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Abstract
Virtually all machine learning tasks are characterized using some form of loss function,

and “good performance” is typically stated in terms of a sufficiently small average loss,
taken over the random draw of test data. While optimizing for performance on average
is intuitive, convenient to analyze in theory, and easy to implement in practice, such a
choice brings about trade-offs. In this work, we survey and introduce a wide variety of
non-traditional criteria used to design and evaluate machine learning algorithms, place the
classical paradigm within the proper historical context, and propose a view of learning
problems which emphasizes the question of “what makes for a desirable loss distribution?”
in place of tacit use of the expected loss.

1. Introduction

Over the past two decades, the rapid and widespread adoption of machine learning tools
has provided a major impetus to design new methods and develop a more refined methodol-
ogy. It is only natural that as machine learning techniques are brought to bear on new and
increasingly diverse problems, it becomes necessary to re-define what we mean by “good”
performance. Put roughly, within the classical paradigm of statistical machine learning,
“good” invariably means “small average test loss.” While this is a perfectly natural defini-
tion, and in some cases precisely what we want to achieve, prioritizing the average test loss
means that a lot of other important aspects of performance are abstracted away, and left
without any guarantee. As a result, even when a solution is optimal on average, the results
may be highly unsatisfactory. Here are a few examples to emphasize this point:

• High-confidence guarantees. Assuming just finite variance, in terms of the average
squared estimation error of the mean, the sample mean is minimax optimal (Bickel and
Lehmann, 1981; Lugosi and Mendelson, 2019a). However, in terms of high-probability
error bounds, the sample mean has exponentially worse dependence on the confidence
level than more robust alternatives (Catoni, 2012; Devroye et al., 2016).

• Balanced classification. Under extreme class imbalance, even the best possibile
misclassification probability can result in very poor performance on minority classes,
leading to a large balanced error (Menon et al., 2021).

• Fair decisions. Even if a dataset does not include sensitive demographic information
such as ethnicity, gender, or economic status, optimal performance on average can lead
to highly sub-optimal performance for under-represented groups (Hashimoto et al.,
2018).
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• Distribution shift. Superior performance on average during training could be dis-
astrous at test time if the underlying data distribution has changed (Curi et al., 2020;
Quiñonero Candela et al., 2009; Sutter et al., 2021).

• Resilience to rare events. Decisions which are optimal on average need not be
resilient to rare but catastrophic “black swan” events (Lee et al., 2020; Taleb, 2008).

These issues highlight the fact that a successful machine learning application need not always
be characterized by achieving the minimum average loss. This broadened perspective has
driven the machine learning community to develop a wide variety of new techniques to
ensure learning algorithms reliably provide desirable solutions under more diverse notions
of success. In particular, over the past five years, clear trends in algorithm design have
emerged in which the underlying loss function is left abstract, and properties of the loss
distribution are the primary focus. Our chief goal in this paper is to elucidate and bring
attention to this trend. We survey the recent literature, provide some historical context,
and use a general formulation that allows us to concisely express a wide variety of learning
problems as special cases.

1.1 The Classical Paradigm

To make it clear precisely what this paper is about, we start with a concise formulation
of the traditional learning problem. In the classical paradigm, one seeks the best possible
performance on average. Put simply, this refers to the fact that in the vast majority of
statistical learning problems, the ultimate goal is formulated in terms of minimizing the
expected “test” loss. More formally, letting Z ∼ µ denote an as-yet unobserved random
(test) data point, H a set of possible decisions, and `(·) a loss function which assigns a
numerical penalty to (decision, data) pairs, the ultimate goal is to find a solution h∗, which
may or may not belong to H, that satisfies

Eµ `(h∗; Z) ≤ inf
h∈H

Eµ `(h; Z) + ε (1)

for some ε ≥ 0, which represents our tolerance level. The expected value of a random loss
is traditionally called the risk, a term with a long history (see §4 for details). Depending
on the actual realization of Z, the quality of any h as measured by `(h; Z) is subject to
variability. While performance could certainly be catastrophic in the worst case, the milder
condition (1) simply requires that on average, the decision made is optimal.1 Even so, the
problem is still far from trivial, since µ is unknown. This is where “training” data comes
in. Let us denote a sequence of random training data by Zn ..= (Z1, . . . ,Zn). Obviously, if
there is no relation between the distributions of Zn and Z, we have no hope of finding a
solution satisfying (1). A strong relation can be made by the following assumption:

Zn is an independent random sample of n points drawn from µ. (2)

Seeking a solution to (1) under the assumption (2) is precisely what Vapnik (1999, Ch. 1)
calls the “general setting of the learning problem.” With this link between training and

1. It is sometimes meaningless to ask for worst-case optimality over the random draw of test data. For
example, consider estimating the mean of X ∼ Normal(0, 1). For any choice of θ ∈ R, we always have
supX(θ − X)2 =∞.
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test data in place, the most natural strategy is to replace the unknown µ in (1) with the
empirical distribution induced by Zn, and optimize that objective instead; this is empirical
risk minimization (ERM). More formally, an ERM solution is any decision Hn satisfying
the following property:

Hn ∈ arg min
h∈H

1
n

n∑
i=1

`(h; Zi). (3)

Intuitively, the hope is that a solution which is optimal at training time will also be optimal
at test time. Of course, this is an idealized goal, since with limited samples, true optimality
is not statistically plausible. Furthermore, the off-sample quality depends entirely on the
nature of the random training data that happens to materialize. It is always possible to
get a very unlucky sample Zn which is not at all representative of µ and leads to a poor
candidate Hn, but under the assumption (2), this cannot occur with high probability. With
this in mind, it is common to relax the requirement (1), and ask that for some ε > 0 we
have

P
{

Eµ `(Hn; Z) ≤ inf
h∈H

Eµ `(h; Z) + ε

}
≥ 1− δ (4)

with 0 < δ < 1 controlling the desired level of confidence, noting that probability is with
respect to Zn and any algorithmic randomness that choosing Hn entails.2 A great deal
of statistical learning theory amounts to finding a bound on the sample size n that is
sufficient or necessary for Hn, the output of a Zn-dependent learning algorithm, to satisfy
the performance requirement (4) over various classes of data distributions µ, decision spaces
H, and loss functions ` (Anthony and Bartlett, 1999; Kearns and Vazirani, 1994; Mohri et al.,
2012; Vapnik, 1998, 1999).

1.2 Our Viewpoint

On one hand, the breadth of learning problems captured within the classical paradigm of
§1.1 is tremendous. Even with H fixed, different tasks can be characterized by distinct
loss functions, and a massive body of knowledge regarding effective loss function design has
been developed in the statistical machine learning community, with countless refinements
and extensions made to suit the needs of applied fields such as computer vision and natural
language processing.

On the other hand, the class of problems captured within §1.1 can also be seen as being
severely limited by the (often tacit) assumption that Eµ `(·; Z) is the appropriate criterion
to use for a given loss function. Taking a broader viewpoint, the expected value Eµ `(h; Z)
is just one “property” of the distribution of the random loss `(h; Z) incurred by decision
candidate h ∈ H. As the machine learning methodology develops and matures, we believe
that the question of which property to emphasize as the criterion for learning will play a
critical role, in some cases orthogonal to the choice of H and `.

2. When Hn /∈ H is allowed under (4), the learning problem is sometimes called improper (Shalev-Shwartz
and Ben-David, 2014, Ch. 3).
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Making this all a bit more explicit, we take ` and H as given, and focus on the random
losses under the test data distribution µ, denoted by

Lµ(H) ..= {`(h; Z) : Z ∼ µ, h ∈ H}. (5)

Note also that the learning problem described in (1) can be equivalently re-stated in terms
of choosing a desirable loss distribution, that is, seeking L∗ such that

Eµ L∗ ≤ Eµ L +ε, ∀ L ∈ Lµ(H). (6)

Here “desirability” is measured by reducing a random variable to a one-number summary,
i.e., the mapping L 7→ Eµ L ∈ R. If learning is broadly understood as an attempt at
decision-making which leads to a desirable off-sample loss distribution, then aside from
technical convenience and historical precedent, there is in principle no reason to restrict
ourselves to the mean. For example, any valid median, the variance, skewness, kurtosis,
inter-quartile range, weighted sums of these quantities; these are all elementary examples
of properties which might be considered when making a broadened notion of “desirable loss
distribution” precise.

In this paper, we generalize the class of learning problems described in §1.1 as follows.
Let Cµ : Lµ(H) → R be any function which maps random variables L ∈ Lµ(H) to the ex-
tended real line, and for readability let us overload the notation setting Cµ(h) ..= Cµ(`(h; Z))
for each h ∈ H. We call Cµ(·) a learning criterion function, and refer to the value Cµ(L) as
a property of the distribution of L. Finally, fix a subset C ⊂ R that we call the desirability
set. With these parts in place, we expand upon the traditional learning problem of (4)
using the following general condition on algorithm output Hn:

P {Cµ(Hn) ∈ C} ≥ 1− δ. (7)

In words, this generalized setup can be succinctly summarized as follows.

Generalized learning problem:
“Reliably︸ ︷︷ ︸
≥1−δ

achieve a test loss︸ ︷︷ ︸
L∈Lµ(H)

distribution with sufficiently desirable︸ ︷︷ ︸
C

properties︸ ︷︷ ︸
Cµ

.”

Moving forward, we shall use this general formulation as a vantage point from which we can
view recent conceptual and technical trends in machine learning as special cases. Our focus
in this paper is purely on the criterion Cµ(·). Issues of loss function design, regularization,
and model properties/constraints are all abstracted away, implicitly captured by `, H, and
C. For reference, however, here are some simple and concrete examples illustrating the
flexibility of the formulation given here.
Example 1 (Supervised learning). Let Z = (X,Y), with X a random feature vector, and Y a
random binary label taking values in {−1, 1} for example. Given a classifier h, the (random)
hinge loss incurred by h is max{0, 1− Yh(X)}, and the zero-one loss is I{h(X) 6= Y}. �

Example 2 (Unsupervised learning). Let X and h(X) be random vectors taking values on a
linear space equipped with a norm ‖·‖, where h(X) satisfies some special constraints, e.g.,
a neural network whose intermediate layers provide a low-memory encoding of X, and use
the distortion ‖h(X)− X‖ as a loss. �
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Example 3 (Standard setup). By setting the learning criterion and desirability set as

Cµ(L) = Eµ L, C = (−∞,C∗µ +ε]

we get a familiar formulation of the learning problem, with some flexibility left in specifying
C, depending on how we set the threshold C∗µ. If we set

C∗µ = inf {Cµ(h) : h ∈ H}

then we recover (4) as a special case of (7). If instead constraining ourselves to H, we set

C∗µ = inf {Cµ(h) : h satisfies |Cµ(h)| <∞}

then the desirability set C encodes a requirement to achieve a small approximation error on
top of a small estimation error , following the terminology of Cucker and Smale (2002). �

Example 4 (A less typical setup). One can in principle consider setting a threshold C∗µ about
which we hope performance does not deviate too far, namely

C =
[
C∗µ−ε,C∗µ +ε

]
, ε, ε ≥ 0

where the width ε + ε controls the amount of deviation that we tolerate. Note that while
modifying the design of Cµ lets us encode preferences on the deviations of L, introducing C
in this form enables us to request small deviations over the random draw of Zn as well. �

Example 5 (Relative performance). Another interesting way to define desirability through
Cµ(·) and a threshold C∗µ is to look at relative values. For example, letting a, b, c be non-
negative real values, consider the desirability set

C =
{
x ∈ R :

|x− C∗µ|
a+ b|x|+ c|C∗µ|

≤ ε
}

where ε > 0 once again specifies a tolerance level. See Haussler (1992) for an example of
learning theoretical results stated in terms of this notion of desirability, with a > 0 and
b = c = 1. �

1.3 Related Work

Now that we have a picture of what this paper is about, let us first take a bird’s-eye view of
the context in which this survey was born, and highlight some topics that we do not cover.

Starting with some clear omissions, we do not delve into reinforcement learning at all,
although the basic viewpoint put forward in §1.2 can clearly be extended to such problem
settings; see Chow et al. (2016, 2017) for some examples. We also do not explicitly treat
any Bayesian learning theory, but a great deal of such theory can indeed be captured
by our formulation when H is a set of sufficiently regular probability distributions over a
parameter space, and ` or H are designed to enforce some degree of “proximity” to a prior
distribution. To see this, consider for example the rich examples derived from the general
“Bayesian Learning Rule” of Khan and Rue (2021). We do not delve into any details
regarding the duality theory underlying convex learning criteria; see the very recent survey
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of Royset (2022) for more detailed background. We also do not provide a comprehensive
list of applied research featuring machine learning driven by novel learning criteria; the
recent survey of Hu et al. (2022) provides a useful reference in this respect. Finally, since
the underlying base loss function is left abstract, we do not consider adversarial methods
which depend on particular forms of losses; see recent work by Robey et al. (2022) which
interpolates between average and worst-case criteria by controlling perturbations of the
inputs used in supervised learning tasks.

We used the broad term “property” to refer to the output of criterion Cµ in §1.2, and
while we believe this general notion is not yet widespread in the machine learning commu-
nity, the idea of defining various characteristics of interest for an unknown (non-parametric)
distribution is certainly very well-established in statistics.3 It should also be noted that the
term property has been used in a formal way, and that there is a broad literature on the
elicitation of properties, i.e., characterizing properties which can be expressed as the solu-
tion to an expected loss minimization problem. An important subset of such properties are
the “M-parameters” as described lucidly by Koltchinskii (1997), an extension of classical
M-estimators (Huber, 1964). The literature on property elicitation begins in statistics and
economics (Lambert et al., 2008; Savage, 1971), but important connections to surrogate
complexity in machine learning are being established (Finocchiaro et al., 2021). Elicitation
and surrogate function design are deep and interesting topics, especially in the generalized
learning setup of §1.2, but in this paper, we will not delve further in this direction.

As emphasized in the previous sub-section, the central idea here is that of putting the
loss distribution at the forefront, making “desirable properties” a key design decision, rather
than falling back on the tacit assumption that a small mean is always good enough. While up
until recently it has remained rather obscure, this notion has existed in the machine learning
community for decades. For a lucid example in the context of binary classification, Breiman
(1999) gave an example showing how a uniformly higher margin distribution need not imply
better off-sample classification performance. Reyzin and Schapire (2006) built upon this
example, showing how naive margin maximization tends to be inferior to algorithms which
“do a better job with the overall distribution.” Two decades later, the idea of taking a
broader view of loss distributions is starting to receive widespread attention, in terms of both
designing and evaluating algorithms. One stark case is the work of Agarwal et al. (2021),
who used tail-trimmed confidence intervals to effectively infer about deep reinforcement
learning algorithm performance after just “a handful of runs,” receiving an Outstanding
Paper Award at NeurIPS 2021.

The learning criterion Cµ is something to be explicitly designed, and coupled with desir-
ability conditions encoded by C, it ultimately encodes an optimization task to be solved by
the machine. In this direction, the massive literature on risk functions (also risk measures)
in financial settings is of great relevance. Letting L ∈ Lµ(H) represent an uncertain finan-
cial outcome (e.g., negative returns of a certain portfolio), a succinct numerical summary of
this uncertainty via L 7→ Cµ(L) is important for guiding principled decision-making under
uncertainty. The notion of coherent risk functions as axiomatized by Artzner et al. (1999)
has been extremely influential, and important special cases such as conditional value-at-risk
(CVaR) have been central to both theory and practice of financial risk design. Sufficiently

3. Work by Lehmann, Bickel, and Huber in the 1960s and 1970s was particularly influential in this respect.
See the commentary of Oja (2012) for some illuminating historical context.
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regular risk functions (e.g., coherent risks) can be used to characterize deviation properties
(Rockafellar et al., 2006), and the “risk quadrangle” of Rockafellar and Uryasev (2013)
gives a detailed systematic account of functions for quantifying risk and deviations, linking
them up with notions of “regret” and “error.” In a sense, the basic viewpoint and degree of
generality in our formulation from §1.2 is also present in (Rockafellar and Uryasev, 2013),
as is evident in the following quote:

A decision [results in] random variables. . . which can only be shaped in their
distributions through the [decision made], not pinned down to specific values.
Now there is no longer a single, evident answer to how optimization should be
viewed, but risk measures can come to the rescue.

— Rockafellar and Uryasev (2013, §5)

Traditionally, decisions are made so as to minimize risk, however it may be defined. Our
viewpoint differs slightly in that all four “corners” of the risk quadrangle are homogenized
and placed on equal footing as potential candidates for the learning criterion Cµ.

Our general formulation of L being “sufficiently desirable” in terms of Cµ(L) ∈ C has been
influenced by the well-known learning model of Haussler (1992). In this model, Cµ(L) = Eµ L
is assumed throughout (called the “risk”), but another notion called “regret” is introduced,
a non-negative value which evaluates the desirability of L as measured by Eµ L. Using
Haussler’s definition, the (random) regret in the formulation (4) is the Bernoulli random
variable

I
{

Eµ `(Hn; Z) ≤ inf
h∈H

Eµ `(h; Z) + ε

}
,

whereas in our generalized condition (7), it is

I {Cµ(Hn) ∈ C} .

Since Haussler’s full learning problem requires us to choose Hn to minimize the expected
regret over the draw of Zn, our setup in §1.2 is a special case of the framework in (Haussler,
1992) whenever we restrict ourselves to Cµ(L) = Eµ L. On the other hand, with the freedom
to design Cµ(·) as we like, we are able to go well beyond the original Haussler model.

1.4 Clerical Matters

We use plain italics to indicate emphasis, and colored italics to indicate terms that have
formal definitions, either within this paper or in the works we have cited. We use “�”
to indicate the end of examples and remarks. We distinguish random quantities by using
sans-serif typeface, e.g., X, Z, Zi, Hn, Ĉn, and so forth. Throughout this paper, µ denotes
the probability distribution of the underlying random data of interest; sometimes this will
be X, sometimes this will be (X,Y), sometimes this will be an abstract Z. In any case,
expectation will be denoted by Eµ. Probabilities on the other hand are expressed using a
generic symbol P, regardless of the underlying distribution. The event “random variable
X equals x” is written {X = x}, and the corresponding Bernoulli random variable (via
indicator function) is I{X = x}. For any positive integer k, we write [k] ..= {1, . . . , k}, useful
for indexing.
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2. Core Concepts

From a historical perspective, there have always been clear motivations, both theoretical
and practical, for introducing new learning criteria into the picture. In this section, we
briefly highlight some of the key scenarios within which these functions have arisen. A
more systematic and general exposition of important criterion classes will follow in §3.

2.1 Robustness Under Heavy-Tailed Data

As mentioned in §1, one of the most natural reasons to design novel objective functions
is that the empirical mean is a sub-optimal estimator of the true mean when the data
distribution is heavy-tailed. For random X ∼ µ on R, assuming finite variance, setting
θ∗ = Eµ X, we have

Eµ (θ∗ − X)2 ≤ Eµ (θ − X)2 , ∀ θ ∈ R.

That is, the mean minimizes the expected squared deviations from X. Given an independent
random sample X1, . . . ,Xn, let X̂n denote an arbitrary estimator of Eµ X. Under just the fi-
nite variance assumption, writing σ2

µ
..= varµ X, ideally we would like to have “sub-Gaussian”

guarantees of the form

P

|X̂n −Eµ X| ≤ aσµ

√
log(1/δ)

n

 ≥ 1− δ (8)

for a sufficiently wide range of δ ∈ (0, 1), where a is a constant free of µ, n, and δ; for more
on this topic, see Devroye et al. (2016). Unfortunately, it is well-known that under such a
general setting, for small values of a (e.g., a = 1), the usual sample mean fails to satisfy
such a property (Lugosi and Mendelson, 2019a, Thm. 1). The sample mean is of course an
ERM solution under the squared error, namely

Xn ∈ arg min
θ∈R

1
n

n∑
i=1

(θ − Xi)2 , Xn ..= 1
n

n∑
i=1

Xi.

If we consider these squared errors as losses `(θ; Xi) = (θ − Xi)2, then a well-established
approach to obtain a more robust estimator is to modify the loss function to have sub-
quadratic growth in the limit. A typical approach is to choose an estimator X̂n satisfying

X̂n ∈ arg min
θ∈R

1
n

n∑
i=1

ρ

(
θ − Xi
s

)
(9)

where ρ : R → [0,∞) is convex, approximately quadratic around zero, but with linear
growth in the limit (ρ(x) = O(x) as |x| → ∞), and s > 0 is a scaling parameter used to
control the bias incurred by using a non-quadratic loss function (larger s means smaller
bias). This basic “M-estimation” idea of course underlies many core techniques in robust
statistics (Huber and Ronchetti, 2009), and an important study from Catoni (2012) showed
how with appropriate settings of s, estimators given by (9) can be shown to satisfy (8) with
nearly optimal constant a. Many other robust mean estimators satisfying the sub-Gaussian
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property (8) have since been studied, including the re-discovered mean-of-means (Lerasle
and Oliveira, 2011), the well-known trimmed mean (Lugosi and Mendelson, 2019b), and
others; see Lugosi and Mendelson (2019a) for an up-to-date survey.

Since we know that there are practical algorithms for achieving the sub-Gaussian error
bounds of the form (8), it is natural to consider such algorithms as sub-routines that let us
modify the naive ERM given by (3). That is, going back to our general setup described in
§1, with Z ∼ µ and Zn satisfying (2), writing L(h) ..= `(h; Z) and Li(h) ..= `(h; Zi) now for
an arbitrary “base” loss function `(·), at the very least we know that pointwise in h ∈ H,
we can construct an estimator using

Ĉn(h) ∈ arg min
θ∈R

1
n

n∑
i=1

ρ

(
θ − Li(h)

s

)
(10)

which letting σ2
µ(h) ..= varµ L(h), we know satisfies

P

|Ĉn(h)−Eµ L(h)| ≤ aσµ(h)

√
log(1/δ)

n

 ≥ 1− δ. (11)

This suggests the idea of replacing naive ERM algorithms (3) with alternatives of the form

Hn ∈ arg min
h∈H

Ĉn(h) (12)

where Ĉn(h) is computed using (10), or any of the other robust mean estimation procedures
mentioned earlier. This novel approach to designing a learning algorithm was studied in
seminal work by Brownlees et al. (2015). This work is conceptually important because it
rigorously demonstrates the statistical merits of using biased, robust estimators as objective
functions. Statistically speaking, for learning tasks under heavy-tailed data, it is possible
to show that any solution satisfying (12) enjoys strong guarantees in the classical paradigm,
i.e., in terms of the expected loss condition (4), that are not possible for naive ERM (3).

Of course, we can also view the objective in (12) from the population level as well,
namely we can define a learning criterion class as follows:

Cµ(h; s) ..= arg min
θ∈R

Eµ ρ

(
θ − L(h)

s

)
. (13)

With proper choice of ρ and s > 0, one can control the bias such that good performance
in terms of Cµ(h; s) implies good performance on average. More generally, however, it is
perfectly plausible to fix s and use Cµ(h; s) as the primary criterion for performance. In
any case, the chief limitation of this approach is computational; actual computation of
Hn in (12) is left abstract, since the minimization of Ĉn(·) given by (10) is a challenging
optimization problem.4 Since M-parameters (including all quantiles) are easy to compute
but difficult to minimize directly, they are perhaps best suited as evaluation metrics to be
coupled with a more convenient surrogate objective (Holland and Ikeda, 2017). For direct

4. Since the M-estimator is itself defined as the solution of a minimization problem, minimizing that quantity
as a function of h ∈ H is what is termed a bi-level program.
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minimization, a natural alternative is that of criteria which offer a smooth approximation
to quantiles, which are easy to optimize under typical base loss functions. Exponential
smoothing or “tilting” of the loss distribution (Li et al., 2020, 2021b) can be used effectively
to this end, and “inverted” variants of CVaR (Lee et al., 2020) can also be used to obtain
a similar effect. We will revisit both of these examples in more detail in §3.

2.2 Variance Control

All else equal, smaller variance tends to make statistical inference easier. Once again we will
use one-dimensional mean estimation as a motivating example, retaining the notation from
§2.1, as well as the assumption (2). Assuming X ∼ µ has finite variance σ2

µ, Chebyshev’s
inequality gives us a simple error bound on the sample mean Xn, namely that

|Xn −Eµ X| ≤ σµ
√

1
nδ

(14)

holds with probability no less than 1− δ, for any choice of 0 < δ ≤ 1. If we further assume
that X takes values on the unit interval [0, 1] ⊂ R with probability one, then once again
with probability no less than 1− δ, we have

|Xn −Eµ X| ≤ σµ

√
2 log(2/δ)

n
+ log(2/δ)

3n . (15)

This follows from a result known as Bennett’s inequality.5 Both (14) and (15) show us that
all else equal, a smaller variance can enable sharper guarantees. With this in mind, recalling
the ERM condition (3) and the fact that in general we may have many ERM solutions, it
is natural to prefer those with smaller variance (in terms of the loss distribution). Indeed,
as the bound (15) suggests, it is well-established that achieving a small variance can be
used to guarantee “fast rates” (i.e., better than O(

√
1/n)) for empirical risk minimizers.6

In terms of designing learning criteria, the simplest choice is just the sum

Cµ(h) = Eµ L(h) +
√
σ2
µ(h). (16)

This property of the loss distribution dates back to classical work on portfolio optimization
by Markowitz (1952) (originally without the square root on σ2

µ(h)), and replacing µ with
the empirical distribution induced by Zn, solutions to the resulting learning criterion mini-
mization were analyzed in influential work by Maurer and Pontil (2009). While statistically
easy to interpret and advantageous in theory, much like the robust objective (10) from §2.1,
naively trying to optimize for (16) can be computationally challenging. In particular, even
when the loss h 7→ `(h; Z) is convex, we cannot in general guarantee that h 7→ Cµ(h) in
(16) is convex. Recently, important insights have been established linking mean-variance
to certain objective functions from the field of distributionally robust optimization (DRO)
(Duchi and Namkoong, 2019; Gotoh et al., 2018), in which the goal is to minimize the
worst-case expected loss to be incurred over a set of distributions, rather than just one pre-
specified µ. These methods use asymmetric measures of deviation, which place more weight

5. See Boucheron et al. (2013, Ch. 2) for an authoritative modern reference.
6. See for example Duchi and Namkoong (2019) and the references therein.
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on worst-case tails and preserve convexity. This DRO approach to stochastic optimization
also has important applications to deal with data distribution shift, and will be introduced
formally in §3.

2.3 Risk-Averse Learning

In contrast to robustness concerns discussed in §2.1, where the expected loss was too sensi-
tive to the loss tails to allow for high-confidence guarantees, sometimes the tails are precisely
what we want to prioritize. This is an example of risk aversion, a tendency to overweight
bad events and underweight good events, where the terms “bad” and “good” may be subjec-
tive or have different meanings depending on the task at hand.7 One particularly intuitive
way to define a “bad” event is to use the quantiles of the loss distribution as a threshold.
Formally, let us denote the distribution function of L by Fµ(u) ..= P {L ≤ u}, and using
this, we define the β-level quantile of L as follows:8

Qβ(L) ..= min {u ∈ R : Fµ(u) ≥ β} , 0 < β < 1. (17)

Since losses come with the interpretation of larger being worse, a natural “bad” event is
something like {L ≥ Q0.95(L)}. As such, the average loss incurred beyond this threshold is
a perfectly natural class of learning criteria that generalizes beyond the mean:

Cµ(h;β) = Eµ

[
L(h) I{L(h) ≥ Qβ(h)}

]
, 0 ≤ β < 1. (18)

Once again, in (18) we overload our formal notation Qβ by defining Qβ(h) ..= Qβ(L(h)),
with the special case of β = 0 defined as

Cµ(h; 0) ..= lim
β→0+

Cµ(h; 0) = Eµ L(h).

Given a training sample Zn = (Z1, . . . ,Zn) and sorting the training losses as before such
that L[1] ≥ . . . ≥ L[n], for any quantile level 0 ≤ β ≤ 1, there exists a k ∈ [n] such that the
empirical objective analogous to (18) can be written

Ĉn(h; k) = 1
n

k∑
i=1

L[i](h).

A re-scaled variant known as the “average top-k” objective is given as

n

k
Ĉn(h; k) = 1

k

k∑
i=1

L[i](h) (19)

and algorithms based on (19) have been studied by Shalev-Shwartz and Wexler (2016) as
well as Fan et al. (2017a,b), though the issues of robustness mentioned in §2.1 are of course
still relevant here, which has naturally led to robustified variants (Holland and Haress,
2021). Setting k = n returns the usual empirical mean, and k = 1 yields a maximum value.

7. A classical reference from economics is Pratt (1964). See also Tversky and Kahneman (1992).
8. When Fµ(·) is not continuous, Qβ in (17) is sometimes distinguished as the “left” or “lower” quantile.
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Assuming the distribution function Fµ is continuous, we have P{L(h) > Qβ(h)} = P{L(h) ≥
Qβ(h)} = 1− β, and we can easily construct a (population) criterion corresponding to (19)
as

CCVaR
µ (h;β) ..= Cµ(h;β)

P{L(h) ≥ Qβ(h)} =
Eµ L(h) I{L(h) ≥ Qβ(h)}

1− β = Eµ

[
L(h) | L(h) ≥ Qβ(h)

]
.

(20)

In both (19) and (20), we are clearly considering the mean of a pre-specified fraction of
the largest losses. This quantity has been called the expected shortfall (Acerbi and Tasche,
2002a), and it is also well-known as conditional value-at-risk (CVaR) (Rockafellar and
Uryasev, 2000), a natural name given the right-most form in (20).9 The quantity given in
(20) can be seen as a special case of a much larger class of criteria under the name optimized
certainty equivalent (OCE), and is in fact also a limiting case of DRO risk functions (Duchi
and Namkoong, 2018). Both will be introduced with more generality in §3.

2.4 Fairness-Aware Learning

Since machine learning methods are increasingly being utilized to automate or support
real-world decisions, it is natural to run into issues of ethics and in particular fairness to
individuals or groups with certain traits. To give this broad concept an intuitive and clear
formalization, assuming the underlying data Z ∼ µ is a tuple of one or more random vari-
ables, let S denote a “sensitive” variable, representing one or more of the random variables
composing Z. In the context of supervised learning, where Z = (X,Y) and we want to
choose some h ∈ H such that we reliably get a sufficiently good prediction h(X) ≈ Y, the
sensitive variable S might be a subset of features in X, or indeed the class label Y. For
example, say Y is binary-valued and indicates success at graduating from university, and X
represents various attributes of an individual such as test grades in primary and secondary
school, extra-curricular honors, gender, ethnicity, and family income. In this case, S might
correspond to gender, ethnicity, and family income. If we take the traditional approach
of optimizing for prediction accuracy (i.e., minimizing P{h(X) 6= Y}), then it is of course
plausible that S plays a key role in accurately predicting Y, but without intervention, this
could result in individuals with certain traits being assigned predictions that are intuitively
unfair, even if they are “optimal” in terms of accuracy.

To mitigate this tendency, we must either change the ultimate objective directly, or
enforce some fairness constraints. There are numerous specific examples of fairness con-
straints in the literature, but one of the strongest is (statistical) parity (Dwork et al., 2012),
which asks that h(X) and S be statistically independent. This is the same as requiring that
h(X) and h(X) |S have the same distribution. A closely related notion looks at performance
through the lens of a loss function, i.e., asking that `(h; Z) and `(h; Z) |S have the same
distribution. Note that this lets us go well beyond the supervised learning paradigm.10

9. Nomenclature in the financial risk literature is somewhat convoluted; the paper of Acerbi and Tasche
(2002b) is a useful reference. For extensions beyond the continuous case, see Rockafellar and Uryasev
(2002).

10. Consider the example of Samadi et al. (2018), where dimension reduction using standard PCA can be
unfair in that low-education sub-groups incur a disproportionately high reconstruction error.
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Asking for the marginal and conditional distributions to be identical is an extremely strong
requirement; a much weaker constraint just asks that their expected values align, i.e., that

Eµ `(h; Z) = Eµ [`(h; Z) |S] (21)

hold with probability 1 over the random draw of S. This notion of “fairness via sub-
group risks” is formulated in a lucid way by Williamson and Menon (2019), though as they
mention, the underlying notion is present in several works preceding theirs (e.g., Hashimoto
et al. (2018)). While (21) is weaker than asking the marginal and conditional distributions
to align, the goal of choosing h ∈ H such that this equality holds is still not very realistic,
and further relaxations are required to link fairness constraints up to practical learning
algorithms.

In this direction, note that the right-hand side of (21) is a random variable depending
on the draw of S, but the left-hand side is a constant. As such, for (21) to hold, the random
variable on the right-hand side must have zero variance: varS(Eµ [`(h; Z) |S]) = 0. Relaxing
this, we could ask for ε-small variance, i.e., that varS(Eµ [`(h; Z) |S]) ≤ ε holds for some
ε > 0 that we specify. Recalling our previous discussion of the benefits of small variance in
§2.2, as a direct approach to this problem, we could naively introduce a learning criterion
of the form

Cµ(h) = Eµ L(h) +
√

varS (Eµ [L(h) |S]) (22)

where once again we write L(h) ..= `(h; Z) for readability. Just as in §2.2, using the sym-
metric variance as-is leads to computational difficulties, and more congenial alternatives
such as DRO and CVaR have been put to effective use in this direction (Hashimoto et al.,
2018; Williamson and Menon, 2019). A full description of these classes will be given in §3
to follow.

3. Key Classes of Learning Criteria

With the general learning problem formulated in §1.2 coupled with the motivating examples
discussed in §2, we will now dive into an exposition of some of the most important classes
of learning criteria that have arisen in and around the machine learning literature. For
readability, we shall divide this section into several sub-sections, each of which dedicated to
a certain class of interest.

3.1 Order-Based Criteria

Arguably the most intuitive strategy to design criteria going beyond the usual expected value
is to sort the (empirical) losses and assign weights depending on rank before summation.
Sorting can be done in either ascending or descending order, as long as we are consistent
with the weighting. We already saw examples of losses sorted in descending order in §1.3
and §2.3, and here we will consider sorting in ascending order, since that aligns us with the
literature we take as context. With n observations, let L(i)(h) denote the ith-smallest loss
under h. That is, the losses are sorted such that L(1)(h) ≤ . . . ≤ L(n)(h) holds. Letting
w ..= (w1, . . . , wn) denote non-negative weights, we can define a new objective function as
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follows:

Ĉn(h; w) =
n∑
i=1

wi L(i)(h). (23)

One classical motivation for this is to discard errant values to aid in estimating the pop-
ulation location, typically the mean or median.11 This can be achieved in a strict sense
by setting wi = 0 for rank i above or below certain thresholds, such that a pre-specified
fraction of the data is discarded. More generally, the idea of setting weights as a function
of rank is an important idea with a long history in statistics.12 Making this a bit more
explicit, letting W : [0, 1]→ [0,∞) denote a weighting function, the weights in (23) can be
set as wi = W (i/n), for each i ∈ [n]. Denoting the empirical distribution function of the
losses by Fn(u;h) ..=

∑n
i=1 I{Li(h) ≤ u}/n, note that we have Fn(L(i)(h);h) = i/n, and thus

(23) can be re-written as follows:

Ĉn(h; w) =
n∑
i=1

W (Fn(L(i))) L(i) =
n∑
i=1

W (Fn(Li)) Li (24)

where we have suppressed the dependence on h in the notation just for readability. Reading
left to right, the second equality in (24) clearly holds since passing unsorted losses through
the empirical CDF ensures they get the correct rank-based weighting. In moving from the
preceding empirical objective to (population) learning criteria, the two forms given in (24)
are indicative of two paths we can take. Since both paths are meaningful and have relevant
literature, we will look at both of them, one at a time.

The first path is centered around sorted losses. To link up sorted losses to quantiles,
recall our (population) definition of Qβ(L) in (17), and replace the true distribution function
Fµ with its empirical analogue Fn. This yields the empirical quantile (viewed as a function
of β) as follows:

Qβ,n
..= min {u ∈ R : Fn(u) ≥ β} , 0 < β ≤ 1. (25)

Ranked losses have a clear relation to the empirical quantiles. Note that for any 0 < β ≤ 1,
we have Qβ,n = L(dnβe). Since β 7→ Qβ,n(L) is just a simple step function, if we assume that
W (β) ≥ 0 for β ∈ {1/n, 2/n, . . . , 1} and W (β) = 0 elsewhere, we can once again re-write
(23) in terms of quantiles using an integral form, namely

Ĉn(h; w) =
∫ 1

0
W (β)Qβ,n(L) dβ (26)

where we set wi = W (i/n) for each i ∈ [n]. The equality in (26) uses the fact that
Fn(Qβ,n(L)) = β for all β ∈ {1/n, 2/n, . . . , 1}, plus the first equality in (24). With this
(empirical) form in mind, a population variant follows:

Cµ(L;W ) ..=
∫ 1

0
W (β) Qβ(L) dβ. (27)

11. This is the “discard-average” in classic work by Daniell (1920), who also cites a 1912 work of Poincaré.
12. See for example Bickel and Lehmann (1975) and the references therein. A more modern take on the

optimality of trimmed-means is given by Lugosi and Mendelson (2019b).
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Clearly, the criterion in (27) is completely characterized by the weighting function W (·). It
is also natural to extend the criterion definition to allow for any function W (·) such that
the integral on the right-hand side of (27) is finite (or at least well-defined). The general
form given by (27) can be used to capture a wide variety of well-known properties. Linear
combinations of order statistics, also known as “L-estimates,” have played an important
role in robust statistics (Huber and Ronchetti, 2009). Applications to robust unsupervised
learning, replacing average distortion with an “L-statistic” have also been studied recently
by Maurer et al. (2020).

The second path, motivated by the right-most form in (24), places its emphasis on rank-
based weighting (via a W -transformed distribution function) applied to unsorted losses.
Learning criteria of the form

Cµ(L;W ) = EµW (Fµ(L)) L (28)

play the central role here. This form has intuitive appeal, since we are working with losses
rather than quantiles, and concentration properties of the empirical CDF are well-known.
That said, we cannot naively cast this as a traditional ERM-style learning problem. This is
because for any i ∈ [n], the empirical quantity W (Fn(Li)) Li depends on the entire sample
Zn, and thus independence is lost. Getting around this requires W (·) to satisfy certain
continuity properties, and sharp concentration of Fn(·;h) around Fµ(·;h), uniform over
h ∈ H. Conditions for the uniform convergence of (24) to Cµ(h;W ) in (28) were studied
by Khim et al. (2020) under bounded losses and Lipschitz continuous W (·), with Cµ(·)
called the “L-risk.” An extension centered around Hölder-continuous functions defined on
families of distribution functions was developed recently by Liu et al. (2022). Finally, it
should be noted that when the underlying distribution function Fµ is invertible, the two
paths coincide, i.e., Cµ(L;W ) given in (27) and (28) are equal (Holland and Haress, 2022,
Lem. 1).

To complement the preceding general exposition, we look at several prominent special
cases that arise in the machine learning literature.

Example 6 (CVaR). It is well-established that CVaR as seen in (20) is a special case of the
form (27). In particular, we have

CCVaR
µ (h;β) =

∫ 1

0
Wβ(u) Qu(h) du, Wβ(u) ..= I{u ≥ β}

1− β (29)

for any choice of 0 ≤ β < 1.13 Since this weighting function determines a probability
measure over the unit interval, we are “averaging the quantile,” and since the left quantile
is often referred to as the value-at-risk, CVaR is also sometimes referred to as the average
value-at-risk (AVaR) (Ruszczyński and Shapiro, 2006a). In the context of machine learning,
CVaR is perhaps the best-known alternative to the mean. An early application can be found
in Kashima (2007), but analysis of stochastic learning algorithms under CVaR is far more
recent; see Cardoso and Xu (2019); Soma and Yoshida (2020); Curi et al. (2020); Holland
and Haress (2021) for representative works. �

13. See for example Corollary 4.3 and Eqn. 3.3 of Acerbi and Tasche (2002b), or Shapiro (2013, Eqn. 6).
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Example 7 (Spectral risk). A natural extension of the form (29) is to consider a weighting
function that places progressively more weight on the upper tails, satisfying

W (·) is non-decreasing on [0, 1] and
∫ 1

0
W (u) du = 1. (30)

Under the specifications of (30), learning criteria of the form (27) are called spectral risks
(Acerbi, 2002). Spectral risk estimators are studied by Pandey et al. (2019), and learning
theory for algorithms based on spectral risks is developed by Holland and Haress (2022)
and Liu et al. (2022). �

Example 8 (Average top-k). Given a finite sample Zn = (Z1, . . . ,Zn) and utilizing a weight
function defined as

Wk(u) ..= I{u ≥ (n− k)/n}
(k/n)

ensures we cut off all losses below a certain rank k ∈ [n], and then re-scale to get the
arithmetic mean of the k largest losses. Spelling this all out a bit more explicitly, setting
the weight function to W = Wk as just described in (26), we obtain∫ 1

0
Wk(u)Qu,n(h) du =

(
n

k

)∫ 1

(n−k)/n
Qu,n(h) du =

(
n

k

) n∑
i=n−k+1

L(i)(h)
n

= 1
k

k∑
i=1

L[i](h).

That is, we recover the average top-k empirical risk (19) as seen earlier in §2.3. As men-
tioned before, algorithms optimizing this objective has been studied in the recent machine
learning literature (Fan et al., 2017a,b; Shalev-Shwartz and Wexler, 2016). A handy com-
putational fact is that the map (x1, . . . , xn) 7→

∑k
i=1 x[i] is convex (Ogryczak and Tamir,

2003), although in general it is not differentiable. For smooth approximations, see Example
9 in the next sub-section. �

3.2 OCE Risks

We proceed by looking at a class of learning criteria with motivations quite different from the
order-based criteria seen in the preceding §3.1. To provide this class with some appropriate
historical context, let X ∼ µ be a random variable representing some uncertain future
“payout” (larger is better), and let f : R → R be in charge of assigning “utility” values
to raw payouts. Decision making under uncertainty is traditionally centered around the
expected utility, namely Eµ f(X). This fact is of course closely related to the classical
paradigm of statistical learning theory discussed in §1.1.14 With these elements in place,
the certainty equivalent of X under f is formally defined as

CEµ(X; f) ..= {θ ∈ R : f(θ) = Eµ f(X)} . (31)

In words, from the perspective of f(·), receiving θ ∈ CEµ(X; f) with certainty is just as
appealing as receiving X with uncertainty, where the uncertainty is summarized by averag-
ing.15 Building upon this concept, if θ ∈ R represents a certain payment, there are many

14. For more on expected utility and decision-making under certainty, see §4.1.
15. See Mas-Colell et al. (1995, Defn. 6.C.2) for more background on this notion in the context of preferences.
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situations in which committing to θ leaves us with an uncertain payment of X − θ. When
θ is something we can control, it is natural to “optimize” this value such that the overall
outcome is as preferable as possible, at least on average. Arguably the simplest way to eval-
uate such a situation is purely in terms of expected utility, with the best possible outcome
quantified as

sup
θ∈R

[f(θ) + Eµ f(X − θ)] .

A slightly modified version has us evaluate certain outcomes in their raw units, and uncertain
outcomes using utility, taking the expectation of their sum. More explicitly, we define

OCEµ(X; f) ..= sup
θ∈R

[θ + Eµ f(X − θ)] (32)

known as the optimized certainty equivalent (OCE), originally proposed and studied by Ben-
Tal and Teboulle (1986) assuming that f(·) is concave, monotonic (non-decreasing), and
“normalized” such that f(0) = 0 and 1 ∈ ∂f(0).16 Regarding the naming, (32) was originally
called NCE (new certainty equivalent) in (Ben-Tal and Teboulle, 1986), but two decades
later, the authors published an updated work on this quantity (Ben-Tal and Teboulle, 2007),
in which it was re-named OCE.17

Shifting our mindset from positively-oriented “payouts” to negatively oriented losses
gives us an analogous property for loss distributions. Letting L represent a random loss as
usual, the OCE risk associated with L under φ is defined by

OCEµ(L;φ) ..= inf
θ∈R

[θ + Eµ φ(L−θ)] (33)

where φ : R → R is assumed to have the same properties as f in (32), except that φ is
convex rather than concave, but still non-decreasing. We can easily link the OCE risk
of (33) with the OCE for payouts given by (32); given a utility function f , a “disutility”
function is naturally created by taking φ such that φ(x) = −f(−x). Note that there are
two minus signs here. First, x passed to φ will be a loss, and thus since we need to pass
f a payout, we pass it −x. Second, since f(·) returns utility (larger is better), −f(·) is
something to be minimized. This setting yields

OCEµ(L;φ) = inf
θ∈R

[θ −Eµ f(− L +θ)]

= − sup
θ∈R

(−1) [θ −Eµ f(− L +θ)]

= − sup
θ∈R

[−θ + Eµ f(− L +θ)]

= − sup
θ∈R

[θ + Eµ f(− L−θ)]

= −OCEµ(− L; f)

recalling that OCEµ(·) on the left-most side follows the definition (33), and OCEµ(·) on
the right-most side follows (32). Regardless of which form we use, the notion of a trade-off
between certain and uncertain outcomes is quite fundamental in the theory of risk functions.

16. See Ben-Tal and Teboulle (2007, Defn. 2.1) for example.
17. Still, the naming is peculiar; one would expect the arg maxθ∈R rather than the supθ∈R to be called OCE.
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If we overload the notation in (33) setting OCEµ(h;φ) ..= OCEµ(L(h);φ) for each h ∈ H,
this becomes another natural criterion for machine learning problems. One very important
quality of this class is the ease of preserving convexity. If h 7→ L(h) = `(h; Z) is convex on
H with probability one, then h 7→ OCEµ(h;φ) is also convex on H. Preserving convexity
depends critically on the monotonicity of φ; the convexity of φ alone is not sufficient.18 The
OCE risk class as a whole was tackled using traditional statistical learning theory techniques
and assumptions in an elegant way by Lee et al. (2020). Following their notation, by setting
ϕ(x) ..= φ(x)− x, we can re-write any OCE risk as

OCEµ(L;φ) = Eµ L + inf
θ∈R

[Eµ ϕ(L−θ)] (34)

which gives this learning criterion a natural interpretation as a “mean + deviation” sum.19
With the assumptions placed on φ (and thus ϕ), it follows that ϕ(x) ≥ 0 for all x ∈ R, and
thus (34) shows us that Eµ L ≤ OCEµ(L;φ) always holds. As we will see in the examples
to follow, OCE risks include important sub-classes that are well-known and well-studied in
their own right.
Example 9 (Tilted risk). For γ 6= 0, let us define

Cµ(h; γ) ..= 1
γ

log
(
Eµ eγ L(h)

)
(35)

and call this the γ-tilted risk, a term used recently in work by Li et al. (2020, 2021a). First
and foremost, when γ > 0, this is a special case of OCE risk (33), with φγ(x) ..= (eγx−1)/γ.
It also has a rather special property in that it can be seen as a certainty equivalent under
φγ , which is to say that for any choice of γ 6= 0, one can easily verify that

φ(Cµ(h; γ)) = Eµ φγ(L(h)). (36)

It must be noted however that when γ < 0, this Cµ(·; γ) is not a valid OCE risk, since φγ(·)
is concave, and plugging φ = φγ into (33) clearly leads to OCEµ(L;φγ) = −∞. That said,
while the OCE form is meaningless when γ < 0, the tilted risk form (35) is perfectly valid,
and for general choices of γ 6= 0, this objective has a long history of use in risk-sensitive
reinforcement learning; see García and Fernández (2015, §3.2.1). As described by Föllmer
and Knispel (2011), the special case of γ > 0 is often referred to as the entropic risk in
financial contexts. Viewed as a function of γ, the quantity γ Cµ(h; γ) is the logarithm of the
moment generating function of L(h), a quantity that plays an important role in statistical
theory (Stuart and Ord, 1994, Ch. 3). Replacing µ in (35) with the empirical distribution
on Zn = (Z1, . . . ,Zn), we get

Ĉn(h; γ) ..= 1
γ

log
(

1
n

n∑
i=1

eγ Li(h)
)

(37)

and taking γ > 0 sufficiently large gives us a smooth approximation to the “largest loss”
objective L(n) = L[1], a well-known technique from the optimization literature (Pee and
Royset, 2011). �

18. See the “Convexity Theorem” of Rockafellar and Uryasev (2013).
19. Using terminology from the fundamental risk quadrangle of Rockafellar and Uryasev (2013), Eµ φ in

(33) is a “regret measure,” and Eµ ϕ in (34) is an “error measure” quantifying the “nonzeroness” of L.
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Example 10 (CVaR). A very important special case of OCE risk is CVaR, given earlier in
the form (20) in §2.3. One of the central results in the seminal work of Rockafellar and
Uryasev (2000, 2002) is that CVaR as given by (20) can be represented using a convex
program, namely that

CCVaR
µ (h;β) = inf

θ∈R

[
θ + 1

1− β Eµ(L(h)− θ)+

]
= Qβ(h) + 1

1− β Eµ(L(h)−Qβ(h))+ (38)

holds for any 0 ≤ β < 1, where (x)+ ..= max{0, x} denotes the positive part. In particular,
this tells us that CVaR is an OCE risk with φ set to φ(x) = (x)+/(1−β). In the special case
of binary classification using margin errors `(h;x, y) = −y〈h, x〉/‖h‖ with y ∈ {−1,+1},
Takeda and Sugiyama (2008) showed that minimizing the CVaR objective (38) is equivalent
to solving the extended ν-SVM objective. On the other hand, when the underlying training
losses L1(h), . . . , Ln(h) are Bernoulli random variables (e.g., 0-1 error), Zhai et al. (2021b)
show how the CVaR objective collapses into the expected 0-1 error objective, though ran-
domizing the choice of h can be used to obtain distinct performance guarantees. �

Remark 11 (Inverted OCE). While traditional OCE risks are always at least as large as
the expected loss, giving us flexibility over sensitivity to tails in the upward direction, one
naturally may be interested in prioritizing tails in the downward direction, i.e., placing more
emphasis on “easy” examples and ignoring hard examples. Obviously this can be realized
directly using order-based risks as discussed in §3.1, but a slight modification to the OCE
risk class can also be used to achieve such as effect. Letting φ be as before, define the
inverted OCE risk by

IOCEµ(L;φ) ..= sup
θ∈R

[θ −Eµ φ(θ − L)] (39)

= − inf
θ∈R

[Eµ φ(θ − L)− θ] (40)

= Eµ L− inf
θ∈R

Eµ ϕ(θ − L) (41)

where ϕ(x) = φ(x) − x as before, meaning that since ϕ(x) ≥ 0 for all x ∈ R, the inverted
OCE can be no greater than the mean, i.e., IOCEµ(L;φ) ≤ Eµ L holds for all valid φ.
The naming is due to Lee et al. (2020), who also show that the special case of “inverted
CVaR” under the empirical distribution yields an “average bottom-k” risk (Lee et al., 2020,
Prop. 1), a fact analogous to the link seen earlier between traditional CVaR and average
top-k risk (cf. §2.3 and Ex. 8). In particular, this shows us that inverted OCE can be
used to completely ignore outliers in the upward direction; of course, when L is unbounded
below, sensitivity to outliers in the downward direction is amplified. Similarly, recalling the
special case of the tilted/entropic risk introduced earlier with φγ(x) = (eγx−1)/γ for γ > 0,
plugging this in to the inverted OCE (39), a bit of calculus quickly shows us that

IOCEµ(L;φγ) = 1
−γ

log
(
Eµ e−γ L

)
meaning that the tilted risk (35) using a negative tilting parameter is an inverted OCE risk,
as we might intuitively expect. Note that in general, the inverted OCE does not inherit the
convexity properties enjoyed by the original OCE. �
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Remark 12 (Dispersion and OCE). In light of the alternate form (34) for OCE risk, one
natural entry point when designing new learning criteria is to start with ϕ used to measure
“dispersion” in the underlying distribution. The canonical measure of dispersion is the
standard deviation, and noting that

inf
θ∈R

Eµ(L−θ)2 = Eµ(L−Eµ L)2 = varµ L

it seems intuitive to try setting ϕ(x) = x2/2. In this case, φ(x) = ϕ(x) + x indeed satisfies
1 ∈ ∂φ(0) and φ(0) = 0, but a lack of monotonicity means this choice, namely the mean-
variance Eµ L + varµ L, is not a valid OCE risk.20 Naively replacing this with φ(x) =
(x)2

+/2 + x does yield a valid OCE risk, but unfortunately it is not very interesting, since

inf
θ∈R

Eµ(L−θ)2
+ = 0

and thus the OCE risk collapses into the mean, i.e., OCEµ(L;φ) = Eµ L. This also means
that criteria based on asymmetric measures of dispersion relative to a fixed threshold θ,
such as

Eµ L +
(1
p

)
Eµ (L−θ)p+ (42)

and

Eµ L +
(
Eµ (L−θ)p+

)1/p
(43)

cannot be OCE risks for any value of p ≥ 1 and θ ∈ R such that Eµ (L−θ)p+ > 0. In
the special case where we set θ = Eµ L, the criterion (43) is known as mean-upper-semi-
deviation, and is well-studied in the literature, but not an OCE risk; see the examples in
Ruszczyński and Shapiro (2006b); Rockafellar and Uryasev (2013) for more background.�

3.3 DRO Risks

To motivate the next class of learning criteria, let us re-consider “worst case scenarios” in
a learning problem. Given a fixed data distribution Z ∼ µ and random test loss L ∈ Lµ(H)
with Lµ(H) as defined in (5) as usual, in the preceding §3.2 we saw OCE risks such as
entropic risk and CVaR which let us control the degree of sensitivity to the loss tails on the
upside, i.e., a bad event stated in terms of the random draw of L. This scenario is perfectly
natural, but recalling the key assumption (2) it usually assumes that we have training data
Zn = (Z1, . . . ,Zn) which are independently sampled from µ, and does not consider the
possibility that the data distribution at training time might differ from that at test time;
a case of distribution shift. In order to make a decision with some degree of resilience to a
shift in the data distribution, letting P denote a set of probability distributions defined on
the same domain as µ, one can formalize a new “worst-case” scenario using

CP(h) ..= sup {Cν(h) : ν ∈ P} (44)

20. Table 1 of Lee et al. (2020) incorrectly includes the mean-variance as an OCE risk.
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where L 7→ Cν(L) is an arbitrary learning criterion defined on Lν(H) for each ν ∈ P,
and we overload our notation with Cν(h) ..= Cν(L(h)) as usual. In the special case where
Cν L = Eν L, the objective (44) and algorithms designed to minimize it are categorized under
the term distributionally robust optimization (DRO), with (44) referred to as a DRO risk.
See Shapiro (2017) and the references therein for more background from the optimization
community. In the context of machine learning, the work of Duchi and Namkoong (2021)
has been particularly influential.

It goes without saying that the critical element of (44) is the set P, often referred to as
the uncertainty set (Duchi and Namkoong, 2021; Shapiro, 2017). Still assuming the training
data are sampled from µ, there must be some connection between µ and the elements of P
in order for the learning problem to be tractable. Even when µ ∈ P, if all the distributions
in P\{µ} are completely unrelated to µ, then we have no hope of minimizing CP(h) in (44),
even approximately. We only have access to a sample Zn from µ, and so the other elements
in P must be “similar” or “close” enough to µ that a straightforward perturbation of the
sample Zn can effectively simulate a sample taken from the most “unlucky” distribution
included in P.

A natural way of formalizing this notion is to introduce a measure of discrepancy between
probability distributions. Letting Div(·) be a function which takes a pair of probability
measures and returns a non-negative value from the extended real line, given the special
role of µ here, it is intuitive to constrain P in (44) to contain only distributions which
are ε-similar to µ, where discrepancy is measured by Div(·). More explicitly, we set P =
Pε(µ; Div) defined by

Pε(µ; Div) ..= {ν : Div(ν;µ) ≤ ε} . (45)

If in addition to Div(ν;µ) ≥ 0, we have Div(ν;µ) = 0 if and only if ν = µ, it is traditional
to call Div(·) a divergence.21 The best-known special case of a divergence is the Kullback-
Leibler (KL) divergence of ν from µ, defined by

DivKL(ν;µ) ..= Eν log
(dν

dµ

)
(46)

whenever ν � µ (absolute continuity), with DivKL(ν;µ) ..= ∞ otherwise. Here dν/dµ
denotes the Radon-Nikodym density of ν with respect to µ, a random variable.22 Note that
DivKL in (46) can be re-written as

DivKL(ν;µ) = Eµ

(dν
dµ

)
log

(dν
dµ

)
= Eµ

(dν
dµ

)
log

(dν
dµ

)
−Eµ

(dν
dµ

)
+ 1. (47)

In the right-most expression of (47), the density dν/dµ is being passed through the function
x 7→ x log(x) − x + 1 before taking expectation. This function is convex and non-negative
on [0,∞), taking its minimum (zero) at x = 1. An important generalization of the KL
divergence simply replaces this map with an arbitrary function x 7→ f(x) that retains the

21. There is a tremendous literature on divergences and their role in the problems of statistics, machine
learning, and information theory. See Grünwald and Dawid (2004) for a stimulating entry point.

22. For a textbook introduction to Radon-Nikodym densities, see Ash and Doléans-Dade (2000, §2.2).

801



Holland & Tanabe

key properties just mentioned. More formally, given a convex function f : [0,∞) → [0,∞]
satisfying f(1) = 0, we define the f -divergence of ν from µ by

Divf (ν;µ) ..= Eµ f

(dν
dµ

)
(48)

whenever ν � µ, otherwise setting Divf (ν;µ) ..= ∞ as before. While in principle all
sorts of different uncertainty sets can be conceived of, typical DRO risks in the machine
learning literature are all special cases of Pε(µ; Divf ). See recent work by Fröhlich and
Williamson (2023), who demonstrate sharp connections between the design of Pε(µ; Divf )
and distributions with “desirable” tail properties. Representative special cases of DRO risk
will be introduced in the examples to follow.
Example 13 (KL, DRO, and tilted risk). A natural first example is f(x) = x log(x)− x+ 1,
so that Divf = DivKL as given above. In this case, assuming that Cν(h) = Eν L(h) and the
absolute loss |L(h)| is bounded, when we set P = Pε(µ; DivKL) for ε > 0, the DRO risk (44)
can be expressed as

CP(h) = inf
γ>0

[
ε

γ
+ 1
γ

log
(
Eµ eγ L(h)

)]
. (49)

See Shapiro (2017, Ex. 3.11) and the references therein for more details on this derivation.
The equality (49) illustrates a close relation between the tilted risk under µ (cf. Example
9) and the worst-case mean over all ν which are at least ε-similar to µ in terms of KL
divergence. Taking ε > 0 large means we need to take γ > 0 correspondingly large in order
to minimize the objective in (49). Taking ε→ 0+ implies that the optimal tilting parameter
correspondingly decreases as γ → 0+. In this limit we have CP(h)→ Eµ L(h). Note however
that minimizing (49) in h is not in general equivalent to minimizing the γ-tilted risk (35)
for any fixed choice of γ, since the optimal γ in (49) changes with the choice of h. �

Example 14 (Cressie-Read DRO). A flexible and useful sub-class of f -divergences is given
by setting f = fc for functions of the form

fc(x) ..= xc − cx+ c− 1
c(c− 1) (50)

parameterized by any c ∈ R \ {0, 1}. In the limit of c→ 1, we have fc(x)→ x log(x)−x+ 1
and thus we recover KL divergence as a special case. This class is called the Cressie-Read
family of f -divergences by Duchi and Namkoong (2021), and restricting ourselves to c > 1,
setting P = Pε(µ; Divfc) we have

CP(h) = inf
θ∈R

[
θ + (1 + c(c− 1)ε)1/c (Eµ(L(h)− θ)c∗+

)1/c∗] (51)

for any choice of ε > 0 (Duchi and Namkoong, 2021, Lem. 1), where c∗ ..= c/(c − 1). The
expression in (51) is quite reminiscent of the OCE risk classes seen earlier, and indeed the
basic effect is very similar. Setting φc,ε(x) ..= (1 + c(c− 1)ε)c∗/c(x)c∗+ , we have

CP(h) = inf
θ∈R

[
θ + (Eµ φc,ε(L(h)− θ))1/c∗

]
(52)
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with φc,ε satisfying the key monotonicity and convexity properties required when making
OCE risks; the only difference is the (·)1/c∗ wrapping the expected value. In the end, both
Cressie-Read DRO risks and OCE risks give us control over how much priority to put on
“difficult” examples, where higher difficulty corresponds to larger losses incurred by a given
h ∈ H. Both classes are also risk-averse in the sense that they always upper-bound the
expected loss Eµ L(h). High tail sensitivity means that empirical estimates will have to deal
with outliers, making efficient estimation and learning under finite samples a challenge; as
a natural compromise, Zhai et al. (2021a) propose a variant of DRO risks which emphasizes
values of sufficient difficulty, but ignores everything beyond that threshold. �

Example 15 (Variance-based regularization). DRO risks received attention early on in the
context of reducing both the expected loss and its variance in order to obtain faster conver-
gence rate guarantees. Key initial works are the pre-prints (Duchi et al., 2016; Duchi and
Namkoong, 2016) and the conference paper of Namkoong and Duchi (2016), later distilled
into the journal papers (Duchi and Namkoong, 2019; Duchi et al., 2021). Of particular
importance is the fact the (empirical) minimizer of DRO risk (44) using an appropriate
choice of f -divergence (e.g., χ2-divergence) can be shown to enjoy high-probability bounds
on the expected loss taking the form

inf
h∈H

Eµ L(h) +O

√varµ L(h)
n

+O
( 1
n

)

where O(·) hides constants and factors depending on the confidence level for simplicity; see
Duchi and Namkoong (2019) and the references therein for more details. �

Example 16 (Sub-population awareness). A well-explored application of DRO risks is the
design of learning algorithms which have comparable performance across certain “sub-
populations.” Formally, if Z ∼ µ is our random data, we can formulate k sub-populations as
sets Z1, . . . , Zk that Z may fall into. For some intuitive examples, these sets could represent
data belonging to distinct ethnic, age, or gender categories, where k is the number of cate-
gories. Recalling §2.4 and the idea of fairness-aware learning, a natural goal is to reduce the
gap in performance across sub-populations that tends to arise under naive optimization of
the expected loss; this is called “representation disparity” by Hashimoto et al. (2018). One
direct way of doing this is to consider a worst-case objective over sub-populations, such as

max
j∈[k]

Eµ [L(h) |Z ∈ Zj ] . (53)

The objective in (53) can be bounded using DRO risk in a straightforward manner. Letting
νj denote the conditional distribution of Z |Z ∈ Zj for each j ∈ [k], clearly for any Z such
that µ{Z ∈ Z} = 0, we have νj{Z ∈ Z} = 0, meaning νj � µ holds, and we can find a
constant 0 < rmax <∞ such that

max
j∈[k]

dνj
dµ ≤ rmax (54)

with probability 1. It thus follows that

Divf (νj ;µ) = Eµ f

(dνj
dµ

)
≤ f (rmax) (55)
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and thus setting εmax ..= f (rmax), we have νj ∈ Pεmax(µ; Divf ) for each j ∈ [k]. We may
thus conclude that

max
j∈[k]

Eµ [L(h) |Z ∈ Zj ] = max
j∈[k]

Eνj L(h) ≤ CP(h) (56)

with P = Pεmax(µ; Divf ) as above. This useful and general fact is stated concisely by Zhai
et al. (2021a, Prop. 1), though it appears earlier for the special case of f = fc following
(50) with c = 2 (known as χ2-divergence) in Hashimoto et al. (2018, Prop. 2). This fact
is useful since it suggests that minimizing the DRO risk may be a fruitful strategy even in
the “oblivious” setting where the sub-populations are unknown. �

3.4 Miscellaneous

In the preceding §3.1–§3.3 we covered the three best-known classes of learning criteria in
the machine learning literature. In this section, we briefly introduce some other classes
which have appeared more recently in the literature.

3.4.1 Criteria Based on Bidirectional Dispersion

In our description earlier of OCE and DRO risks (with uncertainty set as in (45)), we saw
how these risks can be used to emphasize the tails in the upward direction, meaning that
for any criterion Cµ from either of these classes, we have

Eµ L ≤ Cµ(L), ∀ L ∈ Lµ(H) (57)

regardless of the properties of µ and H. We also saw an “inverted” version of OCE risks
(cf. Remark 11) which can be used to emphasize the tails on the downside, resulting in

Eµ L ≥ Cµ(L), ∀ L ∈ Lµ(H). (58)

In any case, all OCE risks (inverted variants included) and DRO risks are “uni-directional”
in the sense that either (57) or (58) holds; these criteria can only be “pulled” by heavy
tails in one direction, never two. More precisely, we cannot have two distinct distributions
L, L′ ∈ Lµ(H) where Eµ L ≥ Cµ(L) and Eµ L′ < Cµ(L′) hold simultaneously. Of course,
certain order-based criteria readily satisfy this. Considering the median for example, if
Q0.5(L) > Eµ L, then trivially Q0.5(− L) < Eµ(− L). On the other hand, as mentioned
in §2.1, while quantiles, like any M-parameter, are easy to compute, they are difficult to
optimize as a function of the loss distribution. A potential compromise can be achieved
using learning criteria of the general form

Cµ(L; θ, η, ρ) ..= ηθ + Eµ ρ (L−θ) (59)

where η ∈ R (negative values are allowed), θ ∈ R, and ρ : R→ [0,∞) is assumed to be such
that the induced set of M-parameters is non-empty and satisfies arg minθ∈R Eµ ρ (L−θ) ⊂ R.
The criterion Cµ(L; θ, η, ρ) is called the threshold risk (or T-risk) by Holland (2023). A
natural sub-class is the “minimal T-risk” given by

Cµ(L; η, ρ) ..= inf
θ∈R

Cµ(L; θ, η, ρ) (60)
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which requires that ρ grow without bound at a linear rate (or faster); otherwise trivially
Cµ(L; η, ρ) = −∞. This is a compromise in the sense that the criterion itself never yields
the M-parameters induced by ρ exactly, only a “regularized” version biased slightly above
or below, depending on sign(η). On the other hand, it is computationally much easier to
handle than true M-parameters, with minimization of Cµ(L; θ, η, ρ) in (L, θ) quite easy to
implement. The minimal T-risk (60) has obvious similarities to OCE risks from §3.2, but the
main difference is that ρ(·) can be non-monotonic. This means that convexity guarantees
for h 7→ Cµ(L(h); θ, η, ρ) are not in general possible, but it gives us the flexibility to set η
to both positive and negative values for a fixed ρ, and allows for bidirectional sensitivity to
loss tails that is not possible with OCE or DRO risks.23 This positions the minimal T-risk
in a somewhat peculiar middle-ground; it does not appear in the survey of Ruszczyński and
Shapiro (2006b), nor on any corner of the “quadrangles” in the rich examples of Rockafellar
and Uryasev (2013).
Example 17 (Quantile-based thresholds). Setting ρ(·) = |·| and manipulating η ∈ (−1,+1),
we can set the T-risk threshold to any quantile of L. More precisely, if we set η = 1 − 2β
for any quantile level 0 < β < 1, we have

Cµ(L; η, ρ) = (1− 2β) Qβ(L) + Eµ ρ|L−Qβ(L)|.

For more on properties defined using convex programs, see Koltchinskii (1997). �

Example 18 (Weakly convex T-risk). While the objective h 7→ Cµ(L(h); θ, η, ρ) will not in
general be convex when ρ is non-monotonic, a form of weak convexity can be guaranteed
when the losses are sufficiently smooth (in h) using convex ρ with sub-quadratic growth in
the limit. One useful example is

ρ(x) = x atan(x)− log(1 + x2)
2 (61)

whose strict convexity and Lipschitz continuity are amenable to weak convexity arguments,
and coupled with a re-scaling mechanism lets us flexibly interpolate the minimizing thresh-
old between Eµ L and Q0.5(L) (Holland, 2022). �

3.4.2 Criteria Inspired by Human Psychology

A unique and interesting direction is designing learning criteria which attempt to mimic
human tendencies for risk aversion (or preference) when making decisions under uncertainty.
In terms of the machine learning literature, the most salient example is an application of
the metrics used in the cumulative prospect theory (CPT) of Tversky and Kahneman (1992).
Roughly speaking, “prospect” refers to subjective evaluations of uncertain outcomes. To
make our explanation as clear as possible, let us denote this uncertain outcome using an
arbitrary random variable X ∼ µ. Let V (·) be a “value” function, and let Fµ denote the
distribution function of X, namely Fµ(x) ..= P{X ≤ x}. The CPT score assigned to X is
defined by taking the expectation using a modified distribution function F̃µ, namely

CPTµ(X) ..=
∫
R
V (x) F̃µ(dx). (62)

23. Early work on this class for a rather specialized choice of ρ dates back to a 2020 pre-print by Holland
(2020), later expanded by Holland (2022). See Holland (2023) for more general results.
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Thus, the CPT score is characterized by the value function V and the transformation
Fµ 7→ F̃µ. Setting c as a threshold (often c = 0), using indicators I{X ≥ c} and I{X < c}
the CPT score typically treats these two mutually exclusive events differently. To do this,
we construct value functions V+ and V− and differentiable weighting functions w+ and w−
for each of these cases, setting

V (x) = I{x ≥ c}V+(x) + I{x < c}V−(x)
F̃(x) = I{x ≥ c}w+(F(x)) + I{x < c}w−(F(x)).

Putting these pieces together, the resulting CPT score takes the more explicit form

CPTµ(X) =
∫ c

−∞
V−(x) w′−(F(x)) F(dx) +

∫ ∞
c

V+(x) w′+(F(x)) F(dx) (63)

where w′+ and w′− are the derivatives of the weight functions. The threshold of c = 0 is often
used, but this is of course arbitrary; it can be set to any meaningful value given the context.
The important concepts here are as follows: (a) “gains” and “losses” relative to some
threshold are treated differently in human psychology; (b) small probabilities tend to be
underweighted, large probabilities tend to be overweighted. See Rieger and Wang (2006) for
a useful background reference. Taking this from CPT scores to a natural notion of CPT risk
just amounts to setting X = L(h), with our usual shorthand notation CPT(h) ..= CPT(L(h))
for each h ∈ H. While the general-purpose CPT score itself is well-known, literature on the
CPT risk in machine learning remains quite sparse. Concentration bounds for estimators
of the CPT risk (pointwise in h) are given by Bhat and Prashanth (2019). To the best of
our knowledge, it appears that Liu et al. (2019) are the first to consider learning with CPT
risks, under the catchy name “human-aligned risks,” although their studies are limited to
an empirical analysis of learning using ERM implementations of certain special sub-classes
of CPT risks. Under some assumptions, statistical learning guarantees are possible for
specialized sub-classes of CPT risk using the machinery of Liu et al. (2022).
Example 19 (Links to order-based risks). Recalling our formulation of order-based risks in
§3.1, there is clear conceptual overlap with the CPT risk just introduced. Using a weight
function

WCPT(u) ..= I {u ≥ Fµ(c)}w′+(u) + I{u < Fµ(c)}w′−(u)

we see that the criterion Cµ(L;W ) in (28) can be used to represent a particular CPT risk,
i.e., leaving the value function as the identity V (x) = x, setting W = WCPT we have

CPTµ(L) = Cµ(L;WCPT).

The general value function is not present in our formulation in §3.1, but it should be noted
that arbitrary (value) functions of order statistics are reflected in the textbook formulation
of L-estimates given by Huber and Ronchetti (2009, Ch. 3). �

4. Historical Background

To complement the preceding survey of criteria used in machine learning, we take a deeper
look at the historical context within which the “classical paradigm” described in §1.1 de-
veloped.
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4.1 Origins of Expected Loss Minimization

The problem of decision-making under uncertainty has interested scholars for centuries. For
an uncertain outcome which can be expressed numerically, the traditional “mathematical
expectation” is the sum of all possible outcomes, weighted by the probability of each out-
come.24 This notion was clearly described in letters from the Bernoullis and Gabriel Cramer
dating back to the early 18th century (Bassett, 1987). With the expected value defined as
a probability-weighted sum, then a problem of fundamental importance is how to evaluate
outcomes, namely the process of assigning numerical values to real-world outcomes, which
are appropriate within the context of the decisions that need to be made. The importance
of this is highlighted by the “St. Petersburg paradox,” dating back to Nikolaus and Daniel
Bernoulli (Menger, 1967). Consider the following game: a fair coin is tossed until it turns up
heads, and one receives a payment of 2K dollars (or ducats), where K is a random variable
representing the number of tosses it took for heads to turn up. Note that K is bounded below
by 1, and unbounded above. The expected payout is E[2K] = 2(1/2) + 22(1/22) + · · · =∞.
While the expected payout is infinite, it seems irrational to pay a large amount to play this
game, and thus arises the need to refine how we evaluate outcomes when making decisions.
Essentially, this amounts to transforming the raw payouts in such a way that better reflects
human preferences, say by introducing a function f such that E[f(2K)] <∞. More gener-
ally, given any uncertain outcome X, the transformed value f(X) is often called the utility
of that outcome.25 The basic decision-making principle derived from this line of thought is
simple: act in a way that maximizes the expected utility.26

Over the course of the 20th century, the theoretical foundations of this principle were
substantially strengthened. Of particular historical significance is the seminal theory of
games developed by von Neumann and Morgenstern (1953), where expected utility E[f(X)]
appears in the context of axioms related to preferences over uncertain outcomes (or “lotter-
ies”) that we expect any “rational” agent to satisfy. These axioms are typically stated with
respect to a class of uncertain outcomes, here a set X of random variables. The famous
“expected utility theorem” states that any agent satisfying these axioms (under X ) must
assign its preferences based on expected utility, that is, there exists a utility function f such
that for any X1,X2 ∈ X , we have X1 � X2 (i.e., “X2 is no worse than X1”) if and only if
E[f(X1)] ≤ E[f(X2)].27 As such, when the agent can choose between uncertain outcomes,

24. Historically, a broader notion of “expectation” can in many ways be seen as a more basic (and intuitive)
concept than that of probability. Expectations are central to fair pricing in games of chance described
by Christian Huygens in 1657, see Hacking (2006, Ch. 11) for detailed background, and Pollard (2002,
Ch. 1) for similar ideas in the context of measure theoretic foundations.

25. The expected utility was historically referred to as the “moral expectation” (in contrast to the math-
ematical expectation) by Daniel Bernoulli, who suggested using the utility function f(x) = log(x) as
a solution to the St. Petersburg problem (Jordan, 1924). From our modern viewpoint, it is clear that
this only solves one special case of the problem, since given any f which is unbounded above, one can
construct an analogous payout scheme such that the expected utility is infinite. The first work known to
have pointed out this problem was a 1934 work in German by Karl Menger (Menger, 1967); see Bassett
(1987) for an interesting discussion on the history of this issue.

26. For more history on expected utility and its role in the theory of the social sciences (especially economics),
see the works of Jordan (1924), Uzawa (1956), Samuelson (1977), and Bassett (1987).

27. For a modern proof of this fact for discrete random variables, see Mas-Colell et al. (1995, Props. 6.B.3,
6.E.1). Regarding the terminology used by von Neumann and Morgenstern, they use the term “utility”
to describe the real-world concept to which we attach preferences, and “numerical utility” to refer to
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it will choose the one with the largest expected utility. Due to the significant influence of
this work, the decision-making principle of maximizing the expected utility is essentially
synonymous with the “rational agent” model pervasive in the social sciences (Tversky and
Kahneman, 1992; Mas-Colell et al., 1995).

Since the usual form of expected utility is a probability-weighted sum, one naturally
runs into the question of where these probabilities come from, and what they mean.28
When betting on the outcome of a coin toss, under most conditions it is reasonable to
say that the equal probability of heads and tails is a fact of nature, and the probabilities
P{X = “heads”} = P{X = “tails”} = 1/2 are in this sense objectively determined. On
the other hand, consider the question of “will the stock price of Company ABCD rise next
quarter?” This is a typical example of uncertainty in the real world, and while the possible
outcomes are crystal-clear (the price will either rise, or it will not), it is very difficult
to conceive of any kind of objective probability that can be assigned to such an uncertain
outcome. Depending on knowledge and past experience (among countless other factors), the
probability that different parties assign to this event will assuredly differ, making probability
an inherently subjective notion. Indeed, if we polled a handful of stock traders, employees of
Company ABCD, and individuals with no interest or knowledge of the company, we would
not be surprised if all these parties had very different expectations.29

Historically, this dichotomy of objective and subjective probability has received a great
deal of attention, and underlies much scholarly activity in many disciplines. For example,
objective probability can be seen as underlying the principle of repeated sampling, which is
central to the statistical methodology of Fisher (Young and Smith, 2005). Indeed, it is hard
to justify a procedure of taking controlled random samples to estimate probability unless
that probability is “well-defined” in an objective sense. In contrast, Bayesian statistical
methods give the statistician the freedom to reflect opinion and knowledge (or a lack thereof)
in the inferential procedure, through a prior distribution over the parameter set, which
allows for a subjective interpretation of the probabilistic model.30 Given identical data
sets, different statisticians can arrive at different conclusions. Arguably the most influential
proponent of subjective probability is that of Leonard J. Savage; in his seminal work (Savage,
1954), he builds a theory of probability and statistics which is centered on “personal”
probability. In the context of Bayesian inference, this approach can be implemented by
emphasizing a subjective prior (Young and Smith, 2005, Sec. 3.6). Recalling the expected
utility theorem described earlier, Savage proves an analogous theorem, but manages to do

functions that satisfy the properties of what we call the expected utility (von Neumann and Morgenstern,
1953, Sec. 3.5.1). The requirements that they place on numerical utilities (e.g., their axioms (3:1:a) and
(3:1:b)) can be interpreted as conditions on maps from X to R, without explicitly involving a function f .
Some authors refer to f as a Bernoulli utility function, and E[f(X)] as the von Neumann-Morgenstern
utility (Mas-Colell et al., 1995, Ch. 6, footnote 12).

28. Another important question is that of how to best represent probability in a mathematical form. See
Pollard (2002, Ch. 1) and the references therein for a start on how the modern answer to this question
was developed.

29. Clearly, many decisions under uncertainty will inevitably involve subjective probabilities. Recent books
by Taleb (2008) and Kahneman (2011) aimed at broad audiences give a lucid discussion of the potential
ramifications that this subjectivity has on our interaction with complex systems, in particular those of
a socioeconomic nature.

30. For a textbook introduction to statistical inference that effectively describes the development of the field
within the context of all the major schools of thought, Young and Smith (2005) is a useful reference.
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it without assuming given probabilities (used in computing an “objective” expected utility),
and instead shows that the rational agent axioms imply a form of subjective expected utility
maximization.31 This view of probability and decision-making is prevalent in modern game
theory (Osborne and Rubinstein, 1994, Sec. 1.4), and the subjective expected utility theorem
is a foundational result in the broader context of decision theory (Steele and Stefánsson,
2020).

The final important historical development we should highlight is that of viewing statisti-
cal inference as a decision-making problem, in contrast with the classical notion of inference
being a rather mechanical summary of data (Young and Smith, 2005, Ch. 1–2). Of partic-
ular importance is the work of Abraham Wald, which laid the foundations for statistical
decision theory (Wald, 1939, 1945, 1949). One key theme is that from the statistician’s
perspective, different types of errors may naturally have a different importance, or weight.
Starting with his seminal 1939 work (Wald, 1939), Wald introduces a general-purpose loss
function (what he calls a “weight function”) that quantifies this decision-dependent im-
portance, and captures a wide class of statistical problems by formulating them in terms
of minimizing the expected loss, or what he calls the “risk.”32 Underlying this “risk,” of
course, is a random loss. With Wald’s framework as context, a straightforward generaliza-
tion beyond typical statistical models and tasks leads us directly to the random test loss
`(h; Z) that appears throughout §1–§3, depending on the candidate h ∈ H. In particular,
note that the class of random losses {`(h; Z) : h ∈ H} is in direct analogy with the class
of “lotteries” X = {X1,X2, . . .} discussed earlier in the context of expected utility. Fur-
thermore, an important characteristic of the decision-theoretic approach to statistics is an
emphasis upon the optimality of general inferential procedures, stated in terms that do not
depend on any particular dataset (Young and Smith, 2005, Ch. 1). In short, the qualities of
data-driven algorithms become an important object of analysis, which makes for a smooth
methodological transition to machine learning problems.

4.2 Expected Loss and Learning Problems

Here we provide some additional justification for our position (cf. §1.1) that emphasizing
performance on average is the dominant paradigm in machine learning. A natural starting
point is the Perceptron of Frank Rosenblatt in the late 1950s (Rosenblatt, 1958), and the
1962 proof of the convergence of the Perceptron learning algorithm (here, PLA) for linearly
separable data.33 This important result is recognized as having effectively “started learning
theory” (Vapnik, 1999, p. 5). Making this a bit more concrete, given a dataset of n points
Zn = (Z1, . . . ,Zn), assumed to be input-output pairs Zi = (Xi,Yi) with binary labels
Yi ∈ {−1,+1}, and denoting the zero-one training losses as Li(h) ..= I{h(Xi) 6= Yi} for
i ∈ [n], the convergence theorem tells us that whenever perfect accuracy is possible, then

31. See Mas-Colell et al. (1995, Sec. 6.F) for a high-level description and useful references.
32. Let us compare Wald’s terminology with ours (cf. §1.2). The “loss” of Wald (1939) depends on an

unknown true model parameter (denoted by θ in his notation), so his “loss” corresponds more closely to
a criterion Cµ here, and his “risk” then amounts to E[Cµ(Hn)], with expectation taken over Zn.

33. See Novikoff (1963) and Minsky and Papert (1969, Ch. 11) for background on this result.
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the PLA output Zn 7→ HPLA will achieve it, namely that

1
n

n∑
i=1

Li(HPLA) = 0. (64)

In the context of learning, the question is then how the PLA generalizes to new data.
Given an independent test point Z = (X,Y) and writing L(h) = I{h(X) 6= Y}, off-sample
misclassification is characterized by L(HPLA). Since this is just a Bernoulli random variable,
its distribution is characterized by its mean. With the key fact of (64) in mind, the question
of generalization can then be reduced to (uniform) control of the deviations between “relative
frequencies of events and their probability,” which is precisely the topic of the seminal 1971
paper of Vapnik and Chervonenkis (1971).

The approach of the original “VC theory” goes well beyond hyperplanes and PLA.
Assuming Z and Zn are independently sampled from µ, for any modelH of binary classifiers,
write Ĉn(h) = (1/n)

∑n
i=1 Li(h) and Cµ(h) = P{h(X) 6= Y} for the empirical and true zero-

one risk, respectively, and note that for the output Hn of any learning algorithm (not just
PLA), we trivially have

|Ĉn(Hn)− Cµ(Hn)| ≤ sup
h∈H
|Ĉn(h)− Cµ(h)|. (65)

The results of (Vapnik and Chervonenkis, 1971) enable us to characterize the convergence
properties of the right-hand side of (65) based on properties of the model H that are
of a combinatorial nature. Having this control is particularly useful for evaluating the
performance of empirical risk minimizers, namely any algorithm which minimizes Ĉn, such
as PLA under linearly separable data. Making this explicit, if we constrain the learning
algorithm such that Hn minimizes Ĉn, since for any fixed reference point h∗ ∈ H we have
Ĉn(Hn) ≤ Ĉn(h∗), it follows that

Cµ(Hn)− Cµ(h∗) = Cµ(Hn)− Ĉn(Hn) + Ĉn(Hn)− Ĉn(h∗) + Ĉn(h∗)− Cµ(h∗)
≤ 2 sup

h∈H
|Ĉn(h)− Cµ(h)|. (66)

Assuming Cµ takes its minimum on H, an obvious reference point h∗ ∈ H is a minimizer
of the expected test loss, i.e., Cµ(h∗) = C∗µ ..= inf{Cµ(h) : h ∈ H}. This C∗µ represents the
best off-sample performance we can hope to achieve, and thus it is natural to ask that the
learning algorithm be able to get arbitrarily close to this benchmark with sufficiently high
probability, given enough data. More precisely, we can make the following requirement:

∀ ε > 0, lim
n→∞

P
{

Cµ(Hn)− C∗µ > ε
}

= 0. (67)

This is just convergence of Cµ(Hn) → C∗µ in probability, also known as consistency of the
learning algorithm. There is no conceptual reason to limit this analytical framework to the
zero-one loss; any random loss L(h) ..= `(h; Z) with finite expectation Cµ(h) = Eµ L(h) can
in principle be considered. Minimizing the expected value of a general-purpose loss over a
hypothesis class H is the “general setting” of learning formulated by Vapnik (1999, Ch. 1).
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The requirement (67) can be stated in a different but equivalent fashion as follows: for
any desired accuracy ε > 0 and confidence 0 < δ < 1, there must exist N(ε, δ) ∈ N such
that for any n ≥ N(ε, δ), we have

P
{

Cµ(Hn)− C∗µ > ε
}
≤ δ. (68)

The condition (68) emphasizes precision and confidence requirements explicitly through the
parameters ε and δ respectively. The highly influential work of Valiant (1984b) considers
a learning model which emphasizes precisely these points, with a particular interest in the
computational complexity of achieving the (ε, δ)-condition in (68). This became known
as the PAC-learning model.34 In effect, the work of Valiant brought the consistency re-
quirement to the community of computer scientists working on machine learning.35 In this
community, as is mentioned by Kearns et al. (1994), it should be noted that the emphasis
on the expected value of a generic loss (i.e., the general setting of Vapnik) was largely due
to the learning model studied by Haussler (1992), in which the classical risk Eµ L(h) plays
a central role.

To conclude this section, given the historical context established in the preceding para-
graphs, we give a brief overview highlighting how “learning as expected loss minimization”
is emphasized in many influential and widely-read textbooks. Kearns and Vazirani (1994)
give an elementary introduction to the PAC-learning framework and basics of VC theory,
with emphasis placed on computational tractability and tasks of interest in computer sci-
ence. It goes without saying that all the books of Vapnik (Vapnik, 1982, 1998, 1999) are
chiefly concerned with the problem of expected loss minimization. While restricted to the
pattern recognition problem (binary classification), the highly influential text of Devroye
et al. (1996) characterizes the learning problem in terms of Eµ [L(Hn) |Zn], formulated using
the consistency condition (67). Expected loss is also central to the learning setup in the
textbook of Ripley (1996). This setup is carried on by Anthony and Bartlett (1999), in their
text on neural network learning. A more modern textbook dealing with statistical and com-
putational learning theory is Mohri et al. (2012), and the expected loss plays a foundational
role. Expected loss is used as a central criterion in the introductory text of Shalev-Shwartz
and Ben-David (2014), which also emphasizes links between stochastic optimization and
machine learning. It is clear that these theory-oriented textbooks are centered around the
expected loss, but this notion also appears frequently in more applied machine learning
textbooks aimed at introducing key methods and tools to a general audience, albeit in more

34. The original idea of (Valiant, 1984b) was fleshed out further in subsequent works by Valiant (1984a,
1985). The naming of this model given in the main text (PAC: probably approximately correct) appears
to date back to Angluin (1988) and Angluin and Laird (1988). The textbook of Kearns and Vazirani
(1994) provides good additional background.

35. While the PAC-learning model was the first to receive widespread attention, clearly the general setting
of Vapnik supersedes the PAC-learning model; the (ε, δ)-condition (68) appears from the start of a book
by Vapnik (1982, Sec. 1.6), a 1982 English translation of a Russian book published in 1979. However, the
work of Vapnik was not well-known by computer scientists in the West until the late 1980s, in particular
due to the influential work of Blumer et al. (1989), who introduced and built upon the seminal paper
of Vapnik and Chervonenkis (1971). As an aside, according to Vapnik (2006, Ch. 2), L. Valiant did
not know of his work when authoring his influential 1984 article (Valiant, 1984b). On the other hand,
many probability theorists in the West were familiar with the work of Vapnik and Chervonenkis; see for
example Dudley (1978) or Pollard (1984).
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of a supplementary role. To give a few examples, we have MacKay (2003, Ch. 36), Bishop
(2006, Ch. 1), Murphy (2012, Ch. 5–6), Goodfellow et al. (2016, Ch. 5), among others.
Given this bibliographic evidence, along with the historical context provided in section 4.1
earlier, it is evident that the notion of expected loss as a metric for off-sample generalization
has been pervasive in both the theory and practice of modern machine learning.

5. A Look Forward

In the preceding §1–§4, it has been our aim to provide the reader with a unified introductory
look at the key classes of criteria that have been studied and applied in the machine learning
literature, with the traditional mean-driven paradigm providing important historical context
for recent developments. Within this paper, the base loss function `(·), the decision set H,
and the desirability set C were all left abstract, with focus placed on the learning criterion
Cµ(L). Moving forward, a natural direction of interest is to ask how these four elements
can interact with each other. Consider the following broad points of inquiry:

• Starting with ` and Cµ, when can we reduce the problem (7) (under `) into problem
(4) under a different loss function?

• Can we identify conditions (on `, H, and µ) under which traditional norm-based
regularization can be emulated using an appropriately designed Cµ?

• How does the theory of surrogate function design change under intractable loss func-
tions (e.g., zero-one) when Cµ does not depend linearly on µ? (e.g., Cµ(L) = varµ L)

Beyond these points of technical interest, there is the glaring methodological problem that
in many cases, it simply is not clear which criterion is “best” for a given problem, since this is
often subjective, with precise numerical thresholds difficult to pin down, and will differ from
case to case. Solutions to this problem (e.g., metric elicitation (Ali et al., 2022)) are still
in their infancy, but there is no question that the development of principled, transparent,
and accessible procedures for criteria design, ideally tied in with the back-end algorithmic
details, is an important frontier for machine learning research.
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