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Abstract
Federated learning (FL) learns a model jointly from a set of participating devices

without sharing each other’s privately held data. The characteristics of non-i.i.d. data
across the network, low device participation, high communication costs, and the mandate
that data remain private bring challenges in understanding the convergence of FL algorithms,
particularly regarding how convergence scales with the number of participating devices.
In this paper, we focus on Federated Averaging (FedAvg), one of the most popular and
effective FL algorithms in use today, as well as its Nesterov accelerated variant, and
conduct a systematic study of how their convergence scale with the number of participating
devices under non-i.i.d. data and partial participation in convex settings. We provide a
unified analysis that establishes convergence guarantees for FedAvg under strongly convex,
convex, and overparameterized strongly convex problems. We show that FedAvg enjoys
linear speedup in each case, although with different convergence rates and communication
efficiencies. For strongly convex and convex problems, we also characterize the corresponding
convergence rates for the Nesterov accelerated FedAvg algorithm, which are the first linear
speedup guarantees for momentum variants of FedAvg in convex settings. Empirical studies
of the algorithms in various settings have supported our theoretical results.

1. Introduction

Federated learning (FL) is a machine learning paradigm where many clients (e.g., mobile
devices or organizations) collaboratively train a model under the orchestration of a central
server (e.g., service provider), while keeping the training data decentralized in order to
protect privacy and improve efficiency (Konečnỳ et al., 2016; McMahan et al., 2017; Smith
et al., 2017; Li et al., 2020b; Kairouz et al., 2021; Yang et al., 2019; Wang et al., 2021; Li
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et al., 2021). In recent years, FL has swiftly emerged as an important learning paradigm,
enjoying widespread success in such diverse applications as personalized recommendations
and assistance (Chen et al., 2018; Lam et al., 2019), keyboard suggestion and prediction
(Hard et al., 2018; Yang et al., 2018), smart healthcare (Rieke et al., 2020; Brisimi et al.,
2018), and the Internet of Things (IoT) (Zhao et al., 2019; Nguyen et al., 2021), to name
a few. There are at least three reasons for its popularity: First, the rapid proliferation of
smart devices that are equipped with both computing power and data-capturing capabilities
provided the infrastructure core for FL (Qin et al., 2021). Second, the rising awareness
of privacy and the explosive growth of computational power in mobile devices have made
it increasingly attractive to push the computation to the edge (Lim et al., 2020). Third,
the empirical success of communication-efficient FL algorithms has enabled increasingly
larger-scale parallel computing and learning with less communication overhead (McMahan
et al., 2017; Sattler et al., 2019).

Despite its promise and broad applicability, the potential value FL delivers is coupled
with the unique challenges it brings (Li et al., 2020a). In particular, when FL learns a
single statistical model using data from across all the devices while keeping each individual
device’s data isolated, it faces two challenges that are absent in centralized optimization and
distributed (stochastic) optimization (Zhou and Cong, 2018; Woodworth et al., 2018; Jiang
and Agrawal, 2018; Woodworth et al., 2020b; Charles and Konečnỳ, 2021; Luo et al., 2021;
Tan et al., 2022):

1) Data heterogeneity (non-i.i.d. data): data distributions on local devices/servers
are different, and data cannot be shared across devices;

2) System heterogeneity (partial participation): only a subset of devices may
access the central server at each time, which happens because the communication bandwidth
profiles vary across devices and there is no central server that has control over when a device
is active. 1

To address these challenges, Federated Averaging (FedAvg) (McMahan et al., 2017) was
proposed as a particularly effective heuristic, which has enjoyed great empirical success. This
success has since motivated a growing line of research efforts into understanding its theoretical
convergence guarantees in various settings (Stich, 2019; Khaled et al., 2019; Haddadpour and
Mahdavi, 2019; Li et al., 2020c; Wang et al., 2019; Yu et al., 2019a,b; Wang and Joshi, 2021;
Koloskova et al., 2020; Woodworth et al., 2020a; Khaled et al., 2020; Yang et al., 2020). In
these works, Li et al. (2020c) was among the first to establish an O( 1T ) convergence rate for
FedAvg for strongly convex smooth FL problems with both data and system heterogeneities.
When only data heterogeneity is present, Khaled et al. (2020) provides tight convergence
results with linear speedup analysis in convex settings. In non-convex settings, Yang et al.
(2020) obtained linear speedup convergence results for FedAvg under both non-i.i.d. data
and partial participation.

Despite the recent fruitful efforts to understand the theoretical convergence properties
of FedAvg, the question of how the number of participating devices affects the convergence
speed remains to be answered fully when both data and system heterogeneity are present.
In particular, is linear speedup of FedAvg a universal phenomenon across different settings

1. In some prior works, e.g., Reisizadeh et al. (2022), the problem of stragglers, where slow local devices lag
behind overall communication frequencies, is also included in discussions on system heterogeneity. In this
paper, we focus on the partial participation aspect of the system heterogeneity problem.
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Full O( 1
NT + E2

T 2 ) O
(

1√
NT

+ NE2

T

)
O(exp(−NT

Eκ ))

Partial O
(

E
KT + E2

T 2

)
O
(

E√
KT

+ KE2

T

)
O(exp(−KT

Eκ ))

Table 1: Our convergence results for FedAvg and accelerated FedAvg in this paper.

and for any number of devices? What about when FedAvg is accelerated with momentum
updates? Does the presence of both data and system heterogeneity in FL imply different
communication complexities and require technical novelties over results in distributed and
decentralized optimization? Linear speedup is a desirable property of distributed optimization
systems, including FedAvg, as it characterizes the impact of scale on such systems. Here we
provide affirmative answers to these questions.

1.1 Our Contributions

First, we establish an O(1/KT ) convergence rate for FedAvg for strongly convex and smooth
problems and an O(1/

√
KT ) convergence rate for convex and smooth problems. Here K is the

lower bound of the number of participating devices at each communication round and T is the
number of local steps. These results confirm that FedAvg enjoys the desirable linear speedup
property with both non-i.i.d. data and partial participation. In previous works, the best and
most related convergence analyses are given by Li et al. (2020c), which established an O( 1T )
convergence rate for strongly convex smooth problems under FedAvg, and by Khaled et al.
(2020), which established linear speedup in the number of participating local servers under
data heterogeneity. Our rate matches the same (and optimal) dependence on T , but also
establishes the linear speedup dependence on K, for any K ≤ N , where N is the total number
of devices, whereas Li et al. (2020c) does not have linear speedup analysis, and Khaled et al.
(2020) focuses on full participation K = N . The concurrent work of Karimireddy et al. (2020)
also established linear speedup convergence under partial participation, using a modified
version of the FedAvg with distinct learning rates for local steps and communication rounds.
Compared to their work, our analyses are carried out for the original FedAvg algorithm that
utilizes a decaying rate independent of local vs. communication rounds. Our unified analysis
highlights the common elements and distinctions between the strongly convex and convex
settings, as well as the communication complexity differences between the full and partial
participation settings.

Second, we establish the same convergence rates–O(1/KT ) for strongly convex and
smooth problems and O(1/

√
KT ) for convex and smooth problems–for Nesterov accelerated

FedAvg. We analyze the accelerated version of FedAvg here because empirically it tends
to perform better; yet, its theoretical convergence guarantee is unknown. To the best of
our knowledge, these are the first results that provide a linear speedup characterization of
Nesterov accelerated FedAvg in the two convex problem classes. The fact that FedAvg and
Nesterov accelerated FedAvg share the same convergence rate is to be expected: this is the
case even for general centralized stochastic optimization problems. Prior to our results, the
most relevant results only concern the non-convex setting (Yu et al., 2019a; Li et al., 2020b;
Huo et al., 2020), where convergence is measured with respect to stationary points (vanishing
of gradient norms, rather than optimality gaps). Our unified analysis of Nesterov FedAvg
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also illustrates the technical similarities and distinctions compared to the original FedAvg
algorithm, whereas prior works in the non-convex setting used different frameworks with
distinct proof techniques.

Third, we study a subclass of strongly convex smooth problems where the objective
is over-parameterized and establish a faster O(exp(−KT

κ )) geometric convergence rate for
FedAvg, in contrast to the O(exp(−T

κ )) rate for individual solvers (Ma et al., 2018). Within
this class, we further consider the linear regression problem and establish an even sharper
rate for FedAvg. To our knowledge, these bounds are among the first to extend the geometric
convergence results in the non-distributed overparameterized setting to the federated learning
setting with a linear speedup in the number of local servers.

1.2 Connections with Distributed and Decentralized Optimization

Federated learning is closely related to distributed and decentralized optimization, and as
such it is important to discuss connections and distinctions between our work and related
results from that literature. First, when there is neither system heterogeneity, i.e., all devices
participate in parameter averaging during a communication round, nor data heterogeneity,
i.e., all devices have access to a common set of stochastic gradients, FedAvg coincides
with the “Local SGD” of Stich (2019), which showed the linear speedup rate O(1/NT ) for
strongly convex and smooth functions. Woodworth et al. (2020b,a) further improved the
communication complexity that guarantees the linear speedup rate. When there is only data
heterogeneity, some works such as Khaled et al. (2020) have continued to use the term Local
SGD to refer to FedAvg, while others subsume it in more general frameworks that include
decentralized model averaging based on a network topology or a mixing matrix. They have
provided linear speedup analyses for strongly convex and convex problems, e.g., Khaled et al.
(2020); Koloskova et al. (2020) as well as non-convex problems, e.g., Jiang and Agrawal
(2018); Yu et al. (2019b); Wang and Joshi (2021).

However, most of these results do not consider system heterogeneity, where a subset of
nodes participate in the updates during a communication round. Even with decentralized
model averaging, the assumptions usually imply that model averages over all devices is the
same as decentralized model averages based on network topology (e.g., Koloskova et al. (2020)
Proposition 1), which precludes system heterogeneity as defined in this paper and prevalent in
FL problems. For momentum accelerated FedAvg, Yu et al. (2019a) provided linear speedup
analysis for non-convex problems, while results for strongly convex and convex settings are
entirely lacking, even without system heterogeneity. In contrast, our linear speedup analyses
for FedAvg and consider both types of heterogeneity present in the full federated learning
setting, and are valid for almost any number of participating devices. We also highlight a
distinction in communication efficiency when system heterogeneity is present. Moreover, our
results for Nesterov accelerated FedAvg completes the picture for strongly convex and convex
problems. See Table 1 for a summary of our convergence bounds for FedAvg and Nesterov
Accelerated FedAvg. For a detailed comparison with related works, please refer to Table 2 in
Appendix B.

Throughout the paper, N is the total number of local devices, and K ≤ N is the number
of devices that are accessible to the central server during each communication round. T
is the total number of stochastic updates performed by each local device, E is the local
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steps between two consecutive server communications (and hence T/E is the number of
communications). Depending on the particular overparameterized setting, κ is a type of
condition number defined in Section 5 and Appendix G.

2. Setup

In this paper, we study the following federated learning problem:

min
w

{
F (w) ≜

∑N

k=1
pkFk(w)

}
, (1)

where N is the number of local devices (users/nodes/workers) and pk is the k-th device’s
weight satisfying pk ≥ 0 and

∑N
k=1 pk = 1. In the k-th local device, there are nk data points:

x1
k,x

2
k, . . . ,x

nk
k . The local objective Fk(·) is defined as: Fk(w) ≜ 1

nk

∑nk
j=1 ℓ

(
w;xj

k

)
, where

ℓ denotes a user-specified loss function. Each device only has access to its local data, which
gives rise to its own local objective Fk. Note that we do not make any assumptions on the
data distributions of each local device. The local minimum F ∗

k = minw Fk(w) can be far
from the global minimum of Eq (1) (data heterogeneity).

2.1 The Federated Averaging (FedAvg) Algorithm

We first introduce the standard Federated Averaging (FedAvg) algorithm which was first
proposed by McMahan et al. (2017). FedAvg updates the model in each device by local
Stochastic Gradient Descent (SGD) and sends the latest model to the central server every E
steps. The central server conducts a weighted average over the model parameters received
from active devices and broadcasts the latest averaged model to all devices. Formally, the
updates of FedAvg at round t is described as follows:

vk
t+1 = wk

t − αtgt,k, (2)

wk
t+1 =

{
vk
t+1 if t+ 1 /∈ IE ,∑
k∈St+1

qkv
k
t+1 if t+ 1 ∈ IE ,

(3)

where wk
t is the local model parameter maintained in the k-th device at the t-th iteration

and gt,k := ∇Fk(w
k
t , ξ

k
t ) is the stochastic gradient based on ξkt , the data point sampled

from k-th device’s local data uniformly at random. IE = {E, 2E, . . . } is the set of global
communication steps, when local parameters from a set of active devices are averaged and
broadcast to all devices. We use St+1 to represent the (random) set of active devices at t+ 1.
qk is a set of averaging weights that are specific to the sampling procedure used to obtain
the set of active devices St+1.

Since federated learning usually involves an enormous amount of local devices, it is often
more realistic to assume only a subset of local devices is active at each communication round
(system heterogeneity). In this work, we consider both the case of full participation where
the model is averaged over all devices at each communication round, in which case qk = pk
for all k and wk

t+1 =
∑N

k=1 pkv
k
t+1 if t + 1 ∈ IE , and the case of partial participation

where |St+1| < N .
With partial participation, we follow Li et al. (2020b); Karimireddy et al. (2020); Li

et al. (2020c) and assume that St+1 is obtained by one of two types of sampling schemes to
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simulate practical scenarios. One scheme establishes St+1 by i.i.d. sampling the devices with
probability pk with replacement, and uses qk = 1

K , where K = |St+1|, while the other scheme
samples St+1 uniformly i.i.d. from all devices without replacement, and uses qk = pk

N
K .

Both schemes guarantee that gradient updates in FedAvg are unbiased stochastic versions of
updates in FedAvg with full participation, which is important in the theoretical analysis of
convergence. Because the original sampling scheme and weights proposed by McMahan et al.
(2017) lacks this desirable property, it is not considered in this paper. An interesting recent
work (Chen et al., 2022) proposes a new client selection procedure based on importance
sampling that achieves better communication complexities than i.i.d. sampling. For more
details on the notations and setup as well as properties of the two sampling schemes, please
refer to Section A in the appendix.

2.2 Assumptions

We make the following standard assumptions on the objective function F1, . . . , FN . Assump-
tions 1 and 2 are commonly satisfied by a range of popular objective functions, such as
ℓ2-regularized logistic regression and cross-entropy loss functions.

Assumption 1 (Smoothness). F1, · · · , FN are all L-smooth: for all v,w,

Fk(v) ≤ Fk(w) + (v −w)T∇Fk(w) +
L

2
∥v −w∥22.

Assumption 2 (Strong convexity). The local objectives F1, · · · , FN are µ-strongly convex:
for all v,w,

Fk(v) ≥ Fk(w) + (v −w)T∇Fk(w) +
µ

2
∥v −w∥22

Assumption 3 (Bounded local variance). Let ξkt be sampled from the k-th device’s local
data uniformly at random. The variance of stochastic gradients in each device is bounded:
E
∥∥∇Fk

(
wk

t , ξ
k
t

)
−∇Fk

(
wk

t

)∥∥2 ≤ σ2
k, for k = 1, · · · , N and any wk

t . Let σ2 :=
∑N

k=1 pkσ
2
k.

Assumption 4 (Bounded local gradient). The expected squared norm of stochastic gradients
is uniformly bounded. i.e., E

∥∥∇Fk

(
wk

t , ξ
k
t

)∥∥2 ≤ G2, for all k = 1, ..., N and t = 0, . . . , T −1.

Assumptions 3 and 4 have been used in many prior works, e.g., Yu et al. (2019b); Li
et al. (2020c); Stich (2019); Reddi et al. (2020). Some more recent works (Khaled et al.,
2020; Karimireddy et al., 2020) have relaxed Assumption 4 to only requiring the bound
at a minimizer w∗ ∈ argminw F (w) of the global objective instead of everywhere. This is
to address the issue that for unconstrained optimization problems, gradients may not be
bounded everywhere. For example, Karimireddy et al. (2020) assume a bound similar to∑

k

pkE∥∇Fk(w, ξkt )∥2 ≤ G2 + 2βB2(F (w)− F (w∗))

While it is true that in unconstrained optimization, gradients can become unbounded, and
the above bound is formally weaker than Assumption 4 due to the optimality gap in the
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upper bound, we argue that under convexity, F can be assumed to be bounded due to the
boundedness of local updates, so that Assumption 4 is not substantially stronger. First, if F
is itself bounded above, then the bound above would imply the bound∑

k

pkE∥∇Fk(w, ξkt )∥2 ≤ G′2

with a larger G′, which is essentially equivalent to Assumption 4. Even if F is unbounded,
convexity implies that in expectation, local parameters gravitate towards minima of local
objectives during local updates, and thus stay bounded in a ball around w∗. Once local
parameters are bounded, F can essentially be assumed to be bounded in that region, yielding
a bound G in Assumption 4 that depends on the initialization and local objective functions.
Therefore, for convex problems, Assumption 4 is not fundamentally more restrictive than
assuming the bounds at w∗ only. Furthermore, compared to assuming bounded gradient
diversity as in related works Haddadpour and Mahdavi (2019); Li et al. (2020b), Assumption 4
is much less restrictive. When the optimality gap converges to zero, bounded gradient diversity
restricts local objectives to have the same minimizer as the global objective, contradicting
the heterogeneous data setting. For detailed discussions of our assumptions, please refer to
Appendix Section B.

3. Linear Speedup Analysis of Federated Averaging

In this section, we provide convergence analyses of FedAvg for convex objectives in the general
setting with both heterogeneous data (statistical heterogeneity) and partial participation
(system heterogeneity). We show that for strongly convex and smooth objectives, the
convergence of the optimality gap of averaged parameters across devices is O(1/KT ), while
for convex and smooth objectives, the rate is O(1/

√
KT ). Our results improve upon Li et al.

(2020c) by showing linear speedup for any number of participating devices, and upon Khaled
et al. (2020); Koloskova et al. (2020) by allowing system heterogeneity. The proofs also
highlight similarities and distinctions between the strongly convex and convex settings.
Detailed proofs are deferred to Appendix Section E.

3.1 Strongly Convex and Smooth Objectives

We first show that FedAvg has an O(1/KT ) convergence rate for µ-strongly convex and
L-smooth objectives. The result relies on a technical improvement over the analysis in Li et al.
(2020c). Moreover, it implies a distinction in communication efficiency that guarantees this
linear speedup for FedAvg with full and partial device participation. With full participation,
E can be chosen as large as O(

√
T/N) without degrading the linear speedup in the number

of workers. On the other hand, with partial participation, E must be O(1) to guarantee
O(1/KT ) convergence.

Theorem 1. Let wT =
∑N

k=1 pkw
k
T in FedAvg, νmax = maxk Npk, and set decaying learning

rates αt =
4

µ(γ+t) with γ = max{32κ,E} and κ = L
µ . Then under Assumptions 1 to 4 with

full device participation,

EF (wT )− F ∗ = O
(
κνmaxσ

2/µ

NT
+

κ2E2G2/µ

T 2

)
,
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and with partial device participation with at least K sampled devices at each communication
round,

EF (wT )− F ∗ = O
(
κEG2/µ

KT
+

κνmaxσ
2/µ

NT
+

κ2E2G2/µ

T 2

)
.

Proof sketch. Because our unified analyses of results in the main text follow the
same framework with variations in technical details, we first give an outline of proof for
Theorem 1 to illustrate the main ideas. For full participation, the main ingredient is a
recursive contraction bound

E∥wt+1 −w∗∥2 ≤ (1− µαt)E∥wt −w∗∥2

+ α2
t

1

N
νmaxσ

2 + 6α3
tLE

2G2

where the O(α3
tE

2G2) term is the key improvement over the bound in Li et al. (2020c),
which has O(α2

tE
2G2) instead. We then use induction to obtain a non-recursive bound

on E∥wT − w∗∥2, which is converted to a bound on EF (wT ) − F ∗ using L-smoothness.
For partial participation, an additional term O( 1

Kα2
tE

2G2) of leading order resulting from
sampling variance is added to the contraction bound, but only every E steps. To facilitate
the understanding of our analysis, please refer to a high-level summary in Appendix C.

Linear speedup. We compare our bound with that in Li et al. (2020c), which is
O( 1

NT + E2

KT + E2G2

T ). Because the term E2G2

T is also O(1/T ) without a dependence on N ,
for any choice of E their bound cannot achieve linear speedup. The improvement of our
bound comes from the term κ2E2G2/µ

T 2 , which now is O(E2/T 2) and so is not of leading order.
As a result, all leading terms scale with 1/N in the full device participation setting, and with
1/K in the partial participation setting. This implies that in both settings, there is a linear
speedup in the number of active workers during a communication round. We also emphasize
that the reason one cannot recover the full participation bound by setting K = N in the
partial participation bound is due to the variance generated by sampling.

Discussion on νmax. The parameter νmax is a measure of how unbalanced different
local servers are, and is also discussed in Li et al. (2020c). Recall that νmax = N maxk pk,
where pk is the weight of the local objective of server k in the FL objective. Often, pk is
the proportion of data stored on server k relative to the total amount of data across all
servers, and is therefore small, i.e., O(1/N). This is a reasonable assumption in many FL
applications, e.g., mobile computing. In this case, νmax = O(1) and linear speedup in the
number of local servers is guaranteed. However, when some local servers dominate the FL
objective, i.e., maxk pk = Θ(1), those local servers will become bottlenecks in the convergence
of FedAvg, and linear speedup is not guaranteed. This is already observed in Li et al. (2020c),
where the convergence of FedAvg is shown empirically to slow down significantly when νmax

is large. Thus, linear speedup convergence depends on the balance parameter νmax, and is
only guaranteed when νmax = O(1).

Communication Complexity. Our bound implies a distinction in the choice of E
between the full and partial participation settings. With full participation, the term involving
E, O(E2/T 2), is not of leading order O(1/T ), so we can increase E and reduce the number
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of communication rounds without degrading the linear speedup in iteration complexity
O(1/NT ), as long as E = O(

√
T/N), since then O(E2/T 2) = O(1/NT ) matches the leading

term. This corresponds to a communication complexity of T/E = O(
√
NT ). In contrast,

the bound in Li et al. (2020c) does not allow E to scale with
√
T to preserve O(1/T ) rate,

even for full participation. On the other hand, with partial participation, κEG2/µ
KT is also a

leading term, and so E must be O(1). In this case, our bound still yields a linear speedup
in K, which is also confirmed by experiments. The requirement that E = O(1) in order to
achieve linear speedup in partial participation cannot be removed for our sampling schemes,
as the term κEG2/µ

KT comes from variance in the sampling process.
Comparison with related works. To better understand the significance of the obtained

bound, we compare our rates to the best-known results in related settings. Haddadpour and
Mahdavi (2019) prove a linear speedup O(1/KT ) result for strongly convex and smooth
objectives2, with O(K1/3T 2/3) communication complexity with non-i.i.d. data and partial
participation. However, their results build on the bounded gradient diversity assumption,
which implies the existence of w∗ that minimizes all local objectives (see discussions in
Section 2.2 and Appendix B), effectively removing statistical heterogeneity. The bound in
Koloskova et al. (2020) matches our bound in the full participation case, but their framework
excludes partial participation (Koloskova et al., 2020, Proposition 1). Karimireddy et al.
(2020) consider both types of heterogeneities for FL and establish linear speedup using a
modified version of FedAvg with distinct learning rates for local steps and communication
rounds that are O(1/T ). In contrast, our linear speedup result is for the standard FedAvg
that does not use different learning rates for local and aggregation steps. Moreover, our
learning rate decays with the iteration number, and is thus generally larger in practice.
When there is no data heterogeneity, i.e. in the classical distributed optimization paradigm,
communication complexity can be further improved, e.g. Woodworth et al. (2020a,b), but
such results are not directly comparable to ours since we consider the setting where individual
devices have access to different datasets. Yang et al. (2020) obtain linear speedup results
under both data and system heterogeneity for non-convex problems, so can be viewed as
complementary results.

3.2 Convex Smooth Objectives

Next we provide linear speedup analysis of FedAvg with convex and smooth objectives and
show that the optimality gap is O(1/

√
KT ). This result complements the strongly convex

case in the previous part, as well as the non-convex smooth setting in Jiang and Agrawal
(2018); Yu et al. (2019b); Haddadpour and Mahdavi (2019), where O(1/

√
KT ) results are

given in terms of averaged gradient norm, and it also extends the result in Khaled et al.
(2020), which has the best linear speedup result in the convex setting with full participation.

Theorem 2. Under Assumptions 1,3,4 and constant learning rate αt = O(
√

N
T ), FedAvg

satisfies

min
t≤T

F (wt)− F (w∗) = O
(
νmaxσ

2

√
NT

+
NE2LG2

T

)
2. Their result applies to a larger class of non-convex objectives that satisfy the Polyak-Lojasiewicz condition.
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with full participation, and with partial device participation with K sampled devices at each
communication round and learning rate αt = O(

√
K
T ),

min
t≤T

F (wt)− F (w∗) = O
(
νmaxσ

2

√
KT

+
EG2

√
KT

+
KE2LG2

T

)
.

The analysis again relies on a recursive bound, but without contraction:

E∥wt+1 −w∗∥2 + αt(F (wt)− F (w∗))

≤E∥wt −w∗∥2 + α2
t

1

N
νmaxσ

2 + 6α3
tE

2LG2

which is then summed over time steps to give the desired bound, with αt = O(
√

N
T ).

Choice of E and linear speedup. With full participation, as long as E = O(T 1/4/N3/4),
the convergence rate is O(1/

√
NT ) with O(N3/4T 3/4) communication rounds. In the partial

participation setting, E must be O(1) in order to achieve linear speedup of O(1/
√
KT ). This

is again due to the fact that the sampling variance E∥wt−vt∥2 = O(α2
tE

2G2) cannot be made
independent of E, as illustrated by Proposition 1. See also the proof in Section E for how
the sampling variance and the term EG2/

√
KT are related. Our result again demonstrates

the difference in communication complexities between full and partial participation.

4. Linear Speedup Analysis of Nesterov Accelerated Federated Averaging

A natural extension of the FedAvg algorithm is to use momentum-based local updates
instead of local SGD updates in order to accelerate FedAvg. As we know from standard
stochastic optimization settings, Nesterov and other momentum updates fail to provably
accelerate over SGD in general (Liu and Belkin, 2020; Kidambi et al., 2018; Yuan and Ma,
2020). This is in contrast to the classical acceleration result of Nesterov-accelerated gradient
descent over GD. See, however, Jain et al. (2017); Even et al. (2021) for acceleration results
for quadratic objectives. Thus in the FL setting, the best provable convergence rate, in
terms of dependence on T , for FedAvg with Nesterov updates is the same as FedAvg with
SGD updates. Nevertheless, Nesterov and other momentum updates are frequently used in
practice, in both non-FL and FL settings, and are observed to perform better empirically.
In fact, previous works such as Stich (2019) use FedAvg with Nesterov or other momentum
updates in their experiments to achieve target accuracy. Because of the popularity of
Nesterov and other momentum-based methods, understanding the linear speedup behavior of
FedAvg with momentum updates is important. In addition, the communication complexity
required to guarantee such a linear speedup convergence is also a relevant question with
practical implications. To our knowledge, the majority of convergence analyses of FedAvg
with momentum-based stochastic updates focus on the non-convex smooth case (Huo et al.,
2020; Yu et al., 2019a; Li et al., 2020b). In convex smooth settings, the results of Even
et al. (2021) can be adapted to prove acceleration, in terms of dependence on T , of Nesterov
FedAvg with full participation for quadratic objectives. The work of Yang et al. (2022b)
establishes a O(1/

√
T ) rate for Nesterov FedAvg for general convex smooth objectives under

full participation. However, their convergence result does not have linear speedup in the
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number of participating servers. In this section, we complete the picture by providing the first
O(1/KT ) and O(1/

√
KT ) convergence results for Nesterov-accelerated FedAvg for general

convex objectives that match the rates for FedAvg with SGD updates. Detailed proofs of
convergence results in this section are deferred to Appendix Section F.

4.1 Strongly Convex and Smooth Objectives

The Nesterov Accelerated Federated Averaging algorithm (Nesterov FedAvg) follows the
updates:

vk
t+1 = wk

t − αtgt,k,

wk
t+1 =

{
vk
t+1 + βt(v

k
t+1 − vk

t ) if t+ 1 /∈ IE ,∑
k∈St+1

qk
[
vk
t+1 + βt(v

k
t+1 − vk

t )
]

if t+ 1 ∈ IE ,

where gt,k := ∇Fk(w
k
t , ξ

k
t ) is the stochastic gradient sampled on the k-th device at time t,

and qk again depends on participation and sampling schemes.

Theorem 3. Let vT =
∑N

k=1 pkv
k
T in Nesterov accelerated FedAvg, and set learning rates

αt =
6
µ

1
t+γ , βt−1 =

3
14(t+γ)(1− 6

t+γ
)max{µ,1} . Then under Assumptions 1,2,3,4 with full device

participation,

EF (vT )− F ∗ = O
(
κνmaxσ

2/µ

NT
+

κ2E2G2/µ

T 2

)
,

and with partial device participation with K sampled devices at each communication round,

EF (vT )− F ∗ = O
(
κνmaxσ

2/µ

NT
+

κEG2/µ

KT
+

κ2E2G2/µ

T 2

)
.

Similar to FedAvg, the key step in the proof of this result is a recursive contraction bound,
but different in that it involves three time steps, due to the update format of Nesterov SGD
(see Lemma 7 in Appendix F.1). Then we can again use induction and L-smoothness to
obtain the desired bound. To our knowledge, this is the first convergence result for Nesterov
accelerated FedAvg in the strongly convex and smooth setting. The same discussion about
linear speedup of FedAvg applies to the Nesterov accelerated variant. In particular, to achieve
O(1/NT ) linear speedup, T iterations of the algorithm require only O(

√
NT ) communication

rounds with full participation.
To our knowledge, this is the first work that establishes linear speedup convergence of

Nesterov-accelerated FedAvg in the convex setting under both non-i.i.d. data and partial
participation. Recently, there have been significant efforts to develop novel acceleration
algorithms for Federated Learning. A notable work among these is Yuan and Ma (2020),
which developed a new momentum-accelerated variant of FedAvg called FedAc, based on
the generalized accelerated SGD of Ghadimi and Lan (2012). They provided linear speedup
convergence rates under full participation that match our O(1/KT ) and O(1/

√
KT ) com-

plexities in the leading terms, but with an improved dependence on E in the non-leading
terms. This results in a better communication complexity that guarantees linear speedup.
However, this improvement is only present in the full participation setting. Under partial
participation, the sampling variance dominates the convergence, resulting in the same com-
munication complexity requirements for Nesterov-accelerated FedAvg and FedAc in order to
achieve linear speedup.
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4.2 Convex Smooth Objectives

We now show that the optimality gap of Nesterov-accelerated FedAvg has O(1/
√
KT ) rate

for convex and smooth objectives. This result complements the strongly convex case in
the previous part, as well as the non-convex smooth setting in Huo et al. (2020); Yu et al.
(2019a); Li et al. (2020b), where a similar O(1/

√
KT ) rate is given in terms of averaged

gradient norm. A later work by Yang et al. (2022b) establishes an O(1/
√
T ) rate in the

convex smooth setting for FedAvg with Nesterov updates, but only under full participation
and without linear speedup in N . In contrast, we establish linear speedup convergence for
both the full and partial participation settings.

Theorem 4. Set learning rates αt = βt = O(
√

N
T ). Then under Assumptions 1,3,4 Nesterov

accelerated FedAvg with full device participation has rate

min
t≤T

F (vt)− F ∗ = O
(
νmaxσ

2

√
NT

+
NE2LG2

T

)
,

and with partial device participation with K sampled devices at each communication round and
learning rates αt = βt = O(

√
K
T ),

min
t≤T

F (vt)− F ∗ = O
(
νmaxσ

2

√
KT

+
EG2

√
KT

+
KE2LG2

T

)
.

We emphasize again that in the stochastic optimization setting with general objectives,
the optimal convergence rate that FedAvg with Nesterov udpates can achieve is the same as
FedAvg with SGD updates. When objectives are quadratic, Jain et al. (2017); Even et al.
(2021) provide acceleration results for Nesterov SGD in the centralized and decentralized
settings, but acceleration with Nesterov is impossible in general. Nevertheless, due to the
popularity and superior performance of momentum methods in practice, it is still important
to understand the linear speedup behavior of such FedAvg variants. Our results in this
section fill exactly this gap, and is to our knowledge the first work to establish such results.

5. Geometric Convergence of FedAvg in Overparameterized Settings

Overparameterization is a prevalent machine learning setting where the statistical model has
much more parameters than the number of training samples and the existence of parameter
choices with zero training loss is ensured (Allen-Zhu et al., 2019; Zhang et al., 2021). This is
also called the interpolating regime. Due to the property of automatic variance reduction in
the overparameterized setting, a line of recent works have proved that SGD and accelerated
methods achieve geometric convergence (Ma et al., 2018; Moulines and Bach, 2011; Needell
et al., 2014; Schmidt and Roux, 2013; Strohmer and Vershynin, 2009). A natural question
is whether such a result still holds in the Federated Learning setting. In this section, we
establish the geometric convergence of FedAvg for overparameterized strongly convex and
smooth problems, and show that it preserves linear speedup at the same time. We then
sharpen this result in the special case of linear regression. Detailed proofs are deferred to
Section G. In particular, we do not need Assumptions 3 and 4 and use modified versions of
Assumptions 1 and 2 detailed in this section.
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5.1 Geometric Convergence of FedAvg in the Overparameterized Setting

Recall the FL problem minw
∑N

k=1 pkFk(w) with Fk(w) = 1
nk

∑nk
j=1 ℓ(w;xj

k). In this section,
we consider the standard Empirical Risk Minimization (ERM) setting where ℓ is non-
negative, l-smooth, and convex, and as before, each Fk(w) is L-smooth and µ-strongly
convex. Note that l ≥ L. This setup includes many important problems in practice. In the
overparameterized setting, there exists w∗ ∈ argminw

∑N
k=1 pkFk(w) such that ℓ(w∗;xj

k) = 0

for all xj
k. We first show that FedAvg achieves geometric convergence with linear speedup in

the number of workers.

Theorem 5. In the overparameterized setting with full participation, FedAvg with commu-
nication every E iterations and constant step size α = O( 1

E
N

lνmax+L(N−νmin)
) has geometric

convergence:

EF (wT ) ≤
L

2
(1− α)T ∥w0 −w∗∥2

=O
(
L exp

(
− µ

E

NT

lνmax + L(N − νmin)

)
· ∥w0 −w∗∥2

)
.

Linear speedup and Communication Complexity The linear speedup factor is on
the order of O(N/E) for N ≤ O( l

L), i.e. FedAvg with N workers and communication every
E iterations provides a geometric convergence speedup factor of O(N/E), for N ≤ O( l

L). In
this regime, the convergence rate is of order O(exp(− N

EκT )) where κ = l
µ is the “condition

number” of the objective. When N is above this threshold, however, the speedup is almost
constant in the number of workers. This matches the findings in Ma et al. (2018). Our result
also illustrates that E can be taken O(T β) for any β < 1 to achieve geometric convergence,
achieving better communication efficiency than the standard FL setting. We emphasize again
that compared to the single-server results in Ma et al. (2018), the difference of our result
lies in the factor of N in the speedup, which cannot be obtained if one simply applied the
single-server result to each device in our problem. Recently, Qin et al. (2022) provided a
convergence bound independent of the number E of local steps by using a larger learning
rate and under a strong growth condition on the local gradients. However, their bound does
not exhibit linear speedup in the number of local servers.

We also remark that similar geometric convergence results have been established for
decentralized SGD (also called gossip averaging), which only allows communications between
connected local servers, where the network topology is given by a possibly time-varying
graph. This setting includes FedAvg with full participation (local SGD) as a special case.
See the work of Koloskova et al. (2020) for details. In comparison, our convergence result
includes a linear speedup term when N ≤ O( l

L).

5.2 Overparameterized Linear Regression Problems

We now turn to quadratic problems and show that the bound in Theorem 5 can be improved
to O(exp(− N

Eκ1
T )) for a larger range of N . The local device objectives are now given by the

sum of squares Fk(w) = 1
2nk

∑nk

j=1(w
Txj

k − zjk)
2, and there exists w∗ such that F (w∗) ≡ 0. A

notion of condition number is important in our result: κ1 which is based on local Hessians (Liu
and Belkin, 2020). See Section G for a detailed definition of κ1. The larger range of N
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for which linear speedup holds is due to κ1 > κ where κ is the condition number used in
Theorem 5.

Theorem 6. For the overparamterized linear regression problem with full participation, Fe-
dAvg with communication every E iterations with constant step size α = O( 1

E
N

lνmax+µ(N−νmin)
)

has geometric convergence:

EF (wT ) ≤ O
(
L exp(− NT

E(νmaxκ1 + (N − νmin))
)∥w0 −w∗∥2

)
.

When N = O(κ1), the convergence rate is O((1 − N
Eκ1

)T ) = O(exp(− NT
Eκ1

)), which
exhibits linear speedup in the number of workers, as well as a 1/κ1 dependence on the
condition number κ1.

100 101

Number of workers (N)

103

104

N
um

be
r 

of
 it

er
at

io
ns

 (
T)

E=1
E=4
E=16

100 101

Number of workers (N)

103

N
um

be
r 

of
 it

er
at

io
ns

 (
T)

E=1
E=4
E=16

100 101

Number of workers

2 × 103

3 × 103

N
um

be
r 

of
 it

er
at

io
ns

E=1
E=4
E=16

101

Number of active workers (K)

103

104

N
um

be
r 

of
 it

er
at

io
ns

 (
T)

E=1
E=4

101

Number of active workers (K)

103

N
um

be
r 

of
 it

er
at

io
ns

 (
T)

E=1
E=4

101

Number of active workers (K)

2 × 103

N
um

be
r 

of
 it

er
at

io
ns

 (
T)

E=1
E=4

100 101

Number of workers (N)

103

104

N
um

be
r 

of
 it

er
at

io
ns

 (
T)

E=1
E=4
E=16

100 101

Number of workers (N)

103

104

N
um

be
r 

of
 it

er
at

io
ns

 (
T)

E=1
E=4
E=16

100 101

Number of workers (N)

2 × 103

3 × 103

N
um

be
r 

of
 it

er
at

io
ns

 (
T)

E=1
E=4
E=16

(a) Strongly convex objective (b) Convex smooth objective (c) Linear regression

Figure 1: The linear speedup of FedAvg in full participation, partial participation, and the
linear speedup of Nesterov accelerated FedAvg, respectively. Both the x-axis and
y-axis are logarithmic-scale.
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6. Numerical Experiments

In this section, we empirically examine the linear speedup convergence of FedAvg and Nesterov
accelerated FedAvg in various settings, including strongly convex function, convex smooth
function, and overparameterized objectives.

Setup. Following the experimental setting in Stich (2019), we conduct experiments on
both synthetic datasets and real-world dataset w8a (Platt, 1999) (d = 300, n = 49749). See
Lai et al. (2022) for a comprehensive FL bench-marking suite containing more datasets.

We consider the distributed objectives F (w) =
∑N

k=1 pkFk(w), and the objective function
on the k-th local device includes three cases: 1) Strongly convex objective: the regularized
binary logistic regression problem, Fk(w) = 1

Nk

∑Nk
i=1 log(1 + exp(−yki w

Txk
i ) +

λ
2∥w∥2. The

regularization parameter is set to λ = 1/n ≈ 2e− 5. 2) Convex smooth objective: the
binary logistic regression problem without regularization. 3) Overparameterized setting:
the linear regression problem without adding noise to the label, Fk(w) = 1

Nk

∑Nk
i=1(w

Txk
i +

b− yki )
2.

Linear speedup of FedAvg and Nesterov accelerated FedAvg. To verify the linear
speedup convergence as shown in Theorems 1 2 3 4, we evaluate the number of iterations
needed to reach ϵ-accuracy in three objectives. We initialize all runs with w0 = 0d and
measure the number of iterations to reach the target accuracy ϵ. For each configuration
(E,K), we extensively search the learning rate from min(η0,

nc
1+t), where η0 ∈ {0.1, 0.12, 1, 32}

according to different problems and c can take the values c = 2i ∀i ∈ Z. As the results shown
in Figure 1, the number of iterations decreases as the number of (active) workers increasing,
which is consistent for FedAvg and Nesterov accelerated FedAvg across all scenarios. For
additional experiments on the impact of E, detailed experimental setup, and hyperparameter
setting, please refer to the Appendix Section H.

Partial participation. We verify the linear speedup in the partial participation settings,
where we set 50% of devices are active. As the results are shown in Figure 1 (2nd row),
FedAvg enjoys linear speedup in various settings even with partial device participation.

Nesterov accelerated FedAvg. In the third row of Figure 1, we report the last iteration
to converge to ϵ-accuracy of Nesterov accelerated FedAvg. The empirical observations align
with Theorems 3 4 that the accelerated version of FedAvg can also achieve the linear speedup
w.r.t the number of workers.

7. Concluding Remarks

In this paper, we provided a unified linear speedup analysis of the convergence of stochastic
FedAvg and Nesterov accelerated FedAvg in convex smooth, strongly convex smooth, and
overparameterized regimes in the presence of both system and data heterogeneity, while
also highlighting the distinct communication efficiency differences between full and partial
participation of local devices. It is well known that Nesterov and other momentum variants
fail to accelerate over SGD in both the overparameterized and convex settings. Thus in
general one cannot hope to obtain theoretical acceleration results for the FedAvg algorithm
with stochastic Nesterov updates, unless objectives are quadratic (Even et al., 2021). We
refer to recent works such as Yuan and Ma (2020) for new federated learning algorithms
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that achieve linear speedup with better communication complexities in the full participation
setting only.

In this paper, participating devices are assumed to be non-adversarial. However, in
real-world applications, there may be malicious devices that try to poison the learning
process by sending adversarial updates to the central server. An interesting direction is to
investigate the robustness of Federated Learning algorithms to such attacks (Bhagoji et al.,
2019; Zhang et al., 2023).

Lastly, we remark that the desirable linear speedup property has been studied in other
federated versions of classical learning environments, such as federated reinforcement learning
(Khodadadian et al., 2022), and in entirely new FL regimes, such as the so-called anarchic
federated learning (Yang et al., 2022a), where local devices have greater freedom in choosing
when to participate in FL and the number of local updates.
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Appendix A. Additional Notations and Bounds for Sampling Schemes

In this section, we introduce additional notations that are used throughout the proofs.
Following common practice, e.g. Stich (2019); Li et al. (2020c), we define two virtual
sequences vt =

∑N
k=1 pkv

k
t and wt =

∑N
k=1 pkw

k
t , where we recall the FedAvg updates from

(2):

vk
t+1 = wk

t − αtgt,k, wk
t+1 =

{
vk
t+1 if t+ 1 /∈ IE ,∑
k∈St+1

qkv
k
t+1 if t+ 1 ∈ IE .

The following observations apply to FedAvg updates, while Nesterov accelerated FedAvg
requires modifications. For full device participation or partial participation with t /∈ IE ,
note that vt = wt =

∑N
k=1 pkv

k
t . For partial participation with t ∈ IE , wt ̸= vt since

vt =
∑N

k=1 pkv
k
t while wt =

∑
k∈St

qkw
k
t . However, we can use unbiased sampling strategies

such that EStwt = vt. Note that vt+1 is one-step SGD from wt.

vt+1 = wt − αtgt, (4)

where gt =
∑N

k=1 pkgt,k is the one-step stochastic gradient averaged over all devices.

gt,k = ∇Fk

(
wk

t , ξ
k
t

)
,

Similarly, we denote the expected one-step gradient gt = Eξt [gt] =
∑N

k=1 pkEξkt
gt,k, where

Eξkt
gt,k = ∇Fk

(
wk

t

)
, (5)
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and ξt = {ξkt }Nk=1 denotes random samples at all devices at time step t.
Since in this work we also consider the case of partial participation, the sampling strategy to
approximate the system heterogeneity can also affect the convergence. Here we follow the
prior works Li et al. (2020c) and Li et al. (2020b) and consider two types of sampling schemes
that guarantee EStwt = vt. The sampling scheme I establishes St+1 by i.i.d. sampling the
devices according to probabilities pk with replacement, and setting qk = 1

K . In this case the
upper bound of expected square norm of wt+1−vt+1 is given by (Li et al., 2020c, Lemma 5):

ESt+1 ∥wt+1 − vt+1∥2 ≤
4

K
α2
tE

2G2. (6)

The sampling scheme II establishes St+1 by uniformly sampling all devices without replace-
ment and setting qk = pk

N
K , in which case we have

ESt+1 ∥wt+1 − vt+1∥2 ≤
4(N −K)

K(N − 1)
α2
tE

2G2. (7)

We summarize these upper bounds as follows:

ESt+1 ∥wt+1 − vt+1∥2 ≤
4

K
α2
tE

2G2. (8)

and this bound will be used in the convergence proof of the partial participation result.

Appendix B. Comparison of Convergence Rates with Related Works

In this section, we compare our convergence rate with the best-known results in the literature
(see Table 2). In Haddadpour and Mahdavi (2019), the authors provide O(1/NT ) convergence
rate of non-convex problems under Polyak-Łojasiewicz (PL) condition, which means their
results can directly apply to the strongly convex problems. However, their assumption is
based on bounded gradient diversity, defined as follows:

Λ(w) =

∑
k pk∥∇Fk(w)∥22

∥
∑

k pk∇Fk(w)∥22
≤ B

This is a more restrictive assumption comparing to assuming bounded gradient under the
case of target accuracy ϵ → 0 and PL condition. To see this, consider the gradient diversity
at the global optimal w∗, i.e., Λ(w∗) =

∑
k pk∥∇Fk(w)∥22

∥
∑

k pk∇Fk(w)∥22
. For Λ(w∗) to be bounded, it requires

∥∇Fk(w
∗)∥22 = 0, ∀ k. This indicates w∗ is also the minimizer of each local objective,

which contradicts to the practical setting of heterogeneous data. Therefore, their bound
is not effective for arbitrary small ϵ-accuracy under general heterogeneous data while our
convergence results still hold in this case.

Appendix C. A High-level Summary of Our FedAvg Analysis

To facilitate the understanding of our analysis and highlight the improvement of our work
comparing to prior arts, we summarize the general steps used in the proofs across the various
settings. In this section, we take the strongly convex case as an example to illustrate our
analysis. The corresponding proof for general convex functions follows the same framework.
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Reference Convergence rate E NonIID Participation Extra Assumptions Setting

FedAvgLi et al. (2020c) O(E2

T
) O(1) ✓ Partial Bounded gradient Strongly convex

FedAvgHaddadpour and Mahdavi (2019) O( 1
KT

) O(K−1/3T2/3)† ✓‡‡ Partial Bounded gradient diversity Strongly convex§

FedAvgKoloskova et al. (2020) O( 1
NT

) O(N−1/2T1/2) ✓ Full Bounded gradient Strongly convex
FedAvgKarimireddy et al. (2020) O( 1

KT
) O(N−1/2T1/2) ✓ Partial Bounded gradient dissimilarity Strongly convex

FedAvg/N-FedAvg (our analysis) O( 1
KT

) O(N−1/2T1/2)‡ ✓ Partial Bounded gradient Strongly convex

FedAvgKhaled et al. (2020) O( 1√
NT

) O(N−3/2T1/2) ✓ Full Bounded gradient Convex

FedAvgKoloskova et al. (2020) O( 1√
NT

) O(N−3/4T1/4) ✓ Full Bounded gradient Convex

FedAvgKarimireddy et al. (2020) O( 1√
KT

) O(N−3/4T1/4) ✓ Partial Bounded gradient dissimilarity Convex

FedAvg/N-FedAvg (our analysis) O
(

1√
KT

)
O(N−3/4T1/4)‡ ✓ Partial Bounded gradient Convex

FedAvg (our analysis) O
(
exp(− NT

Eκ1
)
)

O(Tβ) ✓ Partial Bounded gradient Overparameterized

Table 2: A high-level summary of the convergence results in this paper compared to prior
state-of-the-art FL algorithms. This table only highlights the dependence on T
(number of iterations), E (the maximal number of local steps), N (the total number
of devices), and K ≤ N the number of participated devices. κ is the condition
number of the system and β ∈ (0, 1). We denote Nesterov accelerated FedAvg as
N-FedAvg in this table.

† This E is obtained under i.i.d. setting.
‡ This E is obtained under full participation setting.
§ In Haddadpour and Mahdavi (2019), the convergence rate is for non-convex smooth
problems with PL condition, which also applies to strongly convex problems. Therefore, we
compare it with our strongly convex results here.
‡‡ The bounded gradient diversity assumption is not applicable for general heterogeneous
data when converging to arbitrarily small ϵ-accuracy (see discussions in Sec B).

Algorithm 1 FedAvg: Federated Averaging
1: Server input: initial model w0, initial step size α0, local steps E.
2: Client input:
3: for each round r = 0, 1, ..., R, where r = t ∗ E do
4: Sample clients St ⊆ {1, ..., N}
5: Broadcast w to all clients k ∈ St

6: for each client k ⊆ St do
7: initialize local model wk

t = w
8: for t = r ∗ E + 1, . . . , (r + 1) ∗ E do
9: wk

t+1 = wk
t − αtgt,k

10: end for
11: end for
12: Average the local models at server end: wt =

∑
k∈St

wk
t .

13: end for

One step progress bound
This step establishes the progress of distance (∥wt −w∗∥2) to optimal solution after one step
SGD update (see line 9, Alg 1), as the following equation shows:

E∥wt+1 −w∗∥2 ≤ O(ηtE∥wt −w∗∥2 + α2
tσ

2/N + α3
tE

2G2).

The above bound consists of three main ingredients, the distance to optima in previous step
(with ηt ∈ (0, 1) to obtained a contraction bound), the variance of stochastic gradients in
local clients (second term), the variance across different clients (third term). Notice that the

1160



A Unified Linear Speedup Analysis of Federated Averaging and Nesterov FedAvg

third term in this bound is the primary source of improvement in the rate. Comparing to
the bound in Li et al. (2020c), we improve the third term from O(α2

tE
2G2) to O(α2

tE
2G2),

which enables the linear speedup in the convergence rate.
Iterating the one-step bound

This step uses the one step progress bound iteratively to connect the the current distance to
optimal solution with the initial distance (∥w0 −w∗∥2), as follows:

E∥wt+1 −w∗∥2 ≤ O(E∥w0 −w∗∥2 1
T
).

Then we can use the distance to optima to upper bound the optimality gap (F (wt)− F ∗ ≤
O(1/T )), as follows:

E(F (wt))− F ∗ ≤ O(E∥wt −w∗∥2).

The convergence rate of the optimality gap is equally obtained as the convergence rate of the
distance to optima.

From full participation to partial participation
There are three sources of variances that affect the convergence rate. The first two sources
come from the variances of within local clients and across clients (second and third term in
one step progress bound). The partial participation, which involves a sampling procedure, is
the third source of variance. Therefore, comparing to the rate in full participation, this will
add another term of variance into the convergence rate, where we follow a similar derivation
as in Li et al. (2020c).

Appendix D. Technical Lemmas

To facilitate reading, we first summarize some basic properties of L-smooth and µ-strongly
convex functions, found in e.g. Rockafellar (1970), which are used in various steps of proofs
in the appendix.

Lemma 1. Let F be a convex L-smooth function. Then we have the following inequalities:
1. Quadratic upper bound: 0 ≤ F (w)− F (w′)− ⟨∇F (w′),w −w′⟩ ≤ L

2 ∥w −w′∥2.
2. Coercivity: 1

L∥∇F (w)−∇F (w′)∥2 ≤ ⟨∇F (w)−∇F (w′),w −w′⟩.
3. Lower bound: F (w) ≥ F (w′) + ⟨∇F (w′),w − w′⟩ + 1

2L∥∇F (w) − ∇F (w′)∥2. In
particular, ∥∇F (w)∥2 ≤ 2L(F (w)− F (w∗)).

4. Optimality gap: F (w)− F (w∗) ≤⟨∇F (w),w −w∗⟩.

Lemma 2. Let F be a µ-strongly convex function. Then

F (w) ≤ F (w′) + ⟨∇F (w′),w −w′⟩+ 1

2µ
∥∇F (w)−∇F (w′)∥2

F (w)− F (w∗) ≤ 1

2µ
∥∇F (w)∥2
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Appendix E. Proof of Convergence Results for FedAvg

E.1 Strongly Convex Smooth Objectives

To organize our proofs more effectively and highlight the significance of our results compared
to prior works, we first state the following key lemmas used in proofs of main results and
defer their proofs to later.

Lemma 3 (One step progress, strongly convex). Let wt =
∑N

k=1 pkw
k
t , and suppose our

functions satisfy Assumptions 1,2,3,4, and set step size αt =
4

µ(γ+t) with γ = max{32κ,E}
and κ = L

µ , then the updates of FedAvg with full participation satisfy

E∥wt+1 −w∗∥2 ≤ (1− µαt)E∥wt −w∗∥2 + α2
t

1

N
νmaxσ

2 + 6E2Lα3
tG

2.

We emphasize that the above lemma is the key step that allows us to obtain a bound
that improves on the convergence result of Li et al. (2020c) with linear speedup. Its proof
will make use of the following two results.

Lemma 4 (Bounding gradient variance (Lemma 2 Li et al. (2020c)) ). Given
Assumption 3, the upper bound of gradient variance is given as follows,

E∥gt − gt∥2 ≤
N∑
k=1

p2kσ
2
k.

Lemma 5 (Bounding the divergence of wk
t (Lemma 3 Li et al. (2020c)) ). Given

Assumption 4, and assume that αt is non-increasing and αt ≤ 2αt+E for all t ≥ 0, we have

E

[
N∑
k=1

pk∥wt −wk
t ∥2
]
≤ 4E2α2

tG
2.

We now restate Theorem 1 from the main text and then prove it using Lemma 3.

Theorem 1. Let wT =
∑N

k=1 pkw
k
T in FedAvg, νmax = maxk Npk, and set decaying learning

rates αt =
4

µ(γ+t) with γ = max{32κ,E} and κ = L
µ . Then under Assumptions 1,2,3,4 with

full device participation,

EF (wT )− F ∗ = O
(
κνmaxσ

2/µ

NT
+

κ2E2G2/µ

T 2

)
and with partial device participation with at most K sampled devices at each communication
round,

EF (wT )− F ∗ = O
(
κEG2/µ

KT
+

κνmaxσ
2/µ

NT
+

κ2E2G2/µ

T 2

)
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Proof. The road map of the proof for full device participation contains three steps. First, we
establish a recursive relationship between E∥wt+1−w∗∥2 and E∥wt−w∗∥2, upper bounding
the progress of FedAvg from step t to step t + 1. Second, we show that E∥wt − w∗∥2 =

O(νmaxσ2/µ
tN + E2LG2/µ2

t2
) by induction using the recursive relationship from the previous step.

Third, we use the property of L-smoothness to bound the optimality gap by E∥wt −w∗∥2.
By Lemma 3, we have the following upper bound for the one step progress:

E∥wt+1 −w∗∥2 ≤ (1− µαt)E∥wt −w∗∥2 + α2
t

1

N
νmaxσ

2 + 6E2Lα3
tG

2.

We show next that E∥wt −w∗∥2 = O(νmaxσ2/µ
tN + E2LG2/µ2

t2
) using induction. To simplify the

presentation, we denote C ≡ 6E2LG2 and D ≡ 1
N νmaxσ

2. Suppose that we have the bound
E∥wt −w∗∥2 ≤ b · (αtD + α2

tC) for some constant b and learning rates αt. Then the one
step progress from Lemma 3 becomes:

E∥wt+1 −w∗∥2 ≤ (b(1− µαt) + αt)αtD + (b(1− µαt) + αt)α
2
tC

To establish the result at step t+1, it remains to choose αt and b such that (b(1−µαt)+αt)αt ≤
bαt+1 and (b(1−µαt)+αt)α

2
t ≤ bα2

t+1. If we let αt =
4

µ(t+γ) where γ = max{E, 32κ} (choice
of γ required to guarantee the one step progress) and set b = 4

µ , we have:

(b(1− µαt) + αt)αt =

(
b(1− 4

t+ γ
) +

4

µ(t+ γ)

)
4

µ(t+ γ)
≤ b

4

µ(t+ γ + 1)
= bαt+1

(b(1− µαt) + αt)α
2
t = b(

t+ γ − 2

t+ γ
)

16

µ2(t+ γ)2
≤ b

16

µ2(t+ γ + 1)2
= bα2

t+1

where we have used the following inequalities:

t+ γ − 1

(t+ γ)2
≤ 1

(t+ γ + 1)

t+ γ − 2

(t+ γ)3
≤ 1

(t+ γ + 1)2
∀ γ ≥ 1

Thus we have established the result at step t+ 1 assuming the result is correct at step t:

E∥wt+1 −w∗∥2 ≤ b · (αt+1D + α2
t+1C)

At step t = 0, we can ensure the following inequality by scaling b with c∥w0 −w∗∥2 for a
sufficiently large constant c:

∥w0 −w∗∥2 ≤ b · (α0D + α2
0C) = b · ( 4

µγ
D +

16

µ2γ2
C)

It follows that

E∥wt −w∗∥2 ≤ c∥w0 −w∗∥2 4
µ
(Dαt + Cα2

t ) (9)

for all t ≥ 0.
Finally, the L-smoothness of F implies

E(F (wT ))− F ∗ ≤ L

2
E∥wT −w∗∥2
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≤ L

2
c∥w0 −w∗∥2 4

µ
(DαT + Cα2

T )

= 2c∥w0 −w∗∥2κ(DαT + Cα2
T )

≤ 2c∥w0 −w∗∥2κ
[

4

µ(T + γ)
· 1

N
νmaxσ

2 + 6E2LG2 · ( 4

µ(T + γ)
)2
]

= O(
κ

µ

1

N
νmaxσ

2 · 1
T

+
κ2

µ
E2G2 · 1

T 2
)

where in the first line, we use the property of L-smooth function (see Lemma 1), and in the
second line, we use the conclusion in Eq (9).

With partial participation, the update at each communication round is now given by
weighted averages over a subset of sampled devices. When t+ 1 /∈ IE , vt+1 = wt+1, while
when t+1 ∈ IE , we have Ewt+1 = vt+1 by design of the sampling schemes (Li et al. (2020c),
Lemma 4).

Let t+ 1 and t+ 1 + E be two consecutive communication rounds. Using Ewt+E+1 =
vt+E+1, we can write

E∥wt+E+1 −w∗∥2 = E∥wt+E+1 − vt+E+1 + vt+E+1 −w∗∥2

= E∥vt+E+1 −w∗∥2 + E∥wt+E+1 − vt+E+1∥2

We note that applying the one step progress consecutively to the sequence vt with full
participation setting starting from round t + 1 and stopping at round t + 1 + E, we can
bound the first term as

E∥vt+E+1 −w∗∥2 ≤ (1− µαt+1)E∥wt+1 −w∗∥2 + Eα2
t+1

1

N
νmaxσ

2 + 6E3Lα3
t+1G

2

The bound for E∥wt+E+1−vt+E+1∥2 for the two sampling schemes we consider is provided
in Eq (8) as

E∥wt+E+1 − vt+E+1∥2 ≤ E∥wt+E+1 −wt+1∥2

≤ 4

K
α2
tE

2G2

which yields

E∥wt+E+1 −w∗∥2 ≤ (1− µαt+1)E∥wt+1 −w∗∥2 + Eα2
t+1

1

N
νmaxσ

2

+ 6E3Lα3
t+1G

2 +
4

K
α2
tE

2G2

We note that this is similar to the one-step progress bound in Karimireddy et al. (2020)
for two consecutive communication rounds. From here, using the same induction argument
(effectively T/E times instead of T times) and L-smoothness as the full participation case
implies

EF (wT )− F ∗ = O(
κνmaxσ

2/µ

NT
+

κEG2/µ

KT
+

κ2E2G2/µ

T 2
)

The advantage of bounding the square distance to optimum between consecutive com-
munication rounds is that it results in bounding the sampling variance E∥wt − vt∥2 T/E
instead of T times, which gives an O(E/KT ) term instead of O(E2/KT ) in the convergence
result.
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E.1.1 Deferred Proofs of Key Lemmas

Here we first rewrite the proofs of lemmas 4 and 5 from Li et al. (2020c) with slight
modifications for the consistency and completeness of this work, since later we will use
modified versions of these results in the convergence proof for Nesterov accelerated FedAvg.

Proof of lemma 4.

E∥gt − gt∥2 = E∥gt − Egt∥2 =
N∑
k=1

p2k∥gt,k − Egt,k∥2 ≤
N∑
k=1

p2kσ
2
k

Proof of lemma 5. Now we bound E
∑N

k=1 pk∥wt −wk
t ∥2 following Li et al. (2020c). Since

communication is done every E steps, for any t ≥ 0, we can find a t0 ≤ t such that
t− t0 ≤ E − 1 and wk

t0 = wt0for all k. Moreover, using αt is non-increasing and αt0 ≤ 2αt

for any t− t0 ≤ E − 1, we have

E
N∑
k=1

pk∥wt −wk
t ∥2

=E
N∑
k=1

pk∥wk
t −wt0 − (wt −wt0)∥2

≤E
N∑
k=1

pk∥wk
t −wt0∥2

=E
N∑
k=1

pk∥wk
t −wk

t0∥
2

=E
N∑
k=1

pk∥ −
t−1∑
i=t0

αigi,k∥2

≤2

N∑
k=1

pkE
t−1∑
i=t0

Eα2
i ∥gi,k∥2

≤2
N∑
k=1

pkE
2α2

t0G
2

≤4E2α2
tG

2

Based on the results of Lemma 4, 5, we now prove the upper bound of one step SGD
progress. This proof improves on the previous work Li et al. (2020c) and reveals the linear
speedup of convergence of FedAvg.
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Proof of lemma 3. We have

∥wt+1 −w∗∥2 = ∥(wt − αtgt)−w∗∥2 = ∥(wt − αtgt −w∗)− αt(gt − gt)∥2

= ∥wt −w∗ − αtgt∥2︸ ︷︷ ︸
A1

+2αt⟨wt −w∗ − αtgt,gt − gt⟩︸ ︷︷ ︸
A2

+α2
t ∥gt − gt∥2︸ ︷︷ ︸

A3

where we denote:

A1 = ∥wt −w∗ − αtgt∥2

A2 = 2αt⟨wt −w∗ − αtgt,gt − gt⟩
A3 = α2

t ∥gt − gt∥2

By definition of gt and gt (see Eq (5)), we have EA2 = 0. For A3, we have the following
upper bound (see Lemma 4):

α2
tE∥gt − gt∥2 ≤ α2

t

N∑
k=1

p2kσ
2
k

Next we bound A1:

∥wt −w∗ − αtgt∥2 = ∥wt −w∗∥2 + 2⟨wt −w∗,−αtgt⟩+ ∥αtgt∥2

and we will show that the third term ∥αtgt∥2 can be canceled by an upper bound of the
second term, which is one of major improvement comparing to prior art Li et al. (2020c).

The upper bound of second term can be derived as follows, using the strong convexity
and L-smoothness of Fk:

− 2αt⟨wt −w∗,gt⟩

=− 2αt

N∑
k=1

pk⟨wt −w∗,∇Fk(w
k
t )⟩

=− 2αt

N∑
k=1

pk⟨wt −wk
t ,∇Fk(w

k
t )⟩ − 2αt

N∑
k=1

pk⟨wk
t −w∗,∇Fk(w

k
t )⟩

≤ − 2αt

N∑
k=1

pk⟨wt −wk
t ,∇Fk(w

k
t )⟩+ 2αt

N∑
k=1

pk(Fk(w
∗)− Fk(w

k
t ))− αtµ

N∑
k=1

pk∥wk
t −w∗∥2

≤2αt

N∑
k=1

pk

[
Fk(w

k
t )− Fk(wt) +

L

2
∥wt −wk

t ∥2 + Fk(w
∗)− Fk(w

k
t )

]
− αtµ∥

N∑
k=1

pkw
k
t −w∗∥2

=αtL

N∑
k=1

pk∥wt −wk
t ∥2 + 2αt

N∑
k=1

pk [Fk(w
∗)− Fk(wt)]− αtµ∥wt −w∗∥2

We record the bound we have obtained so far, as it will also be used in the proof for convex
case:

E∥wt+1 −w∗∥2 ≤E(1− µαt)∥wt −w∗∥2 + αtL
N∑
k=1

pk∥wt −wk
t ∥2
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+ 2αt

N∑
k=1

pk [Fk(w
∗)− Fk(wt)] + α2

t

N∑
k=1

p2kσ
2
k + α2

t ∥gt∥2 (10)

For the term 2αt
∑N

k=1 pk [Fk(w
∗)− Fk(wt)], which is negative, we can ignore it, but this

yields a suboptimal bound that fails to provide the desired linear speedup. Instead, we upper
bound it using the following derivation:

2αt

N∑
k=1

pk [Fk(w
∗)− Fk(wt)]

≤2αt [F (wt+1)− F (wt)]

≤2αtE⟨∇F (wt),wt+1 −wt⟩+ αtLE∥wt+1 −wt∥2

=− 2α2
tE⟨∇F (wt),gt⟩+ α3

tLE∥gt∥2

=− 2α2
tE⟨∇F (wt),gt⟩+ α3

tLE∥gt∥2

=− α2
t

[
∥∇F (wt)∥2 + ∥gt∥2 − ∥∇F (wt)− gt∥2

]
+ α3

tLE∥gt∥2

=− α2
t

[
∥∇F (wt)∥2 + ∥gt∥2 − ∥∇F (wt)−

∑
k

pk∇F (wk
t )∥2

]
+ α3

tLE∥gt∥2

≤− α2
t

[
∥∇F (wt)∥2 + ∥gt∥2 −

∑
k

pk∥∇F (wt)−∇F (wk
t )∥2

]
+ α3

tLE∥gt∥2

≤− α2
t

[
∥∇F (wt)∥2 + ∥gt∥2 − L2

∑
k

pk∥wt −wk
t ∥2
]
+ α3

tLE∥gt∥2

≤− α2
t ∥gt∥2 + α2

tL
2
∑
k

pk∥wt −wk
t ∥2 + α3

tLE∥gt∥2 − α2
t ∥∇F (wt)∥2

where we have used the smoothness of F twice.
Note that the term −α2

t ∥gt∥2 exactly cancels the α2
t ∥gt∥2 in the bound in Eq (10), so

that plugging in the bound for −2αt⟨wt −w∗,gt⟩, we have so far proved

E∥wt+1 −w∗∥2 ≤ E(1− µαt)∥wt −w∗∥2 + αtL
N∑
k=1

pk∥wt −wk
t ∥2 + α2

t

N∑
k=1

p2kσ
2
k

+ α2
tL

2
N∑
k=1

pk∥wt −wk
t ∥2 + α3

tLE∥gt∥2 − α2
t ∥∇F (wt)∥2 (11)

Under Assumption 4, we have E∥gt∥2 ≤ G2. Furthermore, we can check that our choice of αt

satisfies αt is non-increasing and αt ≤ 2αt+E , so we may plug in the bound E
∑N

k=1 pk∥wt −
wk

t ∥2 ≤ 4E2α2
tG

2 to the above inequality (see Lemma 5).
Therefore, we can conclude that, with νmax := N ·maxk pk and νmin := N ·mink pk,

E∥wt+1 −w∗∥2

≤E(1− µαt)∥wt −w∗∥2 + 4E2Lα3
tG

2 + 4E2L2α4
tG

2 + α2
t

N∑
k=1

p2kσ
2
k + α3

tLG
2
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=E(1− µαt)∥wt −w∗∥2 + 4E2Lα3
tG

2 + 4E2L2α4
tG

2 + α2
t

1

N

N∑
k=1

(pkN)pkσ
2
k + α3

tLG
2

≤E(1− µαt)∥wt −w∗∥2 + 4E2Lα3
tG

2 + 4E2L2α4
tG

2 + α2
t

1

N
νmax

N∑
k=1

pkσ
2
k + α3

tLG
2

≤E(1− µαt)∥wt −w∗∥2 + 6E2Lα3
tG

2 + α2
t

1

N
νmaxσ

2

where in the last inequality we use σ2 =
∑N

k=1 pkσ
2
k, and that by construction αt satisfies

Lαt ≤ 1
8 .

One may ask whether the dependence on E in the term κE2G2/µ
KT can be removed, or

equivalently whether
∑

k pk∥wk
t −wt∥2 = O(1/T 2) can be independent of E. We provide a

simple counterexample that shows that this is not possible in general.

Proposition 1. There exists a dataset such that if E = O(T β) for any β > 0 then∑
k pk∥wk

t −wt∥2 = Ω( 1
T 2−2β ) .

Proof. Suppose that we have an even number of devices and each Fk(w) = 1
nk

∑nk
j=1(x

j
k−w)2

contains data points xj
k = w∗,k, with nk ≡ n. Moreover, the w∗,k’s come in pairs around the

origin. As a result, the global objective F is minimized at w∗ = 0. Moreover, if we start
from w0 = 0, then by design of the dataset the updates in local steps exactly cancel each
other at each iteration, resulting in wt = 0 for all t. On the other hand, if E = T β, then
starting from any t = O(T ) with constant step size O( 1

T ), after E iterations of local steps,
the local parameters are updated towards w∗,k with ∥wk

t+E∥2 = Ω((T β · 1
T )

2) = Ω( 1
T 2−2β ).

This implies that ∑
k

pk∥wk
t+E −wt+E∥2 =

∑
k

pk∥wk
t+E∥2

= Ω(
1

T 2−2β
)

which is at a slower rate than 1
T 2 for any β > 0. Thus the sampling variance E∥wt+1−vt+1∥2 =

Ω(
∑

k pkE∥wk
t+1 −wt+1∥2) decays at a slower rate than 1

T 2 , resulting in a convergence rate
slower than O( 1

T ) with partial participation.

E.2 Convex Smooth Objectives

In this section we provide the proof of the convergence result for FedAvg with convex and
smooth objectives. The key step is a one step progress result analogous to that in the strongly
convex case, and their proofs share identical components as well.

Lemma 6 (One step progress, convex case). Let wt =
∑N

k=1 pkw
k
t in FedAvg. Under

assumptions 1,3,4, the following bound holds for all t:

E∥wt+1 −w∗∥2 + αt(F (wt)− F (w∗)) ≤ E∥wt −w∗∥2 + α2
t

1

N
νmaxσ

2 + 6α3
tE

2LG2
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Proof. The first part of the proof follows directly from Eq (10) in the proof of Lemma 3.
Setting µ = 0 in Eq (10) (since we are in the convex setting instead of strongly convex), we
obtain

∥wt+1 −w∗∥2 ≤ ∥wt −w∗∥2 + αtL
N∑
k=1

pk∥wt −wk
t ∥2

+ 2αt

N∑
k=1

pk [Fk(w
∗)− Fk(wt)] + α2

t ∥gt∥2 + α2
t

N∑
k=1

p2kσ
2
k

The difference of this bound with that in the strongly convex case is that we no longer have a
contraction factor of 1−µαt in front of ∥wt−w∗∥2. In the strongly convex case, we were able
to cancel α2

t ∥gt∥2 with 2αt
∑N

k=1 pk [Fk(w
∗)− Fk(wt)] and obtain only lower order terms.

In the convex case, we use a different strategy and preserve
∑N

k=1 pk [Fk(w
∗)− Fk(wt)] in

order to obtain the desired optimality gap.
More precisely, we have

∥gt∥2 = ∥
∑
k

pk∇Fk(w
k
t )∥2

= ∥
∑
k

pk∇Fk(w
k
t )−

∑
k

pk∇Fk(wt) +
∑
k

pk∇Fk(wt)∥2

≤ 2∥
∑
k

pk∇Fk(w
k
t )−

∑
k

pk∇Fk(wt)∥2 + 2∥
∑
k

pk∇Fk(wt)∥2

≤ 2L2
∑
k

pk∥wk
t −wt∥2 + 2∥

∑
k

pk∇Fk(wt)∥2

= 2L2
∑
k

pk∥wk
t −wt∥2 + 2∥∇F (wt)∥2

using ∇F (w∗) = 0. Now using the L smoothness of F , we have ∥∇F (wt)∥2 ≤ 2L(F (wt)−
F (w∗)), so that

∥wt+1 −w∗∥2

≤∥wt −w∗∥2 + αtL
N∑
k=1

pk∥wt −wk
t ∥2 + 2αt

N∑
k=1

pk [Fk(w
∗)− Fk(wt)]

+ 2α2
tL

2
∑
k

pk∥wk
t −wt∥2 + 4α2

tL(F (wt)− F (w∗)) + α2
t

N∑
k=1

p2kσ
2
k

=∥wt −w∗∥2 + (2α2
tL

2 + αtL)
N∑
k=1

pk∥wt −wk
t ∥2 + αt

N∑
k=1

pk [Fk(w
∗)− Fk(wt)]

+ α2
t

N∑
k=1

p2kσ
2
k + αt(1− 4αtL)(F (w∗)− F (wt))

Since F (w∗) ≤ F (wt), as long as 4αtL ≤ 1, we can ignore the last term, and rearrange the
inequality to obtain

∥wt+1 −w∗∥2 + αt(F (wt)− F (w∗))

1169



Qu, Lin, Li, Zhou, & Zhou

≤∥wt −w∗∥2 + (2α2
tL

2 + αtL)
N∑
k=1

pk∥wt −wk
t ∥2 + α2

t

N∑
k=1

p2kσ
2
k

≤∥wt −w∗∥2 + 3

2
αtL

N∑
k=1

pk∥wt −wk
t ∥2 + α2

t

N∑
k=1

p2kσ
2
k

The same argument as before yields E
∑N

k=1 pk∥wt −wk
t ∥2 ≤ 4E2α2

tG
2 which gives

∥wt+1 −w∗∥2 + αt(F (wt)− F (w∗)) ≤ ∥wt −w∗∥2 + α2
t

N∑
k=1

p2kσ
2
k + 6α3

tE
2LG2

≤ ∥wt −w∗∥2 + α2
t

1

N
νmaxσ

2 + 6α3
tE

2LG2

With the one step progress result, we can now prove the convergence result in the convex
setting, which we restate below.

Theorem 2. Under assumptions 1,3,4 and constant learning rate αt = O(
√

N
T ), FedAvg

satisfies

min
t≤T

F (wt)− F (w∗) = O
(
νmaxσ

2

√
NT

+
NE2LG2

T

)
with full participation, and with partial device participation with K sampled devices at each
communication round and learning rate αt = O(

√
K
T ),

min
t≤T

F (wt)− F (w∗) = O
(
νmaxσ

2

√
KT

+
EG2

√
KT

+
KE2LG2

T

)
Proof. We first prove the bound for full participation. Applying Lemma 6, we have

∥wt+1 −w∗∥2 + αt(F (wt)− F (w∗)) ≤ ∥wt −w∗∥2 + α2
t

1

N
νmaxσ

2 + 6α3
tE

2LG2

Summing the inequalities from t = 0 to t = T , we obtain

T∑
t=0

αt(F (wt)− F (w∗)) ≤ ∥w0 −w∗∥2 +
T∑
t=0

α2
t ·

1

N
νmaxσ

2 +
T∑
t=0

α3
t · 6E2LG2

so that

min
t≤T

F (wt)− F (w∗) ≤ 1∑T
t=0 αt

(
∥w0 −w∗∥2 +

T∑
t=0

α2
t ·

1

N
νmaxσ

2 +

T∑
t=0

α3
t · 6E2LG2

)

By setting the constant learning rate αt ≡
√

N
T , we have

min
t≤T

F (wt)− F (w∗)
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≤ 1√
NT

· ∥w0 −w∗∥2 + 1√
NT

T · N
T

· 1

N
νmaxσ

2 +
1√
NT

T (

√
N

T
)36E2LG2

≤ 1√
NT

· ∥w0 −w∗∥2 + 1√
NT

T · N
T

· 1

N
νmaxσ

2 +
N

T
6E2LG2

= (∥w0 −w∗∥2 + νmaxσ
2)

1√
NT

+
N

T
6E2LG2

= O(
νmaxσ

2

√
NT

+
NE2LG2

T
)

For partial participation, the one step progress bound in Lemma 6 is updated in a similar
manner as the strongly convex case to incorporate the sampling variance. More precisely,
with partial participation, we consider two consecutive communication rounds t + 1 and
t+ 1 + E. Using Ewt+E+1 = vt+E+1, we can write

E∥wt+E+1 −w∗∥2 = E∥wt+E+1 − vt+E+1 + vt+E+1 −w∗∥2

= E∥vt+E+1 −w∗∥2 + E∥wt+E+1 − vt+E+1∥2

Again, the first term can be bounded by applying the one-step bound E times and
summing it up, giving

E∥vt+E+1 −w∗∥2 +
t+E∑
t+1

αt(F (vt)− F (w∗))

≤E∥wt+1 −w∗∥2 +
t+E∑
t+1

α2
t

1

N
νmaxσ

2 + 6

t+E∑
t+1

α3
tE

2LG2

The bound for E∥wt+E+1 − vt+E+1∥2 for the two sampling schemes we consider is again
provided in Eq (8), giving the following E-step progress bound

E∥wt+E+1 −w∗∥2 +
t+E∑
t+1

αt(F (vt)− F (w∗)) ≤ E∥wt+1 −w∗∥2 +
t+E∑
t+1

α2
t

1

N
νmaxσ

2

+ 6
t+E∑
t+1

α3
tE

2LG2 +
4

K
α2
t+1E

2G2

Summing up the above bounds T/E times,

min
t≤T

F (wt)− F (w∗)

≤ 1∑T
t=0 αt

∥w0 −w∗∥2 +
T∑
t=0

α2
t

1

N
νmaxσ

2 +
∑

t=E,2E,...

4

K
α2
t+1E

2G2 +

T∑
t=0

α3
t · 6E2LG2

 ,

so that with αt =
√

K
T , we have

min
t≤T

F (wt)− F (w∗) = O(
νmaxσ

2

√
KT

+
EG2

√
KT

+
KE2LG2

T
).
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Appendix F. Proof of Convergence Results for Nesterov Accelerated
FedAvg

F.1 Strongly Convex Smooth Objectives

Recall that the Nesterov accelerated FedAvg follows the updates

vk
t+1 = wk

t − αtgt,k, wk
t+1 =

{
vk
t+1 + βt(v

k
t+1 − vk

t ) if t+ 1 /∈ IE ,∑
k∈St+1

qk
[
vk
t+1 + βt(v

k
t+1 − vk

t )
]

if t+ 1 ∈ IE .

The proofs of convergence results for Nesterov Accelerated FedAvg consists of components
that are direct analogues of the FedAvg case. We first state these analogue results before
proving the main theorem. Like before, the proofs of the lemmas are deferred to after the
main proof.

Lemma 7 (One step progress, Nesterov). Let vt =
∑N

k=1 pkv
k
t in Nesterov accelerated

FedAvg, and suppose our functions satisfy Assumptions 1,2,3,4, and set step sizes αt =
6
µ

1
t+γ ,

βt−1 = 3
14(t+γ)(1− 6

t+γ
)max{µ,1} with γ = max{32κ,E} and κ = L

µ , the updates of Nesterov

accelerated FedAvg satisfy

E∥vt+1 −w∗∥2 ≤ E(1− µαt)(1 + βt−1)
2∥vt −w∗∥2 + 20E2Lα3

tG
2

+ (1− αtµ)β
2
t−1∥(vt−1 −w∗)∥2 + α2

t

1

N
νmaxσ

2

+ 2βt−1(1 + βt−1)(1− αtµ)∥vt −w∗∥ · ∥vt−1 −w∗∥.

The one step progress result makes use of the same bound on the gradient variance
in Lemma 4, as well as a divergence bound analogous to Lemma 5, which we state below.

Lemma 8 (Bounding the divergence of wk
t , Nesterov). Given Assumption 4, and

assume that αt is non-increasing, αt ≤ 2αt+E, and 2β2
t−1 + 2α2

t ≤ 1/2 for all t ≥ 0,
wt =

∑N
k=1 pkw

k
t in Nesterov accelerated FedAvg satisfies

E

[
N∑
k=1

pk∥wt −wk
t ∥2
]
≤ 16(E − 1)2α2

tG
2.

Theorem 3. Let vT =
∑N

k=1 pkv
k
T in Nesterov accelerated FedAvg and set learning rates

αt =
6
µ

1
t+γ , βt−1 =

3
14(t+γ)(1− 6

t+γ
)max{µ,1} . Then under Assumptions 1,2,3,4 with full device

participation,

EF (vT )− F ∗ = O
(
κνmaxσ

2/µ

NT
+

κ2E2G2/µ

T 2

)
,

and with partial device participation with K sampled devices at each communication round,

EF (vT )− F ∗ = O
(
κνmaxσ

2/µ

NT
+

κE2G2/µ

KT
+

κ2E2G2/µ

T 2

)
.
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Proof. We first prove the result for full participation. Applying the one step progress bound
in Lemma 7, we have

E∥vt+1 −w∗∥2 ≤ E(1− µαt)(1 + βt−1)
2∥vt −w∗∥2 + 20E2Lα3

tG
2

+ (1− αtµ)β
2
t−1∥(vt−1 −w∗)∥2 + α2

t

1

N
νmaxσ

2

+ 2βt−1(1 + βt−1)(1− αtµ)∥vt −w∗∥ · ∥vt−1 −w∗∥.

Recall that we require αt0 ≤ 2αt for any t− t0 ≤ E − 1, Lαt ≤ 1
5 , and 2β2

t−1 + 2α2
t ≤ 1/2 in

order for Lemmas 8 and 7 to hold, which we can check by definition of αt and βt.
We show next that E∥vt −w∗∥2 = O(νmaxσ2/µ

tN + E2LG2/µ2

t2
) by induction. Assume that we

have shown

E∥vt −w∗∥2 ≤ b(Cα2
t +Dαt)

for all iterations until t, where C = 20E2LG2, D = 1
N νmaxσ

2, and b is some constant to be
chosen later. For step sizes recall that we choose αt =

6
µ

1
t+γ and βt−1 = 3

14(t+γ)(1− 6
t+γ

)max{µ,1}
where γ = max{32κ,E}, so that βt−1 ≤ αt and

(1− µαt)(1 + 14βt−1) ≤ (1− 6

t+ γ
)(1 +

3

(t+ γ)(1− 6
t+γ )

)

= 1− 6

t+ γ
+

3

t+ γ
= 1− 3

t+ γ
= 1− µαt

2

Moreover, E∥vt−1 −w∗∥2 ≤ b(Cα2
t−1 +Dαt−1) ≤ 4b(Cα2

t +Dαt) with the chosen step
sizes. Therefore the bound for E∥vt+1 −w∗∥2 can be further simplified with

2βt−1(1 + βt−1)(1− αtµ)E∥vt −w∗∥∥vt−1 −w∗∥ ≤ 4βt−1(1 + βt−1)(1− αtµ)b(Cα2
t +Dαt)

and

(1− αtµ)β
2
t−1E∥(vt−1 −w∗)∥2 ≤ 4(1− αtµ)β

2
t−1 · b(Cα2

t +Dαt)

so that

E∥vt+1 −w∗∥2 ≤ (1− µαt)((1 + βt−1)
2 + 4βt−1(1 + βt−1) + 4β2

t−1) · b(Cα2
t +Dαt)

+ 20E2Lα3
tG

2 + α2
t

1

N
νmaxσ

2

≤ E(1− µαt)(1 + 14βt−1) · b(Cα2
t +Dαt) + 20E2Lα3

tG
2 + α2

t

1

N
νmaxσ

2

≤ b(1− µαt

2
)(Cα2

t +Dαt) + Cα3
t +Dα2

t

= (b(1− µαt

2
) + αt)α

2
tC + (b(1− µαt

2
) + αt)αtD

and so it remains to choose b such that

(b(1− µαt

2
) + αt)αt ≤ bαt+1
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(b(1− µαt

2
) + αt)α

2
t ≤ bα2

t+1

from which we can conclude E∥vt+1 −w∗∥2 ≤ α2
t+1C + αt+1D.

With b = 6
µ , we have

(b(1− µαt

2
) + αt)αt = (b(1− (

3

t+ γ
) +

6

µ(t+ γ)
)

6

µ(t+ γ)

= (b
t+ γ − 3

t+ γ
+

6

µ(t+ γ)
)

6

µ(t+ γ)

≤ b(
t+ γ − 1

t+ γ
)

6

µ(t+ γ)

≤ b
6

µ(t+ γ + 1)
= bαt+1

where we have used t+γ−1
(t+γ)2

≤ 1
t+γ+1 .

Similarly

(b(1− µαt

2
) + αt)α

2
t = (b(1− (

3

t+ γ
) +

6

µ(t+ γ)
)(

6

µ(t+ γ)
)2

= (b
t+ γ − 3

t+ γ
+

6

µ(t+ γ)
)(

6

µ(t+ γ)
)2

= b(
t+ γ − 2

t+ γ
)(

6

µ(t+ γ)
)2

≤ b
36

µ2(t+ γ + 1)2
= bα2

t+1

where we have used t+γ−2
(t+γ)3

≤ 1
(t+γ+1)2

.
Finally, to ensure ∥v0−w∗∥2 ≤ b(Cα2

0 +Dα0), we can rescale b by c∥v0−w∗∥2 for some
c. It follows that E∥vt −w∗∥2 ≤ b(Cα2

t +Dαt) for all t ≥ 0. Using the L-smooothness of F ,

E(F (vT ))− F ∗ = E(F (vT )− F (w∗))

≤ L

2
E∥vT −w∗∥2 ≤ L

2
c∥v0 −w∗∥2 6

µ
(DαT + Cα2

T )

= 3c∥v0 −w∗∥2κ(DαT + Cα2
T )

≤ 3c∥v0 −w∗∥2κ
[

6

µ(T + γ)
· 1

N
νmaxσ

2 + 20E2LG2 · ( 6

µ(T + γ)
)2
]

= O(
κ

µ

1

N
νmaxσ

2 · 1
T

+
κ2

µ
E2G2 · 1

T 2
)

With partial participation, the same argument as in the FedAvg case in Theorem 1 by
adding a term for sampling error every E steps yields

EF (wT )− F ∗ = O(
κνmaxσ

2/µ

NT
+

κEG2/µ

KT
+

κ2E2G2/µ

T 2
)
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F.1.1 Deferred Proofs of Key Lemmas

Proof of lemma 8. The proof of bound for E
∑N

k=1 pk∥wt−wk
t ∥2 in the Nesterov accelerated

FedAvg follows a similar logic as in Lemma 5, but requires extra reasoning. Since communi-
cation is done every E steps, for any t ≥ 0, we can find a t0 ≤ t such that t − t0 ≤ E − 1
and wk

t0 = wt0 for all k. Moreover, using αt is non-increasing, αt0 ≤ 2αt, and βt ≤ αt for any
t− t0 ≤ E − 1, we have

E
N∑
k=1

pk∥wt −wk
t ∥2 = E

N∑
k=1

pk∥wk
t −wt0 − (wt −wt0)∥2

≤ E
N∑
k=1

pk∥wk
t −wt0∥2

= E
N∑
k=1

pk∥wk
t −wk

t0∥
2

= E
N∑
k=1

pk∥
t−1∑
i=t0

βi(v
k
i+1 − vk

i )−
t−1∑
i=t0

αigi,k∥2

≤ 2
N∑
k=1

pkE
t−1∑
i=t0

(E − 1)α2
i ∥gi,k∥2 + 2

N∑
k=1

pkE
t−1∑
i=t0

(E − 1)β2
i ∥(vk

i+1 − vk
i )∥2

≤ 2
N∑
k=1

pkE
t−1∑
i=t0

(E − 1)α2
i (∥gi,k∥2 + ∥(vk

i+1 − vk
i )∥2)

≤ 4

N∑
k=1

pkE
t−1∑
i=t0

(E − 1)α2
iG

2

≤ 4(E − 1)2α2
t0G

2 ≤ 16(E − 1)2α2
tG

2

where we have used E∥vk
t − vk

t−1∥2 ≤ G2. To see this identity for appropriate αt, βt, note
the recursion

vk
t+1 − vk

t = wk
t −wk

t−1 − (αtgt,k − αt−1gt−1,k)

wk
t+1 −wk

t = −αtgt,k + βt(v
k
t+1 − vk

t )

so that

vk
t+1 − vk

t = −αt−1gt−1,k + βt−1(v
k
t − vk

t−1)− (αtgt,k − αt−1gt−1,k)

= βt−1(v
k
t − vk

t−1)− αtgt,k

Since the identity vk
t+1 − vk

t = βt−1(v
k
t − vk

t−1)− αtgt,k implies

E∥vk
t+1 − vk

t ∥2 ≤ 2β2
t−1E∥vk

t − vk
t−1∥2 + 2α2

tG
2

as long as αt, βt−1 satisfy 2β2
t−1 +2α2

t ≤ 1/2, we can guarantee that E∥vk
t − vk

t−1∥2 ≤ G2 for
all k by induction. This together with Jensen’s inequality also gives E∥vt − vt−1∥2 ≤ G2 for
all t.
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Now we are ready to prove the one step progress result for Nesterov accelerated FedAvg.
The first part of the proof is identical to that of the FedAvg case, while the main recursion
takes a different form.

Proof of lemma 7. We again have

∥vt+1 −w∗∥2 = ∥(wt − αtgt)−w∗∥2

and using exactly the same derivation as the FedAvg case, we can obtain the following bound
(same as Eq (11) in the proof of Lemma 3):

E∥wt+1 −w∗∥2 ≤ E(1− µαt)∥wt −w∗∥2 + αtL

N∑
k=1

pk∥wt −wk
t ∥2 + α2

t

N∑
k=1

p2kσ
2
k

+ α2
tL

2
N∑
k=1

pk∥wt −wk
t ∥2 + α3

tLE∥gt∥2 − α2
t ∥∇F (wt)∥2

Different from the FedAvg case, we no longer have wt = vt. Instead,

∥wt −w∗∥2

=∥vt + βt−1(vt − vt−1)−w∗∥2

=∥(1 + βt−1)(vt −w∗)− βt−1(vt−1 −w∗)∥2

=(1 + βt−1)
2∥vt −w∗∥2 − 2βt−1(1 + βt−1)⟨vt −w∗,vt−1 −w∗⟩+ β2

t−1∥(vt−1 −w∗)∥2

≤(1 + βt−1)
2∥vt −w∗∥2 + 2βt−1(1 + βt−1)∥vt −w∗∥ · ∥vt−1 −w∗∥+ β2

t−1∥(vt−1 −w∗)∥2

which gives a recursion involving both vt and vt−1:

∥vt+1 −w∗∥2

≤ (1− αtµ)(1 + βt−1)
2∥vt −w∗∥2 + 2(1− αtµ)βt−1(1 + βt−1)∥vt −w∗∥ · ∥vt−1 −w∗∥

+ α2
t

N∑
k=1

p2kσ
2
k + β2

t−1(1− αtµ)∥(vt−1 −w∗)∥2 + αtL

N∑
k=1

pk∥wt −wk
t ∥2

+ α2
tL

2
∑
k

pk∥wt −wk
t ∥2 + α3

tLG
2

and we will using this recursive relation to obtain the desired bound.
We can check that our choice of αt and βt satisfy αt is non-increasing, αt ≤ 2αt+E ,

and 2β2
t−1 + 2α2

t ≤ 1/2 for all t ≥ 0, so that we can apply the bound from Lemma 8 on
E
∑N

k=1 pk∥wt −wk
t ∥2 to conclude that, with νmax := N ·maxk pk,

E∥vt+1 −w∗∥2

≤E(1− µαt)(1 + βt−1)
2∥vt −w∗∥2 + 16E2Lα3

tG
2 + 16E2L2α4

tG
2 + α3

tLG
2

+(1− αtµ)β
2
t−1∥(vt−1 −w∗)∥2

+α2
t

N∑
k=1

p2kσ
2
k + 2βt−1(1 + βt−1)(1− αtµ)∥vt −w∗∥ · ∥vt−1 −w∗∥
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≤E(1− µαt)(1 + βt−1)
2∥vt −w∗∥2 + 20E2Lα3

tG
2 + (1− αtµ)β

2
t−1∥(vt−1 −w∗)∥2

+α2
t

1

N
νmaxσ

2 + 2βt−1(1 + βt−1)(1− αtµ)∥vt −w∗∥ · ∥vt−1 −w∗∥

where we have used σ2 =
∑

k pkσ
2
k, and by construction our αt satisfies Lαt ≤ 1

5 .

F.2 Convex Smooth Objectives

In this section we provide proof of the convergence result for Nesterov accelerated FedAvg with
convex and smooth objectives. Unlike with the FedAvg algorithm, where convex and strongly
convex results share identical components, the proof for the convergence result in the convex
setting for Nesterov FedAvg uses a change of variables, although the general ideas are in the
same vein: we have a one step progress bound for E∥wt+1−w∗∥2+ηt(F (wt)−F (w∗)), which
is then used to form a telescoping sum that gives an upper bound on mint≤T F (wt)−F (w∗).

Lemma 9 (One step progress, convex case, Nesterov). Let wt =
∑N

k=1 pkw
k
t in

Nesterov accelerated FedAvg, and define ηt =
αt

1−βt
. Under assumptions 1,3,4, the following

bound holds for all t:

E∥wt+1 −w∗∥2 + ηt(F (wt)− F (w∗))

≤E∥wt −w∗∥2 + 32LE2α2
t ηtG

2 + η2t νmax
1

N
σ2 + 2ηt

β2
t

1− βt
G2.

Theorem 4. Set learning rates αt = βt = O(
√

N
T ). Then under Assumptions 1,3,4 Nesterov

accelerated FedAvg with full device participation has rate

min
t≤T

F (wt)− F ∗ = O
(
νmaxσ

2

√
NT

+
NE2LG2

T

)
,

and with partial device participation with K sampled devices at each communication round
and learning rates αt = βt = O(

√
K
T ),

min
t≤T

F (wt)− F ∗ = O
(
νmaxσ

2

√
KT

+
EG2

√
KT

+
KE2LG2

T

)
.

Proof. Applying the bound from Lemma 9, with ηt =
αt

1−βt
we have

E∥wt+1 −w∗∥2 + ηt(F (wt)− F (w∗))

≤E∥wt −w∗∥2 + 32LE2α2
t ηtG

2 + η2t νmax
1

N
σ2 + 2ηt

β2
t

1− βt
G2

Summing the inequalities from t = 0 to t = T , we obtain

T∑
t=0

ηt(F (wt)− F (w∗))
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≤∥w0 −w∗∥2 +
T∑
t=0

η2t ·
1

N
νmaxσ

2 +
T∑
t=0

ηtα
2
t · 32LE2G2 +

T∑
t=0

2ηt
β2
t

1− βt
G2

so that

min
t≤T

F (wt)− F (w∗)

≤ 1∑T
t=0 ηt

(
∥w0 −w∗∥2 +

T∑
t=0

η2t ·
1

N
νmaxσ

2 +
T∑
t=0

ηtα
2
t · 32LE2G2 +

T∑
t=0

2ηt
β2
t

1− βt
G2

)

By setting the constant learning rates αt ≡
√

N
T and βt ≡ c

√
N
T so that ηt =

αt
1−βt

=√
N
T

1−c
√

N
T

≤ 2
√

N
T , we have

min
t≤T

F (wt)− F (w∗) ≤ 1

2
√
NT

· ∥w0 −w∗∥2

+
2√
NT

T · N
T

· 1

N
νmaxσ

2 +
1√
NT

T (

√
N

T
)332LE2G2 +

2√
NT

T (

√
N

T
)3G2

= (
1

2
∥w0 −w∗∥2 + 2νmaxσ

2)
1√
NT

+
N

T
(32LE2G2 + 2G2)

= O(
νmaxσ

2

√
NT

+
NE2LG2

T
)

Similarly, for partial participation, using the same argument to get the E-step bound in
the proof of Theorem 2, we have

min
t≤T

F (wt)− F (w∗) = O(
νmaxσ

2

√
KT

+
EG2

√
KT

+
KE2LG2

T
)

F.2.1 Deferred Proofs of Key Lemmas

Proof of lemma 9. Define pt :=
βt

1−βt
[wt −wt−1 + αtgt−1] =

β2
t

1−βt
(vt − vt−1) for t ≥ 1 and

0 for t = 0. We can check that

wt+1 + pt+1 = wt + pt −
αt

1− βt
gt

Now we define zt := wt + pt and ηt =
αt

1−βt
for all t, so that we have the recursive relation

zt+1 = zt − ηtgt

Now

∥zt+1 −w∗∥2 = ∥(zt − ηtgt)−w∗∥2

= ∥(zt − ηtgt −w∗)− ηt(gt − gt)∥2
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= A1 +A2 +A3

where

A1 = ∥zt −w∗ − ηtgt∥2

A2 = 2ηt⟨zt −w∗ − ηtgt,gt − gt⟩
A3 = η2t ∥gt − gt∥2

where again EA2 = 0 and EA3 ≤ η2t
∑

k p
2
kσ

2
k. For A1 we have

∥zt −w∗ − ηtgt∥2 = ∥zt −w∗∥2 + 2⟨zt −w∗,−ηtgt⟩+ ∥ηtgt∥2

Using the convexity and L-smoothness of Fk,

− 2ηt⟨zt −w∗,gt⟩

= −2ηt

N∑
k=1

pk⟨zt −w∗,∇Fk(w
k
t )⟩

= −2ηt

N∑
k=1

pk⟨zt −wk
t ,∇Fk(w

k
t )⟩ − 2ηt

N∑
k=1

pk⟨wk
t −w∗,∇Fk(w

k
t )⟩

= −2ηt

N∑
k=1

pk⟨zt −wt,∇Fk(w
k
t )⟩ − 2ηt

N∑
k=1

pk⟨wt −wk
t ,∇Fk(w

k
t )⟩

− 2ηt

N∑
k=1

pk⟨wk
t −w∗,∇Fk(w

k
t )⟩

≤ −2ηt

N∑
k=1

pk⟨zt −wt,∇Fk(w
k
t )⟩ − 2ηt

N∑
k=1

pk⟨wt −wk
t ,∇Fk(w

k
t )⟩

+ 2ηt

N∑
k=1

pk(Fk(w
∗)− Fk(w

k
t ))

≤ 2ηt

N∑
k=1

pk

[
Fk(w

k
t )− Fk(wt) +

L

2
∥wt −wk

t ∥2 + Fk(w
∗)− Fk(w

k
t )

]

− 2ηt

N∑
k=1

pk⟨zt −wt,∇Fk(w
k
t )⟩

= ηtL

N∑
k=1

pk∥wt −wk
t ∥2 + 2ηt

N∑
k=1

pk [Fk(w
∗)− Fk(wt)]− 2ηt

N∑
k=1

pk⟨zt −wt,∇Fk(w
k
t )⟩

which results in

E∥wt+1 −w∗∥2 ≤ E∥wt −w∗∥2 + ηtL
N∑
k=1

pk∥wt −wk
t ∥2 + 2ηt

N∑
k=1

pk [Fk(w
∗)− Fk(wt)]
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+ η2t ∥gt∥2 + η2t

N∑
k=1

p2kσ
2
k − 2ηt

N∑
k=1

pk⟨zt −wt,∇Fk(w
k
t )⟩

As before, ∥gt∥2 ≤ 2L2
∑

k pk∥wk
t −wt∥2 + 4L(F (wt)− F (w∗)), so that

η2t ∥gt∥2 + ηt

N∑
k=1

pk [Fk(w
∗)− Fk(wt)] ≤ 2L2η2t

∑
k

pk∥wk
t −wt∥2

+ ηt(1− 4ηtL)(F (w∗)− F (wt))

≤ 2L2η2t
∑
k

pk∥wk
t −wt∥2

for ηt ≤ 1/4L. Using
∑N

k=1 pk∥wt − wk
t ∥2 ≤ 16E2α2

tG
2 and

∑N
k=1 p

2
kσ

2
k ≤ νmax

1
N σ2, it

follows that

E∥wt+1 −w∗∥2 + ηt(F (wt)− F (w∗)) ≤ E∥wt −w∗∥2 + (ηtL+ 2L2η2t )
N∑
k=1

pk∥wt −wk
t ∥2

+ η2t

N∑
k=1

p2kσ
2
k − 2ηt

N∑
k=1

pk⟨zt −wt,∇Fk(w
k
t )⟩

≤ E∥wt −w∗∥2 + 32LE2α2
t ηtG

2 + η2t νmax
1

N
σ2

− 2ηt

N∑
k=1

pk⟨zt −wt,∇Fk(w
k
t )⟩

if ηt ≤ 1
2L . It remains to bound E

∑N
k=1 pk⟨zt − wt,∇Fk(w

k
t )⟩. Recall that zt − wt =

βt

1−βt
[wt −wt−1 + αtgt−1] =

β2
t

1−βt
(vt − vt−1) and E∥vt − vt−1∥2 ≤ G2, E∥∇Fk(w

k
t )∥2 ≤ G2.

Cauchy-Schwarz gives

E
N∑
k=1

pk⟨zt −wt,∇Fk(w
k
t )⟩ ≤

N∑
k=1

pk
√

E∥zt −wt∥2 ·
√
E∥∇Fk(w

k
t )∥2

≤ β2
t

1− βt
G2

Thus

E∥wt+1 −w∗∥2 + ηt(F (wt)− F (w∗)) ≤ E∥wt −w∗∥2 + 32LE2α2
t ηtG

2

+ η2t νmax
1

N
σ2 + 2ηt

β2
t

1− βt
G2

1180



A Unified Linear Speedup Analysis of Federated Averaging and Nesterov FedAvg

Appendix G. Proof of Geometric Convergence Results for
Overparameterized Problems

G.1 Geometric Convergence of FedAvg for General Strongly Convex and
Smooth Objectives

Theorem 5. For the overparameterized setting with general strongly convex and smooth
objectives, FedAvg with local SGD updates and communication every E iterations with constant
step size α = 1

2E
N

lνmax+L(N−νmin)
gives the exponential convergence guarantee

EF (wt) ≤
L

2
(1− µα)t∥w0 −w∗∥2 = O(exp(− µ

2E

N

lνmax + L(N − νmin)
t) · ∥w0 −w∗∥2)

Proof. To illustrate the main ideas of the proof, we first present the proof for E = 2. Let
t− 1 be a communication round, so that wk

t−1 = wt−1. We show that

∥wt+1 −w∗∥2 ≤ (1− αtµ)(1− αt−1µ)∥wt−1 −w∗∥2

for appropriately chosen constant step sizes αt, αt−1. We have

∥wt+1 −w∗∥2 = ∥(wt − αtgt)−w∗∥2

= ∥wt −w∗∥2 − 2αt⟨wt −w∗,gt⟩+ α2
t ∥gt∥2

and the cross term can be bounded as usual using µ-convexity and L-smoothness of Fk:

− 2αtEt⟨wt −w∗,gt⟩

= −2αt

N∑
k=1

pk⟨wt −w∗,∇Fk(w
k
t )⟩

= −2αt

N∑
k=1

pk⟨wt −wk
t ,∇Fk(w

k
t )⟩ − 2αt

N∑
k=1

pk⟨wk
t −w∗,∇Fk(w

k
t )⟩

≤ −2αt

N∑
k=1

pk⟨wt −wk
t ,∇Fk(w

k
t )⟩+ 2αt

N∑
k=1

pk(Fk(w
∗)− Fk(w

k
t ))− αtµ

N∑
k=1

pk∥wk
t −w∗∥2

≤ 2αt

N∑
k=1

pk

[
Fk(w

k
t )− Fk(wt) +

L

2
∥wt −wk

t ∥2 + Fk(w
∗)− Fk(w

k
t )

]
− αtµ∥

N∑
k=1

pk(w
k
t −w∗)∥2

= αtL

N∑
k=1

pk∥wt −wk
t ∥2 + 2αt

N∑
k=1

pk [Fk(w
∗)− Fk(wt)]− αtµ∥wt −w∗∥2

= αtL

N∑
k=1

pk∥wt −wk
t ∥2 − 2αt

N∑
k=1

pkFk(wt)− αtµ∥wt −w∗∥2

and so

E∥wt+1 −w∗∥2 ≤ E(1− αtµ)∥wt −w∗∥2 − 2αtF (wt) + α2
t ∥gt∥2 + αtL

N∑
k=1

pk∥wt −wk
t ∥2
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Applying this recursive relation to ∥wt−w∗∥2 and using ∥wt−1−wk
t−1∥2 ≡ 0, we further

obtain

E∥wt+1 −w∗∥2 ≤ E(1− αtµ)
(
(1− αt−1µ)∥wt−1 −w∗∥2 − 2αt−1F (wt−1) + α2

t−1∥gt−1∥2
)

− 2αtF (wt) + α2
t ∥gt∥2 + αtL

N∑
k=1

pk∥wt −wk
t ∥2

Now instead of bounding
∑N

k=1 pk∥wt −wk
t ∥2 using the arguments in the general convex

case, we follow Ma et al. (2018) and use the fact that in the overparameterized setting, w∗ is
a minimizer of each ℓ(w, xjk) and that each ℓ is l-smooth to obtain ∥∇Fk(wt−1, ξ

k
t−1)∥2 ≤

2l(Fk(wt−1, ξ
k
t−1)− Fk(w

∗, ξkt−1)), where recall Fk(w, ξkt−1) = ℓ(w, ξkt−1), so that

N∑
k=1

pk∥wt −wk
t ∥2 =

N∑
k=1

pk∥wt−1 − αt−1gt−1 −wk
t−1 + αt−1gt−1,k∥2

=
N∑
k=1

pkα
2
t−1∥gt−1 − gt−1,k∥2

= α2
t−1

N∑
k=1

pk(∥gt−1,k∥2 − ∥gt−1∥2)

= α2
t−1

N∑
k=1

pk∥∇Fk(wt−1, ξ
k
t−1)∥2 − α2

t−1∥gt−1∥2

≤ α2
t−1

N∑
k=1

pk2l(Fk(wt−1, ξ
k
t−1)− Fk(w

∗, ξkt−1))− α2
t−1∥gt−1∥2

again using wt−1 = wk
t−1. Taking expectation with respect to ξkt−1’s and using the fact that

F (w∗) = 0, we have

Et−1

N∑
k=1

pk∥wt −wk
t ∥2 ≤ 2lα2

t−1

N∑
k=1

pkFk(wt−1)− α2
t−1∥gt−1∥2

= 2lα2
t−1F (wt−1)− α2

t−1∥gt−1∥2

Note also that

∥gt−1∥2 = ∥
N∑
k=1

pk∇Fk(wt−1, ξ
k
t−1)∥2

while

∥gt∥2 = ∥
N∑
k=1

pk∇Fk(w
k
t , ξ

k
t )∥2

≤2∥
N∑
k=1

pk∇Fk(wt, ξ
k
t )∥2 + 2∥

N∑
k=1

pk(∇Fk(wt, ξ
k
t )−∇Fk(w

k
t , ξ

k
t ))∥2
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≤2∥
N∑
k=1

pk∇Fk(wt, ξ
k
t )∥2 + 2

N∑
k=1

pkl
2∥wt −wk

t ∥2

Substituting these into the bound for ∥wt+1 −w∗∥2, we have

E∥wt+1 −w∗∥2

≤ E(1− αtµ)((1− αt−1µ)∥wt−1 −w∗∥2 − 2αt−1F (wt−1) + α2
t−1∥gt−1∥2)

− 2αtF (wt) + 2α2
t ∥

N∑
k=1

pk∇Fk(wt, ξ
k
t )∥2 +

(
2l2α2

t−1α
2
t + αtα

2
t−1L

) (
2lF (wt−1)− ∥gt−1∥2

)
= E(1− αtµ)(1− αt−1µ)∥wt−1 −w∗∥2

− 2αt(F (wt)− αt∥
N∑
k=1

pk∇Fk(wt, ξ
k
t )∥2)

− 2αt−1(1− αtµ)

(
(1− lαt−1(2l

2α2
t + αtL)

1− αtµ
)F (wt−1)−

αt−1

2
∥

N∑
k=1

pk∇Fk(wt−1, ξ
k
t−1)∥2

)

from which we can conclude that

E∥wt+1 −w∗∥2 ≤ (1− αtµ)(1− αt−1µ)E∥wt−1 −w∗∥2

if we can choose αt, αt−1 to guarantee

E(F (wt)− αt∥
N∑
k=1

pk∇Fk(wt, ξ
k
t )∥2) ≥ 0

E

(
(1− lαt−1(2l

2α2
t + αtL)

1− αtµ
)F (wt−1)−

αt−1

2
∥

N∑
k=1

pk∇Fk(wt−1, ξ
k
t−1)∥2

)
≥ 0

Note that

Et∥
N∑
k=1

pk∇Fk(wt, ξ
k
t )∥2

=Et⟨
N∑
k=1

pk∇Fk(wt, ξ
k
t ),

N∑
k=1

pk∇Fk(wt, ξ
k
t )⟩

=

N∑
k=1

p2kEt∥∇Fk(wt, ξ
k
t )∥2 +

N∑
k=1

∑
j ̸=k

pjpkEt⟨∇Fk(wt, ξ
k
t ),∇Fj(wt, ξ

j
t )⟩

=
N∑
k=1

p2kEt∥∇Fk(wt, ξ
k
t )∥2 +

N∑
k=1

∑
j ̸=k

pjpk⟨∇Fk(wt),∇Fj(wt)⟩

=
N∑
k=1

p2kEt∥∇Fk(wt, ξ
k
t )∥2 +

N∑
k=1

N∑
j=1

pjpk⟨∇Fk(wt),∇Fj(wt)⟩ −
N∑
k=1

p2k∥∇Fk(wt)∥2
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≤
N∑
k=1

p2kEt∥∇Fk(wt, ξ
k
t )∥2 + ∥

∑
k

pk∇Fk(wt)∥2 −
1

N
νmin∥

∑
k

pk∇Fk(wt)∥2

=

N∑
k=1

p2kEt∥∇Fk(wt, ξ
k
t )∥2 + (1− 1

N
νmin)∥∇F (wt)∥2

and so following Ma et al. (2018) if we let αt = min{ qN
2lνmax

, 1−q

2L(1− 1
N
νmin)

} for a q ∈ [0, 1] to
be optimized later, we have

Et(F (wt)− αt∥
N∑
k=1

pk∇Fk(wt, ξ
k
t )∥2)

≥ Et

N∑
k=1

pkFk(wt)− αt

[
N∑
k=1

p2kEt∥∇Fk(wt, ξ
k
t )∥2 + (1− 1

N
νmin)∥∇F (wt)∥2

]

≥ Et

N∑
k=1

pk(qFk(wt, ξ
k
t )− αt

1

N
νmax∥∇Fk(wt, ξ

k
t )∥2)

+ ((1− q)F (wt)− αt(1−
1

N
νmin)∥∇F (wt)∥2)

≥ qEt

N∑
k=1

pk(Fk(wt, ξ
k
t )−

1

2l
∥∇Fk(wt, ξ

k
t )∥2) + (1− q)(F (wt)−

1

2L
∥∇F (wt)∥2)

≥ 0

again using w∗ optimizes Fk(w, ξkt ) with Fk(w
∗, ξkt ) = 0.

Maximizing αt = min{ qN
2lνmax

, 1−q

2L(1− 1
N
νmin)

} over q ∈ [0, 1], we see that q = lνmax
lνmax+L(N−νmin)

results in the fastest convergence, and this translates to αt =
1
2

N
lνmax+L(N−νmin)

. Next we
claim that αt−1 = c12

N
lνmax+L(N−νmin)

also guarantees

E(1− lαt−1(2l
2α2

t + αtL)

1− αtµ
)F (wt−1)−

αt−1

2
∥

N∑
k=1

pk∇Fk(wt−1, ξ
k
t−1)∥2 ≥ 0

Note that by scaling αt−1 by a constant c ≤ 1 if necessary, we can guarantee that
lαt−1(2l2α2

t+αtL)
1−αtµ

≤ 1
2 , and so the condition is equivalent to

F (wt−1)− αt−1∥
N∑
k=1

pk∇Fk(wt−1, ξ
k
t−1)∥2 ≥ 0

which was shown to hold with αt−1 ≤ 1
2

N
lνmax+L(N−νmin)

.
For the proof of general E ≥ 2, we use the following two identities:

∥gt∥2 ≤ 2∥
N∑
k=1

pk∇Fk(wt, ξ
k
t )∥2 + 2

N∑
k=1

pkl
2∥wt −wk

t ∥2
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E
N∑
k=1

pk∥wt −wk
t ∥2 ≤ E2(1 + 2l2α2

t−1)
N∑
k=1

pk∥wt−1 −wk
t−1∥2 + 8α2

t−1lF (wt−1)− 2α2
t−1∥gt−1∥2

where the first inequality has been established before. To establish the second inequality,
note that

N∑
k=1

pk∥wt −wk
t ∥2 =

N∑
k=1

pk∥wt−1 − αt−1gt−1 −wk
t−1 + αt−1gt−1,k∥2

≤ 2
N∑
k=1

pk

(
∥wt−1 −wk

t−1∥2 + ∥αt−1gt−1 − αt−1gt−1,k∥2
)

and ∑
k

pk∥gt−1,k − gt−1∥2 =
∑
k

pk(∥gt−1,k∥2 − ∥gt−1∥2)

=
∑
k

pk∥∇Fk(wt−1, ξ
k
t−1) +∇Fk(w

k
t−1, ξ

k
t−1)−∇Fk(wt−1, ξ

k
t−1)∥2 − ∥gt−1∥2

≤ 2
∑
k

pk

(
∥∇Fk(wt−1, ξ

k
t−1)∥2 + l2∥wk

t−1 −wt−1∥2
)
− ∥gt−1∥2

so that using the l-smoothness of ℓ,

E
N∑
k=1

pk∥wt −wk
t ∥2

≤ E2(1 + 2l2α2
t−1)

N∑
k=1

pk∥wt−1 −wk
t−1∥2 + 4α2

t−1

∑
k

pk∥∇Fk(wt−1, ξ
k
t−1)∥2 − 2α2

t−1∥gt−1∥2

≤ E2(1 + 2l2α2
t−1)

N∑
k=1

pk∥wt−1 −wk
t−1∥2

+ 4α2
t−12l

∑
k

pk(Fk(wt−1, ξ
k
t−1)− Fk(w

∗, ξkt−1))− 2α2
t−1∥gt−1∥2

= E2(1 + 2l2α2
t−1)

N∑
k=1

pk∥wt−1 −wk
t−1∥2 + 8α2

t−1lF (wt−1)− 2α2
t−1∥gt−1∥2

Using the first inequality, we have

E∥wt+1 −w∗∥2 ≤ E(1− αtµ)∥wt −w∗∥2

− 2αtF (wt) + 2α2
t ∥

N∑
k=1

pk∇Fk(wt, ξ
k
t )∥2

+ (2α2
t l

2 + αtL)

N∑
k=1

pk∥wt −wk
t ∥2

1185



Qu, Lin, Li, Zhou, & Zhou

and we choose αt and αt−1 such that E(F (wt) − αt∥
∑N

k=1 pk∇Fk(wt, ξ
k
t )∥2) ≥ 0 and

(2α2
t l

2 + αtL) ≤ (1− αtµ)(2α
2
t−1l

2 + αt−1L)/3. This gives

E∥wt+1 −w∗∥2

≤ E(1− αtµ)[(1− αt−1µ)∥wt−1 −w∗∥2 − 2αt−1F (wt−1) + 2α2
t−1∥

N∑
k=1

pk∇Fk(wt−1, ξ
k
t−1)∥2

+ (2α2
t−1l

2 + αt−1L)(

N∑
k=1

pk∥wt−1 −wk
t−1∥2 +

N∑
k=1

pk∥wt −wk
t ∥2)/3]

Using the second inequality

N∑
k=1

pk∥wt −wk
t ∥2 ≤ E2(1 + 2l2α2

t−1)
N∑
k=1

pk∥wt−1 −wk
t−1∥2 + 8α2

t−1lF (wt−1)− 2α2
t−1∥gt−1∥2

and that 2(1 + 2l2α2
t−1) ≤ 3, 2α2

t−1l
2 + αt−1L ≤ 1, we have

E∥wt+1 −w∗∥2 ≤ E(1− αtµ)[(1− αt−1µ)∥wt−1 −w∗∥2

− 2αt−1F (wt−1) + 2α2
t−1∥

N∑
k=1

pk∇Fk(wt−1, ξ
k
t−1)∥2 + 8α2

t−1lF (wt−1)

+ (2α2
t−1l

2 + αt−1L)(2
N∑
k=1

pk∥wt−1 −wk
t−1∥2)]

and if αt−1 is chosen such that

(F (wt−1)− 4αt−1lF (wt−1))− αt−1∥
N∑
k=1

pk∇Fk(wt−1, ξ
k
t−1)∥2 ≥ 0

and

(2α2
t−1l

2 + αt−1L)(1− αt−1µ) ≤ (2α2
t−2l

2 + αt−2L)/3

we again have

E∥wt+1 −w∗∥2

≤ E(1− αtµ)(1− αt−1µ)[∥wt−1 −w∗∥2 + (2α2
t−2l

2 + αt−2L) · (2
N∑
k=1

pk∥wt−1 −wk
t−1∥2)/3]

Applying the above derivation iteratively τ < E times, we have

E∥wt+1 −w∗∥2 ≤ E(1− αtµ) · · · (1− αt−τ+1µ)[(1− αt−τµ)∥wt−τ −w∗∥2

− 2αt−τF (wt−τ ) + 2α2
t−τ∥

N∑
k=1

pk∇Fk(wt−τ , ξ
k
t−τ )∥2 + 8τα2

t−τ lF (wt−τ )
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+ (2α2
t−τ l

2 + αt−τL)((τ + 1)
N∑
k=1

pk∥wt−τ −wk
t−τ∥2)]

as long as the step sizes αt−τ are chosen such that the following inequalities hold

(2α2
t−τ l

2 + αt−τL)(1− αt−τµ) ≤ (2α2
t−τ−1l

2 + αt−τ−1L)/3

2(1 + 2l2α2
t−τ ) ≤ 3

2α2
t−τ l

2 + αt−τL ≤ 1

(F (wt−τ )− 4ταt−τ lF (wt−τ ))− αt−τ∥
N∑
k=1

pk∇Fk(wt−τ , ξ
k
t−τ )∥2 ≥ 0

We can check that setting αt−τ = c 1
τ+1

N
lνmax+L(N−νmin)

for some small constant c satisfies
the requirements.

Since communication is done every E iterations, wt0 = wk
t0 for some t0 > t− E , from

which we can conclude that

E∥wt −w∗∥2 ≤ (

t−t0−1∏
τ=1

(1− µαt−τ ))∥wt0 −w∗∥2

≤ (1− c
µ

E

N

lνmax + L(N − νmin)
)t−t0∥wt0 −w∗∥2

and applying this inequality to iterations between each communication round,

E∥wt −w∗∥2 ≤ (1− c
µ

E

N

lνmax + L(N − νmin)
)t∥w0 −w∗∥2

= O(exp(
µ

E

N

lνmax + L(N − νmin)
t))∥w0 −w∗∥2

With partial participation, we note that

E∥wt+1 −w∗∥2 = E∥wt+1 − vt+1 + vt+1 −w∗∥2

= E∥wt+1 − vt+1∥2 + E∥vt+1 −w∗∥2

=
1

K

∑
k

pkE∥wk
t+1 −wt+1∥2 + E∥vt+1 −w∗∥2

and so the recursive identity becomes

E∥wt+1 −w∗∥2 ≤ E(1− αtµ) · · · (1− αt−τ+1µ)[(1− αt−τµ)∥wt−τ −w∗∥2

− 2αt−τF (wt−τ ) + 2α2
t−τ∥

N∑
k=1

pk∇Fk(wt−τ , ξ
k
t−τ )∥2 + 8τα2

t−τ lF (wt−τ )

+ (2α2
t−τ l

2 + αt−τL+
1

K
)((τ + 1)

N∑
k=1

pk∥wt−τ −wk
t−τ∥2)]
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which requires

(2α2
t−τ l

2 + αt−τL+
1

K
)(1− αt−τµ) ≤ (2α2

t−τ−1l
2 + αt−τ−1L+

1

K
)/3

2(1 + 2l2α2
t−τ ) ≤ 3

2α2
t−τ l

2 + αt−τL+
1

K
≤ 1

(F (wt−τ )− 4ταt−τ lF (wt−τ ))− αt−τ∥
N∑
k=1

pk∇Fk(wt−τ , ξ
k
t−τ )∥2 ≥ 0

to hold. Again setting αt−τ = c 1
τ+1

N
lνmax+L(N−νmin)

for a possibly different constant from
before satisfies the requirements.

Finally, using the L-smoothness of F ,

F (wT )− F (w∗) ≤ L

2
E∥wT −w∗∥2 = O(L exp(− µ

E

N

lνmax + L(N − νmin)
T ))∥w0 −w∗∥2

G.2 Geometric Convergence of FedAvg for Overparameterized Linear Regression

We first provide details on quantities used in the proof of results on linear regression in
Section 5. Recall that the local device objectives are now given by the sum of squares
Fk(w) = 1

2nk

∑nk

j=1(w
Txj

k − zjk)
2, and there exists w∗ such that F (w∗) ≡ 0. Define the

local Hessian matrix as Hk := 1
nk

∑nk
j=1 x

j
k(x

j
k)

T , and the stochastic Hessian matrix as
H̃k

t := ξkt (ξ
k
t )

T , where ξkt is the stochastic sample on the kth device at time t. Define l
to be the smallest positive number such that E∥ξkt ∥2ξkt (ξkt )T ⪯ lHk for all k. Note that
l ≤ maxk,j ∥xj

k∥
2. Let L and µ be lower and upper bounds of non-zero eigenvalues of Hk.

Define κ1 := l/µ and κ := L/µ. The condition number κ1 is important in the characterization
of convergence rates for FedAvg algorithms. Note that κ1 > κ.

Let H =
∑

k pkH
k. In general H has zero eigenvalues. However, because the null space of

H and range of H are orthogonal, in our subsequence analysis it suffices to project wt −w∗

onto the range of H, thus we may restrict to the non-zero eigenvalue of H.
A useful observation is that we can use w∗Txj

k − zjk ≡ 0 to rewrite the local objectives as
Fk(w) = 1

2⟨w −w∗,Hk(w −w∗)⟩ ≡ 1
2∥w −w∗∥2

Hk :

Fk(w) =
1

2nk

nk∑
j=1

(wTxk,j − zk,j − (w∗Txk,j − zk,j))
2 =

1

2nk

nk∑
j=1

((w −w∗)Txk,j)
2

=
1

2
⟨w −w∗,Hk(w −w∗)⟩ = 1

2
∥w −w∗∥2Hk

so that F (w) = 1
2∥w −w∗∥2H .

Finally, note that EH̃k
t = 1

nk

∑nk
j=1 x

j
k(x

j
k)

T = Hk and gt,k = ∇Fk(w
k
t , ξ

k
t ) = H̃k

t (w
k
t −w∗)

while gt =
∑N

k=1 pk∇Fk(w
k
t , ξ

k
t ) =

∑N
k=1 pkH̃

k
t (w

k
t −w∗) and gt =

∑N
k=1 pkH

k(wk
t −w∗)
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Theorem 6. For the overparamterized linear regression problem, FedAvg with communi-
cation every E iterations with constant step size α = O( 1

E
N

lνmax+µ(N−νmin)
) has geometric

convergence:

EF (wT ) ≤ O
(
L exp(− NT

E(νmaxκ1 + (N − νmin))
)∥w0 −w∗∥2

)
.

Proof. We again show the result first when E = 2 and t− 1 is a communication round. We
have

∥wt+1 −w∗∥2 = ∥(wt − αtgt)−w∗∥2

= ∥wt −w∗∥2 − 2αt⟨wt −w∗,gt⟩+ α2
t ∥gt∥2

and

− 2αtEt⟨wt −w∗,gt⟩

= −2αt

N∑
k=1

pk⟨wt −w∗,∇Fk(w
k
t )⟩

= −2αt

N∑
k=1

pk⟨wt −wk
t ,∇Fk(w

k
t )⟩ − 2αt

N∑
k=1

pk⟨wk
t −w∗,∇Fk(w

k
t )⟩

= −2αt

N∑
k=1

pk⟨wt −wk
t ,∇Fk(w

k
t )⟩ − 2αt

N∑
k=1

pk⟨wk
t −w∗,Hk(wk

t −w∗)⟩

= −2αt

N∑
k=1

pk⟨wt −wk
t ,∇Fk(w

k
t )⟩ − 4αt

N∑
k=1

pkFk(w
k
t )

≤ 2αt

N∑
k=1

pk(Fk(w
k
t )− Fk(wt) +

L

2
∥wt −wk

t ∥2)− 4αt

N∑
k=1

pkFk(w
k
t )

= αtL

N∑
k=1

pk∥wt −wk
t ∥2 − 2αt

N∑
k=1

pkFk(wt)− 2αt

N∑
k=1

pkFk(w
k
t )

= αtL
N∑
k=1

pk∥wt −wk
t ∥2 − αt

N∑
k=1

pk⟨(wt −w∗),Hk(wt −w∗)⟩ − 2αt

N∑
k=1

pkFk(w
k
t )

and

∥gt∥2 = ∥
N∑
k=1

pkH̃
k
t (w

k
t −w∗)∥2

= ∥
N∑
k=1

pkH̃
k
t (wt −w∗) +

N∑
k=1

pkH̃
k
t (w

k
t −wt)∥2

≤ 2∥
N∑
k=1

pkH̃
k
t (wt −w∗)∥2 + 2∥

N∑
k=1

pkH̃
k
t (w

k
t −wt)∥2
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which gives

E∥wt+1 −w∗∥2

≤ E∥wt −w∗∥2 − αt

N∑
k=1

pk⟨wt −w∗,Hkwt −w∗⟩+ 2α2
t ∥

N∑
k=1

pkH̃
k
t (wt −w∗)∥2

+ αtL

N∑
k=1

pk∥wt −wk
t ∥2 + 2α2

t ∥
N∑
k=1

pkH̃
k
t (w

k
t −wt)∥2 − 2αt

N∑
k=1

pkFk(w
k
t )

following Ma et al. (2018) we first prove that

E∥wt −w∗∥2 − αt

N∑
k=1

pk⟨(wt −w∗),Hk(wt −w∗)⟩+ 2α2
t ∥

N∑
k=1

pkH̃
k
t (wt −w∗)∥2

≤ (1− N

8(νmaxκ1 + (N − νmin))
)E∥wt −w∗∥2

with appropriately chosen αt. Compared to the rate O( µN
lνmax+L(N−νmin)

) = O( N
νmaxκ1+(N−νmin)κ

)
for general strongly convex and smooth objectives, this is an improvement as linear speedup
is now available for a larger range of N .

We have

Et∥
N∑
k=1

pkH̃
k
t (wt −w∗)∥2

= Et⟨
N∑
k=1

pkH̃
k
t (wt −w∗),

N∑
k=1

pkH̃
k
t (wt −w∗)⟩

=
N∑
k=1

p2kEt∥H̃k
t (wt −w∗)∥2 +

N∑
k=1

∑
j ̸=k

pjpkEt⟨H̃k
t (wt −w∗), H̃j

t (wt −w∗)⟩

=

N∑
k=1

p2kEt∥H̃k
t (wt −w∗)∥2 +

N∑
k=1

∑
j ̸=k

pjpkEt⟨Hk(wt −w∗),Hj(wt −w∗)⟩

=
N∑
k=1

p2kEt∥H̃k
t (wt −w∗)∥2 +

N∑
k=1

N∑
j=1

pjpkEt⟨Hk(wt −w∗),Hj(wt −w∗)⟩

−
N∑
k=1

p2k∥Hk(wt −w∗)∥2

=

N∑
k=1

p2kEt∥H̃k
t (wt −w∗)∥2 + ∥

∑
k

pkH
k(wt −w∗)∥2 −

N∑
k=1

p2k∥Hk(wt −w∗)∥2

≤
N∑
k=1

p2kEt∥H̃k
t (wt −w∗)∥2 + ∥

∑
k

pkH
k(wt −w∗)∥2 − 1

N
νmin∥

∑
k

pkH
k(wt −w∗)∥2

≤ 1

N
νmax

N∑
k=1

pkEt∥H̃k
t (wt −w∗)∥2 + (1− 1

N
νmin)∥

∑
k

pkH
k(wt −w∗)∥2
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≤ 1

N
νmaxl

N∑
k=1

pk⟨(wt −w∗),Hk(wt −w∗)⟩+ (1− 1

N
νmin)∥

∑
k

pkH
k(wt −w∗)∥2

=
1

N
νmaxl⟨(wt −w∗),H(wt −w∗)⟩+ (1− 1

N
νmin)⟨wt −w∗,H2(wt −w∗)⟩

using ∥H̃k
t ∥ ≤ l.

Now we have

E∥wt −w∗∥2 − αt

N∑
k=1

pk⟨(wt −w∗),Hk(wt −w∗)⟩+ 2α2
t ∥

N∑
k=1

pkH̃
k
t (wt −w∗)∥2 =

⟨wt −w∗, (I − αtH+ 2α2
t (
νmaxl

N
H+

N − νmin

N
H2))(wt −w∗)⟩

and it remains to bound the maximum eigenvalue of

(I − αtH+ 2α2
t (
νmaxl

N
H+

N − νmin

N
H2))

and we bound this following Ma et al. (2018). If we choose αt <
N

2(νmaxl+(N−νmin)L)
, then

−αtH+ 2α2
t (
νmaxl

N
H+

N − νmin

N
H2) ≺ 0

and the convergence rate is given by the maximum of 1 − αtλ + 2α2
t (

νmaxl
N λ + N−νmin

N λ2)
maximized over the non-zero eigenvalues λ of H. To select the step size αt that gives the
smallest upper bound, we then minimize over αt, resulting in

min
αt<

N
2(νmaxl+(N−νmin)L)

max
λ>0:∃v,Hv=λv

{
1− αtλ+ 2α2

t (
νmaxl

N
λ+

N − νmin

N
λ2)

}

Since the objective is quadratic in λ, the maximum is achieved at either the largest eigenvalue
λmax of H or the smallest non-zero eigenvalue λmin of H.

When N ≤ 4νmaxl
L−λmin

+4νmin, i.e. when N = O(l/λmin) = O(κ1), the optimal objective value
is achieved at λmin and the optimal step size is given by αt =

N
4(νmaxl+(N−νmin)λmin)

. The opti-
mal convergence rate (i.e. the optimal objective value) is equal to 1− 1

8
Nλmin

(νmaxl+(N−νmin)λmin)
=

1 − 1
8

N
(νmaxκ1+(N−νmin))

. This implies that when N = O(κ1), the optimal convergence rate
has a linear speedup in N . When N is larger, this step size is no longer optimal, but we still
have 1− 1

8
N

(νmaxκ1+(N−νmin))
as an upper bound on the convergence rate.

Now we have proved

E∥wt+1 −w∗∥2 ≤ (1− 1

8

N

(νmaxκ1 + (N − νmin))
)E∥wt −w∗∥2

+ αtL

N∑
k=1

pk∥wt −wk
t ∥2 + 2α2

t ∥
N∑
k=1

pkH̃
k
t (w

k
t −wt)∥2 − 2αt

N∑
k=1

pkFk(w
k
t )
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Next we bound terms in the second line using a similar argument as the general case. We
have

2α2
t ∥

N∑
k=1

pkH̃
k
t (w

k
t −wt)∥2 ≤ 2α2

t l
2

N∑
k=1

pk∥wt −wk
t ∥2

and

E
N∑
k=1

pk∥wt −wk
t ∥2 ≤ E2(1 + 2l2α2

t−1)
N∑
k=1

pk∥wt−1 −wk
t−1∥2 + 8α2

t−1lF (wt−1)

= 4α2
t−1l⟨wt−1 −w∗,H(wt−1 −w∗)⟩

and if αt, αt−1 satisfy

αtL+ 2α2
t ≤ (1− 1

8

N

(νmaxκ1 + (N − νmin))
)(αt−1L+ 2α2

t−1)/3

2(1 + 2l2α2
t−1) ≤ 3

αtL+ 2α2
t ≤ 1

we have

E∥wt+1 −w∗∥2

≤ (1− 1

8

N

(νmaxκ1 + (N − νmin))
)(E∥wt−1 −w∗∥2 − αt⟨wt−1 −w∗,Hwt−1 −w∗⟩

+ 2α2
t ∥

N∑
k=1

pkH̃
k
t (wt −w∗)∥2 + (αt−1L+ 2α2

t−1) · 2
N∑
k=1

pk∥wt−1 −wk
t−1∥2

+ 4α2
t−1l⟨wt−1 −w∗,H(wt−1 −w∗))

and again by choosing αt−1 = c N
8(νmaxl+(N−νmin)λmin)

for a small constant c, we can guarantee
that

E∥wt−1 −w∗∥2 − αt−1⟨wt−1 −w∗,Hwt−1 −w∗⟩

+2α2
t−1∥

N∑
k=1

pkH̃
k
t−1(wt−1 −w∗)∥2 + 4α2

t−1l⟨wt−1 −w∗,H(wt−1 −w∗)⟩

≤ (1− c
N

16(νmaxl + (N − νmin)λmin)
)E∥wt−1 −w∗∥2

For general E, we have the recursive relation

E∥wt+1 −w∗∥2

≤ E(1− c
1

8

N

(νmaxκ1 + (N − νmin))
) · · · (1− c

1

8τ

N

(νmaxκ1 + (N − νmin))
)[∥wt−τ −w∗∥2

− αt−τ ⟨wt−τ −w∗,Hwt−τ −w∗⟩+ 2α2
t−τ∥

N∑
k=1

pkH̃
k
t−τ (wt−τ −w∗)∥2
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+ 4τα2
t−1l⟨wt−1 −w∗,H(wt−1 −w∗)⟩

+ (2α2
t−τ l

2 + αt−τL)((τ + 1)
N∑
k=1

pk∥wt−τ −wk
t−τ∥2)]

as long as the step sizes are chosen αt−τ = c N
4τ(νmaxl+(N−νmin)λmin)

such that the following
inequalities hold

(2α2
t−τ l

2 + αt−τL) ≤ (1− αt−τµ)(2α
2
t−τ−1l

2 + αt−τ−1L)/3

2(1 + 2l2α2
t−τ ) ≤ 3

2α2
t−τ l

2 + αt−τL ≤ 1

and

∥wt−τ −w∗∥2 − αt−τ ⟨wt−τ −w∗,Hwt−τ −w∗⟩

+ 2α2
t−τ∥

N∑
k=1

pkH̃
k
t−τ (wt−τ −w∗)∥2 + 4τα2

t−1l⟨wt−1 −w∗,H(wt−1 −w∗)⟩

≤ (1− c
N

8(τ + 1)(νmaxκ1 + (N − νmin))
)E∥wt−τ −w∗∥2

which gives

E∥wt −w∗∥2 ≤ (1− c
1

8E

N

(νmaxκ1 + (N − νmin))
)t∥w0 −w∗∥2

= O(exp(− 1

E

N

(νmaxκ1 + (N − νmin))
t))∥w0 −w∗∥2.

Appendix H. Details on Experiments and Additional Results

We describe the precise procedure to reproduce the results in this paper. As we mentioned
in Section 6, we empirically verified the linear speed up on various convex settings for both
FedAvg and its accelerated variants. For all the results, we set random seeds as 0, 1, 2 and
report the best convergence rate across the three folds. For each run, we initialize w0 = 0
and measure the number of iteration to reach the target accuracy ϵ. We use the small-scale
dataset w8a (Platt, 1999), which consists of n = 49749 samples with feature dimension
d = 300. The label is either positive one or negative one. The dataset has sparse binary
features in {0, 1}. Each sample has 11.15 non-zero feature values out of 300 features on
average. We set the batch size equal to four across all experiments. In the next following
subsections, we introduce parameter searching in each objective separately.

H.1 Strongly Convex Objectives

We first consider the strongly convex objective function, where we use a regularized binary lo-
gistic regression with regularization λ = 1/n ≈ 2e−5. We evenly distributed on 1, 2, 4, 8, 16, 32
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devices and report the number of iterations/rounds needed to converge to ϵ−accuracy, where
ϵ = 0.005. The optimal objective function value f∗ is set as f∗ = 0.126433176216545. This
is determined numerically and we follow the setting in Stich (2019). The learning rate
is decayed as the ηt = min(η0,

nc
1+t), where we extensively search the best learning rate

c ∈ {2−1c0, 2
−2c0, c0, 2c0, 2

2c0}. In this case, we search the initial learning rate η0 ∈ {1, 32}
and c0 = 1/8.

H.2 Convex Smooth Objectives

We also use binary logistic regression without regularization. The setting is almost same as
its regularized counter part. We also evenly distributed all the samples on 1, 2, 4, 8, 16, 32
devices. The figure shows the number of iterations needed to converge to ϵ−accuracy,
where ϵ = 0.02. The optiaml objective function value is set as f∗ = 0.11379089057514849,
determined numerically. The learning rate is decayed as the ηt = min(η0,

nc
1+t), where we

extensively search the best learning rate c ∈ {2−1c0, 2
−2c0, c0, 2c0, 2

2c0}. In this case, we
search the initial learning rate η0 ∈ {1, 32} and c0 = 1/8.

H.3 Linear Regression

For linear regression, we use the same feature vectors from w8a dataset and generate ground
truth [w∗, b∗] from a multivariate normal distribution with zero mean and standard deviation
one. Then we generate label based on yi = xt

iw
∗ + b∗. This procedure will ensure we satisfy

the over-parameterized setting as required in our theorems. We also evenly distributed all
the samples on 1, 2, 4, 8, 16, 32 devices. The figure shows the number of iterations needed
to converge to ϵ−accuracy, where ϵ = 0.02. The optiaml objective function value is f∗ = 0.
The learning rate is decayed as the ηt = min(η0,

nc
1+t), where we extensively search the best

learning rate c ∈ {2−1c0, 2
−2c0, c0, 2c0, 2

2c0}. In this case, we search the initial learning rate
η0 ∈ {0.1, 0.12} and c0 = 1/256.

H.4 Partial Participation

To examine the linear speedup of FedAvg in partial participation setting, we evenly distributed
data on 4, 8, 16, 32, 64, 128 devices and uniformly sample 50% devices without replacement.
All other hyperparameters are the same as previous sections.

H.5 Nesterov Accelerated FedAvg

The experiments of Nesterov accelerated FedAvg (the update formula is given as follows)
uses the same setting as previous three sections for vanilia FedAvg.

yk
t+1 = wk

t − αtgt,k

wk
t+1 =

{
yk
t+1 + βt(y

k
t+1 − yk

t ) if t+ 1 /∈ IE∑
k∈St+1

(
yk
t+1 + βt(y

k
t+1 − yk

t )
)

if t+ 1 ∈ IE

We set βt = 0.1 and search αt in the same way as ηt in FedAvg.
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Figure 2: The convergence of FedAvg w.r.t the number of local steps E.

H.6 The Impact of E.

In this subsection, we further examine how does the number of local steps (E) affect
convergence. As shown in Figure 2, the number of iterations increases as E increase,
which slow down the convergence in terms of gradient computation. However, it can save
communication costs as the number of rounds decreased when the E increases. This showcases
that we need a proper choice of E to trade-off the communication cost and convergence
speed.

References

Allen-Zhu, Z., Li, Y., and Song, Z. (2019). A convergence theory for deep learning via
over-parameterization. In International Conference on Machine Learning, pages 242–252.
PMLR.

Bhagoji, A. N., Chakraborty, S., Mittal, P., and Calo, S. (2019). Analyzing federated learning
through an adversarial lens. In International Conference on Machine Learning, pages
634–643. PMLR.

Brisimi, T. S., Chen, R., Mela, T., Olshevsky, A., Paschalidis, I. C., and Shi, W. (2018). Fed-
erated learning of predictive models from federated electronic health records. International
journal of medical informatics, 112:59–67.
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