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Abstract

In recent years, there has been a proliferation of competing conceptions of what it
means for a predictive algorithm to treat its subjects fairly. Most approaches focus on
explicating a notion of group fairness, i.e. of what it means for an algorithm to treat
one group unfairly in comparison to another. In contrast, Dwork et al. (2012) attempt
to carve out a formalised conception of individual fairness, i.e. of what it means for an
algorithm to treat an individual fairly or unfairly. In this paper, I demonstrate that the
conception of individual fairness advocated by Dwork et al. is closely related to a criterion
of group fairness, called ‘base rate tracking’, introduced in Eva (2022). I subsequently show
that base rate tracking solves some fundamental conceptual problems associated with the
Lipschitz criterion, before arguing that group level fairness criteria are at least as powerful
as their individual level counterparts when it comes to diagnosing algorithmic bias.

1. Introduction

How do we determine whether the predictions made by an algorithm are fair and unbiased?
According to a highly influential recent strand of literature, unfairness can often be diag-
nosed by means of statistical criteria of algorithmic fairness, i.e. necessary conditions that
must be satisfied by the statistical profile of the algorithm’s predictions if those predictions
are to count as ‘fair’.! Typically, these criteria are group-based, meaning that they are
articulated in terms of how the algorithm’s predictions track distinctions between different
subgroups of the relevant population. For instance, if we are interested in determining
whether the algorithm treats women unfairly in comparison to men, then we can check how
the algorithm’s predictions for men differ from its predictions for women, and compare the
results against the relevant criteria. Below are four prominent examples of group based
statistical criteria of algorithmic fairness that have been widely advocated in the literature.
For illustration, I suppose that the algorithm is trying to predict whether subjects instan-
tiate a particular trait 7', and that we are interested in whether the algorithm’s treatment
of a group (31 is fair in comparison to its treatment of a second group Go.

Statistical Parity: The percentage of subjects from (; that are predicted to have
T should be equal to the percentage of subjects from G5 that are predicted to have
T.

1. Note that these criteria are not always thought of as necessary conditions, and are sometimes taken to be
merely evidentially indicative of fairness/unfairness. For current purposes, I talk in terms of necessary
conditions, but much of what I say applies equally to weaker evidential interpretations of the relevant
criteria.
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Equal False Positive Rates: The percentage of subjects from G; that lack T but
are are falsely predicted to have T' should be equal to the percentage of subjects from
G5 that lack T but are are falsely predicted to have T'.

Equal False Negative Rates: The percentage of subjects from G that have T' but
are falsely predicted to lack T" should be equal to the percentage of subjects from Go
that have T" but are falsely predicted to lack T'.

Equal Error Rates: The percentage of subjects from G for which the prediction
is incorrect should be equal to the percentage of subjects from (G5 for which the
prediction is incorrect.?

There has been a great deal of debate focusing on the relative merits and shortcomings
of criteria like these. But one thing that almost all such debates have shared is the pre-
supposition that whatever the true statistical criteria of algorithmic fairness end up being,
they will be articulated in terms of group prediction profiles. One notable exception to this
general pattern comes from Dwork et al. (2012), who propose a statistical criterion of algo-
rithmic fairness that is articulated not in terms of the differential treatment of groups, but
rather in terms of the differential treatment of individuals. Very roughly summarised, their
criterion, the ‘Lipschitz condition’, requires that similar individuals should receive similar
treatment. Dwork et al. argue both that the Lipschitz condition is capable of diagnosing
a range of important types of fairness violation, and that the condition can be usefully
operationalised in real world settings.?

As it turns out, the Lipschitz condition shares a close conceptual affinity with a recently
proposed group based fairness criterion called ‘base rate tracking’ (Eva, 2022). Whereas the
Lipschitz condition (roughly) requires that similar individuals should be treated similarly,
base rate tracking (roughly) requires that similar groups should be treated similarly. In
this paper, I argue that base rate tracking (i) avoids some basic conceptual and operational
problems associated with the Lipschitz condition whilst respecting the spirit of its motiva-
tion, and (ii) performs at least as well (when combined with other group level criteria) as
the Lipschitz condition in diagnosing unfairness in the kinds of cases for which the Lips-
chitz condition was designed. The upshot is that we can capture the main advantages of
the Lipschitz criterion without moving from group based to individual based criteria for
algorithmic fairness.

The structure of the article is as follows. §2 introduces and motivates the Lipschitz
condition and the base rate tracking criterion and formally illustrates the strong structural
analogy between them. §3 identifies an important conceptual problem for the Lipshitz
criterion, evaluates (and ultimately rejects) some possible solutions, and observes that the
base rate tracking criterion completely avoids the problem. §4 compares the ability of
base rate tracking and the Lipschitz criterion to diagnose unfairness in the types of cases
for which the Lipschitz condition was designed. Finally, §5 discusses the prospects for
individual based fairness criteria in general and concludes.

2. For discussion of these and other group level statistical fairness criteria, and their relationship to one
another, see e.g. Corbett-Davies and Sharad (2018), Hedden (2021), Klein et al. (2016), Miconi et al.
(2017), Pleiss et al. (2017).

3. Since its introduction by Dwork et al, the notion of individual level algorithmic fairness has been further
investigated by e.g. (Fleisher (2021), Friedler et al. (2016), Ilvento (2020), Mukherjee et al. (2020).
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2. Base Rate Tracking and the Lipschitz Condition

I begin by briefly establishing some basic terminology and notation. Throughout the paper,
I assume that there exists a population N = {z1,...,z,} of n individuals and a property y
such that every individual in N either has the property y or lacks it. The goal of a predictive
algorithm is to predict, for each individual in N, whether or not they have the property
y. This is accomplished by assigning each individual a ‘risk score’ between 0 and 1 that
can intuitively be conceived as the probability that the algorithm assigns to that individual
possessing the property y.* We formalise this by representing a predictive algorithm as a
function h : N — [0, 1] that takes individuals to risk scores.?

2.1 The Lipschitz Condition

What does it mean for a predictive algorithm to treat its subjects fairly? Dwork et al.
(2012) answer this question starting from the following basic premise.

We capture fairness by the principle that any two individuals who are similar
with respect to a particular task should be classified similarly. (Dwork et al.
2012: p214).

To illustrate the idea here, imagine that a loan application algorithm aims to predict
whether a subject will default on their loan payments. It would seem to be unfair if two
subjects who were similar in all relevant respects (credit history, age, income etc) were
assigned dissimilar predictions by the algorithm. In order to formalise this intuitive idea,
Dwork et al. assume that it is possible to define a similarity metric d : N x N — [0, 1] over
the space N of individuals. Intuitively, the lower the value of d(x1,x2), the more similar
individuals 1 and 9 are to one another. In order to formalise the Lipschitz condition, we
also need to establish a statistical distance metric D between risk scores that quantifies the
similarity between the risk scores assigned to different individuals. Intuitively, the lower
the value of D(h(z1),h(z2)), the more similar the risk scores assigned to x; and xy are to
eachother.® Following Dwork et al., we remain agnostic for now about exactly what form
the distance metrics d and D must take, and treat them as primitives (we’ll return to this
in §3). We can now define the Lipschitz condition as follows,

The Lipschitz Condition (LC): For any z;,z; € N, D(h(z;), h(x;)) < d(zi, x;)

4. Note that my focus here is on quantitative risk scoring algorithms rather than qualitative classification
algorithms that produce categorical predictions like ‘yes’ or ‘no’ (regarding whether the subject has the
target property), as opposed to numerical probabilities. Most of the discussion can be easily translated
to the qualitative setting, but I focus only on risk scoring algorithms since doing so simplifies the
presentation.

5. I take the notation here from Stewart and Nielsen (2020).

6. If we want to be formally rigorous, note that every risk score corresponds to a probability distribution
over the partition whose two cells correspond to the case where the individual has and lacks property v,
respectively. The statistical distance measure represents (some formalisation of) the distance between
these probability distributions. One might use, for instance, an f-divergence such as the Kullback-Leibler
divergence or the Hellinger distance (see e.g. Eva et al. (2020)), or some other kind of statistical distance
measure, like the squared Euclidean distance.
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Informally, LC just says that the extent to which the algorithm can fairly treat indi-
viduals as dissimilar (by assigning them dissimilar risk scores) is bounded by the extent
to which the individuals really are dissimilar (according to the given similarity metric). In
slogan form, LC requires the algorithm to treat similar individuals similarly.

2.2 Base Rate Tracking

Like LC, base rate tracking is motivated by the idea that a fair algorithm can only treat
subjects differently when that differential treatment is justified by relevant and proportional
differences in the behaviour/traits of those subjects. But whereas LC formalises this idea
in terms of similarities and differences between individuals, base rate tracking formalises it
in terms of similarities and differences between groups. In fact, we can formalise base rate
tracking using an analogous schema to that used for LC. Let d : P(N) x P(N) — [0,1]
be a function that takes subsets of N (i.e. groups) and returns a number representing the
similarity of the groups (where lower values represent more similar groups). Similarly, let
D :P(N) xP(N)—[0,1] be a function that takes a pair of groups and returns a number
representing the distance between the distributions of risk scores across the two groups
(where lower numbers represent more similar distributions). Again, we take these distance
metrics as primitive for now. Then we can formalise a group level generalisation of LC as
follows,

The Group-Level Lipschitz Condition (GLC): For protected groups X;, X; C N,
D(X;, X;) < d(X;, X;)

We can think of Eva’s (2022) base rate tracking criterion as a particular instantiation of
GLC. Specifically, we get half of the logical strength of base rate tracking if we conceive of
the similarity and differences between groups in terms of their base rates (for instantiating
the target variable y). To see this, consider Eva’s original formulation of base rate tracking,

Base Rate Tracking (BRT): The difference between the average risk scores assigned to
the relevant groups should be equal to the difference between the (expected) base rates of
the groups.”

Trivially, BRT can be divided into two separate conditions,

BRT1: The difference between the average risk scores assigned to the relevant groups
should be no greater than the difference between the (expected) base rates of the groups.

BRT?2: The difference between the average risk scores assigned to the relevant groups
should be no less than the difference between the (expected) base rates of the groups.

It is easy to see that BRT1 is an instance of GLC. Specifically, in the special case in
which d is the function that takes a pair of groups and returns the difference between their

7. Stewart et al. (forthcoming) show that BRT is incompatible with the influential ‘equalised odds’ criterion
(which requires both equal false negative and equal false positive rates across groups) in non-trivial
settings.

862



INDIVIDUAL FAIRNESS, BASE RATE TRACKING AND THE LiPSCHITZ CONDITION

base rates and D is the function that takes a pair of groups and returns the difference
between their average risk scores, BRT1 is equivalent to GLC. This observation clearly
demonstrates that BRT and LC are, in a precise sense, motivated by the same basic idea
— that any difference in treatment needs to be justified by a corresponding proportional
difference in the relevant traits/behaviour.

Of course, readers will also note that BRT2 is logically independent of GLC. Since BRT
is the conjunction of BRT1 and BRT?2, this shows that BRT is intuitively ‘stricter’ than
LC in the sense that it imposes a fairness constraint whose individualised analogue is not
implied by LC. However, we can easily formalise the individualised analogue of BRT2, as
follows,

The Inverse Lipschitz Condition (ILC): For any z;,2; € N,
D(h(w:), h(xj)) = d(wi, ;)

ILC is to BRT2 as LC is to BRT1. That is to say, the group analogue of ILC is
equivalent to BRT2 in the case where the group metrics d and D are interpreted as the
difference between the base rates and the difference between the average risk scores of the
relevant groups, respectively. Let SLC (the ‘strong Lipschitz condition’) be the conjunction
of LC and ILC. Trivially, BRT is equivalent to the group analogue of SLC when BRT1 and
BRT2 are equivalent to the group analogues LC and ILC, respectively.

Since Dwork et al. (2012) only defend LC, I will focus primarily on BRT1 and LC
(rather than BRT2 and ILC) in what follows. However, it worth noting that there are
good reasons to think that BRT2 and SLC are just as well motivated as BRT1 and LC
in most cases. While BRT1/LC (roughly) require that similar groups/individuals receive
similar treatment, BRT2/ILC (roughly) require that dissimilar groups/individuals receive
dissimilar treatment. Regardless of whether we're talking about groups or individuals, the
latter requirement seems to be at least as compelling as the former. For instance, it would
be manifestly unfair if, in a pretrial setting, women had a much lower base rate than men for
recidivism, but were predicted to reoffend at a similar rate to men (see e.g. Corbett-Davies
Goel (2018)). In what follows, I will focus on BRT1/LC and argue that while BRT1 should
be viewed as a genuine statistical criterion of algorithmic fairness, LC should not. However,
as intimated above, I think that the motivations for BRT2/ILC are just as strong as the
motivations for BRT1/LC. As it turns out, all of my arguments for preferring BRT1 to LC
also license a corresponding preference for BRT2 over ILC.

Before moving on, it is important to make one further clarification. Eva (2022) formu-
lates BRT in terms of differences between base rates and average risk scores. But he also
explicitly acknowledges that one might rather use some other distance functions, as long as
they take the relevant base rates and average risk scores as their arguments. For instance,
one might reformulate BRT in terms of ratios of base rates and ratios of average risk scores,
as follows

Ratio Base Rate Tracking (RBRT): The ratio of the average risk scores assigned to
the relevant groups should be equal to the ratio of the (expected) base rates of the groups.

Like Eva (2022), I remain agnostic about which formulation of BRT to prefer, since the
arguments regarding the comparative advantages of BRT1 over LC are independent of the
specific preferred functional form of BRT.
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3. The Problem of Similarity
3.1 Individual Similarity

I turn now to highlighting a basic conceptual problem with LC. Specifically, LC presupposes
the existence of a distance metric d over the space of individuals, which is supposed to
encode facts about the comparative similarity of individuals to one another. But how should
determinations of similarity be made in order to fix the values of this metric? Dwork et al.
state that they are interested in similarity with respect to the particular task in question.
But that doesn’t help to answer the question. By way of illustration, consider a predictive
algorithm that aims to predict whether a subject will like the next James Bond movie. If
we hope to apply LC to help gauge the fairness of the algorithm, we need to determine
which subjects are similar to which other subjects with respect to the question of whether
or not they will like the new James Bond movie. But what does that mean? Which features
are relevant to determinations of similarity in this context and how do we determine the
weights of their contributions?®

One possible answer is to say that the weight of a characteristic’s contribution to the
similarity metric should be a function of the extent to which two individuals having the
same profile for that characteristic is predictive of their having the same profile for the
target variable (in this case, liking the new James Bond movie). Under this interpretation
of similarity, two individuals being relevantly similar essentially equates to them being
roughly the same with respect to the traits that are predictive of the target variable. Of
course, there will generally be very many traits that are in some way predictive of the target
variable, and one would always need to identify some optimal subset of those to defer to
when fixing the values of the similarity metric. As Dwork et al. point out, this is the kind
of task for which many machine learning methods have been designed,’ so one might hope
that the set of similarity determining characteristics (and their weights) can be determined
via a suitable machine learning method that identifies an optimal set of predictors for the
target variable. I take this to be the proposal when Dwork et al. write ‘The construction
of a suitable metric can be partially automated using existing machine learning techniques’
(Dwork et al. (2012): p223).10

Unfortunately, there are some significant issues with this strategy. Recall that our basic
problem is to construct a method for evaluating the fairness of a predictive algorithm h.
The current proposal suggests that we do this by way of a similarity metric whose values
are determined by a second external predictive algorithm h* (the machine learning method
that identifies the optimal set of predictors). But then how do we ensure that h* operates in
a fair manner that outputs a similarity metric that is genuinely relevant to the fairness of h?
Clearly, we can’t appeal to LC again, on pain of regress. The alternatives are (i) to impose
some further fairness constraints on A* (not including LC), or (ii) to argue that h* does not

8. Should we include protected characteristic such as race, gender and sexual orientation in determinations
of similarity? If so, then we seem to allow that it can be fair for the algorithm to make different
predictions for two subjects who are completely alike in every respect except for their race, which (it
seems) is exactly the kind of thing that LC was designed to preclude. If we don’t allow protected
characteristics to enter into determinations of similarity, then what about non-protected characteristics
that are strongly correlated with protected ones? And how much correlation is too much?

9. Think, for instance, of minimising R?, eliminating colinearity etc in regression analysis.

10. T also consider some alternative interpretations of their proposals later in this subsection.
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need to satisfy any fairness criteria whatsoever. The problem with (i) is that the advocate
of LC owes us an account of what these further conditions should be. And whatever account
they give, it seems somewhat convoluted and artificial to impose LC as a fairness criterion,
and then to impose some distinct fairness criteria as constraints on the algorithms that we
defer to in order to apply LC. Furthermore, this response begs the question ‘if LC is really
a fairness criterion, then why doesn’t it apply to h* as well as h, since both are predictive
algorithms?’. Remember, we are conceiving of statistical criteria of algorithmic fairness
as necessary conditions for algorithmic fairness, and necessary conditions don’t admit of
exceptions. Thus, (i) does not look like a promising response. (ii) holds that h* doesn’t need
to satisfy any fairness criteria whatsoever. But again, this seems strange. How can we expect
LC to enforce the fairness of predictive algorithms if the application of LC relies on using
predictive algorithms that are not constrained by any fairness considerations whatsoever?
Overall then, it’s difficult to see how this approach to fixing the similarity metric can work
without relying on blind faith in the fairness of the algorithm that identifies the set of
similarity determining characteristics.'!

Another problem for this approach is that there will, in general, be multiple different
ways of identifying the optimal set of predictors for the target variable that are all roughly
on a par with respect to accuracy, but which ultimately yield highly divergent similarity
metrics. This observation is a direct corollary of the ‘Rashomon effect’ (see Breiman, 2001)
—a common phenomenon that arises in situations where ‘there are many models that satisfy
predictive accuracy criteria equally well, but process information in the data in different
ways’ (D’amour 2001, pl). In situations like this, it becomes completely unclear how we
should determine the similarity metric (even if we forget about the fairness related worries
outlined above). If multiple models that are all equally accurate identify different sets of
characteristics as predictive of the target variable, then which model should we defer to
when fixing the similarity metric? It does not seem that there could be a principled answer
to this question.

At this stage, the idea that we can fix the similarity metric purely by using a machine
learning algorithm to identify (and weigh) an optimal set of predictive characteristics seems
dead in the water. But Dwork et al. do also tentatively suggest some additional mechanisms
for fixing the similarity metric, and one might expect those to prove helpful here. One
interesting suggestion (see Dwork et al. (2012), p 224) is that the similarity metric may
be determined, at least in part, by how the subjects want to be compared to the rest
of the population. In determining whether the algorithm treated a particular subject S
fairly, we should take into account how S would like to be compared to their peers. For
instance, in the case where there are multiple models that are equally accurate but which
yield different sets of predictive characteristics and similarity metrics, the subject might
choose the metric that they like best from amongst the set generated by the most accurate
models. While this might look like an elegant solution to the under-determination of the
similarity metric, it doesn’t actually help much. First of all, if (as seems likely) subjects are
often indifferent between multiple different similarity metrics, then the under-determination
remains.'? Secondly, one can imagine a case where a subject, for whatever reason, chooses

11. This point is related to Fleisher’s (2021) second objection to individual fairness, discussed below.
12. One can even imagine a case where the subject, for whatever reason, is incapable of choosing between
the candidate similarity metrics.
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to be evaluated on a metric according to which the algorithm treats them fairly, when there
are many other metrics that deem their treatment to be unfair. For instance, the subject
might belong to an ethnic minority and have an optimistic perspective on the racial politics
of their society, which leads them to choose a similarity metric that’s not sensitive to racial
bias. And it could turn out that this metric deems the subject’s treatment to be fair, while
other metrics that are sensitive to racial bias would deem their treatment to be unfair. It
seems strange to say that the algorithm is fair in this case, just because the subject chose
to be evaluated by a metric that was blind to racial bias. Thirdly, even if this strategy were
able to solve the under-determination problem in a satisfactory manner (which it doesn’t
seem to be), the problem of ensuring the fairness of the algorithms that yield the candidate
similarity metrics remains unsolved.

Apart from this specific suggestion, Dwork et al. also suggest that ‘human insight and
domain information’ may also be useful in fixing the similarity metric. But it’s difficult
to see how any general appeal to human insight or domain specific information can be
of use here. Even when we narrow our domain to a very specific prediction task, there
will generally be many possible similarity metrics, all motivated by different predictive
models that are indistinguishable in terms of accuracy. It’s fanciful to suppose that human
judgement can generally choose between these metrics in a principled, reliable and non-
arbitrary way. Furthermore, Fleisher (2021) identifies some more general and fundamental
conceptual limitations to this strategy.

Firstly, when Dwork et al. propose using ‘human insight’ to fix the similarity metric, the
idea seems to be that we identify some group of human arbiters who provide feedback on
the extent to which different individuals should be considered relevantly similar (for a given
task) and/or whether those individuals are treated fairly by some predictive algorithms,
and that we use that feedback to determine the values of the similarity metric. In fact,
various recent attempts to implement individual fairness criteria explicitly rely on this kind
of appeal to the judgements of human arbiters (see e.g. Gillen et al. (2018), Ilvento (2020),
Lahoti et al. (2019), Mukherjee et al. (2020)). However, as Fleisher notes, relying on
the judgements of human arbiters to fix the similarity metric raises more problems than it
solves.

[T]he appeal to human arbiters to learn a similarity metric suffers from a diffi-
culty stemming from human biases. It is well known that humans exhibit perni-
cious, discriminatory biases in their judgments. Moreover, these biases need not
be explicit. A large body of psychological research collected over the past five
decades provides significant evidence that human judgment and decision-making
suffer from systematic biases that individuals are not aware of... Much of this
bias concerns rational belief and decision-making quite generally, e.g., failures
to respect basic principles of probability and rational choice... The evidence of
these biases have raised significant difficulties for using classical decision-theory
for descriptive purposes in economics. And unfortunately, these implicit and
systematic biases are not limited to prudential rationality. Implicit bias is a
significant factor in perpetuating oppressive structures involving race, gender,
and other sensitive categories. (Fleisher 2021: 11)
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The objection is a deep one. By uncritically appealing to the judgements of human
arbiters to determine the relevant similarity metrics, we run the very real risk of further en-
trenching the (implicit or explicit) systematic biases of those arbiters by enshrining them in
our conception of algorithmic fairness. Thus, the proposal to simply rely on the judgements
of human arbiters does not seem to be a promising one. Of course, it’s true that we need to
rely on human judgement and intuition when we systematise our conception of algorithmic
fairness at a general level, but uncritically integrating the similarity judgements of humans
into our methods for diagnosing unfairness without a principled method of evaluating or
filtering those judgements is clearly prone to exacerbate the issue.'3

Fleisher (2021) also raises another, more general, objection against LC and its similarity
based conception of individual fairness. Specifically, Fleisher notes that, however we try to
fix the similarity metric, doing so will require us to make substantive moral judgements
about what considerations can fairly be treated as relevant to determinations of individual
similarity. For example, in the context of predicting an applicant’s performance at a univer-
sity, one might ask whether race can fairly be treated as a relevant factor when determining
the similarity of two applicants. Any answer to this question represents a substantive moral
presupposition that lies beyond the purview of the Lipschitz criterion. So whenever we
apply LC, we are implicitly relying on antecedent moral judgements regarding which char-
acteristics can fairly be incorporated into determinations of individual similarity. But LC
is completely silent about how we should arrive at those moral judgements.!* Thus, there
is a gaping moral lacuna at the heart of LC that needs to be filled before the condition can
be meaningfully applied to any real world problem.

In sum then, it seems that the problem of fixing the similarity metric to be used in LC is
a deep one that admits of no straightforward resolution. In order for LC to be a substantive
and coherent criterion of algorithmic fairness, we would need to have access to a principled
general procedure for determining the appropriate similarity metric for every prediction
task, and for settling the substantive moral questions pertaining to which characteristics
can fairly be treated as relevant to judgements of individual similarity. We have just seen
that we do not have access to any such procedure.

3.2 Group Similarity

The fundamental problem with LC, then, is that it lacks a principled and robust way of
determining the similarity of individuals. But what about BRT1? Recall that BRT1 can
be seen as a particular instantiation of the group level analogue of LC, GLC. As such, it
relies on a notion of similarity between groups. Is this notion any less problematic than its
individual level analogue? It’s not hard to see that it is. In fact, BRT1 encodes a particular
conception of how to rigorously determine group level similarity relations in a principled
way, namely via base rates. According to BRT1, two groups are similar (with respect to a
given prediction task) to the extent that their base rates for the target variable are similar
(where similarity between base rates is assessed using e.g. differences/ratios etc). Returning
to an earlier example, in the context of predicting whether or not subjects will like the new

13. For a recent discussion of the conditions under which human judges can reasonably be replaced by Al
judges, see Afrouzi (forthcoming).

14. Just as it was silent about how to assess the fairness of the machine learning methods that are used to
determine the similarity metric on the original proposal.
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James Bond film, we can consider two group G1 and G35 to be similar to the extent that
the proportions of members of those two groups who do like the movie are similar. This
conception of group level similarity is compelling — the extent to which two groups are
relevantly similar with respect to exhibiting a trait T is nothing other than the extent to
which the proportion of members of the first group who exhibit the trait is similar to the
proportion of members from the second group who exhibit the trait.

Furthermore, it is clear that formalising group similarity in terms of base rates allows us
to completely bypass the problems associated with determining an individual level similarity
metric. There is no need for a second algorithm to identify an optimal set of predictors to
ground the similarity metric, which means that the concerns surrounding the fairness of the
second algorithm and the under-determination of the metric (arising from the Rashomon
effect) simply don’t apply to BRT1. Similarly, there is no need to appeal to the judgements
of human arbiters, which means that BRT1 does not run the risk of further entrenching any
systematic biases that may be prevalent in the judgements of those arbiters.

The crucial observation here is that groups posses a statistical structure that warrants
principled task dependent similarity judgements, while individuals lack any such structure.
What this all shows is that if we want to respect the ideal that similar subjects should
receive similar treatment, then we need to encode that ideal not in an individual based
fairness criterion, but rather in a group based criterion, like BRT1.

4. Diagnostic Power

I've argued both that LC and BRT1 are motivated by the same basic philosophical ideal,
and that LC faces a deep and intractable conceptual problem that BRT'1 completely avoids.
I turn now to comparing the ability of the two criteria to diagnose unfairness in the kinds of
cases that Dwork et al. cite as motivations for LC. It’s important to stress here that both
LC and BRT1 are supposed to represent necessary, not sufficient, conditions for algorithmic
fairness.!> So even if there are some cases of unfairness that the algorithms are unable to
diagnose, that doesn’t speak against their legitimacy as necessary conditions for fairness
(for that, we’d need examples of fair algorithms that violate the conditions, rather than
unfair algorithms that satisfy the conditions). Nevertheless, it is obviously desirable for
our statistical criteria of algorithmic fairness to be capable of diagnosing as many different
flavours of unfairness as possible, and the following discussion examines their abilities to do
exactly that. In an appendix, Dwork et al. (2012) list six salient varieties of algorithmic
bias that they intend to target with LC. I go through each in turn.

1: ‘Blatant explicit discrimination’ — Dwork et al. describe this as a case in which mem-
bership in a protected group S is explicitly tested for and unfavourable outcomes (for
our purposes, high risk scores) are given to members of S compared to nonmembers.
LC will diagnose this variety of unfairness as long as the similarity metric does not
consider members of S to be dissimilar to nonmembers (as Dwork et al. recognise).
However, if S membership (or one of its correlates) is one of the properties that

15. Dwork et al. sometimes refer to LC as a ‘definition’ of fairness, which suggests that they also consider it
to be a sufficient condition for the fairness of an algorithm. But in the present context, I am concerned
only with the weaker claim that LC constitutes a necessary condition for fairness (see Fleisher (2021)
for an argument against the sufficiency of LC).
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the metric uses to determine similarity, then S members will typically be regarded
as dissimilar from nonmembers, which will result in LC failing to diagnose explicit
discrimination as unfair.

What about base rate tracking? Again, base rate tracking will accurately diagnose
this form of algorithmic bias so long as the group S is regarded as similar to its
complement, i.e. as long as the relevant base rate for S is similar to the corresponding
base rate for S’s complement. If the base rates for the two groups are in fact dissimilar,
then base rate tracking won’t always identify any bias or unfairness here (similarly
to how LC fails to diagnose explicit discrimination as unfair when members of S are
deemed to be relevantly dissimilar to nonmembers).

Now, one might worry that even if the relevant base rate for S is significantly different
from the corresponding base rate for S’s complement, it might be unfair for the
algorithm to assign higher risk scores to members of S than it does to nonmembers.
There is already a large literature surrounding the question of whether it is unfair for
predictive algorithms to assign higher risk scores to members of groups with higher
base rates when the base rates are largely a result of large scale bias and discrimination.
While that question lies well beyond the scope of the current discussion, I will make
two relevant observations here. Firstly (as has been widely noted), statistical criteria
of algorithmic fairness are supposed to diagnose the fairness of predictive algorithms,
not the fairness of the decision making processes that make use of those algorithms,
or the fairness of the processes by which the data that is fed to the algorithms is
generated or collected. One might argue (for example) that it can be perfectly fair for
an algorithm to assign higher risk scores to members of disadvantaged groups with
higher base rates, but subsequently contend that the disadvantaged groups should
be given preferential treatment when it comes to making decisions on the basis of
the algorithm’s recommendations (so that a member of a disadvantaged group with
the same risk score as a nonmember might get assigned a more favourable outcome).
Secondly, it should be noted that even if one thinks that the predictive algorithm
itself is unfair in cases where it assigns higher risk scores to disadvantaged groups
with higher base rates, LC fares no better than BRT1 in diagnosing that alleged
unfairness. For, if S has a higher base rate than its complement, then S membership
(as well as many of the characteristics that are correlated with S-membership) will
be predictive of the target variable. So if (as discussed in §3) we try to use relevantly
predictive characteristics to fix the similarity metric for LC, we will very likely end up
basing our similarity judgements on statistical proxies for S-membership, which will
yield the result of regarding S-members as dissimilar to nonmembers, which in turns
makes it impossible for LC to diagnose the unfairness.

: ‘Discrimination based on redundant encoding’ — they describe this as a case where the
explicit test for group membership that occurs in explicit discrimination is replaced
by another test that is in practice equivalent. For instance, rather than explicitly
considering sexual orientation, the algorithm might rather consider another feature
that is strongly correlated with sexual orientation and make its recommendations
based on that. Dwork et al. claim that LC is also able to successfully diagnose
discrimination based on redundant encoding.
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Now, since LC and BRT1 are both statistical criteria of algorithmic fairness, they
look only at the statistical profile of the algorithm’s predictions, not at the internal
architecture or design of those algorithms. Thus, from the perspective of LC and
BRT1, discrimination based on redundant encoding is essentially equivalent to explicit
discrimination, in the sense that both (by stipulation) have roughly equivalent effects
on the algorithm’s predictive tendencies. This being the case, everything I said above
regarding LC and BRT1’s abilities to diagnose explicit discrimination applies directly
to their ability to diagnose discrimination based on redundant encoding.

: ‘Redlining’ — they describe this as ‘a well known form of discrimination based on
redundant encoding’ (Dwork et al. (2012): p224). Roughly, redlining occurs when
institutions use a subject’s area of residence as a proxy for their race as a way to deny
financial services to racial minorities without engaging in explicit racial discrimination.
Again, since redlining is an instance of discrimination based on redundant encoding,
which in turn is statistically indistinguishable from explicit discrimination, there is
not much more to say here about the respective abilities of BRT1 and LC to diagnose
this type of unfairness. However, it should be noted that Eva (2022) demonstrates
that BRT1 is better placed than many alternative group based statistical criteria of
algorithmic fairness when it comes to diagnosing the unfairness of predictive profiles
generated by redlining practices, and is able to identify redlining style biases in realistic
cases.

: ‘Cutting off business with a segment of the population in which membership in the
protected set is disproportionately high’ — Dwork et al. describe this as ‘a general-
ization of redlining, in which members of S need not be a majority of the redlined
population; instead, the fraction of the redlined population belonging to S may simply
exceed the fraction of S in the population as a whole.” (Dwork et al. (2012), p224).
Again, this case does not seem to require separate treatment, since it is structurally
analogous to standard redlining cases which, as noted above, are well diagnosed by
BRT1.

: ‘Self fulfilling prophecy’ — this is a case where the algorithm intentionally creates a
bad track record for S by giving favourable treatment to the least qualified members
of S. For example, imagine an algorithm that predicts mortgage defaults and that
assigns a low risk score to a poorly qualified applicant from S and a high risk score
to a well qualified applicant from S. If there are also well qualified applicants that
achieve low risk scores and poorly qualified applicants that achieve high risk scores,
then the algorithm will violate LC as long as the similarity metric deems the well
(poorly) qualified applicant that is assigned a high (low) risk score to be similar to
some well (poorly) qualified applicant that is assigned a low (high) risk score, since
that would amount to treating two similar individuals in a dissimilar fashion. So LC is,
in principle, capable of diagnosing this type of unfairness (given a suitable similarity
metric).

In contrast, it’s not hard to see that BRT1 cannot so straightforwardly diagnose
unfairness in this type of case. Suppose we have a fair and accurate algorithm h
that assigns reasonable risk scores to all members of S. Then take an algorithm h*
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that is identical to h with the exception that it swaps the risk scores of a highly
qualified applicant and a poorly qualified applicant. The average risk scores assigned
to members of S by A and h* are the same. So from the perspective of BRT1, h* seems
to treat S just as fairly (in comparison to the complement of S) as h does. While this
might look like a victory for LC over BRT1, that impression is premature, for the
following reasons.

Firstly, recall that in order for LC to be meaningfully applied, we first need to solve
the problem of determining the similarity metric. Until that problem is solved, any
promise regarding the diagnostic power of LC will ring hollow. And in the previous
section, I argued that there is simply no promising way to solve that problem. So
while proponents of LC can reasonably claim that, given a recipe for determining the
similarity metric, the condition allows us to diagnose this species of unfairness, the
fact that no such recipe exists renders this a Pyrrhic victory.

Secondly, note that BRT1 aims to diagnose when one group is treated unfairly in
comparison to another. While it does seem reasonable to say that there is some kind
of unfairness at play when the risk scores of a well qualified applicant from S and a
poorly qualified applicant from S are switched (the well qualified applicant is being
treated unfairly compared to the poorly qualified applicant), it doesn’t seem that this
unfairness necessarily counts as group level unfairness against S. For, S members are
not being treated poorly (in comparison to non-members) in any kind of a systematic
way. Some S members are being treated better than is warranted, and some are being
treated worse than is warranted. Now, if the switching of risk scores were the result of
a nefarious plan to produce negative data for members of S, then that would of course
count as a group level injustice, but it’s not the kind of injustice that could possibly be
diagnosed by any statistical fairness criterion, since it is grounded not in the pattern
of ill treatment, but rather in the ill intentions of the algorithm’s proprietors.

Thirdly, I stress that I do not consider BRT (let alone BRT1) to constitute a sufficient
condition for algorithmic fairness. Even if we restrict ourselves to talking about purely
statistical criteria'®, I strongly suspect that BRT is not the only criterion that we
should employ. And combining BRT1 with other group level statistical criteria will
allow us to diagnose the relevant type of unfairness in many realistic cases. For
instance, imagine that the risk scores (derived from an accurate and fair algorithm) of
many qualified members of S are swapped with the risk scores of unqualified members
of S. While this won’t change the average risk score assigned to .S overall, it will have
a major impact on the overall profile of predictions for S. And this impact will be
readily picked up by many alternative group level fairness criteria. For instance,
the equal error rates, equal false positive rates and equal false negative rates crtieria
from the introduction will all identify unfairness in this type of case, as would the
influential calibration within groups criterion.!” So while BRT1 alone may not be
able to diagnose unfairness in this type of case, there is no need to resort to individual

16. I think it’s clear that there are some kinds of unfairness that cannot be diagnosed by any purely statistical
criteria.

17. For discussion of this criterion, see e.g. Hedden (2021), Kleinberg et al. (2016), Miconi (2017), Pleiss et
al. (2017).
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based fairness criteria, since other group level criteria are well equipped to handle
such cases.!®

6: ‘Reverse tokenism’ — Dwork et al. describe this as a type of unfairness whereby the
algorithm’s proprietors assign an unjustifiably harsh prediction to a qualified member
of S’s complement (a ‘token rejectee’) in order to refute complaints that members of
S are treated harshly in virtue of their membership of that group. Again, if LC had
access to a suitable similarity metric, it could plausibly diagnose this type of unfairness
as long as the token rejectee is deemed similar to some other highly qualified applicants
that are not given unusually poor treatment. And again, it’s not clear that BRT1
has such an easy time diagnosing unfairness in this type of case. However, the case
is sufficiently analogous to the self fulfilling prophecy case discussed above that the
three counterarguments listed there all apply equally to this case. Most pertinently
I note that, as with the previous case, (i) LC’s claim to diagnostic power is hollow
in the absence of a solution to the problem of fixing the similarity metric, and (ii) in
realistic instances of this type of unfairness, BRT1 can be paired with other group
level criteria to successfully identify the algorithm’s bias.

5. Conclusion

Overall then, we’ve seen that LC suffers from a fundamental conceptual problem that admits
of no promising solution, and that the kinds of unfairness that LC was designed to identify
can all be diagnosed at least as well by group level statistical criteria. Where does this leave
the project of developing an individual based conception of algorithmic fairness?

One lesson from the preceding analysis is that group based fairness criteria have the
major advantage that they can utilise the rich internal statistical structure of groups, while
individual based criteria cannot. From a statistical perspective, individuals are essentially
atomic in the sense that they have no internal structure (i.e. no non-trivial base rates,
average risk scores, false positive rates etc). LC attempts to compensate for this lack of
structure by relying on a similarity metric, but, as we’ve seen, this strategy is ultimately
unsuccessful since there is no principled and rigorous way to determine the similarity metric
in concrete cases. Thus, the challenge for advocates of an individual based conception
of algorithmic fairness is to find alternative ways of compensating for individuals’ lack of
internal statistical structure. While I don’t have any idea of how this could be accomplished,
T also don’t see any fundamental conceptual obstacle that precludes the possibility of success.
At the current juncture, however, group based criteria look like a more promising tool for
the policing of bias and injustice in algorithmic prediction.
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