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Abstract

We study what can be learned when receiving propositional reports from multiple non-
expert information sources. We suppose that sources report all that they consider possible,
given their expertise. This may result in false and inconsistent reports when sources lack
expertise on a topic. A learning method is truth-tracking, roughly speaking, if it eventually
converges to correct beliefs about the “actual” world. This involves finding both the actual
state of affairs in the domain described by the sources, and finding the extent of the
expertise of the sources themselves. We investigate the extent to which truth-tracking is
possible, and describe what information can be learned even if the actual world cannot
be pinned down uniquely. We find that a broad spread of expertise among the sources
allows the actual state of affairs to be found, even if no individual source is an expert
on all topics. On the other hand, narrower expertise at the individual level allows the
actual expertise to be found more easily. Finally, we turn to learning methods themselves:
we provide a postulate-based characterisation of truth-tracking for general methods under
mild assumptions, before looking at a couple of specific classes of methods from the belief
change literature.

1. Introduction

In this paper we study truth-tracking in the logical framework of Singleton and Booth
(2022) for reasoning about multiple non-expert information sources. Broadly speaking, the
goal of truth-tracking is to find the true state of the world given some input which describes
it. In our case this involves finding the true state of some propositional domain about which
the sources give reports, and finding the extent of the expertise of the sources themselves.

The general problem of truth-tracking has been studied in various forms across many
domains. Perhaps the oldest approach goes back to de Condorcet (1785), whose celebrated
Jury Theorem states that a majority vote on a yes/no issue will yield the “correct” answer
with probability approaching 1 as the number of voters tends to infinity, provided that
each voter is more reliable than random choice. This result has since been generalised in
many directions (e.g., by Grofman, Owen and Field (1983)). More widely, epistemic social
choice (Elkind & Slinko, 2016) studies aggregation methods (e.g., voting rules) from the
point of finding the “correct” result with high probability, where individual votes are seen
as noisy approximations. Of particular relevance to our work is truth-tracking in judgement
aggregation in social choice (Hartmann & Sprenger, 2012; Terzopoulou & Endriss, 2019),
which also takes place in a logical framework. Belief merging has close links with judgement
aggregation, and generalised jury theorems have been found here too (Everaere, Konieczny,
& Marquis, 2010).

In crowdsourcing, the problem of truth discovery (Li, Gao, Meng, Li, Su, Zhao, Fan,
& Han, 2016) looks at how information from unreliable sources can be aggregated to find
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the true value of a number of variables, and to find the true reliability level of the sources.
This is close to our setting, since incoming information is not always assumed to be reliable,
and information about the sources themselves is sought after. Work in this area combines
empirical results (e.g., how well methods find the truth on test datasets for which true values
are known) and theoretical guarantees, and is typically set in a probabilistic framework.

On the other hand, formal learning theory (Jain, Osherson, Royer, & Sharma, 1999)
offers a non-probabilistic view on truth-tracking, stemming from the framework of identifi-
cation in the limit (Gold, 1967). In this paradigm a learner receives an infinite sequence of
information step-by-step, such that all true information eventually appears in the sequence.
The learner outputs a hypothesis at each step, and aims to stabilise on the correct hypothe-
sis after some finite number of steps. This framework has been combined with belief revision
theory (Kelly, Schulte, & Hendricks, 1997; Baltag, Gierasimczuk, & Smets, 2019), ontology
learning (Eschenbach & Özcep, 2010) and dynamic epistemic logic (Gierasimczuk, 2009a,
2009b, 2010; Baltag, Gierasimczuk, Özgün, Sandoval, & Smets, 2019). See also (Gierasim-
czuk, 2023) for a recent overview.

This is the approach we take, and in particular we adapt the truth-tracking setting of
Baltag et al. (2019). We apply this to the logical framework of Singleton and Booth (2022).
Briefly, this framework extends finite propositional logic with two new notions: that of a
source having expertise on a formula, and a formula being sound for a source to report.
Intuitively, expertise on φ means the source has the epistemic capability to distinguish
between any pair of φ and ¬φ states: they know whether or not φ holds in any state. A
formula is sound for a source if it is true up to their lack of expertise. For example, if a
source has expertise on φ but not ψ, then φ ∧ ψ is sound whenever φ holds, since we can
ignore the ψ part (on which the source has no expertise). The resulting logical language
therefore addresses both the ontic facts of the world, through the propositional part, and
the epistemic state of the sources, via expertise and soundness.

For the most part, formal learning theory supposes that all information received is true,
and that all true information is eventually received.1 This is not a tenable assumption
with non-expert sources: some sources may simply lack the expertise to know whether φ
is true or false. Instead we make a different (and strong) assumption: all and only sound
reports are received. Thus, sources report everything consistent with their expertise, which
necessitates inconsistent reports from non-experts, since both φ and ¬φ will look consistent
to a source that lacks expertise to determine whether φ holds. Consequently, the input to
our learning methods should be distinguished from the inputs to belief revision and belief
merging methods (Alchourrón, Gärdenfors, & Makinson, 1985; Konieczny & Pino Pérez,
2002) – also propositional formulas – which represent beliefs of the reporting sources. Indeed,
we do not model beliefs of the sources at all.

The following example informally illustrates the core concepts of the logical framework
and truth-tracking, and will be returned to throughout the paper.

Example 1. Consider a medical scenario in which patient A is checked for conditions p
and q. By examining A, a doctor D has expertise to determine whether A has at least one

1. But see Section 8.1 of Jain et al. (1999), who consider inaccurate data of various kinds, and Baltag et al.
(2019), who consider erroneous reports provided that all errors are eventually corrected.
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of p or q, but cannot tell which one(s) without a blood test. A test is only available for p,
however, so that the technician T performing the test has expertise on p but not q.

Supposing A in fact suffers from q but not p, D considers each of p ∧ q, ¬p ∧ q and
p ∧ ¬q possible, whereas T considers both ¬p ∧ q and ¬p ∧ ¬q possible. Assuming both
sources report all they consider possible, their combined expertise leaves ¬p ∧ q as the only
possibility. Intuitively, this means we can find the true values of p and q in this case.

Now consider a patient B who suffers from both conditions. D cannot distinguish A and
B, so will provide the same reports, and T considers both p∧ q and p∧¬q possible. In this
case T is more knowledgable than D – since T considers fewer situations possible – but we
cannot narrow down the true value of q. Thus truth-tracking is only possible for p. The
second patient still provides useful information, though, since together with the reports on
A, T’s lack of expertise tells us all the (in)distinctions between states they are able to make.
Namely, T cannot distinguish between p ∧ q and p ∧ ¬q. Thus we can find the truth about
T’s expertise.

Contributions. This paper adapts learning-theoretic notions from formal learning theory
- and in particular its intersection with belief revision (Baltag et al., 2019) - to handle
non-expert information sources. We establish the limits of learning in this setting, and
conditions under which one can learn the true facts of the world as well as the true extent
of the expertise of the sources. We go on to characterise truth-tracking learning methods in
terms of syntactic postulates, and look specifically at some methods previously introduced
by Singleton and Booth (2022).

Paper outline. In Section 2 we outline the logical framework for reasoning about exper-
tise. Section 3 introduces the key concepts of truth-tracking and solvable questions. We
characterise solvable questions in Section 4, and explore what they can reveal about the
actual world in Section 5. Section 6 looks at learning methods themselves, and characterises
truth-tracking methods. We conclude in Section 7.

2. Preliminaries

In this section we recall the logical framework of Singleton and Booth (2022) for reasoning
with non-expert sources.

Syntax. Let Prop be a finite set of propositional variables, and let L0 denote the propo-
sitional language generated from Prop. We use L0 to model the domain underlying the
truth-tracking problem; it describes the “ontic” facts of the world, irrespective of the ex-
pertise of the sources. Formulas in L0 will be denoted by lower-case Greek letters (φ, ψ,
etc).

Let S be a finite set of sources. Here we make an important change to the setup of
Singleton and Booth (2022): we do not include a special, completely reliable source. Indeed,
having access to a completely reliable source of information would somewhat trivialise the
truth-tracking problem, at least as far as learning ontic facts is concerned. The language L
extends L0 with expertise and soundness formulas for each source i ∈ S, and is defined by
the following grammar:

Φ ::= φ | Eiφ | Siφ | Φ ∧ Φ | ¬Φ,
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Figure 1: Example of a world W , which formalises Example 1. Here Prop = {p, q}, S =
{D,T} and C = {A,B}.

for φ ∈ L0 and i ∈ S. Formulas in L will be denoted by upper-case Greek letters (Φ, Ψ
etc). Other logical connectives (∨, →, ↔) are introduced as abbreviations. We read Eiφ as
“i has expertise on φ”, and Siφ as “φ is sound for i”. Note that we restrict the expertise
and soundness formulas to propositional arguments, and do not consider nested formulas
such as EiSjφ.

Semantics. Let V denote the set of propositional valuations over Prop. We represent the
expertise of a source i with a partition Πi of V. Intuitively, this partition represents the
distinctions between states the source is able to make: valuations in the same cell in Πi are
indistinguishable to i, whereas i is able to tell apart valuations in different cells. We say i
has expertise on φ iff i can distinguish all φ states from ¬φ states, and φ is sound for i if
the “actual” state (as defined below) is indistinguishable from some φ state.

Let C be a finite set of cases, thought of as independent concrete instances of the domain
of interest. For example, the cases in Example 1 are the patients A and B. We consider
the expertise of sources to be fixed across all cases.

A world is a pair W = ⟨{vc}c∈C , {Πi}i∈S⟩, where

• vc ∈ V is the “actual” valuation for case c;

• Πi ⊆ 2V is a partition representing the expertise of i.

Let W denote the set of worlds. Note that W is finite, since V, C and S are. Note it
is possible in a world W to have vc1 = vc2 for c1 ̸= c2. For φ ∈ L0, write ∥φ∥ ⊆ V for the
models of φ, and write v ⊩ φ iff v ∈ ∥φ∥. The consequences of a set Γ ⊆ L0 is denoted
by Cn0 (Γ), and we write Γ ⊩ φ if φ ∈ Cn0 (Γ). For a partition Π, let Π[v] denote the
unique cell in Π containing v, and write Π[U ] =

⋃
v∈U Π[v] for U ⊆ V. For brevity, we write

Π[φ] instead of Π[∥φ∥]. We evaluate L formulas with respect to a world W and a case c as
follows:

W, c |= φ ⇐⇒ vc ⊩ φ

W, c |= Eiφ ⇐⇒ Πi[φ] = ∥φ∥
W, c |= Siφ ⇐⇒ vc ∈ Πi[φ],
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where the clauses for conjunction and negation are as standard. The semantics follows the
intuition outlined above: Eiφ holds when Πi separates the φ states from the ¬φ states, and
Siφ holds when vc is indistinguishable from some φ state. Thus, Siφ means φ is true up
to the expertise of i: if we weaken φ according to i’s expertise, the resulting formula (with
models Πi[φ]) is true.

Note that expertise and soundness are closely related to S5 knowledge from epistemic
logic. By taking the equivalence relations associated with each partition Πi, we obtain a
(multi-agent) S5 Kripke model, and have the correspondences Siφ ≡ ¬Ki¬φ and Eiφ ≡
A(φ → Kiφ), where Ki denotes knowledge of source i and A is the universal modal-
ity (Goranko & Passy, 1992). (Aφ is true at a state iff φ is true at all states.) This
gives expertise and soundness precise interpretations in terms of knowledge; we refer the
reader to (Singleton & Booth, 2022; Singleton, 2021) for further discussion.

Example 2. Take W from Fig. 1, which formalises Example 1. Then W, c |= ED(p∨ q) for
all c ∈ C, since ∥p ∨ q∥ is a cell in ΠD. We also have W,A |= ¬p∧ SDp, i.e., patient A does
not suffer from condition p, but it is consistent with D’s expertise that they do.

We write W, c |= Γ, for a set of formulas Γ ⊆ L, if W, c |= Φ for all Φ ∈ Γ. For a set
S ⊆ W, we write S, c |= Φ iff W, c |= Φ for all W ∈ S.

Reports. A report is a triple ⟨i, c, φ⟩, where i ∈ S, c ∈ C and φ ∈ L0 with φ ̸≡ ⊥. In this
paper, we interpret such triples as source i reporting that φ is possible in case c. An input
sequence σ is a finite sequence of reports.

A method L maps each input sequence σ to a set of worlds L(σ) ⊆ W, called the
conjecture of L on σ.2 We say L implies S ⊆ W on the basis of σ if L(σ) ⊆ S. L is
consistent if L(σ) ̸= ∅ for all input sequences σ.

3. Truth-Tracking

We adapt the framework for truth-tracking from (Gierasimczuk, 2010; Baltag, Gierasim-
czuk, & Smets, 2015; Baltag et al., 2019), which finds its roots in formal learning theory.
In this framework, a learning method receives increasing initial segments of an infinite se-
quence – called a stream – which enumerates all (and only) the true propositions observable
at the “actual” world. Truth-tracking requires the method to eventually find the actual
world (or some property thereof), given any stream.

As mentioned in the introduction, in our setting we cannot assume the sources them-
selves report only true propositions. Instead, our streams will enumerate all the sound
reports. Thus, a stream may include false reports, but such false reports only arise due to
lack of expertise of the corresponding source.3 Moreover, all sound reports will eventually
arise. Since Siφ means φ is possible from the point of view of i’s expertise, we can view
a stream as each source sharing all that they consider possible for each case c ∈ C. In
particular, a non-expert source may report both φ and ¬φ for the same case.

2. We depart from the original framework of Singleton and Booth (2022) here by taking a semantic view
of belief change operators, with the output a set of worlds instead of formulas.

3. Alternatively, we can consider statements of the form “φ is sound for i in case c” as a higher-order
“proposition”; a stream then enumerates all true propositions of this kind.

623



Singleton & Booth

Definition 1. An infinite sequence of reports ρ is a stream for W iff for all i, c, φ4:

⟨i, c, φ⟩ ∈ ρ ⇐⇒ W, c |= Siφ.

We refer to the left-to-right implication as soundness of ρ for W , and the right-to-left
direction as completeness. Note that every world W has some stream: the set {⟨i, c, φ⟩ |
W, c |= Siφ} is countable, so can be indexed by N to form a stream. For n ∈ N we let ρn
denote the n-th report in ρ, and write ρ[n] for the finite initial segment of ρ of length n.

Example 3. Consider W from Fig. 1 and case A. From the point of view of D’s expertise,
the “actual” valuation could be pq, p̄q, pq̄. Consequently, in a stream for W , D will report
p, ¬p, q, ¬q, p∨q, and so on. A report that D will not give is ¬(p∨q), since D has expertise
to know this is false.

Note that vA and vB are indistinguishable to D, so the reports of D in any stream will
be the same for both cases. In contrast, T can distinguish the two cases, and will report ¬p
in case A but not in B, and p in case B but not in A.

In line with the notion originally given by Baltag et al. (2015) we define a question Q
to be a partition of W. That is, a question is a set of disjoint answers A ∈ Q, with each
world W appearing in a unique cell Q[W ] – the correct answer at W .

Example 4. We consider some example questions.

1. Any formula Φ ∈ L and case c defines a question QΦ,c, whose two cells consist of the
worlds satisfying Φ, respectively ¬Φ, in case c. Intuitively, this question asks whether
Φ is true or false in case c.

2. The finest question Q⊥ = {{W} |W ∈ W} asks: what is the “actual” world?

3. More generally, for any set X and function f : W → X, the equivalence relation given
by W ≃f W

′ iff f(W ) = f(W ′) defines a question Qf .

In this way any data associated with a world gives rise to a question. For example, if
f(W ) = {i ∈ S | ΠW

i [p] = ∥p∥} we ask for the set of sources with expertise on p; if
f(W ) = |{c ∈ C |W, c |= p}| we ask for the number of cases where p holds, etc.

In fact, all questions are of this form: given Q we may define f : W → Q by f(W ) =
Q[W ]; then Qf = Q.

A method solves Q if it eventually implies the correct answer when given any stream.

Definition 2. A method L solves a question Q if for all worlds W and all streams ρ for
W , there is n ∈ N such that L(ρ[m]) ⊆ Q[W ] for all m ≥ n. A question Q is solvable if
there is some consistent method L which solves Q.

Note that we do not require W ∈ L(ρ[m]). Solvability can be also expressed in terms of
eliminating incorrect worlds.

4. By abuse of notation, we use set membership for a sequence ρ to mean that the element appears some-
where in the sequence.
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Proposition 1. A method L solves Q if and only if for all W , all streams ρ for W , and
all W ′ /∈ Q[W ], there is nW ′ ∈ N such that W ′ /∈ L(ρ[m]) for all m ≥ nW ′.

Proof. “if”: Taking n = max{nW ′ |W ′ /∈ Q[W ]}, which exists since W is finite, L(ρ[m]) ⊆
Q[W ] for m ≥ n.

“only if”: Taking n from the definition of L solving Q, we may simply take nW ′ = n for
all W ′ /∈ Q[W ].

4. Characterising Solvable Questions

In this section we explore solvability of questions, finding that there is a unique “hardest”
question which subsumes all solvable questions. We show this is itself solvable, and thus
obtain a precise characterisation of solvability.

Following Baltag et al. (2015), questions are partially ordered by partition refinement:
Q ⪯ Q′ iff each A′ ∈ Q′ can be written as a union of answers from Q. Equivalently,
Q[W ] ⊆ Q′[W ] for all W . This can be interpreted as a difficulty ordering : if Q ⪯ Q′

then each answer of Q′ is just a disjunction of answers of Q, and thus Q′ is easier than Q.
Naturally, if Q is solvable then so too is any easier question.

Proposition 2. If Q is solvable and Q ⪯ Q′, then Q′ is solvable.

Proof. The method which solves Q also solves Q′.

Since question solving is based on streams of sound reports, worlds satisfying the same
soundness statements cannot be distinguished by any solvable question. To formalise this,
define a preorder ⊑ on W by

W ⊑W ′ ⇐⇒ ∀i, c, φ : (W, c |= Siφ =⇒ W ′, c |= Siφ).

Thus, W ⊑ W ′ iff any report sound for W is also sound for W ′. We denote by ⊏ and ≈
the strict and symmetric parts of ⊑, respectively.

Lemma 1. W ⊑W ′ if and only if for all i ∈ S and c ∈ C, ΠW
i [vWc ] ⊆ ΠW ′

i [vW
′

c ].

Proof. “if”: Suppose W, c |= Siφ. Then vWc ∈ ΠW
i [φ], so there is u ∈ ∥φ∥ such that vWc ∈

ΠW
i [u]. Consequently u ∈ ΠW

i [vWc ] ⊆ ΠW ′
i [vW

′
c ], which means vW

′
c ∈ ΠW ′

i [u] ⊆ ΠW ′
i [φ].

Hence W ′, c |= Siφ. This shows W ⊑W ′.
“only if”: Let u ∈ ΠW

i [vWc ]. Let φ be any formula with ∥φ∥ = {u}. Then W, c |= Siφ,
so W ⊑ W ′ gives W ′, c |= Siφ, i.e., v

W ′
c ∈ ΠW ′

i [u], so u ∈ ΠW ′
i [vW

′
c ]. Hence ΠW

i [vWc ] ⊆
ΠW ′

i [vW
′

c ].

Note that Πi[vc] is the set of valuations indistinguishable from the “actual” valuation
in case c, for source i. In light of Lemma 1, we can interpret W ⊑ W ′ as saying that all
sources are more knowledgeable in each case c in world W than in W ′. However, W ⊑ W ′

does not say anything about the partition cells not containing some vc.

Proposition 3. The following are equivalent.

1. W and W ′ have exactly the same streams.
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2. W ≈W ′.

3. For all i ∈ S and c ∈ C, ΠW
i [vWc ] = ΠW ′

i [vW
′

c ].

Proof. (2) and (3) are easily seen to be equivalent in light of Lemma 1. To show (1) is
equivalent to (2), first suppose W and W ′ have the same streams, and suppose W, c |= Siφ.
Taking an arbitrary stream ρ for W , completeness gives ⟨i, c, φ⟩ ∈ ρ. But ρ is a stream for
W ′ too, and soundness gives W ′, c |= Siφ. Hence W ⊑W ′. A symmetrical argument shows
W ′ ⊑W .

On the other hand, if W ≈ W ′ then W and W ′ satisfy exactly the same soundness
statements, so it is clear that any sequence ρ is a stream for W iff it is a stream for W ′.

Since it will play a special role throughout, we denote by Q∗ the question formed by
the equivalence relation ≈. Then Q∗[W ] is the set of W ′ with W ≈ W ′. Since no solvable
question can distinguish ≈-equivalent worlds, we have the following.

Lemma 2. If Q is solvable then Q∗ ⪯ Q.

Proof. Suppose L is a consistent method solving Q. We show Q∗[W ] ⊆ Q[W ] for all W .
Indeed, let W ′ ∈ Q∗[W ]. Then W ′ ≈ W . Taking any stream ρ for W , there is n such that
L(ρ[m]) ⊆ Q[W ] for m ≥ n. On the other hand ρ is also a stream for W ′ by Proposition 3,
so there is n′ such that L(ρ[m]) ⊆ Q[W ′] for m ≥ n′. Setting m = max{n, n′} and using
the fact that L is consistent, we find ∅ ⊂ L(ρ[m]) ⊆ Q[W ] ∩Q[W ′]. Since Q is a partition,
this means Q[W ] = Q[W ′], i.e., W ′ ∈ Q[W ].

So, any solvable question is coarser than Q∗. Fortunately, Q∗ itself is solvable since we
work in a finite framework. For a sequence σ, write X snd

σ for the set of worlds W such that
W, c |= Siφ for all ⟨i, c, φ⟩ ∈ σ. To solve Q∗ it suffices to conjecture the ⊑-minimal worlds
in X snd

σ .

Proposition 4. Q∗ is solvable.

Proof. Set L(σ) = min⊑X snd
σ if X snd

σ ̸= ∅, and L(σ) = W otherwise (where W ∈ min⊑X snd
σ

iff W ∈ X snd
σ and there is no W ′ ∈ X snd

σ with W ′ ⊏ W ). Note that L is consistent since
W is finite and non-empty. We show that L solves Q∗ by Proposition 1. Take any world
W and a stream ρ. First note that, by soundness of ρ, W ∈ X snd

ρ[n] for all n ∈ N, so we are
always in the first case in the definition of L.

Take W ′ /∈ Q∗[W ]. Then W ̸≈W ′. Consider two cases:

• Case 1: W ̸⊑ W ′. By definition, there are i, c, φ such that W, c |= Siφ but W ′, c ̸|=
Siφ. By completeness of ρ for W , there is n such that ρn = ⟨i, c, φ⟩. Consequently
W ′ /∈ X snd

ρ[m] for all m ≥ n. Since L(ρ[m]) ⊆ X snd
ρ[m], we have W ′ /∈ L(ρ[m]) as required.

• Case 2: W ⊏ W ′. Since W ∈ X snd
ρ[n] for all n, W ′ can never be ⊑-minimal. Thus

W ′ /∈ L(ρ[n]) for all n.

Note that these cases are exhaustive since W ̸≈W ′. This completes the proof.

Putting Propositions 2 and 4 and Lemma 2 together we obtain a characterisation of
solvable questions.
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Theorem 1. Q is solvable if and only if Q∗ ⪯ Q.

Given this result, Q∗ is the only question that really matters: any other question is
either unsolvable or formed by coarsening Q∗. With this in mind, we make the following
definition.

Definition 3. A method is truth-tracking if it solves Q∗.

Example 5. We refer back to the questions of Example 4.

1. The question Qφ,c, for any propositional formula φ ∈ L0, is solvable if and only if
either φ is a tautology or a contradiction. To see the “only if” part, consider the
contrapositive. For any contingent formula φ, take worlds W1,W2 where no source
has any expertise (i.e., ΠWk

i = {V} for k ∈ {1, 2}) but where vW1
c ⊩ φ, vW2

c ⊩ ¬φ.
Then W1 ≈W2 (e.g., by Proposition 3) but W1 /∈ Qφ,c[W2].

Similarly, QEiφ,c is solvable iff either φ is a tautology or contradiction, when |Prop| ≥
2.

2. The finest question Q⊥ is not solvable, since there are always distinct W,W ′ with
W ≈W ′.

3. In general, Qf is solvable iff W ≈W ′ implies f(W ) = f(W ′), i.e., iff f takes a unique
value on each equivalence class of ≈.

5. What Information can be Learned?

Solving a question Q has a global character: we must find the correct answer Q[W ] starting
from any world W . As we saw in Example 5, this rules out the possibility of solving
many interesting questions due to the presence of “abnormal” worlds (e.g., those in which
no sources have any expertise). In this section we take a more fine-grained approach by
looking locally : given some particular world W , what can we learn about W via truth-
tracking methods? Concretely, what properties of W are uniquely defined across Q∗[W ]?
For instance, in Example 1 we took this local perspective and argued that in the particular
world W modelling the medical scenario, it is possible to find the true value of q for patient
A but not for B. The results and examples of this section will formalise this informal
argument. There are two components of a world that need to be identified: the cases (i.e.,
the valuations) and the expertises (i.e., the partitions). The former will be addressed in
Section 5.1, the latter in Section 5.2. The two will be combined in Section 5.3.

In general, the extent to which one can learn depends onW . If no sources have expertise
then source partitions are uniquely defined (since all consistent formulas are sound, and
only the trivial partitions have this property), but any combination of valuations is possible,
since if ΠW

i = {V} for all i ∈ S then W ≈W ′ for every other W ′ such that ΠW ′
i = {V} for

all i ∈ S. On the other hand if all sources have total expertise then valuations are uniquely
defined, but there may not be enough cases to uniquely identify the source partitions. Of
particular interest is the case where Q∗[W ] contains only W ; starting in such a world,
truth-tracking methods are able to find the true world exactly.

In what follows, say S ⊆ W decides Φ in case c iff either S, c |= Φ or S, c |= ¬Φ. That
is, the truth value of Φ in case c is unambiguously defined across the worlds in S. If Φ does
not depend on the case (e.g., if Φ = Eiφ) we simply say S decides Φ.
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5.1 Valuations

We start by considering when Q∗[W ] decides a propositional formula φ in case c, i.e., when
truth-tracking methods are guaranteed to successfully determine whether or not φ holds
in the “actual” world. This leads to a precise characterisation of when Q∗[W ] contains a
unique valuation in case c, so that vWc can be found exactly.

We need a notion of group expertise. For S ′ ⊆ S and Γ ⊆ L0, write W |= ES′Γ if for
each ψ ∈ Γ there is i ∈ S ′ such that W |= Eiψ. Then the group S ′ has expertise on Γ in a
collective sense, even if no single source has expertise on all formulas in Γ. We have that φ
is decided if S have group expertise on a set of true formulas Γ ⊆ L0 such that either Γ ⊩ φ
or Γ ⊩ ¬φ.

Theorem 2. Q∗[W ] decides φ ∈ L0 in case c if and only if there is Γ ⊆ L0 such that
(i) W, c |= Γ; (ii) W |= ESΓ; and (iii) either Γ ⊩ φ or Γ ⊩ ¬φ.

Q∗[W ] decides all propositional formulas – and thus determines the c-valuation vWc
exactly – iff S have group expertise on a maximally consistent set of true formulas. For
S ⊆ W and c ∈ C, write VS

c = {vWc |W ∈ S} for the c-valuations appearing in S.

Theorem 3. The following are equivalent.

1. VQ∗[W ]
c = {vWc }.

2. Q∗[W ] decides φ in case c, for all φ ∈ L0.

3. There is Γ ⊆ L0 such that (i) W, c |= Γ; (ii) W |= ESΓ; and (iii) Cn0 (Γ) is a
maximally consistent set.

We illustrate Theorem 3 with an example.

Example 6. Consider W from Fig. 1. Then one can show VQ∗[W ]
A = {p̄q} = {vWA },

and VQ∗[W ]
B = {pq, pq̄} ≠ {vWB }. That is, W ’s A valuation is uniquely determined by truth-

tracking methods, but its B valuation is not: there is some worldW ′ ≈W whose B-valuation
differs from W ’s. This matches the informal reasoning in Example 1, in which patient A
could be successfully diagnosed on both p and q but B could not.

Formally, take Γ = {p ∨ q,¬p}. Then W,A |= Γ, W |= ESΓ (since D has expertise
on p ∨ q and T has expertise on ¬p), and Cn0 (Γ) = Cn0 (¬p ∧ q), which is maximally
consistent. This example shows how the expertise of multiple sources can be combined to
find valuations uniquely, but that this is not necessarily possible in all cases.

The remainder of this section proves Theorems 2 and 3.

Lemma 3. For W ≈W ′, i ∈ S and φ ∈ L0,

W, c |= φ ∧ Eiφ =⇒ W ′, c |= φ.

Proof. From W, c |= φ we have vWc ∈ ∥φ∥, so ΠW
i [vWc ] ⊆ ΠW

i [φ]. But W, c |= Eiφ means
ΠW

i [φ] = ∥φ∥, so in fact ΠW
i [vWc ] ⊆ ∥φ∥. Now using W ≈ W ′, we find vW

′
c ∈ ΠW ′

i [vW
′

c ] =
ΠW

i [vWc ] ⊆ ∥φ∥. Hence W ′, c |= φ.
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Lemma 4. VQ∗[W ]
c =

⋂
i∈S ΠW

i [vWc ].

Proof. “⊆”: Suppose u ∈ VQ∗[W ]
c . Then there is W ′ ≈ W such that u = vW

′
c . Let i ∈ S.

Then u ∈ ΠW ′
i [vW

′
c ] = ΠW

i [vWc ] by Proposition 3, as required.

“⊇”: Suppose u ∈
⋂

i∈S ΠW
i [vWc ]. Let W ′ be the world obtained from W by setting

the c-valuation to u, keeping partitions and other valuations the same. We need to show
W ′ ≈ W . We do so via Proposition 3, by showing condition (3). Take any i ∈ S and
d ∈ C. If d ̸= c then vW

′
d = vWd ; since partitions are the same in W ′ as in W we get

ΠW
i [vWd ] = ΠW ′

i [vW
′

d ]. For c = d, note ΠW ′
i [vW

′
c ] = ΠW

i [u]. By assumption u ∈ ΠW
i [vWc ], so

ΠW
i [u] = ΠW

i [vWc ]. Hence ΠW ′
i [vW

′
c ] = ΠW

i [vWc ] as required.

Proof of Theorem 2. “if”: Take W ′ ∈ Q∗[W ]. Note that since W, c |= Γ and W, c |= ESΓ,
we may apply Lemma 3 to each formula in Γ in turn to find W ′, c |= Γ. Now, if W, c |= φ
then we must have Γ ⊩ φ, so W ′, c |= φ too. Otherwise W, c ̸|= φ, so we must have Γ ⊩ ¬φ
and W ′, c ̸|= φ. This shows W ′, c |= φ if and only if W, c |= φ. Since W ′ ∈ Q∗[W ] was
arbitrary, Q∗[W ] decides φ in case c.

“only if”: Suppose Q∗[W ] decides φ in case c. For each i ∈ S, take some ψi ∈ L0 such
that ∥ψi∥ = ΠW

i [vWc ]. Then W |= Eiψi. Set Γ = {ψi}i∈S . Clearly W, c |= Γ and W |= ESΓ.

Now, take any u ∈ ∥Γ∥. By Lemma 4, ∥Γ∥ =
⋂

i∈S ΠW
i [vWc ] = VQ∗[W ]

c . Hence there is some

W ′ ∈ Q∗[W ] such that u = vW
′

c . But Q∗[W ] decides φ in case c, so W ′, c |= φ iff W, c |= φ.
Thus u ⊩ φ iff W, c |= φ. Since u ∈ ∥Γ∥ was arbitrary, we have Γ ⊩ φ if W, c |= φ, and
Γ ⊩ ¬φ otherwise.

Proof of Theorem 3. (1) implies (2): If W ′ ∈ Q∗[W ] then W and W ′ share the same c-
valuation by (1), so clearly W, c |= φ iff W ′, c |= φ, for any φ. Hence Q∗[W ] decides φ in
case c.

(2) implies (1): Clearly vWc ∈ VQ∗[W ]
c . Suppose u ∈ VQ∗[W ]

c . Then there is W ′ ∈ Q∗[W ]
such that u = vW

′
c . Let p ∈ Prop. Since W,W ′ ∈ Q∗[W ] and Q∗[W ] decides p in case c, we

have u ⊩ p iff vWc ⊩ p. Since p was arbitrary, u = vWc .

(2) implies (3): Applying Theorem 2 to each φ ∈ L0, there is a set Γφ ⊆ L0 such that
W, c |= Γφ, W |= ESΓφ, and either Γφ ⊩ φ or Γφ ⊩ ¬φ. Set Γ =

⋃
φ∈L0

Γφ. Clearly
W, c |= Γ – so Γ is consistent – and W |= ESΓ. To show Cn0 (Γ) is maximally consistent,
suppose φ /∈ Cn0 (Γ). From monotonicity of classical consequence and Γφ ⊆ Γ, we get
φ /∈ Cn0 (Γφ). Hence Γφ ⊩ ¬φ, and Γ ⊩ ¬φ too. This means Cn0 (Γ) ∪ {φ} is inconsistent,
and we are done.

(3) implies (2): Take φ ∈ L0. Then we may apply Theorem 2 with Γ from (3) – noting
that the maximal consistency property ensure either Γ ⊩ φ or Γ |= ¬φ – to see that Q∗[W ]
decides φ in case c.

5.2 Source Partitions

We now consider when Q∗[W ] decides an expertise formula Eiφ, i.e., when truth-tracking
methods are guaranteed to successfully determine the expertise of source i. This leads to a
precise characterisation of when Q∗[W ] contains a unique partition for source i. We apply
the analysis of the previous section to the set of source partitions {ΠW

i }i∈S . For S ⊆ W and
i ∈ S, write PS

i = {ΠW
i | W ∈ S} for the i-partitions appearing in S. When S = Q∗[W ],
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vc1

vc2

Figure 2: World W from Example 7. Note that for brevity we do not label the valuations.

these are exactly those partitions which agree with ΠW
i at each valuation vWc . In other

words:

Lemma 5. Π ∈ PQ∗[W ]
i if and only if {ΠW

i [vWc ]}c∈C ⊆ Π.

Proof. “if”: Suppose {ΠW
i [vWc ]}c∈C ⊆ Π. LetW ′ be obtained fromW by setting i’s partition

to Π, keeping valuations and other source partitions the same. We claim W ′ ≈W . Indeed,
take any j ∈ S and c ∈ C. If j ̸= i then ΠW ′

j = ΠW
i ; since valuations are the same we

get ΠW
j [vWc ] = ΠW ′

j [vW
′

c ]. For j = i, note that since ΠW
i [vWc ] ∈ Π by assumption, and

vWc ∈ ΠW
i [vWc ], we have Π[vWc ] = ΠW

i [vWc ]. By construction of W ′, this means ΠW
i [vWc ] =

Π[vW
′

c ] = ΠW ′
i [vW

′
c ]. By Proposition 3, W ′ ≈W . Hence Π ∈ PQ∗[W ]

i .
“only if”: This is clear from Proposition 3.

Example 7. Suppose |Prop| = 3, C = {c1, c2} and i ∈ S. Consider a world W whose i-
partition is shown in Fig. 2. By Lemma 5, a partition Π appears as ΠW ′

i for some W ′ ≈W
if and only if it contains the leftmost and bottommost sets. Any such Π consists of these
cells together with a partition of the shaded area. Since there are 5 possible partitions of a

3-element set, it follows that |PQ∗[W ]
i | = 5.

Example 7 hints that if the cells containing the valuations vWc cover the whole space of
valuations V, or just omit a single valuation, then i’s partition is uniquely defined in Q∗[W ].
That is, truth-tracking methods can determine the full extent of i’s expertise if the “actual”
world is W . Indeed, we have the following analogue of Theorem 3 for partitions.

Theorem 4. The following are equivalent.

1. PQ∗[W ]
i = {ΠW

i }.

2. Q∗[W ] decides Eiφ for all φ ∈ L0.

3. |V \R| ≤ 1, where R =
⋃

c∈C Π
W
i [vWc ].

Note that R =
⋃

c∈C Π
W
i [vWc ] is the set of valuations indistinguishable from the actual

state at some case c. Clause 3 of Theorem 4 says this set needs to essentially cover the whole
space V, omitting at most a single point. In this sense, it is easier to find ΠW

i uniquely
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when i has less expertise, since the cells ΠW
i [vWc ] will be larger. In the extreme case where i

has total expertise, i.e., ΠW
i = {{v} | v ∈ V}, we need at least 2|Prop| − 1 cases with distinct

valuations in order to find ΠW
i exactly.

Example 8. In Example 7 we have already seen a world W for which PQ∗[W ]
i does not

contain a unique partition. For a positive example, consider the world W from Fig. 1.
Then V \ RD = {p̄q̄} and V \ RT = ∅, so both the partitions of D and T can be found
uniquely by truth-tracking methods.

The remainder of this section proves Theorem 4.

Lemma 6. Let i ∈ S and U ⊆ V. Then U ⊆
⋃

c∈C Π
W
i [vWc ] and W ≈W ′ implies ΠW

i [U ] =

ΠW ′
i [U ].

Proof. It suffices to show that for all u ∈ U we have ΠW
i [u] = ΠW ′

i [u], since by definition
Π[U ] =

⋃
u∈U Π[u]. Let u ∈ U . Then there is c ∈ C such that u ∈ ΠW

i [vWc ]. Hence

ΠW
i [u] = ΠW

i [vWc ]. But since W ≈W ′, ΠW
i [vWc ] = ΠW ′

i [vW
′

c ]. This means u ∈ ΠW ′
i [vW

′
c ], so

ΠW ′
i [u] = ΠW ′

i [vW
′

c ] = ΠW
i [vWc ] = ΠW

i [u], as required,

Lemma 7. Q∗[W ] decides Eiφ if and only if, writing R =
⋃

c∈C Π
W
i [vWc ], either (i)

∥φ∥ ⊆ R; (ii) ∥¬φ∥ ⊆ R; or (iii) there is some c ∈ C such that ΠW
i [vWc ] intersects

with both ∥φ∥ and ∥¬φ∥.

Proof. “if”: First suppose (i) holds. Take W ′ ∈ Q∗[W ]. From ∥φ∥ ⊆ R, W ≈ W ′ and
Lemma 6 we get ΠW

i [φ] = ΠW ′
i [φ]. Consequently, W ′ |= Eiφ iff W |= Eiφ. Since W ′ was

arbitrary, either all worlds in Q∗[W ] satisfy Eiφ, or all do not. Hence Q∗[W ] decides Eiφ.
If (ii) holds, a similar argument shows that Q∗[W ] decides Ei¬φ. But it is easily checked

that Eiφ ≡ Ei¬φ, so Q∗[W ] also decides Eiφ.
Finally, suppose (iii) holds. Then there is c ∈ C and u ∈ ∥φ∥, v ∈ ∥¬φ∥ such that u, v ∈

ΠW
i [vWc ]. We claim Q∗[W ] |= ¬Eiφ. Indeed, take W

′ ∈ Q∗[W ]. Then ΠW
i [vWc ] = ΠW ′

i [vW
′

c ],
so u, v ∈ ΠW ′

i [vW
′

c ]. In particular, u and v differ on φ but are contained in the same cell in
ΠW ′

i . Hence W ′ |= ¬Eiφ.
“only if”: We show the contrapositive. Suppose none of (i), (ii), (iii) hold. Then there

is u ∈ ∥φ∥ \ R and v ∈ ∥¬φ∥ \ R. Let us define two worlds W1, W2 from W by modifying
i’s partition:

ΠW1
i = {ΠW

i [vWc ]}c∈C ∪ {V \R},
ΠW2

i = {ΠW
i [vWc ]}c∈C ∪ {{w} | w ∈ V \R}.

Then W1,W2 ∈ Q∗[W ] by Lemma 5. We claim that W1 |= ¬Eiφ but W2 |= Eiφ, which will
show Q∗[W ] does not decide Eiφ.

First, note that since u, v /∈ R, we have ΠW1
i [u] = ΠW1

i [v] = V \R. Since u and v differ
on φ but share the same partition cell, W1 |= ¬Eiφ.

To show W2 |= Eiφ, take w ∈ ∥φ∥. If w /∈ R then ΠW2
i [w] = {w} ⊆ ∥φ∥. Otherwise

there is c ∈ C such that w ∈ ΠW
i [vWc ]. Thus ΠW

i [vWc ] intersects with ∥φ∥. Since (iii) does
not hold, this in fact implies ΠW

i [vWc ] ⊆ ∥φ∥, and consequently ΠW2
i [w] = ΠW

i [vWc ] ⊆ ∥φ∥.
Since w ∈ ∥φ∥ was arbitrary, we have shown ΠW2

i [φ] =
⋃

w∈∥φ∥Π
W2
i [w] ⊆ ∥φ∥. Since the

reverse inclusion always holds, this shows W2 |= Eiφ, and we are done.
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Proof of Theorem 4. The implication (1) to (2) is clear since ifW ′ ∈ Q∗[W ] then ΠW ′
i = ΠW

i

by (1), so W ′ |= Eiφ iff W |= Eiφ, and thus Q∗[W ] decides Eiφ.
To show (2) implies (3) we show the contrapositive. Suppose |V \ R| > 1. Then there

are distinct u, v ∈ V \R. Let φ be any propositional formula with ∥φ∥ = {u}. We show by
Lemma 7 that Q∗[W ] does not decide Eiφ. Indeed, all three conditions fail: ∥φ∥ ̸⊆ R (since
u /∈ R), ∥¬φ∥ ̸⊆ R (since v ∈ ∥¬φ∥ \ R) and no ΠW

i [vWc ] intersects with ∥φ∥ (otherwise
u ∈ ΠW

i [vWc ] ⊆ R).
Finally, for (3) implies (1) we also show the contrapositive. Suppose there is Π ∈

PQ∗[W ]
i \ {ΠW

i }. Write R = {ΠW
i [vWc ]}c∈C , so that R is a partition of R. By Lemma 5,

R ⊆ Π. Note that R ⊆ ΠW
i too. Since Π ̸= ΠW

i , we in fact have R ⊂ Π and R ⊂ ΠW
i .

Hence Π \ R and ΠW
i \ R are distinct partitions of V \ R. Since a one-element set has a

unique partition, V \R must contain at least two elements.

5.3 Learning the Actual World Exactly

Putting Theorems 3 and 4 together we obtain a precise characterisation of when W can be
found exactly by truth-tracking methods, i.e when Q∗[W ] = {W}.

Corollary 1. Q∗[W ] = {W} if and only if

1. There is a collection {Γc}c∈C ⊆ LC
0 such that for each c, (i) W, c |= Γc; (ii) W |= ESΓc;

(iii) Cn0 (Γc) is maximally consistent; and

2. For each each i ∈ S, |V \
⋃

c∈C Π
W
i [vWc ]| ≤ 1.

6. Truth-Tracking Methods

So far we have focussed on solvable questions, and the extent to which they reveal in-
formation about the actual world. We now turn to the methods which solve them. We
give a general characterisation of truth-tracking methods under mild assumptions, before
discussing the families of conditioning and score-based methods from Singleton and Booth
(2022).

6.1 A General Characterisation

For sequences σ, δ, write σ ≡ δ iff δ is obtained from σ by replacing each report ⟨i, c, φ⟩
with ⟨i, c, ψ⟩, for some ψ ≡ φ. For k ∈ N, let σk denote the k-fold repetition of σ. Consider
the following properties which may hold of a learning method L.

Equivalence If σ ≡ δ then L(σ) = L(δ).

Repetition L(σk) = L(σ).

Soundness L(σ) ⊆ X snd
σ .

Equivalence says that L should not care about the syntactic form of the input. Repetition
says that the output from L should not change if each source repeats their reports k times.
Note this is a weaker requirement than saying that L should be invariant under duplication
of some reports in σ. In that case the number of times a source i repeats a particular report
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could, conceivably, be taken as an indicator of the confidence that i has in that report,
and so the duplication represents extra context that we may want L to take into account.
Soundness says that all reports in σ are conjectured to be sound.5

For methods satisfying these properties, we have a precise characterisation of truth-
tracking, i.e., necessary and sufficient conditions for L to solve Q∗. First, some new notation
is required. Write δ ⪯ σ iff for each ⟨i, c, φ⟩ ∈ δ there is ψ ≡ φ such that ⟨i, c, ψ⟩ ∈ σ. That
is, σ contains everything δ does, up to logical equivalence. Set

Tσ = X snd
σ \

⋃{
X snd
δ | δ ̸⪯ σ

}
Then W ∈ Tσ iff σ is sound for W and any δ sound for W has δ ⪯ σ. In this sense σ
contains all soundness statements for W – up to equivalence – so can be seen as a finite
version of a stream. Let us call σ a pseudo-stream for W whenever W ∈ Tσ.

Theorem 5. A method L satisfying Equivalence, Repetition and Soundness is truth-
tracking if and only if it satisfies the following property.

Credulity If Tσ, c ̸|= Siφ then L(σ), c |= ¬Siφ.

Before the proof, we comment on our interpretation of Credulity . It says that whenever
¬Siφ is consistent with Tσ – those W for which σ is a pseudo-stream – L(σ) should imply
¬Siφ. Since the number of sound statements decreases with increasing expertise, this is a
principle of maximal trust : we should believe i has the expertise to rule out φ in case c,
whenever this is consistent with Tσ. That is, some amount of credulity is required to find
the truth. Our assumption that learning methods receive complete streams ensures that, if
a source in fact lacks this expertise, they will eventually report φ and this belief can be be
retracted. A stronger version of Credulity spells this out explicitly in terms of expertise:

If Tσ, c ̸|= ¬Eiφ then L(σ), c |= Eiφ. (1)

The above property (1) implies Credulity in the presence of Soundness, and is thus a
sufficient condition for truth-tracking (when also taken with Equivalence and Repetition).6

Theorem 5 also shows truth-tracking cannot be performed deductively : the method
L(σ) = X snd

σ , which does not go beyond the mere information that each report is sound,
fails Credulity . Some amount of inductive or non-monotonic reasoning, as captured by
Credulity , is necessary.

Example 9. For a simple example of Credulity assume Prop = {p}, S = {i} and C =
{c}. In this case V contains just two possible valuations vp and v¬p according to whether
p is true or false, respectively. There are also just two possible partitions for i, namely
ΠE = {{vp}, {v¬p}} and Π¬E = {V} according to whether i is able to distinguish between
the two possible valuations or not. Thus W contains four possible worlds W1 = ⟨vp,ΠE⟩,
W2 = ⟨vp,Π¬E⟩, W3 = ⟨v¬p,ΠE⟩ and W4 = ⟨v¬p,Π¬E⟩. There are just three distinct reports,

5. Note that we are using the term “soundness” in three different, but related, ways in this paper. This
usage refers to a property of learning methods, in contrast to our earlier usages as (i) a property of a
formula being “sound” for a source to report, and (ii) a stream ρ being “sound” for a world W .

6. We conjecture (1) is strictly stronger than Credulity .
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up to logical equivalence, that i can possibly give about c, namely p, ¬p and the tautological
p∨¬p. Let’s assume i reports the first and the third of these, i.e., σ = (⟨i, c, p⟩, ⟨i, c, p∨¬p⟩).
We have X snd

σ = {W1,W2,W4}. The missing report ⟨i, c,¬p⟩ is sound for W2 and W4 but
not for W1. Thus Tσ = {W1} and so Tσ, c ̸|= Si¬p. Therefore Credulity says we should
have L(σ), c |= ¬Si¬p, which means that, on the basis of just σ, we should assume i is expert
on p.

The rest of this section works towards the proof of Theorem 5. We collect some useful
properties of pseudo-streams. First, pseudo-streams provide a way of accessing Q∗ via a
finite sequence: Tσ is a cell in Q∗ whenever it is non-empty.

Lemma 8. If W ∈ Tσ, then (i) W ′ ∈ X snd
σ iff W ⊑W ′; and (ii) Tσ = Q∗[W ].

Proof. Suppose W ∈ Tσ. For (i), first suppose W
′ ∈ X snd

σ and W, c |= Siφ. Considering the
singleton sequence δ = ⟨i, c, φ⟩ we have W ∈ X snd

δ . From W ∈ Tσ we get δ ⪯ σ, i.e., there
is ψ ≡ φ such that ⟨i, c, ψ⟩ ∈ σ. From W ′ ∈ X snd

σ and Siφ ≡ Siψ we get W ′, c |= Siφ. This
shows W ⊑W ′.

Now suppose W ⊑ W ′ and let ⟨i, c, φ⟩ ∈ σ. Then since W ∈ Tσ ⊆ X snd
σ we have

W, c |= Siφ, and W ⊑W ′ gives W ′, c |= Siφ. Consequently W
′ ∈ X snd

σ .

Now for (ii), first suppose W ′ ∈ Q∗[W ]. Then W and W ′ satisfy exactly the same
soundness statements, so W ′ ∈ Tσ also. Conversely, suppose W ′ ∈ Tσ. Then W

′ ∈ X snd
σ , so

(i) gives W ⊑ W ′. But we also have W ′ ∈ Tσ and W ∈ X snd
σ , so (i) again gives W ′ ⊑ W .

Hence W ≈W ′, i.e., W ′ ∈ Q∗[W ].

We can now show that property (1) implies Credulity together with Soundness.

Proposition 5. Suppose L satisfies Soundness and property (1). Then L satisfies Credulity.

Proof. Suppose Tσ, c ̸|= Siφ. By assumption, there is some W ∈ Tσ such that W, c ̸|= Siφ.
Take some W ′ ∈ L(σ). We need to show that W ′, c ̸|= Siφ.

Now, fromW, c ̸|= Siφ we get ΠW
i [vWc ]∩∥φ∥ = ∅. Taking ψ such that ∥ψ∥ = ΠW

i [vWc ], we
have ∥ψ∥∩∥φ∥ = ∅ andW, c |= Eiψ. Thus Tσ, c ̸|= ¬Eiψ, so property (1) gives L(σ), c |= Eiψ.
Since W ′ ∈ L(σ), we get W ′, c |= Eiψ, i.e., Π

W ′
i [ψ] = ∥ψ∥.

On the other hand, from Soundness we have L(σ) ⊆ X snd
σ , soW ′ ∈ X snd

σ . SinceW ∈ Tσ,
Lemma 8 gives W ⊑ W ′, and so ∥ψ∥ = ΠW

i [vWc ] ⊆ ΠW ′
i [vW

′
c ] by Lemma 1. Now since

∥ψ∥ is a subset of the cell ΠW ′
i [vW

′
c ], its expansion under ΠW ′

i is equal to this cell, i.e.,
ΠW ′

i [ψ] = ΠW ′
i [vW

′
c ]. But we showed above that ΠW ′

i [ψ] = ∥ψ∥. Hence ΠW ′
i [vW

′
c ] = ∥ψ∥. In

particular, ΠW ′
i [vW

′
c ] ∩ ∥φ∥ = ∅, and W ′, c ̸|= Siφ as required.

The next two results show that initial segments of streams are (eventually) pseudo-
streams, and that any pseudo-stream gives rise to a stream.

Lemma 9. If ρ is a stream for W , there is n such that W ∈ Tρ[m] for all m ≥ n.

Proof. Let ·̂ be a function which selects a representative formula for each equivalence class
of L0/≡, so that φ ≡ φ̂ and φ ≡ ψ implies φ̂ is equal to ψ̂. Note that since Prop is finite,
and since S and C are also finite, there are only finitely many reports of the form ⟨i, c, φ̂⟩.
By completeness of ρ for W , we may take n sufficiently large so that W, c |= Siφ̂ implies
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⟨i, c, φ̂⟩ ∈ ρ[n], for all i, c, φ. Now, take m ≥ n. We need to show W ∈ Tρ[m]. Clearly

W ∈ X snd
ρ[m], since ρ is sound for W . Suppose W ∈ X snd

δ . We need to show δ ⪯ ρ[m]. Indeed,

take ⟨i, c, φ⟩ ∈ δ. Then W, c |= Siφ. Since Siφ ≡ Siφ̂, we have W, c |= Siφ̂. Hence ⟨i, c, φ̂⟩
appears in ρ[n], and consequently in ρ[m] too. Since φ ≡ φ̂, this shows δ ⪯ ρ[m].

Lemma 10. If W ∈ Tσ and N = |σ|, there is a stream ρ for W such that ρ[Nk] ≡ σk for
all k ∈ N.

Proof. First note that W ∈ Tσ implies σ ̸= ∅, so N > 0. Since L0 is countable, we may
index the set of L0 formulas equivalent to φ ∈ L0 as {φn}n∈N. Let σn be obtained from
σ by replacing each report ⟨i, c, φ⟩ with ⟨i, c, φn⟩. Then σ ≡ σn. Let ρ be the sequence
obtained as the infinite concatenation σ1 ◦σ2 ◦σ3 ◦ · · · (this is possible since σ is of positive
finite length). Then ρ[Nk] = σ1 ◦ · · · ◦ σk, and consequently ρ[Nk] ≡ σk.

It remains to show ρ is a stream for W . Soundness of ρ follows from W ∈ Tσ ⊆ X snd
σ ,

since every report in ρ is equivalent to some report in σ by construction. For completeness,
suppose W, c |= Siφ. As in the proof of Lemma 8, considering the singleton sequence
δ = ⟨i, c, φ⟩, we get from W ∈ Tσ that there is ψ ≡ φ such that ⟨i, c, ψ⟩ ∈ σ. Hence there is
n ∈ N such that φ = ψn, so ⟨i, c, φ⟩ ∈ σn, and thus ⟨i, c, φ⟩ ∈ ρ.

Next we obtain an equivalent formulation of Credulity which is less transparent as a
postulate for learning methods, but easier to work with.

Lemma 11. Suppose L satisfies Soundness. Then L satisfies Credulity if and only if
L(σ) ⊆ Tσ for all σ with Tσ ̸= ∅.

Proof. “if”: Suppose Tσ, c ̸|= Siφ. Then there is W ∈ Tσ such that W, c ̸|= Siφ. By our
assumption and Lemma 8, L(σ) ⊆ Tσ = Q∗[W ]. Thus every world in L(σ) agrees with W
on soundness statements, so L(σ), c |= ¬Siφ.

“only if”: Suppose there is some W ∈ Tσ, and take W ′ ∈ L(σ). We need to show
W ′ ∈ Tσ; by Lemma 8, this is equivalent to W ≈ W ′. First suppose W, c |= Siφ. Then
W ∈ Tσ implies there is ψ ≡ φ such that ⟨i, c, ψ⟩ ∈ σ. By Soundness for L, we have
W ′ ∈ L(σ) ⊆ X snd

σ . Consequently W ′, c |= Siψ and thus W ′, c |= Siφ. This shows W ⊑W ′.
Now suppose W, c ̸|= Siφ. Then Tσ, c ̸|= Siφ. By Credulity , L(σ), c |= ¬Siφ. Hence
W ′, c ̸|= Siφ. This shows W

′ ⊑W . Thus W ≈W ′ as required.

Finally, we prove the characterisation of truth-tracking.

Proof of Theorem 5. Suppose L satisfies Equivalence, Repetition and Soundness.

“if”: Suppose Credulity holds. We show L solves Q∗. Take any world W and stream
ρ for W . By Lemma 9, there is n such that W ∈ Tρ[m] for all m ≥ n. By Lemma 8,
Tρ[m] = Q∗[W ] for such m. In particular, Tρ[m] ̸= ∅. By Credulity and Lemma 11, we get
L(ρ[m]) ⊆ Tρ[m] = Q∗[W ].

“only if”: Suppose L solves Q∗. We show Credulity via Lemma 11. Suppose there is
some W ∈ Tσ, and write N = |σ| > 0. By Lemma 10, there is a stream ρ for W such that
ρ[Nk] ≡ σk for all k ∈ N. By Repetition and Equivalence, L(σ) = L(σk) = L(ρ[Nk]). But
L solves Q∗, so for k sufficiently large we have L(ρ[Nk]) ⊆ Q∗[W ] = Tσ. Hence, going via
some large k, we obtain L(σ) ⊆ Tσ as required.
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6.2 Conditioning Methods

In this section we turn to the family of conditioning methods, proposed by Singleton and
Booth (2022) and inspired by similar methods in the belief change literature (Spohn, 1988),
which have also been studied in the framework of learning of Gierasimczuk (2010) and
Baltag et al. (2019). While our interpretation of input sequences is different – we read
⟨i, c, φ⟩ as i reporting φ is possible in case c, whereas Singleton and Booth (2022) read this
as i believes φ – this class of methods can still be applied in our setting.

Conditioning methods operate by successively restricting a fixed plausibility total pre-
order7 to the information corresponding to each new report ⟨i, c, φ⟩. In this paper, we take
a report ⟨i, c, φ⟩ to correspond to the fact that Siφ holds in case c; this fits with our as-
sumption throughout that sources only report sound statements.8 Thus, the worlds under
consideration given a sequence σ are exactly those satisfying all soundness statements in σ,
i.e., X snd

σ . Note that X snd
σ represents the indefeasible knowledge given by σ: worlds outside

X snd
σ are eliminated and cannot be recovered with further reports, since for any sequence δ,

X snd
σ◦δ ⊆ X snd

σ . The plausibility order allows us to represent defeasible beliefs about the most
plausible worlds within X snd

σ .

Definition 4. For a total preorder ≤ on W, the conditioning method L≤ is given by
L≤(σ) = min≤X snd

σ .

Note that X snd
σ ̸= ∅ for all σ. For example, if ΠW

i = {V} for all i then W ∈ X snd
σ .

From this and the fact that W is finite, we know L≤ is consistent. Moreover, L≤ satisfies
Equivalence, Repetition and Soundness.

Example 10. We recall two concrete choices of ≤ given by Singleton and Booth (2022).

1. Set W ≤vbc W
′ iff rvbc(W ) ≤ rvbc(W

′), where

rvbc(W ) = −
∑
i∈S

|{p ∈ Prop | ΠW
i [p] = ∥p∥}|.

The most plausible worlds in this order are those in which sources have as much ex-
pertise on the propositional variables as possible, on aggregate. The subscript vbc here
stands for variable-based conditioning, and we denote the corresponding conditioning
method by Lvbc.

2. Set W ≤pbc W
′ iff rpbc(W ) ≤ rpbc(W

′), where

rpbc(W ) = −
∑
i∈S

|ΠW
i |.

This order aims to maximise the number of cells in each source’s partitions, thereby
maximising the number of propositions on which they have expertise. Note that
the propositional variables play no special role. The subscript pbc here stands for
partition-based conditioning, and we denote the corresponding conditioning operator
by Lpbc.

7. A total preorder is a reflexive, transitive and total relation.
8. Singleton and Booth (2022) consider more general conditioning methods in which this choice is not fixed.
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pq pq̄

p̄q p̄q̄

pq pq̄

p̄q p̄q̄

W W ′

vc vc

Πi Πi

Figure 3: Worlds which demonstrate Lvbc is not truth-tracking.

A straightforward property of ≤ characterises truth-tracking for conditioning methods.
For a generic total preorder ≤, let < denote its strict part.

Theorem 6. L≤ is truth-tracking if and only if

W ⊏W ′ =⇒ ∃W ′′ ≈W such that W ′′ < W ′. (2)

Like Credulity , (2) is a principle of maximising trust in sources. Recall from Lemma 1
that W ⊏W ′ means all sources are more knowledgeable in each case in W than in W ′, and
there is at least one source and case for which this holds strictly. If we aim to trust sources
as much as possible, we might impose W < W ′ here; then W ′ is strictly less plausible and
will be ruled out in favour of W . This yields a sufficient condition for truth-tracking, but
to obtain a necessary condition we need to allow a “surrogate” world W ′′ ≈W to take the
place of W .

Proof of Theorem 6. Write L = L≤. Since L satisfies Equivalence, Repetition and Sound-
ness, we may use Theorem 5. Furthermore, it is sufficient by Lemma 11 to show that (2)
holds if and only if L(σ) ⊆ Tσ, whenever Tσ ̸= ∅.

“if”: Suppose W ⊏ W ′. Let σ be some pseudo-stream for W , so that W ∈ Tσ.
9 Note

that since W ∈ Tσ ⊆ X snd
σ and W ⊏ W ′, we have W ′ ∈ X snd

σ also. By assumption,
L(σ) ⊆ Tσ = Q∗[W ]. Since W ̸≈W ′, this means W ′ ∈ X snd

σ \L(σ). That is, W ′ lies in X snd
σ

but is not ≤-minimal. Consequently there is W ′′ ∈ X snd
σ such that W ′′ < W ′. Since L is

consistent, we may assume without loss of generality that W ′′ ∈ L(σ). Hence W ′′ ∈ Q∗[W ],
so W ′′ ≈W .

“only if”: Suppose there is some W ∈ Tσ, and let W ′ ∈ L(σ). We need to show
W ′ ∈ Tσ = Q∗[W ], i.e., W ≈ W ′. Since W ′ ∈ L(σ) ⊆ X snd

σ , Lemma 8 gives W ⊑ W ′.
Suppose for contradiction that W ̸≈ W ′. Then W ⊏ W ′. By (2), there is W ′′ ≈ W such
that W ′′ < W ′. But W ′ is ≤-minimal in X snd

σ , so this must mean W ′′ /∈ X snd
σ . On the other

hand, W ′′ ∈ Q∗[W ] = Tσ ⊆ X snd
σ : contradiction.

Example 11. We revisit the methods of Example 10.

9. For example, pick some stream ρ and apply Lemma 9 to obtain a pseudo-stream.
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1. The variable-based conditioning method Lvbc is not truth-tracking. Indeed, consider
the worlds W and W ′ shown in Fig. 3, where we assume Prop = {p, q}, S = {i} and
C = {c}. Then W ⊏ W ′ (e.g., by Lemma 1). Note that i does not have expertise
on p or q in both W and W ′, so rvbc(W ) = rvbc(W

′) = 0. Moreover, i’s partition is
uniquely determined in Q∗[W ] by Theorem 4, so if W ′′ ≈W then rvbc(W

′′) = 0 also.
That is, there is no W ′′ ≈ W such that W ′′ <vbc W

′. Hence (2) fails, and Lvbc is
not truth-tracking. Intuitively, the problem here is that since i’s expertise is not split
along the lines of the propositional variables when W is the actual world, Lvbc will
always maintain W ′ as a possibility.

2. The partition-based conditioning method Lpbc is truth-tracking. Indeed, if W ⊏ W ′

we may construct W ′′ from W by modifying the partition of each source i so that all
valuations outside of

⋃
c∈C Π

W
i [vWc ] lie in their own cell. Then W ≈ W ′′. One can

show that ΠW ′′
i refines ΠW ′

i for all i ∈ S, and there is some i for which the refinement
is strict. Hence the partitions in W ′′ contain strictly more cells, so W ′′ <pbc W

′.

6.3 Score-based Methods

In this section we consider the other class of methods introduced by Singleton and Booth
(2022): score-based methods. These methods make use of a function d that represents a mea-
sure of “disagreement” between a world W and a report ⟨i, c, φ⟩; the greater d(W, ⟨i, c, φ⟩),
the less plausible it is deemed for i to report φ in case c.

Definition 5. For a function d : W × (S × C × L0) → N0 and a sequence σ, write

rσd (W ) =
∑

⟨i,c,φ⟩∈σ

d(W, ⟨i, c, φ⟩).

The score-based method Ld is then given by Ld(σ) = argminW∈X snd
σ
rσd (W ).

The conjecture Ld(σ) consists of the worlds W satisfying the soundness constraints of σ
with minimal disagreement score, computed as the sum rσd (W ) of the disagreement on each
report.10 Ld is consistent and satisfies both Repetition and Soundness for any choice of d.

Example 12. Adapting the score-based example from (Singleton & Booth, 2022) to this
setting, take

dexm(W, ⟨i, c, φ⟩) = |ΠW
i [φ] \ ∥φ∥|.

The corresponding method aims to minimise the “excess” valuations in ΠW
i [φ] which are

not themselves models of φ. We denote it by Lexm, standing for excess-minimisation.

Truth-tracking for score-based operators satisfying Equivalence can be characterised in
almost exactly the same way as for conditioning operators, using a property similar to (2).

Theorem 7. Suppose d is such that d(W, ⟨i, c, φ⟩) = d(W, ⟨i, c, ψ⟩) whenever φ ≡ ψ. Then
Ld is truth-tracking if and only if

W ∈ Tσ and W ⊏W ′ =⇒ ∃W ′′ ≈W such that rσd (W
′′) < rσd (W

′). (3)

10. Singleton and Booth (2022) actually consider a more general class of score-based methods in which
rσd (W ) also includes a summand r0(W ) coming from some given prior plausibility ranking r0.
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The proof is essentially identical to that of Theorem 6, and is thus omitted.

Example 13. Revisiting Example 12, we find that Lexm is truth-tracking. Indeed, it is clear
that dexm treats equivalent formulas identically, since dexm(W, ⟨i, c, φ⟩) only depends on ΠW

i

and ∥φ∥. Given W ∈ Tσ and W ⊏ W ′ one can take W ′′ in the same way as for Lpbc in
Example 11. Then ΠW ′′

i refines ΠW ′
i for all i, so dexm(W

′′, ⟨i, c, φ⟩) ≤ dexm(W
′, ⟨i, c, φ⟩)

for all ⟨i, c, φ⟩ ∈ σ. Consequently, rσd (W
′′) ≤ rσd (W

′). Moreover, since W ⊏ W ′ there is
some i and c such that ΠW

i [vWc ] ⊂ ΠW ′
i [vW

′
c ]. Taking any φ such that ∥φ∥ = ΠW

i [vWc ], we
have W, c |= Siφ. Since W ∈ Tσ, there is some ψ ≡ φ such that ⟨i, c, ψ⟩ ∈ σ. Now, since
W ≈W ′′ we have ΠW ′′

i [vW
′′

c ] = ΠW
i [vWc ]. Consequently

ΠW ′′
i [ψ] = ΠW ′′

i [ΠW
i [vWc ]] = ΠW ′′

i [ΠW ′′
i [vW

′′
c ]] = ΠW ′′

i [vW
′′

c ] = ΠW
i [vWc ] = ∥ψ∥

and thus dexm(W
′′, ⟨i, c, ψ⟩) = 0. On the other hand, ΠW ′

i [vW
′

c ] ⊃ ∥ψ∥ implies ΠW ′
i [ψ] =

ΠW ′
i [vW

′
c ], and so

dexm(W
′, ⟨i, c, ψ⟩) = |ΠW ′

i [vW
′

c ] \ ∥ψ∥| > 0 = dexm(W
′′, ⟨i, c, ψ⟩),

which gives rσd (W
′′) < rσd (W

′) as required.

7. Conclusion

Summary. In this paper we studied truth-tracking in the presence of non-expert sources.
To start with, the model assumes sources report everything true up to their lack of expertise,
i.e., all that they consider possible. We obtained precise characterisations of when truth-
tracking methods can uniquely find the actual valuations of a world W , and in doing so
showed how sources may combine their expertise to track the truth. Similar results were
presented for finding the actual partitions of a world W , i.e., finding the true extent of each
source’s expertise.

We then presented the Credulity postulate, which characterises truth-tracking methods
under mild assumptions. Roughly speaking, this postulate says that one needs to trust
sources to be experts wherever possible. Purely deductive reasoning – in which one does
not conjecture beyond the fact that each received report is sound – fails to be credulous
enough in this sense, and thus some amount of non-monotonic reasoning is required for
truth-tracking.

Next, we reconsidered the belief and expertise operators of Singleton and Booth (2022)
in the context of truth-tracking. Interestingly, it was seen that the variable-based condi-
tioning method Lvbc is not truth-tracking, but the partition-based conditioning method
Lpbc and score-based method Lexm are. The success of the latter two methods showed that
truth-tracking is compatible with rational belief change as expressed by the postulates of
(Singleton & Booth, 2022) (which are satisfied by all three methods).

Limitations and future work. Conceptually, the assumption that streams are complete
is very strong. As seen in Example 3, completeness requires sources to give jointly inconsis-
tent reports whenever Πi[vc] contains more than just vc. Such reports provide information
about the source’s expertise: if i reports both φ and ¬φ we know ¬Eiφ. To provide all
sound reports sources must also have negative introspection over their own knowledge, i.e.,

639



Singleton & Booth

they know when they do not know something. Indeed, our use of partitions makes expertise
closely related to S5 knowledge (Singleton & Booth, 2022; Singleton, 2021), which has been
criticised in the philosophical literature as too strong. In reality, non-expert sources may
have beliefs about the world, and may prefer to report only that which they believe. A
source may even believe a sound report φ is false, since soundness only says the source does
not know ¬φ. For example, in Example 1 the doctor D may think it is more likely that A
suffers from p than q, but we cannot express this in our framework.

On the technical side, our results on solvability of Q∗ and the characterisation of Theo-
rem 5 rely on the fact that we only consider finitely many worlds. In a sense this trivialises
the problem of induction as studied by Kelly et al. (1997) and Baltag et al. (2015), among
others. In future work it would be interesting to see which results can be carried over to
the case where Prop is infinite.
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