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Abstract

Clustering with outliers is one of the most fundamental problems in Computer Science.
Given a set X of n points and two numbers k,m, the clustering with outliers aims to
exclude m points from X and partition the remaining points into k clusters that minimizes
a certain cost function. In this paper, we give a general approach for solving clustering with
outliers, which results in a fixed-parameter tractable (FPT) algorithm in k and m—i.e., an
algorithm with running time of the form f(k,m) · nO(1) for some function f—that almost
matches the approximation ratio for its outlier-free counterpart. As a corollary, we obtain
FPT approximation algorithms with optimal approximation ratios for k-Median and k-
Means with outliers in general and Euclidean metrics. We also exhibit more applications
of our approach to other variants of the problem that impose additional constraints on the
clustering, such as fairness or matroid constraints.

1. Introduction

Clustering is a family of problems that aims to group a given set of objects in a meaningful
way—the exact “meaning” may vary based on the application. These are fundamental prob-
lems in Computer Science with applications ranging across multiple fields like pattern recog-
nition, machine learning, computational biology, bioinformatics and social science. Thus,
these problems have been a subject of extensive studies in the field of Algorithm Design
(and its sub-fields), see for instance, the surveys on this topic (and references therein) (Xu
& Tian, 2015; Rokach, 2009; Blömer, Lammersen, Schmidt, & Sohler, 2016).

Two of the central clustering problems are k-Median and k-Means. In the standard
k-Median problem, we are given a set X of n points, and an integer k, and the goal is to
find a set C∗ ⊆ X of at most k centers, such that the following cost function is minimized
over all subsets C of size at most k.

cost(X,C) :=
∑
p∈X

min
c∈C

d(p, c)

In k-Means, the objective function instead contains the sum of squares of distances.
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Often real world data are contaminated with a small amount of noise and these noises
can substantially change the clusters that we obtain using the underlying algorithm. To
circumvent the issue created by such noises, there are several studies of clustering problems
with outliers, see for instance, (Chen, 2008; Krishnaswamy, Li, & Sandeep, 2018; Goyal,
Jaiswal, & Kumar, 2020; Feng, Zhang, Huang, Xu, & Wang, 2019; Friggstad, Khodamoradi,
Rezapour, & Salavatipour, 2019a; Almanza, Epasto, Panconesi, & Re, 2022).

In outlier extension of the k-Median problem, which we call k-MedianOut, we are
also given an additional integer m ≥ 0 that denotes the number of outliers that we are
allowed to drop. We want to find a set C of at most k centers, and a set Y ⊆ X of at most
m outliers, such that cost(X \ Y,C) :=

∑
p∈X\Y minc∈C d(p, c) is minimized over all (Y,C)

satisfying the requirements. Observe that the cost of clustering for k-MedianOut equals
the sum of distances of each point to its nearest center, after excluding a set of m points
from consideration 1. We remark that in a similar spirit we can define the outlier version
of the k-Means problem, which we call k-MeansOut.

In this paper, we will focus on approximation algorithms. An algorithm is said to have
an approximation ratio of α, if it is guaranteed to return a solution of cost no greater than
α times the optimal cost, while satisfying all other conditions. That is, the solution must
contain at most k centers, and drop m outliers. If the algorithm is randomized, then it
must return such a solution with high probability, i.e., probability at least 1− n−c for some
c ≥ 1.

For a fixed set C of centers, the set of m outliers is automatically defined, namely the set
of m points that are farthest from C (breaking ties arbitrarily). Thus, an optimal clustering
for k-MedianOut, just like k-Median, can be found in nO(k) time by enumerating all
center sets. On the other hand, we can enumerate all nO(m) subsets of outliers, and reduce
the problem directly to k-Median. Other than these straightforward observations, there
are several non-trivial approximations known for k-MedianOut, which we discuss in a
subsequent paragraph.

1.1 Our Results

In this work, we describe a general framework that reduces a clustering with outliers
problem (such as k-MedianOut or k-MeansOut) to its outlier-free counterpart in an
approximation-preserving fashion. More specifically, given an instance I of k-MedianOut,
our reduction runs in time f(k,m, ϵ) ·nO(1), and produces multiple instances of k-Median,
such that a β-approximation for at least one of the produced instances of k-Median implies
a (β + ϵ)-approximation for the original instance I of k-MedianOut. This is the main
result of our paper.

Our framework does not rely on the specific properties of the underlying metric space.
Thus, for special metrics, such as Euclidean spaces, or shortest-path metrics induced by
sparse graph classes, for which FPT (1 + ϵ)-approximations are known for k-Median, our
framework implies matching approximation for k-MedianOut. Finally, our framework is
quite versatile in that one can extend it to obtain approximation-preserving FPT reductions

1. Our results actually hold for a more general formulation of k-Median, where the set of candidate centers
may be different from the set X of points to be clustered. We consider this general setting in the technical
sections.
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for related clustering with outliers problems, such as k-MeansOut, and clustering problems
with fair outliers (such as (Bandyapadhyay, Inamdar, Pai, & Varadarajan, 2019; Jia, Sheth,
& Svensson, 2020)), and Matroid Median with Outliers. We conclude by giving a
partial list of the corollaries of our reduction framework. The running time of each algorithm
is f(k,m, ϵ) · nO(1) for some function f that depends on the problem and the setting. Next
to each result, we also cite the result that we use as a black box to solve the outlier-free
clustering problem.

• (1 + 2
e + ϵ) ≈ (1.74 + ϵ)-approximation (resp. 1 + 8

e + ϵ)-approximation) for k-
MedianOut (resp. k-MeansOut) in general metrics (Cohen-Addad, Saulpic, &
Schwiegelshohn, 2021). These approximations are tight even for m = 0, under a
reasonable complexity theoretic hypothesis, as shown in the same paper.

• (1 + ϵ)-approximation for k-MedianOut and k-MeansOut in (i) metric spaces of
constant doubling dimensions, which includes Euclidean spaces of constant dimension,
(ii) metrics induced by graphs of bounded treewidth, and (iii) metrics induced by
graphs that exclude a fixed graph as a minor (such as planar graphs). (Cohen-Addad
et al., 2021).

• (2 + ϵ)-approximation for Matroid Median with Outliers in general metrics,
where k refers to the rank of the matroid. (Cohen-Addad, Gupta, Kumar, Lee, & Li,
2019)

• (1 + 2
e + ϵ)-approximation for Colorful k-Median in general metrics, where m

denotes the total number of outliers across all color classes (Cohen-Addad et al.,
2019). The preceding two problems are orthogonal generalizations of k-MedianOut,
and are formally defined in Section 4.

1.2 Our Techniques

Our reduction is inspired from the following seemingly simple observation that relates k-
MedianOut and k-Median. Let I be an instance of k-MedianOut, where we want to
find a set C of k centers, such that the sum of distances of all except at most m points to
the nearest center in C is minimized. By treating the outliers in an optimal solution for I
as virtual centers, one obtains a solution for (k+m)-Median without outliers whose cost is
at most the optimal cost of I. In other words, the optimal cost of an appropriately defined
instance Ĩ of (k+m)-Median is a lower bound on the optimal cost of I. Since k-Median
is a well-studied problem, at this point, one would hope that it is sufficient to restrict the
attention to Ĩ. That is, if we obtain a solution (i.e., a set of k+m centers) for Ĩ, can then
be modified to obtain a solution (i.e., a set of k centers and m outliers) for I. However,
it is unclear whether one can do such a modification without blowing up the cost for I.
Nevertheless, this connection between Ĩ and I turns out to be useful, but we need several
new ideas to exploit it.

As in before, we start with a constant approximation for Ĩ, and perform a sampling
similar to (Chen, 2009) to obtain a weighted set of points. This set is obtained by dividing
the set of points connected to each center in the approximate solution into concentric rings,
such that the “error” introduced in the cost by treating all points in the ring as identical
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Figure 1: A conceptual overview of our approximation-preserving reduction for k-
MedianOut to k-Median. Here, A denotes a β-approximation algorithm for
k-Median, which we use as a black box on each of the instances I1, . . . , It of
k-Median.

is negligible. Then, we sample O((k + m) log n/ϵ) points from each ring, and give each
point an appropriate weight. We then prove a crucial concentration bound (cf. Lemma
1), which informally speaking relates the connection cost of original set of points in a ring,
and the corresponding weighted sample. In particular, for any set of k centers, with good
probability, the difference between the original and the weighted costs is “small”, even after
excluding at most m outliers from both sets. Intuitively speaking, this concentration bound
holds because the sample size is large enough compared to both k and m. Then, by taking
the union of all such samples, we obtain a weighted set S of O(((k + m) log n/ϵ)2) points
that preserves the connection cost to any set of k centers, even after excluding m outliers
with at least a constant probability. Then, we enumerate all sets Y of size m from S, and
solve the resulting k-Median instance induced on S \Y . Finally, we argue that at least one
of the resulting instances I1, I2, . . . , It (we show that t = f(k,m, ϵ) ·nO(1) for some function
f) will have the property that, a β-approximation for I ′ implies a (β + ϵ)-approximation
for I. See Figure 1 for a conceptual flowchart of the algorithm.

1.3 Related Work

The first constant approximation for k-MedianOut was given by (Chen, 2008) for some
large constant. More recently, (Krishnaswamy et al., 2018; ?) gave constant approximations
based on iterative LP rounding technique, and the 6.387-approximation by latter is currently
the best known approximation. These approximation algorithms run in polynomial time
in n. (Krishnaswamy et al., 2018) also give the best known polynomial approximations for
related problems of k-MeansOut and Matroid Median.

Now we turn to FPT approximations, which is also the setting for our results. To the
best of our knowledge, there are three works in this setting, (Feng et al., 2019; Goyal et al.,
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2020; Statman, Rozenberg, & Feldman, 2020). The idea of relating k-Median with m
Outliers to (k +m)-Median that we discuss above is also present in these works. Even
though it is not stated explicitly, the approach of (Statman et al., 2020) can be used to
obtain FPT approximations in general metrics; albeit with a worse approximation ratio.
However, by using additional properties of Euclidean k-MedianOut/k-MeansOut (where
one is allowed to place centers anywhere in Rd) their approach yields a (1+ϵ)-approximation
in FPT time. (Goyal et al., 2020) design approximation algorithms with ratio of 3 + ϵ for
k-MedianOut (resp. 9 + ϵ for k-MedianOut) in time ((k +m)/ϵ)O(k) · nO(1). Thus, our
approximation ratios of 1+ 2

e +ϵ for k-MeansOut, and 1+ 8
e +ϵ for k-MeansOut improve

on these results – albeit with a slightly worse FPT running time. Furthermore, our result
is essentially an approximation-preserving reduction from k-MedianOut to k-Median in
the same metric, which yields (1 + ϵ)-approximations in some special settings as discussed
earlier. On the other hand, it seems that a loss of 3 + ϵ (resp. 9 + ϵ) in the approximation
guarantee is inherent to the algorithm of (Goyal et al., 2020).

On the lower bound side, (Guha & Khuller, 1999) showed it is NP-hard to approximate
k-Median (and thus k-MedianOut) within a factor 1 + 2

e − ϵ for any ϵ > 0. Recently,
(Cohen-Addad et al., 2019) strengthened this result assuming Gap-ETH, and showed that

an (1+ 2
e − ϵ)-approximation algorithm must take at least nkg(ϵ) time for some function g().

Bicriteria approximations relax the strict requirement of using at most k centers, or
dropping at most m outliers, in order to give improved approximation ratios, or efficiency
(or both). For k-MedianOut, (Charikar, Khuller, Mount, & Narasimhan, 2001) gave a
4(1+1/ϵ)-approximation, while dropping m(1+ϵ) outliers. (Gupta, Kumar, Lu, Moseley, &
Vassilvitskii, 2017) gave a constant approximation based on local search for k-MeansOut
that drops O(km log(n∆)) outliers, where ∆ is the diameter of the set of points. (Friggstad,
Rezapour, & Salavatipour, 2019b) gave a (25 + ϵ)-approximation that uses k(1 + ϵ) centers
but only drops m outliers. In Euclidean spaces, they also give a (1+ ϵ)-approximation that
returns a solution with k(1 + ϵ) centers.

2. Preliminaries

Basic notions. Let (Γ, d) be a metric space, where Γ is a finite set of points, and
d : Γ × Γ → R is a distance function satisfying symmetry and triangle inequality. For
any finite set S ⊆ Γ and a point p ∈ Γ, we let d(p, S) := mins∈S d(p, C), and let diam(S) :=
maxx,y∈S d(x, y). For two non-empty sets S,C ⊆ Γ, let d(S,C) = minp∈S d(p, S) =
minp∈S minc∈C d(p, c). For a point p ∈ Γ, r ≥ 0, and a set C ⊆ Γ, let BC(p, r) = {q ∈
C : d(p, q) ≤ r}. Let T be a finite (multi)set of n real numbers, for some positive integer
n, and let 1 ≤ m ≤ n. Then, we use the notation sum∼m(T ) to denote the sum of n −m
smallest values in T (including repetitions in case of a multi-set).

The k-median problem. In the k-Median problem, an instance is a triple I = (X,F, k),
where X and F are finite sets of points in some metric space (Γ, d), and k ≥ 1 is an integer.
The points in X are called clients, and the points in F are called facilities or centers. The
task is to find a subset C ⊆ F of size at most k that minimizes the cost function

cost(X,C) :=
∑
p∈X

d(p, C).
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The size of an instance I = (X,F, k) is defined as |I| = |X ∪ F |, which we denote by n.

k-median with outliers. The input to k-MedianOut contains an additional integer
0 ≤ m ≤ n, and thus an instance is given by a 4-tuple I = (X,F, k,m). Let C ⊆ F be
a set of facilities. We define costm(X,C) := sum∼m{cost(p, C) : p ∈ X}, i.e., the sum of
n −m smallest distances of points in X to the set of centers C. The goal is to find a set
of centers C minimizing costm(X,C) over all sets C ⊆ F of size at most k. Given a set
C ⊆ F of centers, we denote the corresponding solution by (Y,C), where Y ⊆ X is a set of
m outlier points in X with largest distances realizing costm(X,C). Given an instance I of
k-MedianOut, we use OPT(I) to denote the value of an optimal solution to I.

Weighted sets and random samples. During the course of the algorithm, we will
often deal with weighted sets of points. Here, S ⊆ X is a weighted set, with each point
p ∈ S having integer weight w(p) ≥ 0. For any set C ⊆ F and 1 ≤ m ≤ |S|, define
wcostm(S,C) := sum∼m{d(p, C) · w(p) : p ∈ S}. A random sample of a finite set S refers
to a random subset of S. Throughout this paper, random samples are always generated by
picking points uniformly and independently.

3. k-Median with Outliers

In this section, we give our FPT reduction from k-MedianOut to the standard k-Median
problem. Formally, we shall prove the following theorem.

Theorem 1. Suppose there exists a β-approximation algorithm for k-Median with running
time T (n, k), and a τ -approximation algorithm for k+m-Median with polynomial running
time, where β and τ are constants. Then there exists a (β+ ϵ)-approximation algorithm for

k-MedianOut with running time
(
k+m
ϵ

)O(m) · T (n, k) · nO(1), where n is the instance size
and m is the number of outliers.

Combining the above theorem with the known (1+ 2
e+ϵ)-approximation k-median algorithm

(Cohen-Addad et al., 2019) that runs in (k/ϵ)O(k) ·nO(1) time, we directly have the following
result.

Corollary 1. There exists a (1 + 2
e + ϵ)-approximation algorithm for k-MedianOut with

running time
(
k+m
ϵ

)O(m) ·
(
k
ϵ

)O(k) · nO(1), where n is the instance size and m is the number
of outliers.

The rest of this section is dedicated to proving Theorem 1. Let I = (X,F, k,m) be an
instance of k-MedianOut. We define a (k+m)-Median instance I ′ = (X,F ∪X, k+m),
where in addition to the original set of facilities, there is a facility co-located with each
client. We have the following observation.

Observation 1. OPT(I ′) ≤ OPT(I), i.e., the value of an optimal solution to I ′ is a lower
bound on the value of an optimal solution to I.

Proof. Let (Y ∗, C∗) be an optimal solution to I realizing the value OPT(I). We define a
solution (Y ′, C ′) for I ′ as follows: let Y ′ = ∅, and C ′ = C∗ ∪ Y ∗. That is, the set of centers
C ′ is obtained by adding a facility co-located with each outlier point from Y ∗, and the set
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of outliers is empty. Now we argue about the costs. Since C∗ ⊆ C ′, for each point p ∈ Y ∗,
d(p, C ′) ≤ d(p, C∗). On the other hand, for each q ∈ X \ Y ∗, d(q, C ′) = 0, since there is a
co-located center in C∗. This implies that cost0(X,C ′) ≤ costm(X,C). Since the solution
(Y ′, C ′) is feasible for the instance I ′, it follows that OPT(I ′) is no larger than the cost
cost0(X,C ′).

Now, we use τ -approximation algorithm guaranteed by the theorem, for the instance I ′,
and obtain a set of at most k′ ≤ k+m centers A such that cost0(X,A) ≤ τ ·OPT(I ′) ≤ τ ·
OPT(I). By assumption, running this algorithm takes polynomial time. Let R = cost0(X,A)

τn
be a lower bound on average radius, and ϕ = ⌈log(τn)⌉. For each center ci ∈ A, let Xi ⊆ X
denote the set of points whose closest center in A is ci. By arbitrarily breaking ties, we
can assume that the sets Xi are disjoint, i.e., {Xi}1≤i≤k′ forms a partition of X. Now we
further partition each Xi into smaller groups such that the points in each group have similar
distances to ci. Specifically, we define

Xi,j :=

{
BXi(ci, R) if j = 0,

BXi(ci, 2
jR) \BXi(ci, 2

j−1R) if j ≥ 1.

Let s = cτ2

ϵ2
(m+ k lnn+ ln(1/λ)), for some large enough constant c. We define a

weighted set of points Si,j ⊆ Xi,j as follows. If |Xi,j | ≤ s, then we say Xi,j is small. In
this case, define Si,j := Xi,j and let the weight wi,j of each point p ∈ Si,j be 1. Otherwise,
|Xi,j | > s and we say that Xi,j is large. In this case, we take a random sample Si,j ⊆ Xi,j

of size s. We set the weight of every point in Si,j to be wi,j = |Xi,j |/|Si,j |. For convenience,
assume the weights wi,j to be integers 2. Finally, let S =

⋃
i,j Si,j . The set S can be thought

of as an ϵ-coreset for the k-MedianOut instance I. Even though we do not define this
notion formally, the key properties of S will be proven in Lemma 2 and 3. Thus, we will
often informally refer to S as a coreset.

Proposition 1. We have |S| = O(((k +m) log n/ϵ)2) if λ is a constant.

Proof. For any p ∈ X, d(p,A) ≤ cost0(X,A) = τn ·R ≤ 2ϕR. Therefore, for any ci ∈ A and

j > ϕ, Xi,j′ = ∅, and Xi =
⋃ϕ

j=0Xi,j . It follows that the number of non-empty sets Xi,j is
at most |A|·(1+log(τn)) = O((k+m) log n), since |A| ≤ k+m and τ is a constant. For each
non-empty Xi,j , |Si,j | ≤ 2s = O((m + k log n)/ϵ2), if λ is a constant. Since S =

⋃
i,j Si,j ,

the claimed bound follows.

Proposition 2. (Chen, 2009; Haussler, 1992) Let M ≥ 0 and η be fixed constants, and
let h(·) be a function defined on a set V such that η ≤ h(p) ≤ η + M for all p ∈ V . Let

U ⊆ V be a random sample of size s, and δ > 0 be a parameter. If s ≥ M2

2δ2
ln(2/λ), then

Pr

[∣∣∣∣h(V )

|V |
− h(U)

|U |

∣∣∣∣ ≥ δ

]
≤ λ,

where h(U) :=
∑

u∈U h(u), and h(V ) :=
∑

v∈V h(v).

2. We defer the discussion on how to ensure the integrality of the weights to Section 3.1.
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Lemma 1. Let (Γ, d) be a metric space, V ⊆ Γ be a finite set of points, λ′, 0 < ξ < 1, q ≥ 0
be parameters, and define s′ = 4

ξ2

(
q + ln 2

λ′

)
. Suppose U ⊆ V is a random sample of size

s′. Then for any fixed finite set C ⊆ F with probability at least 1− λ′ it holds that for any
0 ≤ t ≤ q,

|costt(V,C)− wcostt′(U,C)| ≤ ξ|V |(diam(V ) + d(V,C)),

where t′ = ⌊t|U |/|V |⌋ and w(u) = |V |/|U | for all u ∈ U .

Proof. Throughout the proof, we fix the set C ⊆ F and 0 ≤ t ≤ q as in the statement of
the lemma. Next, we define the following notation. For each v ∈ V , let h(v) := d(v, C),
and let h(V ) :=

∑
v∈V h(v), and h(U) :=

∑
u∈U h(u). Analogously, let h′(V ) := costt(V,C),

and h′(U) := costt′(U,C). Let η(V ) := minv∈V d(v, C), and η(U) := minu∈U d(u,C). We
summarize a few properties about these definitions in the following observation.

Observation 2. The following inequalities hold.

•
(
t |U |
|V | − 1

)
≤ t′ ≤ t |U |

|V |

• h′(V ) ≤ h(V )− t · η(V ) ≤ h(V ), and h′(V ) ≥ h(V )− t · (η(V ) + diam(V ))

• h′(U) ≤ h(U), and h′(U) ≥ h(U)− t |U |
|V | · (η(U) + diam(U))

• η(V ) ≤ η(U) ≤ η(V ) + diam(V )

Proof. The first item is immediate from the definition t′ = ⌊t|U |/|V |⌋. Consider the second
item. For each v ∈ V , let g(v) := d(v, C) − η(V ). Let V ′ ⊆ V denote a set of points of
size t that have the t largest distances to the centers in C. By triangle inequality, we get
that d(v, C) ≤ d(v, v∗) + d(v∗, C) ≤ diam(V ) + η(V ), where v∗ ∈ V is a point realizing the
minimum distance η(V ) to the set of centers C. This implies that g(v) ≤ diam(V ) for all
v ∈ V . Now, observe that

h(V ) = h′(V ) +
∑
v∈V ′

(η(V ) + g(v)) (Since h′(V ) excludes the distances of points in V ′)

= h′(V ) + t · η(V ) +
∑
v∈V ′

g(v) (1)

≥ h′(V ) + t · η(V ) (g(v) ≥ 0 for all v ∈ V )

By rearranging the last inequality, we get the first part of the second item. To see the
second part, observe that (1) implies that h(V ) ≤ h′(V ) + t · η(V ) + t · diam(V ), since
g(v) ≤ diam(V ) for all v ∈ V .

The proof of the third item is analogous to the proof of the first item. In addition, we
need to combine the inequalities from the first item of the observation. We omit the details.
The fourth item follows from the fact that U ⊆ V , and via triangle inequality.

By applying Proposition 2 with η = η(V ),M = diam(V ) and δ = ξM/2, we know with
probability at most λ′,∣∣∣∣∑v∈V d(v, C)

|V |
−

∑
u∈U d(u,C)

|U |

∣∣∣∣ ≥ ξ

2
diam(V ).
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Recall that, h(V ) =
∑

v∈V d(v, C) and h(U) =
∑

u∈U d(u,C). Thus, with probability at
least 1− λ′, we have that ∣∣∣∣h(V )

|V |
− h(U)

|U |

∣∣∣∣ ≤ ξ

2
diam(V ). (2)

Now, we prove the following technical claim.

Claim 1. Suppose (2) holds. Then we have,∣∣∣∣h′(V )

|V |
− h′(U)

|U |

∣∣∣∣ ≤ ξ · (diam(V ) + d(V,C)) (3)

Proof. We suppose that (2) holds, and show that (3) holds with probability 1. First,
consider,

h′(U)

|U |
− h′(V )

|V |
≤ h(U)

|U |
− h(V )

|V |
+

t · (η(V ) + diam(V ))

|V |
(From Observation 2, Part 2)

≤ ξ

2
diam(V ) +

t

|V |
· (η(V ) + diam(V )) (From (2))

≤ ξ

2
diam(V ) +

ξ

2
· (η(V ) + diam(V )) (4)

where the last inequality follows from the assumption that |V | ≥ s′ ≥ 4q
ξ ≥

4t
ξ . Now,

consider

h′(V )

|V |
− h′(U)

|U |
≤ h(V )

|V |
− h(U)

|U |
− tη(V )

|V |
+

t |U |
|V | · (η(U) + diam(U))

|U |
(From Observation 2, Part 3)

≤ ξ

2
diam(V )− t · η(V )

|V |
+

t · η(U)

|V |
+

t · diam(U)

|V |
(From (2))

≤ ξ

2
diam(V )− t · η(V )

|V |
+

t · (η(V ) + diam(V )) + t · diam(U)

|V |
(From Observation 2, Part 4)

≤ ξ

2
diam(V ) +

2t · diam(V )

|V |
(diam(U) ≤ diam(V ))

≤ ξdiam(V ) (5)

where the last inequality follows from the assumption that |V | ≥ s′ ≥ 4q
ξ ≥

4t
ξ .

Thus, from Claim 1, we know that since (2) holds with probability at least 1 − λ′, the
following inequality also holds with probability at least 1− λ′.∣∣∣∣h′(V )− h′(U) · |V |

|U |

∣∣∣∣ ≤ ξ|V | · (diam(V ) + d(V,C)).

The preceding inequality is equivalent to the one in the lemma, because h′(V ) = costt(V,C),

and h′(U) · |V |
|U | =

|V |
|U | · costt′(U,C) = wcostt′(U,C). Finally, notice that Claim 1 holds when

the h′ function is defined with respect to any choice of t ∈ {0, 1, . . . , q}. Therefore, with
probability at least 1−λ′, the inequality in the lemma holds for any t ∈ {0, 1, . . . , q}, which
completes the proof.
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Next, we show the following observation, whose proof is identical to an analogous proof
in (Chen, 2008).

Observation 3. The following inequalities hold.

•
∑

i,j |Xi,j |2jR ≤ 3 · cost0(X,A) ≤ 3τ · OPT(I).

•
∑

i,j |Xi,j |diam(Xi,j) ≤ 6 · cost0(X,A) ≤ 6τ · OPT(I).

Proof. For any p ∈ Xi,j , it holds that 2
jR ≤ max {2d(p,A), R} ≤ 2d(p,A) +R. Therefore,∑

i,j

|Xi,j | · 2jR ≤
∑
i,j

∑
p∈Xi,j

2jR

≤
∑
i,j

∑
p∈Xi,j

2d(p,A) +R

= 2
∑
p∈X

d(p,A) + |X| · |R|

= 2 · cost0(X,A) + n|R|
≤ 3 · cost0(X,A) (By definition of R)

≤ 3τOPT(I ′) ≤ 3τOPT(I).

We also obtain the second item by observing that diam(Xi,j) ≤ 2 · 2j ·R.

Next, we show that the following lemma, which informally states that the union of the
sets of sampled points approximately preserve the cost of clustering w.r.t. any set of at
most k centers, even after excluding at most m outliers overall.

Lemma 2. The following statement holds with probability at least 1 − λ/2: For all sets
C ⊆ F of size at most k, and for all sets of non-negative integers {mi,j}i,j such that∑

i,j mi,j ≤ m,∣∣∣∣∣∣
∑
i,j

costmi,j (Xi,j , C)−
∑
i,j

wcostti,j (Si,j , C)

∣∣∣∣∣∣ ≤ ϵ ·
∑
i,j

costmi,j (Xi,j , C) (6)

where ti,j = ⌊mi,j/wi,j⌋.

Proof. Fix an arbitrary set C ⊆ F of at most k centers, and the integers {mi,j}i,j such that∑
i,j mi,j ≤ m as in the statement of the lemma. For each i = 1, . . . , |A|, and 0 ≤ j ≤ ϕ, we

invoke Lemma 1 by setting V = Xi,j , and U = Si,j , ξ = ϵ
8τ , λ

′ = n−kλ/(4(k +m)(1 + ϕ)),
and q = m. This implies that, the following inequality holds with probability at least 1−λ′

for each set Xi,j , and the corresponding mi,j ≤ m,∣∣costmi,j (Xi,j , C)− wcostti,j (Si,j , C)
∣∣

≤ ϵ

8τ
|Xi,j |(diam(Xi,j) + d(Xi,j , C)) (7)
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Note that the sample size required in order for this inequality to hold is

s′ =

⌈
4

ξ2

(
m+ ln

(
2

λ′

))⌉
=

⌈
4

(
8τ

ϵ

)2

·
(
m+ ln

(
8nk(k +m)(1 + ϕ)

λ

))⌉
≤ s.

For any i, j, if Xi,j < s (i.e., Xi,j is small), then the sample Si,j is equal to Xi,j , and each
point in Si,j has weight equal to 1. This implies that costmi,j (Xi,j , C) = wcostti,j (Si,j , C) for
all such Xi,j , and their contribution to the right hand side of inequality (6) is zero. Thus, it
suffices to restrict the sum on the right hand side of (6) over large sets Xi,j ’s. Let L consist
of all pairs (i, j) such that Xi,j is large. We have the following claim.

Claim 2.
∑

(i,j)∈L |Xi,j |d(Xi,j , C) ≤ 2costm(X,C).

Proof. Let Y denote the farthest m points in X from the set of centers C. Now, fix (i, j) ∈ L
and let qi,j := |Xi,j∩Y | ≤ m denote the number of outliers inXi,j . Since |Xi,j | ≥ 2m ≥ 2qi,j ,
the set Xi,j \Y is non-empty, and all points Xi,j \Y contribute towards costm(X,C). That
is, ∑

(i,j)∈L

∑
p∈Xi,j\Y

d(p, C) ≤ costm(X,C) (8)

For any p ∈ Xi,j \ Y , d(Xi,j , C) ≤ d(p, C) from the definition. Therefore,∑
(i,j)∈L

|Xi,j | · d(Xi,j , C)

≤
∑

(i,j)∈L

2|Xi,j \ Y | · d(Xi,j , C)

≤ 2 ·
∑

(i,j)∈L

∑
p∈Xi,j\Y

d(p, C)

≤ 2 · costm(X,C)

Here, to see the second inequality, see that |Xi,j | ≥ 2qi,j , which implies that |Xi,j | − qi,j ≤
2(|Xi,j | − qi,j). The last inequality follows from (8).

Thus, by revisiting (6) and (7), we get:∑
(i,j)∈L

∣∣costmi,j (Xi,j , C)− wcostti,j (Si,j , C)
∣∣

≤ ϵ

8τ

∑
(i,j)∈L

|Xi,j |(diam(Xi,j) + d(Xi,j , C)) (From (7))

≤ ϵ

8τ
· (6τ · OPT(I) + 2costm(X,C)) (From Obs. 3 and Claim 2)

=
ϵ

8τ
(8τ · costm(X,C)) = ϵ · costm(X,C)
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Where, in the last inequality, since C is an arbitrary set of at most k centers, OPT(I) ≤
costm(X,C). Note that the preceding inequality holds for a fixed set C of centers with
probability at least 1 − |A| · (1 + ϕ)λ′ = 1 − n−kλ/2, which follows from taking the union
bound over all sets Xi,j , 1 ≤ i ≤ |A| ≤ k +m, and 0 ≤ j ≤ ϕ.

Since F has at most nk subsets of size at most k, the statement of the lemma follows
from taking a union bound.

Now we are ready to prove Theorem 1. We enumerate every subset T ⊆ S of size at
most m. For each T , we compute a β-approximation solution for the (weighted) k-median
instance (S\T, F, k). Theorem 1 only assumes the existence of a β-approximation algorithm
for unweighted k-median, which cannot be applied to weighted point sets. However, we can
transform S\T to an equivalent unweighted sets R, which contains, for each x ∈ S\T ,
w(x) copies of (unweighted) x, where w(x) is the weight of x in S\T . It is clear that
wcost(S\T,C) = cost(R,C) for all C ⊆ F . Thus, we can apply the β-approximation
k-Median algorithm on (R,F, k) to compute a center set C ⊆ F of size k such that
wcost(S \ T,C) ≤ β · wcost(S \ T,C ′) for any C ′ ⊆ F of size k. We do this for all T ⊆ S of
size at most m. Let C denote the set of all center sets C computed. We pick a center set
C∗ ⊆ C that minimizes costm(X,C∗), and return (Y ∗, C∗) as the solution where Y ∗ ⊆ X
consists of the m points in X farthest to the center set C∗.

Lemma 3. With probability at least 1− λ
2 , for all C ⊆ F of size k we have

costm(X,C∗) ≤ 1 + ϵ

1− ϵ
· βcostm(X,C).

Proof. The statement in Lemma 2 holds with probability at least 1− λ/2. Thus, it suffices
to assume the statement in Lemma 2, and show costm(X,C∗) ≤ (1 + ϵ)2β · costm(X,C)
for any C ⊆ F of size k. Fix a subset C ⊆ F of size k. Let Y ⊆ X consist of the m
points in X farthest to C, and define mi,j = |Y ∩ Xi,j |. Set ti,j = ⌊mi,j/wi,j⌋. Note that
costm(X,C) =

∑
i,j costmi,j (Xi,j , C). Furthermore, by Lemma 2, we have∑

i,j

wcostti,j (Si,j , C) ≤ (1 + ϵ) ·
∑
i,j

costmi,j (Xi,j , C)

= (1 + ϵ) · costm(X,C). (9)

Now let Ti,j ⊆ Si,j consist of the ti,j points in Si,j farthest to C, and define T =
⋃

i,j Ti,j .
Since |T | ≤ m, T is considered by our algorithm and thus there exists a center set C ′ ∈ C
that is a β-approximation solution for the (weighted) k-median instance (S\T, F, k). We
have

wcost(S\T,C ′) ≤ β · wcost(S\T,C) = β
∑
i,j

wcostti,j (Si,j , C). (10)

Note that wcost(S\T,C ′) ≥
∑

i,j wcostti,j (Si,j , C
′). Furthermore, by applying Lemma 2

again, we have
∑

i,j wcostti,j (Si,j , C
′) ≥ (1− ϵ) ·

∑
i,j costmi,j (Xi,j , C

′). It then follows that

(1− ϵ) · costm(Xi,j , C
′) ≤ (1− ϵ) ·

∑
i,j

costmi,j (Xi,j , C
′) ≤ wcost(S\T,C ′). (11)
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Finally, we have costm(X,C∗) ≤ costm(X,C ′) by the construction of C∗. Combining this
with (9), (10), and (11), we have costm(X,C∗) ≤ 1+ϵ

1−ϵ · βcostm(X,C), which completes the
proof.

By choosing λ > 0 to be a sufficiently small constant, and by appropriately rescaling
ϵ 3, the above lemma shows that our algorithm outputs a (β + ϵ)-approximation solution
with a constant probability. By repeating the algorithm a logarithmic number of rounds,
we can guarantee the algorithm succeeds with high probability. The number of subsets

T ⊆ S of size at most m is bounded by |S|O(m), which is
(
(k+m) logn

ϵ

)O(m)
by Proposition

1. Note that (log n)O(m) ≤ max{mO(m), nO(1)}. Thus, the number of subsets T ⊆ S of

size at most m is bounded by f(k,m, ϵ) · nO(1), where f(k,m, ϵ) =
(
k+m
ϵ

)O(m)
. Thus,

we need to call the β-approximation k-Median algorithm f(k,m, ϵ) · nO(1) times, which
takes f(k,m, ϵ)nO(1) · T (n, k) time overall. The first call of the algorithm for obtaining a
τ -approximation to the (k+m)-Median instance takes polynomial time. Besides this, the
other parts of our algorithm can all be done in polynomial time. This completes the proof
of Theorem 1.

3.1 Ensuring Integral Weights in the Coreset

Recall that in order to obtain the set Si,j from a large Xi,j , we sample s points uniformly
and independently at random (with replacement), and give each point in Si,j the weight

wi,j =
|Xi,j |
|Si,j | . In the main body of the proof, we assumed that the quantity wi,j is integral for

the sake of simplicity. However, in general
|Xi,j |
|Si,j | may not be an integer. Here, we describe

how to modify this construction to ensure integral weights.

To this end, let X
(1)
i,j ⊆ Xi,j be an arbitrary subset of size |Xi,j | mod s, and let X

(2)
i,j =

Xi,j \ Yi,j . From this time onward, we treat X
(1)
i,j and X

(2)
i,j as two separate sets of the form

X·,·, and proceed with the construction of the coreset.

In particular, observe that |X(1)
i,j | < s, i.e., it is small, and |X(2)

i,j | = t · s for some

positive integer t, and thus X
(2)
i,j is large. Therefore, we let S

(1)
i,j ← X

(1)
i,j , and each point is

added with weight 1. On the other hand, to obtain S
(2)
i,j , we sample s points uniformly and

independently at random from X
(2)
i,j , and set the weight of each point to be |X(2)

i,j |/s, which
is an integer. From this point onward, we proceed with exactly the same analysis as in the

original proof, i.e., we treat X
(1)
i,j as a small set, and X

(2)
i,j as a large set in the analysis.

Since for the small sets, the sampled set is equal to the original set, their contribution to
the left hand side of the following inequality in the statement of Lemma 2, is equal to zero.∣∣∣∣∣∣

∑
i,j

costmi,j (Xi,j , C)−
∑
i,j

wcostti,j (Si,j , C)

∣∣∣∣∣∣ ≤ ϵ ·
∑
i,j

costmi,j (Xi,j , C)

Therefore, the analysis of Lemma 2 goes through without any modifications. The only other
minor change is that the number of points in the coreset S, which is obtained by taking the

3. Since Lemma 3 implies a β(1 +O(ϵ))-approximation, and β is a constant, it suffices to redefine ϵ = ϵ/c
for some large enough constant c to get the desired result.
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union of all S·,·, is now at most twice the previous bound, which is easily absorbed in the
big-oh notation.

4. Extensions

4.1 k-Means with Outliers

This is similar to k-MedianOut, except that the cost function is the sum of squares of
distances of all except m outlier points to a set of k facilities. This generalizes the well-
known k-Means problem. Here, the main obstacle is that, the squares of distances do
not satisfy triangle inequality, and thus it does not form a metric. However, they satisfy a
relaxed version of triangle inequality (i.e., d(p, q)2 ≤ 2(d(p, r)2+d(r, q)2)). This technicality
makes the arguments tedious, nevertheless, we can follow the same approach as for k-
MedianOut, to obtain optimal FPT approximation schemes. Our technique implies an
optimal (1 + 8

e + ϵ)-approximation for k-MeansOut (using the result of (Cohen-Addad
et al., 2019) as a black-box), improving upon polynomial-time 53.002-approximation from
(Krishnaswamy et al., 2018), and (9 + ϵ)-approximation from (Goyal et al., 2020) in time
FPT in k,m and ϵ.

In fact, using our technique, we can get improved approximation guarantees for (k, z)-
Clustering with Outliers, where the cost function involves z-th power of distances,
where z ≥ 1 is fixed for a problem. Note that the cases z = 1 and z = 2 correspond to
k-MedianOut and k-MeansOut respectively. We give the details for (k, z)-Clustering
with Outliers in Appendix A.

4.2 Matroid Median with Outliers

A matroid is a pairM = (F,S), where F is a ground set, and S is a collection of subsets
of F with the following properties: (i) ∅ ∈ S, (ii) If A ∈ S, then for every subset B ⊆ A,
B ∈ S, and (iii) For any A,B ∈ S with |B| < |A|, there exists an b ∈ B \ A such that
B∪{b} ∈ S. The rank of a matroidM is the size of the largest independent set in S. Using
the definition of matroid, it can be easily seen that all inclusion-wise maximal independent
sets (called bases) have the same size.

An instance of Matroid Median with Outliers is given by (X,F,M,m), where
M = (F,S) is a matroid with rank k defined over a finite ground set F , and X,F are sets
of clients and facilities, belonging to a finite metric space (Γ, d). The objective is to find a
set C ⊆ F of facilities that minimizes costm(X,C), and C ∈ S, i.e., C is an independent
set in the given matroid. Note that an explicit description of a matroid of rank k may be
as large as nk. Therefore, we assume that we are given an efficient oracle access to the
matroid M. That is, we are provided with an algorithm A that, given a candidate set
S ⊆ F , returns in time T (A) (which is assumed to be polynomial in |F |), returns whether
S ∈ I.

We can adapt our approach to Matroid Median with Outliers in a relatively
straightforward manner. Recall that our algorithm needs to start with an instance of
outlier-free problem (i.e., Matroid Median) that provides a lower bound on the optimal
cost of the given instance. To this end, given an instance I = (X,F,M = (F,S),m) of
Matroid Median with Outliers, we define an instance I ′ = (X,F,M′, 0) of Matroid
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Median with 0 Outliers (i.e., Matroid Median), whereM′ = (F ∪X,S ′) is defined as follows.
S ′ = {Y ∪ C : Y ⊆ X with |Y | ≤ m and C ⊆ F with C ∈ S}. That is, each independent
set ofM′ is obtained by taking the union of an independent set of facilities fromM, and
a subset of X of size at most m. It is straightforward to show that M′ satisfies all three
axioms mentioned above, and thus is a matroid over the ground set F ∪X. In particular, it
is the direct sum ofM and a uniform matroidMm over X of rank m (i.e., where any subset
of X of size at most m is independent). Note that using the oracle algorithm A, we can
simulate an oracle algorithm to test whether a candidate set C ⊆ F ∪X is independent in
M′. Therefore, using a (2 + ϵ)-approximation for Matroid Median (Cohen-Addad et al.,
2019) in time FPT in k and ϵ, we can find a set A ⊆ F ∪ X of size at most k + m that
we can use to construct a coreset. The details about enumeration are similar to that for
k-MedianOut, and are thus omitted.

4.3 Colorful k-Median

This is an orthogonal generalization of k-MedianOut to ensure a certain notion of fairness
in the solution (see (Jia et al., 2020)). Suppose the set of points X is partitioned into
ℓ different colors X1 ⊎ X2 ⊎ . . . ⊎ Xℓ. We are also given the corresponding number of
outliers m1,m2, . . . ,mℓ. The goal is to find a set of at most facilities C to minimize the
connection cost of all except at most mt outliers from each color class Xt, i.e., we want
to minimize the cost function:

∑ℓ
t=1 costmt(Xt, C). This follows a generalizations of the

well-known k-Center problem introduced in (Bandyapadhyay et al., 2019) and (Anegg,
Angelidakis, Kurpisz, & Zenklusen, 2020; Jia et al., 2020) , called Colorful k-Center.
Similar generalization of Facility Location has also been studied in (Chekuri, Inamdar,
Quanrud, Varadarajan, & Zhang, 2022).

Using our ideas, we can find an FPT approximation parameterized by k, m =
∑ℓ

t=1mt,
and ϵ. To this end, we sample sufficiently many points from each color class Xt separately,
and argue that it preserves the cost appropriately. The technical details follow the same
outline as that for k-Median withm Outliers. In particular, during the enumeration phase—
just like that for k-MedianOut—we obtain several instances of k-Median. That is, our
algorithm is color-agnostic after constructing the coreset. Thus, we obtain a tight (1 +
2
e + ϵ)-approximation for this problem. This is the first non-trivial true approximation
for this problem – previous work (Gupta, Moseley, & Zhou, 2021) only gives a pseudo-
approximation, i.e., a solution with cost at most a constant times that of an optimal cost,
but using slightly more than k facilities.

4.4 A Combination of Above Generalizations

Our technique also works for a combination of the aforementioned generalizations that are
orthogonal to each other. To consider an extreme example, consider Colorful Matroid
Median with ℓ different color classes (a similar version for k-Center objective has been
recently studied by (Anegg, Koch, & Zenklusen, 2022)), where we want to find a set of
facilities that is independent in the given matroid, in order to minimize the sum of distances
of all except mt outlier points for each color class Xt. By using a combination of the ideas
mentioned above, one can get FPT approximations for such generalizations.
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5. Concluding Remarks

In this paper, we give a reduction from k-MedianOut to k-Median that runs in time
FPT in k,m, and ϵ, and preserves the approximation ratio up to an additive ϵ factor.
As a consequence, we obtain improved FPT approximations for k-MedianOut in general
as well as special kinds of metrics, and these approximation guarantees are known to be
tight in general. Furthermore, our technique is versatile in that it also gives improved
approximations for related clustering problems, such as k-MeansOut, Matroid Median
with Outliers, and Colorful k-Median, among others.

The most natural direction is to improve the FPT running time while obtaining the
tight approximation ratios. More fundamentally, perhaps, is the question whether we need
an FPT dependence on the number of outliers, m; or whether it is possible to obtain
approximation guarantees for k-MedianOut matching that for k-Median, with a running
time that is FPT in k and ϵ alone.
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Appendix A. (k, z)-clustering with Outliers

Let z ≥ 1 be a fixed real that is not part of the input of the problem.
The input of the (k, z)-Clustering problem is an instance I = ((Γ, d), X, F, k), where
(Γ, d) is a metric space, X ⊆ Γ is a (finite) set of n points, called points or clients, F ⊆ Γ
is a set of facilities, and k is a positive integer. The task is to find a set C ⊆ F of facilities
(called centers) in F that minimizes the following cost function:

cost(X,C) :=
∑
p∈X

cost(p, C)

where cost(p, C) := (d(p, C))z.

(k, z)-clustering with m outliers. Here, the input contains an additional integer 1 ≤
m ≤ n, and the goal is to find a set X ′ ⊆ X of n − m points, such that cost(X ′, C)
is minimized (over choices all of X ′ and C). Here, the set X \ X ′ of at most m points
corresponds to the set of outliers. In another notation, we want to find a set C ⊆ F of at
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most k centers that minimizes costm(X,C) := sum∼m{cost(p, C) : p ∈ X}, i.e., the sum of
n−m smallest distances of points in X to the set of centers C.

First, we state a few properties about the z-th powers of distances, which will be sub-
sequently useful in the analysis.

Proposition 3. Let P,C ⊆ Γ be non-empty finite subsets of points. For any point p ∈ P ,
the following holds:

• d(P,C)z ≤ cost(p, C) ≤ (d(P,C) + diam(P ))z ≤ 2z · (d(P,C)z + diam(P )z)

• (d(p, C)− d(P,C))z ≤ (diam(P ))z

Proof. Let p∗ ∈ P be a point realizing the smallest distance d(P,C). It follows that for any
p ∈ P ,

d(P,C) = d(p∗, C) ≤ d(p, C)

≤ d(p, p∗) + d(p∗, C) (by triangle inequality)

≤ diam(P ) + d(P,C) (d(p, p∗) ≤ diam(P ))

≤ 2max{diam(P ), d(P,C)}

Now, by taking the z-th power of each term, we get the first inequality, which follows from
max{a, b} ≤ a+ b.

Note that the first and third line in the preceding chain of inequalities implies that
(d(p, C) − d(P,C)) ≤ diam(P ). Note that both sides of the inequality are non-negative.
Thus, by taking the z-th power of both sides, the second item follows.

Consider an instance I = ((Γ, d), X, F, k,m) be an instance of (k, z)-Clustering with
m Outliers. We define an instance I ′ = ((Γ, d), X, F ∪ X, k + m, 0) of (k + m, z)-
Clustering (without outliers), where in addition to the original set of facilities, there
is a facility co-located with each client. The following observation and its proof is analogous
to Observation 1, and thus we omit the proof.

Observation 4. OPT(I ′) ≤ OPT(I), i.e., the value of an optimal solution to I ′ is a lower
bound on the value of an optimal solution to I.

The following definitions and the construction of the coreset is analogous to that for k-
median with m outliers, with appropriate modifications needed for z-th power of distances.
First, we assume that there exists a τ -approximation algorithm for (k, z)-clustering problem
that runs in polynomial time, where τ = O(1). Then, by using this τ -approximation
algorithm for the instance I ′, we obtain a set of at most k′ ≤ k + m centers A such that

cost0(X,A) ≤ τ · OPT(I ′) ≤ τ · OPT(I). Let R =
(
cost0(X,A)

τn

)1/z
be a lower bound on

average radius, and let ϕ = ⌈log(τn)⌉. For each ci ∈ A, let Xi ⊆ X denote the set of points
whose closest center in A is ci. By arbitrarily breaking ties, we assume that the sets Xi

are disjoint, i.e., the sets {Xi}1≤i≤k′ form a partition of X. Now, we define the set of rings
centered at each center ci as follows.

Xi,j :=

{
BXi(ci, R) if j = 0

BXi(ci, 2
jR) \BXi(ci, 2

j−1R) if j ≥ 1
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Let s = cτ22(c
′z)

ϵ2
(m+ k lnn+ ln(1/λ)), for some large enough constants c, c′. We define

a weighted set of points Si,j ⊆ Xi,j as follows. If |Xi,j | ≤ s, then say that Xi,j is small,
and let Si,j := Xi,j , and let the weight of each point p ∈ Si,j be 1. Otherwise, if |Xi,j | > s,
then say that Xi,j is large. In this case, let Yi,j ⊆ Xi,j be an arbitrary subset of size |Xi,j |
mod q. We add each point q ∈ Yi,j to Si,j with weight 1. Furthermore, we sample s points
uniformly at random (with replacement) Xi,j \ Yi,j , and add to the set Si,j with weight

equal to
|Xi,j\Yij |

s , which is an integer. Thus, we assume that |Si,j | ≤ 2s, and the weight of
every point in Si,j is an integer. Finally, let S =

⋃
i,j Si,j .

Lemma 4. Let (Γ, d) be a metric space, and let V ⊆ Γ be a finite set of points. Let λ′, ξ > 0,
q ≥ 0, be parameters, and define s′ = 4

ξ2

(
q + ln 2

λ′

)
. If |V | ≥ s′, and U is a sample of s′

points picked uniformly and independently at random from V , with each point of U having
weight |V |/|U |, such that the total weight w(U) is equal to |V |, then for any fixed finite set
C ⊆ Γ, and for any 0 ≤ t ≤ q, with probability at least 1− λ′ it holds that

|costt(V,C)− wcostt′(U,C)| ≤ 22z+2ξ|V | · (diam(V )z + d(V,C)z), (12)

where t′ = ⌊t|U |/|V |⌋.

Proof. Throughout the proof, we fix the set C and 0 ≤ t ≤ q as in the statement of the
lemma. Next, we define the following notation. For all v ∈ V , let h(v) = cost(v, C) =
d(v, C)z, and let h(V ) :=

∑
v∈V h(v), and h(U) :=

∑
u∈U h(u). Analogously, let h′(V ) :=

costt(V,C), and h′(U) := costt′(U,C), i.e., sum of all except t (resp. t′) largest h-values.
Let η(V ) := minv∈V d(v, C)z, and η(U) := minu∈U d(u,C). We summarize a few properties
about these definitions in the following observation, which is analogous to Observation 2.

Observation 5.

•
(
t |U |
|V | − 1

)
≤ t′ ≤ t |U |

|V |

• For any p ∈ P , (η(V )z ≤ d(p, C)z = cost(p, C)z ≤ η(V )z + 2z(η(V )z + diam(V ))

• h′(V ) ≤ h(V )− t · η(V )z ≤ h(V ), and h′(V ) ≥ h(V )− 2z · t · (η(V )z + diam(V )z)

• h′(U) ≤ h(U), and h′(U) ≥ h(U)− 2z · t |U |
|V | · (η(U)z + diam(U)z)

• η(V )z ≤ η(U)z ≤ 2z(η(V )z + diam(V )z)

Proof. The first item is immediate from the definition t′ = ⌊t|U |/|V |⌋.
Consider the second item. For each v ∈ V , let g(v) := d(v, C) − η(V ). Let V ′ ⊆ V

denote a set of points of size t that have the t largest distances to the centers in C. From
Proposition 3, we get that for any p ∈ V , η(V )z ≤ cost(p, C)z ≤ 2z · (η(V )z + diam(P )z).
This implies that g(v) ≤ diam(V ) for all v ∈ V . Now, observe that

h(V ) = h′(V ) +
∑
v∈V ′

(η(V ) + g(v))z (Since h′(V ) excludes the distances of points in V ′)

≥ h′(V ) + t · η(V )z (g(v) ≥ 0 for all v ∈ V )
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By rearranging the last inequality, we get the first part of the third item. Also note that the
first inequality also implies that h(V ) ≤ h′(V )+2zt · η(V )+2z

∑
v∈V g(v)z, via Proposition

3. Then, by recalling that g(v) ≤ diam(V ) for all v ∈ V , the second part of the third item
follows.

The proof of the fourth item is analogous to that of the third item. In addition, we need
to combine the inequalities from the first item of the observation. We omit the details. The
fifth item follows from the fact that U ⊆ V , and via triangle inequality.

Let η = η(V )z, M = 22z+2(η(V )z + diam(V )z), and δ = ξM/2. Then, the second item
of Observation 5 implies that η ≤ h(v) ≤ η +M for all v ∈ V . Then, Proposition 2 implies
that,

Pr

[∣∣∣∣∑v∈V cost(v, C)

|V |
−

∑
u∈U cost(u,C)

|U |

∣∣∣∣ ≥ ξ

2
2z(η(V )z) + diam(V )z)

]
= Pr

[∣∣∣∣h(V )

|V |
− h(U)

|U |

∣∣∣∣ ≥ δ

]
≤ λ′.

Thus, with probability at least 1− λ′, we have that∣∣∣∣h(V )

|V |
− h(U)

|U |

∣∣∣∣ ≤ ξ

2
·M (13)

In the rest of the proof, we condition on this event, and assume that (13) holds, and show
that the inequality in the lemma holds with probability 1. First, consider,

h′(U)

|U |
− h′(V )

|V |
≤ h(U)

|U |
− h(V )

|V |
+

2z · t · (η(V )z + diam(V )z)

|V |
(From Obs. 5)

≤ ξ

2
M +

t ·M
|V |

(From (13))

≤ ξM (14)

where the last inequality follows from the assumption that |V | ≥ s′ ≥ 4q
ξ ≥

4t
ξ . Now,

consider

h′(V )

|V |
− h′(U)

|U |

≤ h(V )

|V |
− h(U)

|U |
+

2z · t |U |
|V | · (η(U)z + diam(V )z)

|U |
(From Obs. 5, Part 4)

≤ ξ

2
M +

2z · t · η(U)z

|V |
+

2z · t · diam(V )z

|V |
(From (2)

≤ ξ

2
M +

22z · t · (η(V )z + diam(V )z) + t · 2z · diam(V )z

|V |
(From Obs. 2, Part 5)

≤ ξ

2
M +

22z+1 · t · (η(V )z + diam(V )z)

|V |
(Since |V | ≥ s′ ≥ 4q

ξ ≥
4t
ξ )

=
ξ

2
M +

ξ

2
M = ξM (15)
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Note that (14) and (15) hold with probability 1, conditioned on the inequality (13)
holding, which happens with probability at least 1− λ′. Therefore, the following inequality
holds with probability at least 1− λ′:∣∣∣∣h′(V )− h′(U) · |V |

|U |

∣∣∣∣ ≤ 22z+2ξ · |V | · (diam(V )z + d(V,C)z) (16)

where we recall that η(V ) = d(V,C). The preceding inequality is equivalent to the inequal-

ity in the lemma, by recalling that h′(V ) = costt(V,C), and h′(U) · |V |
|U | =

|V |
|U | · costt′(U,C) =

wcostt′(U,C), since the weight of every sampled point in U is equal to |V |/|U |. This con-
cludes the proof of the lemma.

Next, we show the following claim.

Claim 3. •
∑

i,j |Xi,j |(2jR)z ≤ (1 + 2z) · cost0(X,A) ≤ (1 + 2z)τ · OPT(I).

•
∑

i,j |Xi,j |diam(Xi,j)
z ≤ 2z(1 + 2z) · cost0(X,A) ≤ 22z+1 · τ · OPT(I).

Proof. For any p ∈ Xi,j , it holds that 2
jR ≤ max {2d(p,A), R} ≤ 2d(p,A) +R.∑

i,j

|Xi,j | · (2jR)z ≤
∑
i,j

∑
p∈Xi,j

(2jR)z

≤
∑
i,j

∑
p∈Xi,j

(2d(p,A) +R)z

= 2z
∑
p∈X

d(p,A)z + |X| ·Rz

= 2z · cost0(X,A) + n ·Rz

≤ (1 + 2z) · cost0(X,A) (By definition of R)

≤ (1 + 2z) · τ · OPT(I ′)
≤ (1 + 2z) · τ · OPT(I). (From Obs. 4)

We also obtain the second item by observing that diam(Xi,j) ≤ 2 · 2j · R, and using an
analogous argument.

Next, we show that the following lemma, which informally states that the union of the
sets of sampled points approximately preserve the cost of clustering w.r.t. any set of at
most k centers, even after excluding at most m outliers overall.

Lemma 5. The following statement holds with probability at least 1− λ/2:
For all sets C ⊆ F of size at most k, and for all sets of non-negative integers {mi,j}i,j such
that

∑
i,j mi,j ≤ m,∣∣∣∣∣∣

∑
i,j

costmi,j (Xi,j , C)−
∑
i,j

wcostm′
i,j
(Si,j , C)

∣∣∣∣∣∣ ≤ ϵ ·
∑
i,j

costmi,j (Xi,j , C) (17)

where ti,j = ⌊mi,j/wi,j⌋.

164



Optimal Approximation for Clustering with Outliers

Proof. Fix an arbitrary set C of at most k centers and the integers {mi,j}i,j such that∑
i,j mi,j ≤ m as in the statement of the lemma. For each i = 1, . . . , |A|, and 0 ≤ j ≤ ϕ, we

invoke Lemma 4 by setting V ← Xi,j , and U ← Si,j , ξ ← ϵ
29zτ

, λ′ ← n−kλ/(4(k+m)(1+ϕ)),
and q ← m. This implies that, the following inequality holds with probability at least 1−λ′

for each set Xi,j , and for the corresponding mi,j ≤ m:∣∣costmi,j (Xi,j , C)− wcostti,j (Si,j , C)
∣∣ ≤ ϵ

29zτ
22z+2|Xi,j |(diam(Xi,j) + d(Xi,j , C)) (18)

Note that for any i, j, if Xi,j < s, i.e., Xi,j is small, then the sample Si,j is equal to Xi,j , and
each point in Si,j has weight equal to 1. This implies that costti,j (Xi,j , C) = wcostt′i,j (Si,j , C)

for all such Xi,j , the contribution to the right hand side of inequality (18) is zero. Thus, it
suffices to restrict the sum on the right hand side of (18) over large sets Xi,j ’s. We have the
following claim about the large sets Xi,j , the proof of which is analogous to that of Claim
2, and is therefore omitted.

Claim 4.
∑

i,j:Xi,j is large d(Xi,j , C)z ≤ 2costm(X,C).

Thus, by revisiting (18), we get:

|costm(X,C)−∆(C)|

≤
∑

i,j:Xi,j is large

∣∣∣costti,j (Xi,j , C)− wcostt′i,j (Si,j , C)
∣∣∣ (19)

≤ ϵ

29zτ

∑
i,j:Xi,j is large

22z+2 · |Xi,j |(diam(Xi,j)
z + d(Xi,j , C)z)

(By setting qi,j ← ti,j and q′i,j ← t′i,j in (18))

≤ ϵ

29zτ
· (22z+2 · 22z+1τOPT(I) + 22z+3costm(X,C) (From Claim 3 and Claim 4)

≤ ϵ

29zτ
(29z · τ · costm(X,C)) = ϵ · costm(X,C))

Where, the last inequality follows from the fact that since C is an arbitrary set of at most
k centers, OPT(I) ≤ costm(X,C). Note that the preceding inequality holds for a fixed set
C of centers with probability at least 1− |A| · (1 + ϕ)λ′ = 1− n−kλ/2, which follows from
taking the union bound over all sets Xi,j , 1 ≤ i ≤ |A| ≤ k +m, and 0 ≤ j ≤ ϕ.

Since there are at most nk subsets C of F size at most k, the statement of the lemma
follows from taking a union bound.

Once we obtain a coreset S satisfying Lemma 5, we can perform a similar enumeration

of sets of size at most m, and obtain
(
k+m
ϵ

)O(m) ·nO(1) instances of (k, z)-Clustering. We
call a β-approximation on each of these instances, and each call takes time T (n, k). The
subsequent analysis is identical to that for k-MedianOut which can be used to show an
analogous version of Lemma 3. We omit the details, and conclude this section with the
following theorem, which generalizes Theorem 1.

Theorem 2. Let z ≥ 1 be a fixed constant. Suppose there exists a β-approximation al-
gorithm for (k, z)-Clustering with running time T (n, k) for some constant β ≥ 1, and
there exists a τ -approximation algorithm for (k, z)-Clustering that runs in polynomial
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time, where τ = O(1). Then there exists a (β + ϵ)-approximation algorithm for (k, z)-

Clustering with Outliers, with running time
(
k+m
ϵ

)O(m)
nO(1) ·T (n, k), where n is the

instance size and m is the number of outliers.
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