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Abstract

The Multisource AI Scorecard Table (MAST) is a checklist tool to inform the design
and evaluation of trustworthy AI systems based on the U.S. Intelligence Community’s
analytic tradecraft standards. In this study, we investigate whether MAST can be used
to differentiate between high and low trustworthy AI-enabled decision support systems
(AI-DSSs). Evaluating trust in AI-DSSs poses challenges to researchers and practitioners.
These challenges include identifying the components, capabilities, and potential of these
systems, many of which are based on the complex deep learning algorithms that drive DSS
performance and preclude complete manual inspection. Using MAST, we developed two
interactive AI-DSS testbeds. One emulated an identity-verification task in security screening,
and another emulated a text-summarization system to aid in an investigative task. Each
testbed had one version designed to reach low MAST ratings, and another designed to reach
high MAST ratings. We hypothesized that MAST ratings would be positively related to
the trust ratings of these systems. A total of 177 subject-matter experts were recruited to
interact with and evaluate these systems. Results generally show higher MAST ratings for
the high-MAST compared to the low-MAST groups, and that measures of trust perception
are highly correlated with the MAST ratings. We conclude that MAST can be a useful tool
for designing and evaluating systems that will engender trust perceptions, including for
AI-DSS that may be used to support visual screening or text summarization tasks. However,
higher MAST ratings may not translate to higher joint performance, and the connection
between MAST and appropriate trust or trustworthiness remains an open question.
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1. Introduction

Decision-making in high-stakes domains may become increasingly dependent on advanced
artificial intelligence (AI) (Phillips-Wren, 2012; Zhu et al., 2022), as a way for organizations
to meet high service demands with limited human resources (Knop et al., 2022). However,
alongside these advancements, there is growing concern about the trustworthiness of AI-
enabled decision support systems (AI-DSSs), particularly where AI performance issues could
result in catastrophic consequences (Cooke & Durso, 2007). In these high-stakes contexts,
applications of AI technologies are typically designed with human specialists in-the-loop.

Human-in-the-loop systems often integrate human supervision with AI processes to
help ensure that decisions are both contextually informed and data-driven (Parasuraman
& Wickens, 2008). Trust plays a pivotal role in human-in-the-loop systems, because trust
influences people’s willingness to engage with those systems (Lee & See, 2004). For safety-
critical and time-constrained tasks, trust becomes even more crucial when people are not
able to consistently monitor or intervene with AI recommendations or actions. Consequently,
designing for trustworthy AI-DSSs must draw a delicate balance between enabling a human
supervisor’s ability to intervene and AI actions.

Existing design frameworks and best practice guidelines for human-AI systems are
generally broad-stroked in their recommendations (e.g., de Visser et al., 2020; Schaufeli et al.,
2002). The challenge of translating these recommendations into implementable features
of AI technologies has tested the overall practicality and impact of these frameworks on
developing and built systems. More specific guidance that can be operationalized with
minimal design-test-evaluation cycles to get to effectiveness, remains an ongoing pursuit for
both researchers and practitioners.

To bridge this gap, the Multisource AI Scorecard Table (MAST) was developed as a
structured checklist to aid in designing, testing, and, evaluating AI systems for trustworthiness
(Blasch et al., 2020; Sung et al., 2019). MAST reflects Intelligence Community Directive
(ICD) 203, which has nine tradecraft criteria for evaluating the quality of human intelligence
reporting (ODNI, 2015). These criteria include sourcing, uncertainty, distinguishing, analysis
of alternatives, customer relevance, logic, change, accuracy, and visualization. However,
MAST extends these criteria to include aspects of data transformation, aggregation, labeling,
data display, and contextual relevance that cover various phases of AI system life cycle from
data collection to continuous monitoring (Blasch et al., 2019). The underlying premise is that
by integrating these nine criteria into system design, AI outputs will be more transparent and
trustworthy, thereby improving system utility and effectiveness with a human-in-the-loop.
While MAST’s usefulness has been demonstrated through several case studies in intelligence
and reconnaissance tasks (Blasch et al., 2020; Sung et al., 2019), empirical studies dedicated
to validating this tool are lacking.

To address this validation issue, we first apply the MAST framework to the design of
two AI-DSS emulators. Facewise is an identity-verification system similar to those used in
security screening and READIT (REporting Assistant for Defense and Intelligence Tasks)
is a system for text-summarization and data visualization. We then investigate two key
aspects, (1) the potential of the MAST to aid in the design and evaluation of human-AI
systems that reflect human trust perceptions, and (2) the broader applicability of MAST in
assessing the trustworthiness of AI-DSSs in safety critical environments, beyond its use in
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intelligence or reconnaissance task contexts. This paper focuses on these two key aspects
and the overall validation of MAST. A deeper dive on our design process using MAST is
reported in a separate paper, for scope (Kim et al., 2024).

The results of this work offer valuable insights into the utility of MAST as a tool for the
design and evaluation of AI systems, and also contributes to the current body of knowledge
about trust in AI-enabled systems. Our findings suggest that integrating the nine MAST
criteria into AI system design positively influences people’s trust perceptions. Moreover,
we find that MAST as a design tool is effective in improving trust perceptions, not only in
systems designed for intelligence tasks but also in a broader range of AI-enabled applications.
However, the study also uncovers potential limitations of MAST, suggesting areas for future
research. An important finding, echoing previous findings in other research, shows that high
trust perceptions and in this case high MAST scores also do not necessarily translate to
higher human-AI system performance.

Overall, this study underscores the challenge of operationalizing universal criteria that can
improve human-AI system performance and that can effectively incorporate trust concepts
into human-AI system design. Despite these challenges, our findings support the potential of
MAST as a viable tool for system design teams. It contributes to aligning researcher and
practitioner norms, facilitates the documentation of essential transparency information, and
can help engender trust perceptions of systems used in safety-critical tasks.

2. Background

The role of people as supervisors of imperfect automation has a long history (Bainbridge,
1983; Sheridan, 1975). In this supervisory structure, people are tasked with assessing and,
if necessary, intervening in automated outputs. However, many AI-DSSs are designed for
task environments in which people may not have the cognitive and physical resources to
sufficiently understand, assess, and intervene with every recommendation (McGuirl & Sarter,
2006). This is especially a problem in high-stakes domains if people are expected to attend
to every outcome produced by the AI-DSSs.

Limitations of human decision-making coupled with imperfect AI-DSSs have resulted in
novel problems, some of which resulted in catastrophic outcomes. An infamous case is from
the Iraq war, in which the Patriot missile DSS erroneously identified allied fighter jets as
enemy aircraft. Operators of the missile system approved the DSS-recommended decision to
attack the aircraft, causing the fratricide of American and British pilots. More recently, a
series of wrongful arrests in the United States was traced to law enforcement reliance on
facial recognition technologies that have considerable racial and gender biases (e.g., Hill,
2022; Hill and Mac, 2023). However, upon recognizing errors in AI recommendations, there is
then the tendency to over-correct in rejecting future AI recommendations (e.g., automation
aversion; Dietvorst et al., 2015), especially by experts (Snow, 2021).

People’s tendency to overuse, misuse, or disuse DSS has long been linked to poorly
calibrated perceptions of the DSS’s trustworthiness with respect to its actual reliability
(Parasuraman & Riley, 1997). As such, methodological frameworks, policy guidelines, and
other tools for designing and evaluating DSS trustworthiness have proliferated alongside
advancements in AI-DSS capabilities. These include but are not limited to, the Microsoft
UX Design Principle (Microsoft, 1995), NISTIR 8330 by National Institute of Standards
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and Technology (Stanton & Jensen, 2021), AI Fairness 360 Toolkit by IBM (Bellamy et al.,
2019, and others), IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems
(Chatila & Havens, 2019), UXPA Guidelines for Trustworthy User Experiences (Kriskovic et
al., 2017), or Ethical OS Toolkit (Lilley et al., 2020). Although these tools do not all explicitly
focus on the concept of trust and trustworthiness, they share an underlying motivation that
the design, development, and evaluation of technological systems that impact people and
organizations require attention to human factors.

Despite having many frameworks and tools to guide design of trustworthy systems,
designing for trust and evaluating trustworthiness in practice remains a challenge. There
is a wide gap between theory and practice, partly because trust is an abstract construct
with myriad related concepts. For example, designing trustworthy systems may also involve
designing for transparency, individual differences, workload, situation awareness, and at-
tending to factors like etiquette and anthropomorphism (Hoff & Bashir, 2015; Parasuraman
& Miller, 2004). Another challenge is that expert communities with different priorities
may define trustworthiness differently. For example, the Intelligence Community might
value high-quality data as a foundation for analysis. Within the transportation security
community, emphasizing high-quality decisions at the front lines of traveler safety might be
more important than being able to inspect the data. Although it may be possible to outline
a generalizable ideal of trustworthiness, a pragmatic view requires accepting trade offs.

To address this gap between concept and practice of designing and evaluating for AI
system trustworthiness, the Multisource AI Scorecard Table (MAST; Blasch et al., 2020; Sung
et al., 2019) was developed by the AI Team of the 2019 Public-Private Analytic Exchange
Program, supported by the Office of the Director of National Intelligence and Department of
Homeland Security. MAST describes nine criteria derived from analytic tradecraft standards
ICD 203 to assess the trustworthiness of intelligence reporting, and additionally includes a
four-level quantitative breakdown for each criterion. The idea is that MAST could serve as
an easy-to-use checklist for designing trustworthy AI-enabled systems, and for evaluating
trustworthiness after system development. Although the principles behind MAST would
seem more suitable for intelligence tasks given its focus on information quality and integrity,
it is possible that these criteria may be applied to other human-in-the-loop systems used for
information-processing and other human decision-making tasks. For example, AI-enabled
systems in computer vision, natural language processing, and medical diagnostic tasks may
all be rated according to the MAST criteria, e.g., rating the system’s sourcing (e.g., credibility
of training data), or its ability to describe and propose alternative recommendations. Medical
professionals and their patients may be more willing to trust an AI-derived diagnosis and
treatment plan if the system was developed to include the MAST criteria of uncertainty,
analysis of alternatives, and customer relevance.

In academic literature, several instruments have been developed to measure trust in
automation, including instances of AI-enabled automation (Alsaid et al., 2023; Kohn et al.,
2021). Many of them have been widely adopted, others have been independently validated.
However, these instruments were mainly designed for research or technology evaluation
purposes from the perspective of the operators, rather than for system design or technology
development. Although these instruments could be considered relatively robust when used
appropriately, they suffer from similar limitations as the design frameworks and tools
described previously. There remain wide translation gaps, and highly variable interpretation
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from principles to practice, given the hundreds of under-specified conditions and decisions
that practitioners face. For example, underlying many of these instruments is a nuanced
presumption that assessing domain experts’ trust in a particular technology, after they have
experienced using it, could be some indication of the technology’s trustworthiness. This
presumed connection between trust and trustworthiness is then flattened in some practitioner
circles, where high trust perceptions are equated with high technology trustworthiness, despite
most trust experts being careful not to conflate the two.

To situate the MAST tool in the context of current trust scholarship, our primary objective
is to assess the construct validity of MAST relative to human trust. Construct validity
is the degree to which an instrument measures the construct it was designed to measure
(Cronbach & Meehl, 1955). Approaches for evaluating construct validity include multivariate
analytical tools, such as Factor Analysis (Raykov & Marcoulides, 2008; Tabachnick et al.,
2013), Principal Components Analysis (PCA; Bandalos, 2018), and Structural Equation
Modeling (Kline, 2023). The goal of using multivariate analysis in construct validation is to
capture, explain, and measure the amount of variation among items for a construct and to
associate these with previously validated constructs (Chancey et al., 2017; Jian et al., 2000).
This study aimed to validate MAST as an instrument for assessing trust by investigating
how MAST items are associated with validated trust questionnaires.

3. General Method

To validate MAST in different contexts, we designed two AI-DSS testbeds, “Facewise” for
identity-verification in a security screening task and, “READIT” for text-summarization
and data visualization in an investigative reporting task to support intelligence analysis.
General descriptions of these testbeds are described next. For details on designing Facewise
and READIT using MAST please refer to our design process paper (Kim et al., 2024).

3.1 Testbeds: Facewise and READIT Platforms

Facewise is a simulated 1-to-1 identity-verification system that uses a pre-trained convolu-
tional neural network, further fine-tuned for face recognition using Cross-entropy loss. The
system compares an ID photo with an encounter photo and outputs a decision on whether
they represent the same identity (match) or different identities (mismatch). For this study, 80
pairs of face images with known ground truth were hand-selected from various facial datasets
including the Iranian emotional face database (Heydari et al., 2023), MorphDB (Ricanek &
Tesafaye, 2006), VGG (Parkhi et al., 2015), HUMBI (Yu et al., 2020) presented in randomized
order. READIT, which stands for the REporting Assistant for Defense and Intelligence
Tasks, is an emulated natural language processing system that visualizes, summarizes, and
categorizes documents of limited length (news articles, reports, etc.) to expedite intelligence
gathering and reporting. READIT uses BERT (Devlin et al., 2019) to generate outputs.
To enhance its usefulness and usability, some manual modifications were also applied. The
task and dataset for READIT is based on the 2011 IEEE Visual Analytics Science and
Technology (VAST) Challenge (SEMVAST Project, 2011).

Both AI-DSS testbeds and use cases were developed based on information gathered
from field visits and bi-monthly consultations with operational stakeholders (i.e., national
security researchers, practitioners, and analysts). The use case for READIT was selected to
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assess MAST within the text-summarization contexts that MAST was originally designed
and evaluated for (Blasch et al., 2020). The use case for Facewise was selected to test the
validity of applying MAST to a different type of AI capability, in a different type of task
environment, while staying within a national security context (i.e., high-stakes domain).
The use case for Facewise also represents an increasingly common one in airport security
checkpoints, with systems like the CAT-C or CAT-2 (Lim & Cantor, 2021).

Both Facewise and READIT were developed using cloud-based services and a client-server
model for participant-AI interaction. For Facewise, we leveraged Amazon Web Services (AWS)
and Google Cloud Platform (GCP) for efficient storage and use of resources. We built the client
part of the platform with HTML5 and JavaScript. We collected responses from participants on
the client side and sent them to GCP through Python3 and Flask library to save them in the
database. Similarly, READIT consisted of a JavaScript based client that enables participant-
AI interaction, and the server was built using Python3 and Flask library, hosted on GCP. Data
visualizations on READIT were implemented using D3.js, a popular open-source JavaScript
library for creating custom interactive data visualizations. The implementation code for
READIT and Facewise is available at https://github.com/nayoungkim94/PADTHAI-MM.

3.2 Constructs and Measures

In both platforms, system features were manipulated to compose High-MAST and Low-
MAST versions with eight outcome variables: MAST criteria ratings; perceptions of risk,
benefit, trust, credibility, engagement, and usability; along with scenario-specific performance
metrics.

Versions of platforms: High-MAST and Low-MAST. System features refer to the
available features that a DSS can provide to its operators. Based on the MAST criteria, two
levels of features for each platform were created: High-MAST and Low-MAST. High-MAST
features were designed to reach high MAST criteria ratings through a set of rich features
that ideally support high task performance. Low-MAST features were designed to reach low
MAST criteria ratings, but with a minimum set of features to enable task completion. Both
High-MAST and Low-MAST versions were designed to be as equal as possible in terms of
engagement and usability to avoid these manifesting as confounding factors. Appendices
A and B delineate the MAST criteria and detailed feature descriptions for Facewise and
READIT, respectively.

Variables of interest: MAST criteria, risk, benefit, trust, credibility, performance,
engagement, and usability. Each DSS was evaluated based on the MAST criteria
descriptions and using a Likert-like scale of 1 to 4, with 1 being poor and 4 being excellent.
Each MAST criterion was shown in a question format and accompanied by a corresponding
feature description in the DSS. The MAST-total score was created by adding up the 9 criteria
with a range of 9 to 36. Participant perception of risk and benefit was measured through
two items derived from (Weber et al., 2002). Risk was included due to the well-known
relationship between trust and risk (Lee & See, 2004) and perceived benefit was included to
check whether participants felt that using the DSS was beneficial for the task they were asked
to complete. To measure trust, we used two common questionnaires. One is a previously
validated, 12-item instrument known to measure general trust perceptions of automation
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(Jian et al., 2000; Spain et al., 2008). The second 15-item instrument measures trust by
querying about specific types of information known to affect trust – purpose, process, and
performance (Chancey et al., 2017). Because MAST is largely focus on the presentation,
availability, types, and quality of information presented by the AI system, we also included
a measurement for message credibility (i.e., excluding source credibility), adopting a 3-item
survey (Appelman & Sundar, 2016).

We measured performance based on average task completion time and a scenario-specific
performance metric. For Facewise, this scenario-specific metric was accuracy of the identity-
verification task that took roughly 30 minutes to complete. For READIT, it was the score of
a written report completed within roughly 60 minutes. For READIT, we asked participants
to identify any present terrorist threat based on past news about a fictitious city named
“Vastopolis” and to write a 250-word report detailing the type of terrorist activity and name
of the group behind it. To ensure that our implementation of different system features across
the two testbeds would not cause major differences in perceived system usability and task
engagement ( potentially affecting perceived trust, risk, and benefit), we also measured
participants’ perceived usability and engagement. Usability was assessed with a widely-used
10-item questionnaire known as the System Usability Scale (Brooke, 1996) and engagement
was assessed with a 17-item questionnaire (Schaufeli et al., 2002). Appendix C presents the
scale, example items, number of items for each variable, and their Cronbach’s alpha. Apart
from the scenario-specific performance metrics, the other dependent variables and covariates
were identical for Facewise and READIT.

Because our study participants were subject-matter experts, we manipulated task diffi-
culty to ensure sufficient task engagement. For Facewise, we did this by selecting at least 40
pairs of difficult images largely from a sibling database (Parkhi et al., 2015). Difficulty was
determined by assessing a general population sample in a pilot study, wherein study partici-
pants were more prone to incorrectly answer challenging pairs on average. The algorithm
demonstrated a 95% accuracy rate across test data during model training (Coşkun et al.,
2017). However, when tested with the challenging database, the performance dropped to
approximately 56%. Participants in this study were not given any information about the
algorithm’s performance or task difficulty in advance, but they were alerted to the fact that
part of their task was to ensure that the correct decision was made with an algorithm that
was potentially fallible.

To make the READIT task more difficult, we included ’red herring’ documents. Several
of these documents were related and collectively formed narratives that presented multiple
plausible causes for the terrorist threat scenario, ideally causing sufficiently engaged par-
ticipants to consider several highly plausible conclusions for their final report. We devised
a rubric from 1 to 5 to evaluate their written reports based on their alignment with the
VAST challenge’s ground truth. A score of 1 or 2 indicated unsatisfactory to less satisfactory
content, primarily comprising red herrings or non-ground truth clusters in the final report.
A score of 3 represented satisfactory content, with more ground truth clusters than red
herrings. A score of 4 signified mostly satisfactory content, mainly consisting of ground truth
clusters, while a score of 5 indicated excellent content, comprising only ground truth clusters.
Reports were color-coded for clarity, with red indicating red herrings and bold highlighting
ground truth clusters. Two researchers independently assessed reports, achieving a 73.91%
inter-rater reliability. In case of discrepancies, the lower performance score was applied.
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3.3 Procedure

Figure 1 illustrates the general procedure for Facewise and READIT. We first created a
virtual hub using the web-based software platform Qualtrics (Qualtrics, 2020) for participants
to access the study. After random assignment to one of the two conditions (High-MAST
or Low-MAST), participants were asked to input their given participant IDs on the first
page of Qualtrics. Next, informed consent approved by our Institutional Review Board
(IRB) was obtained. Then, participants were given a description of their task scenarios. To
facilitate engagement and a sense of risk in the study scenario, participants in all conditions
were told that they were being tasked to complete an important assignment, and that a
previous agent assigned to their task had failed, was put on probation, and subsequently
demoted. After reading the task scenario, participants then watched a short recorded video
demonstration of the interface and features, and were asked to respond to quiz questions
about the video. In the video, all DSS versions were presented as technology aids that
exist to supplement the participant’s own abilities. Afterward, participants performed the
study task. Lastly, participants were asked to evaluate the system and their experience by
responding to questionnaires including the MAST criteria, risk, benefit, trust, credibility,
engagement, and usability. Given our targeted population of subject-matter experts in
national security, limited optional demographic information was collected at the end to
assess the representativeness of our sample population.

Figure 1: Study Procedure for Facewise and READIT.

3.4 Data Analysis

Data analysis was accomplished in JMP (SAS Institute Inc., 2023) and R using “dplyr”
(Wickham et al., 2019), “psych” (Revelle, 2024), “Rmisc” (Hope, 2022), and “compareGroups”
(Subirana et al., 2014). Figures were created by “ggmap” (Kahle & Wickham, 2013) and
“gridExtra” (Auguie & Antonov, 2017). To confirm associations between the MAST items,
trust items, and other validated metrics, we performed the analysis in three steps. First, to
compare the different levels of Facewise and READIT, Analysis of Variance (ANOVA) was
used. Secondly, Simple Linear Regression (SLR) was used to further investigate the strength
and directionality between MAST and other survey measures. Finally, Multivariate analysis
via Principal Components Analysis (PCA) was then performed on the perceptual metrics for
dimension reduction. We regressed the MAST ratings with the principal component scores.
PCA was employed to find coherent and appropriate structures in the perceptual metrics
within the first few principal components (Bandalos, 2018).
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4. Experiment 1: Facewise Scenario

Participants in the Facewise experiment were told that they were airport security officers
tasked to screen passengers by checking their identification materials with the assistance of
Facewise, and they had roughly 30 minutes to complete a series of identification verification
tasks which is roughly the length of an officer’s shift in the document checker position
(Greene et al., 2014). Figure 2 outlines the similarities and differences between the two levels
of Facewise, High-MAST and Low-MAST. For both levels, Page 1 asks for an initial judgment
of human operators. We adopted this structure based on previous work, which we found
would increase accuracy (Salehi et al., 2021). In Page 1 (Figure 2), the left image with an
off-white background presents the ID photo and the right image with an airport background
provides a “live” photo, supposedly taken at the airport. For both levels, these images
were cropped and zoomed in for Page 2, which is where most of the differences between
High-MAST and Low-MAST appear. Three red dotted lines highlight these differences
including the Crossmark/Checkmarks, AI confidence, and a “View Details” button. For
more details regarding the AI-DSS features and how they map to each of the MAST criteria,
please refer to Appendix A.

(a) Facewise High-MAST (b) Facewise Low-MAST

Figure 2: Comparing Facewise High-MAST (left) and Facewise Low-MAST (right). Icons
in this figure replace actual photos used in the study. Red dashes highlight the differences
between Low and High platforms. The High-MAST version has more informational features
than the Low-MAST version including the ID expiration check, AI confidence level, and
“View Details” page.

4.1 Facewise Participants

A total of 152 subject-matter experts, U.S. Transportation Security Officers (TSOs), were
recruited from three major U.S. airports in Arizona, Nevada, and California, split across 11
days of data collection at the participating airports. Six participants were removed due to
very high response time or very low accuracy, resulting in 73 participants each for the High-
MAST and Low-MAST conditions. On average, participants spent 76 minutes to complete
the entire study. Because participants were federal employees, we were not permitted to
provide compensation despite their participation being voluntary. Only light refreshments
were provided in appreciation of their participation. Table 5 in Appendix F reports the
available participant demographics across the Facewise conditions. Race, ethnicity, and
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gender items were not collected due to expressed concerns by some of our collaborative
partners, given our limited population of subject-matter experts.

4.2 Facewise Results and Discussion

Table 1 reports descriptive statistics including mean (M) and standard deviations (SD) for
the study variables. Results of F statistics in Figure 3 (a) show that participants in the
High-MAST group rated Facewise significantly higher across all nine MAST criteria. The
High-MAST group found Facewise more trustworthy according to their Jian et al. (2000)
scores, less risky, and more beneficial than the Low-MAST group. No significant difference
in credibility ratings was found between the two conditions, possibly due to similar system
errors experienced in both levels. While the High-MAST group spent significantly more time
on the task than the Low-MAST group, they made slightly more accurate decisions than
Low-MAST, but this difference was not significant. No significant differences in engagement
and usability were found between the High-MAST group and Low-MAST group, meaning
we were able to achieve relatively equal engagement and perceived usability for both levels.

Further regression analysis in Figure 4 shows that MAST-total were positively associated
with trust; people who rated trust highly also tended to rate MAST highly. Increasing the
MAST-total by 1 would increase the Jian et al. (2000) score by 0.1 (F (1, 144) = 64.94,
p < .001, β = 0.1, R2 = 0.31) and the Chancey et al. (2017) score by 0.12 (F (1, 144) = 87.83,
p < .001, β = 0.12, R2 = 0.37). In addition, a positive relationship between MAST
and credibility was found; increasing the MAST by 1 would increase credibility by 0.11
(F (1, 144) = 62.96, p < .001, β = 0.11, R2 = 0.30). Furthermore, this study found that
there was a negative correlation between MAST and risk; increasing the MAST by 1 would
decrease the risk by 0.067 (F (1, 144) = 24.32, p < .001, β = −0.067, R2 = 0.14). Finally,
there was a positive relationship between the MAST and benefit; increasing the MAST by 1
would increase the benefit by 0.091 (F (1, 144) = 71.89, p < .001, β = 0.091, R2 = 0.33).

(a) Facewise (b) READIT

Figure 3: The F -test results and corresponding p-values for significant variables in (a)
Facewise and (b) READIT are displayed as grey bars and black dots, respectively.

To further validate the association between MAST and other study variables, we needed
to run multiple regression analysis. However, because trust, risk, benefit, and credibility
were highly correlated, it was inappropriate to run multiple regression analyses. Therefore,
we applied Principal Component Analysis (PCA) to reduce the dimensionality within our
dataset. The result of PCA in Figure 5 shows that the first two principal components explain
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Facewise READIT
High Low p High Low p

MAST-total 26.5 (5.73) 21.0 (5.77) < 0.001∗ 27.8 (5.38) 19.9 (5.14) 0.002*
1. Sourcing 2.85 (0.84) 2.48 (0.90) 0.011* 3.27 (0.47) 2.50 (1.17) 0.05*
2. Uncertainty 2.85 (0.83) 2.32 (0.97) < 0.001∗ 2.91 (0.70) 2.42 (0.79) 0.129
3. Distinguishing 3.19 (0.78) 2.15 (0.88) < 0.001∗ 3.27 (0.65) 2.25 (0.87) 0.004*
4. Alternatives 2.79 (0.82) 2.33 (0.91) < 0.001∗ 2.91 (0.94) 1.25 (0.45) 0.001*
5. Relevance 3.00 (0.69) 2.34 (0.89) < 0.001∗ 3.18 (0.75) 3.17 (0.72) 0.961
6. Logic 2.97 (0.87) 2.07 (0.96) < 0.001∗ 3.18 (0.87) 2.25 (0.97) 0.024*
7. Change 2.88 (0.83) 2.51 (0.82) 0.008* 2.82 (0.75) 1.75 (0.97) 0.007*
8. Accuracy 2.82 (0.87) 2.42 (0.82) 0.005* 3.18 (0.75) 1.92 (0.67) < 0.001∗
9. Visualization 3.14 (0.75) 2.42 (0.86) < 0.001∗ 3.09 (0.94) 2.42 (0.90) 0.095

Trust (Jian) 4.62 (1.12) 4.18 (1.15) 0.023* 5.11 (0.95) 4.42 (1.08) 0.119

Trust (Chancey) 4.26 (1.28) 4.00 (1.16) 0.188 4.57 (1.25) 3.73 (1.35) 0.135
Chancey (Performance) 4.24 (1.42) 3.95 (1.28) 0.188 4.85 (1.31) 3.93 (1.47) 0.126
Chancey (Process) 4.68 (1.39) 4.52 (1.36) 0.472 4.76 (1.56) 4.48 (1.53) 0.669
Chancey (Purpose) 3.87 (1.28) 3.53 (1.16) 0.093 4.09 (1.15) 2.77 (1.20) 0.013*

Risk 2.67 (1.11) 3.10 (1.09) 0.021* 2.55 (0.93) 3.33 (0.89) 0.05*

Benefit 3.37 (0.99) 3.01 (0.98) 0.031* 3.45 (0.93) 3.00 (1.13) 0.303

Credibility 4.31 (1.24) 4.23 (1.29) 0.712 5.39 (0.96) 4.44 (1.03) 0.033*

Average response time
(seconds)

13.3 (4.87) 11.3 (4.46) 0.010* 274 (90.7) 214 (93.6) 0.137

Performance
(in Platforms)

0.77 (0.08) 0.75 (0.07)
0.097
(accuracy)

2.82 (1.94) 3.33 (1.67)
0.505
(report)

Engagement 3.96 (1.07) 3.99 (1.10) 0.874 4.37 (0.78) 4.52 (1.28) 0.736

Usability 3.58 (0.70) 3.65 (0.60) 0.494 3.49 (0.94) 3.90 (0.67) 0.248

Table 1: Means, Standard Deviation (in parentheses), and p-values of study variables for
High-MAST and Low-MAST groups across Facewise and READIT platforms. Asterisk(*)
emphasizes the significant differences.

Figure 4: Least Squares Regression plots for Facewise.

84.06% of variation within the dataset. The first principal component can be perceived as an
overall average of trust, risk, benefit, and credibility, while the second principal component
is mainly related to negative perceptions about risk. These two principal components were
used as new variables for a linear regression analysis with MAST performed for each level,
High- and Low-MAST. We found that MAST-total was highly associated with the first
principal components (F (1, 144) = 100.92, p < .001, β = 0.19, R2 = 0.41).
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(a) PCA (b) Linear Regression

Figure 5: PCA (left) and Linear regression results(right) for Facewise.

5. Experiment 2: READIT Scenario

READIT participants were told they were intelligence analysts in a fictional major city in the
United States who were tasked with monitoring the news for any ongoing threats to public
safety. READIT participants were given a specific assignment to use READIT to quickly
locate and search through relevant news articles and uncover an ongoing terrorist activity
that had gone unnoticed for the previous five months. Figure 6 illustrates the similarities
and differences between the High-MAST and Low-MAST levels of READIT. Four red dotted
lines highlight the differences including the availability of “documents” and “about” tabs
(Appendix D), the “topic clusters” bubble graph, the sorting option by cluster relationship
strength, and the complete news pieces. For more details regarding the AI-DSS features and
how they map to each of the MAST criteria, please refer to Appendix B.

(a) High-MAST READIT (b) Low-MAST READIT

Figure 6: High-MAST (left) and Low-MAST READIT (right). Compared with the Low-
MAST READIT, High-MAST READIT has more interactive features (Topic Clusters, Topic
Similarity, original documents, and clickable timelines) to demonstrate the MAST criterion.

5.1 READIT Participants

A total of 25 Intelligence Analysts (IAs) from the U.S. Department of Homeland Security
(DHS) were recruited to complete our study, administered through Microsoft Teams or
Zoom, over a period of 19 days. Two participants were unable to complete the study due
to unexpected scheduling conflicts. The resulting High-MAST and Low-MAST versions of

1322



Trustworthy AI-DSS and Validation of MAST

READIT were tested with a sample of 11 and 12 IAs, respectively. On average, participants
spent 75 minutes to complete the study, including onboarding and responses to questionnaire
items. We were not permitted to compensate participants monetarily because they were
federal employees. However because participants were self-selected volunteers who responded
to our recruitment script and were willing to spend time completing our study, we assumed
they were sufficiently motivated to complete this study to the best of their ability. Table 6
in Appendix F reports the participant demographics per condition.

5.2 READIT Results and Discussion

Table 1 reports descriptive statistics (M and SD) for the study variables. Results in Figure
3 (b) show that the High-MAST group rated READIT higher on the MAST checklist than
the Low-MAST group, and this was significantly different for six out of nine MAST criteria
(i.e., except for uncertainty, relevance, and visualization). Trust ratings were also generally
higher for those in the High-MAST group; however, the difference was only significant for the
“purpose” dimension of Chancey et al. (2017). Moreover, the High-MAST group compared to
the Low-MAST group found READIT less risky to use and more credible. No significant
differences in performance were found between the High-MAST and Low-MAST groups
in terms of average response time or on their 250-word report. However, descriptively, the
Low-MAST group spent less time completing the task and had higher performance scores
than the High-MAST group. The study found no notable variances in engagement and
usability ratings between the High-MAST and Low-MAST groups. This supports our aim to
maintain similar levels of engagement and usability across different READIT versions.

Further Regression Analysis in Figure 7 showed that MAST ratings are positively
associated with trust ratings. There is a positive relationship between MAST and trust
scores; increasing MAST by 1 increases the Jian et al. (2000) score by 0.13 (F (1, 21) = 32,
p < .001, β = 0.13, R2 = 0.58) and increases the Chancey et al. (2017) score by 0.16
(F (1, 21) = 35.29, p < .001, β = 0.16, R2 = 0.61). A positive relationship was also found
between MAST and credibility scores; increasing the MAST by 1 would increase credibility
by 0.14 (F (1, 21) = 52.46, p < .001, β = 0.14, R2 = 0.70). This study also found that there
was a negative relationship between MAST and risk; increasing the MAST by 1 would
decrease perceived risk by 4.9 (F (1, 21) = 24.89, p < .001, β = −4.9, R2 = 0.52). In addition,
there was a positive relationship between MAST and perceived benefit; increasing the MAST
by 1 would increase benefit by 0.11 (F (1, 21) = 17.19, p < .001, β = 0.11, R2 = 0.42).

Figure 7: Least Squares Regression plots for READIT.
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Because trust, risk, benefit, and credibility were highly correlated for READIT, we could
not run multiple regression and instead used PCA. The PCA results in Figure 8 show that
the first two principal components can explain 87.65% of variation within the dataset. The
first principal component can be interpreted as an overall average of trust, risk, benefit,
and credibility. However, the second principal component was primarily related to negative
perceptions about risk. For all observations, two PC scores were calculated using each
principal component and these scores served as the regressors for further analysis. We found
that averaging across all MAST criteria to produce a MAST-total score can significantly
predict the first principal components (F (1, 144) = 60.07, p < .001, β = 0.26, R2 = 0.74).

(a) PCA (b) Linear Regression

Figure 8: PCA (left) and Linear regression (right) results for READIT.

6. General Discussion

In this study, we recruited subject-matter experts to interact with an AI-DSS in their field,
either Facewise or READIT platforms, and tested two levels of each platform, a High-MAST
version or a Low-MAST version. In this section, we discuss our findings with respect to
experts’ ratings of these systems and their performance metrics. Then, we elaborate on our
analysis of the MAST items and other perceptual measures, and conclude with some caveats
regarding our study approach and findings.

Overall MAST ratings. The application of MAST to both platforms resulted in notable
differences in MAST ratings between High- and Low-MAST conditions. Under High-MAST
conditions, Facewise achieved higher scores across all criteria (9/9), while READIT achieved
higher scores on 6 out of the 9 criteria. This difference between Facewise and READIT
indicates that the type of system and use context matters when applying the MAST checklist.
For an image processing and signal detection type system like Facewise, using MAST to
evaluate elements like accuracy, source reliability, and user interface clarity may be more
straightforward, as reflected in the consistently higher ratings across all criteria in the
High-MAST condition. In contrast, READIT as a text-summarization system is riddled with
the complexities of natural language processing model outputs and the semiotics of text
interpretation. For example, our team was particularly challenged in designing appropriate
visualizations for model outputs and explanations that could differentiate between High-
MAST and Low-MAST READIT systems. In the end, the MAST ratings for the Visualization
criterion were not significantly different. Moreover, the lack of statistical significance between
the Uncertainty and Customer Relevance criteria may also point to High-MAST design
features that had marginal to no impact. In the Low-MAST system, uncertainty measures
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such as term frequency–inverse document frequency (tf-idf) and cosine similarity scores (see
Appendix B) were omitted, unlike in the High-MAST system where they were included.
Our results could suggest that these uncertainty scores were either ineffective in conveying
uncertainty or were implemented in a manner that limited their usefulness. The same
observation applies to the feature of filtering by location and topic, which was incorporated
specifically to meet the Customer Relevance criterion, and was a differentiating feature
between the two system versions. The rating similarities between the systems could indicate
that these features did not significantly influence users’ perceptions of Customer Relevance.

Trust perceptions. Evaluation of the Facewise systems revealed significantly different
trust ratings on the Jian et al. (2000) questionnaire, with higher ratings observed for the
High-MAST condition. In contrast, the higher trust ratings observed in the High-MAST
READIT system compared to its Low-MAST counterpart were not statistically different. This
discrepancy may have stemmed from the smaller participant pool evaluating the READIT
system, leading to increased standard errors in the observed differences. It was a challenge
to recruit participants for READIT, given the relative inaccessibility of remotely-recruited
working intelligence analysts relative to the on-site recruited Transportation Security Officers
for Facewise, and the general challenge of recruiting subject-matter experts to volunteer their
participation in research studies. Additionally, for the trust constructs in the Chancey et al.
(2017) questionnaire, the Facewise systems did not exhibit significant differences, despite
the Jian et al. (2000) ratings demonstrating otherwise. We speculate that this might be due
to the nature of the Jian et al. (2000) items being valenced both negatively and positively
whereas for the Chancey et al. (2017) questionnaire, the items are all positively valenced.
Prior research has shown that item valence can affect responses in trust measures (Gutzwiller
et al., 2019), and that negatively valenced trust items may result in more variable responses
compared to positively valenced trust items (Schroeder et al., 2021). More research is needed
to investigate why these two instruments measuring the same construct could result in
different responses (e.g., Long et al., 2020).

Despite being evaluated by a considerably smaller group of participants, the READIT
systems demonstrated a notable difference in the Chancey et al. (2017) trust measure on
the Purpose dimension. No other differences were significant in other trust measurements. It
is important to note that the “purpose” items in the Chancey et al. (2017) questionnaire
are designed to assess participants’ belief in the READIT system’s ability to assist them
in their tasks or missions, even amid uncertainties or perceived errors. This difference in
ratings could therefore be linked to the inherent challenges and semiotic nature of text-
summarization tasks, as opposed to the more straightforward outcome of signal detection
(e.g., face recognition) type tasks. The higher rating for the “purpose” dimension in the
High-MAST READIT group suggests that people value the system and its associated features
to help summarize documents.

Other perception metrics. Comparative analysis of other perception metrics revealed
that High-MAST versions of both platforms generally led to reduced perceived risk and
higher perceived benefit and credibility, aligning with our initial hypotheses. However, for
READIT the “benefit” ratings, and for Facewise, “credibility” ratings were not significantly
different between versions. Notably, these items exhibited greater variability, indicating
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divergent perceptions of Facewise’s credibility, likely influenced by the model’s errors in tasks
that may have been easy for our expert participants. In READIT’s Low-MAST group, the
“benefit” ratings varied more, suggesting that some of the analyst participants still found
the system useful with respect to the imagined increased task load that would have come
from manually inspecting the raw document data on their own. In terms of “engagement”
and “usability”, we observed no significant differences between the High- and Low-MAST
versions for both platforms. This uniformity in perceived engagement and usability ratings
indicates a consistent user experience, and minimal impact of perceived usability or ease of
use differences on the evaluation of the systems.

Performance measures. Neither platform showed significant differences in system perfor-
mance between the High- and Low-MAST versions, whether in face-matching accuracy for
Facewise or the report score for READIT. This aligns with prior research suggesting that
AI transparency or trustworthiness alone does not necessarily result in improved human
performance (Palanski & Yammarino, 2011; Schelble et al., 2023). The absence of observed
differences in our study could also be attributed to factors such as limited variation in the
image database for Facewise, and the use of under-optimized AI algorithms common to
both versions. In the case of READIT, despite clarification in the participant onboarding
video, there might still have been some confusion among participants on how to interpret
the bubble graph topic clusters. We discovered this issue during pilot tests with non-expert
participants, who mistook the size of the bubble graph topic clusters for importance rather
than topic frequency in the anomaly detection task. We attempted to correct for this in
our onboarding video by highlighting how to interpret the bubble graph, but ultimately
we did not test to confirm their understanding or use of the bubble graph, which was one
of the more salient differences between the High- and Low-MAST versions of READIT.
Designing the READIT interface was challenging due to project time constraints and the
need to balance the presentation of detailed information with navigational ease on a single
browser page, without overly guiding participants to the correct answers. Future research
could better refine these AI-DSS testbeds, improve AI performance, task variation, and
optimizing the level of information detail in the interfaces.

Association between MAST and perception metrics. Principal Component Analysis
(PCA) was conducted to assess whether MAST could accurately capture key constructs
from well-established human perception metrics. These metrics, which show significant
marginal associations with MAST ratings, include trust measures from Jian et al. (2000)
and Chancey et al. (2017), and measures of perceived benefit, credibility, and risk. The
primary goal of PCA in this context was to produce comprehensive summaries that capture
the majority of variation within these metrics. The analysis showed that for both platforms,
the first two eigenvalues accounted for over 80% of the total, suggesting that the first two
principal components are sufficient in explaining the majority of variation in the data. In both
platforms, the first principal component (PC) uniformly displayed positive loadings for all
metrics except risk. This consistent pattern across both platforms indicates that a uniformly
weighted average of these metrics, negatively weighted for risk, effectively captures the
essential constructs of participant perceptions in the evaluated technologies. Conversely, the
second PC showed significant positive loadings exclusively for risk and benefit. This pattern
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suggests that participants tend to conduct a risk-benefit analysis, with the pronounced
loading on risk indicating a stronger focus on risk assessment when evaluating AI systems.

The regression analysis of the first two PC scores against the MAST ratings revealed
significant associations with the scores of the first PC, but not with those of the second. This
finding indicates that the MAST ratings predominantly align with the factors captured by
the first PC. Because the first PC primarily reflects a uniformly weighted combination of the
perception metrics, with an inverse weighting for risk, it can be inferred that MAST ratings
are similar to an averaged rating of these metrics. This suggests that MAST effectively
captures a broad spectrum of perceptions measured in our study, particularly trust, benefit,
and credibility, while inversely accounting for risk. However, the lack of association with
the second PC, which focuses more on risk-benefit analysis, implies that MAST may not
fully capture the nuances of how participants weighed risks against benefits when evaluating
Facewise and READIT. These potential nuances would further speak to the challenge of
soliciting input on some of the MAST criteria, input that may vary widely depending on
the experience level and perspectives of respondents (Ananny & Crawford, 2018).

Study limitations. The AI-DSSs in this study were intentionally designed to align with
either High-MAST or Low-MAST ratings. This methodology might invite criticism because
MAST, which required validation, was also employed in designing the experimental manipu-
lations. However, we assert the validity of this approach based on the independence of the
raters (i.e., recruited study participants). Study participants who assessed the platforms were
not engaged in either the design process or the development of MAST, ensuring that their
ratings were not self-serving biased. Further, intentionally aligning the designed features
with the MAST checklist was necessary for internal validation of the tool. This designed
distinction allowed us to assess whether MAST, as an evaluative tool, could effectively
differentiate between technologies with varying MAST alignment levels. Establishing internal
validity serves as a foundation toward external validation in collaboration with the broader
research community. Additionally, this study sets a benchmark for future applications of
MAST as a tool across various technology applications and task contexts.

Although MAST ratings were highly associated with trust, our results do not factor in
whether trust or distrust levels were calibrated with system performance. Such an analysis
may be possible for Facewise, in which system reliability can be precisely gauged using
signal detection metrics. However, trust and distrust calibration is difficult to define for the
READIT platform because it does not offer direct recommendations or answers that could be
rated as easily. Future studies should consider these different forms of decision support, and
how those different forms can affect trust responses (Chiou & Lee, 2023). Finally, although
the signals were strong for READIT, we could not reach our desired sample size within
our project timeline, due to the challenge of recruiting intelligence analysts. Lastly, this
study was focused on the use and validation of MAST specifically; a comprehensive review
and comparison of MAST against other similar frameworks would be a valuable exercise,
but beyond the scope of this project. Other literature has reviewed similar tools for trust
assessment (Alsaid et al., 2023; Kohn et al., 2021), and MAST might be used in conjunction
with some of these other tools alongside a work-centered field-based approach (Roth et al.,
2021) to achieve a more comprehensively designed and functionally trustworthy system.
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7. Conclusion and Future Directions

The primary objective of this study was to establish the utility of the Multisource AI
Scorecard Table (MAST) for evaluating the trustworthiness of AI-enabled decision support
systems (AI-DSSs). This resulted in an interesting opportunity to evaluate whether the
tradecraft standards behind MAST are related to the existing tools developed by the scientific
community of trust researchers. We employed a three-step analysis method (ANOVA, SLR,
and PCA) to investigate possible connections between MAST and trust, and based on that
we conclude there are strong associations between MAST ratings and trust perceptions.
Furthermore, by testing both Facewise and READIT with respective subject-matter experts,
we also demonstrated the utility of MAST across high-stakes domains, showing that these
patterns of associations persist across two different AI applications.

Compared to other frameworks for designing or evaluating AI-DSSs, a benefit of MAST
is that it is derived from, and operationalized by, a practitioner community (Blasch et al.,
2020). Thus, the underlying principles of MAST are more likely to be “customer relevant”
and accepted by the Intelligence Community, while aligning with an empirical and scholarly
understanding of trust and credibility that we report here. However, just as high quality
analytical reporting may not result in good decision making, it is important to note that high
MAST ratings do not necessarily result in improved performance of a human-AI decision
system, given the variety of factors that can contribute to this performance, including factors
in the task environment, cognitive workload (Sargent et al., 2023), available system features,
and task difficulty. Furthermore, it is still possible that high intended MAST ratings by a
design team may not result in higher perceptual ratings by evaluators. Additional testing
should be done with other AI systems, including key factors in the organizational and task
environment (Chiou & Lee, 2023), and more formal risk analyses. In-depth exploration of the
behavioral data captured during task performance may also shed light on the gap between
trust perceptions and trustworthiness.

Acknowledgments

This material is based on work supported by the U. S. Department of Homeland Security
under Grant Award Number 17STQAC00001-05-00. The views and conclusions contained in
this document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Department of Homeland Security. PS
contributed the initial complete draft of the paper. PS, YB, MM contributed to data analysis.
PS, NK, MC, YB, SB contributed written sections and response to reviewers. PS, AP, AM,
NK, YW, JZ, and YB contributed to design and development of Facewise and READIT.
PS, AP, and MC contributed other study materials. PS, AP, MC, YB, NK, AM contributed
to data collection. MM, JS, EB contributed to study conception, design, interpretation, and
participant recruitment. EC contributed to all aspects of the study. All authors reviewed
and approved the final version of this paper.

1328



Trustworthy AI-DSS and Validation of MAST

Appendix A. The Nine MAST Criteria for Facewise

Item Question(s) and Feature Description(s)

Sourcing: How well can the system identify underlying sources and methodologies upon
which results are based?
@High-MAST: The “View Details” page provides the name of image sources and demographical
information about the people whose image data were used to train the AI, such as their race and
gender.
@Low-MAST: The system interface does not include the name of image sources and demographical
information about the people whose image data were used to train the AI system, such as their race
and gender.

Uncertainty: How well can the system indicate and explain the basis for the uncertainties
associated with derived results?
@High-MAST: For each case, the system will display a certainty score from 0%-100% to indicate
its confidence about its recommended decision. The system also gives an alert if the uncertainty is
too high when you click the “Final Decision” button, depending on your decision. Details about how
the system calculates the certainty score are available by clicking on the “More Details” button under
every decision. The AI’s confidence level is calculated in this manner: first, a metric that signifies
the mathematical distance between two image pairs is calculated. Then, the difference between the
mathematical distance and a pre-determined (computed during the training and validation stages)
threshold is calculated. Finally, the difference is normalized by a factor and the confidence level is
calculated using probability measures associated with the standard normal distribution. Thus, the
AI’s confidence is an indication, based on the predetermined threshold. Confidence levels closer to
100% indicate higher confidence.
@Low-MAST: For each pair of images, the system only recommends a binary decision (same or
different) and does not indicate its confidence in the decision.

Distinguishing: How well can the system clearly distinguish derived results and underly-
ing data?
@High-MAST: The system can distinguish whether a presented ID is invalid or expired, or if the ID
photo may have been digitally altered. An alert message will be automatically shown in these cases
by the system. Details about how the system identifies these features in the ID photo are available
by hovering over the Crossmark or checkmark icon next to the ID expiration date.
@Low-MAST: The system cannot distinguish whether a presented ID is invalid or expired, or if
the ID photo may have been digitally altered.

Analysis of Alternatives: How well can the system identify and assess plausible alternative
results?
@High-MAST: In the “View Details” page, the system provides dissimilarity and similarity
probabilities as alternatives for each pair. The similarity and dissimilarity numbers are directly
derived from the AI’s confidence level. The higher of the two probabilities is selected to represent the
AI’s confidence level. The calculation of the similarity and dissimilarity probabilities assumes that
the threshold is distributed as standard normal, and that the scaled differences are realizations of a
noise-generating process. Both probabilities are calculated using the scaled difference between the
distance metric and the threshold.
@Low-MAST: For each pair of images, the system only gives a decision and does not indicate its
confidence in the current decision based on the training and validation stages, nor on probability
measures of alternatives associated with the standard normal distribution.

Customer Relevance: How well can the system provide information and insight to users?
@High-MAST: Besides providing the binary decision of same or different, the confidence level, and
ID validation on the main page, the system provides additional details through a ”More Details”
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button. This includes information and explanations about similarity, dissimilarity, confidence level,
and sources of training for AI. To present the information more efficiently, the system will minimize
explanations that have already been shown. Conditional alerts when the system’s certainty level
is low and alerts about individuals who may need additional screening per the protocol are also
included as part of the system with the information displayed as detected.
@Low-MAST: Besides providing the binary decision of the same or different and ID expiration
date on the main page, the system does not provide any additional details or any conditional alerts.

Logic: How well can the system help the user understand how it derived its results?
@High-MAST: The system bases its final decision by choosing the larger of similarity and dissimi-
larity probabilities. “More Details” button also provides an explanation and interpretation of how
a prediction or classification is made. Conditional alerts when the system’s certainty level is low,
and alerts about individuals who may need additional screening per the protocol are also included.
To detect the authenticity of an ID photo, a second model was trained, tested, and validated on
proprietary datasets of anomalous and non-anomalous travel documents, digitally altered and original
images. A separate model further performs character recognition to analyze expiration dates on travel
documents.
@Low-MAST: The system does not give any information on how its recommendation is determined.
It also does not provide any conditional alerts or any information about the authenticity or validity
of the ID photo image.

Change: How well can the system help the user understand how derived results on a
topic are consistent with or represent a change from previous analysis of the same or
similar topic?
@High-MAST: As you interact with the system, by clicking “more details” you will see a report
about your agreement with the system, which indicates how often the system has been uncertain
about your final decisions.
@Low-MAST: As you interact with the system, the system does not indicate how often it has been
uncertain about your final decisions.

Accuracy: How well can the system make the most accurate judgments and assessments
possible, based on the information available and known information gaps?
@High-MAST: For each pair of images, the system will display a certainty score from 0%-100%
to indicate its confidence about its recommended decision. System’s performance according to the
training data and more details about how the system calculates the certainty score are available by
clicking on the “More Details” button under every decision.
@Low-MAST: For each pair of images, the system only gives a binary decision and does not indicate
its confidence in the decision, the system’s performance according to the training data, or more
details about how the system made the decision.

Visualization: How well can the system incorporate visual information if it will clarify
an analytic message and complement or enhance the presentation of data and analysis?
Is visual information clear and pertinent to the product’s subject?
@High-MAST: The system automatically shows you an enlarged version of a traveler’s ID photo and
their photo taken at the security checkpoint. These images will be shown side by side. Distinguishing
features that played a big role in determining the recommended decision will also be highlighted by
clicking the “View Details” button.
@Low-MAST: The system only shows you an enlarged version of a traveler’s ID photo and their
photo taken at the security checkpoint without any additional visualized explanation about the
recommended decision.

Table 2: MAST criteria (Blasch et al., 2020) and Facewise feature descriptions for High-MAST and
Low-MAST.
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Appendix B: The Nine MAST Criteria for READIT

Item Question(s) and Feature Description(s)

Sourcing: How well can the system identify underlying sources and methodologies upon
which results are based?
@High-MAST: In the documents page, you can see descriptive information about the data used to
gather the clusters including basic information and detailed descriptions of the sources. The datasheet
for READIT includes information on the clustering model, models for summarization, training data,
possible biases, pre-processing of data, and quality of the data used in training to derive results.
In the main dashboard view, you can view the data used to derive the cluster either by hovering
or clicking on it including the cluster title, number of documents, top terms, and representative
documents. The representative documents can be viewed as a summary or raw version.
@Low-MAST: For any given cluster in the main dashboard view, you can view more details about
it by clicking on it. The title of the cluster, number of documents, and summaries of the documents
will be displayed in the documents and summaries pane. Only the derived results are shown, not the
underlying sources and data used to derive the clusters or summaries.

Uncertainty: How well can the system indicate and explain the basis for the uncertainties
associated with derived results?
@High-MAST: READIT indicates levels of uncertainty with derived results in two ways, as
described in the datasheet. First, READIT includes keywords per cluster to show how documents in
clusters are related to each other. Keywords are displayed with a term frequency–inverse document
frequency (tf-idf) score which measures the certainty the word fits with the cluster. Second, READIT
includes similarity scores to assess the similarity between clusters. This score is calculated using
cosine similarity to show the certainty that clusters are related to each other.
@Low-MAST: In the topic similarity visualization, the relationship between two topics is colored
from white to dark blue with dark blue indicating a higher certainty the two topics are related. These
relationships are not labeled with numbers, neither is it explained how this similarity is calculated.

Distinguishing: How well can the system clearly distinguish derived results and under-
lying data?
@High-MAST: For any cluster you can view more details about the data used to derive the cluster
either by hovering or clicking on it. The datasheet includes information on the clustering model,
models for summarization, training data, underlying assumptions for choice of training data, quality
of the data used in training to derive results, possible biases, pre-processing of data, recommended
uses and users, and restrictions on use. The datasheet was created with domain expert input.
@Low-MAST: In clusters, you can view more details about that cluster. The title and summary of
representative documents will appear. The raw data used to derive the title and summaries is not
displayed. There is no datasheet with information on how these titles or summaries are calculated.

Analysis of Alternatives: How well can the system identify and assess plausible alternative
results?
@High-MAST: In the topic similarity, users initially view the visualization where the topics are
ordered alphabetically. By factoring in the similarity score and uncertainties, READIT can reorder
the view in this visualization such that highly related topics will appear together to present an
alternative view.
@Low-MAST: READIT is not able to show alternative results when uncertainties in the data
warrant them. There is no way to reorder visualizations based on any criteria.

Customer Relevance: How well can the system provide information and insight to users?
@High-MAST: READIT synthesizes large corpora of documents and produces clusters of similar
documents. The topic similarity visualization shows which clusters are most highly related to each
other. Users can examine the clusters and their relationships in the topic similarity view for trends
for follow-up work. READIT is also able to suggest locations to filter by if the documents contain
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multiple locations. Users can also filter all visualizations by topic. There is a topic filtering pane
where users can check all, or some topics and the corresponding selected topics will be highlighted in
the visualizations.
@Low-MAST: READIT synthesizes documents and produces clusters of similar documents. The
topic similarity visualization shows which clusters are most highly related to each other. Users can
examine the clusters and their relationships in the topic similarity view for trends for follow-up work.

Logic: How well can the system help the user understand how it derived its results?
@High-MAST: For any cluster you can view more details about the data used to derive the cluster
either by hovering or clicking on it. The datasheet includes information on pre-processing of data.
READIT includes an option to filter results by location, if location information is detected in the
document. To give location options, READIT must consider the location information in the context
of the document, and other assumptions about the embedding of the location in the document.
@Low-MAST: In clusters, you can view the title and representative documents in summary form.
The titles and summaries are understandable to users. Information on how clusters, titles, and
summaries are formed is not included. There is also no information on the pre-processing of data.

Change: How well can the system help the user understand how derived results on a
topic are consistent with or represent a change from previous analysis of the same or
similar topic?
@High-MAST: In the documents page, READIT includes information on similar searches from
other agencies. Similar searches may be based on the average length of the document, number of
documents, or number of clusters generated.
@Low-MAST: READIT does not note changes from previous analyses or similar analyses. It also
cannot compare current results with those of other agencies which had similar results.

Accuracy: How well can the system make the most accurate judgments and assessments
possible, based on the information available and known information gaps?
@High-MAST: The READIT datasheet includes information on system verification and validation
methodology, and results from the training data where the system achieved sufficiently high accuracy.
To assess the accuracy of READIT, users can view the full documents used in each cluster and
compare them against the top terms to independently determine whether the documents match the
top terms. Likewise, users can view a summary of the document and compare it against the full
version of the document in the documents and summaries view to see if the summary is accurate.
@Low-MAST: READIT does not include information on system verification, validation methodology,
or the training of the system. Since underlying sourcing information and raw data are not included
in the system, it is difficult to assess whether the topics and summaries are accurate.

Visualization: How well can the system incorporate visual information if it will clarify
an analytic message and complement or enhance the presentation of data and analysis?
Is visual information clear and pertinent to the product’s subject?
@High-MAST: READIT uses three main visualizations to enhance users’ understanding of the
clusters. First, in the topic overview visualization, clusters are displayed as bubbles where the size
of the bubbles can indicate anomalies. Next, READIT also creates and displays a topic similarity
visualization to help understand the connections between clusters. Lastly, there is a timeline view in
READIT to display clusters on a timeline (if documents contain date information). All visualizations
are simple and labeled properly. Users can view more details about the visualizations by clicking on
them or hovering over them or filtering all visualizations by cluster using the filtering option.
@Low-MAST: READIT uses two visualizations. The similarity matrix shows the similarity scores
between topics. Darker colors indicate more similarity but score values are not shown. The timeline
shows the clusters on the timeline. Visualizations contain no interactivity and users are not able to
click or hover on items to view more details about the visualizations.

Table 3: MAST criteria (Blasch et al., 2020) and READIT feature descriptions for High-MAST and
Low-MAST.
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Appendix C: Study Questionnaires

Variables Reference Example item(s) Number
of items/
Reverse
items

Scale Facewise
Cron-
bach’s
Alpha

READIT
Cron-
bach’s
Alpha

MAST-
total

(Blasch et al.,
2020)

Sourcing, uncertainty,
distinguishing, analysis
of alternatives, cus-
tomer relevance, logic,
change, accuracy, and
visualization

9/0 9 - 36 .91 .91

Risk (Weber et al.,
2002)

Please indicate how
risky you perceive it is
to use this system for
completing your task
well.

1/0 1 - 5 - -

Benefit (Weber et al.,
2002)

Please indicate how ben-
eficial you perceive it
is to use this system
for completing your task
well.

1/0 1 - 5 - -

Trust
(Jian)

(Jian et al.,
2000)

“I can trust the sys-
tem.”; “The system
looks deceptive.”

12/5 1 - 7 0.90 0.92

Trust
(Chancey)

(Chancey et
al., 2017)

“I understand how the
system will help me per-
form well. “; “The infor-
mation the system pro-
vides reliably helps me
perform well.

15/0 1 - 7 0.96 0.96

Credibility (Appelman &
Sundar, 2016)

“How accurate do the
results of the system ap-
pear to be?”; “How be-
lievable do the results
of the system appear to
be?”

3/0 1 - 7 0.92 0.92

Engagement (Schaufeli et
al., 2002)

“I was immersed in this
research task.”; “To me,
this research task was
challenging.”

17/0 1 - 7 0.91 0.93

Usability
(SUS)

(Brooke,
1996)

“I felt very confident
using the system.”; “I
thought the system was
easy to use.”

10/5 1 - 5 0.80 0.88

Task
performance

- Average response time
and Accuracy for Face-
wise and final report
gradings for READIT

2/0 0 - -

Table 4: Dependent and Control Variables.
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Appendix D: READIT Documents and About Tabs for the High-MAST
Version

(a) Documents tab (b) About tab

Figure 9: Documents and About tabs in High-MAST READIT platform.
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Appendix E: 95% Confidence Interval Figures

Figure 10: Means with 95% Confidence Intervals for Facewise and READIT across different
levels of Low-MAST and High-MAST. We used for Facewise and for
READIT.
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Appendix F: Participant demographics for Facewise and READIT

High-MAST (n = 73) Low-MAST (n = 73)

Years of experience as a TSO
55% 3 years or less 50% 3 years or less
24% 10 or more years 28% 10 or more years

Highest degree
69% 2-year college or less 74% 2-year college or less
26% 4-year college 21% 4-year college

Volunteer hours in the past 3
months

62% 0 hours 71% 0 hours

Computer habit 58% daily 65% daily

Gaming habit
18% daily 26% never 30% daily
26% never 17% never

Screen hours before study
Mean: 2 hrs. Mean: 2.2 hrs.
Median: 1.2 hrs. Median: 2 hrs.

Table 5: Participant demographics across High-MAST and Low-MAST for Facewise.

High-MAST (n = 11) Low-MAST (n = 12)

Age
36% 30 years or less 34% 30 years or less
18% 31-39 years 33% 31-39 years
46% 40 or more years 33% 40 or more years

Gender
73% man 50% man
27% woman 50% woman

Race 82% white 83% white

Years of experience as an IA
18% 2 years or less 25% 2 years or less
27% 3-5 years 17% 3-5 years
55% 6 years or more 58% 6 years or more

Experience with AI-DSS 46% no prior experience 33% no prior experience

Highest degree
27% 4-year college 17% 4-year college
73% master’s 66% master’s

17% doctorate

Experience with VAST challenge 100% no 100% no

Experience with clustering tools 55% no 33% no

Screen hours before study
Mean: 5.5 hrs. Mean: 5 hrs.
Median: 6 hrs. Median: 5 hrs.

Table 6: Participant demographics across High-MAST and Low-MAST for READIT.
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