
Journal of Artificial Intelligence Research 80 (2024) 613-663 Submitted 06/2023; published 06/2024

The Toad System for Totally Ordered HTN Planning

Daniel Höller hoeller@cs.uni-saarland.de
Saarland University
Saarland Informatics Campus
Saarbrücken, Germany

Abstract
We present an approach for translating Totally Ordered Hierarchical Task Network

(HTN) planning problems to classical planning problems. While this enables the use of
sophisticated classical planning systems to find solutions, we need to overcome the differ-
ences in expressiveness of these two planning formalisms. Prior work on this topic did this
by translating bounded HTN problems. In contrast, we approximate them, i.e., we change
the problem such that every action sequence that is a solution to the HTN problem is also
a solution for the classical problem, but the latter might have more solutions. To obtain
a sound overall approach, we verify solutions returned by the classical planning system to
ensure that they are also solutions to the HTN problem.

For translation and approximation, we use techniques introduced to approximate Con-
text-Free Languages by using Finite Automata. We named our system Toad (Totally
Ordered HTN Approximation using DFA). For a subset of HTN problems the translation
is even possible without approximation. Whether or not it is necessary is decided based on
the property of self-embedding, which comes also from the field of formal languages. We
investigate the theoretical connection of self-embedding and tail-recursiveness, a property
from the HTN literature used to identify a subclass of HTN planning problems that can
be translated to classical planning, and show that it is more general. To guide the classical
planner, we introduce a novel heuristic tailored towards our models.

We evaluate Toad on the benchmark set of the 2020 International Planning Competi-
tion. Our evaluation shows that (1) most problems can be translated without approxima-
tion and that (2) Toad is competitive with the state of the art in HTN planning.

1. Introduction

Planning is the task of generating a sequence of actions that achieve some objective. It is
solved based on a model describing the environment and how to change it. Two well-studied
approaches to planning are classical planning and hierarchical planning, in the latter case
especially Hierarchical Task Network (HTN) planning.

In classical planning, the environment is usually described by a propositional model.
The state of the environment can be changed by a set of actions. Each action comes with a
set of preconditions that need to hold to be able to apply it, and a set of state features that
are added and deleted by the action. The objective is to find a sequence of actions that is
applicable in the current state and that results in a state where certain state features hold.

Models in HTN planning additionally define a grammar-like decomposition structure.
Solutions need to be derived via that grammar, so there are two means to restrict the set
of solutions: state transition as given before, and the hierarchy. The motivations to use
hierarchical planning are manifold: HTN planning is more expressive than classical plan-

©2024 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Höller

HTN
model Analysis

Approximation

FA Classical
model

Classical
Planner Verification HTN

solution

Figure 1: Overview of the Toad approach. First, it is analyzed whether the HTN problem
can be translated exactly, or if approximation is needed (see Section 4.1). When
approximation is needed, the grammar rules (which in our case are the HTN meth-
ods) are transformed such that the set of solutions increases (Section 4.3). Next,
a FA is built accepting action sequences derivable via the hierarchy (Section 4.4)
and a classical planning problem is encoded capturing the FA and the original
state transition (Section 4.5), which is solved using a classical planning system.
To return only valid solutions for the original HTN problem, verification is applied
as last step. This figure is based on Figure 1 from Höller (2021).

ning (Erol et al., 1996; Höller et al., 2014, 2016), while commonly-used classical planning
formalisms can express structures similar to the regular languages, the full HTN formalism
can express (non-context-free) context-sensitive structures, and the subclass of totally or-
dered HTN planning used here can exactly express the context-free languages. It has been
shown that HTN planning can express undecidable problems like the grammar intersection
problem of context-free languages (see Erol et al., 1996). It has also been argued that hier-
archical formalisms sometimes enable a more natural way of modeling a domain, e.g. when
it is known which medical treatment will lead to the recovery of a patient without knowing
the actual effects of each step (Goldman, 2009). Hierarchical models have also been used to
communicate with human users on different levels of abstraction (Köhn et al., 2020; Behnke
et al., 2020). Another motivation is to include advice on how to solve a problem into a plan-
ning model that could in principle also be modeled using classical models (see e.g. SHOP2
by Nau et al., 2003, and SHOP3 by Goldman & Kuter, 2019).

This leads to a large variety in HTN models: some need the full expressiveness, others
use the hierarchy for other reasons; some models include enough advice to use uninformed
search (usually depth first search) to find solutions very fast, other models do not include
any advice. This variety is also reflected in the benchmark set used in the 2020 International
Planning Competition (IPC) (Behnke et al., 2021).

There is also a range of different solving techniques used in HTN planning. Many solvers
are based on search (see e.g. Nau et al., 2003; Bit-Monnot et al., 2016; Goldman & Kuter,
2019; Höller et al., 2020; Pellier & Fiorino, 2021; Ramoul et al., 2017; Lesire & Albore,
2021), but there are also translations to propositional logic (see e.g. Behnke et al., 2018,
2019; Schreiber et al., 2019; Schreiber, 2021a, 2021b), or non-hierarchical planning (see e.g.
Alford et al., 2009, 2016; Behnke et al., 2022). We provide a detailed discussion of related
work in Section 6. A summary can also be found in the survey by Bercher et al. (2019).

In this article, we present a novel translation-based approach for the subclass of to-
tally ordered HTN planning. Our approach is based on techniques from formal languages
introduced to build a finite automaton (FA) that accepts the language of a context-free
grammar (CFG) (see Nederhof, 2000a, 2000b). We use them to create a FA that specifies

614

The Toad Planning System

which action sequences can result from the HTN decomposition process. Since FAs and
CFGs describe different language classes, this is in general not directly possible, of course.
However, a direct translation is possible for models that are not self-embedding – a property
which also comes from the field of formal languages. For models that are self-embedding,
we apply an approximation introduced by Nederhof, 2000a, 2000b. Nederhof introduces
two kinds of approximations: the first one results in an increase of the original solution
set (superset approximation), the second one results in a decrease (subset approximation).
To get a complete overall approach, we use only superset approximation in this work, i.e.,
the FA describes a superset of the HTN solutions. We combine this FA with the original
actions from the HTN model to produce a classical planning model. To make our approach
sound, we verify the solutions returned by the classical planning system using an approach
from the literature (Höller et al., 2022). We named our system Toad (Totally Ordered HTN
Approximation using DFA). The overall process is illustrated in Figure 1. Our contributions
are the following:

• We introduce Toad, a translation-based planner for totally ordered HTN planning.

• We analyse the theoretical connection of self-embedding and a property called tail-
recursiveness, which was introduced by Alford et al. (2016) as a property identifying
a subclass of HTN planning problems that can be translated to classical planning.
We show that the property used here is more general, i.e., we show that every totally
ordered tail-recursive HTN problem is also non-self-embedding, but not vise versa.

• We analyse the benchmark set from the 2020 International Planning Competition.
Interestingly, wide parts of the benchmarks are not self-embedding and can thus be
translated exactly.

• To solve the classical planning problems resulting from the translation, we introduce
a heuristic tailored towards our problems. It re-uses information from the translation
to create a pre-computed heuristic.

• We study the impact of minimization and determinization of the FAs on their size and
the resulting planning performance.

• Our evaluation on the 2020 IPC benchmark set shows that our system is competitive
with the state of the art in HTN planning.

The basic approach has been presented by Höller (2021). We extend this work along
a practical and a theoretical line. On the practical side, optimization for the generated
automata as well as the classical heuristic tailored to our problems have not been presented
before. Further, the theoretical connection between self-embedding and tail-recursiveness
has not been part of the conference publication.

2. Preliminaries

We now introduce the formalisms used throughout the article. We start with a classical
model in finite domain representation (FDR) (Helmert, 2006; Bäckström & Nebel, 1995)
and combine it with an HTN formalism specialized to totally ordered HTN planning as
introduced by Behnke et al. (2018).

615

Höller

2.1 Classical Planning Problems

A classical planning problem is a tuple Πc = (V ,A, s0, s⋆). V is a set1 of variables, each
variable v ∈ V has a finite domain Dv. A partial assignment is a function mapping a subset
of the variables to values of their respective domains. We write v = d to denote that the
variable v ∈ V has the value d ∈ Dv. Let s and s′ be partial assignments. We use subset
notation s′ ⊆ s to denote that all variables contained in s′ are also assigned in s and have
the same values, i.e., (s′(v) = d) ⇒ (s(v) = d). We write vars(s) to denote the set of
variables set in the partial state s. Let V be a set of variables, we write s[V] to denote the
partial state where exactly the variables contained in V have a value assigned. A state is
a partial assignment on all variables. s0 is the initial state of the problem. s⋆ is a partial
state defining which assignments must hold in a state to be a goal state.

A is a set of actions. There are functions prec and eff that map each action to partial
assignments, the actions’ preconditions and effects, respectively. An action a ∈ A is applica-
ble in a state s if and only if prec(a) ⊆ s. When an applicable action a is applied to a state
s, the state sJaK resulting from the application is defined as s[vars(s)\vars(eff (a))]∪eff (a),
i.e., the values of variables contained in the effect are set to the value given in the effect, the
other values remain unchanged. A sequence of actions a1, a2, . . . , an is applicable in a state
s0 when each ai is applicable in the state si−1 with si = si−1JaiK for 1 ≤ i ≤ n. We call sn
the state resulting from the application.

A solution (also plan) to a classical planning problem is a (possibly empty) sequence of
actions that is applicable in s0 for which the application results in a state sn that is a goal
state, i.e., s⋆ ⊆ sn.

2.2 Totally Ordered HTN Planning Problems

A totally ordered HTN (TOHTN) planning problem is a tuple Πh = (V , C ,A,M, cI , s0, s⋆).
The elements V, A, s0, and s⋆ are defined as given before.

C is a set of abstract tasks. These tasks cannot be applied directly, they need to be
decomposed in a process that – for totally ordered HTN planning – exactly resembles the
derivation of words from a context-free grammar. Let N = C ∪ A (wlog. we assume that
C ∩ A = ∅). A task network is an element out of N ∗ (where ∗ is the Kleene operator).

The set of methods M ⊆ C × N ∗ defines how tasks can be decomposed. A method
(c, φ) is applicable to the task c ∈ C. When it improves readability, we write c → φ instead
of (c, φ). When a method (c, φ) is applied to a task network ωcω′ with ω, ω′ ∈ N ∗, the
resulting task network is defined as ωφω′. We write ω ⇝ ω′ to denote that a task network ω
can be decomposed into a task network ω′ by applying zero or more methods2. The initial
task cI ∈ C is the task the decomposition process starts with.

A task network ω is a solution to a TOHTN planning problem if and only if the following
solution criteria hold.

1. cI ⇝ ω – it can be reached by decomposing the initial task (Solution Criterion 1).

1. All sets given here in the definition of classical and HTN planning are finite.
2. We use three different arrow symbols: ⇝ as defined here; → as given above to define methods, where

c → φ denotes a method decomposing c into φ; and 7→ to define functions like prec(a) 7→ F , where F is
the set of state features returned by the function prec when applied to action a.

616

The Toad Planning System

2. ω ∈ A∗ – all contained tasks are primitive (Solution Criterion 2).

3. ω is applicable in the initial state and results in a goal state3 (Solution Criterion 3).

2.3 From Planning Problems to Formal Languages

The set of solutions to an HTN planning problem is restricted by two mechanisms, which
are represented in the solution criteria: Criteria 1 and 2 restrict the set to primitive task
sequences resulting from decomposing the initial task. Criterion 3 enforces the state-based
transition semantics like present in classical planning.

We can regard the set of action sequences resulting from these two as formal languages,
the first one containing sequences in line with Criteria 1 and 2, the second one those in line
with Criterion 3. The solutions to the overall problem need to fulfill all solution criteria,
therefore the set of solutions to the overall problem is formed by the intersection of the two
languages (Höller et al., 2014). Since the number of states in a planning problem is finite,
the second language is regular (Höller et al., 2016). In totally ordered HTN planning, the
definition of decomposition methods and their application (i.e., the “decomposition” itself as
defined in Section 2.2) exactly resemble a context-free grammar and the respective derivation
of words. As a result, the second language is a context-free language (Höller et al., 2014).
Therefore is also the overall “language” (the set of all solutions to the problem) context-free.

Definition 1 (The languages Lh and Lc). Let Πh = (V , C ,A,M, cI , s0, s⋆) be an HTN
planning problem. We define the language Lh as the set of all action sequences that fulfill
Criteria 1 and 2; and Lc as the set of all action sequences that fulfill Criterion 3.

Let LΠh
be the set of solutions to a planning problem Πh, then LΠh

= Lh ∩ Lc (Höller
et al., 2014).

Definition 2 (The grammar Gh). Given a planning problem Πh = (V , C ,A,M, cI , s0, s⋆),
we define Gh as a tuple (C ,A,M, cI).

The set of abstract tasks C can be regarded a set of non-terminal symbols, the actions
A as terminals, M as production rules, and cI as a start symbol. Given the way “decompo-
sition” is defined in Section 2.2, the following theorem holds:

Theorem 1 (Gh defines Lh). Gh is a context-free grammar defining Lh.

The grammar is defined for a particular planning problem. However, in the following it
will be clear which one we refer to and we omit further annotation to keep notation simple.

3. Running Example

Throughout the article, we illustrate our approach using variations of a simple transport
problem as running example. The lifted HDDL (Höller et al., 2020a) domain model is
contained in the appendix. Here we present the grounding of a small instance. It has been
created using the Panda grounding system (Behnke et al., 2020), which is also used in the
preprocessing of our Toad system.

3. In HTN planning, the state-based goal condition is usually empty. When there is one, it can be compiled
away by introducing an artificial last task that has the state-based goal definition as its precondition and
thus enforces it to hold in the end.

617

Höller

4 c0 c1 ö

Figure 2: Illustration of the initial state of our running example.

The initial state of the problem instance is shown in Figure 2. A truck t is located at
position c0 and a package at position c1. There are two variables l(p) and l(t) describing
the locations of the package and the truck, respectively. The package might be at one of the
two locations or in the truck, i.e., Dl(p) = {at(p, c0), at(p, c1), in(p, t)}. The truck might
be at some position, i.e., Dl(t) = {at(t , c0), at(t , c1)}. The package shall be delivered to
location c0. This is ensured by the state-based goal definition, s⋆ = {l(p) = at(p, c0)}.

3.1 State Transition System

There are actions to move the truck between the two positions, to pick-up and to drop the
package at both positions.

A ={drive(t , c0 , c1), drive(t , c1 , c0),
pick -up(t , c0 , p), pick -up(t , c1 , p),

drop(t , c0 , p), drop(t , c1 , p)}

The preconditions and effects of the actions are defined as expected in such a domain:

prec(drive(t , c0 , c1)) 7→{l(t) = at(t , c0)}
eff (drive(t , c0 , c1)) 7→{l(t) = at(t , c1)}

prec(drive(t , c1 , c0)) 7→{l(t) = at(t , c1)}
eff (drive(t , c1 , c0)) 7→{l(t) = at(t , c0)}

prec(pick -up(t , c0 , p)) 7→{l(p) = at(p, c0), l(t) = at(t , c0)}
eff (pick -up(t , c0 , p)) 7→{l(p) = in(p, t)}

prec(pick -up(t , c1 , p)) 7→{l(p) = at(p, c1), l(t) = at(t , c1)}
eff (pick -up(t , c1 , p)) 7→{l(p) = in(p, t)}

prec(drop(t , c0 , p)) 7→{l(t) = at(t , c0), l(p) = in(p, t)}
eff (drop(t , c0 , p)) 7→{l(p) = at(p, c0)}

prec(drop(t , c1 , p)) 7→{l(t) = at(t , c1), l(p) = in(p, t)}
eff (drop(t , c1 , p)) 7→{l(p) = at(p, c1)}

618

The Toad Planning System

3.2 Decomposition Structure

The set of abstract tasks is defined as:

C ={logistics-problem(),

deliver(p, c0), deliver(p, c1),

get-to-s(t , c0), get-to-s(t , c1),

get-to-d(t , c0), get-to-d(t , c1)}

The decomposition process starts with the abstract task logistics-problem(), which de-
scribes one transport problem with one or more packages. It can be decomposed using the
following set of methods:

logistics-problem() → deliver(p, c0), logistics-problem()

logistics-problem() → deliver(p, c1), logistics-problem()

logistics-problem() → deliver(p, c0)

logistics-problem() → deliver(p, c1)

The last two methods decompose the overall logistics problem into the delivery of a single
package. There is one deliver task for each combination of package and target location. Since
there is only one package and two locations in this instance, there are two such tasks, one
to deliver p at location c0, and one to deliver p at location c1. The first two methods
decompose the logistics-problem() task into one of the deliver tasks followed by another
logistics-problem() task, i.e., it enables the delivery of more than one package. Deliver tasks
can be decomposed using one of the following methods:

deliver(p, c0) → get-to-s(t , c0), pick -up(t , c0 , p), get-to-d(t , c0), drop(t , c0 , p)

deliver(p, c0) → get-to-s(t , c1), pick -up(t , c1 , p), get-to-d(t , c0), drop(t , c0 , p)

deliver(p, c1) → get-to-s(t , c0), pick -up(t , c0 , p), get-to-d(t , c1), drop(t , c1 , p)

deliver(p, c1) → get-to-s(t , c1), pick -up(t , c1 , p), get-to-d(t , c1), drop(t , c1 , p)

Consider deliver(p, c0), the task to deliver package p at location c0. It can be decomposed
using one of the first two methods. They differ in the location where the package is picked
up, which is reflected in the first two tasks of the right-hand side of the respective methods.

Consider the second method: deliver(p, c0) is decomposed into the following task se-
quence: first the truck must reach the source location where it shall pick up the package,
which here is c1, i.e., it must fulfill the task get-to-s(t , c1). Then it picks up p at that loca-
tion (fulfilling the primitive task pick -up(t , c1 , p)). Then it needs to reach the destination
location where the package shall be dropped (get-to-d(t , c0) and drop(t , c0 , p)).

We use different tasks/methods for reaching the source and destination locations to make
the example more interesting later on. One could in principle use the same task/method set,
of course. Both get-to-s and get-to-d enable recursion. Since there are only two locations in
this simple example, introducing a recursive structure for moving is of course not necessary.
However, given an instance with more locations, it might be necessary.

619

Höller

The task get-to-s can be fulfilled by first recursively calling get-to-s, followed by a
primitive drive action:

get-to-s(t , c0) → get-to-s(t , c1), drive(t , c1 , c0)

get-to-s(t , c0) → drive(t , c1 , c0)

get-to-s(t , c1) → get-to-s(t , c0), drive(t , c0 , c1)

get-to-s(t , c1) → drive(t , c0 , c1)

For get-to-d , it is the other way around, it can be fulfilled by first executing a primitive
drive action, followed by a recursive call of get-to-d :

get-to-d(t , c0) → drive(t , c1 , c0)

get-to-d(t , c0) → drive(t , c0 , c1), get-to-d(t , c0)

get-to-d(t , c0) → drive(t , c1 , c0), get-to-d(t , c0)

get-to-d(t , c1) → drive(t , c0 , c1)

get-to-d(t , c1) → drive(t , c0 , c1), get-to-d(t , c1)

get-to-d(t , c1) → drive(t , c1 , c0), get-to-d(t , c1)

Both recursive structures can be left by decomposing the respective get-to-[s|d] task into
a single drive action.

4. Translating TOHTN Problems to Classical Planning Problems

In this section, we investigate how to represent the language defined by the hierarchy (So-
lution Criteria 1 and 2) in a finite automaton. Since it is context-free, this might or might
not be possible exactly. If we cannot automatically show that the represented language is
regular, we build an automaton describing a superset of the original language. For now, we
ignore the second language defined by the state transition semantics. We will come back to
it later in Section 4.5.

4.1 Self-Embedding HTN Planning Problems

Given the language-based view on HTN planning from Section 2.3, we can now use proper-
ties and methods originally introduced for context-free grammars and apply them to HTN
planning problems. First, we recap a sufficient criterion for a context-free grammar to de-
scribe a regular language. Since this is a semi-decidable problem, we cannot determine this
exactly. The following definition is based on Nederhof (2000a, p. 19), but adapted in no-
tation to HTN planning problems. It was originally introduced by Chomsky (1959). Let ε
denote the empty string.

Definition 3 (Self-embedding grammars/problems). A grammar is self-embedding if there
is some c ∈ C such that c ⇝ αcβ, for some α ̸= ε and some β ̸= ε. We call an HTN
planning problem Πh = (V , C ,A,M, cI , s0, s⋆) self-embedding if and only if its grammar
Gh = (C ,A,M, cI) is self-embedding. When a grammar/problem is not self-embedding, we
call it non-self-embedding.

620

The Toad Planning System

A grammar that is not self-embedding describes a regular language (Nederhof, 2000a,
p. 19). Intuitively, this is because in every recursive cycle, it either creates symbols to the
left or to the right, which both describe regular structures. Nederhof (2000a) introduces the
following syntactical test that determines whether a grammar is self-embedding.

Definition 4 (Recursive symbols N r). Given a grammar Gh = (C ,A,M, cI), the set of
recursive symbols is defined as N r = {c ∈ C | ∃α, β : c⇝ αcβ}. We divide these symbols into
partitions N = {N1, N2, . . . , Nk} such that ca, cb ∈ N r are in the same partition if and only
if they can be decomposed into each other, i.e., ∃α1, β1, α2, β2 : ca ⇝ α1cbβ1 ∧ cb ⇝ α2caβ2.

The partition N divides the decomposition hierarchy into its strongly connected com-
ponents (SCCs), i.e., tasks that can be decomposed into each other (using a sequence of
decompositions) are in the same partition.

Running Example. The decomposition structure of our example is captured in the graph
in Figure 3. It contains the tasks of the problem as nodes. Two nodes t1 and t2 are connected
by an edge if and only if there is a method decomposing t1 into a task sequence containing
t2. In HTN planning, this graph is commonly called decomposition graph. The partitions
are given in the clusters N0 to N3. The recursive tasks and their clusters are the following:

N0 ={get-to-s(t , c0), get-to-s(t , c1)}
N1 ={get-to-d(t , c1)}
N2 ={get-to-d(t , c0)}
N3 ={logistics-problem()}

Next, Nederhof characterizes the recursion in partitions, which might be left, right, cyclic,
or self recursive.

N0 N1 N2

N3

get-to-s(t, c1)

get-to-s(t, c0) drive(t, c0, c1)

drive(t, c1, c0)

get-to-d(t, c1) get-to-d(t, c0)

logistics-problem()

deliver(p, c1) deliver(p, c0)

drop(t, c1, p) pick-up(t, c1, p) pick-up(t, c0, p) drop(t, c0, p)

Figure 3: Decomposition graph of our running example. Actions are given in boxes, abstract
tasks without. Clusters are depicted as rounded rectangles.

621

Höller

Definition 5 (Recursion of Ni). A partition Ni ∈ N is left generating, written lg(Ni), if
and only if ∃(ca, αcbβ) ∈ M such that ca, cb ∈ Ni and α ̸= ε. It is right generating, rg(Ni),
if and only if ∃(ca, αcbβ) ∈ M, ca, cb ∈ Ni and β ̸= ε. Ni is:

• left recursive if and only if ¬lg(Ni) and rg(Ni) hold,

• right recursive if and only if lg(Ni) and ¬rg(Ni) hold,

• cyclic if and only if ¬lg(Ni) and ¬rg(Ni) hold, and

• self recursive if and only if lg(Ni) and rg(Ni) hold.

Running Example. The partitions in our example have the following recursive structures:

left recursive : N0

right recursive : N1, N2, N3

cyclic : −
self recursive : −

A self recursive partition is a necessary and sufficient condition that the underlying
grammar is self-embedding (Nederhof, 2000a, p. 20). The check further identifies those
partitions that need to be modified to turn a self-embedding grammar into a non-self-
embedding, i.e., into a grammar that describes a regular language.

4.2 Properties of HTN Benchmarks

Now that we have these properties at hand, let us analyse the commonly-used HTN models
and see which properties they have. Table 1 summarizes the properties of the benchmark
set of the track on totally ordered HTN planning of the 2020 International Planning Com-
petition. For each domain, it shows how many instances fall in the different categories. The
first column lists the non-recursive instances, followed by three columns listing the recursive
but not self-embedding instances. The latter are split in those that are left recursive but
not right recursive, right recursive but not left recursive, and both. Be aware that an in-
stance can be left and right recursive but not self-embedding, as long as there is not a single
partition that is both left and right recursive. The next column lists the self-embedding
instances. Our system was not able to ground all instances. Since we analyse the properties
on the ground models, we cannot give results for those instances. They are given in the last
column. Further, we found that the grounding process has impact on the properties. E.g.
in the Depots domain, where we found that the grounder’s h2 invariant analysis (or more
precisely the tighter pruning resulting from this) turned several instances into non-recursive
instances, which are self-embedding without it.

From the overall 892 instances, we were able to ground and thus analyse 861. Most
interestingly, 78% of these instances are not self-embedding, which means that we can use
the exact translation without the approximation step. About 18% are even non-recursive.

4.3 Superset Approximation of the Solution Set

When there are self-embedding partitions in a model, we modify these parts of the model to
ensure that the resulting language is regular. We do this using an approximation introduced

622

The Toad Planning System

non-
recursive

recursive
unknownnon-self-emb. self-emb.left right l. & r.

Assembly 30 - - 30 - - -
Barman 20 20 - - - - -
BW-GTOHP 30 1 - - - 29 -
BW-HPDDL 30 - - 30 - - -
Childsnack 30 26 - - - - 4
Depots 30 20 - - - 10 -
Elevator 147 - - 147 - - -
Entertainment 12 5 4 - 3 - -
Factories 20 - - 20 - - -
Freecell 60 - - - - 60 -
Hiking 30 - - - 26 - 4
Logistics 80 - - 80 - - -
Minecraft Pl 20 - - 7 - - 13
Minecraft Reg 59 49 - - - - 10
Monroe-FO 20 - - - - 20 -
Monroe-PO 20 - - - - 20 -
Multiarm-BW 74 - - 74 - - -
Robot 20 - - 20 - - -
Rover 30 2 - - - 28 -
Satellite 20 - - - - 20 -
Snake 20 - - 20 - - -
Towers 20 - - 20 - - -
Transport 40 - 40 - - - -
Woodworking 30 30 - - - - -

892 153 44 448 29 187 31

Table 1: Properties of the IPC 2020 benchmark set.

by Nederhof (2000b, p. 9), which increases the set of words of a language. The approximation
is applied to each Ni identified as self recursive.

When we recall what caused a partition Ni to be self recursive, it was that it contains
at least one rule that is left-generating and one that is right-generating. This enables an
interplay of the rules resulting in languages like {an b an | n ≥ 0}, which is context-free (and
not regular). However, as we will see in our third example in this section, such a structure
can also result in a regular language.

The approximation makes it possible to generate the parts (in the example from above,
these are the an before the b and the an after the b) independent of each other, guaranteeing
the resulting language to be regular. We next give the definition of the approximation by
Nederhof (2000b, p. 9) and go through three examples afterwards.

Definition 6 (Approximation by Nederhof, 2000b). Let a-e be tasks part of Ni, all xis are
not part of Ni, α and β are sequences of tasks (that might or might not be part of Ni).

623

Höller

1. Add new non-terminals a↑b a↓b a←b a→b for all a, b ∈ Ni

2. Add the following methods for all a, b, c, d, e ∈ Ni

(a, a↑a) (2.1)

(a↑b , a
←
c x1 . . . xmc↓b), ∀(c, x1 . . . xm) ∈ M (2.2)

(a↓b , c
→
a x1 . . . xme↑b), ∀(d, αcx1 . . . xmeβ) ∈ M (2.3)

(a↓b , b
→
a) (2.4)

(a←b , x1 . . . xmc←b), ∀(a, x1 . . . xmcβ) ∈ M (2.5)
(a←a , ε) (2.6)
(a→b , c→b x1 . . . xm), ∀(a, αcx1 . . . xm) ∈ M (2.7)
(a→a , ε) (2.8)

3. Remove (a, α) from M

To illustrate the effect of the approximation, we now go through three examples. We
start by two context-sensitive languages to show the effect on the solution set. Then we
have a look at our running example.

Example 1. Consider a grammar G1 = (C ,A,M, cI), where C = {A}, A = {a, b},
M = {(A, b), (A, aAa)}, and cI = A. It describes the given language {an b an | n ≥ 0},
which is context-free. The approximation results in the following set of production rules.
On the right it is given which part of the definition caused the respective rule.

A → A↑A (2.1)

A↑A → A←A bA↓A (2.2)

A↓A → A→A (2.4)
A←A → aA←A (2.5)
A←A → ε (2.6)
A→A → A→A a (2.7)
A→A → ε (2.8)

We can simplify these rules to the following set (where X → α | β denotes that X can
be decomposed into α or into β):

A → A←A bA→A

A←A → aA←A | ε
A→A → A→A a | ε

Comparing the languages of the grammar before and after approximation, we see that
the new rules enable the generation of the a’s left of the b independently from those right
of the b, describing the regular language {an b am | n,m ≥ 0}.

624

The Toad Planning System

S → A×B A↓A → A→A +B↑A A←A → (A←A A→A → B→A)

A → A↑A B↓A → A→B +B↑A B←A → [A←A A→B → B→B)

B → B↑B A↓B → A→A +B↑B A←A → ε B→A → A→A]

A↑A → A←A a A↓A B↓B → A→B +B↑B B←B → ε B→B → A→B]

B↑A → B←A a A↓A A↓A → A→A A→A → ε

B↑B → B←A a A↓B B↓A → A→B B→B → ε

B↑A → B←B b B↓A A↓B → B→A

B↑B → B←B b B↓B B↓B → B→B

Figure 4: Rules resulting from the approximation as presented by Nederhof (2000b, p.11).

Example 2. Next we consider an example introduced by Nederhof (2000b, p. 9–10). Let
the grammar G2 = (C ,A,M, cI) be a context-free grammar, where C = {S,A,B}, A =
{a, b, (,), [,]}, cI = S, and the production rules containing the following rules:

S → A×B

A → (A+B)

A → a

B → [A]

B → b

It describes a simple language of algebraic expressions. Examples for words that could be
derived from it are:

• a× b

• (a+ b)× b

• a× [(a+ b)]

• (a+ [(a+ b)])× [(a+ b)]

The cluster that is self recursive includes the non-terminals A and B. When we apply
the approximation, it results in the rules shown in Figure 4 (note that the rules have been
simplified). Since we now have a regular language, we can visualize it by creating a finite
automaton accepting it. The determinized and minimized automaton is given in Figure 5.
As we can see, some structure of the original language is still included, e.g., that it is not
possible to have two “a”s or “b”s next to each other, or a “×” next to a “(”. Further, all
words that we derived from the original grammar are accepted, but many other words are
also accepted that are not part of the original language, like “(a × b”. This example shows
that the number of opening and closing parenthesis does not need to match anymore. While

625

Höller

0

(1
a

2

]

3

+

4

×

)

[

b

5

b

6[

7

)

(

a

+

]

Figure 5: Determinized and minimized automaton accepting the language generated by the
rules resulting from the approximation of Nederhof’s example.

the language in this example is changed by the approximation, this is not necessarily the
case. We will later on create a variation of our running example for which this is the case.

Figure 6 shows how the word “(a+b)×b” can be derived from the original grammar (left)
and from the transformed one (right). Consider the non-terminal symbols newly introduced
by the approximation: the root of a subtree derived from the approximated rules is labeled
with an arrow pointing upwards, e.g., A↑A. It is then decomposed into one symbol with an
arrow to the left, from which the left part is generated (e.g. A←A) and one pointing down
(e.g. A↓A) from which the middle part as well as the right part of the original rule is derived.
The middle part can e.g. be the “+” symbol in the A → (A + B) rule. While the left and
right part were linked to each other in the original grammar such that there will be as many
closing as opening parenthesis, these parts can now be generated separately. This leads to
words like “(a× b” from our example. The A in symbols like B↑A and B↓A indicates that the
root of the subtree in the original grammar was labeled A, while the B is the last symbol
treated (Nederhof, 2000b, p. 11).

Running Example. Now we come back to our running example. In the original example,
the initial task was first decomposed into a sequence of one or more delivery tasks (see
partition N3 in Figure 3) by the following methods:

logistics-problem() → deliver(p, c0), logistics-problem()

logistics-problem() → deliver(p, c0)

logistics-problem() → deliver(p, c1), logistics-problem()

logistics-problem() → deliver(p, c1)

626

The Toad Planning System

S

A × B

A↑A

A←A a A↓A

(A←A

ε

A→A + B↑A

ε B←B b B↓A

A→B

B→B
)

ε

ε

B↑B

B←B b B↓B

S

A × B

(A + B)

a b

b

ε B→B

ε

Figure 6: Example for a word derived from the original grammar (left) and from the trans-
formed grammar (right).

For the sake of argument, let us replace these methods by the following ones:

logistics-problem() → logistics-problem(), logistics-problem()

logistics-problem() → deliver(p, c0)

logistics-problem() → deliver(p, c1)

The result in terms of the generated language is the same: we can generate a sequence of
one or more delivery tasks (which is a regular language). However, the result of our analysis
changes to the following:

left recursive : N0

right recursive : N1, N2

cyclic : −
self recursive : N3

N3 (which contains logistics-problem()) is now self recursive, the overall grammar is self-
embedding, and we need to apply the approximation. When we do (and simplify the resulting
rules), we get the following decomposition rules (we write lp instead of logistics-problem()

627

Höller

to improve readability; at the right you see which approximation rule produced the line):

lp → lp↑lp (2.1)

lp↑lp → deliver(p, c0), lp
↓
lp (2.2)

lp↑lp → deliver(p, c1), lp
↓
lp (2.2)

lp↓lp → lp↑lp (2.3)

lp↓lp → ε (2.4)

With the first rule, our original task is decomposed into lp↑lp . This can then be decom-
posed into a deliver task followed by lp↓lp using one of the following two rules. lp↓lp can either
be deleted using the last rule, or decomposed into lp↑lp , forming a recursive cycle. In this
example, the approximation does not change the language.

4.4 From Non-Self-Embedding HTN Problem to Finite Automaton

Now we have a non-self-embedding grammar, either the original grammar, or its approxi-
mation. Next we define a finite automaton F = (Q,Σ,∆, q0, qF), where Q is a set of states,
Σ a set of symbols (the alphabet), ∆ : Q × Σ → 2Q the transition function, q0 the initial
state, and qF ⊆ Q the set of final states. All sets are finite.

Let F = (Q,Σ,∆, q0, {qf}) be a finite automaton. Next we build a finite automaton that
accepts the language of a non-self-embedding context-free grammar. We use the algorithm
introduced by Nederhof (2000a), it is given in Algorithm 1 (adapted to our HTN notation).

As input, it gets two states q0 and q1 as well as a sequence of symbols α (which are in
our case tasks). The algorithm constructs an automaton which captures the intermediate
steps necessary to reach q1 starting from q0. We call the algorithm initially with q0 and qf .
When the sequence α is empty, a new ε transition between the two states is added (line 2).
When it is a terminal symbol a (in our case, an action), a transition is added that is labeled
with a (line 3). When the algorithm is called with a sequence of more than one symbol,
a novel state q is added (line 5), and the algorithm is called recursively. The intermediate
state q can be reached from q0 by parsing the first symbol of the sequence, and the second
state q1 is reached from q by the rest of the sequence.

The remainder of the algorithm handles abstract tasks. First consider the most simple
case given at the bottom (line 24-26). It is concerned with tasks not contained in a partition
Ni, i.e., tasks that are not recursive. Consider ca is such a symbol, and the algorithm is
called with the two states q0, q1, and ca. The algorithm is called once for each method
decomposing ca, reflecting that one of the methods needs to be used to decompose the task.
As a result, in the automaton, the sequence of tasks belonging to the decomposition of the
tasks of one method needs to be parsed to reach the state q1 when starting in q0.

Consider the automaton given in Figure 7. It illustrates the automaton generated when
calling the algorithm for the non-recursive abstract task deliver(p, c0). To improve read-
ability, we kept the abstract get-to tasks abstract. When really calling the algorithm, they
would directly be replaced by the respective sub-automaton.

628

The Toad Planning System

Algorithm 1 Algorithm by Nederhof (2000a, Figure 2) to translate (non-self-embedding)
context-free grammars to finite automata.

1 procedure make fa(q0, α, q1)
2 if α = ε then ∆ = ∆ ∪ {(q0, ε, q1)}
3 else if α = a, a ∈ A then ∆ = ∆ ∪ {(q0, a, q1)}
4 else if α = xβ, x ∈ N , β ∈ N ∗, |β| > 0 then
5 q = fresh state
6 make fa(q0, x, q)
7 make fa(q, β, q1)

8 else
9 ca = α /* α is abstr. task */

10 if ∃i : ca ∈ Ni then
11 for cb ∈ Ni do qcb = fresh state
12 if recursive(Ni) = left then
13 for (cc, x1 . . . xm) ∈ M s.t. cc ∈ Ni ∧ x1, . . . , xm ̸∈ Ni do
14 make fa(q0, x1 . . . xm, qcc)

15 for (cc, cdx1 . . . xm) ∈ M s.t. cc, cd ∈ Ni ∧ x1, . . . , xm ̸∈ Ni do
16 make fa(qcd , x1 . . . xm, qcc)

17 ∆ = ∆ ∪ {(qca , ε, q1)}
18 else
19 for (cc, x1 . . . xm) ∈ M s.t. cc ∈ Ni ∧ x1, . . . , xm ̸∈ Ni do
20 make fa(qcc , x1 . . . xm, q1)

21 for (cc, x1 . . . xmcd) ∈ M s.t. cc, cd ∈ Ni ∧ x1, . . . , xm ̸∈ Ni do
22 make fa(qcc , x1 . . . xm, qcd)

23 ∆ = ∆ ∪ {(q0, ε, qca)}

24 else
25 for (ca, β) ∈ M do
26 make fa(q0, β, q1)

0

2get-to-s(t, c1)

5

get-to-s(t, c0)

3
pick-up(t, c1, p)

6
pick-up(t, c0, p)

1

4
get-to-d(t, c0) drop(t, c0, p)

7
get-to-d(t, c0)

drop(t, c0, p)

Figure 7: Sub-automaton for the task deliver(p, c0).

Figure 8: Optimized sub-automaton for deliver(p, c0).

629

Höller

0 2ε

drive(t, c0, c1)
drive(t, c1, c0)

1
drive(t, c1, c0)

Figure 9: Automaton generated for the task get-to-d(t , c0) belonging to partition N2.

Let us have a closer look at the automaton. In our domain, there are the following two
methods for the task, one for picking up the package at c0 and one for doing so at c1.

deliver(p, c0) → get-to-s(t , c0), pick -up(t , c0 , p), get-to-d(t , c0), drop(t , c0 , p)

deliver(p, c0) → get-to-s(t , c1), pick -up(t , c1 , p), get-to-d(t , c0), drop(t , c0 , p)

From the initial state 0, there is one path for each method. The last two tasks are the
same for both methods, which leads to an automaton as given in Figure 8 after optimization.

After this example for a non-recursive abstract task, let us come back to Algorithm 1
and consider what happens for recursive tasks (starting in line 10). As a first step, one new
state is created per symbol that belongs to the partition (line 11). We first consider the
case of a partition Ni that is right-recursive (line 18-23). The lines 19-20 handle the case of
methods that do not lead to a recursion, i.e., those leaving the partition. Such rules have
the form (cc, x1 . . . xm), where cc is a symbol from Ni and the symbols x1 . . . xm are not
contained in Ni. Starting from the state qcc introduced for cc in line 11, one can leave (i.e.,
reach q1) the recursive cycle by passing the automaton resulting from calling the algorithm
with the sequence x1 . . . xm.

Now consider methods not leaving the partition Ni. Since it is a right recursive partition,
these have the form (cc, x1 . . . xmcd). For those, the state qcd introduced for cd can be reached
when starting from qcc by passing the automaton resulting from calling the algorithm with
the sequence x1 . . . xm (i.e., the final state of the sub-automaton cannot be reached this
way). So far, the starting state q0 has not been connected with the newly generated states.
This is done via an ε transition in line 23 – the state corresponding to our α (set to ca in
line 9) can be reached from q0.

Running Example. In our running example, consider partition N2 containing the task
get-to-d(t , c0). The corresponding automaton is given in Figure 9. The algorithm is called
with q0 as initial state, α = get-to-d(t , c0), and q1 as final state. First, a new state for
all tasks belonging to the partition is added (here, this is only one task, so only state 2 is
added). For this task, there are the following three methods in the domain:

get-to-d(t , c0) → drive(t , c1 , c0)

get-to-d(t , c0) → drive(t , c0 , c1), get-to-d(t , c0)

get-to-d(t , c0) → drive(t , c1 , c0), get-to-d(t , c0)

The first one has the form get-to-d(t , c0) → drive(t , c1 , c0), it leaves the recursion when
passing the automaton generated from the action sequence α = drive(t , c1 , c0), i.e., it leads
to an edge between the state introduced for get-to-d(t , c0) (labeled 2 in Figure 9) and state 1.

630

The Toad Planning System

0

2drive(t, c0, c1)
3

drive(t, c1, c0)

drive(t, c1, c0)

drive(t, c0, c1) 1ε

Figure 10: Automaton generated for the task get-to-s(t , c0) belonging to partition N2.

The two recursive methods have the form get-to-d(t , c0) → drive(t , c0 , c1), get-to-d(t , c0),
i.e., they connect the states representing the abstract tasks on the left and on the right side
of the methods (both are get-to-d(t , c0)) with the automaton generated by drive(t , c0 , c1)
and drive(t , c1 , c0), respectively. This leads to the self-loops given at the top.

Now consider the case of left recursive partitions (line 12-17). It is symmetric to the
case we just discussed. Non-recursive methods (line 13-14) do not leave the automaton, but
enter it. For recursive methods, the sub-automaton needs to be passed before the one of the
decomposed task (line 15-16), and the state qca corresponding to the task in α is connected
to the final state q1 by an ε transition.

Running Example. In our example, only partition N0 is left recursive. It contains the two
tasks get-to-s(t , c0) and get-to-s(t , c1). Consider the algorithm is called with initial state
q0, α = get-to-s(t , c0) (the first task from N0), and the final state q1. The corresponding
automaton is given in Figure 10. First, a state for each task in the partition is generated
(here, state 2 for get-to-s(t , c1) and state 3 for get-to-s(t , c0)). In the domain, there are
the following methods belonging to the two tasks:

get-to-s(t , c0) → drive(t , c1 , c0)

get-to-s(t , c0) → get-to-s(t , c1), drive(t , c1 , c0)

get-to-s(t , c1) → drive(t , c0 , c1)

get-to-s(t , c1) → get-to-s(t , c0), drive(t , c0 , c1)

For the first (non-recursive) method get-to-s(t , c0) → drive(t , c1 , c0), the state corre-
sponding to the decomposed task get-to-s(t , c0) (labelled 3) can be reached from the initial
state (labeled 0) by the automaton generated from the right-hand side of the method (here
only the single action drive(t , c1 , c0)). The third method get-to-s(t , c1) → drive(t , c0 , c1),
which is also non-recursive, leads to the transition connecting the initial state 0 with the
state 2, which corresponds to the abstract task get-to-s(t, c1).

The (recursive) method get-to-s(t , c0)→ get-to-s(t , c1)drive(t , c1 , c0) connects the state
corresponding to the contained abstract tasks get-to-s(t , c0) and get-to-s(t , c1) by the au-
tomaton generated from the remaining parts of the right-hand side. This is state 2 (in-
troduced for get-to-s(t , c1)) and 3 (introduced for get-to-s(t , c0)) by the transition labeled
drive(t , c1 , c0) (be aware that the left-hand side of the method forms the target of the
transition). The transition introduced for the last method connects 3 to 2 and is labeled
drive(t , c0 , c1). Since we showed the automaton introduced for get-to-s(t , c0), the corre-
sponding state 3 is connected to the final state 1 by an ε transition. In the automaton
generated for get-to-s(t , c1), this would be 2.

631

Höller

0

1
drive(t, c0, c1)

2
drive(t, c1, c0)

drive(t, c1, c0)

3
pick-up(t, c1, p)

drive(t, c0, c1)

pick-up(t, c0, p)

4

drive(t, c0, c1)
5

drive(t, c1, c0)

drive(t, c1, c0) 6drop(t, c1, p)

drive(t, c0, c1) drop(t, c0, p)

drive(t, c0, c1)

drive(t, c1, c0)

Figure 11: Automaton generated for the overall HTN planning problem, i.e., for the task
logistics-problem().

Figure 11 shows the final automaton (without ε transitions, determinized and mini-
mized) for the overall problem. Notice that transitions are labeled with the actions from
the planning problem (Σ ⊆ A).

When no approximation was necessary for a given problem, the automaton accepts
the language Lh (defined by the hierarchy of the HTN problem). When approximation was
applied, it accepts a superset of Lh. Further, it does not include constraints introduced by the
state transition system of the problem, we need to intersect its language with the language
Lc. This can e.g. be seen in the initial state of the automaton (0). While t is initially located
at position c0, the automaton also accepts solutions starting with action drive(t , c1 , c0). This
is not caused by approximation (we did not approximate in this example), but by the fact
that it accepts Lh and needs to be restricted to the intersection of Lh and Lc.

When we have a closer look at the automaton, we see that words/plans start with a
sequence of one or more drive actions (states 0 to 2), followed by a pick -up action to reach
state 3. The states 3 to 5 – again – accept a sequence of one or more drive actions. The
final state 6 can then be reached by a drop action. When more than one package needs to
be delivered, 6 can be left by a drive action. As can be seen, Lh accepts solutions where one
or more packages are delivered. When there is more than one in the problem, Lc needs to
ensure that all packages are delivered (e.g. by the goal condition like in this example).

4.5 Encoding as Classical Planning Problem

Now we have (1) the action definitions of the original problem and (2) a finite automa-
ton capturing the (approximated or exact) hierarchy. Next, we create a classical planning
problem where an action sequence is contained in the solution set if and only if

• it is accepted by the automaton, and

• it is applicable in the initial state and its application results in a goal state (using the
transition semantics of the original actions from the HTN model).

Based on these properties, we show in Section 4.6 that our approach is complete, and
with an additional verification step also sound. But first we explain our construction. The
basic idea is straightforward: we maintain two separate parts of the state. One is the state of
the original HTN planning problem. For an action to be applicable, its original preconditions
need to hold. When it is applied, state transition regarding this part of the state is the same

632

The Toad Planning System

4 c2c1 öc0

Figure 12: Illustration of the initial state of Example 3.

as in the original problem. When there is a state-based goal definition in the HTN planning
problem, we add the respective condition to our definition here as well.

The second part of the state maintains the current state of the automaton. From its
state features, exactly one holds at a time. An action a is applicable if and only if there
is an (outgoing) transition from the respective state of the automaton. The action’s effect
mimics the transition in the automaton. Our new goal condition contains the goal state of
the automaton4.

Let Πh = (V , C ,A,M, cI , s0, s⋆) be the HTN planning problem that we want to solve and
Gh the grammar describing all action sequences reachable in the model via decomposition
as introduced in Definition 2. Let F = (Q,A,∆, q0, {qf}) be the automaton capturing the
grammar Gh, and Πc

′ = (V ′,A′, s0′, s⋆′) the resulting classical problem that we encode. We
define its elements as follows:

V ′ = V ∪ {vQ}, with DvQ = {q | q ∈ Q},
s′0 = s0 ∪ {vQ = q0},
s′⋆ = s⋆ ∪ {vQ = qf}

We add a single state variable vQ for which the automaton’s states form the domain. In
the new initial state, vQ is set to q0, the initial state of the automaton. In the new goal
definition, vQ must equal qf , the goal state of the automaton.

The action set is then defined as follows:

A′ = {aqr | (q, a, r) ∈ ∆}

For each transition (q, a, r) ∈ ∆ of the automaton, i.e., starting in state q, leading to
state r, and labeled with a, we introduce an action aqr.

The preconditions and effects in the new problem are copies from the original HTN
planning problem, but extended by vQ = q and vQ = r, respectively:

∀aqr ∈ A′ : prec′(a) = prec(a) ∪ {vQ = q}
eff ′(a) = eff (a) ∪ {vQ = r}

Our encoding is similar to one introduced by Chrpa and Barták (2016), which we will
discuss in the related work section (Section 6).

4. The construction given above leads to exactly one goal state. In the implementation, minimization and
determinization may lead to more than one goal state. We compile this away by adding dummy actions
from the various goal states to a single new one.

633

Höller

q0

q1drive(t,c2,c1)

q2
drive(t,c1,c0)

drive(t,c1,c0) q3

pick-up(t,c1,p)

pick-up(t,c0,p)

q4drive(t,c2,c1)

q5drive(t,c1,c0)

drive(t,c1,c0)

q6
drop(t,c0,p)

Figure 13: Automaton from Example 3.

Example 3. Let us have a look at an example. Like our running example it is a transport
problem. However, we further simplified it to show the full classical encoding. The variables
V, actions A, initial state s0, and goal definition s⋆ are define as follows. The initial state is
illustrated in Figure 12. The package shall be delivered at position c0, but other than in the
running example we encode this information into the decomposition hierarchy instead of the
state-based goal. The remaining parts of the HTN model are not needed for the translation.

V ={l(p), l(t)}, with Dl(p) = {at(p, c0), at(p, c1), in(p, t)}, and

Dl(t) = {at(t , c0), at(t , c1), at(t , c2)}
A ={drive(t , c1 , c0), drive(t , c2 , c1), drop(t , c0 , p), pick -up(t , c0 , p), pick -up(t , c1 , p)}
s0 ={l(p) = at(p, c1), l(t) = at(t , c2)}
s⋆ ={}

The actions come with the following preconditions and effects:

prec(drive(t , c1 , c0)) 7→{l(t) = at(t , c1)}
eff (drive(t , c1 , c0)) 7→{l(t) = at(t , c0)}

prec(drive(t , c2 , c1)) 7→{l(t) = at(t , c2)}
eff (drive(t , c2 , c1)) 7→{l(t) = at(t , c1)}

prec(pick -up(t , c0 , p)) 7→{l(p) = at(p, c0), l(t) = at(t , c0)}
eff (pick -up(t , c0 , p)) 7→{l(p) = in(p, t)}

prec(pick -up(t , c1 , p)) 7→{l(p) = at(p, c1), l(t) = at(t , c1)}
eff (pick -up(t , c1 , p)) 7→{l(p) = in(p, t)}
prec(drop(t , c0 , p)) 7→{l(t) = at(t , c0), l(p) = in(p, t)}
eff (drop(t , c0 , p)) 7→{l(p) = at(p, c0)}

The automaton resulting from the transformation is given in Figure 13. The classical
planning problem Πc

′ = (V ′,A′, s0′, s⋆′) as introduced in this section is defined as follows:

V ′ = {l(p),l(t)} ∪ {vQ}, with DvQ = {q0 , . . . , q6}
A′ = {drive(t , c2 , c1)q0q1, drive(t , c1 , c0)

q0
q2, drive(t , c1 , c0)

q1
q2,

pick -up(t , c1 , p)
q1
q3, pick -up(t , c0 , p)

q2
q3, drive(t , c2 , c1)

q3
q4,

drive(t , c1 , c0)
q3
q5, drive(t , c1 , c0)

q4
q5, drop(t , c0 , p)

q5
q6}

s′0 = {l(p) =at(p, c1), l(t) = at(t , c2)} ∪ {vQ = q0}
s′⋆ = {} ∪ {vQ = q6}

634

The Toad Planning System

The resulting model has as many actions as there are transitions in the automaton (9 in
this case). Each action has the preconditions and effects as the original one from the HTN
model. An additional precondition specifies in which state of the automaton it is applicable,
an additional effect sets the automaton state resulting from the application.

prec′
(
drive(t , c2 , c1)

q0
q1

)
7→prec (drive(t , c2 , c1)) ∪ {vQ = q0}

eff ′
(
drive(t , c2 , c1)

q0
q1

)
7→eff (drive(t , c2 , c1)) ∪ {vQ = q1}

prec′
(
drive(t , c1 , c0)

q0
q2

)
7→prec (drive(t , c1 , c0)) ∪ {vQ = q0}

eff ′
(
drive(t , c1 , c0)

q0
q2

)
7→eff (drive(t , c1 , c0)) ∪ {vQ = q2}

prec′
(
drive(t , c1 , c0)

q1
q2

)
7→prec (drive(t , c1 , c0)) ∪ {vQ = q1}

eff ′
(
drive(t , c1 , c0)

q1
q2

)
7→eff (drive(t , c1 , c0)) ∪ {vQ = q2}

prec′
(
pick -up(t , c1 , p)

q1
q3

)
7→prec (pick -up(t , c1 , p)) ∪ {vQ = q1}

eff ′
(
pick -up(t , c1 , p)

q1
q3

)
7→eff (pick -up(t , c1 , p)) ∪ {vQ = q3}

prec′
(
pick -up(t , c0 , p)

q2
q3

)
7→prec (pick -up(t , c0 , p)) ∪ {vQ = q2}

eff ′
(
pick -up(t , c0 , p)

q2
q3

)
7→eff (pick -up(t , c0 , p)) ∪ {vQ = q3}

prec′
(
drive(t , c2 , c1)

q3
q4

)
7→prec (drive(t , c2 , c1)) ∪ {vQ = q3}

eff ′
(
drive(t , c2 , c1)

q3
q4

)
7→eff (drive(t , c2 , c1)) ∪ {vQ = q4}

prec′
(
drive(t , c1 , c0)

q3
q5

)
7→prec (drive(t , c1 , c0)) ∪ {vQ = q3}

eff ′
(
drive(t , c1 , c0)

q3
q5

)
7→eff (drive(t , c1 , c0)) ∪ {vQ = q5}

prec′
(
drive(t , c1 , c0)

q4
q5

)
7→prec (drive(t , c1 , c0)) ∪ {vQ = q4}

eff ′
(
drive(t , c1 , c0)

q4
q5

)
7→eff (drive(t , c1 , c0)) ∪ {vQ = q5}

prec′
(
drop(t , c0 , p)

q5
q6

)
7→prec (drop(t , c0 , p)) ∪ {vQ = q5}

eff ′
(
drop(t , c0 , p)

q5
q6

)
7→eff (drop(t , c0 , p)) ∪ {vQ = q6}

Earlier in Section 2.2 on page 616 we mentioned that the state-based goal definition
of HTN planning problems is usually empty (like in the given example). When adaption
e.g. heuristics from classical planning to apply them in HTN planning, this is a problem,
because those naturally depend on the goal definition. However, consider what happens
in our approach. The goal of the problem is then to find a path of applicable actions
through the automaton that reaches the automaton’s goal state. The automaton captures
the action sequences that may result from the decomposition process, the original action
preconditions/effects maintain applicability. So this is exactly what we want to have in this
case, an executable action sequence resulting from the decomposition process.

635

Höller

Now we investigate the theoretical properties of our classical FDR encoding. We need
these results later on to show the properties of the overall Toad system.

Theorem 2 (Soundness FDR Acceptance). Let π = a1q1r1, a2
q2
r2, . . . , an

qn
rn be a solution for

Πc
′. Then, the action sequence a1, a2, . . . , an is accepted by F .

Proof. We introduced a novel variable vQ with DvQ = {q | q ∈ Q}, which tracks the current
state of the automaton. Since this variable has been newly introduced, only our also newly
introduced effects change it. In each state of the planning problem, we are in exactly one
state of the FA. In s′0 it is assigned to q0, i.e., the initial state of the automaton. Actions in
Πc
′ have the form aqr. An action aqr is in A′ if and only if (q, a, r) ∈ ∆. Its newly introduced

precondition makes it applicable only if vQ = q holds, and its new effect assigns vQ to r.
Since a1q1r1 is applicable in s′0, it must be that q1 = q0. And by construction, (q1, a1, r1) must
be in ∆. When a2q2r2 is applicable afterwards, it must be that r1 = q2. Further, (q2, a2, r2)
must be in ∆ and so on. Since we made vQ = qf part of the goal of Πc

′, we know that
qn′ = qf and that the automaton accepts the sequence.

Theorem 3 (Soundness FDR Goal Completion for Πh). Let π = a1q1r1, a2
q2
r2, . . . , an

qn
rn be a

solution for Πc
′. Then the action sequence a1, a2, . . . , an is applicable and leads to a goal

state in Πh.

Proof. Starting from the original HTN planning problem, we added a new part to the state
definition consisting of exactly one variable, vQ. New effects do not change other parts of
the state.

It holds that (s′0 \ {(vQ = q0)}) = s0. Regarding the original state features, preconditions
did not change, i.e., for each action

(
prec′(aiqiri) \ {(vQ = qi)}

)
= prec(ai). When a1q1r1 is

applicable in s′0, then a1 must be in s0.
Novel effects also only change vQ, i.e.,

(
eff ′(aiqiri) \ {(vQ = ri)}

)
= eff (ai). Therefore,

when ignoring vQ, the intermediate states in the action sequence are the same in Πc
′ and

Πh. The same holds for the goal condition.

Theorem 4 (Completeness FDR). Let π = a1, a2, . . . , an be an action sequence that is

1. accepted by the automaton F and

2. that is applicable and leads to a goal state in Πh.

Then, there is a solution π′ = a1q1q2, a2
q2
q3, . . . , an

qn
q(n+1) in Πc

′.

Proof. A state definition in Πc
′ consists of two parts, the original state from the HTN

problem and the variable vQ representing the current state in the automaton. The part
from the original problem is unchanged, both the state variables and all preconditions and
effects are the same. The newly added part only relates to vQ. Therefore, if π is applicable
and results in a goal state in Πh (prerequisite 2), the original preconditions hold in π′, and
the original state-based goal is fulfilled afterwards.

Further we need to show that the action sequence fulfills the newly added part of the
state/action definition. We know that it is accepted by F (prerequisite 1), therefore there

636

The Toad Planning System

must be a state sequence q1, q2, . . . , qn such that (qi, ai, q(i+1)) ∈ ∆, and q(n+1) is a goal
state in F . By definition, A′ = {aqr | (q, a, r) ∈ ∆}, i.e., there is an action aqr if and only
if (q, a, r) ∈ ∆. Therefore there must be a sequence π′ = a1q1q2, a2

q2
q3, . . . , an

qn
q(n+1), which is

applicable and which leads to a goal state with respect to vQ.

4.6 The Toad Planning System

Now we put the pieces together to an overall system, and show its properties afterwards.
An overview is given in Figure 1 on page 614.

Definition 7 (Toad Planning System). Let Πh be an HTN planning problem. We denote
the following steps the Toad translation, which results in a classical planning problem Πc =
(V ,A, s0, s⋆):

1. (If the problem Πh is self-embedding,) the approximation of its grammar Gh as given
in Section 4.3, followed by

2. the translation into an automaton as given in Algorithm 1, followed by

3. the translation to a planning problem as given in Section 4.5.

We generate solutions for the resulting model using a classical planning system until one
is identified as solution for the HTN problem by an HTN plan verifier.

Having the definition of the Toad system at hand, we are interested in its theoretical
properties. Let Πh be an HTN planning problem and ΠT the classical planning problem
resulting from the Toad translation. For the following theorems, we make two assumptions:

Assumption 1. To find plans in the Toad system, we use a classical planning system that
eventually returns every solution to a given problem.

More precisely, when we generate a first solution to the classical problem, verify it, and
get the result that it is not a solution to the HTN planning problem, we assume to be able to
get the next solution from the classical planning system, and will eventually get every single
solution to the problem. This assumption assures that we can in the following proofs reason
about the sets of solutions of (1) the original HTN problem and (2) the encoded classical one
instead of incorporating a single planning system and how it generates solutions. Whether
or not this property is fulfilled in practice is discussed in Section 7.2.

Assumption 2. We assume that a sound and complete verification system is applied, i.e.,
a system that decides whether a given sequence of actions is a valid solution for an HTN
planning problem.

This assumption is no restriction, there are several systems in the literature that can be
used (see Section 7.3). For totally ordered HTN planning as covered in this article, the task
is solvable in polynomial time and resembles parsing a context-free language, for partially
ordered HTN planning, the task is NP-complete (Behnke et al., 2015).

Recall that LΠ is the set of solutions of a planning problem Π, i.e., the action sequences
that fulfilling all solution criteria (page 617). The following theorem states that all solutions
to the original HTN problem are included in the solution set to the problem resulting from
the Toad translation.

637

Höller

Theorem 5 (Completeness Toad). It holds that LΠh
⊆ LΠT

.

Proof. Let us go through the steps of the Toad translation, the application of the classical
planning system and the HTN verifier.

• In the first step, Gh is re-written if it is self-embedding. However, we know that this
is done in a way increasing the set of solutions (Nederhof, 2000a, 2000b), i.e., we have
no problem for the completeness of the overall approach.

• The second step encodes it as a FA, for which we know that it accepts the language
of the grammar (Nederhof, 2000a, 2000b).

• Next we encode it as a classical planning problem. From Theorem 4 we know that for
every task sequence that (1) is accepted by the FA and (2) is applicable and leads to a
goal state in the original HTN planning problem Πh, there is a corresponding solution
of the classical planning problem. By Assumption 1 we know that all these plans will
eventually be returned by the planning system.

• By Assumption 2 we know that the verification system will not reject a valid solution
to the HTN problem.

Theorem 6 (Soundness Toad). Solutions returned by the Toad planning system are so-
lutions for the HTN problem.

Proof. Since solutions are verified, we know by Assumption 2 that the theorem holds.

Besides this trivial case, there is a more interesting one, namely whether solutions re-
turned from a translation without approximation are sound without verification.

Theorem 7 (Soundness Toad (exact translation)). Solutions returned by the Toad plan-
ning system are sound without verification when no approximation is applied.

Proof. Let us go through the steps of the overall process.

• When no approximation is used in Step 1 of the translation, we know that the au-
tomaton F generated in Step 2 exactly accepts the action sequences that might result
from the decomposition.

• From Theorem 2, we know that for any solution for the Toad translation, the corre-
sponding action sequence is accepted by F , i.e., it is a sequence that can be derived
via decomposing the initial task. This means that the sequence fulfills the Solution
Criteria 1 and 2 of HTN planning.

• From Theorem 3, we know that for any solution for the Toad translation, the corre-
sponding action sequence is applicable and leads to a goal state in the HTN planning
problem, which makes it fulfill Solution Criterion 3.

Thus, an action sequence returned by the classical planning system fulfills all three HTN
solution criteria from Section 2.2, page 616.

As a result, we may skip the verification step when no approximation was applied.

638

The Toad Planning System

5. Relation of Self-Embedding and Tail-Recursiveness

With self-embedding, we introduced a novel criterion to check whether a given HTN planning
problem can be translated into a classical planning problem exactly (i.e., without approxi-
mation or bounding the problem). In the HTN literature, there is already such a criterion,
namely tail-recursiveness (Alford et al., 2012).

Next we investigate the relation of these criteria. Alford et al. (2012) introduced a
syntactic test called ≤r-stratifiability to check whether an HTN planning problem is tail-
recursive or not. The following definition is taken from Alford et al. (2016, p. 5) and adapted
to totally ordered HTN planning.

Definition 8 (≤r-stratifiability by Alford et al., 2016). A totally ordered HTN planning
problem is ≤r-stratifiable if and only if there exists a total preorder ≤r on the tasks N such
that for all methods (c, t1t2 . . . tn) ∈ M with |t1t2 . . . tn| > 0, the following holds:

1. tn ≤r c

2. ti <r c for 1 ≤ i < n

Such methods can only contain full recursion on their last task. From all other tasks con-
tained in the method, the decomposed task c is not reachable anymore.

Theorem 8. Every totally ordered tail-recursive HTN problem is non-self-embedding.

Proof. We need to show that, given a grammar Gh = (C ,A,M, cI) of a totally ordered
tail-recursive HTN planning problem Πh = (V , C ,A,M, cI , s0, s⋆), there is no partition Ni

of N that is both lg(Ni) and rg(Ni). Then, the partition is not self recursive and thus the
problem not self-embedding.

Assume there is a partition Ni that is right generating, i.e., rg(Ni) holds.

1. According to Definition 5, this implies that there must be a grammar rule (ca, αcbβ) ∈
M such that ca, cb ∈ Ni and β ̸= ε. This means that we know that cb is not the last
task.

2. Since we know that cb is a non-last task, we know from Definition 8 that ca <r cb,
where <r is a preorder.

3. According to Definition 4, two symbols are in the same partition if and only if there
exist α1, β1, α2, β2 such that ca ⇝ α1cbβ1 and cb ⇝ α2caβ2. This means that we know
that, starting from cb, we can get back to ca.

4. This means that there is a sequence of methods ca ⇝ α1cbβ1 ⇝ α2ccβ2 ⇝ . . . ⇝
αncaβn. Since ca <r cb and due to the transitivity of a preorder relation, we know
that ca <r ca, which is a contradiction to the reflexivity of preorders.

Our assumption that a totally ordered tail-recursive HTN problem can be right generating
must be wrong. Thus, such a problem cannot be self-embedding either.

Theorem 9. Let Πh = (V , C ,A,M, cI , s0, s⋆) be a totally ordered HTN problem and Gh =
(C ,A,M, cI) its grammar. When there is no partition Ni in the grammar’s recursive struc-
ture that is right generating (i.e., ¬∃Ni ∈ N : rg(Ni)), then Πh is tail-recursive.

639

Höller

Proof. We first define an ordering relation on the tasks and then show that it is a total
preorder fulfilling the two conditions from Definition 8.

1. We construct the graph Gdec = (N , E) with E = {(a, b) | a, b ∈ N and ∃(a, ω) ∈
M with b ∈ ω}.
Gdec captures the decomposition structure of Πh. The task names form the nodes of
the graph, while two nodes a and b are connected if and only if there is a method
decomposing the task a from the problem into a task sequence containing b.

2. First we compute the strongly connected components (SCCs) of Gdec, and then its
condensation , i.e., we contract each SCC to a single vertex. The result is a directed,
acyclic graph that we call Gscc.

Be aware the connection of Gscc and N : each partition Ni out of N forms an scc,
while only recursive tasks are contained in some Ni, i.e., the condensed nodes form a
superset of N .

3. We compute a topological ordering of the sccs, let scc = (scc0, scc1, . . . scck) be the
resulting sequence, where the initial task is contained in scc0.

4. We define the following ordering relation ⪯:

• a ⪯ b holds if and only if the tasks a and b are in the same scc (i.e., as a special
case, it holds that a ⪯ a).

• Between two tasks a and b from different sccs scci (with a ∈ scci) and sccj (with
b ∈ sccj), it holds that a ≺ b if and only if i < j in scc.

The ordering relation defined in 4 is a total preorder on the tasks:

• All tasks are contained in our graph. We defined ordering relations between tasks from
the same and those from different sccs. Our ordering is total.

• By definition, it is reflexive, i.e., a ⪯ a holds for all tasks.

• All tasks from the same scc are equal, while ordering relations between tasks from
different sccs stem from a total order of the sccs. Thus the ordering relation is also
transitive.

What is left to show is that the ordering relation fulfills the two conditions of Definition 8,
i.e., that for all methods (c, t1t2 . . . tn) ∈ M with |t1t2 . . . tn| > 0, the following holds:

(c1) tn ≤r c

(c2) ti <r c for 1 ≤ i < n

Let us first recap what we know from the prerequisites:

1. A partition Ni is right generating if and only if ∃(ca, αcbβ) ∈ M, ca, cb ∈ Ni and
β ̸= ε. We know that there is no such method, i.e., ∀m ∈ M with ca, cb ∈ Ni and
m = (ca, αcbβ), it holds that β = ε.

640

The Toad Planning System

2. There exist two kinds of methods:

(a) recursive methods of the form m = (ca, αcb) with ca, cb ∈ Ni, and

(b) methods not leading to a recursion of the form (ca, α) with ∀n ∈ α : n ̸∈ Ni.

By Definition 5, two symbols are in the same partition if and only if they can be de-
composed into each other. In the first case (2a), we know that ca and cb are in the same
partition Ni, thus they can be decomposed into each other, i.e., they are in the same scc in
Gdec, leading to an ordering relation ca ≤ cb between them. Since cb must be the last task,
this is in line with condition (c1).

For the other symbols cc ∈ α, we know that they are not in the same partition as ca,
thus they cannot be decomposed back into ca. Since ca can be decomposed into cc but not
vice versa, this means that – in our ordering – ca must be left of cc, i.e., it holds that ca < cc.
The same holds for case (2b).

Thus, we have defined a total preorder on the tasks that fulfills the conditions (c1) and
(c2), i.e., we have shown that totally ordered HTN problems that have no right generating
partitions are tail-recursive.

Consider a method c → φ with |φ| > 1 that is right generating, i.e., we know that c
can be reached again through a non-last task (i.e., c is fully recursive). An HTN model
containing such a method cannot be tail-recursive. However, if the respective partition is
not left generating, the overall model can be non-self-embedding. Since every totally ordered
tail-recursive HTN problem is non-self-embedding and there are recursive structures that
are right generating but not self-embedding, the following holds.

Theorem 10. The class of totally ordered non-self-embedding HTN planning problems is a
strict superset of the totally ordered tail-recursive HTN planning problems.

As result, we have found a new subclass of totally ordered HTN problems that can be
translated into classical problems directly. The class is a strict super-class of the totally
ordered tail-recursive problems. However, be aware that tail-recursiveness is also defined
on partial-ordered problems, which is not considered here at all. Since we know that all
tail-recursive HTN problems (i.e., also the partial-ordered ones) define regular languages,
it is an interesting question for future work whether the presented approach can also deal
with a (limited form of) partial order, or – the other way around – whether we can exploit
a property similar to (non-)self-embedding also in the partial-order setting.

Be aware that our approach is not limited to non-self-embedding problems, but can be
applied to all totally ordered problems. The difference is only whether approximation is
needed (in self-embedding problems) or not (in non-self-embedding problems).

6. Related Work

Next we want to discuss connections of our approach to related work. We start with planning
systems from the literature, especially those exploiting techniques from classical planning
to solve hierarchy problems, either by adapting the techniques or by directly using them.
Afterwards we discuss a technique introduced by Chrpa and Barták (2016) to provide control
knowledge in classical planning, which uses a similar encoding to what we use in Section 4.5.

641

Höller

In classical planning there is a large number of effective domain-independent solving
techniques, which makes it appealing to use them also in HTN planning. However, this is
not a straightforward task due to the different expressiveness of the formalisms. Further,
techniques (like heuristics) in classical planning are naturally defined based on a state-based
goal definition, which is often not given in HTN planning, since it is not necessary due to
the hierarchical approach.

Some hierarchical planning systems use techniques for reachability analysis as known
from classical planning, e.g. Fape (Bit-Monnot et al., 2016), or Pddl4J (Pellier & Fiorino,
2021; Ramoul et al., 2017). Others use heuristics from classical planning (Lesire & Albore,
2021), enable the use of arbitrary classical heuristics (Höller et al., 2018, 2019, 2020), or
adapt heuristics from classical planning to the HTN setting (Höller et al., 2020b). Besides
search-based systems, there are also several solvers for HTN planning that use translations
to propositional logic, e.g. Panda (Behnke et al., 2018, 2019) or Lilotane (Schreiber et al.,
2019; Schreiber, 2021a, 2021b), which are based on encodings known from classical planning.

There are also approaches that – like ours – translate HTN planning problems directly
into classical planning problems (Alford et al., 2009, 2016; Behnke et al., 2022). These are
the approaches closest to the one presented here. Since HTN planning is more expressive
than classical planning, they bound the HTN problem and translate them to a classical
planning problem afterwards. The problem is then solved using a classical planning system.
When no solution is found, the bound is increased. Alford et al. (2016) store the current
task network in the state of the classical problem and introduce special actions simulating
the application of methods by manipulating this part of the state. The used bound limits
the number of tasks that can be in a task network. In general, no upper bound can be
calculated (since HTN planning is undecidable). However, Alford et al. (2016) introduce a
subclass called tail-recursive problems, for which an upper bound can be calculated. For
this class, it is possible to use a single (non-incremental) translation. However, incrementing
until the bound is reached works better in practice, because problems are often solvable with
much smaller bounds, leading to smaller classical problems. We have seen in Section 5 that
there is a connection between this class and non-self-embedding problems. Behnke et al.
(2022) introduced improved variants of the translations which are much more efficient in
practice. However, the basic idea is the same as before. There are two main differences
between our approach and the one of Alford et al. (2016). First, the way to overcome the
different expressiveness: we do not bound the problem, but approximate it. Second, the
encoding itself is different: Alford et al. simulate the decomposition process in the state of a
classical planning problem by using actions that simulate method application, we compile it
away; our classical model only contains (extended versions of) actions from the HTN model.

Another approach on hierarchical planning, though not directly on HTN planning, has
been presented by Geib and Weerasinghe (2020). The authors introduce a hierarchical plan-
ning system based on a model defined as Combinatory Categorial Grammar (Steedman,
2000), a formalism lent from natural language processing. Similar representations have
been applied before in the field of plan and goal recognition (Geib, 2009; Geib & Goldman,
2009, 2011) and there are also approaches in the literature on how to learn them (Geib &
Kantharaju, 2018). One motivation of Geib and Weerasinghe’s work is to have a learn-
able, unified representation for natural language processing, plan and goal recognition, and
planning. The approach on planning presented by Geib and Weerasinghe (2020) proposes

642

The Toad Planning System

a context-free model, which makes it equally expressive as the totally ordered HTN models
used in our approach (Höller et al., 2014).

Our encoding of automata in classical planning (Section 4.5) is similar to the one pre-
sented by Chrpa and Barták (2016). They introduce a language to encode control knowledge
to guide a classical planning system that is similar to a finite automaton: they define a set
of states and transitions that are also labeled with actions and compile it into the planning
problem like we do. A solution then needs to comply with both the original classical prob-
lem and the transition system. There are two main differences to our encoding: (1) their
transitions come with additional conditions that need to hold in the state where the action
from the transition label is applied. These conditions might be state-based preconditions or
so-called “open goals”. The former are state features that must/must not be in the state,
just like preconditions in classical planning. The latter are special state features that are
marked in the beginning, e.g. the goal definition of the original planning problem. Taking
a transition with such a condition is only permitted when the corresponding goal is still
open, while it is closed when the corresponding original state feature is added for the first
time. The second difference is (2) that they do not define goal states for the FA-like state
transition system. Taking (1) and (2) together, their transition system cannot be interpreted
on its own accord, but has to be considered together with the original planning problem,
while we can consider our FA and the state-transition system defined by the actions of the
planning problem as two regular languages. We are interested in their intersection.

Consequently, while Chrpa and Barták argue that resulting solutions are also solutions
for the original problem (i.e., the approach is sound), they do not give a formal proof and
also do not formally characterize the set of solutions to their compiled problem, which for
us is necessary to prove soundness/completeness of our overall approach.

7. Implementation

Next we describe our implementation, which is available online5. We implemented our
approach on top of the software stack of the Panda framework (Höller et al., 2021), using
HDDL as input language (Höller et al., 2020a) and grounding the models using Panda’s
grounding system (Behnke et al., 2020).

7.1 Analysis, Approximation, and Encoding

After having obtained a ground model, we execute the actual Toad system. The implemen-
tation for the ICAPS paper (Höller, 2021) used an efficient automata representation, which
however lacked flexibility of common libraries. Here we wanted to evaluate the effect of op-
timizations like minimization on our approach. Therefore we switched to an implementation
based on the OpenFst Library6. We implemented three variants of the FA building process:

• Toad – The overall automaton is built top down as described in Algorithm 1, no
optimization is applied.

5. toad.hierarchical-task.net
6. https://www.openfst.org

643

Höller

• Toadpo (post optimization) – The overall automaton is built top down. In a post-
processing, ε transitions are removed and the automaton is determinized and mini-
mized using the respective methods from the library.

• Toadio (intermediate optimization) – The automaton is built in a bottom-up manner,
and optimization is applied to the intermediate automata. This is done by construct-
ing the decomposition graph (see Figure 3 on page 621) and creating, optimizing, and
storing the automata for its tasks in a bottom-up manner. When creating the au-
tomaton for a task c, all automata for tasks reachable from c are already optimized
and stored and can be looked up. Since optimization is done during the creation, this
avoids to first build the entire automaton.

7.2 Solving the Classical Planning Problem

We use the Fast Downward (Fd) system to solve the resulting classical problems. In an
early version of our system, we generated a PDDL output of the already ground instances
and called Fd on this input including Fd’s preprocessing. However, the preprocessing took
very long, and since we already have a ground finite domain representation of the problem,
we changed our output to Fd’s intermediate model representation that is usually generated
by its preprocessing. We then directly call Fd’s search engine. We modified Fd such that
it calls the verification procedure (see below in Section 7.3) when a solution is found. When
verification fails, i.e., when it is not a solution for the underlying HTN planning problem,
we continue search.

Our models can get very large and we need to use heuristics that can deal with this. We
found that the hff heuristic (Hoffmann & Nebel, 2001) shows good results. We also use its
preferred operators. Since it captures the hierarchy of the original problem, we assumed that
the automaton has large impact on the resulting classical problems. While this information
is implicitly included in the output problem, we deemed it a good idea to reuse it more
explicitly for search-guidance. We created a new heuristic in Fd that returns the distance
of the current automaton state to the nearest goal state of the automaton as heuristic value.
We implemented this as a pre-computed heuristic, so that computation during search is very
fast. We call this heuristic hdfad (DFA Distance) heuristic.

Theory vs. Practice

Fd is currently the de facto standard planning system in classical planning and it also shows
good performance when combined with our approach. However, in this section we illustrate
a problem occurring when it is used in our overall framework.

Consider the following planning problem containing two actions A = {a, b}7 and a single
abstract task C = {A}. Both actions have no preconditions, b further has no effects, while

7. In principle, it should be {a(), b()}, but we omit the empty parameter lists to improve readability.

644

The Toad Planning System

0

a

1b

a

Figure 14: Automaton generated by Toad.

a fulfills the state-based goal {g}.

prec(b) 7→{}
prec(a) 7→{}
eff (b) 7→{}
eff (a) 7→{g = true}

There are two methods for the abstract task A, which can either be decomposed into
the action b, or into a sequence of the tasks (a, A, a).

M = {A → b

A → a,A, a}

The hierarchy of the problem generates the context-free language Lh = {an b an | n ≥ 0},
which we introduced earlier in Example 1 in Section 4.3 to illustrate the approximation.
However, the state transition system of the problem enforces that at least one instance of
a must be executed (since only the action a fulfills the state-based goal condition), i.e.,
Lc = {ω ∈ A∗ | ω contains at least one a}. The language of the overall planning problem is
then defined as Lh ∩ Lc = {an b an | n ≥ 1}.

When we apply the approximation presented in Section 4.3 on Lh, it results in the
following set of rules:

M = {A → Y , b, Z

Y → a, Y | ε
Z → Z, a | ε}

They generate the regular language Lh
′ = {an b am | n,m ≥ 0}. The corresponding

finite automaton generated by Toad is shown in Figure 14.
Combined with the language of the state transition system implied by the actions, we

get Lh
′ ∩ Lc = {an b am | n,m ≥ 0 and n+m ≥ 1}. When we create the classical planning

problem as described in Section 4.5 and generate all solutions found by Fd, it returns only
a single one, which is (b, a). However, this solution is no solution for the HTN planning
problem and thus verification fails.

To illustrate why Fd returns only a single solution, we generated the entire search space
of the problem using Fd. It is visualized in Figure 15. The initial state is given at the top
({dfa(s0)}), the goal state at the bottom. Whether Fd returns (b, a) or (a, b) is up to tie-
breaking. However, both are no solutions for the underlying HTN problem. After visiting

645

Höller

dfa(s0)

dfa(s1)

b

g, dfa(s0)

a

g, dfa(s1)

a

a

b

a

Figure 15: The entire search space generated with Fd (i.e., using a graph search). Nodes
represent states of the search space, arcs represent state transitions, labeled with
the respective action.

the bottom state for the first time (via one of the sequences), the graph search used by Fd
adds the bottom state to the visited list. When reaching the bottom state again via the
other sequence, it has been seen before and will thus be discarded. Further, no alternative
solution is generated, since all solutions have a prefix resulting in the state {g, dfa(s1)}. To
find an HTN solution, it needs to be visited at least twice. As a result, while Theorem 5
states that our approach is complete, the Fd-based implementation is incomplete, because
planning systems performing a graph search do not fulfill Assumption 1 (see page 637).

To get an overall system which is complete, we need a classical planning system that
eventually explores every solution. To make this clear: we do not need to generate all
solutions at once, but we need that – when an approximate plan returned is not a solution
for the HTN planning problem – we are able to generate the next one. For the problem
given above, this would result in the set {an b am | n,m ≥ 0 and n+m ≥ 1}, which includes
the HTN solutions {an b an | n ≥ 1}.

In Fd, there is no simple option to switch from a graph to a tree search, or to implement
such a search. Instead we modified the Fast Forward (Ff) planning system (Hoffmann
& Nebel, 2001) (which usually also does a graph search) to do a tree search and to return
more than one solution8. Performing Ff’s A∗ search using the hff heuristic, we now get
the following solutions, the third one being the first one that is also a solution for the HTN
planning problem.

• {a, b}

• {b, a}

• {a, b, a}

• {b, a, a}

8. Be aware the difference between the Fast Forward/Ff planning system and the hff heuristic, which
we use both in Ff and in Fd.

646

The Toad Planning System

• {a, a, b}

• {a, b, a, a}

• . . .

In the evaluation we use a modified Fd system which verifies solutions before returning
them and continues search in the same search space (i.e., without re-starting search) when
verification fails, but we do not use the Ff system afterwards. This means that our imple-
mentation is not complete. However, on the current benchmark set, this is not an issue.
When it becomes an issue on future benchmark sets, starting a system like Ff used above
when Fd fails will result in a complete overall system.

7.3 Verification

There are several approaches to decide whether a given sequence of actions is the solution
to an HTN planning problem (HTN plan verification). They are based on a translation to
propositional logic (Behnke et al., 2017), on parsing techniques (Barták et al., 2018, 2020),
and on a translation to HTN planning (Höller et al., 2022). The latter generates a planning
problem that has a solution if and only if the sequence is a solution to the original problem.
Compared to the original problem, the compilation is much simpler to solve.

The setting most relevant for us is totally ordered HTN planning with method precon-
ditions (a feature not supported by all of the verification systems). In combination with a
progression-based planning system (we use the one of Höller et al., 2020) the translation
to HTN planning had the highest coverage in a recent evaluation (see Höller et al., 2022).
It reached over 99% for valid plans and over 97% for proving invalidity. Thus we use this
approach to verify our plans.

8. Empirical Evaluation

This section is divided into four parts. First we investigate the impact of the applied
optimizations in Section 8.1, then we compare different search configurations of Toad in
Section 8.2 and have a look at unsolved instances in Section 8.3. Lastly, we compare Toad
to the state of the art in HTN planning in Section 8.4. All experiments in this section ran
on Intel Xeon E5-2650 CPUs with 2.30 GHz (one core per job), a time limit of 30 minutes,
and a memory limit of 8 GB.

8.1 Impact of Automaton Optimization

First we compare the three variants to build the automaton: no optimization (Toad),
post-optimization (Toadpo), and intermediate optimization (Toadio). Figure 16 shows the
time in seconds needed to build the automaton, starting after analysis/approximation
and ending before writing the problem. In all scatter plots, marks on the axis represent
instances not solved by the particular configuration (due to the time or memory limit). The
left plot compares Toad and Toadpo, the right one Toadpo and Toadio. Each symbol
represents one instance, some domains are highlighted and given in the legend. The Toadpo

configuration needs slightly longer to build the automaton than the Toad configuration

647

Höller

10−1 100 101 102
10−1

100

101

102

no optimization

p
os
t-
op

ti
m
iz
a
ti
o
n

10−1 100 101 102

10−1

100

101

102

post-optimization

in
te
rm

ed
ia
te

op
ti
m
iz
a
ti
o
n

Satellite Towers Woodworking other

Figure 16: Time to build the automaton in seconds.

(left). Since both methods first create the automaton in exactly the same way but Toadpo

performs optimization afterwards, this is not surprising. However, be aware that this does
not mean that it does not pay off, since Figure 16 only shows the time needed to build the
automaton. When we compare Toadpo and Toadio (right), we see that the time to create
the automaton does not change much in most domains, but that intermediate optimization
helps in Satellite, Woodworking, and especially Towers.

Table 2 summarizes the impact of the optimization on the number of states of the final
automaton. This number is equal for Toadpo and Toadio, so we report the difference
between using no optimization (Toad) and using optimization (Toadpo/Toadio). For each
instance, we compare the number of states (1) before optimization and (2) after optimization.
We report the size of (2) in percent of (1), i.e., the 48.73 in the first row means that in the
Assembly domain, an automaton has after optimization on average 48.48% of its original
number of states. The number of states is reduced through all domains, most average
reduction is achieved in Satellite and Snake. However, optimization is especially helpful in
the Towers domain. Here the size reduction is higher on larger instances than on smaller
ones (which makes the larger instances solvable).

Figure 17 gives the overall runtime of entire solving process of Toad in seconds. The
left plot compares Toadpo and Toadio. They behave similar in general, but Toadio solves
more instances in the Towers domain. The right-hand side of Figure 17 compares Toad
and Toadio. The optimization of the automaton mostly pays off, especially in the domains
BW-GTOHP, Elevator, Satellite, Snake, Towers, Transport, and Woodworking. Only in the
Logistics domain the performance decreases when optimization is used. This is interesting,
because in this domain, the number of states is not changed much.

Next we have a look at the coverage results, i.e., the number of solved instances per
domain. Table 3 compares the three optimization variants combined with greedy best first
search (GBFS) and the hff heuristic. For each configuration, the absolute coverage and the
coverage normalized to 1 per domain is given. Toadpo increases the coverage compared
to Toad, and Toadio performs best. Optimization has most effect in the domain Towers,

648

The Toad Planning System

µ σ

Assembly 48.73 27.70
Barman 76.63 3.86
BW-GTOHP 12.55 20.08
BW-HPDDL 86.46 0.50
Childsnack 72.88 1.82
Depots 51.57 20.43
Elevator 11.24 15.39
Entertainment 23.73 16.68
Factories 58.27 2.60
Freecell – –
Hiking 66.01 15.06
Logistics 77.52 3.49
Minecraft Pl 6.83 0.00
Minecraft Reg 75.80 0.09
Monroe-FO – –
Monroe-PO – –
Multiarm-BW 85.15 0.44
Robot 82.20 16.19
Rover 40.20 24.98
Satellite 2.75 2.05
Snake 2.63 3.81
Towers 13.00 24.22
Transport 62.34 2.77
Woodworking 22.25 30.89
overall 48.48 33.25

Table 2: Size of automata after optimization in percent of their original size. The table
gives the mean (µ) and the standard deviation per domain (σ).

Transport, and Woodworking. The increase in runtime observed in Logistics has no negative
effect on the coverage, which is even slightly increased.

8.2 Toad Search Configurations

Next we compare different search algorithms and heuristics. The results are given in Table 4.
All configurations in this comparison use intermediate optimization (Toadio), i.e., the third
column labeled gbfs(ff) using GBFS and the hff heuristic is the same that we already had
in Table 3 (here it was the left-most column). We combine our novel hdfad heuristic with hff

in a configuration inspired by the Lama system (Richter & Westphal, 2010), i.e., by using a
multi-queue search. The system maintains two queues, and both heuristics are computed on
every search node. Nodes are inserted into both queues, one queue is sorted by hff , the other

649

Höller

100 101 102 103

100

101

102

103

post-optimization

in
te
rm

ed
ia
te

op
ti
m
iz
at
io
n

Towers other

100 101 102 103

100

101

102

103

no optimization

in
te
rm

ed
ia
te

op
ti
m
iz
at
io
n

BW-GTOHP Elevator Logistics

Satellite Snake Towers

Transport Woodworking other

Figure 17: Total runtime of the solver in seconds.

one by hdfad. The result is given in the column named mq(dfad ,ff). The overall coverage is
again increased when compared to the GBFS/hff configuration.

Next we are interested in whether enforced hill climbing (EHC) as used by the original
Ff planning system yields good results. We combine it with hff (called ehc(ff)) and with the
hdfad heuristic (called ehc(dfad)). When compared to mq(dfad ,ff), we see that the latter
helps in Logistics, Barman, and Towers. In some other domains, it yields results comparable
to mq(dfad ,ff), but without the need to compute a heuristic (since hdfad is a pre-computed
heuristic).

To combine mq(dfad ,ff) and ehc(dfad), we configured Fd to do an iterated search, first
performing EHC with hdfad followed by the multi-queue mq(dfad ,ff). We found that EHC
gets stuck in some domains and introduced a time limit for that search. We tried 1 minute,
2 minutes, and 5 minutes, all with similar results. In the table (and the rest of this section),
the configuration with 2 minutes is used, which we denote i [ehc,mq] (for iterated search).
It combines the strengths of mq(dfad ,ff) and ehc(dfad) and reaches the best performance
of all our configurations.

So far we did not report any results regarding runtime. Figure 18 shows the accumulated
number of solved instances over time for several Toad configurations. Here the effect of
our optimizations can be seen much better than in the coverage results. The configuration
using automaton optimization solves problems much quicker than the base configuration.
mq(dfad ,ff) performs similar to GBFS with hff , but solves a few more instances. The
iterative search i [ehc,mq] is very fast in the beginning, but the curve flattens between 101

and 102 seconds, before the mq(dfad ,ff) part of the search is started (after 120 seconds),
which further solves several instances.

The next question we want to investigate is how much the (1) properties regarding
recursion and (2) the size of the FA has an impact on the difficulty of the resulting classical
planning problem. For this evaluation we use the mq(dfad ,ff) configuration. Figure 19
shows the number of states on the y axis and the search time in seconds on the x axis. The

650

The Toad Planning System

Domain #inst Toadio Toadpo Toad
Assembly 30 30 1.00 30 1.00 30 1.00
Barman 20 15 0.75 15 0.75 15 0.75
BW-GTOHP 30 23 0.77 23 0.77 22 0.73
BW-HPDDL 30 21 0.70 21 0.70 21 0.70
Childsnack 30 22 0.73 22 0.73 23 0.77
Depots 30 25 0.83 24 0.80 24 0.80
Elevator 147 147 1.00 147 1.00 147 1.00
Entertainment 12 12 1.00 12 1.00 12 1.00
Factories 20 5 0.25 5 0.25 5 0.25
Freecell 60 – – – – – –
Hiking 30 23 0.77 24 0.80 22 0.73
Logistics 80 51 0.64 51 0.64 49 0.61
Minecraft Pl 20 1 0.05 1 0.05 1 0.05
Minecraft Reg 59 39 0.66 39 0.66 39 0.66
Monroe-FO 20 – – – – – –
Monroe-PO 20 – – – – – –
Multiarm-BW 74 74 1.00 74 1.00 74 1.00
Robot 20 20 1.00 20 1.00 20 1.00
Rover 30 9 0.30 9 0.30 9 0.30
Satellite 20 11 0.55 9 0.45 9 0.45
Snake 20 19 0.95 19 0.95 15 0.75
Towers 20 17 0.85 12 0.60 9 0.45
Transport 40 36 0.90 36 0.90 32 0.80
Woodworking 30 30 1.00 30 1.00 20 0.67

892 630 15.70 623 15.35 598 14.47

Table 3: Coverage of different configurations of Toad. All are using GBFS and the hff

heuristic, but different FA building processes with intermediate optimization (left),
post optimization (middle), and no optimization (right).

different symbols show the properties regarding recursion, i.e., whether an instance is acyclic,
non-self-embedding, or self-embedding. Most interestingly, the self-embedding instances are
at the top of the diagram, meaning that the instances are large with respect to the number
of states, but at the same time simple to solve (with respect to search time).

8.3 Analysis of Unsolved Instances

Next we have a look at the instances Toad was not able to solve, we call such instances
unsols. The most interesting question is which parts of the overall process causes the unsols.
We investigate this based on our best configuration using iterative search (i [ehc,mq]). The
results are summarized in Table 5. From left to right, the columns show the number of

651

Höller

Domain #inst i [ehc,mq] mq(dfad ,ff) gbfs(ff) ehc(ff) ehc(dfad)

Assembly 30 30 1.00 30 1.00 30 1.00 30 1.00 – –
Barman 20 17 0.85 15 0.75 15 0.75 13 0.65 17 0.85
BW-GTOHP 30 23 0.77 23 0.77 23 0.77 1 0.03 1 0.03
BW-HPDDL 30 21 0.70 21 0.70 21 0.70 22 0.73 9 0.30
Childsnack 30 24 0.80 24 0.80 22 0.73 18 0.60 24 0.80
Depots 30 26 0.87 26 0.87 25 0.83 20 0.67 19 0.63
Elevator 147 147 1.00 147 1.00 147 1.00 3 0.02 147 1.00
Entertainment 12 12 1.00 12 1.00 12 1.00 7 0.58 6 0.50
Factories 20 5 0.25 5 0.25 5 0.25 – – 5 0.25
Freecell 60 – – – – – – – – – –
Hiking 30 24 0.80 24 0.80 23 0.77 24 0.80 – –
Logistics 80 80 1.00 48 0.60 51 0.64 9 0.11 80 1.00
Minecraft Pl 20 1 0.05 1 0.05 1 0.05 1 0.05 1 0.05
Minecraft Reg 59 39 0.66 39 0.66 39 0.66 39 0.66 39 0.66
Monroe-FO 20 – – – – – – – – – –
Monroe-PO 20 – – – – – – – – – –
Multiarm-BW 74 74 1.00 74 1.00 74 1.00 70 0.95 15 0.20
Robot 20 20 1.00 20 1.00 20 1.00 20 1.00 1 0.05
Rover 30 9 0.30 9 0.30 9 0.30 2 0.07 2 0.07
Satellite 20 20 1.00 20 1.00 11 0.55 – – – –
Snake 20 19 0.95 19 0.95 19 0.95 11 0.55 19 0.95
Towers 20 18 0.90 17 0.85 17 0.85 17 0.85 18 0.90
Transport 40 40 1.00 40 1.00 36 0.90 18 0.45 11 0.28
Woodworking 30 30 1.00 30 1.00 30 1.00 30 1.00 2 0.07

892 679 16.89 644 16.34 630 15.70 355 10.77 416 8.59

Table 4: Coverage of different configurations of Toad, all using intermediate optimization
for building the FA (Toadio) but different search algorithms and heuristics.

instances where the process up to a given step was completed successfully: in the first one
called grounding, it can be seen that for 41 instances, grounding was not possible9. Next
comes the approximation step. Since this is not necessary for all instances, the column
gives two numbers, e.g., for BW-GTOHP, approximation was necessary in 29 instances,
and the step was completed successfully in 25 cases. The next steps are the construction
of the FA, the search by Fd, and the verification (if necessary). The last column does not
represent a certain step, but summarizes how many HTN instances were solved in total. The
last row gives for every step in the Toad process the number of instances for which this
particular step caused the unsols. Mostly this was due to grounding, approximation or the
building process of the automaton, which means that once the classical planning problem is
written, most instances can be solved. However, note that most of the 77 unsolved instances

9. The experiments regarding domain properties reported in Table 1 on page 623 ran with a higher memory
limit, which leads to more groundable instances.

652

The Toad Planning System

10−1 100 101 102 103
0

200

400

600

runtime

so
lv
ed

in
st
an

ce
s

toadio
i[ehc,mq] toadio

mq(dfad,ff) toadio
gbfs(ff)

toadgbfs(ff)

Figure 18: Accumulated number of solved instances relative to the runtime in seconds.

10−2 10−1 100 101 102 103

101

102

103

104

105

106

search time

n
u
m
b
er

of
st
at
es

acyclic non-self-emb. self-emb.

Figure 19: Automaton size against time needed for search in seconds.

reported for the approximation came from a single domain – Freecell. The construction of
the automaton causes a high number of unsols in Factories and the two Monroe domains.
The verification did not cause any unsols. Over all, when the steps before the search caused
an unsol , this was most of the times due to the memory limit. When Fd failed to find a
plan, it was mainly due to the time limit.

When we have a look at problems where approximation is needed, we find that the first
solution to the classical problem is also a solution to HTN problem in most cases. This is in

653

Höller

gr
ou

nd
in

g

ap
pr

ox
im

at
io

n

FA
cr

ea
ti

on

F
D

se
ar

ch

ve
ri

fic
at

io
n

pr
ob

.s
ol

ve
d

Assembly 30 30 – 30 30 – 30
Barman 20 20 – 17 17 – 17
BW-GTOHP 30 30 25/29 23 23 22/22 23
BW-HPDDL 30 30 – 30 21 – 21
Childsnack 30 26 – 25 24 – 24
Depots 30 30 9/10 27 26 6/6 26
Elevator 147 147 – 147 147 – 147
Entertainment 12 12 – 12 12 – 12
Factories 20 20 – 5 5 – 5
Freecell 60 60 0/60 0 – – –
Hiking 30 26 – 25 24 – 24
Logistics 80 80 – 80 80 – 80
Minecraft Pl 20 4 – 1 1 – 1
Minecraft Reg 59 42 – 40 39 – 39
Monroe-FO 20 20 20/20 0 – – –
Monroe-PO 20 20 20/20 0 – – –
Multiarm-BW 74 74 – 74 74 – 74
Robot 20 20 – 20 20 – 20
Rover 30 30 16/28 9 9 7/7 9
Satellite 20 20 20/20 20 20 20/20 20
Snake 20 20 – 19 19 – 19
Towers 20 20 – 20 18 – 18
Transport 40 40 – 40 40 – 40
Woodworking 30 30 – 30 30 – 30

41 77 80 15 0

Table 5: Overview of completed sub-tasks of the overall Toad process. When the number
of completed instances decreased compared to the step before, it is shown bold.

line with the results reported in our conference publication (Höller, 2021), where we only had
a single instance where verification failed (which was from the Satellite domain). Whether
or not non-HTN solutions are returned further differs between the search configurations. In
our i [ehc,mq] configuration, this is not the case. Only three search configurations return
such instances at all, all instances came from the Satellite domain.

654

The Toad Planning System

8.4 Comparison to State of the Art

Lastly, we want to compare our system with the state of the art in totally ordered HTN
planning. The first class of systems that we incorporate into the comparison translate the
HTN problems to classical planning problems:

• Toad – Our system using EHC and multi-queue search as described above

• Htn2Strips – Translation as introduced by Alford et al. (2016)

• Htn2Sas – Translation as introduced by Behnke et al. (2022), which is based on the
same approach as Htn2Strips, but includes several improvements

Further, we added a system that uses a translation to propositional logic, and two search-
based systems:

• Lilotane – The runner-up of the 2020 IPC, which uses a partially grounded transla-
tion to propositional logic (Schreiber, 2021b)

• HyperTensioN – The winner of the 2020 IPC, which performs a lifted depth first
search (Magnaguagno et al., 2021)

• Panda – A heuristic search-based system (Höller et al., 2018, 2020)

The coverage results are given in Table 6. Let us first consider the left part of the
table, which shows the results of the systems using translations to classical planning. The
Htn2Strips system shows lowest coverage, solving 146 instances less than the best system,
which is Htn2Sas. However, our system is close to Htn2Sas and shows highest coverage
in several domains, including Barman, Depots, Transport, and Woodworking. It is worst in
the two Monroe domains, where it loses in total 35 instances when compared to Htn2Sas.

From the other systems, the Panda system shows highest coverage. It is on par
with the Htn2Sas system and even comes with a slightly higher normalized coverage.
HyperTensioN and Lilotane, the winner and runner-up of the 2020 IPC, are on par
with Htn2Strips.

Figure 20 gives the accumulated number of solved instances over time. HyperTensioN
reaches its highest coverage very fast, since it does not have to ground the problem, followed
by Panda and Toad. The Htn2Strips is slowest, which is not surprising. In this system,
the translation is done on the lifted domain and grounding is redone every time the limit
bounding the HTN problem is increased. Further, the specialized HTN grounder used by
Toad, Panda and Htn2Sas is much faster than Fd on the STRIPS encoding. In fact,
avoiding re-grounding is one of the optimizations that Htn2Sas introduced.

To sum up, the empirical evaluation shows that our novel Toad system is competitive
with the state of the art in totally ordered HTN planning and it shows higher coverage than
the winner and runner-up of the 2020 IPC.

655

Höller

translations to classical planning SAT-based search-based systems
Domain #inst Toad Htn2Sas Htn2Str. Lilotane Panda HyperT.
Assembly 30 30 1.00 30 1.00 23 0.77 5 0.17 30 1.00 3 0.10
Barman 20 17 0.85 14 0.70 16 0.80 17 0.85 15 0.75 20 1.00
BW-GTOHP 30 23 0.77 26 0.87 21 0.70 23 0.77 30 1.00 15 0.50
BW-HPDDL 30 21 0.70 20 0.67 28 0.93 1 0.03 27 0.90 30 1.00
Childsnack 30 24 0.80 24 0.80 20 0.67 28 0.93 23 0.77 30 1.00
Depots 30 26 0.87 22 0.73 22 0.73 23 0.77 22 0.73 24 0.80
Elevator 147 147 1.00 147 1.00 107 0.73 147 1.00 147 1.00 147 1.00
Entertainment 12 12 1.00 12 1.00 4 0.33 2 0.17 12 1.00 – –
Factories 20 5 0.25 6 0.30 6 0.30 4 0.20 8 0.40 3 0.15
Freecell 60 – – – – – – 11 0.18 13 0.22 3 0.05
Hiking 30 24 0.80 23 0.77 24 0.80 23 0.77 25 0.83 25 0.83
Logistics 80 80 1.00 78 0.97 46 0.57 45 0.56 46 0.57 22 0.28
Minecraft Pl 20 1 0.05 1 0.05 3 0.15 4 0.20 4 0.20 5 0.25
Minecraft Reg 59 39 0.66 41 0.69 55 0.93 33 0.56 42 0.71 57 0.97
Monroe-FO 20 – – 20 1.00 2 0.10 20 1.00 20 1.00 – –
Monroe-PO 20 – – 15 0.75 1 0.05 20 1.00 11 0.55 – –
Multiarm-BW 74 74 1.00 72 0.97 73 0.99 4 0.05 74 1.00 8 0.11
Robot 20 20 1.00 20 1.00 20 1.00 11 0.55 20 1.00 20 1.00
Rover 30 9 0.30 17 0.57 9 0.30 23 0.77 29 0.97 30 1.00
Satellite 20 20 1.00 18 0.90 7 0.35 15 0.75 19 0.95 20 1.00
Snake 20 19 0.95 20 1.00 19 0.95 20 1.00 20 1.00 20 1.00
Towers 20 18 0.90 16 0.80 16 0.80 9 0.45 13 0.65 20 1.00
Transport 40 40 1.00 32 0.80 24 0.60 34 0.85 25 0.62 40 1.00
Woodworking 30 30 1.00 25 0.83 7 0.23 30 1.00 23 0.77 7 0.23

892 679 16.89 699 18.18 553 13.79 552 14.58 698 18.60 549 14.27

Table 6: Coverage comparison of Toad and several systems from the literature.

9. Conclusion

We introduced a planning system for totally ordered HTN planning based on a translation
to classical planning. Instead of bounding the problems to overcome the differences in
expressiveness, as done by such systems from the literature, we use a superset approximation.
The set of solutions to the classical problem is a superset of the set of solutions to the HTN
problem. However, our evaluation shows that wide parts of the commonly-used benchmark
set (from the 2020 IPC) can be translated without approximation. Whether or not this is
necessary is decided based on a property called self-embedding, which is also lent from the
field of formal languages and used in HTN planning for the first time. If approximation is
necessary, we apply plan verification to ensure to return only valid solutions.

We show that our approach is sound and complete. Further, we show that there is a
close connection of tail-recursiveness, a property used in the literature (Alford et al., 2016)
to decide whether an HTN problem can directly be translated into a classical problem,
and self-embedding as used here. We show that the latter describes the more general class
of problems, i.e., that every totally ordered tail-recursive HTN problem is also non-self-
embedding, but not vise versa.

656

The Toad Planning System

10−1 100 101 102 103
0

200

400

600

runtime

so
lv
ed

in
st
an

ce
s

Toadio
i[ehc,mq]

Htn2Sas Htn2Strips

Lilotane Panda HyperT.

Figure 20: Accumulated number of solved instances relative to the runtime in seconds.

Our system shows good empirical results on the 2020 IPC benchmark set, where it is
competitive with the search-based Panda system and the best bound-based translation
system, and outperforms the systems from the 2020 IPC.

Acknowledgments.

I would like to thank the JAIR reviewers for their insightful comments and efforts towards
improving the article. I further want to thank Gregor Behnke and Pascal Bercher for the
discussions on the topic.

This work was funded by the German Research Foundation (Deutsche Forschungsge-
meinschaft, DFG) – Project-ID 232722074 – SFB 1102 as well as by the European Union’s
Horizon Europe Research and Innovation program under the grant agreement TUPLES No
101070149.

Appendix A

(define (domain domain-htn)
(:requirements :negative-preconditions :typing :hierarchy)
(:types package - locatable

location - object
target - object
vehicle - locatable
locatable - object)

657

Höller

(:predicates
(road ?arg0 - location ?arg1 - location)
(at ?arg0 - locatable ?arg1 - location)
(in ?arg0 - package ?arg1 - vehicle))

(:task logistics-problem :parameters ())
(:task deliver :parameters (?p - package ?l - location))
(:task get-to-s :parameters (?v - vehicle ?l - location))
(:task get-to-d :parameters (?v - vehicle ?l - location))

;; self-embedding
(:method m-deliver-ps

:parameters ()
:task (logistics-problem)
:ordered-subtasks (and
(logistics-problem)
(logistics-problem)))

;; non-self-embedding
; (:method m-more-ps
; :parameters (?p - package ?l - location)
; :task (logistics-problem)
; :ordered-subtasks (and
; (deliver ?p ?l)
; (logistics-problem)))

(:method m-one-p
:parameters (?p - package ?l - location)
:task (logistics-problem)
:ordered-subtasks (deliver ?p ?l)

(:method m-deliver
:parameters (?l1 - location ?l2 - location ?p - package ?v - vehicle)
:task (deliver ?p ?l2)
:ordered-subtasks (and
(get-to-s ?v ?l1)
(pick-up ?v ?l1 ?p)
(get-to-d ?v ?l2)
(drop ?v ?l2 ?p)))

(:method m-drive-to-s
:parameters (?l1 - location ?l2 - location ?v - vehicle)
:task (get-to-s ?v ?l2)
:ordered-subtasks (drive ?v ?l1 ?l2))

(:method m-drive-to-s-via
:parameters (?l2 - location ?l3 - location ?v - vehicle)
:task (get-to-s ?v ?l3)
:ordered-subtasks (and
(get-to-s ?v ?l2)
(drive ?v ?l2 ?l3)))

(:method m-drive-to-d
:parameters (?l1 - location ?l2 - location ?v - vehicle)
:task (get-to-d ?v ?l2)

658

The Toad Planning System

:ordered-subtasks (drive ?v ?l1 ?l2))

(:method m-drive-to-d-via
:parameters (?l1 ?l2 ?l3 - location ?v - vehicle)
:task (get-to-d ?v ?l3)
:ordered-subtasks (and
(drive ?v ?l1 ?l2)
(get-to-d ?v ?l3)))

(:action drive
:parameters (?v - vehicle ?l1 - location ?l2 - location)
:precondition (and

(at ?v ?l1)
(road ?l1 ?l2))

:effect (and
(not (at ?v ?l1))
(at ?v ?l2)))

(:action noop
:parameters (?v - vehicle ?l2 - location)
:precondition

(and (at ?v ?l2))
:effect ())

(:action pick-up
:parameters (?v - vehicle ?l - location ?p - package)
:precondition (and

(at ?v ?l)
(at ?p ?l))

:effect (and
(not (at ?p ?l))
(in ?p ?v)))

(:action drop
:parameters (?v - vehicle ?l - location ?p - package)
:precondition (and

(at ?v ?l)
(in ?p ?v))

:effect (and
(not (in ?p ?v))
(at ?p ?l))))

References

Alford, R., Behnke, G., Höller, D., Bercher, P., Biundo, S., & Aha, D. (2016). Bound to
plan: Exploiting classical heuristics via automatic translations of tail-recursive HTN
problems. In Proceedings of the 26th International Conference on Automated Planning
and Scheduling (ICAPS), pp. 20–28. AAAI Press.

Alford, R., Kuter, U., & Nau, D. S. (2009). Translating HTNs to PDDL: A small amount of
domain knowledge can go a long way. In Proceedings of the 21st International Joint
Conference on Artificial Intelligence (IJCAI), pp. 1629–1634.

659

Höller

Alford, R., Shivashankar, V., Kuter, U., & Nau, D. S. (2012). HTN problem spaces: Struc-
ture, algorithms, termination. In Proceedings of the 5th Annual Symposium on Com-
binatorial Search (SoCS). AAAI Press.

Bäckström, C., & Nebel, B. (1995). Complexity results for SAS+ planning. Computational
Intelligence, 11, 625–656.

Barták, R., Maillard, A., & Cardoso, R. C. (2018). Validation of hierarchical plans via
parsing of attribute grammars. In Proceedings of the 28th International Conference on
Automated Planning and Scheduling (ICAPS), pp. 11–19. AAAI Press.

Barták, R., Ondrcková, S., Maillard, A., Behnke, G., & Bercher, P. (2020). A novel parsing-
based approach for verification of hierarchical plans. In Proceedings of the 32nd IEEE
International Conference on Tools with Artificial Intelligence (ICTAI), pp. 118–125.
IEEE Computer Society.

Behnke, G., Bercher, P., Kraus, M., Schiller, M. R. G., Mickeleit, K., Häge, T., Dorna, M.,
Dambier, M., Manstetten, D., Minker, W., Glimm, B., & Biundo, S. (2020). New
developments for Robert – Assisting novice users even better in DIY projects. In Pro-
ceedings of the 30th International Conference on Automated Planning and Scheduling
(ICAPS), pp. 343–347. AAAI Press.

Behnke, G., Höller, D., & Bercher, P. (Eds.). (2021). Proceedings of the 10th International
Planning Competition – Planner and Domain Abstracts.

Behnke, G., Höller, D., & Biundo, S. (2015). On the complexity of HTN plan verification
and its implications for plan recognition. In Proceedings of the 25th International
Conference on Automated Planning and Scheduling (ICAPS), pp. 25–33. AAAI Press.

Behnke, G., Höller, D., & Biundo, S. (2017). This is a solution! (. . . but is it though?)
– Verifying solutions of hierarchical planning problems. In Proceedings of the 27th
International Conference on Automated Planning and Scheduling (ICAPS), pp. 20–
28. AAAI Press.

Behnke, G., Höller, D., & Biundo, S. (2018). totSAT – Totally-ordered hierarchical planning
through SAT. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence
(AAAI), pp. 6110–6118. AAAI Press.

Behnke, G., Höller, D., & Biundo, S. (2019). Bringing order to chaos – A compact represen-
tation of partial order in SAT-based HTN planning. In Proceedings of the 33rd AAAI
Conference on Artificial Intelligence (AAAI), pp. 7520–7529. AAAI Press.

Behnke, G., Höller, D., Schmid, A., Bercher, P., & Biundo, S. (2020). On succinct groundings
of HTN planning problems. In Proceedings of the 34th AAAI Conference on Artificial
Intelligence (AAAI), pp. 9775–9784. AAAI Press.

Behnke, G., Pollitt, F., Höller, D., Bercher, P., & Alford, R. (2022). Making translations to
classical planning competitive with other HTN planners. In Proceedings of the 36th
AAAI Conference on Artificial Intelligence (AAAI), pp. 9687–9697. AAAI Press.

Bercher, P., Alford, R., & Höller, D. (2019). A survey on hierarchical planning – One
abstract idea, many concrete realizations. In Proceedings of the 29th International Joint
Conference on Artificial Intelligence (IJCAI), pp. 6267–6275. IJCAI organization.

660

The Toad Planning System

Bit-Monnot, A., Smith, D. E., & Do, M. (2016). Delete-free reachability analysis for temporal
and hierarchical planning. In Proceedings of the 22nd European Conference on Artificial
Intelligence (ECAI), pp. 1698–1699. IOS Press.

Chomsky, N. (1959). On certain formal properties of grammars. Information and Control,
2 (2), 137–167.

Chrpa, L., & Barták, R. (2016). Guiding planning engines by transition-based domain
control knowledge. In Proceedings of the 15th International Conference Principles of
Knowledge Representation and Reasoning (KR), pp. 545–548. AAAI Press.

Erol, K., Hendler, J. A., & Nau, D. S. (1996). Complexity results for HTN planning. Annals
of Mathematics and Artificial Intelligence, 18 (1), 69–93.

Geib, C. W. (2009). Delaying commitment in plan recognition using combinatory categorial
grammars. In Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI), pp. 1702–1707.

Geib, C. W., & Goldman, R. P. (2009). A probabilistic plan recognition algorithm based on
plan tree grammars. Artificial Intelligence, 173 (11), 1101–1132.

Geib, C. W., & Goldman, R. P. (2011). Recognizing plans with loops represented in a lexical-
ized grammar. In Proceedings of the 25th AAAI Conference on Artificial Intelligence
(AAAI), pp. 958–963. AAAI Press.

Geib, C. W., & Kantharaju, P. (2018). Learning combinatory categorial grammars for plan
recognition. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence
(AAAI), pp. 3007–3014. AAAI Press.

Geib, C. W., & Weerasinghe, J. (2020). Planning using combinatory categorial grammars. In
Proceedings of the 3rd ICAPS Workshop on Hierarchical Planning (HPlan), pp. 18–26.

Goldman, R. P. (2009). A semantics for HTN methods. In Proceedings of the 19th Inter-
national Conference on Automated Planning and Scheduling (ICAPS), pp. 146–153.
AAAI Press.

Goldman, R. P., & Kuter, U. (2019). Hierarchical task network planning in common Lisp:
the case of SHOP3. In Proceedings of the 12th European Lisp Symposium (ELS), pp.
73–80. ACM.

Helmert, M. (2006). The Fast Downward planning system. Journal of Artificial Intelligence
Research, 26, 191–246.

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14, 253–302.

Höller, D. (2021). Translating totally ordered HTN planning problems to classical planning
problems using regular approximation of context-free languages. In Proceedings of the
31st International Conference on Automated Planning and Scheduling (ICAPS), pp.
159–167. AAAI Press.

Höller, D., Behnke, G., Bercher, P., & Biundo, S. (2014). Language classification of hierar-
chical planning problems. In Proceedings of the 21st European Conference on Artificial
Intelligence (ECAI), pp. 447–452. IOS Press.

661

Höller

Höller, D., Behnke, G., Bercher, P., & Biundo, S. (2016). Assessing the expressivity of
planning formalisms through the comparison to formal languages. In Proceedings of
the 26th International Conference on Automated Planning and Scheduling (ICAPS),
pp. 158–165. AAAI Press.

Höller, D., Behnke, G., Bercher, P., & Biundo, S. (2021). The PANDA framework for
hierarchical planning. Künstliche Intelligenz (KI), 30 (1), 11–20.

Höller, D., Behnke, G., Bercher, P., Biundo, S., Fiorino, H., Pellier, D., & Alford, R. (2020a).
HDDL: An extension to PDDL for expressing hierarchical planning problems. In
Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI), pp. 9883–
9891. AAAI Press.

Höller, D., Bercher, P., & Behnke, G. (2020b). Delete- and ordering-relaxation heuristics for
HTN planning. In Proceedings of the 29th International Joint Conference on Artificial
Intelligence (IJCAI), pp. 4076–4083. IJCAI organization.

Höller, D., Bercher, P., Behnke, G., & Biundo, S. (2018). A generic method to guide
HTN progression search with classical heuristics. In Proceedings of the 28th Inter-
national Conference on Automated Planning and Scheduling (ICAPS), pp. 114–122.
AAAI Press.

Höller, D., Bercher, P., Behnke, G., & Biundo, S. (2019). On guiding search in HTN plan-
ning with classical planning heuristics. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence (IJCAI), pp. 6171–6175. IJCAI organization.

Höller, D., Bercher, P., Behnke, G., & Biundo, S. (2020). HTN planning as heuristic pro-
gression search. Journal of Artificial Intelligence Research, 67, 835–880.

Höller, D., Wichlacz, J., Bercher, P., & Behnke, G. (2022). Compiling HTN plan verification
problems into HTN planning problems. In Proceedings of the 32nd International Con-
ference on Automated Planning and Scheduling (ICAPS), pp. 145–150. AAAI Press.

Köhn, A., Wichlacz, J., Torralba, Á., Höller, D., Hoffmann, J., & Koller, A. (2020). Gener-
ating instructions at different levels of abstraction. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics (COLING), pp. 2802–2813. Inter-
national Committee on Computational Linguistics.

Lesire, C., & Albore, A. (2021). pyHiPOP – Hierarchical partial-order planner. In Proceed-
ings of the 2020 International Planning Competition (IPC).

Magnaguagno, M. C., Meneguzzi, F., & de Silva, L. (2021). HyperTensioN – A three-stage
compiler for planning. In Proceedings of the 2020 International Planning Competition
(IPC).

Nau, D., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., & Yaman, F. (2003).
SHOP2: An HTN planning system. Journal of Artificial Intelligence Research, 20,
379–404.

Nederhof, M.-J. (2000a). Practical experiments with regular approximation of context-free
languages. Computational Linguistics, 26 (1), 17–44.

Nederhof, M.-J. (2000b). Regular approximation of CFLs: A grammatical view. In Ad-
vances in Probabilistic and other Parsing Technologies, chap. 12, pp. 221–241. Kluwer
Academic Publishers.

662

The Toad Planning System

Pellier, D., & Fiorino, H. (2021). Totally and partially ordered hierarchical planners in
PDDL4J library. In Proceedings of the 2020 International Planning Competition (IPC).

Ramoul, A., Pellier, D., Fiorino, H., & Pesty, S. (2017). Grounding of HTN planning domain.
International Journal on Artificial Intelligence Tools, 26 (5), 1760021:1–1760021:24.

Richter, S., & Westphal, M. (2010). The LAMA planner: Guiding cost-based anytime plan-
ning with landmarks. Journal of Artificial Intelligence Research, 39, 127–177.

Schreiber, D. (2021a). Lifted logic for task networks: TOHTN planner Lilotane entering IPC
2020. In Proceedings of the 2020 International Planning Competition (IPC).

Schreiber, D. (2021b). Lilotane: A lifted SAT-based approach to hierarchical planning.
Journal of Artificial Intelligence Research, 70, 1117–1181.

Schreiber, D., Pellier, D., Fiorino, H., & Balyo, T. (2019). Tree-REX: SAT-based tree
exploration for efficient and high-quality HTN planning. In Proceedings of the 29th
International Conference on Automated Planning and Scheduling (ICAPS), pp. 382–
390. AAAI Press.

Steedman, M. (2000). The syntactic process. Language, speech, and communication. MIT
Press.

663

