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Abstract

By examining the patterns of solutions obtained for various instances, one can gain
insights into the structure and behavior of combinatorial optimization (CO) problems
and develop efficient algorithms for solving them. Machine learning techniques, especially
Graph Neural Networks (GNNs), have shown promise in parametrizing and automating
this laborious design process. The inductive bias of GNNs allows for learning solutions
to mixed-integer programming (MIP) formulations of constrained CO problems with a
relational representation of decision variables and constraints. The trained GNNs can be
leveraged with primal heuristics to construct high-quality feasible solutions to CO problems
quickly. However, current GNN-based end-to-end learning approaches have limitations for
scalable training and generalization on larger-scale instances; therefore, they have been
mostly evaluated over small-scale instances. Addressing this issue, our study builds on su-
pervised learning of optimal solutions to the downscaled instances of given large-scale CO
problems. We introduce several improvements on a recent GNN model for CO to general-
ize on instances of a larger scale than those used in training. We also propose a two-stage
primal heuristic strategy based on uncertainty-quantification to automatically configure
how solution search relies on the predicted decision values. Our models can generalize on
16x upscaled instances of commonly benchmarked five CO problems. Unlike the regressive
performance of existing GNN-based CO approaches as the scale of problems increases, the
CO pipelines using our models offer an incremental performance improvement relative to
CPLEX. The proposed uncertainty-based primal heuristics provide 6-75% better optimality
gap values and 45-99% better primal gap values for the 16x upscaled instances and brings
immense speedup to obtain high-quality solutions. All these gains are achieved through a
computationally efficient modeling approach without sacrificing solution quality.

1. Introduction

Combinatorial optimization (CO) problems arise in myriad fields and are generally hard
to scale due to their exponential complexity (Korte & Vygen, 2012). Real-world applica-
tions of CO are complex systems of many interacting entities with intrinsic relationships;
therefore, they require large-scale optimization. The prohibitive combinatorial structure
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makes scaling CO algorithms challenging, demanding significant computational power. As
a result, there is a continuous need for efficient solution methods to tackle CO problems.
On the other hand, various industrial CO problems are routinely solved (Bengio, Lodi, &
Prouvost, 2021), such as fleet routing (Choudhury et al., 2021), scheduling for data cen-
ter management (Mao, Schwarzkopf, Venkatakrishnan, Meng, & Alizadeh, 2019), optimal
power flow (Fioretto, Van Hentenryck, Mak, Tran, Baldo, & Lombardi, 2021), and energy
market auction (Derinkuyu, Tanrisever, Kurt, & Ceyhan, 2020). These CO routines en-
able the deduction of the distribution of problem parameters from their varying scenarios.
Besides, these scenarios could occur with a constant or similar problem structure. For
example, in the optimal power flow problem, energy is transmitted through a grid with dif-
fering amounts in time, but the transmission amount follows a specific grid capacity and a
time-series pattern. In addition to accumulating problem data, solving CO problems repet-
itively produces vast empirical data of solution traces by algorithms. All these presented
aspects of CO practices create opportunities to solve problems efficiently by exploiting ma-
chine learning (ML) to utilize empirical data of historical problem instances. Adopting
this idea, artificial intelligence and operations research communities, with a recent surge in
interest, develop ML-augmented CO solvers, aiming to construct heuristic solutions end-to-
end and enhance existing generalized approaches like Mixed-Integer Programming (MIP)
solvers (Wilder et al., 2019; Bengio et al., 2021; Cappart et al., 2021).

Traditionally CO problems are tackled using Branch & Bound (B&B) search, the core
algorithm of MIP solvers, by formulating them as mixed-integer programs. B&B algorithm
solves MIPs by proving optimality; however, it becomes intractable as problems get larger.
MIP solvers have been developed by addressing some inherent decision-making procedures
of B&B algorithm like variable selection, node selection, and cut selection and running
advanced subroutines like primal heuristics and tightening cut generation. These vari-
ous methods have been developed in years of laborious designs and computational studies
(Achterberg & Wunderling, 2013; Bestuzheva et al., 2023). Particularly, primal heuristics
are especially appealing in scenarios where high-quality solutions are demanded in a short
time and periodically, rather than prioritizing the proof of solution optimality. Therefore,
neural networks show promise in scaling primal heuristics for CO as they could approx-
imate problem-solution mappings or parameterize algorithms tailored to specific problem
data with matrix-based operations on GPUs (Bengio et al., 2021; Chen, Liu, Wang, Lu, &
Yin, 2023). Particularly, Graph Neural Networks (GNNs) significantly contribute to MIP,
CO, constraint satisfaction, and algorithmic reasoning domains (Cappart et al., 2021). The
capabilities of GNNs, such as inductive bias, permutation invariance and equivariance, en-
able effective pattern recognition from graph-structured information with varying input
sizes (Hamilton, Ying, & Leskovec, 2017).

Utilizing ML techniques for CO problems poses several challenges. Firstly, end-to-end
learning approaches struggle to generalize on larger-scale problems, possibly due to the
increasing complexity of relations among decision variables (Joshi, Cappart, Rousseau, &
Laurent, 2021; Liu, Zhang, Tang, & Yao, 2022). Secondly, supervised learning models used
in end-to-end approaches require expensive labeled training data, limiting their practicality
for NP-hard problems (Joshi et al., 2021). Recent studies (Khalil et al., 2022; Han et al.,
2023) indicate that previous work adopting GNNs for branching policy and primal heuristics
(Gasse et al., 2019; Ding et al., 2020) experimented with small-scale CO problems that the
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state-of-the-art MIP solvers like CPLEX and Gurobi can solve instantly. Additionally,
Khalil et al. (2022) remark that their proposed framework MIP-GNN is beneficial for CO
problems with past instances and their near-optimal solutions available, which limits its
practicality for solving large-scale problems.

Another challenge lies in how the trained supervised models are utilized for downstream
optimization tasks. Using the predictions of supervised models often involves ad-hoc pro-
cesses to obtain feasible solutions for constrained optimization problems and post-hoc strate-
gies for solution search in discrete domains. Common strategies are problem reduction by
fixing variables to the predictions, guiding B&B search, and local branching around the
predicted solution (Ding et al., 2020; Nair et al., 2020; Khalil et al., 2022; Han et al., 2023;
Huang et al., 2022). However, these strategies typically require post-processes and tuning
by solving instances of a target problem, leading to development overhead that increases
with the number of hyperparameters.

Overall, our study addresses the following limitations and drawbacks of the supervised
learning methodology for CO adopted in the literature:

1. A commonly adopted training data generation depends on the collection of high-
quality solutions by solving a set of instances of the target problem with a MIP
solver. Obtaining such solutions for large instances is time-consuming due to the
exponential space complexity of CO problems, causing a bottleneck for the scalability
of ML models for solving CO.

2. Most training data generation approaches use multiple solutions per problem instance
to set a target space to be learned, which may hinder models from capturing patterns
of feasibility and optimality of solutions.

3. Training GNN models requires a massive amount of GPU memory, depending on the
scale of training instances. This poses a challenge for the computational feasibility of
supervised GNN models for large-scale CO problems.

4. Several studies (Gasse et al., 2019; Ding et al., 2020; Shen et al., 2021; Huang et al.,
2022) explore the generalization needed to solve larger instances of CO problems than
those used in training, but they lack explicit conclusions. The scalability of end-to-end
learning approaches to CO still requires further evidence.

5. The primal heuristics proposed in the current studies rely on class probabilities of
predictions or prediction coverage rates to create partial solutions. However, class
probabilities might mislead for unusual samples (e.g., larger-scale instances) compared
to those in the training dataset, leading to declining solution performance for different-
scale instances.

Considering the status quo of the supervised GNN-based solution approaches to CO,
we focus on how GNNs can accurately infer solutions to large-scale instances of a given CO
problem with tractable training data generation, and their predictions can be efficiently
utilized for CO by designing automated primal heuristics. Firstly, we provide an extensive
overview of related data-driven optimization approaches, particularly end-to-end learning
with GNNs for primal heuristics, and argue their efficacy for scalability in solving CO prob-
lems. Accordingly, our study proposes several supplementations for a recent GNN model
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for CO, MIP-GNN (Khalil et al., 2022), to allow effectively knowledge transfer for solving
larger-scale instances of CO problems. The contributions of the proposed methodology
are unfolded below, each addressing the corresponding challenges (listed above) denoted in
parentheses.

• We set up the training dataset by collecting optimal solutions of the downscaled
instances of a given CO problem in which actual instances are large to hinder obtaining
high-quality solutions. This approach allows us to obtain models that capture solution
patterns useful for much larger instances, with significantly reduced dataset generation
and training costs (Challenges 1, 2, and 3).

• To facilitate knowledge transfer for solving larger-scale instances, we enhance MIP-
GNN with various normalization techniques and a different architecture component.
Consequently, our models trained on the downscaled instances maintain a steady
predictive performance and can scale the proposed primal heuristics for solving larger
problems (Challenges 3 and 4).

• We train the models with Evidential Deep Learning (EDL) (Sensoy, Kaplan, & Kan-
demir, 2018), an uncertainty-quantification method, to calibrate their prediction un-
certainty and form our primal heuristics to leverage the predictions considering the
associated uncertainty values. In this way, our models are fine-tuned based on decision
quality, achieving a superior optimization performance (Challenges 4 and 5).

• We propose Uncertainty-based Problem Reduction as a new a primal heuristic algo-
rithm for warm-start solution generation and update the Guided B&B Node Selec-
tion algorithm by Khalil et al. (2022) using EDL. These proposed primal heuristics
automatically adapt to changing solution patterns due to varying problem sizes, con-
sidering the estimated uncertainty values through EDL (Challenges 4 and 5).

We conducted extensive experiments involving five different CO problems commonly
benchmarked in the related literature. These experiments benchmark the proposed method-
ology against the pre-trained MIP-GNN models and CPLEX, an industry-standard solver
software that is challenging to outperform with ML approaches (Khalil et al., 2022). We
also present an ablation study of the proposed architectural improvements. The models
trained on small-scale (1x) instances are evaluated for large-scale (2x, 4x, 8x, and 16x)
transfer instances of the same problems. The trained GNNs can accurately generalize on
these transfer instances, matching the predictive performance on the test instances (1x).
The GNN-augmented CPLEX pipelines, which utilize the proposed primal heuristics (re-
ferred to as ‘the CO pipelines’), show an increasing trend of performance gain relative to
the default CPLEX performance as the scale of problem instances increases. This is in con-
trast to the deteriorating performance observed in other GNN-based CO approaches (Gasse
et al., 2019; Ding et al., 2020; Joshi et al., 2021; Liu et al., 2022). Our experiments aim to
efficiently solve the largest scale transfer instances, which are well above the transfer scale
attempted in those studies. In comparison to CPLEX over those transfer instances, the CO
pipelines achieve approximately 80-99% better primal gap values for three fundamental CO
problems and 45% and 60% better primal gap values for the other two more challenging
problems presented in the study by Khalil et al. (2022).
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As significant evidence of offering a generalized primal heuristics approach, the CO
pipelines can boost the efficacy of B&B algorithm for all benchmarked problems—each
posing distinct solution processes— and yield high orders of time efficiency to obtain high-
quality solutions. Additionally, the transfer performance of the CO pipelines is close to or
better than the testing performance of MIP-GNN models. This corroborates the proposed
methodology can effectively enable knowledge transfer to solve larger scale instances. Last
but not least, our methodology is also cost-efficient while scaling in terms of required com-
putation for training dataset generation and GNN model training, which demand intensive
CPU and GPU workload during the development of ML-augmented CO approaches. The
source code of our study is publicly available1.

This article is organized as follows. Section 2 presents the background on MIP and
GNN-based methodologies for CO. Section 3 peruses studies on ML techniques for CO and
the ML-augmented primal heuristics comprehensively. Section 4 proposes our methodol-
ogy to solve CO problems at scale with GNN-based primal heuristics. Sections 5 and 6
present the experimental evaluation of our study. Sections 7 and 8 discuss how the pro-
posed methodology can scale and envision further research directions. Lastly, we finalize
our paper with a discussion of how it can affect applications in NP-hard domains.

2. Background

We present preliminary information about the methodologies covered in our study and
introduce our notation along this section.

2.1 Combinatorial Optimization

CO is a branch of mathematics and computer science that deals with finding the best
solution in a finite decision space (Korte & Vygen, 2012). In general, CO problems are
formulated as mixed integer linear programming (MILP), which is a mathematical modeling
of an optimization problem with integer and continuous decision variables to minimize
(or maximize) a linear objective function under a set of linear inequality and/or equality
constraints. Formally MILP is the problem form of

arg min
x
{c⊤x | Ax ≤ b, l ≤ x ≤ u, x ∈ Rn, xj ∈ Z|J |, j ∈ J }, (1)

where c ∈ Rn is the vector of objective coefficients, A ∈ Rm×n is the matrix of constraint
coefficients, b ∈ Rm is the vector of constraint bounds, l,u ∈ Rn are bounds of decision
variables, and J is the index set of integer decision variables.

2.2 Branch & Bound Search Algorithm

B&B search algorithm is an exact optimization method that is able to quantify the op-
timality of integral solutions by providing an upper and lower bound on their objective
values. During B&B search, a binary tree is constructed by dividing solution space with
constraining non-integer solutions. In each B&B node, a linear problem is obtained by re-
laxing (removing) integrality constraints, then it is solved with linear programming (LP). If

1. https://github.com/furkancanturk/gnn4co
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the relaxed solution x(lp) of a node does not contain fractional values for integer variables, it
is a feasible solution to MIP. Otherwise, one of the integer variables taking fractional value

x
(lp)
j in the relaxed solution is selected to branch the node with two separate bounding con-

straints xj ≤ ⌊x(lp)
j ⌋ and xj ≥ ⌈x(lp)

j ⌉ by generating two new nodes. These nodes cover two
divergent parts of a constrained decision space that eliminates solutions having fractional
values for xj from the decision space of the parent node.

B&B algorithm tackles NP-hard problems with two tasks: Primal task is finding feasible
solutions, and dual task is certifying the optimality of the best solution found during the
search. Primal heuristics aim to achieve feasible solutions quickly to improve primal bound.
Dual methods select variables to branch on so that a tighter dual bound (the best LP-
relaxed solution value) is computed to prune unexplored B&B nodes with higher (lower)
bounds for a given minimization (maximization) problem. In this way, unpromising parts
of exponentially growing B&B trees are eliminated, and the search continues on the rest
promising unexplored nodes, which are prioritized with respect to a node selection policy.
Node selection strategies can be basically categorized in two: (i) selecting the node with
the lowest LP-solution value to increase (decrease) the dual bound and (ii) selecting deeper
nodes to find integral solutions decreasing (increasing) primal bound for a minimization
(maximization) problem (Achterberg, Berthold, Koch, & Wolter, 2008).

2.3 Graph Neural Networks

GNNs are a generic way of modeling knowledge through relations within data (Scarselli,
Gori, Tsoi, Hagenbuchner, & Monfardini, 2009; Kipf & Welling, 2017). The fundamental
concept underlying GNNs involves the computation of a vectorial representation for each
node in a given graph. This is achieved through an iterative process of aggregating em-
beddings of the neighboring nodes. The aggregation step is parameterized by employing
(stochastic) first-order optimization techniques to adapt to the underlying data distribution.
The potential benefit of using GNNs for CO is that the learned representations can encode
critical graph structures that facilitate the efficient resolution of a CO problem. GNNs
are inherently invariant and equivariant, i.e., they can automatically leverage invariances or
symmetries that exist in the input instance or data distribution. Due to their local function-
ality, GNNs naturally exploit sparsity by aggregating neighborhood information, leading to
more scalable models on sparse inputs. In our study, we define GNNs in their generalized
form, Message Passing Neural Network (MPNN) (Gilmer, Schoenholz, Riley, Vinyals, &
Dahl, 2017) in which vectorial messages are exchanged between nodes and node represen-

tations are updated using neural networks. MPNN computes a representation vector h
(k)
v

for each node at each layer k with the following general form.

h(k)
v = γ(k)

(
h(k−1)
v ,

⊕
u∈N(v)

(
ϕ(k)(h(k−1)

v ,h(k−1)
u )

))
(2)

Each layer k has an update function γ(k), an aggregation operator
⊕

, and a message
function ϕ(k)(·, ·). Each function at each layer is parameterized with its own nonlinear
function, such as a Rectifier Linear Unit (ReLU), a Perceptron, a Multi-layer Perceptron
(MLP), and an attention network.

⊕
can be a permutation-invariant operator such as sum,

mean, max, min, and standard deviation. For a given node v, firstly, message vectors are
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computed by ϕ through the adjacent nodes, u ∈ N(v). Then, these vectors are aggregated
as the neighborhood message by

⊕
. After merging the neighborhood message vector with

the previous representation vector h
(k−1)
v by one of the aggregation operators or column-

wise concatenation, γ(k)(·, ·) computes a new representation for node v. Thus, a k-layer
MPNN computes a representation vector for each node which captures information within
its k-depth neighborhood in the graph.

2.4 MIP Representation as a Bipartite Graph

Values of decision variables in a constrained optimization problem depend on each other
through the constraints and the objective function of the problem. The earlier studies by
Gasse et al. (2019) and Ding et al. (2020) model MIPs by representing decision variables
and constraints as nodes in an undirected graph. Next, supervised GNNs are used to encode
the relationships among the nodes and induce solutions to MIPs. Basically, these models
learn how decision variables in the problem take values to form a solution that satisfies a
set of constraints and is optimal (or high quality) concerning an objective function. In the
following, we describe this bipartite graph representation.

A multiset, a set allowing multiple identical elements, of n nodes (V ) for decision vari-
ables and a multiset of m nodes (C) for constraints constitute an undirected bipartite
graph to represent a MIP formulation, which is depicted in Figure 1. A multiset of edges
(E) connects the constraint nodes with corresponding variable nodes. The variable nodes
are characterized by c and their domain types (binary, continuous, and integer). If decision
variables are in an integral domain, l and u are also used in the feature set of variable
nodes. The constraint nodes are characterized by b and their types (≤ and =). Types of
decision variables and constraints are one-hot encoded in the nodes. Lastly, the edges are
characterized by ai,j ∈ A. This bipartite graph with the mentioned features fully embodies
information in MIP problems, yet more features could be extracted from the root and in-
termediate nodes of B&B tree as long as B&B search algorithm works (Gasse et al., 2019;
Ding et al., 2020; Gupta et al., 2020).

Variable 
nodes

Constraint 
nodes

Figure 1: MIP Representation as a Bipartite Graph. Image credit to (Nair et al., 2020).

For each side of the bipartite graph, one graph convolution layer operates to update
node representations with passed messages from the other side. We present a definition of
graph convolution layers in the form of MPNN for variable and constraint nodes separately
in Section 4.1. We recommend readers refer to the study of Chen et al. (2023) on the
investigation of the expressive power of GNNs to approximate solutions to given bipartite
graph representations of MILPs.
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3. Related Work

Existing methods accompanying B&B algorithm in MIP solvers have been advanced to
make node selection and variable selection procedures efficient and incorporate advanced
features like cutting plane generation and heuristic method selection (Zhang et al., 2023).
However, developing general MIP solvers and problem-tailored heuristic designs demands
considerable time and expert knowledge (Achterberg &Wunderling, 2013; Bestuzheva et al.,
2023). Alternatively, ML-augmented MIP solvers leverage data of solutions or trajectories
of search or iterative algorithms for a given problem information prior to make one or both
of the primal and dual tasks of B&B algorithm more efficient (Cappart et al., 2021; Zhao,
Pan, Chen, & Low, 2023).

In the domain of end-to-end learning for CO, two primary ML methodologies emerge:
learning constructive solutions on graphs, and ML-augmented primal heuristics (Cappart
et al., 2021; Kotary et al., 2021b). Constructive solution policies for CO problems are
obtained through reinforcement learning or tree search which train GNNs to encode graph-
structured problems, often unconstrained or loosely constrained like TSP and Minimum
Vertex Cover (Dai et al., 2017; Joshi et al., 2021; Peng et al., 2021; Böther et al., 2022). The
latter methodology trains GNNs with supervision which predict values of decision variables
in near/sub-optimal solutions to constrained CO problems in an end-to-end fashion, but it is
challenging that the predicted solution is feasible. Instead, distilling of heuristic information
from the trained models to utilize within B&B algorithm can lead to finding high-quality
solutions to CO problems faster (Zhang et al., 2023).

The prior works leveraging GNNs within MIP solvers are done by Gasse et al. (2019)
for dual branching and Ding et al. (2020) for primal heuristics. Gasse et al. report that
the performance improvement of learned variable selection policy in solving CO problems
decreases as the size of problems increases. Similarly, the model proposed by Ding et al.
can only generalize to solving larger-scale instances of some of benchmarking CO problems.
The recent studies by Shen et al. (2021) and Huang et al. (2022) train GNNs on problems
with 500-1000 decision variables and evaluate their performance on instances with 1500-
3000 decision variables. These two CO pipelines can lead to finding high-quality solutions
faster compared to SCIP, an open-source and academic-purpose MIP solver (Bestuzheva
et al., 2023), and the framework of Ding et al. (2020). However, the average improvement
rates in objective values achieved by the CO pipelines in these three studies are less than
1% compared to SCIP. Another related study proposes a Siamese GNN model to imitate
an expert oracle that prioritizes B&B nodes for exploration (Labassi, Chételat, & Lodi,
2022). The oracle accesses the optimal solution obtained before and compares each pair of
open B&B nodes accordingly. The study provides a limited assessment of generalization on
larger instances, including only 15-50% more graph nodes than those used in training.

Even though GNNs make data-driven CO approaches flexible in solving different-sized
problems, they either offer limited improvement or face declining optimization performance
on larger-scale instances due to lack of predictive generalization ability and/or unscalable
training approaches. Considering the gap between the scales of industrial applications and
benchmarking problems in the related works, the scalability of the proposed GNNs for CO
remains questionable. Thus, this study is positioned on how to leverage GNNs within primal
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heuristics to scale CO solvers. The following subsections compare the related studies with
ours and discuss training data generation approaches to ML-augmented optimization.

3.1 ML-Augmented Primal Heuristics

Finding high-quality feasible solutions can be challenging due to complex constraint struc-
tures and/or exponentially large decision spaces. Therefore, primal heuristics are more
critical for solving hard CO problems than proving the optimality of solutions with dual
branching (Khalil, Dilkina, Nemhauser, Ahmed, & Shao, 2017; Berthold, 2018). Primal
heuristics construct a solution by virtue of heuristic information about solution pieces or
problem structure. In this way, these methods try to reach a good solution by an oriented
search toward a particular region of the decision space. The large impact of primal heuristics
on B&B algorithm is attested by computational studies on MIP solvers like CPLEX and
SCIP (Achterberg & Wunderling, 2013; Berthold, 2018). Berthold reports that the utility
of primal heuristics is more prominent on hard problems or ones that cannot be solved in
a limited time, according to the experiments with SCIP. However, ascertaining effective
ones among a set of alternative heuristics for a given problem requires expert knowledge
and rigorous empirical validation. For example, 67 primal heuristic methods have been
implemented in SCIP (SCIP Optimization Suite, 2024b). Alternatively, metaheuristics and
ML-driven approaches accompany B&B algorithm to run heuristics in more sophisticated
and automated ways (Khalil et al., 2017; Karimi-Mamaghan et al., 2022).

This section presents related studies on supervised learning approaches using GNNs
to solve CO problems with primal heuristics in a general-purpose (not a problem-specific)
way. A standard workflow of these approaches consists of (i) training data generation, (ii)
training a GNN model end-to-end with respect to a loss function based on target solutions,
(iii) fine-tuning the strategy of using predictions for the downstream optimization task, and
(iv) running a MIP solver2 with proposed primal heuristics utilizing the model predictions.
We describe the previous studies considering these four phases.

In the pioneer study by Ding et al. (2020), stable decision variables, whose values remain
the same in all local solutions around an initial solution, are labeled and included in the
training dataset. The most confident predictions are used to generate a partial solution with
a predefined size, and a local branching cut is generated to search around this solution up to
a predefined Hamming distance. Note that finding an initial feasible solution and ensuring
its quality could be challenging for an arbitrary MIP problem. Besides, this approach
might prevent learning the global structure of MIP decision space since the stable variables
represent information about local structure of solutions. In addition to these challenges,
this framework requires several hyperparameters to be fine-tuned for generating the initial
solution, local solutions, and partial solution, whereas our study offers much automated
design without such features that limit solution quality.

In the study of Nair et al. (2020), Neural Diving generates multiple solution vectors for
a given MIP using an energy-based generative GNN. Then, a secondary binary classifier
selects a fine-tuned portion of decision variables to be fixed to their predicted values for
each sampled prediction. These partial solutions reduce the MIP to different sub-MIPs and

2. ML-augmented MIP approaches are generally solver-independent and have been developed on different
MIP solvers like CPLEX, Gurobi, and SCIP as in the related studies.
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the best solution obtained solving all sub-MIPs separately is considered the final solution
of the pipeline. This approach comes with heavier computation workload of training two
models and solving multiple sub-MIPs. Instead, Han et al. (2023) remove the secondary
classifier from Neural Diving and propose a local search around a partial solution up to a
predefined distance, like the local branching in the study of Ding et al. (2020). The common
side of these three studies (Ding et al., 2020; Nair et al., 2020; Han et al., 2023) is that
they build on a partial solution generation procedure with a hyperparameter for selecting
how many predictions are used. Our study adopts the problem reduction approach as well,
but, it leverages all predictions through a new algorithm for warm-starting. This algorithm
automatically determines how many predictions with the least uncertainty are used, based
on empirical statistics over a validation set used in the training. As a simpler design,
Khalil et al. (2022) propose MIP-GNN framework. It learns a bias vector, the average
vector of the collected solutions with a MIP solver per training instance, binarized with a
given bias threshold for classification. The trained model guides B&B search based on the
class probabilities (i.e., softmax outputs) for decision values. Our study firstly improves the
proposed MIP-GNN architecture to generalize on solving larger-scale instances than those in
the training. Besides, it deviates by learning the optimal solutions to small-scale instances
and follows an uncertainty-quantification approach in the model training and the B&B
node selection strategy. Moreover, our study introduce a new algorithm for generating
high-quality warm-start solutions. These advancements result in a scalable and better
performing framework with much less cost of training data generation.

The aforementioned three studies rely on collecting high-quality solutions per training
instance. These data generation procedures are fine-tuned with several hyperparameters
critical for the performance of both subsequent ML and optimization tasks, which is dis-
cussed in Section 3.2. Unlike the previous studies, another approach to generate a training
dataset is to obtain optimal solutions for small-scale instances of a given CO problem (Shen
et al., 2021). In this study, the predicted probabilities by a GNN model are used as scores
to guide the variable selection within SCIP until reaching the first feasible solution to a
given large-scale problem instance. Upon this study, Huang et al. (2022) propose a bi-
level framework which first generates a partial solution (at a predefined size) with the most
confident predictions. Then, a secondary GNN model predicts the values of the unfixed
decision variables—those not in the partial solution. Interestingly, after obtaining the first
feasible solution, both of the proposed methods in these studies do not continue on B&B
search neither with the proposed variable selection guide nor with the default configuration
of SCIP. In other words, these studies limit the proposed methods as a warm-start solution
procedure.

The studies presented so far, except that of Khalil et al. (2022), build on problem
reduction or local search approaches, which make them incomplete solution methods as the
typical characteristic of primal heuristics. Thus, the proposed methodologies obstruct the
global search for better solutions and obtaining the optimal solution. Our study include a
global search stage modifying the node selection strategy proposed by Khalil et al., which
makes our solution approach a complete optimization method. Another distinct feature of
the proposed primal heuristics is the adoption of an uncertainty-quantification approach
to utilize the predictions of trained GNNs. In this way, the confidence of the predictor is
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quantified regarding its impact on decision quality in the downstream optimization task,
instead of using the class probabilities which all presented methods rely on.

Our study comes out to design a scalable and generalized approach to solve CO problems
efficiently. On the other hand, only three studies (Ding et al., 2020; Shen et al., 2021; Huang
et al., 2022) cover evaluation of the proposed methods over CO problem instances of scales
larger than the training instances. Yet, they reach a slightly better performance in solving
some of the experimented larger-scale CO problems compared to the default configuration
of SCIP. It is worth noting that achieving the performance gain against the state-of-art
solvers CPLEX and Gurobi is more challenging than benchmarking with SCIP (Nair et al.,
2020; Han et al., 2023). This study employs CPLEX as the baseline solver and achieves
substantial performance improvement. We present the further details of the related studies
alongside our study as a comparative overview in Table 1.

3.2 Training Data Generation in ML-Augmented Primal Heuristics

Supervised learning-based methodologies for CO aim to map from optimization problems to
feasible and high-quality solutions. Ideally, a target object for a MIP instance to be learned
by a supervised model is its optimal solution. However, NP-hard problems hinder the
traceability of training data generation for supervised models by achieving (near-)optimal
solutions (Joshi et al., 2021; Khalil et al., 2022). Hence, the common training data genera-
tion procedure is collection of a set of feasible solutions per instance without necessitating
an optimal solution to be in the set. However, training data generation procedures pre-
scribed in the studies presented in Section 3.1 lead ML models to different learning tasks
than mapping an optimization problem to a single solution vector. This training regime
can cause several challenges for both the learning and optimization stages. One challenge
related to the nature of optimization problems is that the solution space of an optimization
problem can include

• trivial but feasible solutions (e.g., all variables are zeros/ones or randomly generated),

• disparate solutions with close objective values,

• highly similar solutions having a large difference between their objective values,

• symmetrical solutions, and

• alternate optimal solutions.

From the perspective of supervised learning, using multiple solutions per training in-
stance without considering the presence of the listed solution types might prevent ML
models from learning valid solution patterns of CO problems. Approximating alternative,
symmetrical, or disparate CO solutions together might cause a loss of meaningful solution
patterns. Hence it could obstruct GNNs from the induction of feasibility and optimality
patterns and such a model would approximate more obscure solutions. Kotary, Fioretto,
and Hentenryck (2021a) show that training data generation by eliminating solutions with
different structures can improve the prediction performance of learning models and the
downstream optimization task. Moreover, Han et al. (2023) show that fixing variables to
their predicted values to get a partial solution can form a subproblem that barriers reaching
the optimal solution during B&B search.
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Table 1: An overview of the related studies on ML-augmented primal heuristics and our
study.

Study
Training Data
Generation

Problem
Representation

ML Task
Primal Heuristics
Strategy

Benchmarking

(Ding
et al.,
2020)

Local solutions
around an initial
solution per prob-
lem instance

A tripartite graph
representation with
features extracted
from the root node
of B&B tree

Classification of
values of stable
binary decision
variables

Local search around
a partial solution
generated from the
most confident pre-
dictions

Baseline: SCIP
Problems: CFL,
FCNF, GA, MIS,
MK, MSC, TS,
and VR

Neural
Diving
(Nair
et al.,
2020)

A set of high-
quality solutions
per problem in-
stance

The bipartite
graph with fea-
tures extracted
from the root
node of B&B tree
(Gasse et al., 2019)

Predicting the
probability of be-
ing 1 for binary
decision variables
and classification
of decision vari-
ables to be fixed

Solving different sub-
problems generated
from sampled partial
solutions

Baselines: Fine-
tuned SCIP and
Gurobi
Problems: COR-
LAT, MIPLIB,
NNV, GP Pack,
GP Plan, and EG

(Shen
et al.,
2021;
Huang
et al.,
2022)

The optimal solu-
tions to the small-
scale instances of
CO problem.

A graph of deci-
sion variables with
hand-crafted sta-
tistical features

Predicting the
probability of
being 1 in the
optimal solution
for binary deci-
sion variables

Two-level inference
based on the prob-
lem reduction and
guiding B&B vari-
able selection

Benchmark: SCIP
and (Ding et al.,
2020)
Problems: CA, DS,
MIS, and MVC

MIP-
GNN
(Khalil
et al.,
2022)

A set of high-
quality solutions
per problem in-
stance

A bipartite graph
with raw features

Classification of
bias values of
binary decision
variables

Guiding B&B node
selection or variable
selection

Baseline: CPLEX
Problems: FCMNF
and GIS

(Han
et al.,
2023)

A set of high-
quality solutions
collected per prob-
lem instance

The bipartite
graph with fea-
tures extracted
from the root
node of B&B tree
(Gasse et al., 2019)

Predicting the
probability of be-
ing 1 for binary
decision variables

Local search around
a partial solution
generated from the
most confident pre-
dictions

Baselines: SCIP,
Gurobi, and Neu-
ral Diving
Problems: BIP,
CA, MIS, and WA

Our
study

The optimal solu-
tions to the small-
scale instances of
CO problem.

A bipartite graph
with normalized
raw features

Classification of
binary decision
variable values
in the optimal
solution

Warm-start solu-
tion generation and
guiding B&B node
selection based on
model uncertainty

Baselines: CPLEX
and MIP-GNN
Problems: CA,
FCMNF, GIS,
MIS, and MSC

• BIP: Balanced Item Placement

• CA: Combinatorial Auction

• CFL: Capacitated Facility Location

• CORLAT Dataset (Conrad et al., 2007)

• DS: Dominant Set

• EG: Electric Grid Optimization

• FCMNF: Fixed-Charge Multi-Commodity Net-
work Flow

• FCNF: Fixed-Charge Network Flow

• GA: Generalized Assignment

• GIS: Generalized Independent Set

• GP Pack: Google Production Packing

• GP Plan: Google Production Planning

• MK: Multidimensional Knapsack

• MIPLIB: Mixed-Integer Programming Library
(Gleixner et al., 2021)

• MIS: Maximal Independent Set

• MSC: Minimum Set Cover

• MVC: Minimum Vertex Cover

• NNV: Neural Network Verification

• TS: Traveling Salesman

• VR: Vehicle Routing

• WA: Workload Appointment
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Secondly, setting up a target solution space from a pool of solutions per problem instance
is subject to several hyperparameters, which require a fine-tuning procedure analyzing their
effect on both ML and optimization tasks. Considering MIP-GNN framework by Khalil
et al. (2022), one needs to determine the size of the solution pool (the collection of feasible
solutions per instance), a time limit to run a solver to collect solutions, the search strategy of
the MIP solver (i.e., managing trade-off of finding feasible solutions or proving the optimality
gap), an optimality gap threshold to include solutions in the pool, and a bound on the
relative gap between the objective values of the worst and the best solution in the pool.
Similarly, the approach proposed by Ding et al. (2020) requires several design aspects to
be considered. The proposed training dataset generation is based on a local search around
an initial feasible solution, which requires to be fine-tuned by finding the best scope size
and stopping criteria for the local search. Additionally, the size of the partial solution
constructed from the most confident predictions and the scope size of the local branching
are also fine-tuned for each problem domain.

We further propound the training data generation based on the optimal solutions for
the end-to-end learning for CO, considering the outlook on the adopted approaches in this
section and aiming to come up with a simpler yet effective design.

4. Proposed Methodology

In this study, we propose a supervised GNN enabling knowledge transfer to solve CO
problems at scale after training over downscaled instances of a problem with their optimal
solutions. We first provide a formal definition of our approach as the following.

Let fθ(M) → x∗ be a function parameterized with θ that maps a CO problem M =
(A,b, c) ∼ p(M) with n ∼ p(n) decision variables to its optimal solution x∗. To optimize
fθ, obtaining a training dataset D = {(Mi,x

∗
i )}Ii=1, where i is problem instance index, is

practically infeasible for large instances of M since finding x∗ is NP-hard and the space
complexity of M is O(2n). Although CO problems have exponential space complexity,
small-scale instances can be solved exactly with a MIP solver in a practically reasonable
time. Assume M ′ ∼ p(M) is a downscaled instance of M with n′ ≪ n decision variables.
The optimal solution to M ′, x

′∗ can be found in a practical time as long as n′ is sufficiently
small. Therefore, instead of D, we generate a small-scale problem instances M ′

i with n′

variables by sampling its parameters (A′,b′, c′) from p(M) and obtain the optimal solution
for each instance (x

′∗
i ) with a MIP solver. Then, a GNN-based model trained on the dataset

D′ = {(M ′
i ,x

′∗
i )}I

′
i=1 is used to solve the actual-scale instances of M .

The proposed training scheme necessitates that the distribution of the target problem
parameters p(M) is already known. This condition is practically satisfiable since p(M) is
revealed as long as instances of the target CO problem M occur repetitively in real-world
applications.

We employ a recent GNN model for CO, MIP-GNN (Khalil et al., 2022), and propose
several supplementations and changes for it, which are introduced in sections 4.1.1, 4.1.2,
and 4.1.3. Lastly, Section 4.2 proposes two primal heuristics utilizing the predictions and
uncertainty estimations by the models trained on D′ to solve D.
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4.1 GNN Architecture for Combinatorial Optimization

MIP-GNN architecture depicted in Figure 2 constitutes a graph embedding block of multi-
ple MPNN layers and a classifier neural network that receives variable node representations
from each MPNN layer. It differs from the commonly adopted model of Gasse et al. (2019)
by using different graph convolutions and an additional layer named Error Layer, which
propagates error messages between consecutive variable node embedding layers. In this
section, we describe the MIP-GNN that uses Edge Convolution (EC)3 (Simonovsky & Ko-
modakis, 2017) as the MPNN layers and adopt it in our study with some changes introduced
in the following subsection. Note that the activation functions of MLP networks mentioned
throughout the study are ReLU.

MIP-GNN uses (A,b, c) as the features for edges, constraint nodes, and variable nodes,
as described in Section 2.4. It also uses node degrees, variable types, and constraint types as
additional features. We define feature vectors for variable and constraint nodes as follows.

Let t(v) ∈ {0, 1}n×3 be a matrix in which each row t
(v)
j is the one-hot encoding for

the type of variable j (binary, continuous, or integer). Let t(c) ∈ {0, 1}m be a vector for

constraint types if ones for ≤ expressions and zeros for equalities4. Let d
(v)
i ∈ Zn, and

d
(c)
i ∈ Zm be the vectors of constraint and variable node degrees, respectively. Therefore,

the feature vector of variable node j is represented by a column-wise concatenation v
(·)
j =

[cj , t
(v)
j ,d

(v)
j ] and the feature vector of constraint node i is represented by a column-wise

concatenation c
(·)
i = [bi, t

(c)
i ,d

(c)
i ].

MLP

MPNN

Error
Layer

Encoder

Encoder

Encoder

Encoder MPNN

MLP

MPNN

Error
Layer

Encoder

Encoder

MLPMPNN

Initial Embedding Classifier
Network

Graph Embedding

Figure 2: MIP-GNN Architecture with Two-Layer Graph Embedding

3. The definition of MIP-GNN in the study of Khalil et al. (2022) differs from its official implementation
at https://github.com/lyeskhalil/mipGNN. In our study, we provide a definition for the MIP-GNN
with EC considering the implementation.

4. Note that <, >, and ≥ expressions can be converted to ≤ expressions. For example, a > expression
is converted to a ≤ expression by adding ϵ quantity to the right-hand side and then multiplying that
expression by -1. Therefore, t(c) is a sufficient encoding to represent the type of any equality or in-
equality expression.
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MIP-GNN builds on three blocks: (i) an initial layer to embed the raw feature vectors of
the nodes, (ii) multiple consecutive message-passing layers to learn hidden representations
of nodes, and (iii) a task layer to classify the binary decision values for variable nodes. The
initial embedding layers for variable and constraint nodes, each a two-layer MLP network,
map the dimension of node features to the hidden layer dimension (d) of the following
MPNN layers.

Variable-to-constraint pass Let f
(k)
e be an edge encoder at layer k that is parameterized

by two-layer MLP with Batch Normalization. It receives constraint coefficients A and

computes Ā(k) = f
(k)
e (A) ∈ Rm×d. Let f

(k)
s a two-layer MLP followed by a sigmoid function

receiving embedding of variable nodes v(k−1) and predict a soft decision value vector x̂(k) ∈
[0, 1]n for variable nodes, x̄(k) = f

(k)
s (v(k−1)). Accordingly, an MPNN with EC at layer k

computes constraint node representations as

c
(k)
i = ReLU

( ⊕
j∈N(i)

ϕ(k)c

(
[c

(k−1)
i ,v

(k−1)
j , Ā

(k−1)
i,j , x̂

(k−1)
j ]

))
, ∀i ∈ C, (3)

where
⊕

is mean aggregator and ϕ
(k)
c is a two-layer MLP receiving the column-wise con-

catenation of c
(k−1)
i ,v

(k−1)
j , Ā

(k−1)
i,j , and x̂i.

Constraint-to-variable pass Analogously, variable node representations are computed
as

v
(k)
j = ReLU

( ⊕
i∈N(j)

ϕ(k)v

(
[v

(k−1)
j , c

(k)
i , Ā

(k−1)
i,j , e

(k−1)
i ]

))
, ∀j ∈ V, (4)

where e
(k−1)
i is the error signal computed by Error Layer defined in Equation 5.0 and 5.1. It

receives a soft solution vector x̄(k) predicted by f
(k)
s and computes a residual vector ∆ ∈ Rm

(Equation 5.0). Then, a two-layer MLP followed by a softmax function f
(k)
e computes an

error signal vector e(k) ∈ Rm (Equation 5.1). The softmax function normalizes the output
of MLP row-wise, so how much each constraint contributes to the total error signal is
computed with Error Layer.

∆ = Ax̄(k)⊤ − b (5.0)

e(k) = f (k)e (∆) (5.1)

Lastly, a four-layer MLP classifier predicts solution values x̂ for the nodes of decision
variables. It receives a column-wise concatenation of hidden representations from each
MPNN layer and outputs softmax values for 0 and 1 values for each decision variable node.
For the given node representation of a decision variable in a CO problem instance, the class
having the largest softmax value is attributed to the predicted value of the decision variable.

4.1.1 Feature Scaling and Normalization Layers

AbcNorm We propose a set of operations called AbcNorm to scale (A,b, c) coefficients
to be in [−1, 1] by considering that (A,b, c) might be scaled with respect to the number of
decision variables in a CO domain. Therefore, the scale of features of the bipartite graph is
made invariant to the problem size. For a given feature tuple (A,b, c), Equation 6.0 scales
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the coefficient of decision variable j in constraint i (ai,j) by the maximum of the absolute
values of coefficients in constraint i and constraint bound bi. Equation 6.1 scales constraint
bound bi likewise. Equation 6.2 scales the objective coefficients by the maximum of their
absolute values.

Ai,j ←
Ai,j

maxi∈C,j∈V
{
|Ai,j |, |bi|

} ∀i ∈ C, ∀j ∈ V (6.0)

bi ←
bi

maxi∈C,j∈V {|Ai,j |, |bi|
} ∀i ∈ C (6.1)

cj ←
cj

maxj∈V {|cj |}
∀j ∈ V (6.2)

Similarly, the variable node and the constraint node degree values are scaled by the
maximum degree of the same node types as follows.

d
(v)
j ←

d
(v)
j

maxj∈V {d(v)
j }
∀j ∈ V (7.0)

d
(c)
i ←

d
(c)
i

maxi∈C({d(c)
i }
∀i ∈ C (7.1)

PreNorm (Gasse et al., 2019) It is used at the initial embedding layers for variable nodes,
constraint nodes, and edges to stabilize model training. It standardizes feature vectors of
nodes and edges in a graph by computing the empirical mean and standard deviation of
each feature.

GraphNorm (Cai, Luo, Xu, He, Liu, & Wang, 2021) To enhance the stability of message
flow through the graph embedding block and the classifier network when inferring solutions
for larger-scale instances of a CO problem, we use GraphNorm at the end of each MPNN
layer before ReLU function and after each hidden layer of the classifier network. It normal-
izes hidden representations across nodes within a graph rather than across batches. For a
given node embedding hi, it is defined as

GraphNorm(hi,d) = γd ·
hi,d − αd · µd

σ̂d
+ βd, (8)

where µd and σ̂d are respectively the mean and the standard deviation of feature d in the
graph nodes, γd is the scaling and βd is the shifting parameter. Lastly, αd is the learnable
parameter for each feature d to control keeping the mean information of features.

4.1.2 Violation Layer

Considering the inference of solutions for larger-scale instances, we introduce this new layer
on behalf of Error Layer. Similarly, Violation Layer receives a soft solution vector x̄ pre-
dicted by fs. Then, it encodes an error signal vector e, which is formulated in Equation
9, where q(c) ∈ Rm is the vector of reciprocal values of constraint node degrees d(c). In
contrast to Error Layer, Violation Layer normalizes ∆ with q(c) to make the magnitude
of values in ∆ invariant to the graph size. Also, it includes the constraint types for the

342



Scalable Primal Heuristics Using GNNs for Combinatorial Optimization

computation of the error signal so that all information related to constraints in a given
problem is embedded in this layer. Lastly, it passes the encoding by the MLP through
GraphNorm and tanh function so that the error signal by each constraint is normalized
relative to other constraints and ranged between [−1, 1] to avoid extreme signal values that
are far away from the learned signal distribution. Note that Violation Layer does not use
actual violation values by a solution vector for inequality constraints5.

∆ = Ax̄⊤ − b (9.0)

∆̄ = q(c)∆ (9.1)

e = tanh
(
GraphNorm

(
MLP([∆̄, t(c)])

))
(9.2)

4.1.3 Combined Aggregation

The expressive power of GNN models heavily depends on the aggregator operator(s) used in
them. sum, mean, std, max, and min aggregation operators can conduce to learning distinc-
tive features of graphs. Alternatively, using multiple operators could improve the expressive
power of GNN models (Corso, Cavalleri, Beaini, Liò, & Velickovic, 2020). Therefore, we
opt for combined aggregation (comb) defined in Equation 10 according to the study of Corso
et al. (2020), instead of mean aggregation used in the original form of MIP-GNN architec-
ture. The messages with the dimension of 1 × h by mean, std, max, and min aggregations
are concatenated column-wise. Then, the concatenated message is linearly projected into a
combined message mcomb by a learnable parameter matrix W4h×h. We exclude sum operator
in our study since it is sensitive to neighborhood size – it can cause unstable hidden states
for the bipartite graph nodes of CO problem instances with different sizes (Joshi et al.,
2021).

mcomb =
[
mmean,mstd,mmax,mmin

]
1×4h

⊗W4h×h (10)

4.2 Uncertainty Quantification-based Primal Heuristics

As neural networks are approximation models, it is challenging that their outputs are guar-
anteed to satisfy a system of constraints (Donti et al., 2021; Fioretto et al., 2021; Zhao
et al., 2023). Although the outputs as a whole are not guaranteed to be a feasible solu-
tion, fragments of them could be leveraged by heuristics to accelerate CO. Distinguishing
which predictions are more reliable for constructing partial solutions typically depends on
thresholding class probabilities or setting a prediction coverage rate to use the most con-
fident predictions (recall Section 3.1). Class probabilities of classifier neural networks are
traditionally derived by the softmax function, but, can be unreliably quantified for unusual
samples (i.e., overconfident predictions even for samples not similar to those in the training)
(Sensoy et al., 2018). Insted, we propose an uncertainty-quantification approach to harness
the predictions of trained GNN models as heuristic information to get partial solutions and
to guide B&B search.

Uncertainty quantification approaches such as Bayesian Neural Networks (Neal, 2012),
Monte-Carlo Dropout (Gal & Ghahramani, 2016), and Evidential Deep Learning (EDL)

5. Early experiments of this study included ReLU(∆) as the actual violation for inequality constraints
(≤), resulting decrease in the accuracy of models for larger-scale instances of some problems.
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(Sensoy et al., 2018) aim to reduce model uncertainty and calibrate prediction confidence.
If an ML model can successfully estimate the uncertainty of its predictions, those with low
uncertainty are much more likely to be accurate than highly uncertain predictions. In this
study, we employ EDL for training GNN models since EDL is a closed-form solution to
estimate model uncertainty accurately and thus does not require a post-training process for
the proposed primal heuristics. We describe EDL Loss in the following.

A classification problem is characterized by estimating the categorical distributions of
the classes. Therefore, a Dirichlet distribution is predicted with EDL Loss for a K-class
classification problem, which is parametrized by a K-dimensional vector α ∈ R+. For a
given MIP instance with n decision variables to be predicted, an evidence vector e ∈ RK

is computed by using softplus function at the output layer of MIP-GNN and the Dirichlet
parameters are predicted with α̂j = ej + 1 to satisfy α ∈ R+. Then, Kullback-Leibler
Divergence Score (KL), which quantifies how much one distribution differs from another, is
used as the regularizer term in EDL Loss so that total evidence is minimized for misclassified
samples. Accordingly, EDL Loss is computed as

L(θ) = 1

N

N∑
j=1

K∑
k=1

yjk

(
ψ(Sj)− ψ(α̂jk)

)
+ λKL(ŷj , α̂j), (11)

where yj is the one-hot encoded target value of decision variable j, ψ is digamma function, λ

is the regularization coefficient, and Sj =
∑K

k=1 α̂jk (Sensoy et al., 2018). Each prediction of
an EDL model is associated with a total uncertainty value which is computed as uj = 2/Sj
when K = 2. Hence, we use uj ∈ (0, 1] as the uncertainty value associated with the
prediction x̂j for decision variable j in a given MIP. Similarly, we compute uj,k = 1/αj,k as
the model uncertainty for a given value k of decision variable j.

We use the predictions of our GNN model trained with EDL Loss and the associated
uncertainty values α̂ together to get up partial solutions and to guide B&B search. Ac-
cordingly, our primal heuristic strategy consists of two stages: (i) Warm-start solution
generation by problem reduction and (ii) Uncertainty-guided B&B search. The best solution
obtained in the first stage is used as a warm-start solution in the second stage. Since we
regularize our Evidential GNN model with λ to calibrate its prediction confidence, we could
incorporate information from the downstream optimization task into the learning phase of
the proposed methodology by using the model uncertainty in primal heuristic methods.

4.2.1 Warm-start Solution Generation by Problem Reduction

One can reduce the problem by fixing some decision variables to their predicted values
by an end-to-end learning model. The best solution in the reduced decision space can be
found in a relatively much shorter time, with a compromise of optimality for the original
problem, but ensuring the feasibility of the reduction could be challenging. Adopting this
heuristic approach, we propose a model uncertainty-based algorithm to select which decision
variables are fixed to their predicted values. As predictions with lower uncertainty are more
likely to be accurate, fixing those variables is likely to be a feasible problem reduction.
Differently from the similar approaches presented in Section 3.1, our approach still leverages
all predictions in the problem reduction, rather than using a static portion of the predictions.
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Let u be the vector of uncertainty values associated with the predicted values x̂ for
the decision variables in a MIP instance M . The computation of u for EDL was described
above. For the models trained with BCE Loss, we set uj = 1−max{p(xj,0), p(xj,1)}, where
p(xj,k) is corresponding softmax value for class k, as used in the study of Khalil et al. (2022).
Accordingly, a set of cuts Ω is generated (Equation 12) by fixing the decision variables to
the rounded prediction values round(x̂) ∈ {0, 1}n in which associated uncertainty values
are less than a threshold value ū.

Ω = {xj := round(x̂j) | uj ≤ ū, j ∈ V} (12)

Adding the confident cuts Ω to M results in a subproblem Msub covering a decision space
of the unfixed variables. A MIP solver runs to solve Msub under a limited time if Msub is
a feasible problem. The incumbent solution obtained by this run serves as a warm-start
solution for a subsequent global search for M .

A design question is how to set ū. If the predictions for larger-scale instances are as
accurate as the predictions for unseen instances at the problem scale of those in training
instances (in short, for the testing instances), one can determine what portion of predictions
are totally/almost accurate based on a validation set. We empirically validate this claim
by presenting the predictive performance results in Section 6.1. Note that the ū threshold
filters the most confident predictions to get a partial solution. However, if a model accu-
rately predicts most of the values of decision variables in the optimal solution, it is better
to cover the predictions as much as possible, rather than only the most confident predic-
tions. Therefore, we opt for utilizing all predictions to generate a warm-start solution in
an iterative manner. Accordingly, we propose Uncertainty-based Problem Reduction (UPR)
in Algorithm 1. It removes a portion of uncertain predictions from the predicted solution
iteratively and obtains a smaller partial solution at each iteration which covers a subset of
the previous (partial) solution. In this way, this algorithm does not require finding the best
coverage rate for each problem domain if ū can be set to cover only accurate predictions,
as distinct from the similar ML-augmented approaches presented in Section 3.1.

In Algorithm 1, Line 1 generates all cuts Ω(0) by assigning the values of all variables
to the corresponding rounded values of x̂. Line 2 modifies M by adding the cuts Ω and

results in a (totally) reduced problem M
(0)
sub. Line 3 calculates a minimum percentile value

to keep pmin% of the most confident cuts in Ω. Line 4 calculates dp, which quantifies what
percentile of the most uncertain cuts will be removed in each iteration of the subsequent

loop. A loop begins where top p% of the most uncertain cuts in Ω are removed fromM
(i−1)
sub ,

and a MIP solver runs to solve M
(i)
sub for the given time t with the incumbent solution from

the previous iteration as a warm-start. Note that no cuts are removed, and no warm-start
solution is available at the beginning of the first iteration. Unless Msub is infeasible or
a feasible solution cannot be found within the iteration time limit τi−1, the best solution
found at each iteration is given to the solver as a warm-start solution. The best solution
obtained eventually x(N) will be used as a warm-start solution later for a global search with
the solver.

To enhance the completeness of the proposed warm-start solution generation, we also

consider the case that the last sub-MIP in Algorithm 1 (M
(N)
sub ) is infeasible and introduce a

repair procedure at Appendix A. Note that if M
(i+1)
sub is infeasible due to Ω(i+1), then M

(i)
sub
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Algorithm 1: Uncertainty-based Problem Reduction

Input : MIP instance M , set of confident cuts Ω, number of iterations N , vector
of iteration time limits τ

Output: A solution x
1 Ω(0) = {xj := round(x̂j), j ∈ V}
2 M

(0)
sub ← AddCuts(M,Ω(0))

3 pmin = 100 ∗ ||Ω||
N

4 dp = 1−pmin

N

5 x(0) ← ∅ // Initialize a null solution

6 for i ∈ {1, ..., N} do
7 p = 1− (i− 1) ∗ dp
8 Ω(i) = GetUncertainCuts(Ω, p)

9 M
(i)
sub ← RemoveCuts(M

(i−1)
sub ,Ω(i))

10 x(i) ← Solve(M
(i)
sub,x

(i−1), τi−1)

11 end

12 return x(N)

was also infeasible since Ω(i) ⊂ Ω(i+1). Therefore, a feasible solution cannot be obtained at

any iteration of Algorithm 1 if M
(N)
sub is infeasible.

4.2.2 Uncertainty-Guided B&B Search

We adopt Guided node selection technique proposed by Khalil et al. (2022) where B&B
nodes are prioritized based on the predictions of the trained MIP-GNN model. Khalil et al.
define a confidence score for B&B nodes as the sum of corresponding softmax values of
predicted classes (zero or one) for fixed variables in a B&B node. In this way, B&B nodes
aligned with model predictions are prioritized to explore earlier, and the search is oriented
around the predicted solution by the model.

Instead of using the class probabilities by models trained with BCE Loss, we propose
leveraging the evidence values computed by EDL models for decision variable values (0 and
1) using uj,k = 1/αj,k defined previously. If the model computes high evidence for the
decision variable value k, then uj,k → 0. Otherwise, uj,k → 1. Accordingly, for a given
B&B node b, a confidence score sb is computed by Equation 13, where Jb is the indices of

fixed variables in b and x
(b)
i is the value to which decision variable j is fixed in node b.

sb =
∑

j∈Jb, k=x
(b)
j

(1− uj,k) (13)

Since sb increases as much asthe depth of nodes increases, B&B search starts diving
toward the predicted solution vector. After branching the nodes aligning with the confident
predictions, class uncertainty values are more likely to be equal (i.e., uj,0 ≈ uj,1) for the
decision variables with higher prediction uncertainty. Henceforth, partial solutions (i.e.,
intermediate B&B nodes) that include the confident predictions are retained until deeper
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B&B nodes including uncertain predictions are explored. This exploration continues by flip-
ping the values of decision variables with high uncertainty at first, posing oscillations around
the decision space where the model predictions are precise. In short, the proposed B&B
search manages the trade-off between exploitation of the predicted solution and exploration
for better ones by following a policy configured with the model uncertainty.

5. Experimental Setting

We have conducted extensive experiments for the evaluation of our methodology over five
CO benchmarking datasets presented in Section 5.1. The implementation of our study
is detailed in Section 5.2. We establish a CO pipeline that integrates a trained GNN
into CPLEX and uses its predictions and associated uncertainty values within the proposed
primal heuristics to solve CO problems. Our experimentation covers mainly 12 different CO
pipeline configurations per CO problem, thus, 60 pipelines in total. Besides, 12 additional
pipelines are set for benchmarking with the pre-trained MIP-GNN models using EC released
by Khalil et al. (2022) (see Section 5.2). All these pipelines are configured with the following
three settings.

• Model Architecture: Models with Violation Layer and Error Layer are denoted by
EC+V and EC+E, respectively. The plain models are denoted by EC.

• Loss Function: Models trained with BCE and EDL loss functions are denoted by
BCE and EDL, respectively.

• Primal Heuristics Strategy: CO pipelines that apply UPR algorithm for warm-
starting before the global search with Guided B&B Node Selection (NS) strategy and
those that do not apply UPR are denoted by UPR+NS and NS, respectively.

The CO pipelines using the trained models with the first two settings are denoted by the con-
catenated abbreviations: EC+BCE, EC+EDL, EC+V+BCE, EC+V+EDL, EC+E+BCE,
and EC+E+EDL. EC+V+EDL is the model including the all proposed improvements.
Each CO pipeline is dedicated to solving the instances of the corresponding CO problem.
These CO pipelines are benchmarked with the default configuration of CPLEX and those
deploying the pre-trained MIP-GNN models6 under a 30-minute time limit per instance, as
in the study of Khalil et al. (2022). The pre-trained MIP-GNN models with and without
Error Layer are similarly denoted by MIPGNN and MIPGNN+E, respectively. The time
limit includes the elapsed time in data preprocessing, prediction, and optimization. Hence,
the remaining time limit for the CO pipelines to solve each instance is less than 30 minutes
(see Table 6 in Appendix B).

5.1 Benchmarking Datasets

We evaluate our methodology on five CO problem datasets. Three of these includes funda-
mental CO problems which are Minimum Set Cover (MSC), Combinatorial Auction (CA),
and Maximal Independent Set (MIS) (Gasse et al., 2019). The other two datasets are from
the study of Khalil et al. (2022) and include CO problems harder than the previous three,

6. The models are available at https://github.com/lyeskhalil/mipGNN.
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which are Fixed-Charge Multi-Commodity Network Flow (FCMNF) (Hewitt et al., 2010),
and Generalized Independent Set (GIS) (Colombi et al., 2017).

We generated 1000 training, 200 validation, and 50 testing instances for each problem.
The problem scale of the instances is the same in these three datasets. To investigate
the scalability of our methodology, we generated four transfer datasets for MSC, CA, and
MIS problems which contain 2, 4, 8, and 16 times the number of variables in the training
instances. Table 5 in Appendix B includes the number of decision variables and constraints
in the training dataset of each problem. The problem scales of the testing and four transfer
datasets are denoted by 1x, 2x, 4x, 8x, and 16x, respectively7. We generated the training,
validation, and test datasets (1x) of FCMNF and GIS problems by respectively 16x and
4x downscaling the size of the actual datasets used by Khalil et al.. We call these actual
datasets as transfer datasets throughout our evaluation as well. Each transfer dataset of five
problems comprises 50 instances. Our models are trained on the downscaled instances of
FCMNF and GIS problems and benchmarked with the MIP-GNN models over FCMNF-16x
and GIS-4x datasets. Note that the MIP-GNN models were trained on FCMNF-16x and
GIS-4x datasets; therefore, this benchmarking measures their testing performance, whereas
our models’ transfer performance.

Alongside the 30-minute benchmarking runs, we also ran the default configuration of
CPLEX (referred as only ‘CPLEX’ from here on) longer for the transfer datasets so that
we could figure out how long we had to run it to achieve the solution quality of the CO
pipelines. For these long CPLEX runs, we set the time limit per instance to 1, 2, 4, and 8
hours for 2x, 4x, 8x, and 16x transfer datasets, respectively, of MSC, CA, and MIS problems.
Similarly, the time limit of the long CPLEX runs per instance is 8 hours for FCMNF-16x
and GIS-4x datasets as these are the largest-scale transfer datasets of FCMNF and GIS
problems. Further details of the training data generation are provided in Appendix B.

5.2 Implementation Details

For our models, we use an 8-layered graph embedding block and a 4-layered MLP as the
classifier network. We set the hidden dimension to 32 for all layers and the dropout prob-
ability to 0.1 for the classifier network. We train additional models that have the same
complexity (i.e., 4-layered GNN and mean aggregation) with the pre-trained MIP-GNN for
fair benchmarking.

All models are trained using ADAM optimizer (Kingma & Ba, 2015) with eight batches
in 24 epochs. The learning rate is initialized at 0.0001 and managed using One-cycle learning
rate scheduler (Smith & Topin, 2019). 25% of the model update steps are spent to increase
the learning rate to 0.001. Other hyperparameters of One-cycle scheduler are set to the
default values in its PyTorch implementation8.

Evidential Deep Learning Regularization We conducted a grid search of the regu-
larizer parameter λ of EDL Loss by observing its effect on solving the largest-scale dataset

7. Size of MIPs can also be quantified w.r.t. n × m or number of nonzeros in the matrix of constraint
coefficients matrix A (Gleixner et al., 2021), which would indicate a much greater quantification for
the scales of transfer datasets.

8. https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.OneCycleLR.html
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of each problem. Accordingly, we set λ to 1, 2, 6, 6, and 12 for the EDL models trained on
MSC-1x, CA-1x, MIS-1x, FCMNF-1x, and GIS-1x datasets, respectively.

Uncertainty-based Problem Reduction It is expected that a warm-starting procedure
is completed within a short time; therefore, we limited UPR Algorithm to run for five
iterations and three minutes in total, for any problem instance. We observed that the first
3-4 iterations of UPR algorithm mostly end in a few seconds since earlier iterations reduce
the problem size by large proportions. Hence, we set the solve time limit per iteration is
set to 30 seconds for the first four iterations and one minute for the last iteration. Lastly,
for each problem type and each model, we set the uncertainty threshold ū to the median
uncertainty value of predictions for the validation dataset of the problem. It is reasoned in
Section 6.1.

In every 100 B&B nodes, Guided node selection strategy of MIP-GNN framework peri-
odically selects the node that provides the best bound rather than the node with the highest
confidence score (Khalil et al., 2022). In this way, the dual bound also can be refined. We
also follow this rule in our experiments.

5.3 Evaluation Metrics

Selecting appropriate evaluation metrics is paramount for evaluating the problem-solving
capabilities of any ML model. This is especially crucial in our case where an ML model is
employed within a MIP solver for a downstream optimization task (Khalil et al., 2017; Nair
et al., 2020). In such workflows, loss or accuracy metrics associated with model training are
deemed inadequate. Instead, data-driven optimization methods are benchmarked based on
how they improve the optimization metrics, which are Optimality Gap, Primal Gap, and
Primal Integral (lower is better for each metric).

Optimality Gap B&B Algorithm quantifies a primal-dual gap as a relative measure to
certify the optimality of obtained solutions. Hence, it is reported as the optimality gap by
MIP solvers throughout the search. For the primal (PB) and dual bounds (DB) computed
at time t, it is calculated as

gap(t) =
|PB −DB|

max{|PB|, |DB|, ϵ}
× 100, (14)

where PB = c⊤x̃, x̃ is the best integral solution found at t, DB is the objective value of
the best LP-relaxed solution at t, and ϵ is a small constant to prevent numerical errors if
|PB| = |DB| = 0. If |PB| = |DB|, then x̃ is the optimal solution.

The optimality gap is resorted to benchmark algorithms if the optimal solution is known
for a given problem, which is unlikely for large-scale optimization domains. Besides, primal
heuristics improve PB but do not directly tighten DB. Instead, one can refer to the
following metric.

Primal Gap It measures the relative difference between the objective value of a feasible
solution x̃ and that of the optimal or best-known solution x̃∗. It is calculated as

p-gap(x̃) =
|c⊤x̃− c⊤x̃∗|

max{|c⊤x̃|, |c⊤x̃∗|, ϵ}
× 100. (15)
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In this study, primal gap values are calculated with respect to the best objective value
attained by the CO pipeline configurations (ran for 30 minutes) and the long CPLEX runs
(up to 8 hours). In addition to performance evaluation based on the best solution found
in a given time limit, the efficiency of primal heuristics can be measured considering the
trade-off between solution speed and quality (Berthold, 2013) with the following metric.

Primal Integral It measures the solution quality of an algorithm regarding elapsed solv-
ing time. For a given time limit T and the list of incumbent solutions [x̃(i), . . . , x̃(I)] ordered
w.r.t. their timestamps ti ∈ [0, T ], it is defined as

p-integral(T ) =
I∑

i=1

p-gap(x̃(i)) · (ti − ti−1), (16)

where I is the number of incumbent solutions and t0 = 0. Note that p-gap(x̃(i+1)) ≤
p-gap(x̃(i)). In our study, we calculate (ti − ti−1) in terms of seconds and normalize
p-integral(T ) by the solve time limit, 1800 seconds.

We principally refer to the primal gap for benchmarking the models and consider primal
integral for evaluating tie-cases. Still, we report all three metrics throughout the sections.
Note that primal heuristics do not guarantee refinement of the optimality gap as they only
improve the primal bound. Nevertheless, we remark that the optimality gap results in our
experimentation generally led to consistent conclusions on ranking the models with respect
to the primal gap.

For the benchmarking and ablation study of the models, we also calculate an average
improvement rate metric, where a higher value indicates better performance. It quantifies
how much a model (or a set of models) improves an optimization metric relative to the per-
formance of another model (or another set of models) or CPLEX on average. For example,
the average improvement rate by a model over CPLEX for a metric ρ (e.g., primal gap) is
calculated as 100 ∗ ρcplex−ρmodel

ρcplex
, where ρcplex and ρmodel are average measures of ρ provided

by CPLEX and the model, respectively.

For the measuring the accuracy of the predicted solutions, we treat the best solutions
obtained through the long CPLEX runs as the ground truth. However, it is worth noting
that our models are parameterized with the optimal solutions to the training instances.
Hence, the best solutions for the transfer datasets are suboptimal, they do not represent
actual target solutions to measure the predictive performance of the models precisely9.

6. Evaluation

We present and discuss the experimental results covering each design aspect of our study in
respective subsections. In Section 6.1, we empirically validate the generalization power of
the models trained on downscaled instances to predict solutions for larger-scale instances.
Afterward, we benchmark our methodology implemented through different CO pipeline
configurations in Section 6.2 with CPLEX as the baseline solver and in Section 6.3 with the
pre-trained MIP-GNN models. Moreover, we present an ablation study to analyze the effect

9. Even though the optimal solutions for all datasets were at hand, computing the accuracy of the pre-
dicted solutions precisely would require considering that alternate optima can be present.
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of each CO pipeline setting in the particular sections 6.4, 6.5, 6.6, and 6.7. These sections
investigate how much each pipeline configuration facilities solving the benchmarking CO
problems and can highlight the advantage of different model configurations on different
problems.

We evaluate our methodology mainly on the largest-scale transfer dataset of each prob-
lem since the performance differences of the CO pipelines become more prominent as the
problem size increases. Nevertheless, Appendix D includes the figures presenting the per-
formance of all models for each scale of the problems. Since we set the scale of training
instances to be easily solvable with CPLEX, all CO pipelines generally achieve the optimal
solutions for testing instances and provide optimal gap and primal gap values near zero, like
in [0, 0.005]. Therefore, we consider only primal integral values for evaluation over testing
datasets.

In this section, we present the boxplot distributions of the results by each CO pipeline
configuration (referred as only ‘configuration’ from here on) defined in Section 5.3 for 50
largest-scale transfer instances of each CO problem. Figure 3, 4 and 5 present the boxplot
distributions of each metric attained by each configuration with NS and UPR+NS strategies
in 30 minutes. Figure 6 present the distributions of primal gap values of the warm-start
solutions found with UPR. In all figures, the boxplot distributions of metrics for CPLEX
are placed together with the CO pipelines applying only NS strategy. Note that the results
of the pre-trained MIP-GNN models are only available for FCMNF and GIS datasets since
the study of Khalil et al. covers these datasets.

The optimality gap and primal gap distributions in Figures 3 and 4 set out the contri-
bution of the CO pipelines to solve each problem at scale by wide margins compared to
CPLEX. For MSC, CA, MIS, and FCMNF problems, the stages of the proposed primal
heuristics are the major factor in boosting optimization performance, while the impact of
model configuration is more dominant for GIS problem. Yet, we observe that EC+V+EDL
mostly leads to better optimization performance across five problems. Besides, the bench-
marking with the pre-trained MIP-GNN model figures out the advantage of training the
models over the downscaled instances. When only NS strategy is applied, the CO pipelines
using our models achieve on-par or better optimization performance for FCMNF and GIS
datasets, respectively. On the other hand, UPR+NS pipelines cannot benefit from the
warm-start solutions generated based on the predictions of the MIP-GNN models. Since
UPR algorithm heavily depends on the partial solutions that are feasible and do not hinder
optimality, it yields low-quality warm-start solutions using the MIP-GNN models (see Fig-
ure 6), which is further detailed in Section 6.3. In addition to the final solution quality, the
CO pipelines maintain time-efficient solution quality throughout the run time with fairly
lower primal integral values, according to Figure 5.

Lastly, Figure 7 exposes how each configuration proceeds in solving each problem. The
primal gap values by most of the CO pipelines quickly drop in earlier minutes, which depicts
better the efficiency of the proposed primal heuristics leveraging the trained models within
B&B algorithm. We further detail how each configuration is effective for solving each
problem in the following subsections.
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Figure 3: Optimality Gap Distributions for the Largest Scale Transfer Datasets
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Figure 4: Primal Gap Distributions for the Largest Scale Transfer Datasets
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Figure 5: Primal Integral Distributions for the Largest Scale Transfer Datasets
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Figure 7: Average Primal Gap Curves for the Largest Scale Transfer Datasets. NS and
UPR+NS curves are denoted by solid and dashed lines, respectively. To present the pri-
mal gap value averaged across all instances per second by a CO pipeline, primal gap val-
ues are linearly interpolated through the time interval [1, 1800].

6.1 Generalization on Larger-scale CO Problems

Before evaluating the optimization performance of the CO pipelines, we investigate whether
the proposed modelling approach can achieve a predictive performance on large-scale CO
problems as accurately as the testing performance on the downscaled problems. For the
evaluation in this section, we additionally trained EC+BCE, EC+EDL, EC+V+BCE, and
EC+V+EDL models without the normalization techniques proposed in Section 4.1.1 to
reveal how these techniques improve predictive accuracy.

We take into account the accuracy of predictions and their associated uncertainty values
together when evaluating the generalization ability of trained models on larger datasets. By
sorting the predictions in ascending order of their associated uncertainty values, we assess
the accuracy of each percentile of predictions. Figure 12 presents the average accuracy
of EC+BCE, EC+EDL, EC+V+BCE, and EC+V+EDL models with and without the
proposed normalization techniques (by solid and dashed curves, respectively) in each ten
percentile of the associated uncertainty values for all datasets. Particularly, the quality
of the best solutions (treated as the ground truth for measuring the prediction accuracy)
obtained with CPLEX in eight hours for MIS-16x is worse than that of the warm-start
solutions generated with UPR. It indicates that these best solutions are poor to represent
the ground truth. Therefore, the prediction accuracy curves for MIS-16x dataset in Figure
12 get lowers slightly.

The models without the normalization layers lead to misleading predictions with high
confidence for MIS, FCMNF, and GIS problems; thus, their predictions are much less cred-
ible for the proposed primal heuristics for solving these problems compared to our standard
models (ones including the normalization layers). Another important motivation for the
proposed primal heuristics is that accuracy of the most confident predictions by the mod-
els should be near 100% (recall Section 4.2.1). In the following, we will only refer to the
standard models and discuss our methodology based on their predictive performance.
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Considering the confident predictions, we generally observe that the testing and transfer
accuracy of models match. Moreover, the uncertain predictions for the transfer datasets
may cause slightly diverging accuracy levels, but not lower than the testing levels mostly.
These results confirm that the proposed modeling approach enhances the knowledge transfer
capability of GNNs for inferring solutions to larger-scale instances of the benchmarking CO
problems. Furthermore, it is observed that the accuracy level within the first 50 percentile
of uncertainty distributions is generally near 100% for the testing and the transfer datasets
by all models. Hence, we conclude that the uncertainty values are admissible to utilize them
in the proposed primal heuristic strategies. This empirical outcome brings an admissible
value for the uncertainty threshold ū to use in UPR algorithm. For each model of each
problem, we set ū to the median of uncertainty values of the predictions for the validation
dataset of the problem and use it for both testing and transfer datasets of the problem. On
the other hand, we reveal an exceptional result for the admissibility of uncertainty values
by EC+V+BCE model for MSC, FCMNF, and GIS problems in Appendix D. Since the
predictions of this model are misleading, its CO pipelines underperform in terms decision
quality, which is revealed in the next subsections.

6.2 Benchmarking with CPLEX

Figure 8 presents the performance improvement by the CO pipelines for optimality gap
and primal gap metrics relative to the performance of CPLEX across the problem scales
of MSC, CA, and MIS transfer datasets. Similarly, Figure 9 includes the bar charts of the
improvement rates for the FCMNF and GIS transfer datasets.
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Figure 8: Average Improvement Rates (Imp.) by the Model Configurations for the Trans-
fer Datasets of MSC, CA, and MIS Problems (NS and UPR+NS results are denoted by
solid and dashed lines, respectively.)

Solving MSC and CA problems, both NS and UPR+NS strategies substantially decrease
primal gap values by around 80% as the problem size increases. Differently for MIS problem,
the benefit of NS strategy fades. It is clarified from Figure 7 where all model configurations
with NS strategy reach similar average primal gaps with CPLEX’s values while solving MIS-
16x problems. On the side of UPR+NS, UPR algorithm boosts solving MIS problem since
the warm-start solutions found based on the model predictions lead to immediately reaching
around a 6.5% optimality gap. Overall, the non-decreasing pattern of improvement rates
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Figure 9: Average Improvement Rates (Imp.) by the Model Configurations for the
FCMNF-16x and GIS-4x Datasets

across the scales of MSC, CA, and MIS problems displays that our models offer a scalable
performance compared to CPLEX.

The proposed primal heuristics can scale in solving the actual-scale instances of FCMNF
and GIS, too, which are considered the more complex CO problems. Khalil et al. report
that the testing performance of MIP-GNN framework with their node selection strategy
in terms of the optimality gap is slightly worse than CPLEX. Our findings with the NS
pipelines are in line with this finding, too. Nevertheless, utilizing the warm-start solutions by
UPR algorithm in solving FCMNF-16x instances leads to a much better performance than
CPLEX. 40-47% better (i.e., lower) average primal gap for FMCNF-16x can be achieved
by deploying UPR+NS strategy with the trained models. For GIS problem, the proposed
heuristic strategies decrease the primal gap for GIS-4x instances by 38-60% on average,
while EC+V+BCE is the only model showing poor performance improvement since its
confident predictions lead to misleading decisions for the transfer instances of GIS problem
(see Figure 12).

In addition to benchmarking the performance of the CO pipelines and CPLEX in terms
of the evaluation metrics, we analyze the time efficiency of our methodology in Appendix
D.1. Consequently, the time savings by the CO pipelines dramatically rise as the prob-
lem size increases. The increasing efficiency trends across the scales of all five problems
demonstrate that the proposed methodology offers scalable GNN-based primal heuristics.

6.3 Benchmarking with MIP-GNN

To benchmark with the pre-trained MIP-GNN models for FCMNF and GIS problems, we
additionally trained our models with the same architecture hyperparameters in the study
of Khalil et al. (2022). These models use four EC layers, a 4-layered MLP classifier, mean
aggregation, and have a hidden dimension of 64. Still, the normalization changes to MIP-
GNN (proposed in Section 4.1.1) are kept. MIP-GNN models are trained with BCE Loss
and use the class probabilities to calculate the confidence scores for B&B nodes in the
study of Khalil et al.. Therefore, in this section, we principally consider EC+BCE and
EC+E+BCE models used to benchmark with MIPGNN and MIPGNN+E. Note that the
instances used for training the MIP-GNN models are at the scale of FCMNF-16x and GIS-
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4x instances. Indeed, the transfer performance of our models is compared with the testing
performance of MIP-GNN models.

Figure 10b shows that NS pipelines using our models attain median primal gap and
optimality gap values on par with the MIP-GNN models for FCMNF problem. For GIS
problem, EC+BCE performs much better than the MIP-GNN models, while EC+E+BCE
is slightly outperformed by the others. Here, BCE Loss function causes worsening transfer
performance for EC+E and EC+V models. Instead, the models trained with EDL offer
the top performance among all models. This result lights on the value of uncertainty
quantification with EDL for GIS problems.

It is observed from Figure 10a that UPR algorithm cannot reach high-quality solutions
based on the predictions of the MIP-GNN predictions. Particularly for FCMNF-16x dataset,
any feasible sub-MIP had not been obtained for any instance with UPR algorithm (then,
all of them were repaired with Algorithm 2). As discussed in Section 3.2, these findings
corroborate that using multiple solutions per instance to set the target space may prevent
learning solution patterns. Even the most confident predictions of MIP-GNN models as
a whole are not convenient for getting valid partial solutions, which is in line with the
conclusions of Han et al. (2023) about the variable fixing strategy of Neural Diving. In
contrast, the utilization of UPR algorithm is prominent in finding high-quality warm-start
solutions if the predictions of our models are used.
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Figure 10: Primal Gap Distributions of Warmstart (10a) and Final (10b) Solutions by the
CO Pipelines Using 4-layered GNNs and mean aggregation for FCMNF-16x and GIS-4x
Transfer Datasets

The performance gain through EDL models compared to MIP-GNN models is also re-
flected in optimality gap and primal integral values presented by Figure 11. Consequently,
our models’ transfer performance can achieve and even exceed the MIP-GNN models’ test-
ing performance. Table 8 in Appendix C shows that the proposed improvements over
MIP-GNN framework provide either better or statistically indifferent performance in terms
of primal gap. This benchmarking validates that the proposed training regime and architec-
tural improvements can enable GNNs to generalize on the actual-scale instances of FCMNF
and GIS problems. Moreover, our methodology requires much less costly training dataset
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Figure 11: Optimality Gap and Primal Integral Distributions by the CO Pipelines Us-
ing the Models with 4-layered GNN and mean aggregation, and MIP-GNN models for
FCMNF-16x and GIS-4x Transfer Datasets

generation and model training10 as well as less fine-tuning burden (due to having fewer hy-
perparameters) compared to the MIP-GNN framework, which includes a bias threshold for
training and exploiting the models, and several hyperparameters for training data collection
(see Section 3.2).

6.4 Effect of Warm-start Solutions

To analyze how the warm-start solutions contribute to solve CO problems at scale, we
set separate CO pipelines by ablating UPR algorithm from the proposed primal heuristic
strategy. Considering the primal gap distributions in Figure 4, the warm-start solutions
obtained with UPR algorithm are highly influential in solving CA, MIS, and FCMNF prob-
lems. Figure 7 reveals that UPR algorithm directly leads to finding high-quality solutions by
requiring much less effort with B&B for these three problems. This immense time efficiency
in reaching high-quality solutions is quantified in Table 9b relative to the default CPLEX
performance. Thus, UPR+NS pipelines can also bring substantially lower optimality gaps
for these problems by exploiting 30 minutes solve time better, as seen in Figure 3, compared
to NS pipelines and the default CPLEX configuration. On the other hand, for MSC and
GIS problems, the quality of the warm-start solutions is influential in the stage of global
search with only a few CO pipelines. As observed from the primal gap curves for MSC and
GIS problems depicted in Figure 7, NS pipelines can immediately achieve a close solution
quality with UPR+NS pipelines, which indicates that NS strategy can also be effective
in finding high-quality solutions in a short time for these problems. Although UPR+NS

10. We cannot make a direct comparison with the experimentation in the study of Khalil et al. (2022) for
the elapsed times in the training dataset generation and the model training since the experiment en-
vironments are different. Yet, we can specify that the median time for obtaining the optimal solutions
to the downscaled training instances of FCMNF and GIS problems are respectively 142.36 and 1439.2
seconds (see Table 5 at Appendix B) whereas Khalil et al. set one hour time-limit for generating a
pool of solutions per training instance of these problems. Besides, considering the number of decision
variables and constraints in the training instances, the proposed training regime in our study certainly
takes much less time.
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pipelines lead to 0.001-0.005 higher primal gap values on average for MSC-16x instances
compared to those by NS pipelines, these differences are insignificant (p > 0.05) according
to the t-Test for each model configuration deployed in NS and UPR+NS pipelines.

6.5 Effect of Violation Layer

We measure how Violation Layer improves MIP-GNN model for solving larger-scale in-
stances by comparing it with the models using Error Layer (EC+E) and the bare mod-
els (EC). Compared to the results of EC and EC+E models in Figure 4, the primal gap
values by the EC+V models are slightly lower for MSC-16x with UPR+NS strategy, sig-
nificantly lower for CA-16x, and similar for MIS-16x instances. On the other hand, the
impact of Violation Layer and Error Layer are divergent for solving GIS-4x and FCMNF-
16x datasets. While EC+E models offer much better performance with UPR+NS strategy
for FCMNF-16x instances, they significantly underperform by a wide margin for GIS-4x
instances. Both NS and UPR+NS pipelines using the EC+V models trained with BCE
Loss show a degrading performance in solving GIS-4x instances. This particular result
among all datasets indicates that using the class probabilities of BCE models might present
non-eligible quantification of prediction uncertainty, which was pointed out in Section 4.2.
Lastly, it is noteworthy that the explicit performance gain through Violation Layer depends
on the warm-start solutions acquired in UPR algorithm using EC+V models (especially
EC+V+EDL models), which are much better for CA-16x, MIS-16x, and GIS-4x datasets,
whereas EC+E models are slightly more beneficial for MSC-16x and FCMNF-16x datasets
(see Figure 6). These results indicate that Violation Layer drives capturing solution patterns
better for generalization on larger-scale instances and leads to more robust performance in
the warm-starting.

6.6 Effect of Uncertainty Quantification

To assess the impact of uncertainty quantification through EDL on the performance of the
proposed primal heuristic strategy, Table 2 presents the improvement rates for each metric
achieved by models trained with EDL Loss compared to those trained with BCE Loss.
While some CO pipelines employing BCE models yield slightly lower primal integral values
in comparison to those using EDL models for test instances of CA, MIS, FCMNF, and GIS
problems, the gains of uncertainty quantification become particularly notable for transfer
datasets of MSC, CA, FCMNF, and GIS problems.

Solving the transfer datasets of MSC and GIS problems results in much higher optimality
gaps (with the median values of 64.8% and 118.9% by CPLEX) compared to other problems,
which shows finding tight primal and dual bounds is harder for these two problems. A
notable observation is that EDL models lead to reducing the primal gap explicitly for these
two problems compared to BCE models. This finding corroborates that quantification
of prediction uncertainties produces eligible node confidence scores to improve the primal
bound. Moreover, the performance improvement by EDL models in solving transfer-16x
instances of CA and FCMNF problems is more remarkable with UPR algorithm for the
proposed primal heuristics. The improvement rates for the primal gap of the warm-start
solutions underlie that the ranking of predictions with respect to associated uncertainty
values is more useful to get better partial solutions within UPR algorithm when EDL
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models are deployed. Accordingly, confident predictions of EDL models are more credible
for retaining the optimality, thus driving the algorithm to find better solutions.

Table 2: Average improvement rates (Imp.) by the EDL models over the BCE models for
the testing dataset and the largest-scale transfer dataset of each problem. The improve-
ment rates are averaged across EC+V and EC models. The optimality gap and primal
gap improvement rates for the test datasets are excluded since all models achieve (near)
zero gap values. The negative percentages indicate that the CO pipelines of EDL models
underperformed.

Problem Strategy

(Test)
Primal
Integral
Imp. (%)

(Transfer)
Primal
Integral
Imp. (%)

(Transfer)
Primal
Gap

Imp. (%)

(Transfer)
Optimality

Gap
Imp. (%)

(Transfer)
Warm-starting
Primal Gap
Imp. (%)

MSC
NS 44.64 2.57 13.99 0.24 -

UPR+NS 43.11 -8.05 11.96 0.17 54.23

CA
NS -18.74 1.94 0.55 0.21 -

UPR+NS 16.70 9.58 88.57 19.66 84.50

MIS
NS -1.46 0.05 0.00 0.02 -

UPR+NS 3.86 4.84 -2.05 -0.03 -3.07

FCMNF
NS -4.34 0.07 0.00 0.00 -

UPR+NS -0.76 21.56 21.39 5.57 19.98

GIS
NS -0.73 25.07 29.54 4.37 -

UPR+NS 2.43 27.99 31.24 4.26 18.09

6.7 Effect of Combined Aggregation

This section presents the ablation study of the aggregation operator used in EC layers,
which is the combined aggregation (comb) introduced in Section 4.1.3. To measure the ef-
fect of comb on generalization to larger-scale instances, we also trained separate EC+BCE,
EC+EDL, EC+V+BCE, and EC+V+EDL models that use mean aggregation as the com-
monly used one in the related studies. We benchmarked these two groups of models over
the testing and the largest-scale transfer datasets of each problem. Table 3 presents the
improvement rates by the models using comb over those using mean in terms of each metric.

The comb models generally demonstrate superior generalization in solving CA, MIS,
and FCMNF problems compared to the mean models. The positive the improvement rates
with NS strategy present evidence that the models using comb predicts values for decision
variables by exposing better-calibrated uncertainty values with EDL Loss or well-grounded
class probabilities with BCE Loss. Upon applying UPR+NS strategy, the optimization
performance by the comb pipelines increases by a wide margin. This result indicates that
these models can learn graph properties that are useful for solving CO problems; therefore,
high-quality warm-start solutions can be obtained in UPR with the predictions of the comb
models (see Table 7 at Appendix C).

Using comb degrades the generalization performance for MSC-16x and GIS-4x datasets,
unlike the positive improvement rates for the other three datasets. Although the comb

pipelines provide better testing performance, the mean pipelines generalize on solving larger-
scale instances of MSC better. The CO pipelines using BCE models cannot benefit comb
for solving GIS-4x while those with EDL models can. It indicates that EDL can lead the
regularization of the models that use comb for GIS problem. However, training models on
the downscaled instances of MSC and GIS problems with complex aggregations to require
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Table 3: Average improvement rates (Imp.) by the models using comb over those
using mean for the testing and the largest-scale transfer datasets of each problems.
The improvement rates are averaged across EC+BCE, EC+EDL, EC+V+BCE, and
EC+V+EDL models. The optimality gap and primal gap improvement rates for the test
datasets are excluded since all models achieve (near) zero gap values. The negative per-
centages indicate that the CO pipelines of the models using comb underperformed.

Problem Strategy
Loss

Function

(Test)
Primal
Integral
Imp. (%)

(Transfer)
Primal
Integral
Imp. (%)

(Transfer)
Primal
Gap

Imp. (%)

(Transfer)
Optimality

Gap
Imp. (%)

MSC
NS

BCE 3.69 -7.37 -44.98 -0.46
EDL 44.21 -14.85 -70.14 -0.72

UPR+NS
BCE 0.52 -42.09 -82.89 -0.93
EDL 43.09 -19.68 -68.58 -0.73

CA
NS

BCE 31.74 -12.93 -20.77 -7.24
EDL 7.40 11.60 15.82 6.99

UPR+NS
BCE -12.81 81.46 -0.18 0.19
EDL -0.21 83.96 90.21 22.76

MIS
NS

BCE 0.86 0.13 1.26 1.09
EDL 6.90 0.20 1.26 1.09

UPR+NS
BCE 51.90 -1.41 53.37 0.33
EDL 51.82 2.22 -21.97 0.17

FCMNF
NS

BCE 3.34 -5.29 0.00 0.00
EDL -9.60 0.30 -0.56 -0.18

UPR+NS
BCE 20.87 46.77 34.76 12.15
EDL 17.61 21.36 16.26 4.07

GIS
NS

BCE 1.72 -66.62 -80.51 -9.61
EDL 4.48 8.62 8.41 -1.80

UPR+NS
BCE 9.01 -93.49 -98.97 -9.90
EDL 19.04 5.00 7.22 -1.94

additional regularization. This could be resolved by narrower hidden layers, dropout layers
in MPNNs, or increasing the dropout probability for the classifier network layers. In sum-
mary, our ablation study in this section reveals that GNNs combining various aggregation
operators can learn valuable patterns for solving CO problems. Nonetheless, it suggests
that stronger regularization may be necessary to ensure performance improvement.

7. Discussion

In this section, we discuss the generalization capability and limitations of the proposed
methodology for scaling CO problem solutions. Determining the required model complexity
for generalizing any CO problem is challenging due to the dependence on the problem struc-
ture, making precise complexity estimates difficult. For generating the training datasets,
we scaled the instances to a level that CPLEX can solve exactly within a reasonable time
(refer to Table 5 in the Appendix for the median solve time for the training instances). We
did not conduct an experiment to analyze the effect of magnitude of downscaling training
instances on solving larger scale instances. However, our experimentation demonstrates ex-
emplary optimization performance for FCMNF and GIS problems when downscaled by 16
and 4 times, respectively, in benchmarking with MIP-GNN models. A more advanced de-
sign of the proposed CO scaling methodology could determine the most efficient level of the
downscaling by fine-tuning it for each problem separately through end-to-end optimization.
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Two factors affect the learning of solution patterns in downscaled instances, determining
the benefit of inferring solutions for larger instances. Firstly, the interdependency and
interrelation of decision variables in a problem may extend as the problem size increases11.
The benefit of learned solution patterns for solving a given problem can weaken as the
scale of training instances reduces. Therefore, it is important to tune the magnitude of
downscaling by analyzing its effect on the downstream optimization task, considering the
cost of collecting optimal solutions to training instances for a given problem. Another factor
is the depth of GNN: How deep should GNN models be so that they can also capture long-
range relations among decision variables of larger instances? Deeper GNNs would exploit
more comprehensive relations among a high number of decision variables. On the other
hand, training deeper GNNs on small-scale CO problem instances can be useful to capture
such relations up to a certain extent since the relations among a small number of decision
variables are likely to fade out of a certain neighborhood depth. So, the depth of GNN
can be fine-tuned considering the tension between the extend of relations within decision
variables of a small-scale instance and the benefit of capturing wider patterns to extract
useful information for solving larger problems.

8. Conclusion

This study presents a comprehensive overview of end-to-end learning with GNNs to effi-
ciently address CO problems using primal heuristics and particularly focuses on the scalabil-
ity of this methodology. The proposed training approach and enhancements to MIP-GNN
model facilitate knowledge transfer for solving larger-scale instances. The proposed primal
heuristics leverage the trained models by generating warm-start solutions and guiding B&B
search based on predictions and calibrated model uncertainty through EDL. This method-
ology provides substantially improved performance in solving five CO problems compared
to CPLEX as the problem size increases. The benchmarking with the pre-trained MIP-
GNN models demonstrates that the proposed training regime and architectural changes
drive GNNs to capture patterns that are more useful in solving larger scale instances. Be-
sides, the proposed methodology requires less costly training data generation and comes
with less burden of hyperparameter tuning. Nevertheless, one could do further fine-tuning
by using different evidence functions and proposing different regularization approaches or
resort to other uncertainty quantification techniques (Abdar et al., 2021). Also, a dynamic
approach to compute the confidence scores for B&B nodes could be adopted to control the
exploitation of the predicted decision values and the exploration of other promising regions
according to the estimated bounds by B&B algorithm.

As a future work, the proposed methodology can be optimized for a given problem by
an analysis regarding (i) the extent of relations and interdependency among decision vari-
ables regarding problem size, (ii) the cost of collecting optimal solutions to the downscaled
instances, (iii) the cost of training deeper GNNs, and (iv) the benefit of the learned prob-

11. This condition is not generalized for all problem domains. Some problems can pose a local nature or
decomposable structure which displays interdependency within only subgroups of decision variables.
Therefore, learned narrow-ranged patterns can be stably valuable for solving arbitrarily large instances
of a problem. The experimentation for MIS problem gives results in line with it. The warm-start so-
lutions generated based on the predictions of the trained models lead to an immediate convergence in
the primal gap for even 16x larger instances (see Figure 7).
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lem/solution patterns in depth by the models for the downstream optimization of actual-
scale instances of the problem. Considering the terms and characteristics of application
domains, this exhaustive analysis could make the best use of the proposed methodology to
solve CO problems at scale. Aligned with the motivation of our study, a potential research
direction could be promising by advancing curriculum learning approaches, which aim to
train models to transfer knowledge from solving easy CO problems to harder ones (Zhou
et al., 2023; Lisicki et al., 2020). Last but not least, our methodology could be extended for
solving mixed-integer linear programming (MILP) problems. Nair et al. (2020) and Khalil
et al. (2022) present different approaches to how the proposed GNNs can be generalized
to predict values of non-binary integer variables. Nevertheless, these approaches require
further development for scalability, given that an arbitrary MILP can involve complex
constraint structures and large domains for both integer and continuous decision variables.
These problem characteristics could make capturing solution patterns within complex prob-
lem structures more challenging; therefore, devising different learning approaches and more
complex GNN architectures are needed.

8.1 Broad Impact

CO algorithms serve numerous industries, such as energy, logistics, supply chain, and fi-
nance. However, designing efficient, scalable, and robust CO algorithms requires substantial
time and domain knowledge. By automatizing algorithm designs by learning problem struc-
tures and solution patterns and adapting better to given specific problem data, GNN-based
CO approaches could enable the democratization of high-performing algorithms, leading to
improved efficiency in these industrial domains.

Our proposed methodology demonstrates significant potential both in improved scalabil-
ity and solution quality, which show a potential path to achieve superior GNN-augmented
solvers. Embedding pre-trained GNNs into fully-fledged MIP solvers could enhance the
solving of CO problems across various scientific fields, including applied mathematics, op-
erations research, computer science, and economics. Moreover, empowering next-generation
MIP solvers with GPU-based matrix computations could lead to widespread use of them in
large-scale optimization applications, particularly in real-time decision domains. Besides,
the proposed methodology demand much less CPU and GPU workloads while scaling. It
can reduce maintenance costs of ML-augmented real-world applications considering dy-
namic real-world problems since they would require the continual collection of solutions
for retraining/fine-tuning the predictive models in order to keep the generalization power
steady. Lastly, such intelligent systems crafted for optimization tasks should provide de-
scriptive analytics and explainability techniques alongside their predictive models. Oth-
erwise, the output of the system could drive decisions lacking trust and reasoning behind
them, which brings the risk of extreme sub-optimality or even infeasibility in the nature
of evolving real-world problems. The proposed uncertainty quantification-based approach
intrinsically works with the sense of trust toward the trained models (Soleimany et al.,
2021). Nevertheless, one could refer to emerging research on GNNs developing further in-
terpretable methods for different aspects of explainability like robustness, accountability,
and fairness (Dai et al., 2022; Yuan et al., 2020). Thus, adopting explainable intelligent
optimization approaches would help in understanding system dynamics and the reasoning
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behind automated decisions, which is solicited in high-stakes domains such as chemistry,
health, security, and finance.
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Appendix A. A Repair Algorithm for Infeasible MIP

We propose Algorithm 2 to restore the infeasible sub-MIP M ′ at the last iteration of UPR
algorithm. It is based on Conflict Analysis method (Achterberg, 2007)12 , which diagnoses
conflicts among the constraints in an infeasible MIP. We use this method to select which of
the added cuts in UPR algorithm causing the infeasibility.

Algorithm 2: Conflict Analysis-based Repair for Infeasible MIP

Input : Infeasible MIP instance M ′ with cuts Ω, repair time limit T
Output: Feasible MIP instance Mf

1 repaired← false // Initialize a predicate indicating if M ′ is feasible or not

2 t = 0 // Initialize elapsed repair time

3 while t < T & ||Ω|| > 0 do
4 (Ωc, t)← ConflictAnalysis(M ′, T − t)
5 if |Ωc| = 0 then
6 repaired← true
7 Mf ←M ′

8 break // ends the loop

9 end
10 Ω′ ← GetConflictingCuts(Ωc,Ω)
11 M ′ ← RemoveCuts(M ′,Ω′)
12 Ω← Ω \ Ω′

13 end
14 if repaired = false then
15 Mf ← RemoveCuts(M ′,Ω)
16 end
17 return Mf

In each iteration of Algorithm 2, the conflicted constraints in a given MIP are diagnosed
by Conflict Refiner module of CPLEX. Conflict Analysis procedure in Line 5 is invoked
to find a minimum subset of conflicting constraints in M ′ and returns a tuple of the set
of diagnosed constraints Ωc and the elapsed time t within a given time T − t. If M ′ is

12. Conflict analysis is managed in the off-the-shelf MIP solvers such as Conflict Refiner in CPLEX (IBM
ILOG CPLEX, 2021), Conflict Analysis in SCIP (SCIP Optimization Suite, 2024a), and Irreducible
Inconsistent Subsystem in Gurobi (Gurobi Optimization, 2024).
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feasible, then Ωc = ∅. The variables that appear in both Ω′ and Ωc are detected (Line
10), and then the cuts that fix these variables to the predictions are removed from Ω′ (Line
11). This procedure continues within a time-conditioned loop until a feasible MIP instance
Mf is obtained (Line 4) or all of the variable fixing cuts are eliminated (|Ω| = 0). If Mf

cannot be obtained (the worst case), all the remaining cuts are removed fromMf (Line 15),
which results in recovering the original MIP. After repairing an infeasible sub-MIP using
Algorithm 2, UPR algorithm once again runs for one minute to obtain a warm-start solution
from the restored sub-MIP Mf .

In our experimentation, UPR algorithm achieved feasible sub-MIPs for all instances of
all datasets except FCMNF-16x. Table 4 presents the numbers of last iteration sub-MIPs

(M
(N)
sub ) that are infeasible for FCMNF-16x instances. For all these instances, Algorithm

2 successfully restores each sub-MIP in one minute; afterwards, UPR algorithm achieves a
feasible solution for it.

Table 4: The number of instances in which a feasible sub-MIP is not obtained in UPR
algorithm for 50 FCMNF-16x instances. The model configurations are classified based on
the loss functions, aggregation types (comb and mean), and the number of GNN layers (k).

Model
Loss

Function
comb mean

k=4 k=8 k=4 k=8

EC
BCE 29 0 13 13
EDL 3 3 2 11

EC+E
BCE 50 0 17 31
EDL 11 0 0 1

EC+V
BCE 35 1 34 9
EDL 0 4 0 0

MIPGNN BCE - - 50 -
MIPGNN+E BCE - - 50 -

Appendix B. Benchmarking Datasets and Training Data Generation

This section detail training data generation procedures for the benchmarking datasets in this
study. Readers can refer to the studies of Ding et al. (2020) and Khalil et al. (2022) for the
definitions of the problems. We used the dataset generators released by Gasse et al. (2019)
for MSC, CA, and MIS problems13 and Khalil et al. for FCMNF and GIS problems14. The
original MSC dataset includes instances with the objective coefficients that are randomly
distributed in [0, 100). Due to the range and the distribution type, CPLEX can solve any
instance of the dataset within seconds, even if the number of variables and constraints in
the problem is increased. Therefore, after generating MSC instances, we modified them by
assigning the objective coefficients to be in [5, 100) at random, which makes the problem
harder and not trivially solved with CPLEX. A fourth dataset in the study of Gasse et al.
(2019) includes Capacitated Facility Location Problem instances which are also trivially
solved by CPLEX for any combination of the problem parameters (number of customers,
number of facilities, and the ratio of facility capacities to demand of customers) and problem
size. Thus, we did not include it in our experimentation.

13. https://github.com/ds4dm/learn2branch-ecole/tree/dev
14. https://github.com/lyeskhalil/mipGNN
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The scale of MSC, CA, and MIS problems experimented by Gasse et al. (2019), Ding
et al. (2020) and Han et al. (2023) can be solved in a few seconds with CPLEX. Instead,
we set the scale of problems at larger magnitudes, which are presented in Table 5 as the
number of decision variables. Recall that the scale of instances in the training, validation,
and testing datasets is denoted by 1x. The number of decision variables and constraints in
the transfer instances of each problem is certain multiples of the values in the table. For
example, each MSC-16x instance has 16000 decision variables and 8000 constraints.

Table 5: The median and standard deviation of the number of variables, the number of
constraints, and CPLEX solve time per instance (with a single thread) for the training
dataset (1x) of each problem.

MSC CA MIS FCMNF GIS
# Variables 1000.0 ± 0.0 1000.0 ± 0.0 1000.0 ± 0.0 5200.0 ± 0.0 5341.0 ± 36.59

# Constraints 500.0 ± 0.0 388.0 ± 4.61 4223.0 ± 13.96 1375.0 ± 0.0 6963.0 ± 0.0
Solve Time (sec) 468.52 ± 713.53 74.89 ± 167.53 9.8 ± 197.96 142.36 ± 237.1 1439.2 ± 644.23

Table 6: The average and standard deviation of the inference time (in seconds), which is
the sum of elapsed time in the data preprocessing and prediction, for each dataset.

Test (1x) Transfer (2x) Transfer (4x) Transfer (8x) Transfer (16x)
MSC 1.94 ± 0.85 3.06 ± 1.21 11.62 ± 5.09 26.7 ± 9.53 71.16 ± 52.41
CA 1.47 ± 0.51 2.05 ± 0.71 2.58 ± 0.85 3.17 ± 1.08 5.21 ± 1.54
MIS 1.58 ± 0.51 2.2 ± 0.71 2.99 ± 0.97 5.42 ± 1.81 9.43 ± 2.68

FCMNF 2.38 ± 0.92 - - - 15.14 ± 6.37
GIS 2.58 ± 1.09 - 6.47 ± 2.67 - -

To obtain downscaled instances of FCMNF problem for our training dataset, we set
the number of nodes in the randomly generated Erdos-Renyi graph to 50 and the number
of commodities to 25. To acquire a similar ratio of the number of edges to the nodes
with the actual FCMNF dataset, we set the Erdos-Renyi edge probability to 0.075. Other
problem parameters are kept the same. As a result, our training FCMNF instances includes
approximately 1/16th the number of decision variables in the actual FCMNF problems.

10 different GIS datasets are covered in the study of Khalil et al.. The GIS datasets
named ‘C125.9.clq’ and ‘C250.9.clq’ follow a common distribution of problem parameters,
but the latter dataset includes 4x the number of variables of the first one. These datasets
are, respectively the easiest and most challenging datasets according to their optimality gap
results in the study. Using these two datasets in our study, we train our models only on
’C125.9.clq’ instances and also benchmark them on ’C250.9.clq’ instances with the MIP-
GNN models separately pre-trained on ‘C125.9.clq’ and ‘C250.9.clq’ datasets and CPLEX.

We experimented with the pre-trained MIP-GNN models using a bias threshold of 0,
which proved to be better than those with a bias threshold of 0.1 according to the empirical
findings of Khalil et al..

We used CPLEX 22.1.0 to obtain the optimal solutions to the instances in training,
validation, and test datasets. Each CPLEX run for the data collection, and benchmarking
was carried out with a single thread; hence all runs were parallelized. All tasks and exper-
iments were conducted on computers with an NVIDIA Quadro RTX 5000 GPU, an Intel
Xeon Silver 4215R CPU, and 32 GB RAM.
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Appendix C. Supporting Results

Table 7: Average improvement rates (Imp.) for the primal gap values of warm-start solu-
tions generated in UPR algorithm by EC+V and EC models using comb over those using
mean aggregation for the testing and the largest-scale transfer datasets of each problem.
The negative percentages indicate that the comb models underperformed.

Problem
Loss

Function

(Test)
Warm-start
Primal Gap
Imp. (%)

(Transfer)
Warm-start
Primal Gap
Imp. (%)

MSC
BCE 0.13 -259.24
EDL 11.03 -13.56

CA
BCE 24.64 7.30
EDL -16.80 86.14

MIS
BCE 10.96 54.03
EDL 22.46 18.58

FCMNF
BCE 85.67 54.55
EDL 49.13 26.56

GIS
BCE 16.11 -60.07
EDL 20.33 -0.72

Table 8: The comparison of our models that use 4-layered GNNs and mean aggrega-
tion, with MIP-GNN models. The negative average improvement rates (Imp.) indicate
that Model 1 provides worse average primal gap. p-values are for the t-test results of the
model pairs. The results of NS strategy for FCMNF-16x are excluded since the distribu-
tion pairs are almost the same (thus no statistical difference) as seen in Figure 10b.

Problem Strategy Model 1 Model 2
Avg.

Primal Gap
by Model 1

Avg.
Primal Gap
by Model 2

Imp. (%) by
Model 1

p-value

FCMNF-16x UPR+NS

EC+BCE MIPGNN 0.1187 0.1226 3.1491 6.05e-01
EC+EDL MIPGNN 0.1161 0.1226 5.2605 3.49e-01

EC+E+BCE MIPGNN+E 0.1255 0.1244 -0.9318 8.66e-01
EC+E+EDL MIPGNN+E 0.1145 0.1244 7.9200 1.54e-01
EC+V+BCE MIPGNN+E 0.1333 0.1244 -7.1664 2.05e-01
EC+V+EDL MIPGNN+E 0.0942 0.1244 24.2659 2.35e-05

GIS-4x

NS

EC+BCE MIPGNN 0.0847 0.0744 -13.8769 5.03e-02
EC+EDL MIPGNN 0.0752 0.0744 -1.0897 8.81e-01

EC+E+BCE MIPGNN+E 0.0581 0.0923 37.0493 1.48e-08
EC+E+EDL MIPGNN+E 0.0855 0.0923 7.3524 2.45e-01
EC+V+BCE MIPGNN+E 0.0989 0.0923 -7.1571 2.79e-01
EC+V+EDL MIPGNN+E 0.0489 0.0923 47.0047 1.85e-11

UPR+NS

EC+BCE MIPGNN 0.0618 0.0680 9.1961 2.70e-01
EC+EDL MIPGNN 0.0717 0.0680 -5.2946 5.59e-01

EC+E+BCE MIPGNN+E 0.0571 0.0949 39.8881 2.36e-07
EC+E+EDL MIPGNN+E 0.0715 0.0949 24.6874 2.23e-03
EC+V+BCE MIPGNN+E 0.0939 0.0949 1.0452 8.90e-01
EC+V+EDL MIPGNN+E 0.0495 0.0949 47.8931 1.34e-09

Appendix D. All Results

We conducted experiments on all CO pipeline configurations for all datasets except EC+E
models, which were only experimented with on the testing and largest-scale transfer dataset
of each problem. Consequently, the results of those pipelines are not available in the figures
and tables for 2x, 4x, and 8x-transfer datasets of MSC, CA, and MIS problems.
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Figure 12: Average Accuracy of the Predicted Decision Values by the Models with (solid
curves) and without (dashed curves) the Proposed Normalization Techniques in Each Un-
certainty Percentile for All Datasets

Figure 12 presents the average accuracy of EC+BCE, EC+EDL, EC+V+BCE, and
EC+V+EDL models in each column for their predictions in each ten percentile of the as-
sociated uncertainty values for all datasets in the rows. An exceptional finding is that the
uncertainty values of the EC+V+BCE model for MSC transfer datasets can be mislead-
ing about the accuracy of highly confident predictions, causing the uncertainty percentile-
accuracy curve not to start with the highest accuracy level. This also occurs slightly for
the FCMNF transfer dataset. During the earlier phase of development, it was observed
that models without any dropout layer in the classifier network make highly confident but
misleading predictions, particularly for MSC datasets. This was attributed to overfitting to
input features. For instance, these MSC models were over-biased towards objective coeffi-
cients and predicted 1’s for almost all variables with small objective coefficients. To address
this issue, all models were regularized by applying a 0.1 dropout probability in each layer
of their classifier neural network. Although EC+V+BCE for the MSC problem would ben-
efit from a higher dropout rate or further regularization, it was intentionally kept at a 0.1
dropout rate to demonstrate its negative impact on downstream optimization performance.
As a result, the EC+V+BCE model produces inferior warm-start solutions with the UPR
algorithm as the scale of MSC problem increases (see Figure 16a) and the CO pipelines
using EC+V+BCE for FCMNF problem prominently underperform (See Figures 3-5).
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Figure 13, 14, and 15 present boxplots of the optimality gap, the primal gap, and
the primal integral results for all models with NS and UPR+NS strategies. Each boxplot
represents the distribution of a corresponding metric for 50 instances.
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Figure 13: Optimality Gap Distributions for All Datasets

D.1 Time Efficiency of the Proposed Methodology

In this section, we first explain how we calculate the time efficiency gained by the CO
pipelines using EC+BCE, EC+EDL, EC+V+BCE, and EC+V+EDL over the default con-
figuration of CPLEX. Afterwards, we present the time efficiency results. Assume that for
a given MSC-2x instance, the NS pipelines deploying four models achieve their individual
best objective values (lower better) 435, 430, 420, and 415 in 1, 2, 3, and 4 minutes, respec-
tively. Assume CPLEX achieves those objective values in 2, 4, 6, and 16 minutes; then, the
average time efficiency of four CO pipelines is (2/1+4/2+6/3+16/4)/4 = 2.5 for the given
MSC instance. As an another case, assume that CPLEX cannot find a solution having the
objective value of 415 in the given time limit (one hour), so it cannot be included in the
calculation of the average time efficiency, which then (2/1 + 4/2 + 6/3)/3 = 2. The second
case shows that although CPLEX fails to achieve the best objective value of EC+V+EDL
pipeline, the average efficiency is less compared to the first case. Accordingly, the average
success rate of CPLEX to reach the solution quality of the CO pipelines and the average
time efficiency of the CO pipelines should be interpreted together.
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Figure 14: Primal Gap Distributions for All Datasets

Table 9: (9a) The long-run CPLEX’s success rate to achieve solution quality of the CO
pipelines using EC+BCE, EC+EDL, EC+V+BCE, and EC+V+EDL models, and (9b)
the average time efficiency of these pipelines relative to the default CPLEX performance
for each scale of all problems.

(a) Average success rate (%) of CPLEX for
long runs in finding same quality solutions with
those obtained by the four CO pipelines.

Problem Strategy 1x 2x 4x 8x 16x

MSC
NS 72.5 63.5 52.0 9.5 7.5

UPR+NS 72.5 52.5 52.0 9.5 7.5

CA
NS 88.0 53.5 63.0 66.5 99.0

UPR+NS 88.0 30.5 22.5 5.0 24.5

MIS
NS 98.0 76.5 54.5 98.0 100.0

UPR+NS 98.0 75.5 26.5 0.0 0.0

FCMNF
NS 87.0 - - - 84.0

UPR+NS 77.0 - - - 49.5

GIS
NS 98.0 - 65.5 - -

UPR+NS 98.0 - 63.0 - -

(b) Average time efficiency (better if higher
than 1.0) of the four CO pipelines relative to
the long-run CPLEX performance.

Problem Strategy 1x 2x 4x 8x 16x

MSC
NS 0.82 1.35 3.69 12.41 19.97

UPR+NS 0.91 1.52 3.16 10.47 18.82

CA
NS 0.62 1.01 2.54 4.74 1.77

UPR+NS 1.44 1.34 3.40 8.02 11.94

MIS
NS 2.71 1.26 2.19 2.60 2.37

UPR+NS 3.71 7.77 61.26 NA NA

FCMNF
NS 0.84 - - - 3.71

UPR+NS 1.96 - - - 7.33

GIS
NS 2.86 - 9.98 - -

UPR+NS 3.60 - 14.82 - -
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Figure 15: Primal Integral Distributions for All Datasets

The default configuration of CPLEX was also experimented with longer time limits
(recall Section 5). For MSC, CA, and MIS problems, the time limits (per instance) are 1,
2, 4, and 8 hours for the transfer-2x, 4x, 8x, and 16x datasets, respectively. For GIS-2x and
FCMFN-16x, the time limit is 8 hours per instance. Yet, CPLEX cannot always reach the
solution quality of the CO pipelines, even its time limit is much longer. It is observed from
Table 9a that the 30-minute solution quality of the CO pipelines for the most of instances
cannot be obtained with CPLEX. Particularly, the success rates are zero for MIS-8x and
MIS-16 datasets since a solution that is at least as good as that of the CO pipelines cannot
be found with CPLEX for any instance of those datasets in respectively 4 and 8 hours.
For the instances in which CPLEX can achieve solutions (with the longer time limits) that
are at least good as that of the CO pipelines, Table 9b presents the average time efficiency
through the CO pipelines relative to the CPLEX performance. The values in Table 9b are
the proportion of the corresponding values in Table 10b and Table 10a. The values are
averaged across the four CO pipelines and 50 instances of each dataset. Since FCMNF and
GIS problems only have two datasets, the cells of the remaining problem scales are filled by
‘-’ in these tables. ‘NA’ denotes that CPLEX cannot obtain reach solution quality of any CO
pipelines for any problem instance in the given long runtime. For example, the NS pipelines
using those four models obtain their individual best objective values for MSC-16x instances
in 17.21 minutes on average and then do not find better solutions in the remaining average
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Figure 16: Primal Gap Distributions of Warm-start Solutions through UPR Algorithm for
All Datasets

Table 10: Average elapsed time (in minutes) results of the CO pipelines and CPLEX. The
results are averaged over EC+BCE, EC+EDL, EDL+V+BCE, and EC+V+EDL models
and 50 instances of each dataset.

(a) The average elapsed time of the CO
pipelines to obtain individual best objective
values.

Problem Strategy 1x 2x 4x 8x 16x

MSC
NS 4.01 14.17 17.19 16.40 17.21

UPR+NS 3.75 12.30 17.55 18.18 18.28

CA
NS 2.79 29.97 29.97 29.95 29.92

UPR+NS 1.22 28.26 28.06 28.29 28.05

MIS
NS 0.17 3.40 8.78 25.61 20.72

UPR+NS 0.04 0.61 0.34 0.09 0.47

FCMNF
NS 3.49 - - - 20.34

UPR+NS 1.42 - - - 15.81

GIS
NS 6.63 - 11.88 - -

UPR+NS 5.27 - 10.10 - -

(b) Average elapsed time of CPLEX to obtain
the best objective values provided by the CO
pipelines.

Problem Strategy 1x 2x 4x 8x 16x

MSC
NS 3.27 19.17 63.42 203.50 352.32

UPR+NS 3.41 18.73 55.48 190.39 351.77

CA
NS 1.75 30.22 76.22 142.06 52.97

UPR+NS 1.75 37.82 95.46 226.85 334.99

MIS
NS 0.47 3.70 19.17 64.73 49.46

UPR+NS 0.47 4.76 25.44 NA NA

FCMNF
NS 2.95 - - - 75.50

UPR+NS 2.79 - - - 115.94

GIS
NS 19.00 - 118.56 - -

UPR+NS 19.00 - 149.73 - -

12.79 minutes. On the other hand, CPLEX spends average 352.32 minutes to reach the
individual best objective values by the NS pipelines for MSC-16x instances. Accordingly,
CPLEX finds solutions as good as those achieved by the NS pipelines only if it runs for
19.97x their elapsed time on average.
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H., Beygelzimer, A., d’Alché-Buc, F., Fox, E. B., & Garnett, R. (Eds.), Advances in
Neural Information Processing Systems, Vancouver, BC, Canada, pp. 15554–15566.

373



Cantürk, Varol, Aydoğan, & Özener
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