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Abstract

Extractive summaries are usually presented as lists of sentences with no expected co-
hesion between them and with plenty of redundant information if not accounted for. In
this paper, we investigate the trade-offs incurred when aiming to control for inter-sentential
cohesion and redundancy in extracted summaries, and their impact on their informative-
ness. As case study, we focus on the summarization of long, highly redundant documents
and consider two optimization scenarios, reward-guided and with no supervision. In the
reward-guided scenario, we compare systems that control for redundancy and cohesion
during sentence scoring. In the unsupervised scenario, we introduce two systems that aim
to control all three properties –informativeness, redundancy, and cohesion– in a principled
way. Both systems implement a psycholinguistic theory that simulates how humans keep
track of relevant content units and how cohesion and non-redundancy constraints are ap-
plied in short-term memory during reading. Extensive automatic and human evaluations
reveal that systems optimizing for –among other properties– cohesion are capable of better
organizing content in summaries compared to systems that optimize only for redundancy,
while maintaining comparable informativeness. We find that the proposed unsupervised
systems manage to extract highly cohesive summaries across varying levels of document
redundancy, although sacrificing informativeness in the process. Finally, we lay evidence as
to how simulated cognitive processes impact the trade-off between the analyzed summary
properties.

1. Introduction

Automatic single-document summarization is the task of reading a text document and
presenting an end-user (be it a human user or a module down a processing pipeline) with
a shorter text, the summary, that retains the gist of the information consumed in the
document. Such a complex task can be divided into the following three general steps:
(i) discretization of the information in the source document into semantic content units
and building a representation of these units, (ii) selection of content units such that they
are relevant with respect to the source document, non-redundant among themselves, and
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informative to the end-user; and finally, (iii) production of a summary text that is coherent
and cohesive. From the many variations of the summarization task investigated in recent
years (Litvak & Vanetik, 2017; Shapira et al., 2017; Narayan et al., 2019; Xiao & Carenini,
2019; Amplayo et al., 2021), most extractive summarization approaches choose sentences
as the indivisible content unit, assign a numerical score to each sentence, select a subset of
them, and finally concatenate them into a single text to be presented as the summary.

Even though recent advances in machine learning brought promising results –mostly
involving increasingly larger neural networks– in all stages of the summarization pipeline,
core challenges such as redundancy (Xiao & Carenini, 2020; Jia et al., 2021; Gu et al., 2022)
remain critically open. Notably, Xiao and Carenini (2020) reported that modern extractive
summarization systems are prone to produce highly redundant excerpts when redundancy
is not explicitly accounted for. The problem becomes particularly acute when the source
document is highly redundant, i.e. information is repeated in many parts of the document.
Some examples of highly redundant documents include scientific articles, and in general,
long-structured documents. Consider the example in Figure 1 showcasing how information
is repeated across sections in a scientific article. Information redundancy is characteristic
of the writing style in scientific literature: the ‘Introduction’ section is expected to lay
down the research questions addressed in the paper, each of which will be elaborated upon
in the following sections, and the ‘Conclusion’ section (or equivalent) gathers insights and
summarizes the answers to each research question.

Another open challenge in summarization –and in open text generation in general– is
the production of coherent text (Sharma et al., 2019; Hua et al., 2021; Steen & Markert,
2022; Goyal et al., 2022). In particular, local coherence –the property by which a text
connects semantically similar content units between neighbouring sentences– has proven
challenging to capture computationally (Moon et al., 2019; Jeon & Strube, 2020, 2022)
and to incorporate into the summarization task without sacrificing performance in other
aspects such as informativeness (Wu & Hu, 2018; Xu, Gan, Cheng, & Liu, 2020). When the
connection between adjacent sentences is not explicitly clued by linguistic units, humans
resort to inference, the cognitive process by which prior knowledge is incorporated in order
to force a connection and make sense of a text. A special case of local coherence, cohesion,
makes the connection between adjacent sentences explicit by means of cohesive ties (Halliday
& Hasan, 1976) such as word repetitions, pronouns, anaphoric expressions, and conjunctions
(S. Garrod & Sanford, 1977). Psycholinguistic research has found that cohesion improves
text comprehension –the building of a mental representation of content– especially when the
subjects’ background knowledge is insufficient to perform inference successfully (E. Kintsch,
1990; S. C. Garrod & Sanford, 1994). Critically, when human subjects were asked to
read a document and write a summary immediately after, higher cognitive demand during
comprehension was found to severely impact the cohesion and redundancy in the produced
summaries (Lehto, 1996; W. Kintsch & Walter Kintsch, 1998; Ushiro et al., 2013; Spirgel
& Delaney, 2016).

In this work, we investigate the trade-offs automatic summarization systems incur when
aiming to control for redundancy and cohesion in produced summaries, and the impact on
their informativeness. We focus on control strategies performed during sentence scoring,
resorting to greedy selection of the top-scoring sentences until a predefined budget is met.
We study the case of long, highly redundant documents from complex knowledge domains
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Introduction
Wolf Rayet (WR) stars are evolved, massive stars that are losing their mass rapidly through strong

stellar winds (Conti, 1976).
In this scenario, hot, massive OB stars are considered to be the WR precursors that lose their external layers
via stellar winds, leaving exposed their He-burning nuclei and H-rich surfaces . . .
[At radio frequencies, the excess of emission is associated with the contribution of the free thermal emission
coming from the ionized and expanding envelope formed by the stellar wind]◦ . . .
In this paper, we present [simultaneous, multi-frequency observations of a sample of 13 WR stars using
the VLA at 4.8, 8.4, and 22.5 GHz]⋄, aimed at [disentangling the origin of their stellar wind radio emission
through the analysis of their spectral index and time variability by comparison with previous observations.]△

Observations
We performed [radio observations of a sample of 13 WR stars]⋄, listed in Table 1, [with the Very Large
Array ( VLA )]⋄ of the National Radio Astronomy Observatory (NRAO) . . .

Results
We observed a total of [13 WR stars]⋄ and [detected 12 of them at least at one frequency]• . . .
Summarizing, [we have found four T (...) , one NT (...) , and seven T/NT sources (...)]▽ . . .
as we mentioned in Section 1, [it is possible to estimate the free radiation emitted from ionized extended
envelopes]◦ . . .

Discussion
[The results of our observations presented in Section 3 provide relevant information about the nature of the
radio emission of the 12 detected WR stars]△ .
[The detected flux densities and spectral indices displayed by the sources of our sample indicate the existence
of thermal, non-thermal dominant, and composite spectrum sources]▽ . . .

Conclusions
We have presented [simultaneous, multi-frequency observations of 13 WR stars at 4.8, 8.4, and 23 GHz.]⋄
We have [detected 12 of the observed sources at least at one frequency]• . . .
[From the observed flux densities, spectral index determinations, and the comparison of our results with
previous ones, we have disentangled the nature of the emission in these WR stars]△ . . .

Figure 1: Sections of a scientific article taken from the arXiv dataset showcasing informa-
tion redundancy and cohesion. Repeated content is marked by text chunks with the same
color and symbol, whilst consecutive sentences present cohesive phrases underlined.

–scientific articles collected from arXiv and PubMed (Cohan et al., 2018). Two opti-
mization scenarios are investigated, (i) when a specific summary property is optimized for
under a reinforcement learning (RL) setup, and (ii) when the summary property is modeled
through proxies in an unsupervised setup. In the RL setup, we compare systems that aim to
balance informativeness and redundancy, against those which balance informativeness and
cohesion. We model this trade-off as a linear combination of property-specific rewards, e.g.
by combining a reward that encourages high ROUGE scores with a reward that encourages
high local coherence.

In the unsupervised setup, we introduce two novel models that aim to control all three
properties –informativeness, redundancy, and lexical cohesion. These models implement
the Micro-Macro Structure theory of text comprehension (W. Kintsch & van Dijk, 1978),
henceforth called KvD, which provides a principled way of discretizing content into semantic
units and organizing them in short and long-term memory. Reading is performed one
sentence at a time in memory cycles, applying constraints to a representation of working
memory –a type of short-term memory– that explicitly model relevancy, non-redundancy,
and cohesion among content units. In each memory cycle, relevancy is modeled by pruning
working memory down to a fixed number of content units, keeping only the most relevant
units read so far; cohesion, by ensuring lexical overlap between units in memory; and non-
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redundancy, by discarding redundant units from memory. Note that these models do not
employ any reward signal and instead are completely unsupervised.

In the reward-guided scenario, extensive automatic –both quantitative and qualitative–
evaluation revealed that systems optimizing for cohesion are better at organizing content
in the produced summaries, compared to systems only optimizing for informativeness or
redundancy. Moreover, cohesion-optimized models are able to obtain comparable –if not
better– informativeness and coverage levels. In the unsupervised scenario, we found that
simulated KvD reading is effective at balancing cohesion and redundancy during sentence
scoring, however at the expense of reduced informativeness. Most notably, the proposed
KvD systems manage to extract highly cohesive summaries across increasing levels of doc-
ument redundancy. We corroborated our findings with two human evaluation campaigns
comparing our KvD systems against a strong unsupervised baseline that optimizes for cohe-
sion. In the first study, we found that participants find KvD summaries more informative,
indicating the effectiveness of constraining working memory to keep only the most relevant
units, compared to modeling relevancy through sentence centrality as done by the analyzed
baseline. In the second study, we found that explicitly enforcing lexical cohesive links dur-
ing reading allows the proposed KvD systems to extract summaries that exhibit a smooth
topic transition between adjacent or near-adjacent sentences, with cohesive links connecting
most sentences in the extracted summary. Finally, we lay extensive evidence as to how the
simulated cognitive processes impact the trade-off between informativeness, redundancy,
and lexical cohesion in final summaries.1

The rest of the paper is organized as follows. An overview of previous related work is
presented in § 2, followed by the problem formulation of the reward-guided control scenario
in § 3. Then, § 4 elaborates on control strategies in the unsupervised scenario, providing a
detailed description of the KvD theory(§ 4.1) and the proposed systems (§ 4.2). Lastly, § 5
and §6 describe our experimental setup and discuss our results, respectively.

2. Related Work

In this section we discuss previous efforts related to automatic summarization, both tradi-
tional and modern (neural based), how the problems of redundancy and cohesion are being
tackled, and how cognitive science has influenced automatic summarization.

2.1 Summarization Approaches

Early approaches represented and organized content in a document using semantic and
discourse methods such as lexical chains (Barzilay & Elhadad, 1997; Silber & McCoy, 2002),
latent semantic analysis (Gong & Liu, 2001; Hachey et al., 2006), coreference information
(Baldwin & Morton, 1998; Steinberger et al., 2007), and rhetorical structure theory (Ono
et al., 1994; Marcu, 1998). In particular, graph representations proved effective in encoding
relations between content units such as discourse relations (Wolf & Gibson, 2004; Louis
et al., 2010) and word co-occurrence statistics (Mihalcea & Tarau, 2004; Erkan & Radev,
2004). After obtaining a representation of a document, the selection of content units (usually
sentences) is posed as a unit ranking problem or a sequence labeling problem in which each

1. Code available at https://github.com/ronaldahmed/trade-off-kvd/
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unit is labeled as ‘select’ or ‘not select’. For this selection stage, machine learning approaches
have proven effective at identifying summary-worthy units (i.e. relevant and informative)
by leveraging manually-crafted features such as word frequency (Vanderwende et al., 2007;
Nenkova et al., 2006), sentence length (Radev et al., 2004), and the presence of keywords
of proper nouns (Kupiec et al., 1995; Jones, 2007).

More recently, summarization approaches rely instead on neural networks to obtain
deep representations of content units by means of convolutional neural networks (Perez-
Beltrachini et al., 2019; Narayan et al., 2019), recurrent neural networks (Narayan, Carde-
nas, et al., 2018; Narayan, Cohen, & Lapata, 2018; Cheng & Lapata, 2016), Transformers
(Song et al., 2019; L. Dong et al., 2019) and lately by leveraging large pretrained language
models (Zheng & Lapata, 2019; Y. Liu & Lapata, 2019; J. Zhang et al., 2020). Building
upon traditional methods, neural summarization models leverage discourse (Clarke & La-
pata, 2010; Cohan et al., 2018), topical (Narayan et al., 2019), and graph representations
(Bichi et al., 2021; Qiu & Cohen, 2022). Even though most research concentrates on sum-
marization of middle-sized documents like news articles and Reddit posts (Völske, Potthast,
Syed, & Stein, 2017), recent work has shifted attention to long document summarization
and its challenges (Cohan et al., 2018; Sharma et al., 2019; Xiao & Carenini, 2019; Fonseca,
Ziser, & Cohen, 2022). Among recent efforts, it is worth mentioning architectures tailored to
consume longer inputs by reducing the time complexity of the attention mechanism (Beltagy
et al., 2020; Wang et al., 2020; Huang et al., 2021) or leveraging the structure of the input
document (Cohan et al., 2019; Narayan et al., 2020). The present work follows this line
of research by introducing summarization systems capable of consuming long documents
and extracting a summary in linear time w.r.t. the number of sentences. Note that the
proposed systems do not employ neural networks during content representation or selection
but instead operate over cognitively inspired data structures of propositions representing
human memory.

Finally, of special interest to this work are unsupervised approaches to summarization,
an area not explored as much as its supervised counterpart given the availability of large
summarization datasets nowadays (Hermann et al., 2015; Cohan et al., 2018; Narayan
et al., 2019). Central to most extractive approaches is a weighted graph representation
of the source document (Bichi et al., 2021) followed by sentence ranking based on node
centrality, where edge weights are calculated by TF-IDF (Mihalcea & Tarau, 2004) or by
finetuned, dedicated architectures (Zheng & Lapata, 2019). Our work differs from this line
of research in two aspects. First, content is organized in tree and graph structures where
nodes are modeled as propositions instead of sentences or words. However, content selection
is still performed at the sentence level. Second, the proposed node scoring strategy exploits
cognitively-grounded properties of human memory structures. We demonstrate through
extensive experiments that this scoring strategy outperforms previously proposed systems
that model sentence relevancy through centrality.

2.2 Informativeness, Redundancy, and Cohesion

Traditional summarization approaches sought to provide more control over properties of
generated summaries such as their informativeness (Jones, 1993; Carbonell & Goldstein,
1998; Nenkova & McKeown, 2011; Lloret, 2012; Teufel, 2016), non-redundancy (Carbonell
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& Goldstein, 1998), or discourse organization (Marcu, 1998; Christensen et al., 2013).
However, more modern approaches mostly employ neural end-to-end models (Cheng &
Lapata, 2016; Lewis et al., 2020; J. Zhang et al., 2020), meaning that crucial intermediate
steps such as content planning or selection are not explicitly modeled. Recent efforts have
demonstrated that accounting for planning helps dealing with discourse organization of final
summaries (Goldfarb-Tarrant et al., 2020; Sharma et al., 2019; Hua et al., 2021), whereas
explicit content selection modules can be tailored to tackle problems such as factuality
(Cao et al., 2018; Maynez et al., 2020; Z. Zhao et al., 2020), coverage (Kedzie et al., 2018;
Puduppully et al., 2019; Wiseman et al., 2017), and redundancy (Y. Liu & Lapata, 2019;
Jia et al., 2021; Bi et al., 2021). Specifically, production of low-redundant summaries has
proven to be challenging, especially when the source document is highly redundant, such as
scientific articles (Xiao & Carenini, 2020; Gu et al., 2022).

Regarding cohesion, Wu and Hu (2018) combined an informativeness reward with a
cohesion reward in a reinforcement learning setup, reporting heavy trade-offs between the
two properties. In contrast, Xu et al. (2020) reported an improvement in informativeness
when incorporating information about the global discourse organization (RST trees) and co-
reference chains in a supervised setup. However, discourse organization of final summaries
experimented only a marginal improvement.

In this work, we demonstrate that it is possible to improve lexical cohesion –a special
case of local coherence– while maintaining a high level of informativeness and without se-
lecting overly redundant content, under a reinforcement learning setup. In the unsupervised
scenario, our proposed models are able to successfully balance cohesion and redundancy,
although sacrificing informativeness in the process.

2.3 Cognitive Models for Summarization

In psycholinguistics, summarization as a task is often used as a method to investigate cog-
nitive processes involved in text comprehension and production (W. Kintsch & van Dijk,
1978; E. Kintsch, 1990; Lehto, 1996; W. Kintsch &Walter Kintsch, 1998; Ushiro et al., 2013;
Spirgel & Delaney, 2016). Such processes are in charge of generalizing, synthesizing, and
coherently organizing content units. Comprehension, in turn, is modeled after psycholin-
guistic models of human reading comprehension (W. Kintsch & van Dijk, 1978; W. Kintsch,
1988) which provide a rich and robust theoretical foundation on how content units are dis-
cretized and manipulated by cognitive processes. For this reason, comprehension models
such as the Micro-Macro Structure (KvD; Kintsch and van Dijk, 1978) and Construction-
Integration theory (CI; Kintsch, 1988), have drawn the attention of researchers in automatic
summarization in recent years (Fang & Teufel, 2014; R. Zhang et al., 2016; Fang, 2019).
These theories outline procedures to discretize content into semantic propositions and build
text representations that account for local and global coherence. However, computational
implementations proposed so far (Fang & Teufel, 2014; R. Zhang et al., 2016; Fang, 2019)
show a heavy reliance on NLP tools such as entity extractors and coreference resolution sys-
tems, as well as external resources like WordNet (Miller, 1992). These requirements greatly
limit their application in highly technical domains such as scientific literature. Additionally,
many design choices prevented these systems from exploiting properties of memory struc-
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tures, modeling retrieval processes, or manipulating information at the right granularity
level, e.g. ranking words or sentences instead of semantic propositions.

We address these limitations by introducing two computational implementations of the
KvD theory (W. Kintsch & van Dijk, 1978) that require only a dependency parser and no
external resources, making it possible to test these systems on other languages and domains.
Moreover, our proposed systems better exploit memory structure properties and retrieval
processes during reading simulation, which makes them capable of producing notoriously
less redundant and more cohesive summaries than strong baselines.

3. Reward-guided Control Scenario

In this section, we formulate the first scenario in which sentence scoring is guided by explicit
rewards that encourage informativeness, non-redundancy, and local coherence in candidate
summaries, in a reinforcement learning training setup. We posit the task of extractive
summarization as the task of scoring the sentences in a document followed by a selection step
in which an optimal set of sentences is chosen as the summary. The scoring step is formulated
as a sequence labeling task where each sentence in a document D = ⟨s0, .., sk, ..., s|D|⟩ is
labeled with yi ∈ {0, 1}, indicating whether sentence si should be selected or not. A
summarization system M assigns score p(yi = 1 | si) indicating the preference in selecting
si according to a criteria modeled by M . Then, candidate summary Ŝ is obtained by
concatenating the top-scoring sentences, selected greedily and with a predefined budget in
number of tokens. We focus on informativeness, non-redundancy, and local coherence, as
preference modeling criteria.

We build upon the model proposed by Xiao and Carenini (2020), consisting of an encoder
that incorporates local and global context, a feed-forward layer as a decoder, and trained
with the Cross-Entropy loss (LCE) over the sequence labeling task outlined above. In the
rest of this paper, we refer to this supervised model as E.LG.

Then, we adapt previous work on reinforcement learning-based approaches that aim to
optimize for informativeness and either redundancy or local coherence. We define reward
rI, aimed at encouraging the selection of informative summaries (Y. Dong et al., 2018), as

rI =
1

3

(
ROUGE-1 + ROUGE-2 + ROUGE-L

)
,

where ROUGE F1 scores are calculated using the reference summaries. Next, we define
models employing policy gradient methods that maximize a reward function combining rI
with redundancy or coherence-aware rewards.

3.1 Informativeness Encoder

We employ the model proposed by Xiao and Carenini (2019) optimized to encode only infor-
mativeness during sentence scoring. The model incorporates local and global information
by taking into account the document structure (e.g. section separation) and The model,
which we label E.LG in this chapter, consists of a document encoder and a decoder that
classifies whether a sentence should be selected or not.

Document Encoder. Given document D = ⟨s0, .., sk, ..., s|D|⟩, where si is a sequence of
tokens, sentence embedding hi, is defined as the average token embedding of its constituent
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tokens. Then, global sentence representations are obtained using a bi-directional RNN
(Schuster & Paliwal, 1997) with GRU cells (Cho, van Merriënboer, Bahdanau, & Bengio,
2014), i.e. hgi = [fi, bi], where fi and bi are the forward and backward hidden state at step
i, respectively. Moreover, let d = [f|D|; b0] be the representation of the whole document.

The document structure is incorporated explicitly with section representations. Let D
bet organized in sections represented as a list of sentences, [[s0, .., si], [si+1, .., sj ], [sj+1, ..sk]...],
the embedding of each section is defined as the difference of hidden states corresponding
to sentences in the section borders. For instance, the embedding of section [si+1, .., sj ] is
defined as l1 = [fj+1–fi+1; bi+1 − bj ].

Decoder. After obtaining sentence as well as global (the entire document) and local
context representations (sections), the decoder will combine them using attention, as follows.
Given document embedding d, sentence global embedding hgi , and section embedding lt,
where si belongs to section t, the final sentence representation zi is obtained as follows,

edi = vT tanh(W a[d;hgi ]), e
l
i = vT tanh(W a[lt;h

g
i ]),

wd
i =

edi
edi + eli

, wl
i =

eli
edi + eli

,

ci = wd
i d+ wl

ilt,

zi = [hgi ; ci],

where vT ,W a are weight parameters. Finally, the probability of selecting si is given by
p(yi = 1|si; θ) = σ(ReLU(W ozi)), where θ represents the model parameters and W o is a
weight parameter.

The E.LG model just described is trained with the Cross-Entropy loss (CE) over the
sequence labeling task outlined at the beginning of this section.

3.2 Informativeness and Redundancy

We adapt MMR-Select+ (Xiao & Carenini, 2020), the strategy most capable of balancing
informativeness and redundancy. Model E.LG is trained using a combined loss that aims
to minimize Cross Entropy loss and maximize the expected reward of greedily sampled
summary Ŝ (Qian et al., 2019), defined as

L = γR · LR + (1− γR) · LCE,

LR = −(rI(Ŝ)− rI(S̄))
∑
si∈Ŝ

log p(yi | si)

where rI(S̄) is the informativeness of a baseline summary, used to improve convergence in
a self-critic fashion (Paulus et al., 2018). Baseline summary S̄ is extracted using greedy
selection directly over p(yi), whereas Ŝ is extracted greedily using redundancy-aware score
pMMR

pMMR(yi|si) = λR · p(yi | si)− (1− λR) ·max
sj∈Ŝ

Sim(si, sj),

where Sim(si, sj) is the cosine similarity between embeddings of sentences si and sj and λR
controls the redundancy level in Ŝ. This scoring strategy is an extension of MMR (Carbonell
& Goldstein, 1998) that aims to minimize semantic similarity between sentences in Ŝ. In
our experiments, we dub this model as E.LG-MMRSel+.
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3.3 Informativeness and Local Coherence

Building upon Wu and Hu (2018), we define a reward that combines informativeness and
local coherence, r = λLC · rI + (1 − λLC) · rLC, where λLC controls the trade-off between
informativeness and coherence and rLC is a local coherence scorer. Then, E.LG is trained
using the REINFORCE algorithm (Williams, 1992) with policy gradient

∇L = −r(Ŝ)
∑
si∈Ŝ

∇ log p(yi | si),

where Ŝ is a candidate summary extracted greedily directly form p(yi | si). In our experi-
ments, we label this model as E.LG-CCL.

Local Coherence Scorer. Scorer rLC receives a multi-sentence text and assigns a score
between [0, 1] quantifying its local coherence, and it is defined as follows. Following the
methodology of Steen and Markert (2022), we train a RoBERTa model (Y. Liu et al.,
2019) to distinguish shuffled from unshuffled summaries. The model is trained in a binary
classification setup with chunks of 3 consecutive sentences as positive class and their shuffled
versions as negative class. Then, the local coherence score of a summary is defined as the
positive class probability, averaged over windows of 3 sentences taken with padding of one
sentence.

4. Unsupervised Control Scenario

In this section, we formulate the second scenario, i.e. controlling for informativeness, non-
redundancy, and cohesion in candidate summaries in an unsupervised setup. Similarly to
the first scenario, we formulate the task of extractive summarization as a two-step process,
sentence scoring and sentence selection. During sentence scoring, the document is consumed
one sentence at a time, updating the score of a subset of sentences at each step. Then, the
top-scoring sentences are selected according to a predefined budget.

This section is organized as follows. First, we elaborate on the Micro-Macro Struc-
ture theory of reading comprehension, KvD, explain in detail how it simulates short-term
memory, and discuss how its operationalization can be leveraged for sentence scoring in
extractive summarization. Then, we introduce two novel computational implementations
of the KvD theory tailored to sentence scoring.

4.1 The KvD Theory of Human Memory

Proposed by W. Kintsch and van Dijk (1978), the Micro-Macro Structure theory describes
the cognitive processes involved in text (or speech) comprehension, and provides a principled
way to make predictions about the content human subjects would be able to recall later.
In this theory, discourse comprehension is performed at two levels, micro and macro-level,
and discourse is represented with a characteristic structure of content at each level. At
the micro level, content structure is modeled after working memory –a type of short-term
memory– and KvD defines precise mechanisms that update and reinforce content in the
structure. Content at this level is discretized in basic meaningful units by means of linguis-
tic propositions. A proposition is denoted as predicate(arg1,arg2,...) where argi is a
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syntactic argument of the predicate (e.g. argument to a transitive verb). As such, proposi-
tions can be interpreted as clauses or short sentences and hence provide more expressivity
than word units during comprehension. The advantage of using propositions as content
units goes beyond the amount of information it can pack. A proposition can be linked to
another either syntactically or semantically, potentially building entire connected structures
of propositions. According to KvD theory, working memory holds a cohesive organization
of content units by making sure that all units are connected e.g. in a connected tree. Hence,
the resulting micro-structure models cohesive ties in the text.

At the macro level, content structure represents the global organization of the text and
its building is guided by the reader’s goals in mind whilst performing the task. For instance,
if the task is summarization, KvD defines macro-processes concerned with generalization,
fusion, insertion of details from background knowledge, among others. In this work, we
consider only the structures represented at the micro level and leverage them for the task of
extractive summarization. Structures and processes at the macro level would require human-
like reasoning and intuition and even though recent work on neuro-symbolic systems (Garcez
& Lamb, 2020; Bengio, 2017) and common-sense reasoning (Speer et al., 2017; Bosselut et
al., 2019) show a promising development path, we leave this path out of the scope of this
work and for future work.

Experimentally, W. Kintsch and van Dijk (1978) tested the model on the tasks of recall
and summarization which required human subjects to write down a short text after reading
a document. The recall task aimed to measure how accurately subjects can reproduce
specific propositions from the given document, whereas the summarization task aimed to
quantify how many summary-worthy propositions are retrieved. The KvD theory models
the probability of writing down (to reproduce) a proposition as a function of the frequency
with which it was retained in working memory. The longer a proposition remained in
working memory, either at the micro level or at the macro level, the higher its reproduction
probability. This probability is then used to makes predictions about what content is
more likely to be written down in a summary. Crucial to our work, KvD argued that
reproduction probability can be used as a numerical score to rank propositions. In an
extractive summarization setup, this score can be used to rank content and select them
accordingly. We elaborate on how to define such a score function in detail in Section 4.2,
along with our computational implementations of the KvD theory.

4.1.1 Memory Simulation at Micro Level

At the micro level, content is organized in a data structure representing working memory
called the memory tree, where each node corresponds to a proposition and two propositions
are connected if any of their arguments overlap.

According to KvD, reading is carried out iteratively in memory cycles. In each cycle,
only one new sentence is loaded to the working memory, where its propositions are extracted
and added to the current memory tree. The limits of memory capacity is modeled as a hard
constraint in the number of propositions that will be preserved for the next cycle. Hence, the
tree is pruned and some propositions are dropped or forgotten. However, if nodes cannot
be attached to the tree in upcoming cycles, forgotten nodes can be recalled and added
to the tree, serving as linking ideas that preserve the cohesion represented in the current

282



On the Trade-off between Redundancy and Cohesion in Extractive Summarization

tree.2 Whenever the content in working memory is changed, whether adding propositions
or removing them, the root is reassigned to the node containing information central to the
argumentation represented in working memory. We now illustrate with an example how
content units are captured, forgotten, and recalled during a KvD simulation of reading.

Consider the first three sentences of the introduction section of a biomedical article,
along with its abstract, shown in Figure 2. At the beginning of cycle 1, propositions 1 to 7
are extracted from the incoming sentence and populate an empty working memory, resulting
in tree (1a). Note that the root, node 4, includes the main verb of the sentence and links
the main actors (antioxidants, species, and people). Note also that connected proposi-
tions present arguments in common, e.g. node 5 and 6 share the argument antioxidants.
Then, the memory capacity constraint is enforced by pruning nodes until the tree is of a
predetermined size. In this example, we set the memory limit to 5 propositions per cycle.
KvD introduced the leading edge strategy for pruning, which traverses the tree in depth-first
order starting from the root and selects only the most recent node (in order of reading) at
each step. In case a leaf node is reached and there is capacity left, the tree is traversed
in breath first order starting from the root, and selects nodes with the same criteria, until
capacity is reached. In cycle 1, the selected nodes from tree (1a) are 4, 5, 7, 3, and 2, in
that order. The remaining nodes, 1 and 6, are pruned. Since content in working memory
has been reduced, the root must be reassigned if needed. However, node 4 remains central,
hence it remains as the root and we move on to the next cycle with tree (1b) as memory
tree. These pruned trees constitute the final product of each cycle and will be used for our
content selection experiments.

In cycle 2, propositions 8 to 13 are added to memory, tree (1b). In the presence of this
new information, the root is reassigned to a proposition central to all the propositions in
memory. In this case, node 7 is made root because it presents information common to both
sentences (nonenzimatic antioxidants), hence being central. Note also that the new tree
(2a) showcases clearly two ramifications of the current topic, namely that $7‘ control a
specific kind of molecules’ and ‘deficit of $7 causes certain condition’. Then, we apply the
leading edge strategy to select nodes 7, 10, 11, 12, and 13, in that order, and prune the
rest. Since the content of the working memory has changed again, node 10 is now deemed
as central and assigned root status, resulting in tree (2b).

In cycle 3, the newly extracted nodes (14 - 17) cannot be attached to the current tree
because the linking node, $8, was pruned in the previous cycle. Therefore, proposition 8 is
recalled and re-attached to the tree, shown as a squared node in tree (3a) and (3b). Then,
the selection strategy is applied and node 11 is selected as new root, obtaining (3b).

After analyzing how trees are shaped in each cycle, it is important to point out their
importance for the task of extractive summarization. Next, we elaborate on how memory
trees can be leveraged for this end.

4.1.2 Properties Relevant to Summarization

The procedure for content manipulation described above imposes constraints on the shape,
size, and content of memory trees during simulation. Such constraints bestow memory trees

2. It is worth noting that W. Kintsch and van Dijk (1978) did not specify how many nodes can be recalled
at a single time, however, recent implementations (Fang, 2019) limit this number to at most 2.
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Cycle 1
In healthy people, reactive oxidant species are controlled by a number of enzymatic and non-
enzymatic antioxidants.

1: in people(healthy)

2: species(reactive)

3: species(oxidant)

4: are controlled(antioxidants,species,

people)

5: of(a number, antioxidants)

6: antioxidants(enzymatic)

7: antioxidants(non-enzimatic)

2

14

3

5 6

7

24

3

5 7

(1a) (1b)

Cycle 2
In patients with Cystic Fibrosis (CF), deficiency of nonenzymatic antioxidants is linked to malab-
sortion of lipid-soluble vitamins.

8: with(in patients, Cystic Fibrosis)

9: BE(Cystic Fibrosis,CF)

10: of(deficiency, $7)
11: is linked (deficiency,malabsortion, $8)
12: of (malabsortion,vitamins)

13: vitamins(lipid-soluble)

57

10

4 2

3

11

12

8 9

13

10

11 12 13

7(2a) (2b)

Cycle 3
Furthermore, pulmonary inflammation in CF patients also contributes to depletion of antioxidants.

14: inflammation(pulmonary)

15: inflammation(in:$8)
16: contributes($15,to:depletion)
17: of(depletion,antioxidants)

10

11 12 13

7

8 15 14

16 17

11 10

8 15 16

(3a) (3b)

Gold Summary
Patients with Cystic Fibrosis (CF) show decreased plasma concentrations of antioxidants due to
malabsorption of lipid-soluble vitamins and consumption by chronic pulmonary inflammation.
Carotene is a major source of retinol and therefore is of particular significance in CF. ...

Figure 2: Simulation of KvD reading during three cycles. Each row shows the sentence
consumed (top), the propositions extracted (left), and memory trees before (1a, 2a, 3a)
and after (1b, 2b, 3b) applying a memory constraint of 5 nodes. Argument $N means that
proposition N is used as argument. Squared nodes are recalled propositions. Solid lines
connect nodes selected to keep in memory, and dotted lines connect nodes to be pruned.

with special properties relevant to the task of summarization, specifically with respect to
cohesion, relevancy, and redundancy.

Local Coherence and Cohesion. A memory tree constitutes a connected structure
in which two propositions are connected if any two of their arguments refer to the same
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concept. Connectivity, W. Kintsch and van Dijk (1978) argued, is a consequence of the
text being well-structured and locally coherent, although connectivity is not a necessary
condition for coherence –a disconnected structure can still be coherent for a reader. In
this way, KvD enforces local coherence in a memory tree in the form of lexical cohesion.
For instance, proposition 8 in cycle 3 of Figure 2 serves as a bridge to keep the memory
tree connected, since propositions talking about CF patients (propositions 8 and 9) were
discarded in the previous cycle.

This connectivity property has the following implication for cohesion in a final sum-
mary. By retaining a set of cohesive content units in working memory, their reproduction
probability is increased. Consequently, cohesive groups of propositions will present similar
scores at the end of the simulation, encouraging the selection of content that reads more
cohesive as a whole.

Relevancy. In addition to being locally coherent, memory micro-structure takes the form
of a tree for the following reasons. KvD states that the root of a memory tree should
contain information central to the argumentation represented in the working memory; hence,
the root is deemed as the most relevant proposition in memory, and the more relevant a
proposition is, the closer to the root it will be. This property could be exploited by a
summarization system by designing a scoring function that takes the position of a tree node
into account.

However, a KvD-based sentence ranking system that relies on proposition scoring would
first need to capture the right propositions in working memory. Let us look at the first
sentence of the gold summary in Figure 2). On the one hand, many propositions (7, 8,
12, 13, and 15) appear verbatim in this sentence, although sometimes only partially (e.g.
7 and 15). The capture of proposition 8 in cycle 3 highlights the importance of the recall
mechanism in KvD to bring back relevant information. On the other hand, fine-grained
information relevant to the summary might also be lost, such as node 14, in which a crucial
property of a noun is not captured (‘pulmonary ’).

Redundancy. Finally, KvD processes influence redundancy reduction in two accounts.
First, propositions in a memory tree are connected such that each proposition adds new
details about a concept without encoding more redundant arguments than necessary. For
instance, consider again proposition 2 and 3 in Figure 2, where both propositions add
relevant details (reactive and oxidant) about a concept (species). Hence, memory trees
constitute a representation with the maximum amount of relevant details that can fit in
working memory whilst minimizing the redundancy of arguments.

Second, in case the recall mechanism needs to be used, KvD retrieves only the mini-
mum amount of propositions to serve as a bridge and connect the incoming propositions.
Specifically, the recall mechanism only adds one recall path to the memory tree instead of
many other alternative paths. By not loading redundant paths into memory, a system could
avoid increasing the score of redundant content and update only one recall path at a time.
This behavior, as we will demonstrate later, contributes immensely to decrease redundancy
in the final summary and becomes particularly important for highly redundant documents,
e.g. scientific articles that repeat information in several sections.
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In healthy people, reactive oxidant species are controlled by 
a number of enzymatic and non- enzymatic antioxidants.

In patients with Cystic Fibrosis (CF) , deficiency of 
nonenzymatic antioxidants is linked to mal- absortion of 
lipid-soluble vitamins.

s1:

s2:

...

p1: in people(healthy)
p2: species(reactive)
p3: species(oxidant)

p4: are controlled(antioxidants,species, people)
p5: of(a number, antioxidants)

p6: antioxidants(enzymatic)
p7: antioxidants(non-enzimatic)

p8: with(in patients, Cystic Fibrosis)
p9: BE(Cystic Fibrosis,CF)

p10: of(deficiency, $7)
p11: is linked (deficiency, malabsortion, $8)

p12: of (malabsortion,vitamins)
p13: vitamins(lipid-soluble)

s1

s2

PropScore(1)(p2) = c(p2,T
(1))

PropScore(2)(p7) = PropScore
(1)(p7) +

                c(p7,T
(2))

Reading Simulation

Document D

Proposition Scores

Memory Cycle (x |D|)

p10

p11 p12

p7

p13

T(2): Memory Tree

Read s2

Update scores of
propositions in T(2)

Cycle 1
Cycle 2

Sentence Scoring

PropScore|D|(p1)

SentScore(s1)

SentScore(s2)

Figure 3: Pipeline of KvD reading simulation and sentence scoring using the simulation
example in Fig.2.

4.2 Unsupervised Summarization as Human Memory Simulation

In this part, two sentence scoring systems are introduced, TreeKvD and GraphKvD,
which at their core simulate human working memory during reading, according to the KvD
theory. We start by providing an overview of the implemented summarization pipeline.
Then, we elaborate on the procedure used to build propositions from syntactic structures
automatically extracted from text. Finally, we present the proposed sentence scoring sys-
tems in detail and discuss the design choices made, and complement the explanation with
a simulation example.

4.2.1 Pipeline Overview

The pipeline for sentence scoring is depicted in Figure 3. Input document D is consumed one
sentence at a time by the reading simulator. At each step, one memory cycle is executed and
the scores of the propositions in the working memory tree are updated. Once the document
has been completely read, the final score of propositions is aggregated into sentence scores,
which are then used to select the final summary.

Reading Simulation. The proposed KvD simulators model how content is moved from
working memory to long-term memory and vice versa. Working memory is represented as
a proposition tree, pruned at the end of each cycle in order to simulate short-term memory
limitations in humans. In contrast, long-term memory is represented as an undirected graph
of propositions populated by nodes demoted from working memory as reading progresses.

The outline of the the simulation procedure is presented in Algorithm 1. The algorithm
consumes a document D = ⟨s0, . . . , sk, . . . , s|D|⟩ iteratively in memory cycles, updating
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Algorithm 1 KvD reading simulation. Subroutines getPropositionTree,

attachPropositions, memorySelect and updateScore are instantiated by TreeKvD
and GraphKvD.
Require: D, source document as a list of sentences
Require: WM, size of working memory
Require: Ψ, maximum tree persistence
1: procedure runSimulationKvD(D, WM, Ψ)
2: T ← ∅ ▷ Memory tree, initially empty
3: G← ∅ ▷ Long-term memory, initially empty
4: ψ ← 0 ▷ Tree persistance counter
5: for sk ∈ D do
6: Pk ← getPropositionTree(sk)
7: T, attached← attachPropositions(Pk, T,G)
8: if attached then
9: adjustRoot(T )
10: memorySelect(WM, T )
11: updateScore(T )
12: ψ ← 0
13: else
14: ψ ← ψ + 1
15: end if
16: if ψ = Ψ then
17: T ← ∅
18: end if
19: end for
20: end procedure

working memory and long-term memory in each cycle. At the beginning of cycle k, the
algorithm reads sentence sk, extracts its proposition tree Pk (Line 6), and attaches it to the
current memory tree T (Line 7). The resulting tree is pruned to a constant size (Line 10) in
order to simulate human memory constraints, and pruned nodes are added to the long-term
memory graph G. Then, the score of proposition t in cycle k (Line 11) is updated to

PropScorek(t) = PropScorek−1(t) + c(t, T ),∀t ∈ T, (1)

where c(t, T ) quantifies the relevance of proposition t by taking into account its position in
T . We generalize the idea of reproduction probability proposed by W. Kintsch and van Dijk
(1978) by incrementally scoring propositions based on how often they appeared in memory
trees and in which part of said trees they were attached. Then, the simulation continues
to the next cycle until all sentences in D are consumed. The specific behavior of subrou-
tines getPropositionTree, attachPropositions, memorySelect, and updateScore is
instantiated by TreeKvD and GraphKvD and their details will be elaborated upon in
the following parts of this section.

Sentence Scoring. Once the document has been complete read, the final score of propo-
sition p is PropScore(p) = PropScore|D|(p). We define the score of sentence sk as the sum
of the score of all its composing propositions as

SentScore(sk) =
∑

p∈V [Pk]

PropScore(p), (2)

where V [Pk] is the set of nodes in proposition tree Pk extracted from sk.
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Sentence Selection. We resort to a greedy selection strategy, i.e. selecting the top-scoring
sentences according to Eq. 2 until the budget of B tokens is met.

4.2.2 Proposition Building

Propositions are obtained by recursively merging and rearranging nodes in dependency
trees, extending the procedure of Fang (2019). Given sentence s = ⟨w0, w1, ..., wN ⟩ and
its corresponding dependency tree Q with nodes {q0, .., qN},3 the objective is to obtain
proposition tree P with nodes {p0, ..., pM}, M ≤ N , as follows.

First, we merge dependent nodes into head nodes in Q in a bottom-up fashion. Given
u, v ∈ Q where u is head of v, operation merge(u, v) adds all tokens contained in v to node
u and transplants children(v) –if any– to children(u). Let dep(u, v) be the grammatical
relation between u and v, dependant v is merged into head u if and only if

• Node u is a nominal or non-core dependant of a clausal predicate and v is a function
word or a discourse modifier (e.g. interjections or non-adverbial discourse markers).

• Node u is any kind of dependant of a clausal predicate and v is a single-token modifier.

• Nodes u and v form part of a multi-word expression or a wrongly separated token
(e.g. dep(u, v) = goeswith).

Consider the example in Figure 4. Starting from dependency tree Q (Fig. 4a), single-token
modifiers are collapsed into their head nodes (e.g. merge(model,this) and
merge(galaxy,of)), and compound phrases are joint (e.g. merge(formation,galaxy)).

Second, we promote coordinating conjunctions to head status as follows. Given u, v ∈ Q,
let v be a node with relation cc among children or grandchildren of u. We transplant node
v to u’s position and put u and all its children with relation conj as children of v. In our
example (Fig. 4.b), node ‘and’ is promoted and nodes ‘galaxy formation’ and ‘the star

burst’ are transplanted as its children. Note that at this point in the procedure, Q is still
a tree (Fig. 4.c) but its nodes might now contain more than one token.

Then, for each non-leaf u ∈ Q we build proposition p = wu(argv0 , argv1 , ...), where wu is
the sequence of tokens contained in node u and vi ∈ children(u). We set argvi = wvi if v is
a leaf node, otherwise argvi is a pointer to the proposition obtained from vi. For instance,
proposition 3 in Fig. 4.d, and(galaxy formation,$4), presents proposition 4 as one of its
arguments since node ‘the start burst’, from which proposition 4 is derived, is not a leaf.

Finally, edges between nodes in Q are used to connect their corresponding propositions
and form proposition tree P , and we say that two propositions are connected if one proposi-
tion has among its arguments a pointer to the other proposition. For instance, proposition
1 in Fig. 4.d points to propositions 2 and 3 and hence, they are connected in P .

Under this procedure, the connection among propositions in the same sentence takes
a syntactic nature. However, propositions from different sentences –and hence different
proposition trees– can still be connected if the lexical overlap amongst their arguments
is strong enough. Next, we define connection through proposition overlap and how it is
quantified.

3. We follow Universal Dependencies (Nivre et al., 2017), a dependency grammar formalism.
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Input: ‘this semi - analytical model predicts galaxy formation and the star burst of galaxies’

<ROOT>

predicts

model

this

semi -

analytical

formation

galaxy burst

and the galaxies

of

root

nsubj

amod

punctamod

det

obj

compound

star

conj

cc det compound nmod

case

predicts

this model

semi - analytical

galaxy formation

the star burst

and of galaxies

conj

cc

predicts

this model

semi - analytical galaxy formation the star burst

and

of galaxies

1

2

4

3

1: predicts($2, $3)
2: this model(semi - analytical)

3: and(galaxy formation, $4)
4: the star burst(of galaxies)

(a) (b)

(c) (d)

Figure 4: Step-by-step construction of proposition tree from an input sentence, starting from
obtaining its dependency tree in UD format (a), merging dependent nodes into head nodes
(b), promoting coordinating conjunctions to head status (c), to finally build propositions
from non-leaf nodes (d).

Proposition Overlap. We connect propositions from different sentences by quantifying
the lexical overlap between their functors –predicates and arguments. Let functors(p) be
the set of the functors –predicate and arguments– in propositions p. Given p1 ∈ Px and
p2 ∈ Py, let A

∗(p1, p2) be the optimal alignment between functors(p1) and functors(p2).
Alignment A∗ is defined as the maximum matching that can be obtained greedily in the
weighted bipartite graph formed from sets functors(p1) and functors(p2). The edge weight
between two functors is defined as e(a, b) = jaccard(La, Lb), the Jaccard similarity between
their sets of lemmas after discarding stopwords, punctuation, and adjectives –La and Lb.
Then, the average overlap score between p1 and p2, ϕ(p1, p2), is defined as

ϕ(p1, p2) =
1

|A∗|
∑

⟨a1,a2⟩∈A∗

jaccard(a1, a2). (3)

This overlap score function becomes useful when searching an appropriate place to attach

incoming propositions to the current memory tree or to pull propositions from long-term
memory. We elaborate more on this in the next section.
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4.2.3 TreeKvD

In this part, we introduce TreeKvD, the first sentence scoring system simulating KvD
reading. The system models working memory and long-term memory as two separate
weighted undirected graphs where each node represents a proposition and an edge connect-
ing two propositions indicates the existence of overlap between their arguments, with the
edge weight quantifying this overlap. Furthermore, working memory is constrained to be a
tree, whereas long-term memory is modeled as a forest of trees pruned from memory trees
during simulation. Let sk be the sentence read in cycle k, T the working memory tree at
the beginning of the cycle, with node set V [T ] and edge set E[T ]. Similarly, let G be the
long-term memory graph with V [G] and E[G] as node and edge set, respectively. We now
elaborate on the details of each step of the TreeKvD’s implementation of Algorithm 1.

Extracting and Attaching Incoming Nodes. First, subroutine getPropositionTree
(Line 6) receives sk as input (as a sequence of tokens) and returns its corresponding propo-
sition tree Pk following the procedure presented in section 4.2.2.

Then, subroutine attachPropositions (Line 7) attempts to attach Pk to T , receiving as
input structures Pk, T , and G, and returning the updated tree T along with flag attached to
indicate whether T was modified or not. The attachment of Pk to T and proceeds as follows.
We define the optimal place to attach Pk to T as the pair (t∗, p∗) where t∗ ∈ V [T ], p∗ ∈ V [Pk]
such that

(t∗, p∗) = argmax
t∈V [T ],p∈V [Pk]

ϕ(t, p),

where ϕ(·) is the proposition overlap function defined in Equation 3. In case no attachment
pair can be found, i.e. ϕ(t, p) = 0,∀t ∈ V [T ] ∧ ∀p ∈ V [Pk], attachPropositions resorts to
two cascaded backup plans.

As first backup attachment plan, the procedure recalls a path of forgotten propositions
from long-term memory G to serve as bridge to connect Pk and T . Let F(R) be the set of
all paths of length at most R in G, we define the optimal attachment place aided by f ∈ F
as the tuple (t∗, f∗, p∗), such that

(t∗, f∗, p∗) = argmax
t∈V [T ],p∈V [Pk],f∈F(R)

ϕ(t, f1) +
n∑

i=2

ϕ(fi−1, fi) + ϕ(fn, p),

where f = ⟨f1, ..., fn⟩, fi ∈ V [G] ∧ n ≤ R. In this way, Pk is attached to T by retrieving a
path f∗ from G with at most R forgotten nodes that maximizes argument overlap between
placement candidates t∗ and p∗.

In case no suitable recall path can be found (total overlap score is still zero), procedure
attachPropositions resorts to a second backup attachment strategy, which consists of
deciding whether to keep T as memory tree during the current cycle or whether to replace
it completely with Pk. Among both trees, we keep the one whose root node presents the
highest closeness centrality. The closeness centrality of a node in an undirected graph is
defined as the inverse of the sum of all shortest paths from said node to all other nodes in
the graph. As we will discuss in the root adjustment section, a root closer to all other nodes
is an indication of a well balanced tree and allows for efficient pruning, hence a desirable
property. In case T is not replaced, the procedure returns flag attached as False.

Now consider the case when attachPropositions fails to attach propositions to T for
more than one consecutive cycle. We name this phenomenon tree persistence. A highly
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persistent tree is undesirable since it can potentially block important connections between
more recently read propositions. In order to avoid this scenario, we reset the memory
tree (line 16 in Algorithm 1) if its persistence reaches the maximum permissible value, Ψ.
Furthermore, we avoid over-scoring nodes in persistent trees by only updating their score if
any form of attachment took place (Line 8).

Choosing and Adjusting the Root. After attachment takes place, subroutine adjustRoot
will select the most appropriate node in the updated T as the root (Line 9). An important
property of working memory trees in the KvD theory is that the root conveys the most
central topic at the time of reading. We build upon Fang (2019) criteria and model this
property by selecting the node that presents the highest closeness centrality as the root.
Such a root would facilitate reaching all nodes in the least amount of steps –in average–, a
desired property during pruning.

Pruning Working Memory. Next, subroutine memorySelect (Line 10) receives as input
memory capacity parameter WM and memory tree T , and proceeds to select at most WM nodes
from T in the following manner. Starting from the root, T is traversed in topological order
until reaching a leaf node, selecting each node visited along the way. At this point, if the
amount of select nodes is less than WM, nodes are selected in breadth-first traversing order
(starting from the root) until capacity is reached or until all nodes are traversed. Finally,
nodes not selected are pruned from T and moved to G.

Proposition Scoring. Following Eq. 1, reproduced here for convenience, the score of
propositions is updated as

PropScorek(t) = PropScorek−1(t) + c(t, T ),∀t ∈ T,

in which subroutine updateScore (Line 11) defines the updating term c(·) as

c(t, T ) =
|Tt|
|T |

exp

Å
1

depth(t)

ã
, (4)

where depth(t) is the depth of node t with respect to the root and |Tt| is the size of the
subtree rooted in t. In this way, nodes closer to the root as well as nodes holding more
information in their subtree are scored higher.

Limitations. The presented system closely follows mechanisms of memory organization
theorized by W. Kintsch and van Dijk (1978). As such, the system presents a number of
processing limitations inherent to the KvD theory itself which we now elaborate on.

First, the constrained amount of content units in working memory at any given time
poses a limitation to how much information the system has access to when updating the
score of memory tree nodes. It is entirely possible that some propositions are pruned away
and never recalled again, in which case their score will be zero.

Second, W. Kintsch and van Dijk (1978) define the recall mechanism as a routine capa-
ble of pulling an unlimited number of propositions from long-term memory. Additionally,
propositions might not be recalled verbatim but simplified, given that the difficulty to recall
specific details increases over time (Postman & Phillips, 1965). In system TreeKvD, we
limit ourselves to recall previously read propositions verbatim and further limit the maxi-
mum number of propositions to recall. This design choice limits the possibility of recalling
important propositions back into working memory.
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Third, attachment of an incoming proposition tree to the current memory tree is done
by connecting one node in the memory tree to one node in the incoming tree. Whilst this
strategy guarantees that the resulting structure remains a tree, as KvD requires, many
potentially useful connections are ignored. We address these limitations in the design of the
next system.

4.2.4 GraphKvD

The second proposed system, GraphKvD, considers instead a single underlying structure
for long-term memory and short-term memory. Working memory is modeled as a subgraph
of long-term memory that preserves properties of KvD micro-structure, i.e. a tree with
constrained size. Such modeling of memory modules allows for richer connections between
incoming proposition trees and working memory, in addition to giving the system efficient
access to nodes neighboring memory tree nodes, significantly increasing the coverage of
content during scoring. We now proceed to elaborate on how GraphKvD instantiates
Algorithm 1.

Extracting and Attaching Incoming Nodes. In the same fashion as in TreeKvD,
procedure getPropositionTree extracts Pk from incoming sentence sk (line 6). Then,
procedure attachPropositions will first attempt to connect Pk to T directly, falling back
to two cascaded strategies if unsuccessful.

In contrast with TreeKvD, all nodes in Pk are allowed to connect to T . Hence,
for each p ∈ V [Pk], its optimal place to be attached to T is defined as the pair (p, t)
such that t = argmaxt̂∈V [T ] ϕ(t̂, p), where ϕ(·) is again the proposition overlap function
defined in Equation 3. In case no node in Pk could be connected to any node in T ,
attachPropositions employs again two backup plans. Note that these plans are not
triggered if at least one node in Pk was connected to T .

The first plan consists of a recall mechanism that retrieves paths from G connecting
each node in Pk to each node in T . For each node p ∈ V [Pk], its the optimal attachment
place t∗ ∈ V [T ] aided by path f∗ = ⟨f1, ..., fn⟩, fi ∈ V [G] ∧ n ≤ R, is defined as

(t∗, f∗) = argmax
t∈V [T ],f⊂G

ϕ(f1, t) + c(t, T )

Ñ
|f|∑
i=2

ϕ(fi−1, f̂i)

é
exp(−|f|) + ϕ(fn, p).

Note that GraphKvD defines the optimal attachment place differently from TreeKvD in
two respects. First, GraphKvD explicitly favours the attachment of recall paths to highly
relevant nodes in T , i.e. high c(·) value. This encourages the memory tree to expand on
information about relevant content rather than non-relevant ones. Second, GraphKvD
includes an exponential decay length penalty (exp(−|f|)) to favour the retrieval of shorter
recall paths. This penalty is inspired by recent research on how content is gradually for-
gotten (‘decays’) in human memory and becomes harder to retrieve (Berman, Jonides, &
Lewis, 2009), an idea also applied in the optimization of neural networks (Loshchilov &
Hutter, 2019). In this way, we avoid populating T with long proposition chains that may
contain only marginally relevant and potentially redundant information. Moreover, this
approach aims to save memory capacity for other potentially informative attachments.

As second backup plan, procedure attachPropositions will replace T with Pk if
|V [Pk]| > |V [T ]| and the closeness centrality of the root of Pk is greater than that of

292



On the Trade-off between Redundancy and Cohesion in Extractive Summarization

the root of T . T will also be replaced if the tree persistence has reached its allowed limit,
ψ = Ψ. In case Pk is chosen, we enrich it by retrieving single nodes from G and connecting
them to P , in a similar fashion to the construction stage in the Construction-Integration
theory of comprehension (W. Kintsch, 1988). For each node p ∈ V [Pk], we retrieve candi-
date nodes in the following order. First, nodes from the local context, i.e. from the current
paragraph or article section, are retrieved. Then, nodes are retrieved in inverse order of
processing recency, i.e. propositions from sentences processed at the beginning of the sim-
ulation are retrieved first. For each node, searching stops when the argument overlap score
of a candidate is greater than zero.4

This particular retrieval order follows free recall accuracy in human subjects (Glanzer,
1972).5 The tendency to accurately recall the first processed items is known as the priming
effect (Harley, 1995), and is said to depend on long-term memory. Instead, the tendency
to accurately recall the most recent items is called the recency effect, and it depends on
short-term memory.

Updating Memory Structures. After attachment, long-term memory graph G is up-
dated with nodes and edges in T . Note that after executing the attachment procedures
described above, the updated memory graph T might no longer be a tree. However, as
mentioned before, the KvD theory models that a valid working memory structure as a tree.
Hence, we reduce T to its maximum spanning tree using the argument overlap score be-
tween propositions as edge weights. Similarly to TreeKvD, the node with the maximum
closeness score is chosen as the new root. Then, T is pruned down to have at most WM nodes
using the same strategy as in § 4.2.3.

Proposition Scoring. The score of nodes in working memory T is updated according
to Eq. 1 and Eq.4. However, GraphKvD will also update the score of nodes neighboring
those in T . In this way, propositions that contribute to the understanding of nodes in T
are reinforced, and the more a proposition is selected the more its connections are updated.
For each node t ∈ V [T ], we define N(t) = {u;u ∈ V [G]\V [T ], s.t. (u, v) ∈ E[G]}, the set
of nodes neighboring t located in G. Then, the updated score of neighbor node u is

PropScorek(u) = PropScorek−1(u) + β · c(t, T ), ∀u ∈ N(t),

where β < 1 is a decay factor. The consideration of neighboring nodes and a decayed scoring
strategy follows the integration and spreading processing proposed in the Construction-
Integration theory. The objective is to integrate peripheral or related concepts into the
memory cycle and spread minimal attentional resources to them in the form of score value,
where parameter β controls how much attention is leaked.

4.2.5 Simulation Example

Next, we illustrate the procedures outlined in Algorithm 1 with an example, showcased
in Figure 5. The example takes two sentences from a scientific article and simulates two
memory cycles with TreeKvD (left) and GraphKvD (right). The propositions involved

4. Experimentally, increasing this threshold does not impact downstream performance significantly.
5. Free recall is a technique used in psycholingusitic studies of human memory in which a subject is presented

with a string of items and is free to recall them in any order; in contrast, serial recall requires the subject
to recall the items in order.
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(middle row) in the cycles are presented alongside the corresponding gold summary (bot-
tom row). Propositions not directly mentioned in the simulation but necessary for content
interpretation are shown in italics. First, we analyze the processes involved during attach-
ment in a memory cycle, including how the recall mechanism operates. Then, we relate the
properties a memory tree should exhibit according to the KvD theory, and the properties
of memory trees obtained with TreeKvD and GraphKvD.

Memory Cycles. In cycle k, both systems manage to attach the incoming proposition
tree P directly to the current memory tree Tk−1, with such connections illustrated as red
dotted lines in Figure 5. Notice that TreeKvD is allowed to make only one connection
(79 7→ 81) so that the resulting structure, T ′, remains a tree. In contrast, GraphKvD is
allowed to connect each node in P back to Tk−1 (e.g. 84 7→ 79, 85 7→ 71), which results in
structure G′, an undirected weighted graph. After choosing the new root (node 81), the
retention process (function memorySelect) selects the new memory tree Tk.

In the next cycle, k + 1, the incoming P cannot be attached directly to Tk and hence,
the recalled mechanism is used. TreeKvD recalls a 3-node path to connect node 88 to 81,
linking information about proposed models (‘models for turbulence’ in 81) to methodology
(‘scaling methods’ in 25, 24, 21) and hypothesis exploration (‘we try to see if these suggest’ in
88). In contrast, GraphKvD recalls a single node linking the studied phenomenon (‘MHD
turbulence’ in 81) to its properties of interest (‘such relations’ in 79, making reference to
information in 75) and to the specific property being studied (‘bridge relations’ in 90).

Properties of Memory Trees. Properties of memory structures at the micro level,
as discussed in Section 4.1.2, have the potential to greatly influence the level of lexical
cohesion and redundancy in output summaries, in addition to identifying relevant content
to be included. We now elaborate on how this influence manifests in our example.

First, regarding lexical cohesion, a connected memory tree is evidence that content units
currently held in memory are not a disjoint set of mutually exclusive concepts but a set
that can be interpreted in a coherent manner. For instance, the content in Tk−1 could be
verbalized in the following manner:

We examine dynamic multiscaling...in a shell model for 3D MHD [71,72] and
scalar turbulence [80]. Dynamic multiscaling exponents are related by linear
bridge relations to equal time multiscaling exponents [75]. We have not been
able to find such relations for MHD turbulence so far [77,78,79].

where the propositions used to verbalize each phrase or sentence are indicated inside square
brackets. As can be seen, the text above reads smoothly and exhibits an acceptable level
of lexical cohesion and co-referential coherence. By updating the score of a set of proposi-
tions capable of forming a coherent text, a KvD system encourages the similar ranking of
mutually coherent propositions. Hence, a content selector is also encouraged to select a set
of sentences exhibiting a non-trivial level of lexical cohesion.

A similar reasoning can be applied to explain the influence of memory simulation over
redundancy in output summaries. As claimed in Section 4.1.2, a memory tree constitutes
a non-redundant set of propositions, with each proposition adding details of an entity or
topic shared with the propositions it is connected to. For instance, node 81 adds information
about ‘MHD turbulence’ to Tk−1 when connected to node 79. Moreover, when the recall
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Cycle k : ‘Therefore, we obtain equal-time and time-dependent structure functions for a shell model for 3D
MHD turbulence and, from these, equal-time and dynamic multiscaling exponents. ’

71

80

77 78 79 81 82 83

84 86 85 87

81 84 86 85 87

71

80

77 78 79 81 82 83

84 86 85 87

T ′ = aP( Tk−1 , P , F )

Tk =

TreeKvD GraphKvD

81 84 86 85 87Tk =

G′ = aP( Tk−1 , P ,G)

Cycle k+1: ‘We then try to see if these suggest any bridge relations. ’

81 84 86 85 87 88 89 90

25 81 84 86 85

T ′ = aP( Tk , P , F )

TreeKvD GraphKvD

81 84 86 85 87

G′ = aP( Tk , P ,G)

25 24 21

Tk+1 =

81 84 86 85 87 88 89 90

79

Tk+1 =

Propositions
24: must be generalized(that, $21, $25)
21: the simple scaling($22)
22: see(we, at most critical points)
25: to multiscaling(in turbulence)
71: behooves(therefore, it, us, $72, $75, $77)
72: to examine first the dynamic multiscaling(of
structure functions, $73)
73: in a shell model for MHD(three dimensional, 3D
MHD)
75: are related(dynamic multiscaling exponents, by
linear bridge relations to equal time multiscaling ex-
ponents)
77: have not been able(we, $78)

78: to find($79, so far)
79: such relations(for MHD turbulence)
80: and($71; scalar turbulence)
81: obtain(therefore, we, $82, $84)
82: and(equal time, $83)
83: time dependent structure functions(for a shell model)
84: for 3D MHD turbulence from these(and, $86)
85: equal time (dynamic, $87)
86: and($85)
87: multiscaling(exponents)
88: try(then, we, $89)
89: to see($90)
90: suggest(if, these, any bridge relations)

Gold Summary
We present the first study of the multiscaling of time-dependent velocity and magnetic-field structure functions
in homogeneous, isotropic Magnetohydrodynamic (MHD) turbulence in three dimensions .
We generalize the formalism that has been developed for analogous studies of time-dependent structure functions
in fluid turbulence to MHD.
By carrying out detailed numerical studies of such time-dependent structure functions in a shell model for three-
dimensional MHD turbulence, we obtain both equal-time and dynamic scaling exponents .

Figure 5: Simulation example of TreeKvD (left) and GraphKvD (right). Each memory
cycle shows the input sentence, extracted propositions, and the derived memory tree. Func-
tion aP refers to subroutine attachPropositions in Algorithm 1. Solid line: edge in final
memory tree; dotted line: pruned edge; red dotted line: edge connecting T and P . Squared
nodes: propositions recalled from long-term memory; underlined node: new root of memory
tree. Relevant content common in propositions and the gold summary is coloured in blue.

mechanism is used in cycle k+1, only one recall path is added to Tk (25, 24, 21 in TreeKvD
and 79 in GraphKvD) instead of many potentially redundant recall paths. Hence, by
updating the score of a minimally redundant set of propositions in each cycle, a KvD
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system encourages non-redundant content to be ranked closely and by extension, the content
selector is encouraged to select sentences with an acceptable level of redundancy.

Finally, memory trees are capable of identifying and ranking relevant propositions, hence
encouraging a selector to pick sentences with relevant content. In our example, we observe
that both TreeKvD and GraphKvD retain propositions 81, 84, 85, 86 in Tk and Tk+1.
These propositions cover information directly mentioned in the gold summary, coloured in
blue in Figure 5.

5. Experimental Setup

In this section, we present the experimental setup for assessing the trade-off between infor-
mativeness, redundancy, and cohesion, under the two control scenarios defined in previous
sections, reward-guided and unsupervised. We evaluate our models on the task of extrac-
tive summarization of scientific articles and define appropriate automatic evaluation metrics
to capture the analyzed summary properties. Moreover, we design two human evaluation
campaigns aimed at quantifying the perceived informativeness and cohesion of summaries
produced by the proposed unsupervised systems, TreeKvD and GraphKvD. In the fol-
lowing, we elaborate on the datasets used and the preprocessing employed, the comparison
systems, and the setup for automatic and human evaluation.

5.1 Datasets

We used PubMed and arXiv datasets (Cohan et al., 2018), consisting of scientific ar-
ticles in English in the Biomedical and Computer Science, Physics domains, respectively.
For each article, the source document is defined as the concatenation of all section texts,
and the abstract is used as reference summary. We further preprocessed both datasets after
noticing substantial sentence tokenization errors and pollution of latex code. Instances with
documents with less than 5 tokens in the abstract are ignored. Sentences are capped at 200
tokens, and sentences with more than 3 latex code keywords (e.g. usepackage, document-
class) and less than 5 tokens are ignored. Following previous work (Xiao & Carenini, 2020;
Gu et al., 2022), we use a budget of B= 200 tokens for both arXiv and PubMed.

5.2 Comparison Systems

In addition to the discussed and proposed models, we report results on a range of standard
heuristic and unsupervised baseline systems. As heuristic baselines, we include the follow-
ing: extractive oracle, Ext-Oracle, which consists of greedily selecting a set of sentences
that maximize the sum of ROUGE-1 and ROUGE-2 scores w.r.t. the reference summary;
Lead, selecting the leading sentences of a document until the budget is met; and Random,
randomly sampling sentences following a uniform distribution. Next, we elaborate on the
training details and hyper-parameter configuration of our reward-based and unsupervised
systems.

Supervised and Reinforcement Learning Systems. We report the performance of
E.LG as a reference for an informativeness-oriented baseline, and use checkpoints provided
by (Xiao & Carenini, 2020). For redundancy-oriented model E.LG-MMRSel+, we use the
default hyper-parameter configuration (Xiao & Carenini, 2020) and set λR = 0.6, γR = 0.99.
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For local coherence-oriented model E.LG-CCL, we tune λLC over validation sets and set
it to λLC = 0.2. Both models were trained using Adam optimizer (Loshchilov & Hutter,
2019), batch size of 32, learning rate of 10−7, and trained for 20 epochs, with the best
checkpoint selected based on the sum of ROUGE-1 and ROUGE-2 scores.

In addition, we compare against MemSum (Gu et al., 2022), a model that employs a
multi-step episodic Markov decision process that samples a candidate summary sentence by
sentence instead of sampling the complete summary via a single action (Narayan, Cohen, &
Lapata, 2018; Y. Dong et al., 2018). Crucially, MemSum incorporates an extraction history
module that informs the agent about the information already selected and hence, minimize
redundancy in the final summary. Although the model is trained to produce a stop action,
we stop extraction once the budget is met in order to have a fairer comparison with other
baselines in terms of summary length.

Finally, we do not include supervised baselines that require the calculation of coreference
chains or rhetorical structure trees over the input document, such as DiscoBERT (Xu et al.,
2020), because of their limited applicability in out-of-domain scenarios and their inability
to process documents of the length analyzed in this paper.

Unsupervised Systems. For the proposed KvD systems, we perform hyper-parameter
tuning over the validation sets and set the maximum recall path length R = 5, maxi-
mum tree persistence Ψ = 8, working memory capacity WM = 100 for both TreeKvD and
GraphKvD. For proposition scoring in GraphKvD, the decay factor is set to β = 0.01.

We compare against unsupervised systems that model a document as a graph of sen-
tences and employ node centrality as a proxy for informativeness. First, we report on Tex-
tRank (Mihalcea & Tarau, 2004),6 a system that employs TF-IDF as edge score between
sentences and the PageRank algorithm (Brin & Page, 1998) to obtain node centrality. Sec-
ond, we benchmark PacSum (Zheng & Lapata, 2019), which learns a specialized edge scorer
and also uses PageRank. For computational purposes, we limit connection to sentences in
a window of size 200.7 We report results using a SciBERT (Beltagy, Lo, & Cohan, 2019)
sentence embedded and two configurations: PacSum, using the default hyper-parameters
reported by Zheng and Lapata (2019), and PacSum-FT∗, finetuned over a sample of 1000
documents following the procedure therein.

Moreover, we investigate the appropriateness of constraining the size of working memory
during KvD simulation, and define baseline FullGraph, which simulates all steps of KvD
reading in Alg. 1 except subroutine memorySelect. Similarly to PacSum, proposition
connection is limited to those in the previous 50 sentences. Finally, we compared our
proposed models against a previous implementation of the KvD theory (Fang, 2019), labeled
as FangKvD.

5.3 Automatic Evaluation

We evaluate the intrinsic performance of the analyzed models in terms of informativeness,
redundancy, and lexical cohesion.

6. We use implementation in the Gensim library (Rehurek & Sojka, 2010).
7. Such a limitation was possibly not considered by Zheng and Lapata (2019) since their model was not

designed for long documents, it was tested on the CNN/DM dataset in which documents are 50 sentences
long in average.
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5.3.1 Informativeness

We report F1 ROUGE (Lin, 2004) which measures lexical –n-gram– overlap between ex-
tracted summaries and reference summaries, serving as an indicator for informativeness and
relevancy. Even though many issues have been identified when using ROUGE outside its
proposed setting (F. Liu & Liu, 2008; Cohan & Goharian, 2016), many variations of the
original metric have shown a strong correlation with human assessment (Graham, 2015;
ShafieiBavani et al., 2018; Fabbri et al., 2021).

Nevertheless, ROUGE is not designed to appropriately reward semantic and syntactic
variation in summaries. For this reason, the semantic relevancy of summaries is assessed
using F1 BertScore (T. Zhang et al., 2020) which addresses semantic similarity by comparing
contextual embeddings given by a pretrained BERT model. BertScore has been proven a
reliable metric when equipped with importance weighting in highly technical domains such
as medical texts (Miura et al., 2021; Hossain et al., 2020). In all our experiments, we report
scores using RoBERTa (Y. Liu et al., 2019) as underlying model, and apply importance
weighting to diminish the effect of non-content words, e.g. function words.8

5.3.2 Redundancy

We assess redundancy in a text with the following metrics, each of which computes a value
in the range of [0; 1], the higher it is the more redundant a text will be.

Inverse Uniqueness (IUniq). Defined as IUniq = 1−Uniq, where Uniq refers to unique-
ness (Peyrard, Botschen, & Gurevych, 2017), a metric that measures the ratio of unique
n-grams to the total number of n-grams. We report the mean among values for unigrams,
bigrams, and trigrams.

Sentence-wise ROUGE (RdRL). Defined as the average F1 ROUGE-L score among
all pairs of sentences (Bommasani & Cardie, 2020). Given candidate summary Ŝ,

RdRL = average
(x,y)∈Ŝ×Ŝ,x̸=y

ROUGE-L(x, y).

5.3.3 Cohesion

The following measures of cohesion are used.

Extended Entity Grid (EEG). The Entity Grid (Barzilay & Lapata, 2005) models
cohesion in a text by obtaining the probability of an entity appearing in a determined
syntactic role (subject, object, or other) in a sentence, given its role in the previous two
sentences. Then, a discriminative model learns a score using entity role transition probabil-
ities and saliency features such as frequency. Later, the feature set was extended to include
entity-specific features such as the presence of proper mentions, the number of modifiers,
among others Elsner and Charniak (2011). We use the implementation part of the Brown
Coherence Toolkit9 and train our models over 50 000 uniformly chosen samples from each
training set.

8. IDF statistics were obtained from documents in the training set of each dataset.
9. https://web.archive.org/web/20200505174052/https://bitbucket.org/melsner/

browncoherence
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Entity Graph (EGr). (Guinaudeau & Strube, 2013) Models a text as a graph of sen-
tences with edges connecting sentences that have at least one noun in common. Following
W. Zhao, Strube, and Eger (2023), averaged adjacency matrix is reported as a proxy for
cohesion.

5.3.4 Local Coherence

The local coherence of a summary is assessed using the CCL scorer defined in § 3.2 with a
sentence window of 3 and padding of 1.

5.3.5 Metric Reliability

The automatic metrics for cohesion and local coherence used in this article present the
following limitations that might impact their reliability. Regarding metrics of cohesion,
their reliability depends on the accuracy of noun extraction. EEG employs a co-reference
resolution tool (Ng & Cardie, 2002) that uses lexical, grammatical, and semantic features,
in order to extract and link nouns from sentences. This method –rather limited to modern
NLP standards– is complemented by metric EGr, which instead employs strong neural
taggers for noun extraction.

In the case of local coherence, reliability might be impacted by the length (in wordpieces)
being scored at a time by the model (Steen & Markert, 2022). In this article, we train our
CCL scorers using binary cross-entropy with positive and negative examples taken from
different documents, hence mitigating the model bias for chunk length.

5.4 Human Evaluation

In addition to automatic metrics, we elicit human judgments to assess informativeness
and cohesion in two separate studies conducted on the Amazon Mechanical Turk platform.
We sampled 30 documents from the test set of PubMed and the respective summaries
extracted by unsupervised systems optimizing for cohesion, i.e. TreeKvD, GraphKvD,
and PacSum.

Annotators were awarded $1 per Human Intelligence Task (HIT), translating to more
than $15 per hour. These rates were calculated by measuring the average annotation time
per HIT in a pilot study. In order to ensure the quality of annotations, we required annota-
tors to have an HIT approval rate higher than 99%, a minimum of 10 000 approved HITs,
be proficient in the English language, and have worked in the healthcare or medical sector
before. Furthermore, we implemented the following catch controls: (i) we asked participants
to check checkboxes confirming they had read the instructions and examples provided, and
(ii) we discard HITs that were annotated in less than 5 minutes.10 Annotations that failed
the controls were discarded in order to maximize the quality. We now elaborate on the
details of each study.

Informativeness. In the first study, subjects were shown the abstract and the introduc-
tion of a scientific article along with two system summaries. Subjects were then asked to
select the most informative summary among them with the possibility to select both in case
of a tie, following previous work (Fabbri et al., 2021; Wu & Hu, 2018). In each system pair

10. Time threshold obtained from pilot study measurements.
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comparison, a system is assigned rank 1 if its summary was selected as most informative,
and rank 2 otherwise. In case of a tie, both systems are assigned rank 1. Then, the score of
a system is defined as its average ranking. We collected three annotations per system-pair
comparison and made sure that the same annotator was not exposed to the same document
twice. As an additional catch trial, we included in each annotation batch an extra instance
with summaries extracted by the extractive oracle and the random baseline.

Cohesion. Lexical chains are sequences of semantically related words (Morris & Hirst,
1991), and the distribution of these chains across a text has been shown to be a strong
indicator of cohesion (Barzilay & Elhadad, 1997; Galley & McKeown, 2003). We relax the
concept of lexical chains and extend it to that of chains of summary content units (SCUs),
where all SCUs in a chain cover semantically related content.

In our second study, we aimed to capture cohesive ties between sentences in a system
summary by asking participants to identify SCU chains. Following previous work on semi-
automation of the pyramid method (S. Zhang & Bansal, 2021), we employ propositions –as
extracted in Section 4.2.2– as surrogates for SCUs. Hence, a propositional chain is defined
as a set of propositions that exhibit semantically related arguments.

Participants were shown a single system summary as a list of sentences where tokens
that belonged to the same proposition were colored the same, as depicted in the example
in Figure 6. Then, the task consists of selecting chains of colored text chunks that share
content among them. For instance, in our example proposition chain {0, 6, 7} is connected
through information about the proposed method, whereas chain {1, 3, 6}, through optic nerve
segmentation. Chains were allowed to be non-exclusive, i.e. propositions can be selected in
more than one group. Similarly to the previous study, we collected three annotations per
system summary and include the gold summary of an extra system in the campaign.

Finally, based on annotations of propositional chains, we define the following measure-
ments of lexical cohesion: (i) chain spread, defined as the average number of sentences
between two consecutive propositions in a chain; (ii) chain density, the number of chains
covering the same sentence11; and (iii) sentence coverage, the number of sentences covered
by at least one chain. Intuitively, a text with less spread propositional chains exhibits co-
hesive ties that link sentences that are closer to each other, making the topic transition
between sentences smoother (Halliday & Hasan, 1976). Chain density can be interpreted
as an indicator of the topic density in a sentence as well as how well a sentence connects to
preceding and posterior sentences, e.g. by connecting to a preceding sentence through one
chain and connecting to a posterior one through another chain. Finally, sentence coverage
constitutes a straightforward measurement of how many sentences are connected through
cohesive ties in a summary.

Agreement between human annotators is obtained by calculating the average text over-
lap between proposition chains, as follows. Given candidate summary Ŝ, let CA and CB be
sets of chains extracted from Ŝ by annotators A and B, respectively. Given chains a ∈ CA

11. We say that a chain covers a sentence if at least one of the chain’s proposition belongs to said sentence.
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A well-established method for diagnosis of glaucoma is the examination of the optic 
nerve head based on fundus image as glaucomatous patients tend to have larger cup-to-
disc ratios.

0  A method (well established; for diagnosis of glaucoma)
1  the examination ($0; is; of the optic nerve head based on fundus 
   image; as glaucomatous patients)
2  tend to have ($1; larger cup-to-disk ratios)

3  The difficulty (of optic segmentation )
4  is due to ($3; $5)
5  and (the fuzzy boundaries; peropapillary atrophy(PPA))

The difficulty of optic segmentation is due to the fuzzy boundaries and peripapillary 
atrophy (PPA).

6  is proposed (A novel method for optic nerve head segmentation )A novel method for optic nerve head segmentation is proposed.

The method of vessel erasing in the ROI is based on PDE inpainting which will make 
the boundary smoother.

7  The method (of vessel erasing in the ROI)
8  is based ($8; on PDE inpainting; $9)
9  will make (which; the boundary smoother)

PropositionsCandidate Summary

Chain: "the proposed method"
Chain: "optic nerve segmentation"

Figure 6: Example of proposition chain annotation in our cohesion evaluation campaign.
Each coloured chunk in the candidate summary corresponds to a pre-extracted proposition.
Users are tasked to group text chunks that share information by clicking on them. Best
seen in colour.

and b ∈ CB, we define Precision, Recall, and F1 score as follows,

Pov(a, b) =

∑
p∈amaxq∈b |LCS(p, q)|∑

p∈a |p|
,

Rov(a, b) =

∑
q∈bmaxp∈a |LCS(p, q)|∑

q∈b |q|
,

Fov
1 (a, b) =

2 · Pov · Rov

Pov +Rov ,

where p and q are propositions included in chains a and b, respectively, LCS(p, q) is the
longest token sequence common to p and q, and |p| indicates the number of tokens covered
by p. Then, the overlap score between annotator A and B is defined as

ChainOverlap(A,B) =
1

|CA| · |CB|
∑

a∈CA,b∈CB

Fov
1 (a, b).

Finally, we report the average overlap score over all pairs of annotators, averaged over all
system summaries.

6. Results and Discussion

In this section, we present results for our proposed systems, TreeKvD and GraphKvD,
and comparison systems on the PubMed and arXiv datasets. First, we discuss the trade-
offs systems incur when aiming to balance informativeness, redundancy, and lexical cohesion,
under varying setups of training supervision. Then, we investigate how systems apply these
trade-offs across increasing levels of source document redundancy. Finally, we present a
thorough analysis, both quantitative and qualitative, of how properties of simulated cogni-
tive processes affect final summaries. In all our experiments, statistical significance at the
95% confidence level is estimated using bootstrap resampling (Davison & Hinkley, 1997).
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PubMed arXiv
Aim System

R1 R2 RL BSc R1 R2 RL BSc

- Ext-Oracle 59.62 35.14 54.52 88.22 58.66 30.28 52.28 87.12
- Lead 37.07 12.73 33.28 82.94 36.46 9.78 32.02 82.58
- Random 36.11 10.43 32.70 82.21 33.02 6.52 30.09 80.51

I E.LG 47.34‡ 21.04‡ 42.42‡ 85.17‡ 46.38‡ 18.66‡ 40.77 85.01‡
I,R E.LG-MMRSel+ 47.55‡ 21.20‡ 42.70‡ 85.21‡ 46.52‡ 18.69‡ 41.06‡ 85.00‡
I,R MemSum 48.02 22.06 43.16 85.63 46.69‡ 19.50 41.02‡ 85.13
I,C E.LG-CCL 47.42‡ 21.21‡ 42.57‡ 85.34 46.35‡ 18.74‡ 40.80 85.05‡
I,C PacSum-FT ∗ 40.05 13.66 36.29 83.86 38.05 9.87 34.18 83.06

I FullGraph 35.48 11.06 30.28 81.89 27.44 6.61 22.75 78.73
I TextRank 41.51 15.37 35.78 83.59 40.32 12.67 34.06 82.68
I,C PacSum 37.01 10.07 33.55 82.98 33.41 6.54 30.48 81.70
I,R,C FangKvD 35.80 10.94 30.97 82.17 32.76 8.31 27.81 80.60
I,R,C TreeKvD (ours) 37.22† 11.40† 32.37† 82.61† 34.90† 9.06† 29.85† 81.16†
I,R,C GraphKvD (ours) 37.21† 11.42† 32.25† 82.57† 34.98† 9.19† 29.73† 81.14†

Table 1: Performance of systems over PubMed and arXiv test sets in terms of ROUGE
F1 (R1, R2, RL) and BERTScore (BSc). Optimization Aim (Aim) indicates whether a
system was optimized for (I)nformativeness, (R)edundancy, Cohesion (C), or a combination
of these, grouped by color. Best models in each section are bolded. (†,‡): no statistical
difference between systems in the same section and column. (*): non-completely supervised
system.

6.1 Informativeness, Redundancy, and Cohesion

We start by analyzing the performance of our models in terms of relevancy, redundancy,
and cohesion. Results on informativeness are summarized in Table 1, whereas results on
redundancy, cohesion, and local coherence metrics are presented in Table 2. Both tables
are organized in three sections: heuristic systems (Heur.), supervised and reinforcement
learning-based systems (Sup., R.L. ), and unsupervised systems (Unsup.). Systems are
color-coded according to which summary properties they aim to optimize, such as informa-
tiveness (I), redundancy (R), and cohesion (C). For completeness, we also report redundancy
and cohesion of reference summaries (Gold, last row in Table 2) to have a reference point
for a desirable level of redundancy and cohesion.

Statistical significance at the system level is tested pairwise using Bootstrap resampling
(Davison & Hinkley, 1997) with a 95% confidence interval. For PubMed, we found no
pairwise statistical difference between R1 scores of systems TreeKvD and GraphKvD;
and between systems E.LG, E.LG-MMRSel+, and E.LG-CCL. For arXiv, no pairwise
statistical difference in R1 scores was found between systems TreeKvD and GraphKvD;
and between systems E.LG, E.LG-MMRSel+, MemSum, and E.LG-CCL. Analogously,
Table 1 and 2 indicate system groups in which no pairwise difference was found, one group
per marker, for each metric reported.

Heuristics. It is worth noting that the extractive oracle, Ext-Oracle, even though
optimized for informativeness by design, can still be used as a good-enough reference for
redundancy in an extractive summary, given that RdRL and IUniq scores remain tightly
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PubMed arXiv
Aim System

RdRL IUniq EEG EGr CCL RdRL IUniq EEG EGr CCL

- Ext-Oracle 14.07 18.72 0.76 0.84 0.58 14.98 18.78 0.71 0.72 0.40
- Lead 12.75 18.25 0.72 0.78 0.76 13.95 19.32 0.68 0.96 0.77
- Random 11.36 18.29 0.63 0.69 0.41‡ 10.78 20.67 0.61 0.61 0.24

I E.LG 16.19 21.60‡ 0.75‡ 1.03 0.18 16.71† 21.20‡ 0.70 1.01 0.21‡
I,R E.LG-MMRSel+ 15.03 20.69 0.75‡ 0.96 0.16 14.58 20.66 0.71† 0.91 0.21‡
I,R MemSum 17.24 24.01 0.75 0.75 0.48 16.80† 21.89‡ 0.69 1.03 0.44†
I,C E.LG-CCL 16.92 21.21‡ 0.75‡ 1.04† 0.51 16.92† 21.21‡ 0.70‡ 1.05 0.45†
I,C PacSum-FT∗ 12.92 18.76 0.73 0.77 0.61 11.42‡ 16.93 0.72 0.67‡ 0.56

I FullGraph 15.82 23.79 0.73 0.68 0.45 11.65‡ 33.22 0.56 0.67‡ 0.24
I TextRank 22.08 26.76 0.78 1.05† 0.41‡ 17.55 22.25 0.72† 1.02 0.26
I,C PacSum 11.66 20.84† 0.64 0.71‡ 0.49† 10.17 19.27 0.62 0.44 0.40
I,R,C FangKvD 12.59 20.45† 0.74 0.70‡ 0.50† 12.15 26.11 0.66 0.69 0.34
I,R,C TreeKvD (ours) 13.06 20.62† 0.75† 0.83 0.49† 12.72 24.22† 0.70‡ 0.83† 0.36
I,R,C GraphKvD (ours) 13.74 21.00‡ 0.75† 0.85 0.44 13.46 24.57† 0.71† 0.84† 0.31

Gold 13.54 19.12 0.70 0.96 0.91 14.83 17.27 0.72 0.87 0.89

Table 2: Redundancy (RdRL, IUniq), cohesion (EEG, EGr), and local coherence (CCL)
levels in candidate summaries over PubMed and arXiv test sets. See Table 1 for details
on Optimization Aim (Aim) and color coding. Best models in each section are bolded,
according to redundancy (those closest to Gold), cohesion and coherence (the higher the
better). (†,‡): no statistical difference between systems in the same section and column.
(*): non-completely supervised system.

close to those of Gold. However, note that summaries extracted by Ext-Oracle need
not be lexically cohesive, as indicated by its lower CCL scores than systems optimized for
cohesion. Instead, Lead does obtain high EEG, EGr, and CCL scores, and low RdRL
and IUniq scores, a trend also present in Gold. These measures indicate that such a
trend is proper of cohesive text. Notice, however, that source documents in arXiv might
showcase lower lexical cohesion than those in PubMed, as indicated by their EEG and EGr
scores. Finally, it can be observed that the organization of information in scientific articles
poses a challenge for trivial baselines, as evidenced by the low ROUGE scores of Lead and
Random.

Supervised and Reinforcement Learning Systems. When optimizing one extra
summary property besides informativeness in a reinforcement learning setup, the following
insights can be drawn. First, it is possible to reduce redundancy or improve lexical cohesion
without losing informativeness: E.LG-MMRSel+ and E.LG-CCL obtain comparable
ROUGE scores to E.LG, a supervised system optimized only for informativeness. E.LG-
MMRSel+ obtains the lowest redundancy scores (RdRL and IUniq) and E.LG-CCL,
the highest cohesion and local coherence scores in terms of EGr and CCL, respectively.
However, optimizing for redundancy or informativeness alone incurs a huge sacrifice in
terms of cohesion, as indicated by the low CCL scores. On the other hand, optimizing for
cohesion entails maintaining a non-trivial level of redundancy, as indicated by the RdRL and
IUniq scores in E.LG-CCL, which are higher than those of E.LG and E.LG-MMRSel+.
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Second, we find that tackling redundancy in the model architecture itself, i.e. MemSum,
works consistently better than using a redundancy-aware reward during training, i.e. E.LG-
MMRSel+. Not only does MemSum obtain higher ROUGE scores, but seems to better
balance cohesion and redundancy. Even though MemSum’s CCL scores are lower than
E.LG-CCL in both datasets, they are significantly higher than those of E.LG-MMRSel+.
Once again, we observe the trade-off between cohesion and redundancy, as indicated by the
higher redundancy scores in MemSum.

Unsupervised Systems. When comparing proxies for relevancy, we find that sentence
centrality (as in TextRank and PacSum-FT) performs better than sentence scoring based
on reading comprehension, such as in our proposed KvD systems. However, whilst Tex-
tRank obtains the highest ROUGE-1 and 2 scores in both datasets, it also obtains the
highest redundancy scores (in terms of RdRL) and low CCL scores (lowest in PubMed
and second to lowest in arXiv). A similar trend can be observed for FullGraph. Since
both FullGraph and TextRank use PageRank to rank content, we can conclude that
lexical overlap at the sentence level is more beneficial than overlap at the proposition ar-
gument level, as done by FullGraph. Interestingly, EEG and EGr scores for TextRank
are surprisingly high in both datasets. Upon closer inspection, we found that EEG detects
very few entity chains –most of the time a single one– with high probability. For EGr,
this translates into having a sentence graph where edges are a result of co-occurrence of
the same very few nouns. This phenomenon can be interpreted as a sign of poor content
coverage and high redundancy.

Consider now systems PacSum and PacSum-FT. First, we notice that perhaps un-
surprisingly, finetuning over in-domain data gives huge improvements in relevancy and a
better cohesive-redundancy trade-off. Second, unlike the supervised scenario, we observe
that adding a proxy for cohesion during training significantly hurts relevancy. This can be
observed by the higher ROUGE-1 and 2 scores of TextRank against PacSum-FT. Notice,
however, that fluency (ROUGE-L) and semantic relevancy (BertScore) do experiment an
improvement. Moreover, PacSum-FT obtains more cohesive summaries than Ext-Oracle
and even the supervised baseline optimized for local coherence, E.LG-CCL. We hypoth-
esize that PacSum and PacSum-FT model a strong proxy for cohesion by encouraging
strong connections between neighboring sentences.

When comparing KvD systems in terms of relevancy scores (ROUGE-1 and 2), we
observe that GraphKvD and TreeKvD significantly outperform other unsupervised base-
lines, exceptTextRank. Notice, once again, that PacSum obtains better fluency (ROUGE-
L) and semantic relevancy (BERTScore). Whilst PacSum aims to optimize local coherence,
it does not explicitly encourage lexical cohesion, as indicated by its EEG and EGr scores,
lower than KvD systems. In contrast, KvD systems improve lexical cohesion, which trans-
lates into higher EEG and EGr scores and in turn, slightly higher redundancy scores. The
contrast is more defined when the source documents present low lexical cohesion, as is the
case for arXiv.

It is worth noting the advantage of the proposed KvD systems against a previous imple-
mentation of the KvD theory, FangKvD. We hypothesize two reasons behind this result.
First, FangKvD relies on external domain-dependant resources like WordNet, which makes
it hard to apply in highly domain-specific applications such as the scientific domain. Sec-
ond, GraphKvD and TreeKvD score propositions based on their position on the memory
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tree during simulation, whereas FangKvD only counts how many times a proposition has
appeared in a memory cycle. Note also that our proposed KvD systems outperform Full-
Graph, highlighting the importance of constraining working memory in each cycle. In
terms of cohesion-redundancy trade-off, we observe that TreeKvD obtains a comparable
balance to FangKvD in PubMed but a better balance for arXiv. Notice that in both
datasets, GraphKvD obtains redundancy scores closest to Gold w.r.t. RdRL but lower
CCL scores than TreeKvD. In contrast, EEG and EGr scores indicate that GraphKvD
maintains a comparable level of lexical cohesion to TreeKvD.

Lastly, it is important to point out the limited expressivity of the EEG metric (i.e. score
gap at the system level) and the difference between trends in cohesion metrics and trends in
CCL. As mentioned in § 5.3.5, EEG is limited by data sparsity —the limited lexical matching
between nouns and entities– and the performance of coreference resolution tools they use.
Hence, its expressivity is highly dependent on the accuracy of noun detection. Regarding
metric trends, metrics EEG and EGr were designed to capture lexical and semantic links
between sentences in a text, therefore measuring cohesion. While cohesion is considered a
device to achieve local coherence, it does not model discourse structure. In contrast, CCL
was trained to capture sensible sentence orderings as a proxy for discourse organization on
nearby sentences. As such, it is capable of capturing not only lexical cohesive ties but also
rhetorical orderings in a text.

6.2 Effect of Document Redundancy

Next, we take a closer look at the redundancy and cohesion levels in summaries extracted
from increasingly redundant documents. Figure 7 shows the performance of summarization
systems in terms of informativeness (average ROUGE score, (ROUGE-1 + ROUGE-2 +
ROUGE-L)/3), redundancy (RdRL), and local coherence (CCL) across different levels of
document redundancy (IUniq). Test sets were divided into bins according to their document
redundancy score and the average metric value per bin is reported. For simplicity, we only
plot the performance of representative systems in each section.

Reinforcement Learning Systems. In general, we observe that performance in infor-
mativeness and redundancy degrades slightly but surely as redundancy increases in the
source document. Most notably, E.LG-MMRSel+ and E.LG-CCL show comparable ro-
bustness in informativeness and redundancy, whilst E.LG-CCL shows significantly better
robustness in local coherence, highlighting the importance of optimizing for cohesion instead
of redundancy.

Unsupervised Systems. In PubMed, we observe that PacSum and TextRank are
highly susceptible to document redundancy, showing quick degradation in informativeness
and redundancy as document redundancy increases. Whilst PacSum remains robust in
terms of cohesion, TextRank exhibits a significant drop. In contrast, TreeKvD and
GraphKvD show more robustness w.r.t. informativeness, remain closer in redundancy
to Gold, and show local coherence levels comparable to E.LG-CCL. Notably, our KvD
systems show comparable redundancy to the RL-based baselines at low and mid levels
of document redundancy. This indicates that our systems manage to successfully balance
informativeness, redundancy, and cohesion across increasing levels of document redundancy.
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Figure 7: Informativeness (left), summary redundancy (mid), and summary local coherence
(right) across increasing levels of document redundancy. Metric values are averaged over
each document redundancy range.

In arXiv, however, a few differences can be observed. First, PacSum shows notable
robustness to document redundancy, and remains closer in redundancy to Gold than all
other unsupervised systems. Our KvD systems exhibit a degradation in informativeness
and redundancy, although robustly keeping high levels of cohesion. We hypothesize that
KvD systems prioritize cohesion above informativeness and redundancy. In addition, we
point out that arXiv is composed of noisier text than PubMed, exhibiting a number of
preprocessing errors that might affect the quality of the proposition extraction.12

12. Such errors include sentence tokenization errors, incomplete equations, bibliography text included in the
document, among others. Even though we re-processed the dataset, many of these errors persisted.
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6.3 Human Evaluation

The results of our human evaluation campaigns are showcased in Table 3. In both studies,
statistical significance between system scores was assessed by making pairwise comparisons
between all systems using a one-way ANOVA with posthoc Tukey tests with 95% confidence
interval.

Informativeness. After discarding annotations that failed the controls, we are left with
229 out of 270 instances (30 documents, 3 system pairs, and 3 annotations per pair). Inter-
annotator agreement –Krippendorff’s alpha (Krippendorff, n.d.)– was found to be 0.73.

We found that humans shown significantly higher preference for TreeKvD summaries
compared to PacSum summaries (p < 0.01), highlighting the advantage of modeling infor-
mativeness using KvD reading simulation compared to using a sentence centrality proxy in
an unsupervised setup. All other system pair differences are not statistically significant.

Lexical Cohesion. We obtained 343 out of 360 summary-level annotation instances (30
documents, 4 systems –including gold summaries–, and 3 annotations per summary) after
applying the control filters. In average, annotators identified 2.71 groups per summary
and 3.89 propositions per group. Chain overlap, as defined in Equation 5.4, was calculated
at 0.97. Score differences between system pairs TreeKvD–PacSum and GraphKvD–
PacSum were found to be statistically significant, for all the analyzed measurements of
cohesion. Similarly, gold summary scores are significantly different from all systems in
chain spread and chain density, and different from PacSum in sentence coverage.

The following insights can be drawn from these results. First, gold summaries present
chains that span sentences that are either adjacent to each other or separated by one
other sentence, as indicated by its chain spread scores. Chains in GraphKvD summaries
mostly span adjacent sentences, in stark contrast with PacSum chains which are separated
by two sentences on average. Second, chain density scores indicate that sentences in gold
summaries are covered by either one or two chains, whereasGraphKvD summary sentences
are covered by two chains in average. On the one hand, this indicates that KvD summaries
present a smooth topic transition by linking a summary sentence to the previous one through
one chain and to the following sentence through another chain. On the other hand, we note
that gold summaries show lower chain density than GraphKvD summaries on average. We
hypothesize that the lower chain density in gold summaries is due to the high technicality
of the scientific domain, making it harder for annotators to identify cohesive ties of non-
lexical nature. Nevertheless, sentence coverage scores indicate that chains in TreeKvD
and GraphKvD cover a comparable amount of sentences as chains in gold summaries. In
contrast, the low chain density and low sentence coverage scores of PacSum indicate that
fewer sentences (around only 54% of them) in its summaries are connected through cohesive
links, the rest being perceived as isolated.

In summary, explicitly modeling lexical cohesive links during reading allows our KvD
systems to extract summaries that exhibit a smooth topic transition between adjacent or
near-adjacent sentences, with cohesive links connecting significantly more sentences than
PacSum summaries.
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Criteria TreeKvD GraphKvD PacSum Gold

(I) Ranking ↓ 1.44 1.47 1.59 -

(C) Chain Spread ↓ 1.15 1.08 2.14 1.59
(C) Chain Density ↑ 1.89 2.29 0.95 1.63
(C) Sent. Coverage (%) ↑ 72.10 77.33 54.64 73.82

Table 3: Informativeness ranking (I) and cohesion scores (C) as a function of propositional
chain properties, according to human judgments.(↑, ↓): higher, lower is better.

6.4 Qualitative Analysis

We performed a qualitative analysis of system summaries extracted by the compared sys-
tems (Figure 8 and 9) by annotating the lexical chains in them and analyzing the spread of
chains as well as their relevance and coverage. Each sample is accompanied by its gold sum-
mary, informativeness (average ROUGE score), redundancy (RdRL), and local coherence
level (CCL).

Reinforcement Learning Systems. Consider the example in Figure 8, showing sum-
maries extracted by E.LG-MMRSel+, E.LG-CCL, and MemSum from a document in
PubMed. First, it can be observed that the gold summary covers 6 lexical chains (all
colored differently) and that these chains can appear throughout the entire text but always
span windows of three to four sentences at a time. Note that chains spanning more than
one sentence imply a non-trivial level of redundancy, as shown by RdRL> 0. These smooth
transitions are detected by our local coherence classifier –which scores a text by sliding a
window of 3 sentences– and assigns a high CCL score.

Second, we can observe how E.LG-MMRSel+ trades off informativeness for redun-
dancy by noting that the candidate summary exhibits one dominant chain ({miRNA ex-
pression}), possibly regarded as most promising relevancy-wise. Redundancy reduction is
translated in poor coverage of other chains (e.g. {miRNA}, {analysis}), being also too
spread out (e.g. {biomarkers}), which is reflected in the low cohesion score of the summary.
In stark contrast, E.LG-CCL exhibits most chains spreading in spans of three sentences
whilst still favouring a highly relevant chain ({miRNA expression}). Note that this im-
provement in cohesion implied an increment in redundancy, as shown by the higher CCL
score and slightly higher RdRL score.

Finally, MemSum exhibits two dominant chains ({miRNA expression} and {CAD pa-
tients}) which are highly informative, justifying the high ROUGE score of the system. How-
ever, we observed a lower cohesion score compared to E.LG-CCL, which can be explained
by how the chains are spread out in the summary. Whilst some chains do span adjacent sen-
tences (e.g. the two dominant chains), others spread further (e.g. {biomarkers}, {control}).
In terms of redundancy, the higher levels can be explained by the fact that chains have
items with longer n-grams. This could lead to higher RdRL scores since the metric cal-
culates the longest common n-gram subsequence in two strings. Moreover, one particular
chain ({miRNA}) contains a high number of items, increasing the chance of higher lexical
overlap between the sentences this chain covers.
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Unsupervised Systems. Consider the example in Figure 9, showing summaries ex-
tracted by TextRank, TreeKvD, and GraphKvD from a highly redundant document
(IUniq = 63.34%) in arXiv. As observed in the previous example, the gold summary
exhibits abundant lexical chains, although with varying degrees of coverage. We notice
two main chains spanning the entire summary, with the rest being mentioned only once or
twice. This sign of seemingly low lexical cohesion was observed to be a common property
in arXiv articles, perhaps attributed to the rather mathematical formality in the writing
style, as opposed to articles in PubMed. Nevertheless, our cohesion classifier is able to pick
non-lexical cues and assign a high cohesion score.

Regarding TextRank, we observe that its centrality-based scoring steers the model
to focus mainly on two chains, although only one of them ended up being informative
({frequencies}). The high ROUGE scores and extremely high redundancy score confirm that
centrality is a strong proxy for relevancy but without any redundancy reduction mechanism,
the system will degrade into selecting repeating content. High repetition, in turn, proves to
affect cohesion negatively, as indicated by the low CCL score. Most critically, TextRank
is susceptible to select sentences with high –if not complete– token overlap between them,
e.g. ‘monopole’, ‘frequency’, and ‘ground state’. Upon closer inspection, we found that
some documents present repeated sentences in different sections, e.g. repeating a claim or
conclusion.

In contrast, TreeKvD shows noticeably less repetitions and a more balanced coverage
of lexical chains, as indicated by the lower redundancy score and comparable ROUGE score.
Most of the chains spread consistently across the entire summary, which translates into a
perceived and measured improvement in cohesion. Moreover, the system manages to recover
the same two main chains present in the gold summary, and even covers short chains not
covered by TextRank ({Boson}, {Stringari’s result}). Upon closer inspection, we found
that groups of extracted sentences are never more than two sentences apart.

Finally, GraphKvD exhibits a decrease in the spreading of lexical chains, showing
instead a clear and smooth transition across the summary. This translated into an increase
in cohesion, as indicated by a higher CCL score, which also impacts the redundancy score.
Similarly to MemSum, the higher redundancy score can be explained by the longer common
n-grams between sentences.

6.5 How Simulated Cognitive Processes Affect Final Summaries

The KvD theory describes cognitive processes involved in short-term memory manipulation
and constraints over memory structures. While it is well-understood how these processes
and constraints would influence reading comprehension in a simulated environment, it is
less intuitive to establish how they influence summary properties through sentence scoring.
In this section, we shed light on how final summaries are affected by the following KvD
processes. First, we investigate the impact of capacity in working memory and the impact
of the strategy of proposition scoring used. Then, the mechanisms in charge of recall and
memory replacement (tree persistence) are discussed. Finally, we investigate what kind of
argument overlap strategy is best leveraged by our KvD systems.

Working Memory Capacity. Intuitively, the more memory capacity a KvD system has,
the more propositions it will be able to retain in memory, increasing the chances that relevant
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System Avg. ROUGE RdRL CCL

Gold Summary - 12.6 0.86

Coronary artery disease (CAD) is the largest killer of males and females in the United States. There is a need to develop
innovative diagnostic markers for this disease. MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally
regulate the expression of genes involved in important cellular processes, and we hypothesized that the miRNA expression profile
would be altered in whole blood samples of patients with CAD. We performed a microarray analysis on RNA from the blood
of 5 male subjects with CAD and 5 healthy subjects (mean age 53 years). Subsequently, we performed qRT-PCR analysis of
miRNA expression in whole blood of another 10 patients with CAD and 15 healthy subjects. We identified 11 miRNAs that
were significantly downregulated in CAD subjects (p < .05). Furthermore, we found an association between ACEI/ARB use and
downregulation of several miRNAs that was independent of the presence of significant CAD. In conclusion, we have identified
a distinct miRNA signature in whole blood that discriminates CAD patients from healthy subjects. Importantly, medication
use may significantly alter miRNA expression. These findings may have significant implications for identifying and managing
individuals that either have CAD or are at risk of developing the disease.

E.LG-MMRSel+ 31.60 16.13 0.20

We sought to compare miRNA expression in whole blood of patients with angiographically significant CAD to that of healthy
aged-matched controls. We performed an initial exploratory microarray analysis in 5 cases and controls and then further examined
the most highly expressed miRNAs in an additional 15 cases and controls. The present study provides insight into whole blood
levels of miRNAs in patients with CAD compared to healthy subjects and demonstrates their potential utility as biomarkers for
vascular disease. Thus, miRNA expression signatures in tissues and blood have a potential role in the diagnosis, prognosis, and
assessment of therapy. Study participants were recruited as part of the Emory Cardiology Biobank, consisting of 3492 consecutive
patients enrolled prior to undergoing elective or emergent cardiac catheterization across three Emory Healthcare sites, between
2003 and 2008. Validation of the changes in miRNA expression observed here in larger studies will be a necessary step to confirm
their candidacy as biomarkers and therapeutic targets. Although we were able to detect some differences in whole blood miRNA
levels between healthy subjects and CAD patients (miR-584, in particular), our microarray data suggest that, similar to other
reports, levels of miRNAs in the blood are low and microarrays may lack the sensitivity to adequately identify miRNAs that
might serve as vascular disease biomarkers.

E.LG-CCL 31.82 18.90 0.60

Thus, miRNA expression signatures in tissues and blood have a potential role in the diagnosis, prognosis, and assessment of
therapy. In this study, we sought to compare miRNA expression in whole blood of patients with angiographically significant
CAD to that of healthy aged-matched controls. We performed an initial exploratory microarray analysis in 5 cases and controls
and then further examined the most highly expressed miRNAs in an additional 15 cases and controls. Study participants were
recruited as part of the Emory Cardiology Biobank, consisting of 3492 consecutive patients enrolled prior to undergoing elective
or emergent cardiac catheterization across three Emory Healthcare sites, between 2003 and 2008. Although we were able to
detect some differences in whole blood miRNA levels between healthy subjects and CAD patients (miR-584, in particular), our
microarray data suggest that, similar to other reports, levels of miRNAs in the blood are low and microarrays may lack the
sensitivity to adequately identify miRNAs that might serve as vascular disease biomarkers. The present study provides insight
into whole blood levels of miRNAs in patients with CAD compared to healthy subjects and demonstrates their potential utility
as biomarkers for vascular disease. Validation of the changes in miRNA expression observed here in larger studies will be a
necessary step to confirm their candidacy as biomarkers and therapeutic targets.

MemSum 34.16 22.34 0.33

We sought to compare miRNA expression in whole blood of patients with angiographically significant CAD to that of healthy age-
matched controls. This analysis included miR-150, miR-584, miR-21, miR-24, miR-126, miR-92a, miR-34a, miR-19a, miR-145,
miR-155, miR-222, miR-378, miR-29a, miR-30e-5p, miR-342, and miR-181d. Among these, we found that miR-19a, miR-584, miR-
155, miR-222, miR-145, miR-29a, miR-378, miR-342, miR-181d, miR-150, and miR-30e-5p were significantly downregulated in the
blood of patients with CAD compared to healthy subjects (Figure 2). Several recent studies have indicated that there is a potential
role for circulating miRNA levels as valuable biomarkers for different disease processes, including cancer, cardiomyopathy, and
acute myocardial infarction. In this study, we wanted to address the hypothesis that miRNA expression levels in blood could
predict the presence of significant coronary artery disease in human subjects. We identified 11 miRNAs whose expression was
significantly downregulated in patients with angiographic evidence of significant atherosclerosis compared to healthy subjects
that were matched for age and gender. The present study provides insight into whole blood levels of miRNAs in patients with
CAD compared to healthy subjects and demonstrates their potential utility as biomarkers for vascular disease.

Figure 8: Summaries extracted by reinforcement learning-based systems for a PubMed
sample with informativeness (average ROUGE score), redundancy (RdRL), and local coher-
ence (CCL) scores. Text is annotated with color-coded lexical chains, and was detokenized
and truecased for ease of reading.

propositions are scored higher and are eventually selected for the final summary. This is
evidenced by the consistent increase in ROUGE scores for increasing memory capacity,
WM, as shown in Figure 10. However, we did observe an optimal capacity for redundancy
and cohesion levels. This indicates that, as the memory capacity increases, maintaining
non-redundant information in the memory tree becomes more challenging.

Moreover, as seen in Table 1, KvD systems with WM = 100 obtain consistently higher
relevancy scores than FullGraph, a system that does not simulate working memory and
which scoring strategy has access to all the propositions in a document at all times. This
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System Avg. ROUGE RdRL CCL

Gold Summary - 21.49 0.91

We study the collective excitations of a neutral atomic Bose-Einstein condensate with gravity-like interatomic attraction induced
by electromagnetic wave. Using the time-dependent variational approach, we derive an analytical spectrum for monopole and
quadrupole mode frequencies of a gravity-like self-bound Bose condensed state at zero temperature. We also analyze the excitation
frequencies of the Thomas-Fermi gravity (tf-g) and gravity (g) regimes. Our result agrees excellently with that of Giovanazzi et
al., which is obtained within the sum-rule approach. We also consider the vortex state. We estimate the superfluid coherence
length and the critical angular frequencies to create a vortex around the X axis. We find that the tf-g regime can exhibit the
superfluid properties more prominently than the g regime. We find that the monopole mode frequency of the condensate decreases
due to the presence of a vortex.

TextRank 38.99 45.02 0.23

The gravity-like potential is balanced by the wave interaction strength. The ground state energy per particle varies as @xmath.
The monopole and quadrupole frequencies obtained from the variational approach are similar to the exact numerical values.
The trap potential and wave interaction can be neglected. The total ground state energy is @xmath. The ground state energy
per particle varies as @xmath. One can use the time-dependent variational approach to describe the vortex state. The critical
angular frequency vs. the dimensionless scattering parameter is shown in Fig.4. Tf-g regime: for large wave scattering length,
kinetic energy can be neglected. The critical angular frequencies for @xmath and @xmath are @xmath and @xmath respectively.
The monopole mode frequency for an ordinary atomic bec in the tf regime is independent of the vortex. The monopole mode
frequency for @xmath is @xmath. The @xmath is also less than the monopole mode frequency in the vortex free condensate.
In the tf regime of an ordinary atomic bec, the monopole and quadrupole mode frequencies are independent of the scattering
length.

TreeKvD 39.87 14.62 0.36

In this system, the gravity-like attraction balances the pressure due to the zero point kinetic energy and the short range interaction
potential. The bec of charged Bosons confined in an ion trap can be described by the above mentioned Lagrangian if we set
@xmath, where @xmath is the electronic charge. To calculate the excitations spectrum of an atomic bec with gravity-like
interaction, we will use the time-dependent variational method. This technique has been first used to calculate the low-lying
excitations spectrum of a harmonically trapped atomic bec in @xref. The result obtained from the variational method matches
with Stringari’s result within the sum-rule approach. In @xref, it is shown that the oscillation frequencies obtained from the exact
ground state and a Gaussian Ansatz are in good agreement. One can use the time-dependent variational approach to describe
the vortex state. In these regimes, we have calculated the lower bound of the ground state energy, sound velocity, monopole and
quadrupole mode frequencies.

GraphKvD 39.73 21.65 0.51

Most of the properties of these dilute gas can be explained by considering only two-body short range interaction which is
characterized by the S-wave scattering length. Therefore, we expand around the time dependent variational parameters around
the equilibrium widths in the following way, and @xmath. The time evolution of the widths around the equilibrium points are
@xmath is the first order fluctuations around the equilibrium points of @xmath. One can use the time-dependent variational
approach to describe the vortex state. The vortex state play an important role in characterizing the superfluid properties of Bose
system. The critical angular frequency required to produce a vortex state is where is the energy of a vortex states with vortex
quantum number and is the energy with no vortex. In these regimes, we have calculated the lower bound of the ground state
energy, sound velocity, monopole and quadrupole mode frequencies.

Figure 9: Summaries extracted by unsupervised systems for an arXiv sample with informa-
tiveness (average ROUGE score), redundancy (RdRL), and local coherence (CCL) scores.
Text is annotated with color-coded lexical chains, and was detokenized and truecased for
ease of reading.

indicates that constraining the size of the memory tree in each iteration encourages KvD
systems to retain only information relevant to the current local context.

Another aspect greatly influenced by working memory capacity is that of how much
information in the source document can be covered. As noted in Section 4.2.3, it is possi-
ble that some propositions are pruned away and never recalled again, in which case their
final score will be zero. We say that a proposition is covered by a KvD system if such a
proposition appears at least once in a pruned memory tree during simulation. Furthermore,
we define document coverage as the ratio of covered propositions over the total number of
propositions in a document. Not surprisingly, we found that increasing working memory
capacity increased document coverage in both TreeKvD and GraphKvD. When WM = 5,
TreeKvD is able to cover 62% of all document propositions in the arXiv test set, and
up to 96% when WM = 100. GraphKvD further improves coverage to 78% at WM = 5 and
97% at WM = 100. However, we found that FangKvD exhibits a much lower coverage: 22%
when WM = 5 and up to 44% when WM = 100. We hypothesize that the drastic improvement
in GraphKvD is due to the diffusion mechanism that updates scores of direct neighbours
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Figure 10: Effect of proposition scoring strategy (Tree, Eigen, and Freq) and working
memory capacity (WM) on summary informativeness (average ROUGE scores; left), redun-
dancy (IUniq; middle), and local coherence (CCL).

of memory tree nodes. Similar trends were observed in the PubMed dataset. These results
lay down evidence that the proposed computational implementations of KvD theory are
effective at covering most –if not all- content units in a document during simulation.

So far in our analysis we have considered memory capacity as a hyper-parameter of a
KvD system, expected to remain fixed throughout the entire simulation and fixed for all
documents in an evaluation set. The following question then arises when looking at each
sample individually: what is the right capacity of working memory in order to produce a
summary with the most relevant content? We attempt to answer this question by selecting
for each sample in the validation set, the working memory size WM that yields the highest
sum of ROUGE-1 and ROUGE-2 scores. The results are encouraging: when using the best
possible WM per sample in arXiv, TreeKvD exhibits an increase in absolute points of 3.19
in ROUGE-1, 2.36 in ROUGE-2, and 2.86 in ROUGE-L. This is compared to the best
performing configuration, i.e. when using WM = 100 for all samples. Most surprisingly, the
distribution of best WM per sample is rather balanced, with 26.5% of samples preferring a
WM = 100, 26.7% a WM = 50, 24.11% a WM = 20, and 22.5% a WM = 5. GraphKvD exhibits
a similar increase of 3.06, 2.33, 2.75 in ROUGE-1, ROUGE-2, and ROUGE-L, respectively.
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A similar trend was observed on the validation set of PubMed. However, it should be
noted that we did not find any strong correlation between working memory capacity and
ROUGE or BertScore scores, which indicates that the ability of a KvD system to produce
relevant summaries is not influenced by its working memory capacity. Instead, we suspect
that memory capacity might be an indicator of text difficulty or cognitive easiness, however
the exploration of this hypothesis falls out of the scope of this work and we leave it to future
investigations.

Working Memory as a Tree. Next, we investigated the impact of leveraging the po-
sition of a node in the memory tree structure during proposition scoring. We compared
scoring function c(·) in Eq. 4, labeled as Tree, against two other strategies. The first one,
denoted Freq, consists of a frequency heuristic, c(t, T ) = 1,∀t ∈ T , which only counts how
many memory cycles a proposition participates in. The second strategy, denoted Eigen,
scores nodes based on their eigen-vector centrality as:

c(t, T ) =
1

λ

∑
v

s.t. (t,v)∈E[T ]

c(v, T )

where λ is the largest eigen-value of the adjacency matrix of T .13

Figure 10 shows the performance of our KvD systems over the validation set of PubMed
and arXiv. Systems using scoring function c(t, T ) in Eq. 1 are labeled with Tree, e.g.
TreeKvD[Tree]. First, we observe that Tree scoring significantly outperforms Eigen
and Freq scoring, for all values of working memory capacity in both datasets. This results
demonstrates the advantage of modeling memory as a tree structure and leveraging the
position of a node for scoring, compared to just considering memory as a bag of content
units (as Freq does) or even using node centrality strategies, as done by Eigen. However, it
is worth noticing that for GraphKvD, the gap between Tree and Eigen diminishes as WM
increases, even performing comparably in PubMed. This might indicate that GraphKvD
is superior than TreeKvD at placing highly influential (i.e. relevant) nodes closer to the
root, in which case the proposition ranking given by Tree and Eigen is highly similar.

In conclusion, Tree scoring enables our implementations of KvD not only to better
keep track of relevant information but also to better model cohesion in the memory tree,
which translates to lower redundancy scores and higher cohesion scores in final summaries.

Recall Mechanism and Tree Persistence. Additionally, we investigated the effect of
allowing our KvD systems to retrieve longer node paths during recalls, as well as the effect
of allowing systems to persist memory trees for more cycles. Whilst (W. Kintsch & van
Dijk, 1978) do not define a limit for how many propositions can be recalled, (Fang, 2019)
limits recall to only one proposition for computational efficiency. In this experiment, we
test TreeKvD and GraphKvD with WM = 100 and Tree scoring, and set the maximum
allowed number of recalled nodes to R = [2, 5, 8, 10] and the maximum persistence parameter
to Φ = [2, 5, 8, 10]. When compared in the validation set of both datasets, no statistical
difference was found within TreeKvD and GraphKvD varieties. Absolute differences in
average ROUGE scores were at most 0.1, whereas differences in IUniq redundancy were at
most 0.2 percentual points. These results indicates that our implementations of the KvD

13. We use the eigen-vector centrality implementation in the NetworkX Python library.
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System PubMed arXiv
R1 R2 RL IUniq CCL R1 R2 RL IUniq CCL

TreeKvD
w/ Lex. Overlap 35.93 12.63 31.53 19.05 0.53 35.40 9.84 30.08 22.36 0.46
w/ XLNet 35.60 13.53 31.39 18.79 0.57 34.47 9.74 29.29 21.94 0.46

GraphKvD
w/ Lex. Overlap 36.11 12.97 31.65 19.49 0.49 35.60 10.12 30.14 22.56 0.38
w/ XLNet 35.75 12.66 31.34 19.02 0.51 34.77 9.37 29.32 22.55 0.38

Gold - - - 18.94 0.92 - - - 17.15 0.89

Table 4: Effect of using lexical overlap and semantic similarity in argument overlap calcula-
tion, as measured by ROUGE F1 scores, redundancy (IUniq), and local coherence (CCL),
over the validation sets of PubMed and arXiv.

theory are robust to recall and memory replacement parameters, an encouraging result
when planning to use these systems in other domains.

Lastly, it is worth pointing out an additional benefit of the tree persistence mechanism,
observed empirically in Figure 10. Tree persistence can be seen as a mechanism that guar-
antees that the content in WM changes periodically, providing the model with robustness to
the length of an article section in a scientific article, and adding evidence to its applicability
to other domains. As mentioned in the previous chapter, sections in PubMed articles are
shorter than those in arXiv (16.8 vs 28.8 on average). In PubMed, performance con-
verges at WM = 150, at which point there is enough capacity to keep all propositions read
in the section so far. However, contrary to the behavior of FangKvD in the previous
chapter, performance is not hurt at high capacity regimes, with the persistence mechanism
refreshing WM periodically. In arXiv, sections are long enough for high WM capacity to
be a problem, at which point WM starts storing noisy information which eventually hurts
performance.

Effect of Argument Overlap Strategy. Finally, we investigated the effect of employ-
ing more sophisticated strategies to calculate argument overlap in propositions. We com-
pared our proposed strategy –based in lexical overlap– against a strategy using a pretrained
Transformer-based encoder (Vaswani et al., 2017) to calculate semantic similarity. We re-
place the Jaccard similarity between two arguments in Eq. 3 by the maximum pairwise
cosine similarity between wordpiece embeddings of said arguments. Each sentence is en-
coded independently using XLNet (Yang et al., 2019) with the previous three sentences as
context. Recent work (Jeon & Strube, 2020, 2022) shown the advantage of using XLNet
against other Transformer-based architectures when modeling local coherence in contexts a
few sentences long.14

Table 4 presents the results for TreeKvD and GraphKvD. In both cases, we observe a
reduction of relevancy and redundancy scores when using embedding-based similarity in ar-
gument overlap. In PubMed, both KvD systems obtain higher cohesion scores with XLNet,
whilst cohesion remains unchanged in arXiv. These results indicate that employing seman-
tic similarity in argument overlap hurts informativeness in greedily selected summaries, in
line with similar findings by Fang (2019).

14. Indeed, preliminary experiments using SciBERT (Beltagy et al., 2019) shown poor results.
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We hypothesize that employing embedding-based similarity allows to connect arguments
that are not semantically related but might be close in embedding space, hence resulting
in spurious proposition connections during attachment. Naturally, with memory trees pol-
luted with irrelevant propositions, KvD systems struggle to keep track on truly relevant
information and informativeness will be impacted.

In conclusion, this section laid evidence as to how simulated cognitive processes impact
the properties (informativeness, redundancy, and cohesion) of the final summary. First, we
pointed out the importance of constraining memory capacity in covering relevant content
and dealing with redundant information. Then, we highlighted the benefits of modeling
working memory as a tree and how this affects the cohesion-redundancy trade-off. We
demonstrated the robustness of the proposed systems to parameters controlling recall from
long-term memory. Finally, the sensitivity of the systems to spurious connections between
propositions was assessed and demonstrated that limiting connections through selective lex-
ical overlap provides the best conditions for our systems to better balance informativeness,
redundancy, and lexical cohesion in summaries.

7. Conclusions

In this paper, we studied the trade-off between redundancy and lexical cohesion in sum-
maries produced by extractive systems, and how this trade-off impacts informativeness. We
focused on the case when the input is a long document that exhibits information redundancy
among the parts it is divided into. As a case study, we experimented with scientific articles
for which the main body –divided into sections– is considered as the input document and
the abstract is used as the reference summary.

Two optimization scenarios were investigated and compared, (i) when a summary prop-
erty is optimized with a tailored reward in a reinforcement learning setup, and (ii) when
a summary property is optimized through proxies inspired by a psycholinguistic model in
an unsupervised setup. In the first scenario, the trade-off between informativeness and
cohesion was modeled as a linear combination between a reward optimizing for ROUGE
score w.r.t. the reference summary and a classifier-based reward optimizing for cohesion.
We found that models that optimize cohesion are capable of better organizing content
in summaries compared to systems that optimize redundancy, whilst maintaining –if not
improving– informativeness and coverage.

In the second scenario, we introduced two unsupervised summarization systems that
implement explicit proxies that capture relevancy, non-redundancy, and lexical cohesion.
The proposed systems closely simulate how information is discretized into semantic propo-
sitions and organized in human working memory, according to the Micro-Macro Structure
theory of reading comprehension. Extensive quantitative and qualitative analysis shown
that our systems are able to extract summaries that are highly cohesive and as redundant
as reference summaries, however at the expense of sacrificing informativeness. Finally, hu-
man evaluation campaigns revealed that KvD summaries exhibit a smooth topic transition
between sentences as signaled by proposition chains –an extension to lexical chains–, with
chains spanning adjacent or near-adjacent sentences, and each sentence being connected to
a previous one with at least one chain and to the next sentence with another chain.
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