
Journal of Artificial Intelligence Research 80 (2024) 517-558 Submitted 08/2023; published 06/2024

Computing Unsatisfiable Cores for LTLf Specifications

Marco Roveri marco.roveri@unitn.it
University of Trento,
Via Sommarive, 9, 38123 Trento, Italy

Claudio Di Ciccio c.diciccio@uu.nl
Utrecht University,
Princetonplein 5, 3584 CC Utrecht, Netherlands

Chiara Di Francescomarino c.difrancescomarino@unitn.it
University of Trento,
Via Sommarive, 9, 38123 Trento, Italy

Chiara Ghidini chiara.ghidini@unibz.it

Free University of Bozen-Bolzano,

Piazza Domenicani 3, 39100 Bolzano, Italy, and

Fondazione Bruno Kessler,

Via Sommarive, 18, 38123 Trento, Italy

Abstract

Linear-time temporal logic on finite traces (LTLf) is rapidly becoming a de-facto stan-
dard to produce specifications in many application domains (including planning, business
process management, run-time monitoring, and reactive synthesis). Several studies have
challenged the satisfiability problem thus far. In this paper, we focus instead on unsatisfi-
able LTLf specifications, with the objective of extracting the subset of formulae that cause
inconsistencies within them, i.e., the unsatisfiable cores. We provide four algorithms to this
end, which leverage the adaptation of a range of state-of-the-art algorithms to LTLf satisfi-
ability checking. We implement those algorithms extending the respective implementations
and carry out an experimental evaluation on a set of reference benchmarks, restricting to
the unsatisfiable specifications. The results put in evidence that the different algorithms
and tools exhibit complementary features determining their efficiency and efficacy. Indeed,
our findings suggest exploring different strategies and algorithmic solutions for the extrac-
tion of unsatisfiable cores from LTLf specifications, thus confirming the challenging and
multi-faceted nature of this problem.

1. Introduction

A growing body of literature evidences the adoption of linear-time temporal logic on finite
traces (LTLf) (De Giacomo & Vardi, 2013) to produce systems specifications (De Giacomo,
De Masellis, & Montali, 2014). Its widespread use spans across several application domains,
including business process management (BPM) for declarative process modelling (De Gia-
como, De Masellis, Grasso, et al., 2014; Montali et al., 2010) and mining (Cecconi et al.,
2018; Di Ciccio & Montali, 2022; Räim et al., 2014), run-time monitoring and verifica-
tion (Bauer et al., 2010; De Giacomo, De Masellis, Grasso, et al., 2014; De Giacomo et al.,
2020), and AI planning (Calvanese et al., 2002; Camacho et al., 2018; Camacho & McIlraith,
2019; Sohrabi et al., 2011).

©2024 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Roveri, Di Ciccio, Di Francescomarino, Ghidini

Figure 1: The algorithms.

When it comes to verification techniques and tool support for LTLf, several studies
approach the LTLf satisfiability problem via reduction to LTL (Pnueli, 1977) satisfiability
on infinite traces (De Giacomo, De Masellis, & Montali, 2014), or via specific propositional
satisfiability approaches (Fionda & Greco, 2018; Li et al., 2020). However, no efforts have
been devoted thus far to the identification of the formulas that lead to unsatisfiability in
LTLf specifications, with the consequence that no support has been offered for modellers
and system designers to single out the causes of possible inconsistencies.

In this paper, we tackle the challenge of extracting unsatisfiable cores (UCs) from LTLf

specifications. Investigating this problem is interesting both from practical and theoretical
viewpoints.

On the practical side, if unsatisfiability signals that a specification is defective, the
identification of unsatisfiable cores provides the users with the opportunity to isolate the
source of inconsistency and debug the relevant code fragment. Notice that determining a
reason for unsatisfiability without automated support may be unfeasible for a number of
reasons that range from the sheer size of the formula to the lack of time and skills of the
user (Schuppan, 2012, 2018).

On the theoretical side, dealing with the extraction of UCs in LTLf specifications is far
from trivial. Indeed, there is no default strategy to move from the support provided for
LTL to the one that has to be provided for LTLf. We can identify two clear alternative
strategies to address this problem: the first one extends algorithms for the extraction of
UCs in LTL to the case of LTLf (hereafter Strategy 1 or S1); the second one exploits
algorithms that directly compute satisfiability in LTLf to provide support for the extraction
of UCs (hereafter Strategy 2 or S2). These two different strategies are emphasised in the
two grey streams in Fig. 1. When looking at the algorithms realising the two strategies,
the starting point for S1 would be state-of-the-art (SOTA) algorithms for the extraction
of UCs in LTL (to be extended for LTLf), while the starting point for S2 would be state-
of-the-art algorithms for the computation of satisfiability in LTLf (to be extended to the
computation of UCs). If we look at these two classes of state-of-the-art algorithms, we

518

Computing Unsatisfiable Cores for LTLf Specifications

can notice a substantial imbalance. Several state-of-the-art algorithms exist for S1, in
particular based on the reduction of SAT to model-checking and on theorem proving. On
the contrary, the number of algorithms that could enable the implementation of S2 is still
rather limited and reduces to a reference work based on an explicit search complemented
with several propositional satisfiability checks. Since recent works show that often a single
universal best algorithm does not exist, and systems exhibit behaviours that complement
each other (Li et al., 2020, 2019), choosing a single strategy and a single algorithm from
which to start is less than obvious.

In this work, we provide algorithms for the computation of UCs for LTLf by exploiting
both strategies and, whenever possible, different reference algorithms within each strategy.
For Strategy 1, we consider three LTL satisfiability checking algorithms as the starting
points: A1, based on Binary Decision Diagrams (BDDs) as described in the work of Clarke
et al. (1997); A2, based on propositional satisfiability and introduced by Biere et al. (2006);
A3, a theorem proving algorithm based on temporal resolution first presented by Hustadt
and Konev (2003) and Schuppan (2016). For Strategy 2, we resort to the reference work
of Li et al. (2020), based on explicit search and propositional satisfiability (hereinafter,
A4). Figure 1 lists these algorithms inside the “SOTA algorithm” box. We believe that
leveraging reference state-of-the-art approaches provides a rich starting point for the inves-
tigation of the problem and the provision of effective tools for the extraction of UCs in LTLf

specifications.
Our contributions thus consist of the following:

1. Four algorithms NA1, . . . , NA4 that allow for the computation of an unsatisfiable
core through the adaptation of algorithms A1, . . . , A4, covering both Strategy 1 and
Strategy 2 (Section 4). These algorithms are listed in the “New LTLf unsat core algo-
rithms” box in Fig. 1. Note that the algorithms based on propositional satisfiability
(that is, NA2 and NA4) aim at extracting a UC, which may not necessarily be the
minimum one. Instead NA1 and NA3 already allow for the extraction of a minimum
unsatisfiable core.

2. An implementation of the proposed four algorithms NA1, . . . , NA4 (Section 5.1).
Three implementations extend existing tools for the corresponding original algorithms;
instead, the implementation of NA3, based on temporal resolution, resorts to a pre-
processing of the formula to reduce the input to the language restrictions of the original
tool.

3. An experimental evaluation on a large set of reference benchmarks taken from (Li et
al., 2020), restricted to the unsatisfiable ones (Sections 5.2 and 5.3). The results show
an overall better time efficiency of algorithm NA4, based on Strategy 2. However, the
cardinality of the UC extracted by the fastest approach is the smallest one in only
about half of the cases. The experimental findings show that the proposed approaches
are complementary on different specifications: depending on the varying number of
propositional variables, number of conjuncts and degree of nesting of the temporal
operators in the benchmarks, it is not rare that some of the implemented techniques
achieve a noticeable performance when the other ones terminate with no result and
vice-versa. The complementary behaviour of the different algorithms provides a fur-
ther evidence of the challenge of providing an algorithmic support for the extraction

519

Roveri, Di Ciccio, Di Francescomarino, Ghidini

of UCs from LTLf specifications and the adequacy of exploring different strategies and
algorithmic solutions for this problem.

Since popular usages of LTLf leverage past temporal operators (see e.g., the Declare
language (van der Aalst et al., 2009)), we also provide a way to handle LTLf with past
temporal operators (see Definition 2 and all the respective technical parts). This results
in the same expressive power as the one of the pure future version, though allowing for
exponentially more succinct specifications (Gabbay, 1987; Laroussinie et al., 2002) and more
natural encodings of LTLf based modelling languages that make use of these operators. To
this aim, we leverage algorithms already supporting LTL with past temporal operators, or a
reduction to LTLf with only future temporal operators to use existing approaches for LTLf

satisfiability checking.
The remainder of the paper is structured as follows. Section 2 and Section 3 illustrate

background concepts of relevance to our work and some enablers for the extension of SOTA
approaches towards the extraction of LTLf unsatisfiable cores, respectively. Section 4 in-
troduces the four algorithms NA1, . . . , NA4, while Section 5 reports about the algorithms’
implementation and experimental evaluation. Finally, related works, as well as conclusions
and future works are described in Section 6 and Section 7, respectively.

2. Background

We outline here the main concepts upon which the remainder of the paper is built upon.

2.1 LTLf Syntax and Semantics

Given a finite set of propositional variables AP, we provide the following definitions. A
state s over propositional variables in AP is a complete assignment of a Boolean value ⊤ or
⊥ to the variables in AP. For a set P ⊆ AP, we denote with s|P the projection (restriction)
of the complete assignments in s to consider only the propositional variables in P .

Definition 1. We say that variable x ∈ AP holds in a state s iff x is assigned the truth
value ⊤ in s, x = ⊤, and we denote this as s |=p x (where the ‘p’ subscript indicates that s
is a model of x in a propositional sense).

A finite trace over propositional variables in AP is a sequence π = s0, s1, . . . , sn−1 of
states. The length of a trace π = s0, s1, . . . , sn−1, denoted len(π), is n. We denote with
π[i], with 0 ≤ i < len(π), the i-th state si. Given a finite trace π as above, we denote
with π[i, j] the segment of trace π ranging from i to j with 0 ≤ i ≤ j < len(π), i.e.,
π[i, j] = si, . . . , sj . Given two (not necessarily distinct) traces π′ = s′0, s

′
1, . . . , s

′
n′−1 and

π′′ = s′′0, s
′′
1, . . . , s

′′
n′′−1, we denote with the juxtaposition π′π′′ the concatenation of the

sequences, i.e., π′π′′ = s′0, s
′
1, . . . , s

′
n′−1, s

′′
0, s

′′
1, . . . , s

′′
n′′−1.

An infinite trace over propositional variables in AP is a sequence π = s0, s1, ... of states
such that π ∈ (2AP)ω. Given two finite traces π1 and π2, we indicate with π1π

ω
2 the infinite

lasso-shaped trace with prefix π1 and trace π2 repeated indefinitely (intuitively, to indicate
that π2 is repeated within an infinite loop).

An LTLf formula φ is built over the propositional variables in AP by using the classical
Boolean connectives “∧”, “∨”, and “¬”, complemented with the future temporal operators

520

Computing Unsatisfiable Cores for LTLf Specifications

“X” (next), “N” (weak next), “G” (always/globally), “F” (eventually/finally), “U” (until)
and “R” (release), and with the past temporal operators “Y” (yesterday), “Z” (weak
yesterday), “H” (historically), “O” (once), “S” (since), and “T” (trigger). The N operator
is similar to X and solely differs in the way the final state is dealt with: in the last state,
Xφ is false, while Nφ is true. Similarly, the Z operator is analogous to Y as in the sole
initial state a difference occurs: in s0, Yφ is false, whereas Zφ is true. (See Definition 2
for the semantics of all the LTLf operators.)

The grammar for building LTLf formulas is:

φ ::= x | (φ1 ∧ φ2) | (φ1 ∨ φ2) | ¬φ1 |
Future temporal operators

(Xφ1) | (Nφ1) | (Fφ1) | (Gφ1) | (φ1Uφ2) | (φ1Rφ2),

Past temporal operators

(Yφ1) | (Zφ1) | (Hφ1) | (Oφ1) | (φ1 Sφ2) | (φ1Tφ2),

where x ∈ AP is a propositional variable, φ1 and φ2 are LTLf formulas. Classical implication
→ and equivalence ↔ connectives can be obtained in standard ways in terms of the ∧,∨,¬
connectives. In the following, we use round parentheses as auxiliary symbols to clarify
or alter the precedence of evaluation. Otherwise, we might omit them for the sake of
readability.

Definition 2 (LTLf Satisfiability). Given a finite trace π, the LTLf formula φ is true in π
at state π[i] s.t. 0 ≤ i ≤ len(π)− 1, denoted with π, i |= φ, iff:

• π, i |= x iff π[i] |=p x for x ∈ AP;

• π, i |= φ1 ∧ φ2 iff π, i |= φ1 and π, i |= φ2;

• π, i |= φ1 ∨ φ2 iff π, i |= φ1 or π, i |= φ2;

Future temporal operators:

• π, i |= Xφ iff i < len(π)− 1 and π, i+ 1 |= φ;

• π, i |= Nφ iff i < len(π)− 1 and π, i+ 1 |= φ, or i = len(π)− 1;

• π, i |= Fφ iff for some j with i ≤ j < len(π) it holds that π, j |= φ;

• π, i |= Gφ iff for every j with i ≤ j < len(π) it holds that π, j |= φ;

• π, i |= φ1Uφ2 iff for some j with i ≤ j < len(π) it holds that π, j |= φ2 and for every
k with i ≤ k < j it holds that π, k |= φ1;

• π, i |= φ1Rφ2 iff for every j with i ≤ j < len(π) it holds that π, j |= φ2, or for some
j with i ≤ j < len(π) it holds that π, j |= φ1 and for every k with i ≤ k ≤ j it holds
that π, k |= φ2;

Past temporal operators:

• π, i |= Yφ iff 1 ≤ i and π, i− 1 |= φ;

521

Roveri, Di Ciccio, Di Francescomarino, Ghidini

• π, i |= Zφ iff 0 = i or π, i− 1 |= φ;

• π, i |= Oφ iff for some j with 0 ≤ j ≤ i it holds that π, j |= φ;

• π, i |= Hφ iff for every j with 0 ≤ j ≤ i it holds that π, j |= φ;

• π, i |= φ1 Sφ2 iff for some k with 0 ≤ k ≤ i it holds that π, k |=
φ2 and for every j with k < j ≤ i it holds that π, j |= φ1;

• π, i |= φ1Tφ2 iff for every k with 0 ≤ k ≤ i it holds that π, k |= φ2 or for some
j with k < j ≤ i it holds that π, j |= φ1.

We say that the finite trace π is a model of φ (denoted with π |= φ) whenever π, 0 |= φ,
and that φ is satisfiable whenever there exists a π such that π, 0 |= φ.

Remark 2.1. The following equivalences hold:

• (Zφ)↔ ¬(Y¬φ),
• (Oφ)↔ (⊤Sφ),
• (Hφ)↔ ¬(⊤S¬φ),
• (φ1Tφ2)↔ ¬(¬φ1 S¬φ2), and
• (φ1Rφ2)↔ ¬(¬φ1U¬φ2).

In the remainder of this paper, we leverage the above equivalences whenever needed to
simplify the presentation and the proofs.

The language of an LTLf formula φ over AP is defined as L(φ) = {π | π, 0 |= φ}. Thus,
the satisfiability problem for an LTLf formula φ can be reduced to checking that L(φ) ̸= ∅.

Let us consider, e.g., the formula φ = G(a → N b). Let π1 = s10, s
1
1, s

1
2, s

1
3 be a trace

of length 4 such that s10 = {a = ⊥, b = ⊤}, s11 = {a = ⊤, b = ⊥}, s12 = {a = ⊤, b = ⊤},
s13 = {a = ⊤, b = ⊤}. Trace π1 satisfies φ. On the contrary, trace π2 = s20, s

2
1, s

2
2, s

2
3, where

s20 = {a = ⊥, b = ⊤}, s21 = {a = ⊤, b = ⊥}, s22 = {a = ⊤, b = ⊤}, s23 = {a = ⊤, b = ⊥},
is not a model for φ since s22 |=p a, but the next state s23 is such that s23 ̸ |=p b. The LTLf

formula ϕ′ = G(a → X b) is not satisfied by either of the traces. Indeed, the last state of
π1 is such that s13 |=p a, but it is not followed by any state. As for π2, s

2
2 |=p a but in the

next state s23 ̸ |=p b; also, s
1
3 |=p a but that is the last state, so no next state exists.

Formulas that contain both past and future temporal operators in the same formula are
widely used, as they allow for the expression of requirements or behavioural rules in a more
concise and natural way (Cecconi et al., 2018; Fuxman et al., 2004; van Lamsweerde & Letier,
2000). For instance, as also discussed in (Cimatti et al., 2004), a requirement like if a problem
is diagnosed, then a failure must have previously occurred can be naturally formalised as
G(problem → O failure). This formalisation can be interpreted more intuitively than the
pure future counterpart ¬(¬failureU problem). Similarly, the requirement grants are issued
only upon requests can be easily specified asG(grant→ Y(¬grantS request)), which is more
compact than the pure-future formulation: (requestR¬grant) ∧ G(grant → (request ∨
(X(requestR¬grant)))).

522

Computing Unsatisfiable Cores for LTLf Specifications

Commonalities and Differences between LTL and LTLf

The syntax of LTLf formulas is almost identical to the original LTL one. Semantics differ,
instead, due to the finite length of traces in LTLf, as a last state occurs only in a finite
trace. Only in LTLf, then, N and X are satisfied under different conditions. Thus, while
introducing the semantics for LTL we report only the semantics for the X operator. In the
following, we will consider the semantics for LTL and highlight the differences with LTLf

whenever necessary.

Definition 3 (LTL Satisfiability). Given an infinite trace π, the LTL formula φ is true in
π at state π[i] s.t. i ≥ 0, denoted with π, i |=LTL φ, iff:

• π, i |=LTL x iff π[i] |=p x for x ∈ AP;

• π, i |=LTL φ1 ∧ φ2 iff π, i |=LTL φ1 and π, i |=LTL φ2;

• π, i |=LTL φ1 ∨ φ2 iff π, i |=LTL φ1 or π, i |=LTL φ2;

Future temporal operators:

• π, i |=LTLXφ iff π, i+ 1 |=LTL φ;

• π, i |=LTLFφ iff for some j with i ≤ j it holds that π, j |=LTL φ;

• π, i |=LTLGφ iff for every j with i ≤ j it holds that π, j |=LTL φ;

• π, i |=LTL φ1Uφ2 iff for some j with i ≤ j it holds that π, j |=LTL φ2 and for every
k with i ≤ k < j it holds that π, k |=LTL φ1;

• π, i |=LTL φ1Rφ2 iff for every j with i ≤ j it holds that π, j |=LTL φ2, or for some
j with i ≤ j it holds that π, j |=LTL φ1 and for every k with i ≤ k ≤ j it holds that
π, k |=LTL φ2;

Past temporal operators:

• π, i |=LTLYφ iff 1 ≤ i and π, i− 1 |=LTL φ;

• π, i |=LTL Zφ iff 0 = i or π, i− 1 |=LTL φ;

• π, i |=LTLOφ iff for some j with 0 ≤ j ≤ i it holds that π, j |=LTL φ;

• π, i |=LTLHφ iff for every j with 0 ≤ j ≤ i it holds that π, j |=LTL φ;

• π, i |=LTL φ1 Sφ2 iff for some k with 0 ≤ k ≤ i it holds that
π, k |=LTL φ2 and for every j with k < j ≤ i it holds that π, j |=LTL φ1;

• π, i |=LTL φ1Tφ2 iff for every k with 0 ≤ k ≤ i it holds that
π, k |=LTL φ2 or for some j with k < j ≤ i it holds that π, j |=LTL φ1;

We say that the infinite trace π is a model of φ (denoted with π |=LTL φ) whenever
π, 0 |=LTL φ, and that the LTL property φ is satisfiable whenever there exists a π such that
π, 0 |=LTL φ.

523

Roveri, Di Ciccio, Di Francescomarino, Ghidini

When clear from the context, for an LTL property φ, we abuse notation and use π, i |= φ
in place of π, i |=LTL φ.

As noticed in (De Giacomo, De Masellis, & Montali, 2014), the evaluation of an LTL
formula on an infinite trace may lead to an opposite outcome to the evaluation of an identical
expression in LTLf on finite traces. For example, F a∧G(a→ F b)∧G(b→ F a)∧G¬(a∧b)
is satisfiable in LTL and unsatisfiable in LTLf. A satisfying infinite trace π in LTL is
π = s0, (s1, s2)

ω such that s0 = {a = ⊤, b = ⊥}, s1 = {a = ⊥, b = ⊤}, s2 = {a = ⊤, b = ⊥}.
However, in LTLf F a ∧G(a → F b) ∧G(b → F a) implies that eventually, both a and b
shall be true at the same time, and this is in contradiction with G¬(a ∧ b) which requires
that both a and b are never true simultaneously.

2.1.1 Unsatisfiable Cores

A set of LTLf formulas Γ = {φ1, ..., φN} is a specification. Formulas φ1, ..., φN are considered
in implicit conjunction. Therefore, we adopt with a slight abuse of notation both the set-
based and the conjunctive expressions for specifications, i.e., Γ =

∧
i=1..N φi.

Definition 4 (Unsatisfiable core). Let Γ = {φ1, ..., φN} be an LTLf unsatisfiable specifica-
tion. Φ ⊆ Γ is an unsatisfiable core of Γ iff Φ is unsatisfiable. A minimal unsatisfiable core
Φ is such that Φi = Φ \ {φi} for every φi ∈ Φ is satisfiable. A minimum unsatisfiable core
is a minimal unsatisfiable core with the smallest possible cardinality.

Remark 4.1. Definition 4 can be seamlessly applied to LTL by considering Def. 3 in place
of Def. 2 for satisfiability.

Consider, e.g., the specification Γ = {φ1, . . . , φ6} of LTLf formulas where φ1 = F(a∨ b∨ c),
φ2 = G(a → XF b), φ3 = G(b → XF c), φ4 = G(c → XF a), φ5 = G(b → XF a),
φ6 = G(c → Y b). Intuitively, the specification Γ is unsatisfiable because of circular
dependencies that require a to be eventually followed by b, b by c and a, and c by a.
Since φ1 requires that at least one among a, b or c is eventually satisfied in the trace, only
an infinite trace could satisfy Γ as a whole. Γ is a trivial unsatisfiable core, then. The
specification {φ1, φ2, φ3, φ4} ⊆ Γ is a minimal unsatisfiable core (since the removal of any
of φ1, φ2, φ3, φ4 breaks the circular dependency). The specification {φ1, φ2, φ5} ⊆ Γ is not
only minimal but also a minimum unsatisfiable core as it bears the lowest cardinality.

2.2 Checking Satisfiability of an LTLf Formula

Checking the satisfiability of an LTLf formula φ can be reduced to checking language empti-
ness of a nondeterministic finite state automaton (De Giacomo, De Masellis, & Montali,
2014). Alternative approaches for LTLf formulas without past temporal operators (De Gi-
acomo, De Masellis, & Montali, 2014; De Giacomo & Vardi, 2013; Fionda & Greco, 2018)
address this problem by checking the satisfiability of an equi-satisfiable LTL formula over
infinite traces (see Def. 3) leveraging on existing well-established techniques (see, e.g., Biere
et al. 2006; Clarke et al. 1997). These approaches proceed as follows: (i) they introduce a
new fresh propositional variable end ̸∈ AP used to denote the trace has ended; (ii) they
require that end eventually holds (i.e., F end); (iii) they require that once end becomes true,
it stays true forever (i.e., G(end → X end)); (iv) they translate the LTLf formula φ into

524

Computing Unsatisfiable Cores for LTLf Specifications

an LTL formula by means of a rewriting function f2l(φ) that is defined recursively on the
structure of the LTLf formula φ as follows:

f2l(x) 7→ x for x ∈ AP
f2l(¬φ) 7→ ¬f2l(φ)

f2l(φ1 ∧ φ2) 7→ f2l(φ1) ∧ f2l(φ2)

f2l(φ1 ∨ φ2) 7→ f2l(φ1) ∨ f2l(φ2)

f2l(Xφ) 7→ X(f2l(φ) ∧ ¬end)
f2l(Nφ) 7→ X(f2l(φ) ∨ end)

f2l(Fφ) 7→ F(f2l(φ) ∧ ¬end)
f2l(Gφ) 7→ G(f2l(φ) ∨ end)

f2l(φ1Uφ2) 7→ f2l(φ1)U(f2l(φ2) ∧ ¬end)
f2l(φ1Rφ2) 7→ (f2l(φ1) ∧ ¬end)R(f2l(φ2) ∨ end)

Theorem 1 (De Giacomo, De Masellis, and Montali 2014). Any LTLf formula without past
temporal operators φ is satisfiable iff the LTL formula

F end ∧G(end→ X end) ∧ f2l(φ) (1)

is satisfiable.

Hereafter, we denote with LTLf2LTL(φ) the LTL formula obtained by applying equation (1)
in Theorem 1 to the LTLf formula φ, i.e., LTLf2LTL(φ) := F end ∧ G(end → X end) ∧
f2l(φ).The resulting LTL formula can then be checked for satisfiability with any state-of-
the-art LTL satisfiability checker as discussed by De Giacomo, De Masellis, and Montali
2014; Li et al. 2020.

Finally, in SAT-based frameworks for LTLf satisfiability checking like the one proposed
by Li et al. 2020, propositional SAT solving techniques are used to construct a transition
system Tφ for a given LTLf formula φ, and LTLf satisfiability checking reduces to a path
search problem over the constructed transition system.1

Theorem 2 (Li et al. 2020). Let φ be an LTLf formula without past temporal operators. φ
is satisfiable iff there is a final state in Tφ.

A final state for Tφ is any state satisfying the Boolean formula end ∧ (xnf(φ))p, where

(i) end is a new propositional variable such that end ̸∈ AP to identify the last state of
satisfying traces (similarly to De Giacomo, De Masellis, and Montali 2014);

(ii) xnf(φ) is the neXt Normal Form of φ, an equi-satisfiable formula to φ such that there
are no Until/Release sub-formulas in the propositional atoms2 of xnf(φ), built linearly
from φ; and

1. In the rest of this subsection we use the notions and notations introduced in Li et al. (2020).
2. Following Def. 3 of Li et al. (2020), the propositional atoms of an LTLf formula φ are the propositional

variables, and the Next/Until/Release formulas. Intuitively, Li et al. (2020) considers all temporal sub-
formulas of φ as propositional atoms.

525

Roveri, Di Ciccio, Di Francescomarino, Ghidini

(iii) (xnf(φ))p is a propositional formula3 over the propositional atoms of xnf(φ).

This approach uses a conflict driven algorithm, leveraging on propositional unsatisfiable
cores, to perform the explicit path-search.

Next, we report some useful definitions, and we refer to Li et al. (2020) for the full
details of this approach.

Definition 5 (Conflict Sequence, Li et al. 2020). Given an LTLf formula φ, a conflict
sequence C for the transition system Tφ is a finite sequence of sets of states such that:

• The initial state s0 = {φ} is in C[i] for 0 ≤ i < |C|;

• Every state in C[0] is not a final state;

• For every state s ∈ C[i+1] such that 0 ≤ i < |C|− 1, all the one-transition next states
of s are included in C[i].

We call each C[i] a frame, and i is the frame level.

For a given conflict sequence C, the set
⋂

0≤j<i C[j] (for 0 ≤ i < |C|) represents a set of
states that cannot reach a final state of Tφ in up to i steps.

Theorem 3 (Li et al. 2020). The LTLf formula φ is unsatisfiable iff there are a conflict
sequence C and an i ≥ 0 such that

⋂
0≤j<i C[j] ⊆ C[i+ 1].

We refer the reader to Li et al. (2020) for further details about the construction of Tφ,
for the SAT-based algorithm to check for the existence of a final state in Tφ, and for the
correctness and termination of that algorithm.

2.2.1 Symbolic Approaches to Check Language Emptiness for LTL

A standard symbolic approach to check language emptiness for a given LTL formula φ was
proposed by Clarke et al. (1997) in the context of model checking with fairness constraints.
It proceeds as follows: (i) first, it builds a Symbolic Non-Deterministic Büchi automaton
for φ; (ii) then, it computes the set of fair states according to this automaton; finally,
(iii) it intersects it with the set of initial states. The resulting set, denoted with JφK, is a
propositional formula whose models represent all states that are the initial state of some
infinite trace that accepts φ.

More precisely, letMφ be a symbolic fair transition system over a set of Boolean vari-
ables APφ that encodes the formula φ, as discussed for instance in the work of Clarke et al.
(1997). In this setting, APφ = AP ∪ APB(φ) contains all the propositional variables AP
and the Boolean variables APB(φ) (such that APB(φ) ∩ AP = ∅) needed to encode a sym-
bolic fair transition system representing the Büchi automaton for φ.4 We denote with JφK
the set of states of this symbolic fair transition system such that the following assumptions
hold:

3. Intuitively, for an LTLf formula φ, the (·)p is a function that traverses the xnf(φ) formula and replaces
each propositional atom of xnf(φ) with a corresponding fresh propositional variable. We refer the reader
to (Li et al., 2020) for further details.

4. We refer the reader to the work of Clarke et al. (1997) for (i) the formal definition of symbolic fair
transition system and (ii) the details on a construction of a symbolic fair transition system Mφ for a
given LTL formula φ.

526

Computing Unsatisfiable Cores for LTLf Specifications

(AssN1) All states in JφK are the starting point of some trace accepting φ;

(AssN2) All words accepted by φ are accepted by some trace starting from JφK.
Notice that this approach is suitable both for BDD-based and for SAT-based approaches to
LTL satisfiability.

2.2.2 Temporal Resolution Approaches for LTL Satisfiability

LTL satisfiability can also be addressed with temporal resolution (Fisher, 1991; Fisher et al.,
2001). Temporal resolution extends classical propositional resolution with specific inference
rules for each temporal operator. Temporal resolution has been implemented in solvers
like trp++ (Hustadt & Konev, 2003) showing effectiveness in analysing unsatisfiable LTL
formulas (Schuppan & Darmawan, 2011). We refer the reader to the work of Fisher (1991);
Fisher et al. (2001); Hustadt and Konev (2003) for further details. We remark that Schuppan
(2016) showed how the temporal resolution proof graph constructed to prove unsatisfiability
of an LTL formula without past temporal operators could be used to compute a minimal
unsatisfiable core for the respective LTL formula.

3. Enablers

This section presents three enablers that allow for the extension of existing algorithms in
the scientific literature towards the extraction of LTLf unsatisfiable cores. We will resort
to these enablers for the design and realisation of four new algorithms, as described in the
next section. In particular, here we illustrate: (i) the extension of the translation function
f2l(φ) presented in Section 2 to handle LTLf past temporal operators; (ii) a translation
that allows for the transformation of any LTLf formula with past temporal operators in
an equi-satisfiable one with only future temporal operators; (iii) the use of an activation
variable associated to each LTLf formula in Γ to extract unsatisfiable cores from existing
frameworks for LTL/LTLf satisfiability. The first result enables the use of any framework
for LTL satisfiability checking that supports both past and future temporal operators. The
second result enables the use of any framework for LTL/LTLf satisfiability checking that
supports only future temporal operators. Finally, the third result enables the computation
of unsatisfiable cores of Γ leveraging existing LTL/LTLf satisfiability frameworks. Next, we
describe the three enablers in detail.

3.1 Extending f2l to Handle Past Temporal Operators

We remark that the semantics for past temporal operators over finite traces coincides with
the respective semantics on infinite traces, as it refers to the prefix of the trace. Therefore,
given an LTLf formula φ, we can extend the f2l(φ) encoding to handle LTLf past temporal
operators as follows:

f2l(Yφ) 7→ Y(f2l(φ)); f2l(Zφ) 7→ Z(f2l(φ));
f2l(Oφ) 7→ O(f2l(φ)); f2l(Hφ) 7→ H(f2l(φ));

f2l(φ1 Sφ2) 7→ f2l(φ1)S f2l(φ2);
f2l(φ1Tφ2) 7→ f2l(φ1)T f2l(φ2).

527

Roveri, Di Ciccio, Di Francescomarino, Ghidini

Basically, the encoding of a past operator is propagated recursively to the sub-formulas
without modifications on the past operator itself. Together with Theorem 1, this extension
allows us to prove the following corollary.

Corollary 1. Any LTLf formula φ is satisfiable iff the following LTL formula is satisfiable:

F end ∧G(end→ X end) ∧ f2l(φ). (2)

This corollary enables the use of any framework for LTL satisfiability checking that
supports both past and future temporal operators.

3.2 Removing Past Temporal Operators

Given an LTLf formula φ with past operators, we can build an equi-satisfiable LTLf formula
over only future operators using the function p2f(φ, ∅) = ⟨φ′,Υ⟩ that takes an LTLf formula
φ with past operators, and builds a new LTLf formula φ′ and a set of LTLf formulas without
past operators Υ as follows:

p2f(x,Υ) 7→⟨x,Υ⟩ for x ∈ AP
p2f(⊙φ,Υ) 7→⟨⊙φ′,Υ′⟩ where ⟨φ′,Υ′⟩ = p2f(φ,Υ)

and ⊙ ∈ {¬,X,N,F,G}
p2f(φ1 ⊕ φ2,Υ) 7→⟨φ′

1 ⊕ φ′
2,Υ

′⟩ where ⟨φ′
1,Υ1⟩ = p2f(φ1,Υ),

⟨φ′
2,Υ2⟩ = p2f(φ2,Υ),Υ′ = Υ1 ∪Υ2, and

⊕ ∈ {∧,∨,U,R}
p2f(Zφ,Υ) 7→p2f(¬Y¬φ,Υ)

p2f(Yφ,Υ) 7→⟨vY φ,Υ
′′⟩ where vY φ ̸∈ AP is a fresh distinct propositional variable,

⟨φ′,Υ′⟩ = p2f(φ,Υ),

Υ′′ = Υ′ ∪ {¬vY φ,G((X vY φ)↔ φ′)}
p2f(φ1 Sφ2,Υ) 7→⟨φ′

2 ∨ (φ′
1 ∧ vφ1 Sφ2),Υ

′⟩ where
vφ1 Sφ2 ̸∈ AP is a fresh distinct propositional variable,

⟨φ′
1,Υ1⟩ = p2f(φ1,Υ), ⟨φ′

2,Υ2⟩ = p2f(φ2,Υ1),

Υ′ = Υ1 ∪Υ2 ∪ {¬vφ1 Sφ2}∪
{G((X vφ1 Sφ2)↔ (φ2 ∨ (φ1 ∧ vφ1 Sφ2)))}

p2f(φ1Tφ2,Υ) 7→p2f(¬(¬φ1 S¬φ2),Υ)

p2f(Oφ,Υ) 7→p2f(⊤Sφ,Υ)

p2f(Hφ,Υ) 7→p2f(¬(⊤S¬φ),Υ)

Intuitively, p2f(φ,Υ) recursively replaces each sub-formula φi of φ with a top-level
past temporal operator with a new distinct fresh propostional variable vφi ̸∈ AP, and
accumulates formulas capturing the semantics of the substituted past temporal sub-formulas
in Υ. We remark that the same approach can be equivalently applied to LTL formulas too.
In light of this translation, the following theorem follows.

528

Computing Unsatisfiable Cores for LTLf Specifications

Theorem 4. Let φ be an LTLf (or LTL) formula over AP. φ is satisfiable if and only if
φ′ ∧

∧
ρ∈Υ ρ is satisfiable, where ⟨φ′,Υ⟩ = p2f(φ, ∅).

Proof. The proof is by cases on the structure of the formula. We consider only the Y and
S past temporal operators since p2f either preserves the formula or rewrites it leveraging
the equivalences in Remark 2.1.

• Yφ.
=⇒ Let us assume that there exists a trace π such that π, i |= Yφ for some i ≥ 1
(i.e., such that π, i−1 |= φ). We can construct a new trace π′ extending π to consider
a new fresh variable vY φ ̸∈ AP. This new trace π′ is such that π′[0] |=p ¬vYφ and
for every i ≥ 1, π′[i] |=p vY φ iff π′, i − 1 |= φ. Thus, the new trace is such that
π′ |= ¬vY φ ∧G((X vY φ)↔ φ). Moreover, at the time point i ≥ 1, π′[i] |=p vYφ holds
by construction, and thus π′, i |= vY φ.

⇐= Let us assume that there exists a trace π such that π |= ¬vYφ ∧G((X vY φ)↔ φ)
and there exists an i ≥ 1 such that π, i |= vY φ. This trace will be such that
π[0] |=p ¬vY φ and, for every i ≥ 1, π[i] |=p vY φ iff π, i − 1 |= φ. Thus, it finally
holds that π, i |= Yφ.

• φ1 Sφ2

=⇒ Let us assume that there exists a trace π such that π, i |= φ1 Sφ2 for some
i ≥ 0. This trace is such that there exists a k with 0 ≤ k ≤ i such that π, k |=
φ2 and for every j with k < j ≤ i it holds that π, j |= φ1. We can build a new
trace π′ extending the trace π to consider a new fresh variable vφ1 Sφ2 ̸∈ AP. This
new trace π′ is such that π′[0] |=p ¬vφ1 Sφ2 , and, for every i ≥ 1, π′[i] |=p vφ1 Sφ2

iff π′, i − 1 |= φ2 or π′, i − 1 |= φ1 ∧ vφ1 Sφ2 . Thus, this new trace is such that
π′ |= ¬vφ1 Sφ2 ∧G((X vφ1 Sφ2) ↔ (φ2 ∨ (φ1 ∧ vφ1 Sφ2))), and at time point i ≥ 0 it
holds that π′, i |= φ2 or π′, i |= φ1 ∧ vφ1 Sφ2 by construction. Thus, it also holds that
π′, i |= φ2 ∨ (φ1 ∧ vφ1 Sφ2).

⇐= Let us assume there is a trace π such that π |= ¬vφ1 Sφ2 ∧ G((X vφ1 Sφ2) ↔
(φ2∨(φ1∧vφ1 Sφ2))) and there exists a time point i such that π, i |= (φ2∨(φ1∧vφ1 Sφ2)).
This trace will be such that there exists a k with 0 ≤ k ≤ i such that π, k |=
φ2 and for every j with k < j ≤ i it holds that π, j |= φ1, thus π, i |= φ1 Sφ2.

This result enables the use of any framework for LTL/LTLf satisfiability checking that
does not support past temporal operators.

3.3 Activation Variables

To compute the unsatisfiable core for a given specification Γ = {φ1, ..., φN} of LTLf formulas
over AP, we proceed as follows. For each LTLf formula φi ∈ Γ we introduce a distinct
activation variable ai, i.e., a fresh propositional variable ai ∈ A, where A ∩ AP = ∅.
Thereupon, we define the LTLf formula Ψ =

∧
i=1..N (ai → φi) over AP ∪ A. We make the

following observation: the satisfiability of Γ is conditioned by the activation variables A,
and we have the following theorems.

529

Roveri, Di Ciccio, Di Francescomarino, Ghidini

Theorem 5. Let Γ = {φ1, ..., φN} be a set of LTLf formulas over AP, A = {a1, ..., aN} a
set of propositional variables such that A ∩ AP = ∅, and Ψ =

∧
i=1..N (ai → φi) an LTLf

formula defined over AP ∪A. It holds that Γ is unsatisfiable if and only if Ψ ∧
∧
ai∈A ai is

unsatisfiable.

Proof. =⇒ Let us assume that Γ is unsatisfiable. This entails that
∧
φi∈Γ φi is unsatisfiable.

Let us now consider Ψ ∧
∧
ai∈A ai, with Ψ and A ∋ ai defined as above, and let us assume

it is satisfiable. This means that there exists a trace π such that Ψ is satisfied in the initial
state π[0] and every ai ∈ A is set to true. As a consequence, ai → φi is satisfied by π for
every i = 1..N . Therefore, also every φi ∈ Γ (hence the conjunction of all φi formulas, and
the set Γ), are satisfiable. However, this contradicts the initial hypothesis.

⇐= Let us assume that Ψ∧
∧
ai∈A ai is unsatisfiable. This entails that for all subsets A

′ ⊆ A
such that each a′i ∈ A′ is true and all the other variables in A \A′ are false, the conjunction∧
a′i∈A′ a′i → φi is unsatisfiable. Since every a′i ∈ A′ is true, this entails that

∧
i:a′i∈A′ φi is

unsatisfiable. Let us consider Γ, and assume it is satisfiable. This means that there exists
a trace π such that π, 0 |=

∧
φi∈Γ φi. Therefore, for all φi ∈ Γ, it holds that π, 0 |= φi, thus

contradicting the above statement that
∧
i:a′i∈A′ φi is unsatisfiable, and hence the hypothesis

that Ψ ∧
∧
ai∈A ai is unsatisfiable.

Theorem 6. Let Γ = {φ1, ..., φN} be a set of LTLf formulas over AP, A = {a1, ..., aN} be
a set of propositional variables such that A ∩ AP = ∅, Ψ =

∧
i=1..N (ai → φi), and UC be a

subset of A (i.e., UC ⊆ A). The set ΦUC = {φi|ai ∈ UC} is an unsatisfiable core for Γ iff
the formula Ψ ∧

∧
ai∈UC ai is unsatisfiable.

Proof. The proof is analogous to, and a direct consequence of, the proof of Theorem 5.

This theorem allows us to obtain the unsatisfiable cores (UCs) of Γ by looking at the
activation variables that will make Ψ unsatisfiable.

4. Extracting Unsatisfiable Cores for LTLf

We present here how algorithms A1, . . . , A4 (see below for their definition) can be lever-
aged to define four new algorithms for the extraction of unsatisfiable cores for a given set of
LTLf formulas, following the two different strategies S1 and S2 highlighted in Fig. 1. Sec-
tion 4.1 provides the results for Strategy S1 and contains three new algorithms that extend
three state-of-the-art algorithms originally developed for LTL, either relying on LTL model
checking or on temporal resolution; Section 4.2 instead provides the results for Strategy S2
and contains a new algorithm that extends a reference approach developed for LTLf in a
native manner.

4.1 Strategy S1: LTLf Unsatisfiable Core Extraction via Reduction to LTL
Unsatisfiable Core Extraction

This section provides details of how we extract LTLf unsatisfiable cores via reduction to LTL
satisfiability checking over infinite traces, and via LTL temporal resolution. The first two
algorithms we present leverage two different state-of-the-art techniques for LTL satisfiability
checking:

530

Computing Unsatisfiable Cores for LTLf Specifications

A1) an approach based on Binary Decision Diagrams (BDDs, Bryant 1992) as in the work
of Clarke et al. (1997); and

A2) a SAT-based approach as presented by Biere et al. (2006).

The third algorithm is based on temporal resolution for LTL (A3, Hustadt and Konev 2003;
Schuppan 2016), extended to support past temporal operators.

We leverage Theorem 6 to obtain the unsatisfiable cores (UCs) of Γ = {φ1, ..., φN} by
looking at the activation variables A = {a1, ..., aN}, with A ∩ AP = ∅, which makes the
formula

∧
i=1..N (ai → φi)∧

∧
ai∈A ai unsatisfiable. In the following, we show how to obtain

the UCs using different solving techniques.

4.1.1 Algorithm NA1: BDD-based LTLf Unsatisfiable Core Extraction

Given the set Γ = {φ1, ..., φN} of LTLf formulas, we build the formula Ψ as discussed in
Theorem 5: Ψ =

∧
i=1..N (ai → φi) for a set A = {a1, ..., aN} of fresh variables such that

A ∩ AP = ∅. Then, we consider the following LTL formula built leveraging Corollary 1:

Ψ′ = F end ∧G(end→ X end) ∧ f2l(Ψ) (3)

The set JΨ′K resulting from applying language emptiness algorithms on Ψ′ (i.e., BddLtlSat
(Ψ′) in Algorithm NA1) can be symbolically represented as a propositional formula whose
models encode all states that are the initial state of some infinite trace satisfying Ψ′. Notice
that formula Ψ′ contains the activation variables in A and the variables in AP alongside
the variables in APB(Ψ′). The latter is needed to encode the symbolic Büchi automaton for
Ψ′ (see Section 2.2.1 for details).

Theorem 7. Let Γ = {φ1, ..., φN} be a set of LTLf formulas over AP, A = {a1, ..., aN} a set
of propositional variables with A∩AP = ∅, Ψ an LTLf formula defined as Ψ =

∧
i=1..N (ai →

φi), and Ψ′ an LTL formula defined as Ψ′ = F end∧G(end→ X end)∧ f2l(Ψ). There exists
a state s ∈ JΨ′K and a set C ⊆ A such that s |=p

∧
ai∈C ai if and only if

∧
i,ai∈C φi is

satisfiable.

Proof. =⇒ Suppose there exists a state s in JΨ′K such that s |=p
∧
ai∈C ai. For (AssN1),

there exists a trace π starting from s satisfying Ψ′. Since s |=p ai for all ai ∈ C, then trace
π also satisfies

∧
i,ai∈C φi.

⇐= Suppose that
∧
i,ai∈C φi is satisfiable by some word w over the alphabet 2AP . We

extend w to w′ such that w′ satisfies
∧
ai∈C ai. As a result, w′ satisfies Ψ′. For (AssN2),

there exists a trace π starting from JΨ′K that satisfies w′. Then, π[0] satisfies
∧
ai∈C ai.

This theorem allows for the extraction from JΨ′K of all possible subsets of the implicants
φ1, ..., φN that are consistent or inconsistent. In particular, given the set of states JΨ′K
corresponding to the assignments of variables in A, AP and APB(Ψ′), the set {s|A ∈ 2A |∧
i,s∈JΨ′K,s |=p ai

φi is unsatisfiable} can be obtained from JΨ′K by quantifying existentially

(projecting) the variables corresponding to AP and APB(Ψ′) and negating (complementing)
the result.

UCSΓ(A) = ¬(∃AP.∃APB(Ψ′).JΨ′K) (4)

UCSΓ(A) is a propositional formula over variables in A where each satisfying assignment
corresponds to an unsatisfiable core for Γ.

531

Roveri, Di Ciccio, Di Francescomarino, Ghidini

Algorithm NA1 BDD-based LTLf UC extraction with the approach of Clarke et al. (1997)

Input: Γ = {φ1, ..., φN} of LTLf formulas
Output: UC ⊆ Γ or ∅
1: A← {a1, ..., aN} s.t. A ∩ AP = ∅
2: Ψ←

∧
i=1..N (ai → φi)

3: Ψ′ ← F end ∧G(end→ X end) ∧ f2l(Ψ)
4: JΨ′K← BddLtlSat(Ψ′)
5: UCS← ¬(∃AP.∃APB(Ψ′).JΨ′K)
6: if (UCS = ∅) then return ∅
7: UC← PickOne(UCS)
8: return UC

Corollary 2. Let Γ = {φ1, ..., φN} be a set of LTLf formulas over AP, A = {a1, ..., aN}
a set of propositional variables with A ∩ AP = ∅, Ψ an LTLf formula defined as Ψ =∧
i=1..N (ai → φi), and Ψ′ an LTL formula defined as Ψ′ = F end ∧ G(end → X end) ∧

f2l(Ψ), UCSΓ(A) and SATΓ(A) propositional formulas over A defined as UCSΓ(A) =
¬(∃AP.∃APB(Ψ′).JΨ′K) and SATΓ(A) = (∃AP.∃APB(Ψ′).JΨ′K). Every satisfying assign-

ment for UCSΓ(A) is an unsatisfiable core for Γ: {s|A ∈ 2A |
∧
i,s |=p ai

φi is unsatisfiable}.
Every satisfying assignment for SATΓ(A) is a satisfiable subset of Γ: {s|A ∈ 2A |∧
i,s |=p ai

φi is satisfiable}.

Equation (4) can be easily implemented with BDDs through the respective existential quan-
tification and negation BDD operations (Bryant, 1992; Cimatti et al., 2007).

Algorithm NA1 computes the set of all the unsatisfiable cores (UCS) for a set of LTLf

formulas Γ by leveraging the BDD-based approach discussed by Clarke et al. (1997). It
takes as input a set Γ = {φ1, ..., φN} of LTLf formulas over AP. First, it builds a set
A = {a1, .., aN} of distinct activation variables such that A ∩ AP = ∅. Then it builds
the LTLf formula Ψ =

∧
i=1..N (ai → φi), and converts it into the LTL formula Ψ′ ←

F end∧G(end→ X end)∧f2l(Ψ) leveraging Corollary 1. Finally, it employs the BddLtlSat
algorithm (Clarke et al., 1997) to compute JΨ′K. Algorithm NA1 returns the empty set ∅
if the formula is satisfiable, otherwise it returns a UC ∈ UCS ⊆ 2A such that for every
s ∈ UCS the formula

∧
i,s |=p ai

φi is unsatisfiable.

For a more thorough discussion on how the check for language emptiness is performed,
see Section 2.2.1 and the work of Clarke et al. (1997).

Theorem 8. Let Γ = {φ1, ..., φN} be a set of LTLf formulas over AP, A = {a1, ..., aN}
a set of propositional variables with A ∩ AP = ∅, Ψ an LTLf formula defined as Ψ =∧
i=1..N (ai → φi), and Ψ′ an LTL formula defined as Ψ′ = F end∧G(end→ X end)∧ f2l(Ψ).

Algorithm NA1 returns ∅ if the set of LTLf formulas Γ is satisfiable. Otherwise, it computes
a set UCS ̸= ∅ such that, for every UC ∈ UCS, ΦUC = {φi | ai ∈ UC} is an unsatisfiable
core for Γ, and then returns a UC ∈ UCS, which corresponds to an unsatisfiable core for Γ.

Proof. The proof is a direct consequence of Theorem 7 and Corollary 2. Indeed,
BddLtlSat(Ψ′) computes JΨ′K, i.e., the set of states that are a starting point of some
trace satisfying Ψ′. If Γ is satisfiable, then any of its subsets is satisfiable as well. There-
fore, any possible assignment to ai will be such that Ψ′ is satisfiable. As a consequence,

532

Computing Unsatisfiable Cores for LTLf Specifications

SATΓ(A) ̸= ∅, and thus UCSΓ(A) = ∅ as per Line 3 of Algorithm NA1. On the other
hand, if Γ is unsatisfiable, Equation 4 extracts the formula over variables ai such that every
satisfying assignment for such formula corresponds to an unsatisfiable core for Ψ′. Notice
that an unsatisfiable core for Ψ′ is an unsatisfiable core for Γ, in turn. Therefore, the al-
gorithm selects one of these assignments with the PickOne(UCS) operation on Line 4 of
Algorithm NA1, thereby yielding an unsatisfiable core for Γ.

4.1.2 Algorithm NA2: SAT-based LTLf Unsatisfiable Core Extraction

Determining language emptiness of an LTL formula can also be performed leveraging any
off-the-shelf technique for SAT-based bounded model checking (BMC) equipped with com-
pleteness check (Biere et al., 2006; Claessen & Sörensson, 2012). We observe that all these
approaches can be easily extended to extract an unsatisfiable core from a conjunction of
temporal constraints by leveraging the ability of propositional SAT solvers to check the
satisfiability of a propositional formula ψ under a set of assumptions specified in the form
of literals L ∋ lj , ψ′ turns out to be unsatisfiable, then the SAT solver can return a subset
UC ⊆ L such that ψ∧

∧
lj∈UC lj is unsatisfiable. SAT-based bounded model checking (Biere

et al., 2003) encodes a finite trace of length k with a propositional formula over the set of
variables representing the AP at each time step from 0 to k. To check for completeness, they
typically encode the fact that the trace cannot be extended with states not yet visited (Biere
et al., 2006). We remark that, in model checking, one considers both a transition system
(i.e., a model) and a temporal logic formula. However, since we focus on satisfiability of
LTL formulas only, we consider as a transition system the universal model (i.e., given a set
of propositional variables AP, the initial set of states is 2AP , and the transitions relation
is 2AP × 2AP). Notice that this operation corresponds to encoding symbolically both the
initial set of states and the transition relation with ⊤.

The approach proceeds as illustrated in Algorithm NA2. Similarly to Algorithm NA1,
Algorithm NA2 takes as input a set Γ = {φ1, ..., φN} of LTLf formulas over AP. First, it
builds a set A = {a1, .., aN} of distinct activation variables such that A ∩ AP = ∅. Then
it builds the LTLf formula Ψ =

∧
i=1..N (ai → φi), and converts it into the LTL formula

Ψ′ ← F end∧G(end→ X end)∧ f2l(Ψ) leveraging Corollary 1. It computes an unsatisfiable
core for the set of LTLf formulas Γ leveraging the bounded model checking encoding defined
by Biere et al. (2006). To this end, it uses a completeness formula EncC(ϕ, k), which
is unsatisfiable iff the LTL formula ϕ is unsatisfiable, and a witness formula EncP(ϕ, k),
which is satisfiable iff ϕ is satisfiable by a trace of length k.5 For increasing values of
k, we submit to the SAT solver a propositional encoding up to the considered k of a trace
satisfying the formula Ψ′ under the assumption that all the literals in A are true in the initial

time step 0. In Algorithm NA2, we denote these literals with A[0] =
∧
ai∈A a

[0]
i and call

SAT Assume(EncC(Ψ′, k), A[0]), which checks the satisfiability of EncC(Ψ′, k) under the
assumption that the literals in A[0] are true. When the call proves the formula unsatisfiable
by returning UNSAT , it is straightforward to get one propositional unsatisfiable core from
the SAT solver in terms of a subset of the variables in A[0], thus concluding the search.
However, if the call returns SAT , we cannot conclude that the LTL formula is unsatisfiable.

5. We refer the reader to the work of Biere et al. (2006) for details on how the propositional formulas are
constructed byEncC(ϕ, k) and EncP(ϕ, k).

533

Roveri, Di Ciccio, Di Francescomarino, Ghidini

Algorithm NA2 SAT BMC-based LTLf UC extraction with the approach of Biere et al. (2006)

Input: Γ = {φ1, ..., φN} of LTLf formulas
Output: UC ⊆ Γ or ∅
1: A← {a1, ..., aN} s.t. A ∩ AP = ∅
2: Ψ←

∧
i=1..N (ai → φi)

3: Ψ′ ← F end ∧G(end→ X end) ∧ f2l(Ψ)
4: k ← 0
5: while (True) do
6: res,UC← SAT Assume(EncC(Ψ′, k), A[0])
7: if (res = UNSAT) then return UC

8: res← SAT(EncP(Ψ′, k) ∧
∧
ai∈A a

[0]
i)

9: if (res = SAT) then return ∅
10: k ← k + 1

In such a case, we check whether a lasso-shaped trace of length k exists that satisfies

the propositional formula EncP(Ψ′, k) ∧
∧
ai∈A a

[0]
i . This is achieved with the new call

SAT(EncP(Ψ′, k) ∧
∧
ai∈A a

[0]
i).

If SAT is returned, then we can conclude that the LTL formula is satisfiable and this
information can be noted. Otherwise, we increase k and iterate. This approach is guaranteed
to eventually terminate (Biere et al., 2006).

To sum up, Algorithm NA2 takes as input a set of LTLf formulas Γ = {φ1, .., φN} and
returns the empty set (∅) if the specification is satisfiable, otherwise it returns a subset
UC ⊆ A such that

∧
i,ai∈UC φi is unsatisfiable. Equipped with these notions, we prove the

following.

Lemma 1. Let Γ = {φ1, ..., φN} be a set of LTLf formulas over AP, A = {a1, ..., aN} a set
of propositional variables with A∩AP = ∅, Ψ an LTLf formula defined as Ψ =

∧
i=1..N (ai →

φi), and Ψ′ an LTL formula defined as Ψ′ = F end ∧G(end → X end) ∧ f2l(Ψ). Given l, k

such that 0 ≤ l ≤ k, we have that EncP(Ψ′, k) ∧
∧
ai∈A a

[0]
i is satisfiable iff there exists a

lasso-shaped trace π[0, l − 1]π[l, k]ω such that π |=
∧
i,ai∈A φi.

Proof. =⇒ Let π[0, k] be a finite trace corresponding to a satisfying assignment for

EncP(Ψ′, k) ∧
∧
ai∈A a

[0]
i . From assumption (AssN1), there exists an l (with 0 ≤ l ≤ k)

such that π[0, l − 1]π[l, k]ω |= Ψ′. With
∧
ai∈A a

[0]
i and the construction of Ψ′, we conclude

that the projection of π[0, l − 1]π[l, k]ω onto AP satisfies
∧
i,ai∈A φi.

⇐= Let us assume a lasso shaped witness π[0, l− 1]π[l, k]ω for
∧
i,ai∈A φi. Any extension to

π[0, l − 1]π[l, k]ω such that
∧
ai∈A a

[0]
i holds in the initial state, is a trace satisfying Ψ′. As

a consequence, also EncP(Ψ′, k) ∧
∧
ai∈A a

[0]
i is satisfiable.

Lemma 2. Let Γ = {φ1, ..., φN} be a set of LTLf formulas over AP, A = {a1, ..., aN}
a set of propositional variables with A ∩ AP = ∅, Ψ an LTLf formula defined as Ψ =∧
i=1..N (ai → φi), Ψ

′ an LTL formula defined as Ψ′ = F end ∧G(end → X end) ∧ f2l(Ψ),

and UC ⊆ A. If EncC(Ψ′, k) is unsatisfiable under the assumption that
∧
ai∈UC a

[0]
i holds

true, then
∧
i,ai∈UC φi is unsatisfiable.

534

Computing Unsatisfiable Cores for LTLf Specifications

Proof. Let EncC(Ψ′, k) be unsatisfiable under the assumption
∧
ai∈UC a

[0]
i . Let us assume

there exists a witness π of
∧
i,ai∈UC φi. We can extend the π trace to a trace π′ over

variables AP ∪ A such that
∧
ai∈UC a

[0]
i is a trace satisfying Ψ′, thus contradicting the

assumption (AssN2).

Theorem 9. Let Γ = {φ1, ..., φN} be a set of LTLf formulas over AP, A = {a1, ..., aN}
a set of propositional variables with A ∩ AP = ∅, Ψ an LTL formula defined as Ψ =∧
i=1..N (ai → φi), and Ψ′ an LTL formula defined as Ψ′ = F end∧G(end→ X end)∧ f2l(Ψ).

Algorithm NA2 returns ∅ if the set of LTLf formulas Γ is satisfiable, otherwise it returns a
UC ̸= ∅ such that the set ΦUC = {φi|ai ∈ UC} is an unsatisfiable core for Γ.

Proof. The proof is a direct consequence of Lemma 1 and Lemma 2.

Algorithm NA2 uses the encoding of Biere et al. (2006) for both EncC(Ψ′, k) and
EncP(Ψ′, k). We remark that the schema can also be adapted to leverage other algorithms
such as the ones based on k-liveness (Claessen & Sörensson, 2012) or liveness to safety (Biere
et al., 2002), both relying on the IC3 algorithm (Bradley, 2011). What intuitively changes
is the propositional encoding of the LTL formula and the calls to the SAT solver to reflect
the IC3 algorithm. However, this is left as future work.

4.1.3 Algorithm NA3: Temporal Resolution based LTLf Unsatisfiable Core
Extraction

We can extract the unsatisfiable core of a set of LTLf formulas Γ = {φ1, ..., φN} via LTL
temporal resolution (TR, Hustadt and Konev 2003) by leveraging the results previously
discussed in this paper and existing LTL temporal resolution engines equipped for temporal
unsatisfiable core extraction (Schuppan, 2016). Algorithm NA3 computes an unsatisfiable
core for a set of LTLf formulas Γ = {φ1, ..., φN} as follows. First, it creates a set A of
fresh propositional variables A = {a1, .., aN} such that A ∩ AP = ∅. Second, it builds the
formula Ψ =

∧
i=1..N (ai → φi). Third, it leverages Theorem 1 to convert the LTLf formula

into an equi-satisfiable LTL formula Ψ′ = F end ∧ G(end → X end) ∧ f2l(Ψ). Fourth, it
applies Theorem 4 to remove the past temporal operators in Ψ′, and enforces each activation
variable ai ∈ A to hold, thus it builds the LTL formula ψ ← ϕ′∧

∧
φ∈Υ φ∧

∧
ai∈A ai. Finally,

the resulting LTL formula ψ is given as input to any LTL temporal resolution solver suitable
to extract a temporal unsatisfiable core. In particular, we rely on the trp++ temporal
resolution solver (Schuppan, 2016). If the LTL temporal resolution solver responds UNSAT ,
we get an unsatisfiable core of the original set of LTLf formulas by looking at the activation
variables in the extracted temporal unsatisfiable core UCψ.

Algorithm NA3 takes as input the set Γ = {φ1, .., φN} and returns the empty set (∅) if Γ
is satisfiable. Otherwise, it returns a subset UC ⊆ A such that

∧
i,ai∈UC φi is unsatisfiable.

It uses the trp++ algorithm (Schuppan, 2016) to compute the unsatisfiable core UCψ, and
then it extracts from it only the formulas corresponding to ai ∈ A (denoted in the algorithm
with UCψ|A). The trp++(ψ) algorithm introduced by Schuppan (2016) first converts the
LTL formula ψ into an equi-satisfiable set of Separated Normal Form (SNF, Fisher 1991)
clauses C, and then it checks whether this set is satisfiable or not. In case of unsatisfiability,
it computes an unsatisfiable core Cuc ⊆ C and returns the set UCψ obtained from Cuc by

535

Roveri, Di Ciccio, Di Francescomarino, Ghidini

Algorithm NA3 TR LTLf UC Extraction with the approach of Schuppan (2016)

Input: Γ = {φ1, ..., φN} of LTLf formulas
Output: UC ⊆ Γ or ∅
1: A← {a1, ..., aN} s.t. A ∩ AP = ∅
2: Ψ←

∧
i=1..N (ai → φi)

3: Ψ′ ← F end ∧G(end→ X end) ∧ f2l(Ψ)
4: ⟨ϕ′,Υ⟩ ← p2f(Ψ′, ∅)
5: ψ ← ϕ′ ∧

∧
φ∈Υ φ ∧

∧
ai∈A ai

6: res,UCψ ← trp++(ψ)
7: if (res = UNSAT) then return UCψ|A
8: return ∅

applying a reconstruction with respect to the original set of LTL formulas. We refer the
reader to the work of Schuppan (2016) for more details on the algorithm and the proof of
correctness of the trp++ algorithm.

Theorem 10. Let Γ = {φ1, ..., φN} be a set of LTLf formulas over AP, A = {a1, ..., aN}
a set of propositional variables with A ∩ AP = ∅, Ψ an LTLf formula defined as Ψ =∧
i=1..N (ai → φi), Ψ

′ an LTL formula defined as Ψ′ = F end ∧G(end → X end) ∧ f2l(Ψ),
and ψ an LTL formula defined as ψ = ϕ′ ∧

∧
φ∈Υ φ ∧

∧
ai∈A ai where ⟨ϕ

′,Υ⟩ = p2f(Ψ′, ∅).
Then Algorithm NA3 returns ∅ if the set of LTLf formulas Γ is satisfiable, otherwise it
returns a UC ̸= ∅ such that the set ΦUC={φi|ai∈UC} is an unsatisfiable core for Γ.

Proof. If the set Γ is satisfiable, then the formula ψ = ϕ′∧
∧
φ∈Υ φ∧

∧
ai∈A ai where ⟨ϕ

′,Υ⟩ =
p2f(Ψ′, ∅), is satisfiable since it leverages on transformations that preserve satisfiability (see
Theorems 1, 4, and 6). Therefore, also trp++(ψ) returns as an answer that Γ is satisfiable,
and the algorithm yields the empty set ∅ to indicate this.

On the other hand, if Γ is unsatisfiable, then also ψ = ϕ′ ∧
∧
φ∈Υ φ ∧

∧
ai∈A ai is unsat-

isfiable. Therefore, trp++(ψ) returns UNSAT together with an unsatisfiable core for the
formula ψ (denoted UCψ in the algorithm). We remark that, given the structure of ψ, each
ai will be then converted into an SNF clause cai = ai which will thus be part of the set of
SNF clauses C used internally by trp++. Since this formula is unsatisfiable, the trp++
algorithm will extract an unsatisfiable core UCψ = Cuc ⊆ C such that Cuc is unsatisfiable.
Cuc, among other clauses, will contain some cai for ai ∈ A that correspond to the respective
formulas in Γ (thanks also to Theorem 6). Therefore, the set UCψ = Cuc restricted to the
only variables ai ∈ A (denoted with UCψ|A in the algorithm) will represent an unsatisfiable
core for Γ.

4.2 Strategy 2: LTLf Unsatisfiable Core Extraction via Native SAT

This section provides details on how we adapted the native SAT-based LTLf satisfiability
approach discussed by Li et al. (2020) to extract the unsatisfiable core. Since the original
approach for LTLf satisfiability checking was not supporting past temporal operators (Li et
al., 2020), we rely on Theorem 4 to get rid of the past temporal operators, thus obtaining
an equi-satisfiable LTLf formula without them.

536

Computing Unsatisfiable Cores for LTLf Specifications

Algorithm NA4 SAT LTLf UC Extraction with the approach of Li et al. (2020)

Input: Γ = {φ1, ..., φN} of LTLf formulas
Output: UC ⊆ Γ or ∅
1: A← {a1, ..., aN} s.t. A ∩ AP = ∅
2: Ψ =

∧
i=1..N (ai → φi)

3: ⟨ϕ′,Υ⟩ ← p2f(Ψ, ∅)
4: ψ ← ϕ′ ∧

∧
φ∈Υ φ

5: res← SATLTLF(ψ, A)
6: if (res = UNSAT) then return SATSOLVER.GET UC (A)
7: return ∅

4.2.1 Algorithm NA4: LTLf SAT- based LTLf Unsatisfiable Core Extraction

The algorithm introduced by Li et al. (2020) can be extended to extract the unsatisfiable
core of a set Γ = {φ1, ..., φN} of LTLf formulas over AP as follows (see Algorithm NA4).
First, similarly to the other algorithms in this paper, we build a set A = {a1, .., aN} of
fresh propositional variables such that A ∩ AP = ∅. Second, we build the LTLf formula
Ψ =

∧
i=1..N (ai → φi). Then, we apply Theorem 4 to get an equi-satisfiable LTLf formula

ψ without temporal past operators such that ψ = ϕ′ ∧
∧
φ∈Υ φ where ⟨ϕ′,Υ⟩ = p2f(Ψ, ∅).

The resulting LTLf formula (without past temporal operators) is then passed as input to
the SATLTLF algorithm discussed in the work of Li et al. (2020). The SATLTLF algorithm
in Algorithm NA4 is almost identical to the original one presented in (Li et al., 2020). We
modify each internal call SAT Assume by enforcing that each of those calls also assumes
that the activation variables in A are all true. We refer the reader to the work of Li et
al. (2020) for a thorough description of the algorithm (which is out of the scope of this
paper). We remark that the only modifications performed to the Li et al. (2020) algorithm
consist in changing each call to SAT Assume to also enforce that the activation variables
in A are all true. Intuitively, given an LTLf formula ϕ, the algorithm by Li et al. (2020)
constructs a conflict sequence C = C[0], ..., C[k] (i.e., a sequence of states that cannot reach
a final state of the transition system Tϕ constructed from the formula ϕ given as input).
This sequence is extracted from the unsatisfiable cores resulting from different propositional
unsatisfiable queries performed within the algorithm itself. As per Theorem 3, the input
LTLf formula is unsatisfiable iff there exists a conflict sequence C and an integer i ≥ 0 such
that

⋂
0≤j≤i C[j] ⊆ C[i + 1]. When the SATLTLF algorithm returns UNSAT , we extract

from the last element of the computed conflict sequence (i.e., C[i+1]) the unsatisfiable core
UC ⊆ A, and the set Γ′ = {φi|ai ∈ UC} is an unsatisfiable core for Γ leveraging Theorem 3.

Theorem 11. Let Γ = {φ1, ..., φN} be a set of LTLf formulas over AP, A = {a1, ..., aN}
a set of propositional variables with A ∩ AP = ∅, Ψ an LTLf formula defined as Ψ =∧
i=1..N (ai → φi), and ψ an LTLf formula defined as ψ = ϕ′ ∧

∧
φ∈Υ φ where ⟨ϕ′,Υ⟩ ←

p2f(Ψ, ∅). Then Algorithm NA4 returns ∅ if the set of LTLf formulas Γ is satisfiable,
otherwise it returns a UC ̸= ∅ such that the set ΦUC = {φi|ai ∈ UC} is an unsatisfiable
core for Γ.

Proof. If the set Γ is satisfiable, then the formula ψ = ϕ′∧
∧
φ∈Υ φ, where ⟨ϕ′,Υ⟩ = p2f(Ψ, ∅)

and Ψ =
∧
i=1..N (ai → φi), is also satisfiable since it resorts to transformations that preserve

satisfiability (see Theorems 4, 1 and 6). Thus, as SATLTLF is correct and complete (Li et

537

Roveri, Di Ciccio, Di Francescomarino, Ghidini

Table 1: The tools implementing the LTLf unsatisfiable core extraction algorithms

Algorithm See Tool name Based upon Augmentation Available at

NA1 Section 4.1.1 NuSMV-B (Cimatti et al., 2002; Clarke et al., 1997) Enhancement https://github.com/roveri-marco/ltlfuc

NA2 Section 4.1.2 NuSMV-S (Biere et al., 2006; Cimatti et al., 2002) Enhancement https://github.com/roveri-marco/ltlfuc

NA3 Section 4.1.3 trp++ (Hustadt & Konev, 2003; Schuppan, 2016) Toolchain http://www.schuppan.de/viktor/trp++uc/

NA4 Section 4.2 aaltaf (Li et al., 2020) New module https://github.com/roveri-marco/aaltaf-uc

al., 2020), it declares that Γ is satisfiable. In turn, Algorithm NA4 returns the empty set ∅ to
indicate this. On the other hand, if Γ is unsatisfiable, then also the formula ψ = ϕ′∧

∧
φ∈Υ φ

is unsatisfiable. As per Theorem 3, the SATLTLF algorithm will build a conflict sequence
C, and i ≥ 0 such that

⋂
0≤j≤i C[j] ⊆ C[i+1], C[i+1] will represent the states from which it

is not possible to reach a final state for Tψ (i.e., there is no trace starting from these states
that satisfies ψ, or, put in other words, all the traces from these states do not satisfy ψ).
Thus, for all states s ∈ C[i+1] there exists a set C ⊆ A such that s |=p

∧
ai∈C ai, the formula∧

i,ai∈C φi is unsatisfiable, and the set C corresponds to an unsatisfiable core extracted from
C[i+ 1] by construction of the SATLTLF algorithm. We refer the reader to the work of Li
et al. 2020 for further details in this regard.

4.3 Discussion

We make the following observations. All the described approaches extract one unsatisfiable
core, though not necessarily a minimum/minimal one. Algorithm NA1 could also be easily
extended to get the minimal UC from the UCS set of all possible unsatisfiable cores for the
given formula. For the SAT-based approaches, a minimum/minimal unsatisfiable core could
be extracted by leveraging the ability of the SAT solver to get a minimum/minimal proposi-
tional unsatisfiable core. Similarly, the temporal resolution solver could be instrumented to
get a minimum/minimal core. In all cases, it might be possible to get a minimum/minimal
one with specialised solvers and/or with additional search. However, this is left for future
work.

5. Experimental Evaluation

In this section, we provide details on the implementations of the proposed algorithms (Sec-
tion 5.1), and then we describe the setup and the data sets used for the experimental eval-
uation (Section 5.2). We conclude with a report on the results alongside an examination
thereof (Section 5.3).

5.1 Implementation of the Algorithms

Table 1 summarises our implementations of the four algorithms described in Section 4. We
realise Algorithms NA1 and NA2 as extensions of the NuSMV model checker (Cimatti et
al., 2002) exploiting the built-in support for past temporal operators, the f2l(φ) conversion,
and Eq. (2). In particular, we enhanced (i) the BDD-based algorithm for LTL language
emptiness (Clarke et al., 1997) and (ii) the SAT-based approaches (Biere et al., 2006).
We shall henceforth refer to these tools as NuSMV-B and NuSMV-S, respectively. The

538

https://github.com/roveri-marco/ltlfuc
https://github.com/roveri-marco/ltlfuc
http://www.schuppan.de/viktor/trp++uc/
https://github.com/roveri-marco/aaltaf-uc

Computing Unsatisfiable Cores for LTLf Specifications

Table 2: The benchmarks used in our experiments. For the sake of readability, we compactly
denote with $A the LTL-as-LTLf root, and with $B the LTLf-specific root.

Clauses Clauses

Family Problems Min. Max. Avg. Family Problems Min. Max. Avg.

$A/acacia/demo-v3/demo-v3:cl 11 9 49 29.00 $A/anzu/genbuf/genbuf:cl 20 58 461 231.50

$A/alaska/lift/lift 17 13 29 21.00 $A/forobots 38 6 6 6.00

$A/alaska/lift/lift:b 17 12 32 22.47 $A/rozier/counter/counter 19 6 24 15.00

$A/alaska/lift/lift:b:f 17 12 32 22.47 $A/rozier/counter/counterCarry 19 8 26 17.00

$A/alaska/lift/lift:b:f:l 17 14 50 32.47 $A/rozier/counter/counterCarryLinear 19 8 8 8.00

$A/alaska/lift/lift:b:l 17 14 50 32.47 $A/rozier/counter/counterLinear 18 6 6 6.00

$A/alaska/lift/lift:f 17 13 29 21.00 $A/rozier/formulas/n 30 1 4 1.33

$A/alaska/lift/lift:f:l 17 15 47 31.00 $A/schuppan/O1formula 27 4 1002 224.00

$A/alaska/lift/lift:l 17 15 47 31.00 $A/schuppan/O2formula 27 2 1000 222.00

$A/anzu/amba/amba:c 17 75 351 213.47 $A/schuppan/phltl 13 5 101 30.85

$A/anzu/amba/amba:cl 17 77 369 223.47 $B/benchmarks:ltlf/LTLfRandomConjunction/C100 500 118 154 131.50

$A/anzu/genbuf/genbuf 20 1 1 1.00 $B/benchmarks:ltlf/LTLfRandomConjunction/V20 425 13 146 81.54

$A/anzu/genbuf/genbuf:c 20 57 441 221.00 Overall 1377 1 1002 97.63

source code for the extended version of NuSMV with these implementations is available at
https://github.com/roveri-marco/ltlfuc.

We create a toolchain for Algorithm NA3. First, our variant of aaltaf generates a file
that is suitable for the trp++ temporal resolution solver (Hustadt & Konev, 2003) using
the f2l(φ) conversion as per Eq. (2), and p2f(φ, ∅). Then, the resulting file is submitted to
trp++. Finally, the generated UC is post-processed to extract the auxiliary variables A.
For our experiments, we use the latest version of trp++.6

Finally, we implement Algorithm NA4 within an extended version of the aaltaf tool (Li
et al., 2020), with a novel dedicated module supporting past temporal operators through
p2f(φ, ∅). The source code for our extended version of aaltaf is available at https://

github.com/roveri-marco/aaltaf-uc.

5.2 The Experimental Setup

For the experimental evaluation, we considered all the unsatisfiable problems reported in
the work of Li et al. (2020), for a total of 1377 problems. To select the specifications
of interest to our analysis from the original testbed, we included only those for which at
least one solver declared that the set was unsatisfiable and no other tool contradicted the
result, as per the experimental data reported by Li et al. (2020). To compute the Γ set,
we considered all the top-level conjuncts of each formula in the benchmark set. For every
benchmark, we used the variant of the formula in the aaltaf format as an input. For the
other tools except aaltaf, we implemented dedicated modules within aaltaf to convert
the native input encodings into its accepted format.

We carried out the experimental evaluation considering the four implementations pro-
vided by NuSMV-B, NuSMV-S, our variant of aaltaf, and the trp++ toolchain. We
ran all experiments on an Ubuntu 18.04.5 LTS machine, 8-Core Intel® Xeon® at 2.2GHz,
equipped with 64GB of RAM. We set a memory occupation limit of 4GB, and a CPU usage

6. http://www.schuppan.de/viktor/trp++uc/.

539

https://github.com/roveri-marco/ltlfuc
https://github.com/roveri-marco/aaltaf-uc
https://github.com/roveri-marco/aaltaf-uc
http://www.schuppan.de/viktor/trp++uc/

Roveri, Di Ciccio, Di Francescomarino, Ghidini

limit of 60min.7 Additionally, we considered k = 50 as the maximum depth for NuSMV-S,
and we ran NuSMV-B with the BDD dynamic variable reordering mode active (Felt et al.,
1993) to dynamically reduce the size of the BDDs and thus save space over time.8 Whenever
the wall-clock timing reported by the implemented technique fell under the lowest sensitiv-
ity of the tool, we replaced the timing with the minimum non-zero timing reported overall
(i.e., 3.78× 10−4 s).

Finally, we categorised the benchmarking specifications into 25 families, according to
their characteristics and provenance. Table 2 shows the number of specifications per
family, along with the minimum, maximum and average number of clauses within it.
In particular, the LTLf-specific/benchmarks/LTLFRandomConjunction/V20 and LTLf-
specific/benchmarks/LTLFRandomConjunction/C100 benchmarks are conjunctions of for-
mulas, each selected randomly from standard patterns. They are characterised by a temporal
depth (i.e., the maximum nesting of temporal operators) of up to 3, with 20 propositional
variables. The number of conjunctions ranges from 20 to 100 for the former, and from 10
to 100 for the latter. The LTL-as-LTLf/rozier/counter/* benchmarks9 are characterised by
the fact that they have temporal formulas of different temporal depths (from 2 to 20) with
a small number of propositional variables. These formulas are a conjunction of subformulas
characterised by a top level G whose body contains a nested chain of 2 to 20 X’s. The
benchmarks in LTL-as-LTLf/schuppan/O1Formula contain a large number of propositional
variables (from 1 to 1000) with temporal formulas of small depth (2 to 3) and different
operators. The benchmarks in LTL-as-LTLf/schuppan/O2Formula are big conjunctions of
formulas in the form GF ai ↔ aj with ai ̸= aj .

All the material to reproduce the experiments reported hereinafter is avail-
able at https://github.com/roveri-marco/ltlfuc/archive/refs/tags/jair-release
-v1.0.zip.

5.3 The Results

In the experimental evaluation, we consider the following evaluation metrics: (i) the result of
the check (expecting all the tools to return unsatisfiability and extract an unsatisfiable core
if no resource limit is reached); (ii) the search time to compute and return an unsatisfiable
core; (iii) the size of the computed unsatisfiable core. We remark that none of the presented
algorithms strives for finding a minimum unsatisfiable core. The approach based on trp++
may be used to that end, and NuSMV-B could in principle be easily adapted to select from
the intermediate computed set UCS a minimum unsatisfiable core (as discussed previously).
Nevertheless, we pick the first returned UC for all tools so as to have a fair comparison among
them.

7. These settings are motivated by similar choices performed in the experimental evaluations carried out
in Li et al. (2020).

8. These settings are motivated by similar choices performed in the experimental evaluations carried out
by Cimatti et al. (2007); Schuppan (2016).

9. For the sake of conciseness, we use the /* shorthand notation to compactly indicate all bench-
mark families under a given root. For example, LTL-as-LTLf/rozier/counter/* is a collective identi-
fier for the LTL-as-LTLf/rozier/counter/counter, LTL-as-LTLf/rozier/counter/counterCarry, LTL-as-
LTLf/rozier/counter/counterCarryLinear, and LTL-as-LTLf/rozier/counter/counterLinear benchmark
families.

540

https://github.com/roveri-marco/ltlfuc/archive/refs/tags/jair-release-v1.0.zip
https://github.com/roveri-marco/ltlfuc/archive/refs/tags/jair-release-v1.0.zip

Computing Unsatisfiable Cores for LTLf Specifications

The first result is that, as expected, all the tools reported consistent output when
terminating without reaching a resource limit (being it memory, time or search-space depth).
In other words, for all the considered benchmarks it was never the case that an algorithm
declared the specification as satisfiable. This outcome is in line with the original findings
of Li et al. (2020). We also checked that every computed core was unsatisfiable by feeding
it into the aaltaf algorithm. However, we remark that individual algorithms could extract
different unsatisfiable cores among the diverse possible ones.

In the following, we further investigate the performance of the algorithms in terms of
efficiency and efficacy. We gauge the former taking into account the time the tools take
to find a UC. We measure the latter considering the cardinality of the returned UC. In
principle, indeed, a tool could just return the whole input set of constraints as unsatisfiable.
Such an output would be very fast to compute, and the tool would be deemed as highly
efficient. However, the outcome would be of scarce informativeness.

In the remainder of the section, we shall consider the sole cases in which the tools
were able to return a UC within the given resource limits (thus excluding timeouts and
unknown answers), unless explicitly stated otherwise. The presentation of the experimental
results proceeds as follows. Section 5.3.1 shows how tools rank in terms of both criteria
(i.e., execution time and UC cardinality). That section serves as a general introduction to
the following, more detailed analysis. Section 5.3.2 focus on how algorithms cumulatively
perform in terms of execution time. Section 5.3.3 delves deeper into this topic by illustrating
pairwise comparisons of the tools’ efficiency. Then, Section 5.3.4 categorizes the performance
of tools based on the benchmark families, and Section 5.3.5 reports on our studies pertaining
to the effect that the number of conjuncts in formulas have on execution time. Section 5.3.6
moves the focus away from time perfomance and shifts it onto the efficacy of tools, with a
comparative evaluation of the cardinality of the UCs returned by the tools. Analogously to
Section 5.3.4, the section also categorises the results with respect to the benchmark family
of the input. Afterwards, Section 5.3.7 illustrates pairwise comparisons of the tools’ efficacy,
akin to our analysis reported in Section 5.3.3 for efficiency. To conclude, Section 5.3.8 offers
a summary of the findings.

5.3.1 Time Performance and Cardinality of the UC

The Sankey chart in Fig. 2 compactly depicts two-staged rankings: speed of computation
and cardinality of the computed UC. In the rankings here we allow for ties (for example,
two tools can occupy the first position together). As it turns out, aaltaf is the fastest
tool in the majority of tests. However, it returns the UCs that are smallest in size with
about half of the test cases. Although trp++ usually occupies the second position in the
time ranking, the cardinality of the returned UC usually is the lowest whenever it finds
one. Also, notice that trp++ returns the smallest UC in 680 cases, that is basically as
many times as aaltaf (with 681 cases). NuSMV-B and NuSMV-S manage to return
an unsatisfiable core less often than the other two tools. However, especially NuSMV-
B yields comparably small unsatisfiable cores whenever it succeeds in finding one under
the imposed time constraints. We recall that we exclude from the plot also the points
representing returned unknown answers, which motivates the low number of entries for

541

Roveri, Di Ciccio, Di Francescomarino, Ghidini

AALTAF

TRP++

NuSMV-S

NuSMV-B

1st timing (1262)

2nd timing (16)
3rd timing (15)

Pre-parsing (26)

2nd timing (691)

3rd timing (65)
4th timing (7)

1st timing (8)
2nd timing (21)

3rd timing (7)
4th timing (8)

1st timing (92)

2nd timing (67)

3rd timing (78)
4th timing (11)

1st UC card. (681)

2nd UC card. (544)

3rd UC card. (68)

1st UC card. (680)

2nd UC card. (84)
3rd UC card. (19)

4th UC card. (6)
1st UC card. (39)
3rd UC card. (3)
4th UC card. (2)

1st UC card. (213)

2nd UC card. (32)
3rd UC card. (3)

Figure 2: Sankey chart displaying the tool rankings based on the computation time and the
cardinality of the returned UCs.

0 200 400 600 800 1000 1200 1400
solved instances

10−4

10−3

10−2

10−1

100

101

102

103

C
PU

tim
e

(s
)

Virtual best
NuSMV-S
AALTAF
TRP++
NuSMV-B

Figure 3: Cactus plot of the experimental evaluation. The cactus plot, typically used by
the SAT and SMT community for benchmarking automated verification tools, reports the
number of solved instances on the x-axis, and the cumulative computation time required
by the tools on the y-axis

.

NuSMV-S overall. Next, we discuss the factors that led to the different performance levels
in a more in-depth comparative assessment, starting with time.

542

Computing Unsatisfiable Cores for LTLf Specifications

5.3.2 Execution Time

Figure 3 shows on the x-axis the number of problems solved by each algorithm (within the
60min timeout), and on the y-axis the time taken to solve them cumulatively. Alongside
the aforementioned tools, the figure illustrates the performance of the virtual best, that is
the minimum time required for each solved instance among the four implementations. As
above, we exclude from the plot the points representing runs that do not return a UC.
The overall minimum, maximum, average, and median timings to return a UC are 0.0004 s,
3478.96 s, 50.7472 s and 0.0812 s, respectively. The maximum, average, and median timings
shrink to 2029.7347 s, 4.8534 s and 0.0274 s, respectively, for the virtual best. We observe
that aaltaf outperforms the other implementations in the majority of cases, although the
tail of the virtual-best curve on the right-hand side of both plots exhibits an influence from
trp++ and NuSMV-B, thus witnessing that the proposed approaches are complementary.

5.3.3 Pairwise Efficiency Comparison

Figure 4 illustrates pairwise comparisons of time efficiency of the considered tools. Here,
we also include cases in which a certain answer is not returned. Our objective is to provide
a visual clue of tests in which only one (or none) of the two tools in the plot was able to
extract the UC. Figure 4(a) compares aaltaf with NuSMV-B, Fig. 4(b) compares aaltaf
with NuSMV-S, Fig. 4(c) compares aaltaf with trp++, Fig. 4(d) compares NuSMV-B
with NuSMV-S, Fig. 4(e) compares NuSMV-B with trp++, and finally Fig. 4(f) com-
pares NuSMV-S with trp++. Figure 4(c), in particular, shows that aaltaf outperforms
trp++ in terms of computation speed: most of the points, indeed, are located above the
diagonal, thus indicating that aaltaf demands less time than trp++ to return the un-
satisfiable cores. The plot also shows that trp++ exceeds the timeout in several cases
(points on the red line marked with “3600 sec. timeout”). Furthermore, we remark that
trp++ operates a pre-processing phase on the input specification prior to the actual iden-
tification of UCs. If it manages to reduce the given set of conjuncts to false at that stage,
it stops the computation before returning any UCs and raises an alert. The points ly-
ing on the line marked with “Input formula simplified to False” indicate those cases (see
Figs. 4(c), (e) and (f)). This simplification occurred 26 times in total.

NuSMV-S was able to conclude that the formula was unsatisfiable and return a UC
in 44 cases, whereas it yielded an unknown answer (i.e., it reached k = 50 without being
able to decide on unsatisfiability) in 1278 cases (see the line labelled with “Unknown”
in Figs. 4(b), (d), and (f)). Finally, we report that aaltaf, trp++, NuSMV-B, and
NuSMV-S reached the timeout in 84, 562, 990, and 55 cases, respectively.

5.3.4 Best Time Performance per Benchmark Family

Figure 5 focuses again on computation time, contrasting the overall best performance with
the benchmark family the input data stem from. In particular, Fig 5(a) shows a pie chart
with an overview of the number of tests in which a tool was the fastest, and Fig 5(b) depicts
a stacked bar chart in which the results are grouped by benchmark family. Differently from
the Sankey diagram in Fig. 2, we determine only one best performer among all tools, without
ex-aequo leading positions. When solvers take the same time, we associate the best result
to the tool that returned the UC that is smaller in cardinality.

543

Roveri, Di Ciccio, Di Francescomarino, Ghidini

10−4 10−3 10−2 10−1 100 101 102 103 104

AALTAF

10−4

10−3

10−2

10−1

100

101

102

103

104

N
uS

M
V

-B

3600 sec. timeout

36
00

se
c.

tim
eo

ut

10−4 10−3 10−2 10−1 100 101 102 103 104

AALTAF

10−4

10−3

10−2

10−1

100

101

102

103

104

N
uS

M
V

-S

3600 sec. timeout

Unknown

36
00

se
c.

tim
eo

ut

(a) aaltaf vs NuSMV-B (b) aaltaf vs NuSMV-S

10−4 10−3 10−2 10−1 100 101 102 103 104

AALTAF

10−4

10−3

10−2

10−1

100

101

102

103

104

T
R

P+
+

3600 sec. timeout

Input formula simplified to False

36
00

se
c.

tim
eo

ut

10−4 10−3 10−2 10−1 100 101 102 103 104

NuSMV-B

10−4

10−3

10−2

10−1

100

101

102

103

104

N
uS

M
V

-S

3600 sec. timeout

Unknown

36
00

se
c.

tim
eo

ut

(c) aaltaf vs trp++ (d) NuSMV-B vs NuSMV-S

10−4 10−3 10−2 10−1 100 101 102 103 104

NuSMV-B

10−4

10−3

10−2

10−1

100

101

102

103

104

T
R

P+
+

3600 sec. timeout

Input formula simplified to False

36
00

se
c.

tim
eo

ut

10−4 10−3 10−2 10−1 100 101 102 103 104

NuSMV-S

10−4

10−3

10−2

10−1

100

101

102

103

104

T
R

P+
+

3600 sec. timeout

Input formula simplified to False

36
00

se
c.

tim
eo

ut

U
nk

no
w

n

(e) NuSMV-B vs trp++ (f) NuSMV-S vs trp++

Figure 4: Scatter plots comparing search timings for each algorithm pair.

The pie chart in Fig. 5(a) confirms that aaltaf is the most time-efficient tool as evi-
denced by its 1261 fastest runs, followed byNuSMV-B (85), andNuSMV-S (8). In 23 cases,
no tool was able to return an unsatisfiable core. As shown by Fig. 5(b), NuSMV-B turned
out to find the UC in minimum time with the LTL-as-LTLf/rozier/counter/* benchmark
families. Figure 5(b) shows that the problems of the LTL-as-LTLf/schuppan/O2Formula
benchmark family are the most challenging ones for all the implemented techniques. In-
deed, 14 out of the 23 problems that were not solved by any tools belong to it. The
analysis per benchmark family in Fig. 5(b) confirms the superiority in terms of time ef-
ficiency of aaltaf in most of the tests, with the exclusion of the aforementioned LTL-

544

Computing Unsatisfiable Cores for LTLf Specifications

AALTAF
1261

NuSMV-S
8

NuSMV-B
85

None23 (a)

0 10 20 30 40 50

LTL-as-LTLf/acacia/demo-v3/demo-v3:cl
LTL-as-LTLf/alaska/lift/lift

LTL-as-LTLf/alaska/lift/lift:b
LTL-as-LTLf/alaska/lift/lift:b:f

LTL-as-LTLf/alaska/lift/lift:b:f:l
LTL-as-LTLf/alaska/lift/lift:b:l

LTL-as-LTLf/alaska/lift/lift:f
LTL-as-LTLf/alaska/lift/lift:f:l

LTL-as-LTLf/alaska/lift/lift:l
LTL-as-LTLf/anzu/amba/amba:c

LTL-as-LTLf/anzu/amba/amba:cl
LTL-as-LTLf/anzu/genbuf/genbuf

LTL-as-LTLf/anzu/genbuf/genbuf:c
LTL-as-LTLf/anzu/genbuf/genbuf:cl

LTL-as-LTLf/forobots
LTL-as-LTLf/rozier/counter/counter

LTL-as-LTLf/rozier/counter/counterCarry
LTL-as-LTLf/rozier/counter/counterCarryLinear

LTL-as-LTLf/rozier/counter/counterLinear
LTL-as-LTLf/rozier/formulas/n

LTL-as-LTLf/schuppan/O1formula
LTL-as-LTLf/schuppan/O2formula

LTL-as-LTLf/schuppan/phltl
LTLf-specific/benchmarks:ltlf/LTLfRandomConjunction/C100
LTLf-specific/benchmarks:ltlf/LTLfRandomConjunction/V20

100 200 300 400 500

AALTAF
TRP++
NuSMV-S
NuSMV-B
None

(b)

Figure 5: Number of tests in which the solver took the lowest computation time (a) for the
entire set of benchmarks, and (b) per benchmark family.

as-LTLf/schuppan/O2Formula family, and the LTL-as-LTLf/rozier/counter/* benchmarks,
with which NuSMV-B is the best performer.

5.3.5 Best Time Performance per Number of Conjuncts

In order to further inspect the correlation between the time performance of the tools and
the type of problems solved, we analysed the relationship between the number of conjuncts
of the problems and the corresponding computation time. Figure 6 plots the number of
conjuncts in Γ (i.e., its cardinality) against the computation time (in seconds) of each of
the considered algorithms.

Figure 7 isolates the points stemming from three families in particu-
lar: LTLf-specific/benchmarks/LTLFRandomConjunction/V20 (Fig. 7(a)), LTLf-
specific/benchmarks/LTLFRandomConjunction/C100 (Fig. 7(b)), and LTL-as-
LTLf/schuppan/O1Formula (Fig. 7(c)). The plots show that a relationship exists
between the number of LTLf clauses and the computation time for all the four tools: the

545

Roveri, Di Ciccio, Di Francescomarino, Ghidini

100 101 102 103

input LTLf clauses

10−3

10−2

10−1

100

101

102

Ti
m

e
(s

)
AALTAF
TRP++
NuSMV-S
NuSMV-B

Figure 6: Number of conjuncts in Γ and respective computation time (in seconds) for each
algorithm.

required overall time increases when the number of clauses increases. However, the number
of clauses is not the only factor affecting the computation time. For instance, for the
LTLf-specific/benchmarks/LTLFRandomConjunction/C100 benchmark family (Fig. 7(b)),
the computation time varies independently of the number of conjuncts, which ranges in
a short interval (118 to 154 clauses, as per Table 2). Also, we can observe that neither
NuSMV-S nor NuSMV-B could return a UC under the imposed experimental resource
constraints with this benchmark family, while aaltaf appears to be faster than trp++,
following the general trend. Especially in Fig. 7(c) (and, to a lesser extent, in Fig. 7(a)) we
can observe the different rapidity with which curves increase with the number of conjuncts:
the steepest slope is associated with NuSMV-B, followed by trp++ and NuSMV-S.
NuSMV-S performs better than trp++ with smaller sets of conjuncts, though. The most
gradual upward trend belongs to the curve of aaltaf.

Next, we shift our focus from efficiency to efficacy, i.e., from execution time to the
cardinality of the returned UCs.

5.3.6 Extraction of the Smallest UC per Benchmark Family

Figure 8 depicts the result of our efficacy analysis in the different benchmarks families. As
shown in the pie chart of Fig. 8(a),aaltaf, trp++, NuSMV-B, and NuSMV-S extract
UCs that are the smallest in size10 in 667, 556, 119 and 12 cases, respectively. As in Sec-
tion 5.3.4, here we declare only one tool per test as the most effective. When multiple solvers
return a UC of the same cardinality, we consider the one that took the lower computation
time as prevailing. The overall minimum, maximum, average, and median cardinality of
the smallest computed UCs were 1, 74, 6.513, and 4, respectively.

NuSMV-B computes the unsatisfiable core with the smallest size with the majority
of test cases in the LTL-as-LTLf/rozier/counter/* benchmarks. Notice that it is also the

10. By “smallest” we mean the unsatisfiable core of smallest cardinality among the ones computed by the
solvers. Notice that the smallest UC does not necessarily correspond to the minimum one, as discussed
when presenting the algorithms.

546

Computing Unsatisfiable Cores for LTLf Specifications

100 101 102 103

input LTLf clauses

10−3

10−2

10−1

100

101

102

Ti
m

e
(s

)
AALTAF
TRP++
NuSMV-S
NuSMV-B

(a)

100 101 102 103

input LTLf clauses

10−3

10−2

10−1

100

101

102

Ti
m

e
(s

)

AALTAF
TRP++
NuSMV-S
NuSMV-B

100 101 102 103

input LTLf clauses

10−3

10−2

10−1

100

101

102

Ti
m

e
(s

)

AALTAF
TRP++
NuSMV-S
NuSMV-B

(b) (c)

Figure 7: Number of conjuncts in Γ and respective computa-
tion time (in seconds) for each algorithm for three categories: (a)
LTLf-specific/benchmarks/LTLFRandomConjunction/V20, (b) LTLf-
specific/benchmarks/LTLFRandomConjunction/C100, and (c) LTL-as-
LTLf/schuppan/O1Formula.

one that performs best most often in terms of search time (see Fig. 5(b)). Furthermore,
NuSMV-B is able to obtain the smallest UC with most of the benchmarks within the
LTL-as-LTLf/schuppan/O2formula family. On all other benchmarks, aaltaf outperforms
the other algorithms, and with the LTLf-specific/* benchmarks, trp++ is the second best
solver to find the smallest UCs after aaltaf.

These results suggest that NuSMV-B could be preferred on benchmarks with fewer
propositional variables and larger temporal depth. However, the SAT-based approaches
seem to work better on benchmarks with a higher number of propositional variables that
are not always directly correlated with one another. In these cases, BDDs may suffer
a blow-up in size due to the canonicity of the representation indeed, as BDD dynamic
variable ordering could help though to a limited extent (Felt et al., 1993). Notice that none

547

Roveri, Di Ciccio, Di Francescomarino, Ghidini

NuSMV-B
119

TRP++

556

AALTAF

667

NuSMV-S12
None23

(a)

0 10 20 30 40 50

LTL-as-LTLf/acacia/demo-v3/demo-v3:cl
LTL-as-LTLf/alaska/lift/lift

LTL-as-LTLf/alaska/lift/lift:b
LTL-as-LTLf/alaska/lift/lift:b:f

LTL-as-LTLf/alaska/lift/lift:b:f:l
LTL-as-LTLf/alaska/lift/lift:b:l

LTL-as-LTLf/alaska/lift/lift:f
LTL-as-LTLf/alaska/lift/lift:f:l

LTL-as-LTLf/alaska/lift/lift:l
LTL-as-LTLf/anzu/amba/amba:c

LTL-as-LTLf/anzu/amba/amba:cl
LTL-as-LTLf/anzu/genbuf/genbuf

LTL-as-LTLf/anzu/genbuf/genbuf:c
LTL-as-LTLf/anzu/genbuf/genbuf:cl

LTL-as-LTLf/forobots
LTL-as-LTLf/rozier/counter/counter

LTL-as-LTLf/rozier/counter/counterCarry
LTL-as-LTLf/rozier/counter/counterCarryLinear

LTL-as-LTLf/rozier/counter/counterLinear
LTL-as-LTLf/rozier/formulas/n

LTL-as-LTLf/schuppan/O1formula
LTL-as-LTLf/schuppan/O2formula

LTL-as-LTLf/schuppan/phltl
LTLf-specific/benchmarks:ltlf/LTLfRandomConjunction/C100
LTLf-specific/benchmarks:ltlf/LTLfRandomConjunction/V20

100 200 300 400 500

AALTAF
TRP++
NuSMV-S
NuSMV-B
None

(b)

Figure 8: Number of tests in which the solver returned an unsatisfiable core of the smallest
size (a) for the entire set of benchmarks, and (b) per benchmark family.

of the solvers was capable of dealing with most of the big conjunctions of formulas in the
LTL-as-LTLf/schuppan/O2Formula family (the corresponding tallest stacked bar in Fig. 8
is labelled with “None”, indeed).

5.3.7 Pairwise Efficacy Comparison

Figure 9 plots the pairwise comparison between different tools on the subset of the cases
where both approaches were able to compute the UC. For instance, Fig. 9(a) compares the
cardinality of the UCs returned by aaltaf with the cardinality of the UCs returned by
NuSMV-B. The plot shows that the UCs returned by NuSMV-B have a lower cardinality
than the ones returned by aaltaf: most of the points are indeed located below the diagonal
line. The opacity of the points represents the number of cases for which the two algorithms
returned UCs with the specific cardinality corresponding to the point’s coordinates in the

548

Computing Unsatisfiable Cores for LTLf Specifications

0 2 4 6 8 10 12 14 16
AALTAF

0

2

4

6

8

10

N
uS

M
V

-B

0 1 2 3 4 5 6 7 8 9
AALTAF

0

1

2

3

4

5

6

7

8

9

N
uS

M
V

-S

0 5 10 15 20 25
AALTAF

0

2

4

6

8

10

12

14

16

TR
P+

+

(a) aaltaf v. NuSMV-B (b) aaltaf v. NuSMV-S (c) aaltaf v. trp++

0 1 2 3 4 5 6 7 8 9
NuSMV-S

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
uS

M
V

-B

0 2 4 6 8 10 12
TRP++

0

2

4

6

8

10

N
uS

M
V

-B

0 1 2 3 4 5 6
TRP++

0

1

2

3

4

5

6

7

8

9

N
uS

M
V

-S

(d) NuSMV-S v. NuSMV-B (e) trp++ v. NuSMV-B (f) trp++ v. NuSMV-S

Figure 9: Scatter plots comparing the cardinality of computed UCs for each algorithm pair.

plot. Overall, we can observe that the UCs extracted by trp++ and NuSMV-B (when
these tools manage to return a certain answer) are often lower in size than the UCs returned
by aaltaf.

5.3.8 Summary of the Findings

To conclude, we remark that these results (i) demonstrate an overall better performance
of aaltaf in terms of time efficiency, (ii) show a tie between aaltaf and trp++ with
respect to the cardinality of the extracted UCs, and (iii) emphasise a complementarity of
the proposed approaches depending on the characteristics of the specifications at hand.

Tables 3 and 4 summarise the above findings. We can observe that none of the algorithms
outperforms all the others on every benchmark. For example, NuSMV-S and NuSMV-
B end up in a timeout and return an unknown answer in considerably many cases, and
a number of problems are solved by only one of them. However, NuSMV-B is capable of
handling the LTL-as-LTLf/rozier/counter/* benchmarks well. aaltaf does not always turn
out to extract the smallest UC: in a number of cases, trp++, NuSMV-B and NuSMV-S
extract UCs of a lower cardinality, excelling in particular in those cases in which aaltaf
ends in a timeout. A deeper investigation of the characteristics that lead to such behaviours
paves the path for future research endeavours.

549

Roveri, Di Ciccio, Di Francescomarino, Ghidini

Table 3: Best results as per the cardinality of UCs and wall-clock timings obtained via
aaltaf and trp++. The top achievements with NuSMV-S and NuSMV-B are in Table 4
alongside the benchmarks for which no tools returned a UC.

aaltaf trp++

Family Total min.UC min.time min.UC min.time

Overall 1377 667 (48.44%) 1261 (91.58%) 556 (40.38%)

LTL-as-LTLf/acacia/demo-v3/demo-v3:cl 11 7 (63.64%) 11 (100.00%) 4 (36.36%)

LTL-as-LTLf/alaska/lift/lift 17 16 (94.12%) 17 (100.00%) 1 (5.88%)

LTL-as-LTLf/alaska/lift/lift:b 17 16 (94.12%) 17 (100.00%) 1 (5.88%)

LTL-as-LTLf/alaska/lift/lift:b:f 17 16 (94.12%) 17 (100.00%) 1 (5.88%)

LTL-as-LTLf/alaska/lift/lift:b:f:l 17 15 (88.24%) 16 (94.12%) 1 (5.88%)

LTL-as-LTLf/alaska/lift/lift:b:l 17 14 (82.35%) 17 (100.00%) 3 (17.65%)

LTL-as-LTLf/alaska/lift/lift:f 17 16 (94.12%) 17 (100.00%) 1 (5.88%)

LTL-as-LTLf/alaska/lift/lift:f:l 17 16 (94.12%) 17 (100.00%) 1 (5.88%)

LTL-as-LTLf/alaska/lift/lift:l 17 16 (94.12%) 17 (100.00%) 1 (5.88%)

LTL-as-LTLf/anzu/amba/amba:c 17 15 (88.24%) 15 (88.24%)

LTL-as-LTLf/anzu/amba/amba:cl 17 16 (94.12%) 16 (94.12%)

LTL-as-LTLf/anzu/genbuf/genbuf 20 20 (100.00%) 20 (100.00%)

LTL-as-LTLf/anzu/genbuf/genbuf:c 20 20 (100.00%) 20 (100.00%)

LTL-as-LTLf/anzu/genbuf/genbuf:cl 20 18 (90.00%) 18 (90.00%)

LTL-as-LTLf/forobots 38 38 (100.00%) 38 (100.00%)

LTL-as-LTLf/rozier/counter/counter 19

LTL-as-LTLf/rozier/counter/counterCarry 19 6 (31.58%)

LTL-as-LTLf/rozier/counter/counterCarryLinear 19 6 (31.58%)

LTL-as-LTLf/rozier/counter/counterLinear 18 1 (5.56%)

LTL-as-LTLf/rozier/formulas/n 30 12 (40.00%) 24 (80.00%)

LTL-as-LTLf/schuppan/O1formula 27 20 (74.07%) 20 (74.07%)

LTL-as-LTLf/schuppan/O2formula 27 5 (18.52%) 5 (18.52%)

LTL-as-LTLf/schuppan/phltl 13 12 (92.31%) 12 (92.31%)

LTLf-specific/. . . /C100 500 244 (48.80%) 500 (100.00%) 256 (51.20%)

LTLf-specific/. . . /V20 425 114 (26.82%) 425 (100.00%) 274 (64.47%)

6. Related Work

To the best of our knowledge, this is the first research endeavour aimed at extracting unsat-
isfiable cores for LTLf. In the following, we review the most relevant literature concerning
LTL/LTLf satisfiability, and LTL SAT-based UC extraction.

The LTL satisfiability problem has been addressed through tableau-based methods (e.g.,
Janssen, 1999), temporal resolution (e.g., Fisher et al., 2001), and reduction to model
checking (e.g., Cimatti et al., 2007; Rozier & Vardi, 2010, 2011). In (Rozier & Vardi,
2010), a reduction of the LTL satisfiability problem to a model checking problem, and a
comparison of different model checkers (explicit/symbolic) is carried out, resulting in better
performance and quality for symbolic approaches. A thorough comparison of the main
tools dealing with the LTL satisfiability problem is reported in (Schuppan & Darmawan,
2011). The paper considers also tableau and temporal resolution based solvers, revealing a
complementary behaviour between some of the considered solvers.

The problem of checking the satisfiability of LTLf properties has been the subject of
several works (Fionda & Greco, 2018; Li et al., 2020, 2014). Li et al. (2014) leverage the

550

Computing Unsatisfiable Cores for LTLf Specifications

Table 4: Best results as per the cardinality of UCs and wall-clock timings obtained via
NuSMV-S and NuSMV-B, alongside the benchmarks for which no tools returned a UC
(marked with “None”). The top achievements with aaltaf and trp++ are in Table 3.

NuSMV-S NuSMV-B

Family Total min.UC min.time min.UC min.time None

Overall 1377 12 (0.87%) 8 (0.58%) 119 (8.64%) 85 (6.17%) 23 (1.67%)

LTL-as-LTLf/acacia/demo-v3/demo-v3:cl 11

LTL-as-LTLf/alaska/lift/lift 17

LTL-as-LTLf/alaska/lift/lift:b 17

LTL-as-LTLf/alaska/lift/lift:b:f 17

LTL-as-LTLf/alaska/lift/lift:b:f:l 17 1 (5.88%)

LTL-as-LTLf/alaska/lift/lift:b:l 17

LTL-as-LTLf/alaska/lift/lift:f 17

LTL-as-LTLf/alaska/lift/lift:f:l 17

LTL-as-LTLf/alaska/lift/lift:l 17

LTL-as-LTLf/anzu/amba/amba:c 17 2 (11.76%)

LTL-as-LTLf/anzu/amba/amba:cl 17 1 (5.88%)

LTL-as-LTLf/anzu/genbuf/genbuf 20

LTL-as-LTLf/anzu/genbuf/genbuf:c 20

LTL-as-LTLf/anzu/genbuf/genbuf:cl 20 2 (10.00%)

LTL-as-LTLf/forobots 38

LTL-as-LTLf/rozier/counter/counter 19 17 (89.47%) 17 (89.47%) 2 (10.53%)

LTL-as-LTLf/rozier/counter/counterCarry 19 13 (68.42%) 19 (100.00%)

LTL-as-LTLf/rozier/counter/counterCarryLinear 19 13 (68.42%) 19 (100.00%)

LTL-as-LTLf/rozier/counter/counterLinear 18 18 (100.00%) 17 (94.44%)

LTL-as-LTLf/rozier/formulas/n 30 8 (26.67%) 4 (13.33%) 10 (33.33%) 2 (6.67%)

LTL-as-LTLf/schuppan/O1formula 27 4 (14.81%) 4 (14.81%) 3 (11.11%) 3 (11.11%)

LTL-as-LTLf/schuppan/O2formula 27 8 (29.63%) 8 (29.63%) 14 (51.85%)

LTL-as-LTLf/schuppan/phltl 13 1 (7.69%)

LTLf-specific/. . . /C100 500

LTLf-specific/. . . /V20 425 37 (8.71%)

finite semantics of traces for introducing a propositional SAT based algorithm for the LTLf

satisfiability problem together with some heuristics to guide the search. The approach
is implemented in the aalta-finite tool, which is shown to outperform other existing
approaches based on the reduction to the LTL satisfiability problem. An extension of that
work is presented in (Li et al., 2020). The new approach leverages a transition system
(TS) for the input LTLf formula, thereby reducing satisfiability checking to a SAT-based
path-search problem over this TS. Implemented in aalta-finite, it is shown to provide
the best results in checking unsatisfiable formulas and comparable results for satisfiable
ones. Fionda and Greco (2018) investigate the complexity of some fragments of LTLf, and
present a SAT-based algorithm that outperforms the aalta-finite version in (Li et al.,
2014). Our algorithm NA4 is based upon the work of Li et al. (2020) as a state-of-the-art
tool for checking the satisfiability of LTLf properties.

The UC extraction for LTL has also been the subject of several studies (Awad et al.,
2011; Goré et al., 2013; Narizzano et al., 2018; Schuppan, 2016). Goré et al. (2013) present a
BDD based approach that leverages a method to determine minimal UCs for SAT (Huang,

551

Roveri, Di Ciccio, Di Francescomarino, Ghidini

2005) to find minimal UCs in LTL. In the work of Awad et al. (2011), UCs are extracted by
leveraging a tableau-based solver to obtain an initial subset of unsatisfiable LTL formulas
and then applying a deletion-based minimisation to the subset. The approach, implemented
in procmine is part of a tool for the synthesis of business process templates. Schuppan
(2016) propose a technique to extract fine-grained UCs by constructing and optimising reso-
lution graphs for temporal resolution. Finally, Narizzano et al. (2018) presents a SAT-based
encoding suitable for the unsatisfiable core extraction of LTL-based property specification
patterns (Dwyer et al., 1999) extended with inequality statements on Boolean and numeric
variables. Algorithm NA3, presented here, is built upon the work of Schuppan (2016) to
compute UCs using temporal resolution.

In the context of process mining, Corea and Delfmann (2019); Di Ciccio et al. (2017)
identify inconsistencies for specific LTLf-based constraints contained in the Declare mod-
elling language (van der Aalst et al., 2009). They rely on automata language and language
inclusion techniques to identify the inconsistencies, and are specific to the precise structure
of Declare. Thus, they cannot be generalised to address generic LTLf-based specifications.

Finally, we remark that works on propositional UC extraction (e.g., Goldberg and
Novikov 2003; Huang 2005; Marques-Silva and Janota 2014) could be used to improve
the quality of the computed cores. We leave this investigation for future developments.

7. Conclusions and Future Work

In this paper, we have addressed the problem of LTLf unsatisfiable core extraction, pre-
senting four algorithms based on different state-of-the-art techniques for LTL and LTLf

satisfiability checking. We have implemented each of them based on existing tools, and we
have carried out an experimental evaluation on a set of reference benchmarks for unsatis-
fiable temporal formulas. The results show a consistent output when terminating without
reaching a resource limit and the feasibility of the proposed algorithms. The extensive eval-
uation evidences an overall better performance of aaltaf (and thus of algorithm NA4),
both in terms of time efficiency and cardinality of the extracted UCs. Nonetheless, none of
the algorithms outperforms all the others on every benchmark and in a number of cases,
trp++, NuSMV-B and NuSMV-S extract UCs of a lower cardinality, excelling in partic-
ular in those cases in which aaltaf ends in a timeout. Furthermore, the evaluation shows
that in 28 cases, no tool was able to return an unsatisfiable core, and that the problems
of the LTL-as-LTLf/schuppan/O2Formula benchmark family are the most challenging ones
for all the implemented techniques. Indeed, 14 out of the 28 problems that were not solved
by any tools belong to this benchmark family.

These results show the adequacy of exploring different strategies and algorithmic solu-
tions for this problem, and – at the same time – provide a first extensive baseline for future
algorithms for the extraction of LTLf unsatisfiable cores.

For future work, we envisage the following research endeavours. Firstly, addressing
the problem of extracting minimal UCs is in our plans. It is also our objective to extend
the approach to other LTL/LTLf algorithms based on k-liveness (Claessen & Sörensson,
2012), liveness to safety (Biere et al., 2002), or tableau constructions (Geatti et al., 2021),
Furthermore, we intend to extend the problems set with benchmarks from other domains
(including AI planning, requirements engineering, and process management), also including

552

Computing Unsatisfiable Cores for LTLf Specifications

a study on effectiveness and efficacy in presence of specifications the satisfiability of which
is not certain, as is rather common in these cases. Moreover, we want to correlate struc-
tural information (e.g., AP cardinality, temporal depth, number of operators) with solving
algorithms, and aim to investigate the extension to the infinite state case exploiting SMT
techniques (Barrett et al., 2009; Daniel et al., 2016).

Acknowledgments

M. Roveri and C. Ghidini are partly supported by the PNRR project FAIR - Future AI
Research (PE00000013), under the NRRPMUR program funded by the NextGenerationEU.
M. Roveri is also partially supported by the project MUR PRIN 2020 - RIPER - Resilient
AI-Based Self-Programming and Strategic Reasoning - CUP E63C22000400001, and by
the European Union under Horizon Europe Programme - Grant Agreement 101070537 —
CrossCon. The work of C. Di Ciccio and C. Ghidini received funding from the Italian
Ministry of University and Research under the PRIN programme, grant B87G22000450001
(PINPOINT - exPlaInable kNowledge-aware PrOcess INTelligence).

References

Awad, A., Goré, R., Thomson, J., & Weidlich, M. (2011). An Iterative Approach for
Business Process Template Synthesis from Compliance Rules. In H. Mouratidis &
C. Rolland (Eds.), Advanced Information Systems Engineering - 23rd International
Conference, CAiSE 2011, London, UK, June 20-24, 2011. Proceedings (Vol. 6741, pp.
406–421). Springer. Retrieved from https://doi.org/10.1007/978-3-642-21640-4

31 doi: 10.1007/978-3-642-21640-4 31
Barrett, C. W., Sebastiani, R., Seshia, S. A., & Tinelli, C. (2009). Satisfiability Modulo

Theories. In A. Biere, M. Heule, H. van Maaren, & T. Walsh (Eds.), Handbook of
Satisfiability (Vol. 185, pp. 825–885). IOS Press. Retrieved from https://doi.org/

10.3233/978-1-58603-929-5-825 doi: 10.3233/978-1-58603-929-5-825
Bauer, A., Leucker, M., & Schallhart, C. (2010). Comparing LTL Semantics for Runtime

Verification. Journal of Logic and Computation, 20 (3), 651-674. Retrieved from
https://doi.org/10.1093/logcom/exn075 doi: 10.1093/logcom/exn075

Biere, A., Artho, C., & Schuppan, V. (2002). Liveness Checking as Safety Checking.
Electronic Notes in Theoretical Computer Science, 66 (2), 160–177. doi: 10.1016/
S1571-0661(04)80410-9

Biere, A., Cimatti, A., Clarke, E. M., Strichman, O., & Zhu, Y. (2003). Bounded Model
Checking. Advances in Computers, 58 , 117–148. Retrieved from https://doi.org/

10.1016/S0065-2458(03)58003-2 doi: 10.1016/S0065-2458(03)58003-2
Biere, A., Heljanko, K., Junttila, T. A., Latvala, T., & Schuppan, V. (2006). Linear

Encodings of Bounded LTL Model Checking. Logical Methods in Computer Science,
2 (5). Retrieved from https://doi.org/10.2168/LMCS-2(5:5)2006 doi: 10.2168/
LMCS-2(5:5)2006

Bradley, A. (2011). SAT-Based Model Checking without Unrolling. In International Work-
shop on Verification, Model Checking, and Abstract Interpretation (Vol. 6538, p. 70-
87). Springer. Retrieved from https://doi.org/10.1007/978-3-642-18275-4 7

553

https://doi.org/10.1007/978-3-642-21640-4_31
https://doi.org/10.1007/978-3-642-21640-4_31
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.2168/LMCS-2(5:5)2006
https://doi.org/10.1007/978-3-642-18275-4_7

Roveri, Di Ciccio, Di Francescomarino, Ghidini

doi: 10.1007/978-3-642-18275-4 7
Bryant, R. E. (1992). Symbolic Boolean Manipulation with Ordered Binary-Decision Dia-

grams. ACM Computing Surveys, 24 (3), 293–318. Retrieved from https://doi.org/

10.1145/136035.136043 doi: 10.1145/136035.136043
Calvanese, D., De Giacomo, G., & Vardi, M. Y. (2002). Reasoning about Actions and

Planning in LTL Action Theories. In D. Fensel, F. Giunchiglia, D. L. McGuinness, &
M. Williams (Eds.), Proceedings of the Eights International Conference on Principles
and Knowledge Representation and Reasoning (KR-02), Toulouse, France, April 22-
25, 2002 (pp. 593–602). Morgan Kaufmann.

Camacho, A., Baier, J. A., Muise, C. J., & McIlraith, S. A. (2018). Finite LTL Synthesis
as Planning. In M. de Weerdt, S. Koenig, G. Röger, & M. T. J. Spaan (Eds.),
Proceedings of the Twenty-Eighth International Conference on Automated Planning
and Scheduling, ICAPS 2018, Delft, The Netherlands, June 24-29, 2018 (pp. 29–38).
AAAI Press. Retrieved from https://aaai.org/ocs/index.php/ICAPS/ICAPS18/

paper/view/17790

Camacho, A., & McIlraith, S. A. (2019). Strong Fully Observable Non-Deterministic
Planning with LTL and LTLf Goals. In S. Kraus (Ed.), Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao,
China, August 10-16, 2019 (pp. 5523–5531). ijcai.org. Retrieved from https://

doi.org/10.24963/ijcai.2019/767 doi: 10.24963/ijcai.2019/767
Cecconi, A., Di Ciccio, C., De Giacomo, G., & Mendling, J. (2018). Interestingness of Traces

in Declarative Process Mining: The Janus LTLpf Approach. In M. Weske, M. Montali,
I. Weber, & J. vom Brocke (Eds.), Business Process Management - 16th International
Conference, BPM 2018, Sydney, NSW, Australia, September 9-14, 2018, Proceedings
(Vol. 11080, pp. 121–138). Springer. Retrieved from https://doi.org/10.1007/

978-3-319-98648-7 8 doi: 10.1007/978-3-319-98648-7 8
Cimatti, A., Clarke, E. M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., . . .

Tacchella, A. (2002). NuSMV 2: An OpenSource Tool for Symbolic Model Checking.
In E. Brinksma & K. G. Larsen (Eds.), Computer Aided Verification, 14th Interna-
tional Conference, CAV 2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings
(Vol. 2404, pp. 359–364). Springer. Retrieved from https://doi.org/10.1007/

3-540-45657-0 29 doi: 10.1007/3-540-45657-0 29
Cimatti, A., Roveri, M., Schuppan, V., & Tonetta, S. (2007). Boolean Abstraction for

Temporal Logic Satisfiability. In W. Damm & H. Hermanns (Eds.), Computer Aided
Verification, 19th International Conference, CAV 2007, Berlin, Germany, July 3-
7, 2007, Proceedings (Vol. 4590, pp. 532–546). Springer. Retrieved from https://

doi.org/10.1007/978-3-540-73368-3 53 doi: 10.1007/978-3-540-73368-3 53
Cimatti, A., Roveri, M., & Sheridan, D. (2004). Bounded Verification of Past LTL. In

A. J. Hu & A. K. Martin (Eds.), Formal Methods in Computer-Aided Design, 5th
International Conference, FMCAD 2004, Austin, Texas, USA, November 15-17, 2004,
Proceedings (Vol. 3312, pp. 245–259). Springer. Retrieved from https://doi.org/

10.1007/978-3-540-30494-4 18 doi: 10.1007/978-3-540-30494-4 18
Claessen, K., & Sörensson, N. (2012). A Liveness Checking Algorithm that Counts. In

G. Cabodi & S. Singh (Eds.), Formal Methods in Computer Aided Design (p. 52-59).
IEEE.

554

https://doi.org/10.1145/136035.136043
https://doi.org/10.1145/136035.136043
https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17790
https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17790
https://doi.org/10.24963/ijcai.2019/767
https://doi.org/10.24963/ijcai.2019/767
https://doi.org/10.1007/978-3-319-98648-7_8
https://doi.org/10.1007/978-3-319-98648-7_8
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/978-3-540-73368-3_53
https://doi.org/10.1007/978-3-540-73368-3_53
https://doi.org/10.1007/978-3-540-30494-4_18
https://doi.org/10.1007/978-3-540-30494-4_18

Computing Unsatisfiable Cores for LTLf Specifications

Clarke, E. M., Grumberg, O., & Hamaguchi, K. (1997). Another Look at LTL Model
Checking. Formal Methods Syst. Des., 10 (1), 47–71. Retrieved from https://doi

.org/10.1023/A:1008615614281 doi: 10.1023/A:1008615614281
Corea, C., & Delfmann, P. (2019). Quasi-Inconsistency in Declarative Process Models. In

T. T. Hildebrandt, B. F. van Dongen, M. Röglinger, & J. Mendling (Eds.), Business
Process Management Forum - BPM Forum 2019, Vienna, Austria, September 1-6,
2019, Proceedings (Vol. 360, pp. 20–35). Springer. Retrieved from https://doi.org/

10.1007/978-3-030-26643-1 2 doi: 10.1007/978-3-030-26643-1 2
Daniel, J., Cimatti, A., Griggio, A., Tonetta, S., & Mover, S. (2016). Infinite-State Liveness-

to-Safety via Implicit Abstraction and Well-Founded Relations. In S. Chaudhuri &
A. Farzan (Eds.), Computer Aided Verification - 28th International Conference, CAV
2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I (Vol. 9779, pp.
271–291). Springer. Retrieved from https://doi.org/10.1007/978-3-319-41528-4

15 doi: 10.1007/978-3-319-41528-4 15
De Giacomo, G., De Masellis, R., Grasso, M., Maggi, F. M., & Montali, M. (2014). Monitor-

ing Business Metaconstraints Based on LTL and LDL for Finite Traces. In S. W. Sadiq,
P. Soffer, & H. Völzer (Eds.), Business Process Management - 12th International Con-
ference, BPM 2014, Haifa, Israel, September 7-11, 2014. Proceedings (Vol. 8659, pp.
1–17). Springer. Retrieved from https://doi.org/10.1007/978-3-319-10172-9 1

doi: 10.1007/978-3-319-10172-9 1
De Giacomo, G., De Masellis, R., Maggi, F. M., & Montali, M. (2020). Monitoring

Constraints and Metaconstraints with Temporal Logics on Finite Traces. CoRR,
abs/2004.01859 . Retrieved from https://arxiv.org/abs/2004.01859

De Giacomo, G., De Masellis, R., & Montali, M. (2014). Reasoning on LTL on Finite
Traces: Insensitivity to Infiniteness. In C. E. Brodley & P. Stone (Eds.), Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014,
Québec City, Québec, Canada (pp. 1027–1033). AAAI Press. Retrieved from http://

www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8575

De Giacomo, G., & Vardi, M. Y. (2013). Linear Temporal Logic and Linear Dynamic Logic
on Finite Traces. In F. Rossi (Ed.), IJCAI 2013, Proceedings of the 23rd International
Joint Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013 (pp. 854–
860). IJCAI/AAAI. Retrieved from http://www.aaai.org/ocs/index.php/IJCAI/

IJCAI13/paper/view/6997

Di Ciccio, C., Maggi, F. M., Montali, M., & Mendling, J. (2017). Resolving Inconsistencies
and Redundancies in Declarative Process Models. Information Systems, 64 , 425–
446. Retrieved from https://doi.org/10.1016/j.is.2016.09.005 doi: 10.1016/
j.is.2016.09.005

Di Ciccio, C., & Montali, M. (2022). Declarative Process Specifications: Reasoning, Dis-
covery, Monitoring. In W. M. P. van der Aalst & J. Carmona (Eds.), Process min-
ing handbook (Vol. 448, pp. 108–152). Springer. Retrieved from https://doi.org/

10.1007/978-3-031-08848-3 4 (Open access) doi: 10.1007/978-3-031-08848-3 4
Dwyer, M. B., Avrunin, G. S., & Corbett, J. C. (1999). Patterns in Property Specifica-

tions for Finite-State Verification. In B. W. Boehm, D. Garlan, & J. Kramer (Eds.),
Proceedings of the 1999 International Conference on Software Engineering, ICSE’
99, Los Angeles, CA, USA, May 16-22, 1999 (pp. 411–420). ACM. Retrieved from

555

https://doi.org/10.1023/A:1008615614281
https://doi.org/10.1023/A:1008615614281
https://doi.org/10.1007/978-3-030-26643-1_2
https://doi.org/10.1007/978-3-030-26643-1_2
https://doi.org/10.1007/978-3-319-41528-4_15
https://doi.org/10.1007/978-3-319-41528-4_15
https://doi.org/10.1007/978-3-319-10172-9_1
https://arxiv.org/abs/2004.01859
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8575
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8575
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
https://doi.org/10.1016/j.is.2016.09.005
https://doi.org/10.1007/978-3-031-08848-3_4
https://doi.org/10.1007/978-3-031-08848-3_4

Roveri, Di Ciccio, Di Francescomarino, Ghidini

https://doi.org/10.1145/302405.302672 doi: 10.1145/302405.302672
Felt, E., York, G., Brayton, R. K., & Sangiovanni-Vincentelli, A. L. (1993). Dynamic Vari-

able Reordering for BDD Minimization. In European Design Automation Conference
(pp. 130–135). IEEE Computer Society.

Fionda, V., & Greco, G. (2018). LTL on Finite and Process Traces: Complexity Results and
a Practical Reasoner. Journal of Artificial Intelligence Research, 63 , 557–623. Re-
trieved from https://doi.org/10.1613/jair.1.11256 doi: 10.1613/jair.1.11256

Fisher, M. (1991). A Resolution Method for Temporal Logic. In J. Mylopoulos & R. Re-
iter (Eds.), Proceedings of the 12th International Joint Conference on Artificial In-
telligence. Sydney, Australia, August 24-30, 1991 (pp. 99–104). Morgan Kaufmann.
Retrieved from http://ijcai.org/Proceedings/91-1/Papers/017.pdf

Fisher, M., Dixon, C., & Peim, M. (2001). Clausal Temporal Resolution. ACM Transactions
on Computational Logic, 2 (1), 12–56. Retrieved from https://doi.org/10.1145/

371282.371311 doi: 10.1145/371282.371311
Fuxman, A., Liu, L., Mylopoulos, J., Roveri, M., & Traverso, P. (2004). Specifying and

Analyzing Early Requirements in Tropos. IEEE International Conference on Require-
ments Engineering , 9 (2), 132–150.

Gabbay, D. M. (1987). The Declarative Past and Imperative Future: Executable Tem-
poral Logic for Interactive Systems. In B. Banieqbal, H. Barringer, & A. Pnueli
(Eds.), Temporal Logic in Specification, Altrincham, UK, April 8-10, 1987, Proceed-
ings (Vol. 398, pp. 409–448). Springer. Retrieved from https://doi.org/10.1007/

3-540-51803-7 36 doi: 10.1007/3-540-51803-7 36
Geatti, L., Gigante, N., Montanari, A., & Reynolds, M. (2021). One-pass and Tree-

shaped Tableau Systems for TPTL and TPTLb+Past. Information and Computation,
278 , 104599. Retrieved from https://doi.org/10.1016/j.ic.2020.104599 doi:
10.1016/j.ic.2020.104599

Goldberg, E. I., & Novikov, Y. (2003). Verification of Proofs of Unsatisfiability for
CNF Formulas. In 2003 Design, Automation and Test in Europe Conference and
Exposition (DATE 2003), 3-7 March 2003, Munich, Germany (pp. 10886–10891).
IEEE Computer Society. Retrieved from http://doi.ieeecomputersociety.org/

10.1109/DATE.2003.10008 doi: 10.1109/DATE.2003.10008
Goré, R., Huang, J., Sergeant, T., & Thomson, J. (2013). Finding Minimal Unsatisfiable

Subsets in Linear Temporal Logic using BDDs. https://www.timsergeant.com/

files/pltlmup/gore huang sergeant thomson mus pltl.pdf. (Accessed: 30-08-
2021)

Huang, J. (2005). MUP: a Minimal Unsatisfiability Prover. In T. Tang (Ed.), Proceedings
of the 2005 Conference on Asia South Pacific Design Automation, ASP-DAC 2005,
Shanghai, China, January 18-21, 2005 (pp. 432–437). ACM Press. Retrieved from
https://doi.org/10.1145/1120725.1120907 doi: 10.1145/1120725.1120907

Hustadt, U., & Konev, B. (2003). TRP++2.0: A Temporal Resolution Prover. In
F. Baader (Ed.), Automated Deduction - CADE-19, 19th International Conference
on Automated Deduction Miami Beach, FL, USA, July 28 - August 2, 2003, Proceed-
ings (Vol. 2741, pp. 274–278). Springer. Retrieved from https://doi.org/10.1007/

978-3-540-45085-6 21 doi: 10.1007/978-3-540-45085-6 21
Janssen, G. (1999). Logics for Digital Circuit Verification : Theory, Algorithms, and

556

https://doi.org/10.1145/302405.302672
https://doi.org/10.1613/jair.1.11256
http://ijcai.org/Proceedings/91-1/Papers/017.pdf
https://doi.org/10.1145/371282.371311
https://doi.org/10.1145/371282.371311
https://doi.org/10.1007/3-540-51803-7_36
https://doi.org/10.1007/3-540-51803-7_36
https://doi.org/10.1016/j.ic.2020.104599
http://doi.ieeecomputersociety.org/10.1109/DATE.2003.10008
http://doi.ieeecomputersociety.org/10.1109/DATE.2003.10008
https://www.timsergeant.com/files/pltlmup/gore_huang_sergeant_thomson_mus_pltl.pdf
https://www.timsergeant.com/files/pltlmup/gore_huang_sergeant_thomson_mus_pltl.pdf
https://doi.org/10.1145/1120725.1120907
https://doi.org/10.1007/978-3-540-45085-6_21
https://doi.org/10.1007/978-3-540-45085-6_21

Computing Unsatisfiable Cores for LTLf Specifications

Applications (Doctoral dissertation, Electrical Engineering). doi: 10.6100/IR520460
Laroussinie, F., Markey, N., & Schnoebelen, P. (2002). Temporal Logic with Forgettable

Past. In 17th IEEE Symposium on Logic in Computer Science (LICS 2002), 22-
25 July 2002, Copenhagen, Denmark, Proceedings (pp. 383–392). IEEE Computer
Society. Retrieved from https://doi.org/10.1109/LICS.2002.1029846 doi: 10
.1109/LICS.2002.1029846

Li, J., Pu, G., Zhang, Y., Vardi, M. Y., & Rozier, K. Y. (2020). SAT-based Explicit LTLf
Satisfiability Checking. Artificial Intelligence, 289 , 103369. Retrieved from https://

doi.org/10.1016/j.artint.2020.103369 doi: 10.1016/j.artint.2020.103369
Li, J., Zhang, L., Pu, G., Vardi, M. Y., & He, J. (2014). LTLf Satisfiability Checking.

In T. Schaub, G. Friedrich, & B. O’Sullivan (Eds.), ECAI 2014 - 21st European
Conference on Artificial Intelligence, 18-22 August 2014, Prague, Czech Republic -
Including Prestigious Applications of Intelligent Systems (PAIS 2014) (Vol. 263, pp.
513–518). IOS Press. Retrieved from https://doi.org/10.3233/978-1-61499-419

-0-513 doi: 10.3233/978-1-61499-419-0-513
Li, J., Zhu, S., Pu, G., Zhang, L., & Vardi, M. Y. (2019). SAT-based explicit LTL reasoning

and its application to satisfiability checking. Formal Methods in System Design, 54 (2),
164–190. Retrieved from https://doi.org/10.1007/s10703-018-00326-5 doi: 10
.1007/s10703-018-00326-5

Marques-Silva, J., & Janota, M. (2014). Computing Minimal Sets on Propositional Formulae
I: Problems & Reductions. CoRR, abs/1402.3011 . Retrieved from http://arxiv

.org/abs/1402.3011

Montali, M., Pesic, M., van der Aalst, W. M. P., Chesani, F., Mello, P., & Storari, S.
(2010). Declarative Specification and Verification of Service Choreographiess. ACM
Transactions on the Web, 4 (1), 3:1–3:62. Retrieved from https://doi.org/10.1145/

1658373.1658376 doi: 10.1145/1658373.1658376
Narizzano, M., Pulina, L., Tacchella, A., & Vuotto, S. (2018). Consistency of Property

Specification Patterns with Boolean and Constrained Numerical Signals. In A. Dutle,
C. A. Muñoz, & A. Narkawicz (Eds.), NASA Formal Methods - 10th International
Symposium, NFM 2018, Newport News, VA, USA, April 17-19, 2018, Proceedings
(Vol. 10811, pp. 383–398). Springer. Retrieved from https://doi.org/10.1007/

978-3-319-77935-5 26 doi: 10.1007/978-3-319-77935-5 26
Pnueli, A. (1977). The Temporal Logic of Programs. In 18th Annual Symposium on

Foundations of Computer Science, Providence, Rhode Island, USA, 31 October - 1
November 1977 (pp. 46–57). IEEE Computer Society. Retrieved from https://

doi.org/10.1109/SFCS.1977.32 doi: 10.1109/SFCS.1977.32
Räim, M., Di Ciccio, C., Maggi, F. M., Mecella, M., & Mendling, J. (2014). Log-Based

Understanding of Business Processes through Temporal Logic Query Checking. In
R. Meersman et al. (Eds.), On the Move to Meaningful Internet Systems: OTM 2014
Conferences - Confederated International Conferences: CoopIS, and ODBASE 2014,
Amantea, Italy, October 27-31, 2014, Proceedings (Vol. 8841, pp. 75–92). Springer.
Retrieved from https://doi.org/10.1007/978-3-662-45563-0 5 doi: 10.1007/
978-3-662-45563-0 5

Rozier, K. Y., & Vardi, M. Y. (2010). LTL Satisfiability Checking. International Journal
of Software Tools for Technology Transfer , 12 (2), 123–137. Retrieved from https://

557

https://doi.org/10.1109/LICS.2002.1029846
https://doi.org/10.1016/j.artint.2020.103369
https://doi.org/10.1016/j.artint.2020.103369
https://doi.org/10.3233/978-1-61499-419-0-513
https://doi.org/10.3233/978-1-61499-419-0-513
https://doi.org/10.1007/s10703-018-00326-5
http://arxiv.org/abs/1402.3011
http://arxiv.org/abs/1402.3011
https://doi.org/10.1145/1658373.1658376
https://doi.org/10.1145/1658373.1658376
https://doi.org/10.1007/978-3-319-77935-5_26
https://doi.org/10.1007/978-3-319-77935-5_26
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-662-45563-0_5
https://doi.org/10.1007/s10009-010-0140-3
https://doi.org/10.1007/s10009-010-0140-3

Roveri, Di Ciccio, Di Francescomarino, Ghidini

doi.org/10.1007/s10009-010-0140-3 doi: 10.1007/s10009-010-0140-3
Rozier, K. Y., & Vardi, M. Y. (2011). A Multi-encoding Approach for LTL Symbolic

Satisfiability Checking. In M. J. Butler & W. Schulte (Eds.), FM 2011: Formal
Methods - 17th International Symposium on Formal Methods, Limerick, Ireland, June
20-24, 2011. Proceedings (Vol. 6664, pp. 417–431). Springer. Retrieved from https://

doi.org/10.1007/978-3-642-21437-0 31 doi: 10.1007/978-3-642-21437-0 31
Schuppan, V. (2012). Towards a Notion of Unsatisfiable and Unrealizable Cores for LTL.

Science of Computer Programming , 77 (7-8), 908–939. Retrieved from https://doi

.org/10.1016/j.scico.2010.11.004 doi: 10.1016/j.scico.2010.11.004
Schuppan, V. (2016). Extracting Unsatisfiable Cores for LTL via Temporal Resolu-

tion. Acta Informatica, 53 (3), 247–299. Retrieved from https://doi.org/10.1007/

s00236-015-0242-1 doi: 10.1007/s00236-015-0242-1
Schuppan, V. (2018). Enhanced Unsatisfiable Cores for QBF: Weakening Universal to

Existential Quantifiers. In L. H. Tsoukalas, É. Grégoire, & M. Alamaniotis (Eds.),
IEEE 30th International Conference on Tools with Artificial Intelligence, ICTAI 2018,
5-7 November 2018, Volos, Greece (pp. 81–89). IEEE. Retrieved from https://

doi.org/10.1109/ICTAI.2018.00023 doi: 10.1109/ICTAI.2018.00023
Schuppan, V., & Darmawan, L. (2011). Evaluating LTL Satisfiability Solvers. In T. Bultan

& P. Hsiung (Eds.), Automated Technology for Verification and Analysis, 9th Inter-
national Symposium, ATVA 2011, Taipei, Taiwan, October 11-14, 2011. Proceedings
(Vol. 6996, pp. 397–413). Springer. Retrieved from https://doi.org/10.1007/

978-3-642-24372-1 28 doi: 10.1007/978-3-642-24372-1 28
Sohrabi, S., Baier, J. A., & McIlraith, S. A. (2011). Preferred Explanations: Theory

and Generation via Planning. In W. Burgard & D. Roth (Eds.), Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San Francisco,
California, USA, August 7-11, 2011. AAAI Press. Retrieved from http://www.aaai

.org/ocs/index.php/AAAI/AAAI11/paper/view/3568

van der Aalst, W. M. P., Pesic, M., & Schonenberg, H. (2009). Declarative Workflows:
Balancing between Flexibility and Support. Computer Science - Research and De-
velopment , 23 (2), 99–113. Retrieved from https://doi.org/10.1007/s00450-009

-0057-9 doi: 10.1007/S00450-009-0057-9
van Lamsweerde, A., & Letier, E. (2000). Handling Obstacles in Goal-Oriented Require-

ments Engineering. IEEE Transactions on Software Engineering , 26 (10), 978–1005.
Retrieved from https://doi.org/10.1109/32.879820 doi: 10.1109/32.879820

558

https://doi.org/10.1007/s10009-010-0140-3
https://doi.org/10.1007/s10009-010-0140-3
https://doi.org/10.1007/978-3-642-21437-0_31
https://doi.org/10.1007/978-3-642-21437-0_31
https://doi.org/10.1016/j.scico.2010.11.004
https://doi.org/10.1016/j.scico.2010.11.004
https://doi.org/10.1007/s00236-015-0242-1
https://doi.org/10.1007/s00236-015-0242-1
https://doi.org/10.1109/ICTAI.2018.00023
https://doi.org/10.1109/ICTAI.2018.00023
https://doi.org/10.1007/978-3-642-24372-1_28
https://doi.org/10.1007/978-3-642-24372-1_28
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3568
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3568
https://doi.org/10.1007/s00450-009-0057-9
https://doi.org/10.1007/s00450-009-0057-9
https://doi.org/10.1109/32.879820

	Introduction
	Background
	LTLf Syntax and Semantics
	Unsatisfiable Cores

	Checking Satisfiability of an LTLf Formula
	Symbolic Approaches to Check Language Emptiness for LTL
	Temporal Resolution Approaches for LTL Satisfiability

	Enablers
	Extending f2l to Handle Past Temporal Operators
	Removing Past Temporal Operators
	Activation Variables

	Extracting Unsatisfiable Cores for LTLf
	Strategy S1: LTLf Unsatisfiable Core Extraction via Reduction to LTL Unsatisfiable Core Extraction
	Algorithm NA1: BDD-based LTLf Unsatisfiable Core Extraction
	Algorithm NA2: SAT-based LTLf Unsatisfiable Core Extraction
	Algorithm NA3: Temporal Resolution based LTLf Unsatisfiable Core Extraction

	Strategy 2: LTLf Unsatisfiable Core Extraction via Native SAT
	Algorithm NA4: LTLf SAT- based LTLf Unsatisfiable Core Extraction

	Discussion

	Experimental Evaluation
	Implementation of the Algorithms
	The Experimental Setup
	The Results
	Time Performance and Cardinality of the UC
	Execution Time
	Pairwise Efficiency Comparison
	Best Time Performance per Benchmark Family
	Best Time Performance per Number of Conjuncts
	Extraction of the Smallest UC per Benchmark Family
	Pairwise Efficacy Comparison
	Summary of the Findings

	Related Work
	Conclusions and Future Work

