonical MO PDB heuristic, however, incremental
dominance filtering (version 1) often reduces runtime, and in combination with dominance filtering
of the input vector sets (version 2) even more so, with a median reduction around 12% for PDBs of
size 3. The special handling of common cost vectors (version 3) does not improve on this, however.
Note, though, that even the best comax implementation does not outperform the heuristic using
somax, which solves 82% and 60% of problems in less time when used with PDBs of size 2 and 3,
respectively, although the heuristic using comax (v.2) solves more problems overall.

Tie-breaking in somax. When neither V1 ≺ V2 nor V2 ≺ V1, somax falls back on a tie-breaking
condition to choose one of the two sets. Lastly, we examine how frequently this tie-breaking occurs,
and evaluate the effect of some alternative tie-breaking rules.

Our default tie-breaking rule (used in the comparison with comax above) selects the first argu-
ment: under this rule, somax(V1, V2) equals V2 if V1 ≺ V2 and V1 otherwise. This has the advantage
that only one set dominance check is required. However, to measure how often tie-breaking occurs,
we modified the somax implementation to perform both dominance checks, and then explicitly ap-
ply a tie-breaking rule when neither V1 ≺ V2 nor V2 ≺ V1. In addition to the default, “choose
first” rule, we trialled two other tie-breaking rules: 1) “choose small”, which selects the smaller (by
cardinality) of V1 and V2; and 2) “choose big”, which selects the larger of V1 and V2. When V1 and
V2 have the same size, both rules fall back to choose first. The rationale for preferring larger heuris-
tic sets is that these may be a more accurate representation of the Pareto cover set of cost vectors,
and therefore more informative, while the reason for preferring smaller sets is that the size of the
heuristic set impacts the time required to perform many operations, including dominance checking
and subsequent maximisations.

Figure 3(a) shows the fraction of somax calls that were decided by the tie-breaking rule, i.e.,
for which neither V1 ≺ V2 nor V2 ≺ V1, under different MO heuristics. We call this the tie-breaking
ratio. (Note, though, that instances in which V1 and V2 are equal also count as “decided by tie-
breaking” here, even though the rule used does not matter in such cases.) The ratio shown is using
the “choose first” rule; using one of the other tie-breaking rules makes very small changes to the
tie-breaking ratio. Figures 3(b–c) show the impact of the variant tie-breaking rules on heuristic
informativeness (as measured by number of expansions) and total runtime, in comparison with the
baseline “choose first” rule. Note that the implementation of the baseline rule used here performs
both dominance checks, rather than just one. We omit H2 from the comparison in Figures 3(b–c)
due to the small number of instances solved with it.

The MO Hmax and MO H2 heuristics have a much higher tie-breaking ratio, compared to the
canonical MO PDB heuristic. Note also that MO Hmax performs, at median, 7.25 times more
somax calls per heuristic evaluation compared to the canonical MO PDB heuristic with patterns
of size 3, and 36 times more than the PDB heuristic with patterns of size 2. Consistent with this,
Hmax shows the greatest amount of variation in informativeness and runtime when we vary the
tie-breaking rule, while the MO PDB heuristic with patterns of size 2 shows the least. Somewhat
surprisingly, preferring smaller heuristic sets yields more informed heuristics more frequently than
tie-breaking in favour of larger sets with the MO Hmax and canonical MO PDB heuristic with
patterns of size 3. Neither rule, however, yields a consistent improvement over the default, choose
first, rule.

629

HASLUM & WANG

comax (naive) comax (v.2) somax
PDB(2) 275 275 272
PDB(3) 308 312 295
Hmax 223 216 195
H2 43 7

Table 1: Number of problems solved with each heuristic using different MO maximum operators.
The baseline (naive) and version 2 of comax differ in how comax(V1, V2) is implemented; this
affects the time to compute the operator, but not its result.

(a) (b)

(c) (d)

Figure 2: Comparison of MO maximum operators in the context of MO PDB,Hmax andH2 heuris-
tics. The x-axis is log2 of the ratio “alternative/baseline”, where the baseline is the naive imple-
mentation of comax. The y-axis is cumulative percentage, of instances solved by both. (a) Node
expansions. (b) Runtime; (c) closeup of the range of ratios −0.8–0 in (b). (d) Runtime comparison
of different comax implementations in canonical MO PDB heuristics (see text for descriptions).

630

MAXIMISATION OF ADMISSIBLE MO HEURISTICS

(a)

(b) (c)

Figure 3: (a) somax reliance on the tie-breaking condition in the context of different MO heuristics.
The “tie-breaking ratio” (x-axis) is the fraction of somax calls that were decided by the tie-breaking
rule. (b–c) Distribution of the number of expansions and runtime over varying MO heuristics and
tie-breaking rules. The x-axis is the log2 of the ratio “alternative/baseline”, where the baseline is the
same heuristic with the “choose first” rule. The y-axis, in all three plots, is the cumulative frequency
(in %) of instances solved with the respective heuristic/tie-breaking rule.

631

HASLUM & WANG

6. Conclusion

Multi-objective heuristics, because dominance imposes only a partial order on heuristic values, have
more options for admissible combination than their single-objective counterparts. Although we have
shown that the component-wise maximum (comax) is the greatest possible admissibility-preserving
MO maximum operator, its potential computational overhead, particularly when heuristic sets are
large and high-dimensional, motivates continued investigation into its efficient implementation as
well as of alternative MO maximum operators.

The experimental evaluation conducted by Geißer et al. (2022) suggested that heuristics using
the comax MO maximum operator were, in aggregate across the benchmark set, superior to those
using the admax operator, with exceptions for certain combinations of heuristic and domain. Our
experimental results are consistent with this. While the admax MO maximum operator turns out to
be not admissibility-preserving, the somax operator we have proposed achieves a similar trade-off
in canonical MO PDB heuristics, sacrificing some informativeness for, in a majority of cases, lower
runtime, also when compared to an improved implementation of comax.

Appendix A. comax in the Bi-Objective Case

As is often the case in multi-objective search and optimisation, the special case of k = 2 objectives
exhibits some particular properties. Specifically, in this section, we prove for this case a characteri-
sation of the cost vectors that are in comax(V1, V2) (Proposition 21). A consequence of this is that
when k = 2, the size of comax(V1, V2) is bounded by |V1|+ |V2|, i.e., the worst case size is the sum
of the input set sizes rather than the product, as it is in the general case (Proposition 11). We also
propose a linear-time algorithm for computing comax in this case. Zhang, Salzman, Felner, Kumar,
Skyler, Ulloa, and Koenig (2023) also propose a polynomial-time algorithm for computing comax
in the bi-objective case, based on a different approach.

A.1 Characterisation of the comax Set

Assume k = 2, V1 and V2 contain only non-dominated, within each set, cost vectors, and further-
more that V1 and V2 are sorted lexicographically, in increasing order, on dimension 0 first. Let <lex
denote this lexicographic order. Then, for any two mutually non-dominating cost vectors 〈x, y〉 and
〈x′, y′〉 such that 〈x, y〉 <lex 〈x′, y′〉, we have x < x′ and y > y′. This is necessary since both cost
vectors must have one component that is strictly smaller than the corresponding component of the
other, and the lexicographic order implies x ≤ x′. Hence, V1 = {〈x1, y1〉, . . . , 〈xn, yn〉}, such that
xi < xj and yi > yj for i < j, and likewise for V2. Another important property that holds in the
bi-objective case is that ~v <lex ~u implies ~u 6≺ ~v, i.e., a cost vector that is lexicographically greater
cannot strictly dominate one that is lexicographically smaller.

Lemma 20. Let ~v = 〈x, y〉 ∈ V1, ~v′ = 〈x′, y′〉 ∈ V1 ~u = 〈a, b〉 ∈ V2, and ~u′ = 〈a′, b′〉 ∈ V2
such that ~v′ <lex ~v <lex ~u <lex ~u

′, and ~v 6≺ ~u (also ~v′ 6≺ ~v and ~u 6≺ ~u′). Then (i) max(~v, ~u) ≺
max(~v, ~u′), and (ii) max(~v, ~u) ≺ max(~v′, ~u).

Proof. Due to the lexicographic order and non-dominance, we have y′ > y > b > b′ and x′ <
x < a < a′. Hence, (i) max(~v, ~u) = 〈a, y〉 and max(~v, ~u′) = 〈a′, y〉, and 〈a, y〉 ≺ 〈a′, y〉; and (ii)
max(~v′, ~u) = 〈a, y′〉 and max(~v, ~u) = 〈a, y〉, and 〈a, y〉 ≺ 〈a, y′〉.

632

MAXIMISATION OF ADMISSIBLE MO HEURISTICS

Proposition 21. Assume k = 2, V1 and V2 contain only non-dominated, within each set, cost vec-
tors, and let ~v1, . . . , ~vm be V1∪V2 sorted by<lex. The non-dominated cost vectors in comax(V1, V2)
are exactly
(i) ~vi such that ~vi ∈ V1 ∩ V2;
(ii) ~vi such that there exists ~vj such that ~vj ≺ ~vi (~vi and ~vj must be in opposite sets);
(iii) max(~vi, ~vi+1) such that ~vi and ~vi+1 are in opposite sets and neither ~vi nor ~vi+1 dominates nor
is dominated by any cost vector in the opposite set;
(iv) max(~vi, ~vi+1) such that ~vi and ~vi+1 are in opposite sets, ~vi+1 ≺ ~vp for some p > i + 1 (~vp
must be in the opposite set to ~vi+1, and therefore in the same set as ~vi), ~v0i+1 < ~v0p , and ~vi does not
dominate and is not dominated by any cost vector in the opposite set;
(v) max(~vi, ~vp) such that ~vi and ~vp are in opposite sets, i+ 1 < p, ~vi ≺ ~vl for all i < l < p (~vl must
be in the opposite set to ~vi, and therefore in the same set as ~vp), ~v1i < ~v1p−1, ~vp is not dominated by
any cost vector in the opposite set, and either ~vp does not dominate any cost vector in the opposite
set, or ~v0p < ~v0p+1.

Proof. That cost vectors satisfying condition (i) or (ii) are in comax(V1, V2) was shown in Lemma
14.

Condition (iii): Consider a cost vector ~w = max(~vi, ~vi+1), where ~vi, ~vi+1 are in opposite
sets (i.e., one in V1 and the other in V2, and neither is in both V1 and V2), and both ~vi and ~vi+1

do not dominate and are not dominated by any vector in their respective opposite sets. Suppose
~w 6∈ comax(V1, V2), i.e., that there is a cost vector ~w′ ∈ comax(V1, V2) such that ~w′ ≺ ~w. ~w′ =
max(~vj , ~vj′), where ~vj ∈ V1 and ~vj′ ∈ V2; note that here, ~vj may equal ~vj′ , and either of them
may equal ~vi or ~vi+1. Since <lex is a total order, all four cost vectors are ordered in some way. We
examine the possibilities:
(1) ~vj <lex ~vi and ~vj′ <lex ~vi (i.e., j, j′ < i). Note that this includes also the possibility that
~vj = ~vj′ . In this case, ~v1j > ~v1i and ~v1j′ > ~v1i , and, since ~v1i > ~v1i+1, consequently ~w′1 > ~w1: ~w′

cannot dominate ~w.
(2) ~vi+1 <lex ~vj and ~vi+1 <lex ~vj′ (i.e., i+1 < j, j′). This also includes the possibility that ~vj = ~vj′ .
In this case, ~v0j > ~v0i+1 and ~v0j′ > ~v0i+1, and, since ~v0i+1 > ~v0i , consequently ~w′0 > ~w0: ~w′ cannot
dominate ~w.
(3) ~vj <lex ~vi and ~vi+1 <lex ~vj′ . In this case, ~v0j′ > ~v0i+1 > ~v0i and ~v1j > ~vi > ~v1i+1; consequently,
~w′0 > ~w0 and ~w′1 > ~w1: ~w′ cannot dominate ~w.
(4) ~vj′ <lex ~vi and ~vi+1 <lex ~vj . This case is symmetric with (3).
(5) ~vj = ~vi and ~vi+1 <lex ~vj′ . Since ~vi 6∈ V1 ∩ V2, this implies ~vi ∈ V1, ~vi+1 ∈ V2 and ~vj′ ∈ V2.
By Lemma 20, ~w ≺ ~w′. The case when ~vj′ = ~vi and ~vi+1 <lex ~vj is symmetric, with V1 and V2
exchanged.
(6) ~vj = ~vi and ~vj′ <lex ~vi. We have ~v1j′ > ~v1i > ~v1i+1, and thus ~w′1 > ~w1: ~w′ cannot dominate ~w.
Again, the case with ~vj and ~vj′ changing places is symmetric.
(7) ~vj = ~vi+1 and ~vj′ <lex ~vi. Since ~vi+1 6∈ V1 ∩ V2, this implies ~vi+1 ∈ V1, ~vi ∈ V2 and ~vj′ ∈ V2.
By Lemma 20, ~w ≺ ~w′. The case when ~vj′ = ~vi+1 and ~vj <lex ~vi is symmetric, with V1 and V2
exchanged.
(8) ~vj = ~vi+1 and ~vi+1 <lex ~vj′ . We have ~v0j′ > ~v0i+1 > ~v0i , and thus ~w′0 > ~w0: ~w′ cannot dominate
~w. The case with ~vj and ~vj′ changing places is symmetric.
This shows that all cost vectors satisfying condition (iii) are in comax(V1, V2).

633

HASLUM & WANG

Condition (iv): Let ~w = max(~vi, ~vi+1) such that ~vi and ~vi+1 are in opposite sets, ~vi+1 ≺ ~vp for
some p > i+ 1, ~v0i+1 < ~v0p , and ~vi does not dominate and is not dominated by any cost vector in the
opposite set. Suppose there exists ~w′ = max(~vj , ~vj′) ∈ comax(V1, V2) such that ~w′ ≺ ~w. The only
difference to condition (iii) is in case (8), with ~vi+1 taking the role of ~vj and ~vp taking the role of
~vj′ : since ~vi+1 ≺ ~vp, the ordering ~vi+1 <lex ~vp only implies ~v0i+1 ≤ ~v0p , but the additional condition
ensures this inequality is strict.

Condition (v): Let ~w = max(~vi, ~vp) such that ~vi and ~vp are in opposite sets, i+ 1 < p, ~vi ≺ ~vl
for all i < l < p (~vl must be in the opposite set to ~vi, and therefore in the same set as ~vp), ~v1i < ~v1p−1,
and ~vp does not dominate and is not dominated by any cost vector in the opposite set. Suppose there
exists ~w′ = max(~vj , ~vj′) ∈ comax(V1, V2) such that ~w′ ≺ ~w. The difference to condition (iii) here
arises in two cases: (1) we can have ~vj = ~vi and ~vi <lex ~vj′ <lex ~vp i.e., ~w′ is formed combining one
of the vectors ~vi+1, . . . , ~vp−1 with ~vi. Lemma 20 does not apply, since it requires ~vi 6≺ ~vj′ . Because
~vi does not dominate ~vp, and ~vj′ does not dominate ~vp (they are in the same set), the lexicographic
ordering implies ~v0i ≤ ~v0j′ < ~v0p , and ~v1j′ ≥ ~v1p−1 > ~v1p (~v1j′ ≥ ~v1p−1 because j′ may equal p − 1),
so ~w = 〈~v0p, ~v1i 〉 and ~w′ = ~vj′ . The additional condition ensures ~w′1 = ~v1j′ ≥ ~v1p−1 > ~v1i so ~w′

cannot dominate ~w. (2) ~vp can dominate some other cost vector ~vq. Note that ~vq must be in the
opposite set to ~vp (and therefore in the same set as ~vi) and that ~vp <lex ~vq, i.e., q > p. Again,
Lemma 20 does not apply, but the additional condition ~v0p < ~v0p+1 ensures ~v0p < ~v0q and therefore
that max(~vi, ~vp) � max(~vi, ~vq).

It remains to show that no other combination max(~vi, ~vj), where ~vi and ~vj are from opposite
sets, not satisfying any of the conditions above, is in comax(V1, V2), i.e., that any such cost vector
is dominated by or equal to some other cost vector in comax(V1, V2). Since the component-wise
maximum of two vectors is commutative, we can assume w.l.o.g. that i < j.

(a) Suppose neither vi nor vj dominates or is dominated by any cost vector in their respective
opposite sets. If j 6= i+ 1, then there exists some ~vl such that ~vi <lex ~vl <lex ~vj . However, ~vl either
belongs the same set as ~vi or ~vj : in both cases, Lemma 20 shows that max(~vi, ~vl) ≺ max(~vi, ~vj) or
max(~vl, ~vj) ≺ max(~vi, ~vj), respectively.

(b) If ~vi is dominated by some cost vector in the opposite set, then ~vi is itself in comax(V1, V2),
and ~vi � max(~vi, ~vj). Same if ~vj is dominated by some cost vector in the opposite set.

(c) Suppose ~vi dominates some cost vector in the opposite set, and that condition (v) does not
apply (i.e., ~vj is not the ~vp required by the condition). There are four cases: (1) ~vj is dominated,
by ~vi or some other cost vector in the same set as ~vi. This is covered by the case above. (2) There
exists a ~vp satisfying condition (v) and ~vp <lex ~vj . Note that ~vp and ~vj are in the same set, so
are mutually non-dominating. In this case, max(~vi, ~vp) ≺ max(~vi, ~vj), by Lemma 20. (3) The
additional condition ~v1i < ~v1p−1 of condition (v) is not satisfied, i.e., the last, in lexicographic order,
of the cost vectors dominated by ~vi equals ~vi in dimension 1, and ~vp−1 <lex ~vj . In this case,
max(~vi, ~vp−1)

1 = max(~vi, ~vj)
1 and max(~vi, ~vp−1)

0 < max(~vi, ~vj)
0, so max(~vi, ~vj) is dominated.

(4) ~v0p = ~v0p+1: this means ~vp ≺ ~vp+1, so ~vp and ~vp+1 must be in opposite sets (and therefore ~vp+1

in the same set as ~vi). We have max(~vi, ~vp) = 〈~v0p, ~v1i 〉, and max(~vp, ~vp+1) = ~vp+1; due to the
lexicographic ordering and non-dominance, ~v1i > ~v1p+1, so ~vp+1 ≺ max(~vi, ~vp).

(d) Suppose ~vj dominates some cost vector in the opposite set (and ~vi does not) and that con-
dition (iv) does not apply. There are three cases: (1) ~vi is dominated, by ~vj or some other cost
vector in the same set as ~vj . This is covered by case (b) above. (2) ~vj−1 satisfies condition (iv)
and ~vi <lex ~vj−1. Again, ~vi and ~vj−1 are in the same set, so are mutually non-dominating, and
max(~vj−1, ~vj) ≺ max(~vi, ~vj) by Lemma 20. (3) The additional condition ~v0j < ~v0p of condition (iv)

634

MAXIMISATION OF ADMISSIBLE MO HEURISTICS

is not satisfied. Since ~vj ≺ ~vp, this means ~v0j = ~v0p . ~vi and ~vp are mutually non-dominating (they
are in the same set) and ~vi <lex ~vp, which means max(~vi, ~vj)

1 > ~v1p , so ~vp ≺ max(~vi, ~vj).

We can now state the proof of Proposition 11:

Proposition 11. Assume k = 2: | comax(V1, V2)| ≤ |V1|+ |V2|.

Proof. We can assume V1 and V2 contain only non-dominated, within each set, cost vectors. Let
D = {~v ∈ V1 | ∃~u ∈ V2 : ~u ≺ ~v} ∪ {~v ∈ V2 | ∃~u ∈ V1 : ~u ≺ ~v}, i.e., the subset of cost vectors
in V1 ∪ V2 that are dominated by a cost vector from the opposite set. For each ~vi ∈ (V1 \D), there
is at most one ~vj ∈ (V2 \D) with i < j, that can satisfy at most one of conditions (iii)-(v), giving
rise to a non-dominated cost vector in comax(V1, V2), and likewise for each ~vi ∈ (V2 \D). Hence,
comax(V1, V2) contains at most |D|+ |V1 \D|+ |V2 \D| cost vectors.

A.2 A Geometric Interpretation

The set of cost vectors dominated by ~v is D(~v) = {~u | ~vi ≤ ~ui, 0 ≤ i < k} − {~v}. The set
of cost vectors dominated by a set V is the union of the sets dominated by each cost vector in V ,
i.e., D(V) =

⋃
~v∈V D(~v). From Proposition 9, we have that the set of cost vectors dominated by

comax(V1, V2) is the intersection of the sets dominated by V1 and V2, i.e., D(comax(V1, V2)) =
D(V1) ∩ D(V2).

In the special case of k = 2, ~v = 〈vx, vy〉, D(~v) can be viewed in the plane as the quadrant
above and to the right of ~v, including the line segments {〈vx, y〉 | y > vy} and {〈x, vy〉 | x > vx}.
Figure 4 illustrates conditions (ii)–(v) of Proposition 21.

A.3 Algorithm

We can now use the above result to create a specialised algorithm for computing comax in the bi-
objective case. This algorithm examines only the relevant pairs of cost vectors from the two input
sets, and generates only the non-dominated cost vectors in the resulting set (i.e., dominance filtering
of the result set is not needed). Thus, it runs in linear time. First, we need to show one more fact
about the relation between dominance and lexicographic ordering:

Lemma 22. If ~v1 <lex ~v2 <lex ~v3 for distinct cost vectors ~v1, ~v2, ~v3, and ~v1 ≺ ~v3, then ~v1 ≺ ~v2 or
~v2 ≺ ~v3.

Proof. Let ~vi = 〈xi, yi〉, i = 1, 2, 3. If y2 < y1, then x2 ≤ x3 (due to ~v2 <lex ~v3) and y2 < y1 ≤ y3
(because ~v1 ≺ ~v3 implies y1 ≤ y3), and thus ~v2 ≺ ~v3. If, on the other hand, y2 ≥ y1, we also have
x1 ≤ x2 (due to ~v1 <lex ~v2), with at least one of the inequalities strict since the cost vectors are
distinct; this means means ~v1 ≺ ~v2.

Lemma 22 implies that if ~v ∈ V1 dominates some cost vector ~u ∈ V2, and V1 and V2 contain
no dominated, within the same set, cost vectors, then all cost vectors in V2 dominated by ~v are
consecutive in the lexicographic order (and ordered after ~v). Suppose ~v ≺ ~uj but ~v 6≺ ~ui, with
~v <lex ~ui <lex ~uj : by Lemma 22, ~v ≺ ~ui or ~ui ≺ ~uj , but the latter is ruled out since ~ui and ~uj are
both in V2.

This, together with the characterisation above, means that all relevant pairs of cost vectors in V1
and V2 can be found by examining them in sequence according to the merged lexicographic order,

635

HASLUM & WANG

x

y

x

y

Condition (iii): Non-dominated/dominating
cost vectors adjancent in the merged lexico-
graphic order combine to form non-dominated
elements in comax.

Condition (ii): cost vectors dominated by
a cost vector in the opposite set are non-
dominated in comax.

x

y

x

y

Condition (iv): ~vi can combine with ~vi+1 to
form a non-dominated element of comax also
when ~vi+1 ≺ ~vi+2, provided ~vxi+1 < ~vxi+2.

Condition (v): ~vi can combine with ~vj to form
a non-dominated element of comax also when
~vi ≺ ~vl, i < l < j, provided ~vyi < ~vyj−1.

Figure 4: Illustation of conditions (ii)–(v) of Proposition 21. Gray arrows show the lexicographic
order, from smaller to larger.

636

MAXIMISATION OF ADMISSIBLE MO HEURISTICS

and by looking only at two or three positions in that sequence at a time. We assume V1 and V2
are individually sorted in lexicographic order; rather than merge and sort the two sets, we can find
the merged order by maintaining the index of the “next” cost vector in each set (analogous to the
implementation of the merging step in the merge sort algorithm). The algorithm is then as follows:

(1) Assume V1 = v1, v2, . . . , v|V1| and V2 = u1, u2, . . . , u|V2| are individually sorted in lexico-
graphic order. Initialise p = q = 1 (p and q are indices into V1 and V2, respectively).

(2) While p ≤ |V1| and q ≤ |V2|:

(2.1) If vp = uq, add it to Result (by condition (i)) and increment both p and q by 1.

(2.2) Else if vp <lex uq:

(2.2.1) If vp ≺ uq: Add uq to Result (by condition (ii)) and increment q by 1.
(2.2.1.1) While vp ≺ uq: Add uq to Result (by condition (ii)) and increment q by

1.
(2.2.1.2) (Check condition (v).) If q ≤ |V2|,

(2.2.1.2.1) If p = |V1| and v1p < u1q−1, add max(vp, uq) to Result.

(2.2.1.2.2) Else if p < |V1|, yq <lex vp+1, v1p < u1q−1, and uq 6≺ vp+1 or
u0q < v0p+1, add max(vp, uq) to Result.

(2.2.1.2.3) Increment p by 1.
(2.2.2) Else if p = |V1| or uq <lex vp+1

(2.2.2.1) If p < |V1| and uq ≺ vp+1

(2.2.2.1.1) (Check condition (iv).) If u0q < v0p+1, add max(vp, uq) to Result.
(2.2.2.2) Else, add max(vp, uq) to Result (by condition (iii), vp is ~vi and uq is

~vi+1).
(2.2.2.3) Increment p by 1.

(2.2.3) Else, increment p by 1.

(2.3) Else (uq <lex vp): Symmetric to 2.2, with V1/vp/p and V2/uq/q exchanged.

(3) Return Result.

To see that it runs in linear time, note that at least one of p and q is incremented in each iteration of
every loop, and all loops end when one of them reaches the end of the respective input sequence.
Since k = 2, all comparions (<lex, ≺ and =) can be done in constant time. A more careful ordering
of the cases in the algorithm should permit us to ensure that the vectors of the comax set are
generated in lexicographic order, and thereby linear time computation of nested comax expressions.

Lemma 22 also implies that we can find the non-dominated cost vectors within a lexicograph-
ically ordered set in linear time, since the set of cost vectors dominated by some ~vi ∈ V , and not
by any other cost vector in V , must follow consecutively after vi. Hence, with a small change,
the algorithm above can be applied to input sets of cost vectors that are not filtered for dominance
within each set, without increasing its complexity: at each point where p is incremented, instead of
advancing it by 1 we can simply advance it to the index of the next cost vector in V1 not dominated
by vp (and likewise for q/V2/uq). This maintains the invariant that vp is non-dominated within V1
(resp. uq within V2).

637

HASLUM & WANG

References

Geißer, F., Haslum, P., Thiébaux, S., & Trevizan, F. (2022). Admissible heuristics for multi-objective
planning. In Proc. 32nd International Conference on Automated Planning and Scheduling
(ICAPS), pp. 100–109.

Haslum, P., Helmert, M., Bonet, B., Botea, A., & Koenig, S. (2007). Domain-independent construc-
tion of pattern database heuristics for cost-optimal planning. In Proc. AAAI’07, pp. 1007 –
1012.

Holte, R., Felner, A., Newton, J., Meshulam, R., & Furcy, D. (2006). Maximizing over multiple
pattern databases speeds up heuristic search. Artificial Intelligence, 170, 1123–1136.

Mandow, L., & Pérez-de-la-Cruz, J. (2010). Multiobjective A* search with consistent heuristics.
Journal of the ACM, 57(5), 27:1–27:25.

Ren, Z., Zhan, R., Rathinam, S., Likhachev, M., & Choset, H. (2022). Enhanced multi-objective A*
using balanced binary search trees. arXiv:2022.08992v3 [cs.AI].

Roijers, D. M., Vamplew, P., Whiteson, S., & Dazeley, R. (2013). A survey of multi-objective
sequential decision-making. Journal of AI Research, 48, 67–113.

Seipp, J., Keller, T., & Helmert, M. (2020). Saturated cost partitioning for optimal classical plan-
ning. Journal of AI Research, 67, 129–167.

Stewart, B. S., & White, III, C. C. (1991). Multiobjective A∗. Journal of the ACM, 38(4), 775–814.

Zhang, H., Salzman, O., Felner, A., Kumar, T. K. S., Skyler, S., Ulloa, C. H., & Koenig, S. (2023).
Towards effective multi-valued heuristics for bi-objective shortest-path algorithms via differ-
ential heuristics. In Proc. 16th International Symposium on Combinatorial Search (SoCS),
pp. 101–109.

638

