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Abstract

Actions in most real-world continuous domains cannot be executed exactly. An agent’s
performance in these domains is influenced by two critical factors: the ability to select
effective actions (decision-making skill), and how precisely it can execute those selected
actions (execution skill). This article addresses the problem of estimating the execution
and decision-making skill of an agent, given observations. Several execution skill estimation
methods are presented, each of which utilize different information from the observations and
make assumptions about the agent’s decision-making ability. A final novel method forgoes
these assumptions about decision-making and instead estimates the execution and decision-
making skills simultaneously under a single Bayesian framework. Experimental results in
several domains evaluate the estimation accuracy of the estimators, especially focusing on
how robust they are as agents and their decision-making methods are varied. These results
demonstrate that reasoning about both types of skill together significantly improves the
robustness and accuracy of execution skill estimation. A case study is presented using the
proposed methods to estimate the skill of Major League Baseball pitchers, demonstrating
how these methods can be applied to real-world data sources.

1. Introduction

Many real-world physical settings and activities require an agent to both select and execute
continuous actions. It is generally impossible to execute selected actions with perfect pre-
cision, resulting in some amount of execution error which varies among agents. Successful
agents need to appropriately account for their execution noise when selecting actions.

Consider as an example the game of darts. In this game metal darts are thrown at a
circular dartboard, scoring points depending on which region of the dartboard is hit. A
dart-thrower must first make a decision, selecting a point on the dartboard at which to aim.
Second, the dart-thrower must execute, throwing the dart towards the intended target. Both
decision-making and execution are important to the overall success of a dart-throwing agent.
Other continuous domains with these properties include robotics settings, where angles
and velocities are selected from continuous ranges; human settings, where a human either
moves itself or causes other objects to move, again in continuous space; and computational
settings, where abstract toy domains or simulations of games with continuous action spaces
are modeled and used as test-beds for algorithms and approaches.

This article is focused on the task of evaluating the decision-making and execution capabil-
ities of an agent observed acting in a domain. We present several methods for estimating
these capabilities, previously termed skills (Archibald, Altman, & Shoham, 2010). We are
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interested in this problem for the potential impact it has in helping model and analyze
agents in adversarial continuous domains, as well as the potential applications for assessing
and giving feedback on human skill levels in many real-world settings; including sports, law
enforcement, and elderly assistance. As the use of AI proliferates, there will be a desire to
utilize AI methods to assist humans with their decision-making in many of these important
domains, which provide unique challenges. One requirement for an AI agent to provide
personalized assistance to humans in settings is that the AI must have an accurate model of
that human’s execution skill, since target action choices and quality depend inherently on
an agent’s ability to accurately execute an action. The techniques presented in this article
enable the estimation of the skill level of individuals from observations, and are an essential
component of any AI-assisted decision-making system in these domains.

The various methods presented in this article differ in the information that they leverage,
the assumptions that they make, and the types of agents and situations that they can be
applied to. Most of the methods apply Bayesian reasoning to the skill estimation problems.
Each of the presented methods will be experimentally evaluated in a variety of domains and
using a diverse set of agents.

The remainder of the article proceeds as follows: in Section 1.1, relevant related work is
discussed. Section 2 precisely introduces the problem addressed in this article. Sections 3
through 7 introduce the methods that are the focus of this work. Section 8 introduces the
domains, agents, and procedures that will be used to experimentally evaluate the methods.
Section 9 presents and discusses the results of the experiments. Section 10 demonstrates
how these methods can be applied to data from human agents in Major League Baseball.
Finally, we conclude in Section 11 and give directions for future work.

This article extends two previous conference papers on this topic (Archibald & Nieves-
Rivera, 2018, 2019). These papers introduced the execution skill estimation problem and
proposed two solutions to this problem. For completeness, those methods are presented in
Sections 3 and 5. The method described in Section 5 was also used in another conference
paper to estimate the execution skill of baseball pitchers as a subcomponent of a larger
game-theoretic pitching strategy system (Melville et al., 2023). This article introduces the
decision-making skill estimation problem in continuous action domains and two methods
that address both problems simultaneously (Section 6). Additionally, this article contributes
adaptations of all methods to sequential domains (Section 7). All of the experimental results,
including the application of the OR and JEEDS methods to baseball data in Section 10,
are also contributions of this article.

1.1 Background

The problem of estimating agent skill has many connections to prior work in several areas.
These areas include execution uncertainty, opponent modeling, imperfect decision-making,
commonly called bounded rationality, execution skill estimation, reinforcement learning,
and explainable AI. The topic of skill in games has been investigated by several researchers
(Larkey et al., 1997; Dreef et al., 2002; Borm & Genugten, 2001; Dreef et al., 2004), although
skill, as these works define it, refers to a characteristic of the game itself and is meant to
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indicate how much the outcome of a game relies on the player decisions as opposed to
random chance.

The Bayesian reasoning techniques we apply to this problem have been well-established in
the artificial intelligence literature and can be found in many textbooks, notably (Russell
& Norvig, 2009) and (Thrun, Burgard, & Fox, 2005). The notions of execution skill and
strategic skill were first introduced and investigated in the domain of computational pool,
where agents with varying strategic and execution skills were evaluated to investigate the
interactions of these two notions (Archibald et al., 2010). Extensive previous work in
computational pool has largely focused on two main challenges (Greenspan et al., 2008).
The first was creating an accurate and efficient physics simulator of billiards (Greenspan,
2005, 2006). The second was using this simulator to computationally select a good action,
given an execution noise level (Archibald et al., 2016; Landry et al., 2015; Smith, 2007).

1.1.1 Execution Uncertainty

Research in multiple areas has investigated the topic of execution uncertainty. Among them,
we can find general games (Bowling & Veloso, 2004; Archibald & Shoham, 2011), where
agents cannot execute actions with certainty, and security games (Yin et al., 2011; Jiang
et al., 2013), where it cannot always be assumed that actions undertaken by the security
agents will be executed as planned. Auction settings (Van Valkenhoef et al., 2010), when
goods, services, or payments may fail to occur as desired, are also an example.

1.1.2 Opponent Modeling

Opponent modeling is the problem of estimating the properties of an opponent (Nashed &
Zilberstein, 2022). Much previous work on this topic has been done in imperfect information
games like poker (Billings et al., 1998; Bard et al., 2015, 2013; Davis et al., 2014), but this
work focuses on strategic characteristics and limitations of the opponents, and the domains
do not include execution uncertainty. Examples of additional areas where opponent mod-
eling work has been explored include general multi-agent systems (Carmel & Markovitch,
1995), real-time strategy games (Schadd et al., 2007), and n-player games (Sturtevant et al.,
2006).

1.1.3 Bounded Rationality

To reason about agents with less than perfect decision-making ability, we utilize notions
of bounded rationality (Simon, 1972). While a rich literature investigates many different
aspects of bounded rationality, the proposed method focuses on one particular model, which
has been called the logit or softmax model (Rosenfeld & Kraus, 2018; Ling et al., 2019).
In this model, given a rationality parameter λ, action i with corresponding utility Ui is
selected by the agent with probability P (i) = eλUi/

∑
j e

λUj . As λ → 0, the distribution
over actions approaches uniform random, while as λ → ∞ it approaches the deterministic
selection of the action with maximum utility.

This model was notably used in the definition of quantal response equilibrium (McKelvey
& Palfrey, 1995), which has in turn been used to model human decision-making in many
game-theoretic scenarios (Yang et al., 2011; Batzilis et al., 2019; Rosenfeld & Kraus, 2018).
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Other work has used this model to estimate λ rationality parameters for human agents in
a discrete information-gathering game (Ling et al., 2019) or to vary the difficulty level of
AI agents in games (Wu et al., 2019). One of our proposed methods (see Section 6) uses
this softmax model internally, producing an estimate of the λ-rationality parameter for the
observed agent.

The inference of this parameter was also done in (Guo & Gmytrasiewicz, 2011), given
observations of an agent acting. They focused on discrete action settings where the expected
value the observed agent would obtain for any action was known. Their contribution was
to demonstrate a suitable conjugate prior, which can be used in the Bayesian update to
maintain beliefs about the observed agent’s λ parameter. They also showed that with a
continuous set of possible opponent agent types, no such conjugate prior may be possible and
numerical approximations are necessary. In our work we utilize numerical approximations
since our setting has both continuous actions and a continuous set of agent types, meaning
their conjugate prior methods are not applicable.

1.1.4 Estimating Execution Skill

Two previous papers focused on execution skill estimation in darts, given a sequence of
scores resulting from dart throws and the corresponding intended target for each throw
(Tibshirani et al., 2011; Miller & Archibald, 2021). This skill estimate can then be used to
determine the ideal target location for each individual agent. The main difficulty faced is
that score information does not include the exact location where a dart landed, and some
scores do not even disambiguate dartboard regions. For example, a score of 12 could result
from hitting the 12 region, the double 6 region, or the triple 4 region, which are in very
different places on the dartboard.

The first paper required all of the input dart throws to be aimed at the center of the
dartboard (Tibshirani et al., 2011), which means that the estimation procedure cannot be
used during the normal course of most dart games. This limitation was overcome by the
second paper using Monte-Carlo methods (Miller & Archibald, 2021). Our current work
differs from these two papers in that we assume the intended action is unknown while the
exact executed action is observed.

1.1.5 Reinforcement Learning

We model the environment as a Markov Decision Process (MDP), which is a general model
also used in reinforcement learning (RL). RL typically approaches components of an MDP
as unknown, which must be learned through experience with the environment. A general
RL approach to the domains we approach in this paper might include the execution error
distribution of the agent as a part of the probabilistic transition function of the MDP. Thus,
one could view the problem of estimating an agent’s execution skill as learning a part of
the transition function of an MDP, where the other part of the transition function would
correspond to the underlying dynamics of the environment, given a specific executed action.

Consider the task of determining a policy for an agent with its own execution skill, given
an existing policy for another agent with a different execution skill. Since the environment
portion of the transition function is the same for both agents, there should be a chance of
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reusing some of the information encoded in the existing policy. There has been work in
RL that has focused on reusing policies between different closely-related tasks (Fernández
& Veloso, 2013; Szita, Takács, & Lorincz, 2003), and researchers have focused on metrics
which can capture the similarity between two MDPs (Garćıa, Visús, & Fernández, 2022).
This general area is called transfer learning, and surveys of the relevant literature can
be found (Taylor & Stone, 2009; Zhuang, Qi, Duan, Xi, Zhu, Zhu, Xiong, & He, 2020).
We hypothesize that, where the notion of execution skill applies, the ability to separate
an agent’s execution skill from the environment transition function could be leveraged to
improve transfer learning and more quickly determine good policies for new agents.

1.1.6 Explainable AI

The area of explainable AI, including explainable AI planning, focuses on helping humans
who interact with an AI planning system to understand the “why” behind decisions and rec-
ommendations made by the AI system. Much work has been done on these topics (Saeed &
Omlin, 2023; Chakraborti, Sreedharan, & Kambhampati, 2020). For an AI system provid-
ing decision advice to human agents in domains with human execution error, explanations
which included information about execution skill might be especially helpful. This is es-
pecially true in sequential planning domains, where the value of being in certain states
depends inherently on the execution skill of the agent.

2. Problem Statement

Necessary notation, terminology, and models are introduced in this section.

2.1 Environments and Agents

This article focuses on domains with continuous action spaces that can be modeled as
Markov Decision Processes (MDPs). These MDPs consist of a set of states S, a continuous
set of actions A ⊆ Rn, a reward function R : S ×A 7→ R and a transition function P which
specifies, for any state and action combination, a distribution over possible next states.

An agent is the entity that selects actions and receives rewards in a given MDP. We consider
agents to consist of both a decision-making component and an execution component. An
agent’s decision-making component specifies how the agent determines which action to
attempt in a given state. These actions are referred to as intended or target actions. An
agent’s execution component specifies how accurately the agent can execute a given target
action. This component is represented by a distribution over random perturbations referred
to as χ. Samples from χ are drawn and added to the different target actions before they are
executed. The execution skill of an execution component will refer to the standard deviation
of the distribution χ. The space of possible execution skill levels (standard deviations of
execution skill distribution χ) will be referred to as Σ, with σ ∈ Σ referring to a specific
execution skill level. An execution noise distribution corresponding to execution skill level
σ will be denoted as χσ.

An agent’s decision-making component can be thought of as specifying a distribution over
target actions for a given state. There is no limit to the form or function of the decision-
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Figure 1: Agent Environment Interaction

making component. It can work in any manner, as long as it produces the desired distribu-
tion, which could have all the probability mass on a single target action. The skill of the
decision-making component indicates how effective the intended actions are, with respect
to the execution skill of the agent. This is represented by a single rationality parameter λ
that will be estimated by the proposed model. The space of possible decision-making skill
levels (rationality parameters) will be represented as Λ, with λ ∈ Λ referring to one possible
decision-making skill level. Section 8.3.2 discusses how the decision-making skill estimates
are evaluated for the various agents.

Given a state in which to act, an agent first selects a target action and then attempts to
execute that action, resulting in a perturbed action actually being executed. From the
actual executed action, a reward and the next state are obtained. The model described
above is portrayed visually in Figure 1.

2.1.1 Assumptions

In this work, the underlying assumptions about the model components are the same as have
been used in previous work (Archibald & Nieves-Rivera, 2018, 2019). First, χ is assumed to
be zero-mean and thus its most impactful characteristic is its standard deviation. Second,
χ is assumed to be independent of the current state and intended action. Finally, χ is
assumed to be known to the decision-making component. In other words, an agent is
assumed to have correct beliefs about its own execution precision. We also assume that the
execution skill and decision-making components of an agent do not change while the agent
is being observed. Of course, in many settings, some of these assumptions might not apply:
for instance, χ might vary depending on the state and intended action, the agent might
have incorrect beliefs about χ, or the agent’s skill might improve or worsen over time, but
addressing these situations is left for future work as motivated by specific applications.

In this work, we assume that executed actions, received rewards, and state transitions are
all observable and can be leveraged by the skill estimation techniques we propose. Crucially,
we assume that target actions are not observed.

For simplicity of exposition, we first focus on MDPs where an agent’s action choice does not
impact the next state, or equivalently, where the agent faces a random sequence of states
and the executed action only impacts the immediate reward obtained. Adaptations of the
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proposed approaches for general MDPs where action choices impact the sequence of states
and rewards, which we call sequential domains, are presented in Section 7.

2.2 The Skill Estimation Problem

The problems of interest can now be precisely stated. The skill estimation problem is to
estimate the parameters of an agent’s execution and decision-making skill given observa-
tions of that agent acting in an MDP. The observations include only the executed action;
intended actions are not observed. The skill estimation problem consists of two subprob-
lems, the execution skill estimation problem (Archibald & Nieves-Rivera, 2018, 2019), and
the decision-making skill estimation problem. The formulation of the decision-making skill
estimation problem for continuous action domains is a novel contribution of this work. We
show that considering both problems simultaneously yields significant advantages over only
focusing on them in isolation.

The methods presented in this paper utilize the observed data in an online fashion, produc-
ing an estimate of the observed agent’s skill level after each new observation. Each method
leverages different information available in the observations. The first two methods, de-
scribed in Sections 3 and 5, focus on execution skill estimation and utilize observations of
the rewards received by the agent and the actions executed by the agent, respectively. In
Section 6, we show how both reward and action information can be used to estimate both
the execution and decision-making skill of the agent. In particular, this final method has
the best overall performance in our experimental domains.

2.3 Baseline Execution Skill Estimation: True Noise Method

Before moving on, we first note that if the intended action were observed at each time step
k, the execution skill estimation problem becomes easily solvable. In this case, the true
execution error ϵk could be determined by looking at the difference between intended and
executed actions. σ could then be estimated directly after n observations as the sample
standard deviation of this vector of n ϵ values. This method, which we call the True Noise
Method (TN ) (Archibald & Nieves-Rivera, 2018), cannot be used in practice as it relies
on unavailable information, but is introduced as a baseline for comparison since it can be
computed during controlled experiments.

2.4 Toy Domain: 1D-Darts

To streamline the presentation of the skill estimation methods, some results in the one-
dimensional darts, or 1D-Darts, domain will be reported after each method is described. 1D-
Darts is a toy domain with a one-dimensional continuous action space that was introduced
in (Archibald & Nieves-Rivera, 2018). It is fully described in Section 8, but in short, agents
face a randomly-generated reward function defined on a one-dimensional action space. They
observe the reward function and select an action. Gaussian noise is added to this action and
the agent receives the reward corresponding to the noisy action. An agent’s execution skill
is the standard deviation of this Gaussian noise. An agent’s decision-making skill refers to
the effectiveness of the method that is used to determine which action to attempt, given
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the reward function and their execution skill. Full descriptions of all experimental details
can be found in Section 8.

3. Reward Based Execution Skill Estimation

Our first execution skill estimation method focuses on the rewards obtained by the agent,
which are part of each observation. This method is called the Observed Reward (OR)
method (Archibald & Nieves-Rivera, 2018). The reward included with each observation is a
single sample from the distribution of rewards that the agent could receive from that state,
which is induced by the agent’s execution error.

Given knowledge of the structure of the state and reward function, we can determine,
for different possible execution skill levels σi, the maximum expected reward V ∗

σi that an
agent with that execution skill level could receive in an observed state. As observations are
processed at each time step k, the mean maximum expected reward V ∗

σi for each hypothesis
σi can be computed as the sample mean of V ∗

σi across all observed states. As actual rewards
obtained by the agent are observed, the sample mean of the observed rewards can be
similarly computed. We call this value the mean observed reward. At time step k, the OR
method predicts σ using the mean observed reward and all of the V ∗

σi values. This is done

using linear interpolation on the V ∗
σi values to obtain an estimate of the execution skill level

that would result in the mean observed reward.

If the decision-making of the acting agent is perfectly rational, or in other words, the agent
always selects the action with the maximum expected reward, then this is equivalent to
estimating the mean maximum expected reward from a set of samples drawn from the true
distribution. In this case, the estimate will converge to the true mean maximum expected
reward by the law of large numbers as the number of observations approaches infinity. Thus,
for perfectly rational agents, the OR estimate will also converge to the correct value, limited
only by the resolution of our set of hypothesis execution skill levels. For agents who are not
perfectly rational, the OR method is expected to work less well.
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Figure 2: MSE of Execution Skill Estimates on Rational Agents in 1D-Darts
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3.1 Observed Reward Performance

Figure 2 shows the MSE for the TN and OR methods over 1,000 observations, averaged
across 3,892 experiments in 1D-Darts (see Table 2 in the appendix). In this case, the agent
is perfectly rational, which matches the assumption of the OR method. It can be seen that,
as the number of observations increases, both of these methods work, with OR converging
slightly slower than TN to an MSE of 0.

While the OR method is able to estimate the execution skill level of an agent with perfectly
rational decision-making, it does not make use of all the information in the observations.
In particular, the OR method ignores the action that is actually executed by the agent.
The exploration of our subsequent methods is motivated by the following questions: Can
execution skill estimation be improved by utilizing information from the agent’s executed
actions, instead of simply the obtained rewards? Additionally, are there methods that might
work outside of the assumption of perfectly rational decision-making?

4. Bayesian Skill Estimation Framework

This section introduces the Bayesian framework that forms the foundation of the remaining
skill estimation methods. In Section 5 this framework will be used to estimate execution skill
under some assumptions about the agent’s decision-making skill. It will also be expanded
to address both execution and decision-making skill estimation in Section 6. At its core,
the Bayesian framework approaches skill estimation as probabilistic inference in a Bayesian
network with random variables corresponding to various problem components. The random
variables that will be used within the framework are:

• Σ, a random variable representing the execution skill level of the agent. This is an
unobserved random variable that is not directly influenced by anything else. Execution
skill estimation methods will perform inference to update a probability distribution
over possible execution skill levels, given the observations. σ will be used to indicate
a specific execution skill level for an agent, which is assumed to be constant for an
agent throughout an experiment.

• Λ, a random variable corresponding to the decision-making skill of the agent. This is
also unobserved and is not influenced by anything else, as it is considered an inherent
characteristic of an agent. Decision-making skill estimation methods will infer a dis-
tribution over possible decision-making skill levels, given observations. λ will be used
to refer to a specific decision-making skill level, which is also assumed to be constant
throughout an experiment for a given agent.

• T , a random variable indicating the target, or intended action, for a given observation.
This random variable is also not directly observed, but can be influenced by the
execution and decision-making skill random variables Σ and Λ. A target action for a
given observation will be referred to as t. The influence of the current state on the
target action will be left implicit.

• X, a random variable indicating the action that is actually executed and observed.
A specific executed action will be referred to as x. This random variable is directly
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influenced by the target action random variable T , as well as the execution skill
random variable Σ. P (x | t, σ) indicates the true conditional distribution over executed
actions given an intended action t and an execution skill level σ, and will directly
correspond to the execution noise distribution χσ, centered on t.

The methods that utilize this Bayesian framework will each specify a concrete Bayesian
network constructed from these random variables. These networks are shown in Figures 3
and 6. Each method will start with a prior distribution over the set of possible skill levels
the agent could have. The Bayesian network corresponding to each method, along with
chosen prior and conditional distributions, will be used to derive an update rule which will
specify the posterior probability distribution over skill levels, given information from a single
observation. The methods will repeatedly use this single update in an online manner, using
the posterior after each update as the prior for the next. We now describe the conditional
probability distributions that will be used, corresponding to how skill is modeled.

4.1 Modeling Execution Skill

In this work the Gaussian probability density function (ϕ) given in Equation 1 is used to
specify P (x | t, σ), the distribution over executed actions, given a target action and execution
skill level. Another distribution could be substituted where motivated. Due to the symmetry
of this choice of execution distribution P (x | t, σ) = P (t | x, σ), since ϕ(x; t, σ) = ϕ(t;x, σ).

P (x | t, σ) = ϕ(x; t, σ) =
1√
2πσ2

e−
(x−t)2

2σ2 (1)

4.2 Modeling Decision-making Skill

To model imperfect decision-making, the decision-making distribution shown in Equation
2 is used1. It utilizes the softmax bounded rationality model to specify a distribution over
target actions t, given an execution skill level σ and a decision-making skill level λ. In this
model, as λ → ∞, an agent’s decision-making skill increases.

P (t | σ, λ) = eλV (t,σ)∑
t′∈A eλV (t′,σ)

(2)

The function V : A × Σ 7→ R is used as shorthand, where V (a, σ) = Eε∼χσ [R(s, a + ε)],
indicating the expected reward for an action in state s, given an execution skill level.

4.3 Representation and Estimates

The probability distributions over skill levels will be represented using a discrete distri-
bution over a set of hypothesis skill levels. Two different methods for producing a single
numerical skill level estimate from this distribution have been explored. The first method
is the Maximum a posteriori Skill (MS) estimate, which selects the skill hypothesis with
the highest posterior probability. The second method is the expected skill (ES) estimate,

1. This equation is presented in the discrete form, since in practice, the methods utilize a fine-grained
discretization of the action space.
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which takes into account each hypothesis and its corresponding posterior probability. For
execution skill estimation, previous work has established that the ES estimate is superior,
and so all execution skill estimation results in this article will only be reported for the ES
estimate. Results for the MS estimate are included in the appendix. Since this article is
the first to explore decision-making skill estimation, both estimates will be evaluated on
that task, and will be denoted by an -ES or -MS algorithm suffix respectively. Exact equa-
tions for producing each of these estimates for the proposed skill estimation methods are
presented in their respective sections.

5. Action Based Execution Skill Estimation

The first application of the Bayesian framework will be to estimate execution skill using
information from the executed action in each observation. For this task, we utilize the
Bayesian network shown in Figure 3, which includes the random variables Σ, T , and X.
The figure uses plate notation, which indicates that there are distinct T and X random
variables corresponding to each time step, while there is a single Σ random variable. The
arrows indicate the probabilistic influence that these different random variables have on
each other. The execution skill level Σ influences the target action T , and the final executed
action X depends on both Σ and T . The X random variable is filled in, indicating that it is
observed. We call the execution skill estimation method that uses this network the Action
based eXecution skill Estimation method, or AXE.

Figure 3: Bayesian Network for AXE method

5.1 AXE Derivation

The main goal of AXE is to estimate the probability of an execution skill level σi given the
observed executed actions x1:n, using Bayes rule as follows:

P (σi | x1:n) ∝ P (xn | σi)P (σi | x1:n−1)

We will derive an update which will be used repeatedly, computing new beliefs P (σi | x1:n)
after observation n from the previous beliefs P (σi | x1:n−1).

The conditional distribution P (xn | σi) does not correspond directly to any components
of the model that has been described. Using the dependencies encoded in the Bayesian
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network of Figure 3, this can be rewritten in terms of modeled concepts as:

P (xn | σi) =
∫
t∈T

P (t | σi)P (xn | t, σi)

Here the first component P (t | σi) represents the agent’s decision-making component and
specifies the probability the agent will select t as a target action given its execution skill level
is σi. P (xn | t, σi) is the distribution over executed actions, given a target and execution
skill level, which is the execution noise distribution χσ, centered on t. The question now
becomes, how can the decision-making distribution P (t | σi) be represented and computed?
Different choices will lead to different variants of the AXE approach.

5.2 Rational AXE Variant

As discussed in Section 3, the OR method assumes that the decision-making component is
perfectly rational. This same assumption can be represented withinAXE by having P (t | σi)
be a distribution with all of the probability mass on a single optimal target action for each σi.
This optimal target action will be denoted by tσi . This results in P (xn | σi) = P (xn | tσi , σi).
This method is expected to be extremely brittle, as any decision-making deviation from tσi

by the agent would lead to incorrect estimates.

5.3 Focal Actions AXE Variant

In many settings, we cannot assume that the agent (and estimator) will always be able
to perfectly compute and select the optimal action. How can AXE be applied when we
cannot assume that the agent being observed is a completely rational decision-maker? We
now present a variant of AXE addressing this issue.

First, we move past the assumption that the optimal action for a given state and execution
skill level can be precisely calculated. Instead, we will assume that, for a given state, a
set of focal actions F is present. This set will consist of actions that are expected to be
chosen by the agent, either because they are good actions for agents with no execution error
or because they might be known to typically generate high, but not necessarily optimal,
rewards. Moreover, it is assumed that this set of actions can be quickly generated without
necessarily taking into account their robustness with respect to execution noise. We will
assume only that the decision-making distribution has no preference for any specific focal
action, selecting from among them uniformly at random. If the number of focal actions in
the set F is m, this yields P (xn | σi) = 1

m

∑
t∈F P (xn | t, σi).

To additionally account for the case that an agent with imperfect decision-making skill
might not even select one of the focal actions, an additional uniform distribution over all
actions can also be included. P (xn | σi) can be constructed as a mixture of β times the focal
action distribution and (1−β) times a uniform distribution over all actions. β values near 1
should work better for agents and domains that frequently select focal actions, while lower
β values should be preferable when domains and agents make it harder to specify a good
focal action set to which many intended actions belong. If W is the width of the action
space, then the full update can be written as follows:
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Figure 4: MSE of Execution Skill Estimates on Rational Agents in 1D-Darts

P (σi | x1:n) ∝ P (σi | x1:n−1)

[
β

(
1

m

∑
t∈F

P (xn | t, σi)

)
+

(1− β)

W

]
(3)

In the remainder of this work, AXE will refer to the use of the update in Equation 3
(Archibald & Nieves-Rivera, 2019)2.

5.4 Estimation for AXE

AXE maintains a single distribution over execution skill levels, from which the MS and ES
estimates are produced using Equations 4 and 5.

σ̃MS = argmax
σi

P (σi | x1:n) (4)

σ̃ES =
∑
i

σiP (σi | x1:n) (5)

5.5 AXE Performance

Once again, we use 1D-Darts to briefly discuss the performance of the proposed AXE
method, which is first compared with the OR and TN methods. Experiment details can
be found in Section 8. Figure 4 compares AXE with three different β values to OR and
TN on perfectly rational agents. AXE-0.99 has significantly better performance than OR
with fewer observations, converging around an order of magnitude faster. This shows that
leveraging action information, as AXE does, is more efficient than relying only on reward
information, as OR does, when estimating the execution skill of a rational agent in 1D-
Darts. However, the performance of AXE-0.85 and AXE-0.75 are not competitive with
OR. We see that AXE can have different performance with different β values and so this
must be fine-tuned.

Figure 5 evaluates the effectiveness of AXE and OR at handling deviations from perfectly
rational action choices. The Softmax agent, described in full in Section 8.2, assigns probabili-

2. This method was called The Bayesian Approach (TBA) in this previous work.
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ties to each action based on how close to optimal that action is. The λ% value, described in
Section 8.3.2, basically gives an indication of how close the action selection is to optimal. λ%

of 100% indicates a perfectly rational agent, while a value of 0% indicates a uniform random
agent. The estimates from the AXE-0.99 and OR methods do not converge to an MSE of
0 within 1000 observations on these less rational agents. AXE-0.85 and AXE-0.75 do even
worse. The final error of OR and AXE-0.99 for agents with λ% ∈ [25%, 100%] (Figure 5a)
is not egregiously high, but as the decision-making of the agents gets worse, their final error
increases (Figure 5b). The performance of AXE-0.85 is now about the same as AXE-0.99
while AXE-0.75 is still worse. Thus, the quality of the execution skill estimates produced
by OR and AXE are impacted by the rationality of an agent’s decision-making, as well as
the chosen β parameter.
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(a) Softmax Agents with λ% ∈ [25%, 100%]
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Figure 5: MSE of Execution Skill Estimates in 1D-Darts

AXE can work well in settings where a set of focal actions can be generated for each state,
and when agents are behaving with nearly perfect rationality. It has been demonstrated to
work well for estimating the execution skill of a top computational billiards agent (Archibald
& Nieves-Rivera, 2019; Archibald, Altman, & Shoham, 2009), and has also been used for
estimating the execution skill of professional baseball pitchers (Melville et al., 2023), which
will be explored in more detail in Section 10. However, the applicability of AXE is somewhat
limited by the fact that it requires two things to be specified: the set of focal actions and the
β value. These will certainly vary per domain and also could vary per agent. Additionally,
as agents exhibit less rational decision-making, the assumptions of AXE will cause its
estimates to be less and less useful. The methods presented next utilize both reward and
action information to reason about both the execution and decision-making skill of the
agent, overcoming these limitations.

6. Joint Estimation of Decision-making and Execution Skill

In this section, the Bayesian framework introduced in Section 4 is used to estimate agent
skill using information about both the executed actions and the rewards available in each
state. This is done by including the random variable Λ in the Bayesian network shown in
Figure 6. Λ, which represents the decision-making skill of the agent, allows the method
to reason about the influence of Λ on the conditional distribution of T , the target action.
This conditional distribution depends on the reward associated with each possible target
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action. As discussed previously, agents with higher λ values will assign more probability
to target actions with higher expected rewards. Again, the dependence of target action t
on each state is left implicit. The skill estimation problem can be precisely phrased in this
context as correctly computing P (σ, λ | x1:n), the beliefs over the joint space of the agent’s
execution and decision-making skill combinations after n observations.

Figure 6: Bayesian Network for Joint Skill Estimation

6.1 Why Joint Estimation?

Correct beliefs about an observed agent’s decision-making and execution skills cannot be
obtained by treating each independently, since they are conditionally dependent given obser-
vations of executed actions. This can be seen by their relationship in the Bayesian network
of Figure 6. In other words P (σ, λ | x1:n) ̸= P (σ | x1:n)P (λ | x1:n). Estimating only one of
these parameters requires assumptions to be made about the other, as was done by OR
and AXE. Our method will maintain a joint distribution over both skill parameters, from
which specific estimates can be calculated when needed.

6.2 Joint Skill Estimation

The proposed Joint Estimation of Execution and Decision-making Skill (JEEDS) method
can now be completely described. The JEEDS method will compute the joint distribution
P (σ, λ | x1:n) after every newly observed executed action xn. The derivation will specify this
computation for a particular σi and λj skill combination in terms of the components that
have previously been defined, as well as the joint distribution from the previous time step.
It begins with the desired quantity: P (σi, λj | x1:n). By Bayes Rule, we have:

P (σi, λj |x1:n) ∝ P (xn | σi, λj)P (σi, λj | x1:n−1) (6)

P (σi, λj | x1:n−1) is the distribution from the previous time step. At n = 1 a prior distribu-
tion will be used. The reduction of P (xn | σi, λj) on the right-hand side of Equation 6 to
known components is guided by the structure of the Bayesian network in Figure 6.

P (xn | σi, λj) =
∑
t∈A

P (xn, t | σi, λj)

=
∑
t∈A

P (t | σi, λj)P (xn | t, σi) (7)
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All expressions now correspond to the skill models described earlier. Using the conditional
distributions specified in Equations 1 and 2 and inserting the result into Equation 6 produces
the complete JEEDS update.

P (σi, λj |x1:n) ∝ P (σi, λj | x1:n−1)
∑
t∈A

P (t | σi, λj)P (xn | t, σi)

= P (σi, λj | x1:n−1)
∑
t∈A

eλjV (t,σi)ϕ(xn; t, σi)∑
t′∈A eλjV (t′,σi)

=
P (σi, λj | x1:n−1)∑

t′∈A eλjV (t′,σi)

∑
t∈A

eλjV (t,σi)ϕ(t;xn, σi) (8)

After performing this update for every joint skill combination, the resulting belief is normal-
ized, ensuring a valid probability distribution is maintained.

6.3 Marginal Skill Estimation

One potential limitation of the JEEDS method is the space required to store the joint
skill beliefs, which scales quadratically with the number of hypothesis skill levels, as a
probability is stored for every possible combination of decision-making and execution skill
parameters. As discussed in Section 6.1, the conditional dependence between execution and
decision-making skills introduced by the observations makes this necessary. The Marginal
Estimation of Execution and Decision-making Skill (MEEDS) method is introduced to eval-
uate the importance of joint beliefs. The MEEDS method consists of two beliefs that are
stored independently, one for each type of skill, requiring only linear space. The current be-
liefs about one skill are used in the update of the other. The derivation for MEEDS, which
is similar to that for JEEDS, is omitted, but yields the updates given in Equation 9 (for exe-
cution skill) and Equation 10 (for decision-making skill). The MEEDS and JEEDS methods
will be compared experimentally to investigate the importance of joint skill estimation.

P (σi | x1:n) ∝ P (σi | x1:n−1)
∑
λj∈Λ

P (λj)
∑
t∈A

(
ϕ(t;xn, σi)e

λjV (t,σi)∑
t′∈A eλjV (t′,σi)

)
(9)

P (λj | x1:n) ∝ P (λj | x1:n−1)
∑
σi∈Σ

P (σi)
∑
t∈A

(
ϕ(t;xn, σi)e

λjV (t,σi)∑
t′∈A eλjV (t′,σi)

)
(10)

6.4 Estimation for JEEDS/MEEDS

JEEDS maintains a joint distribution over both skills P (σi, λj | x1:n). The two types of
estimates (MS and ES) are produced as follows:

σ̃MS = argmax
σi

∑
λj∈Λ

P (σi, λj | x1:n) (11)
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λ̃MS = argmax
λj

∑
σi∈Σ

P (σi, λj | x1:n) (12)

σ̃ES =
∑
σi∈Σ

∑
λj∈Λ

P (σi, λj | x1:n)σi (13)

λ̃ES =
∑
λj∈Λ

∑
σi∈Σ

P (σi, λj | x1:n)λj (14)

MEEDS maintains one distribution for each skill type, from which estimates are produced.
These are produced in the same manner as for the AXE method (Figures 4 and 5) The
estimates of the λ rationality parameter are produced in the same way, simply substituting
λ for σ in the those equations.

6.5 JEEDS/MEEDS Performance

Figure 7 shows the performance of the JEEDS and MEEDS estimators along with the
previous methods, again in the domain of 1D-Darts. Figure 7a focuses on perfectly rational
agents, and JEEDS and MEEDS methods both converge to a MSE near 0, but do so more
slowly than AXE-0.99. This is to be expected, as these two methods both need time to learn
from the observations that the agent they are observing is perfectly rational, while AXE-
0.99 has that assumption built in. However, both new methods significantly outperform
the other AXE variants, showing the advantage of not having to specify a β value.
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Figure 7: MSE of Execution Skill Estimates in 1D-Darts

The real test of these new methods is on less rational agents. Figure 7b shows the perfor-
mance on Softmax agents with λ% ∈ [0%, 25%]. JEEDS converges to a MSE near zero on
these agents, and appears to be unaffected by their reduced rationality! All of the other
methods, including MEEDS, cannot accurately determine the execution skill of these agents
within 1000 observations. This shows the impact of the way JEEDS reasons about both
execution and decision-making skill. Complete experimental results for 1D-Darts and other
experimental domains will be presented and discussed in Section 9.
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7. Skill Estimation in Sequential Domains

In the presentation so far, the focus has been on domains where an agent’s goal is to max-
imize immediate reward, as actions have no impact on the future states that the agent will
visit. However, many settings are what we will call sequential, meaning that an agent’s
actions give immediate reward and influence which future states are visited. In these do-
mains, the agent’s goal is to maximize the total reward gained over the entire episode. Some
actions might get a lot of immediate reward, but not lead to favorable future states and so
they may not be good actions for the agent to select.

As an example, consider the variant of darts played by professionals: 501-Darts. In this
game, the competitors start out with a score of 501 and take turns throwing a set of three
darts at a dart board. Each competitor’s score is reduced by the total point value of the
regions where the three darts land. The game is over when a player has a score of exactly
0. Additionally, the final dart throw that causes the score to reach 0 must land in a double-
scoring region or the player busts, meaning the player’s set is over and they return to their
score at the beginning of the set. The player also busts if a throw causes their score to go
to exactly 1 or below 0. It is clear that simply maximizing the score of each individual dart
throw is not a darts player’s true goal. Instead, they are trying to reach a score of 0 in as few
dart throws as possible. We can model this as the player receiving a reward of -1 for each
dart throw, and then trying to maximize the total reward gained. How can the previously
presented methods be modified to work in sequential domains like this? Adaptations for
each of the previous techniques will be presented in turn.

One concept that will be utilized by several of these adaptations is that of the optimal
action-value function corresponding to an execution skill level σ, which will be denoted by
Qσ : S×A 7→ R. This function specifies the future expected reward an agent should be able
to receive, given that they start in state s and take action a, followed by acting perfectly
with respect to the optimal action-value function for their execution skill in future states
they reach. The optimal value function for each hypothesis execution skill level σ is defined
as the solution to Equation 15, computed using value iteration separately for each σ.

Qσ(s, a) = Eε∼χσ

[
R(s, a+ ε) +

∑
s′∈S

P (s′ | s, a+ ε)

[
max
a′∈A

Qσ(s′, a′)

]]
(15)

7.1 OR in Sequential Domains

The observed reward (OR) method described in Section 3 tracks the average reward gained
by the agent per state visited and compares that to a computed maximum for each execution
skill level. In sequential domains, OR will instead track the average total reward gained by
the agent per episode. The näıve method of doing this is to track the total reward gained
during an episode and to update the stored agent average at the end of each episode,
essentially performing Monte-Carlo value estimation. We call this method OR-FullGame.
One downside to this method is that the skill estimate for the observed agent will only be
updated once an entire episode is finished. In some domains, this might happen rarely or
not at all.
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Another approach then, is to update the average total episode reward during each episode.
Until an episode is completed, the accumulated reward for the current episode will be
considered an estimate of the total episode reward. This estimate will be averaged in with
the total rewards already observed from completed episodes. As more and more episodes
are completed, the estimated current episode reward will have less and less impact on the
overall average total episode reward and, thus, on the execution skill estimate. This method
will be referred to as OR-MidGame.

In each case, the average episode reward for perfectly rational agents with an array of
execution skill levels will be precomputed, and the observed average episode reward (either
FullGame or Midgame) will be used to interpolate into this set to determine the current
execution skill estimate for the agent. These average episode rewards will be computed
under the assumption that a perfectly rational agent with execution skill σ will select an
action that maximizes Qσ(s, a) when making a decision in state s.

7.2 AXE in Sequential Domains

The AXE method does not explicitly utilize reward information, and so no adaptation to
its update equation is required. One possible modification is to adjust the set of focal points
that are used. This set could vary based on the state an agent is in and/or the execution
skill level that is being evaluated. Changes to the focal points would be motivated and
undertaken using domain-specific knowledge.

7.3 JEEDS/MEEDS in Sequential Domains

The JEEDS/MEEDS methods use the reward information at a fundamental level and so
need to be adjusted to work in sequential domains. The modification is to substituteQσ(s, a)
for R(s, a) when computing the update for execution skill level σ. This adaptation requires
knowledge of the action-value function for each hypothesis execution skill level, but these
can be precomputed and loaded when needed by the estimators.

8. Experimental Setup

The estimation methods presented in this article were experimentally evaluated using ob-
serva-tions from several different types of agents acting in multiple different domains. The
agents were selected to cover a variety of decision-making approaches. This section de-
scribes the experimental domains, agents, and other experimental details. The results of
the experiments are presented and discussed in Section 9.

8.1 Experimental Domains

The following domains were chosen for the evaluation of the proposed methods. They
range from a toy domain to more real-world settings. These were selected to enable each
method’s estimates to be compared to a ground truth in order to determine the effectiveness
and accuracy of each method.
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8.1.1 One-dimensional Darts

One-dimensional darts (1D-Darts), was designed as a simple domain for investigation of
execution and decision-making skill (Archibald & Nieves-Rivera, 2018, 2019). In this work
we use a slightly modified version as follows: There is a one-dimensional continuous action
space with a reward function defined on it. The reward is 0 for actions outside [−10, 10]
while inside that region the reward alternates between the values of 1 and 2. The alternation
of the reward function is randomly generated for each new state that the agent faces. An
example of a reward function in our 1D-Darts domain can be seen in Figure 8.

Figure 8: Example 1D-Darts Reward Function

8.1.2 Two-dimensional Darts

Our two-dimensional darts (2D-Darts) domain is a variant of the traditional game of darts.
Darts has been used previously for execution skill estimation given knowledge of target
actions (Tibshirani et al., 2011; Miller & Archibald, 2021). In darts, projectiles are thrown
at a circular target area with a radius of 170 mm. The target area is divided into twenty
slices, each labeled with the base reward obtained for landing a dart in that slice. The
traditional game of darts uses a dartboard with one fixed configuration of these base rewards,
shown in Figure 9a. The circular band around the edge of the dartboard is the double-score
region, while the band about halfway to the edge of the board is the triple-score region.
Darts landing in these regions receive 2×/3× the base reward for the slice, respectively. The
center of the board consists of a small circular region surrounded immediately by another
band. These two regions, called double and single bull, respectively, are not considered a
part of any slice but are instead collectively called the bullseye. In the traditional game, a
dart landing in the double bull receives a reward of 50, while a dart landing in the single
bull receives a reward of 25. Actions landing outside the board receive zero reward.

For 2D-Darts the base rewards are randomly shuffled in each new state that the agent faces.
The base reward for the bullseye (25) is also shuffled with the rest of the slice base rewards.
This yields more interesting and challenging states, giving a more robust evaluation of
an agent’s decision-making and execution components. Figure 9b shows an example 2D-
Dart state with shuffled base rewards. Each location on the dartboard is colored with the
expected reward an agent would receive if they select that location as their intended target,
assuming an execution skill level of σ = 39.375 mm. There are multiple areas with high
rewards, allowing for variety in agent action selection.

46



Estimating Agent Skill in Continuous Action Domains

(a) Traditional Dartboard Configuration, used
in 201-Darts Domain

(b) Example Shuffled 2D-Darts State showing
expected scores for σ = 39.375 mm

Figure 9: Dart Board Examples

8.1.3 201-Darts

201-Darts is a sequential domain adapted for a single agent from the traditional game of
501 darts. Agents face the same dartboard as in 2D-Darts but the base rewards for each
slice always stay the same as the traditional configuration shown in Figure 9a. The state
of the game is an agent’s current score, which begins at 201. On each turn, the agent
throws a dart at the dartboard and receives a reward of −1. The agent’s score is reduced
by the value of the region where the dart landed. An episode finishes when the agent’s score
reaches exactly zero. The dart which reaches a score of 0 must land in a double-score region.
Otherwise, the agent’s score is reset to the previous score. If an agent’s score is negative or
exactly 1, then it is also reset to the previous score. The agent’s goal is to maximize their
total reward, or equivalently, to reach a score of 0 in as few darts as possible.

8.2 Agents

Four agents, each with a different decision-making component, were used to evaluate the
proposed skill estimation methods. The Rational agent always selects an optimal, expected-
reward-maximizing action for its execution skill level. The other agents’ imperfect decision-
making components are each parameterized by a single parameter. The Flip agent employs
an ϵ-greedy strategy, either selecting an optimal action w.p. λf ∈ [0, 1] or an action uni-
formly at random. The Softmax agent uses λs ∈ [0,∞] and Equation 2 to probabilistically
select an action. The Deceptive agent selects the action obtaining λd ∈ [0, 1] times the
maximum possible expected reward that is farthest from an optimal action. It does this
with the idea of hiding its execution skill, while controlling the amount of reward that it
is sacrificing. This agent acts suboptimally with respect to the reward in the environment,
but its action selection is not random. Instead, it is essentially considering an additional re-
ward signal as it makes a decision: the distance between its executed action and an optimal
action. As a result, this agent is expected to be the most challenging for the estimators,
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since the estimators are ignorant as to the agent’s true motives. Each of the non-rational
agents places a positive probability on actions that are not the rational, expected reward-
maximizing action in a given state. In each case, a higher λ indicates a more rational
agent. The set of possible target actions each agent can select is limited to locations on the
dartboard for 2D-Darts and 201-Darts, and in the interval [−10, 10] for 1D-Darts.

8.3 Experimental Procedure

The experiments were conducted by repeating the following process in each domain. First,
a random execution noise level was generated, which was used by all agents. Second, a
decision-making skill level was randomly chosen for each agent from their respective range
of rationality parameters. The agents then faced the same sequence of environment states,
except for in 201-Darts, where the initial state is always the same and the state sequence
depends on the actions executed by the agent. Each agent selected a target action, execution
noise was drawn from the agent’s execution noise distribution and added to the target
action, and the final executed action was observed by each of the estimation methods.
Each estimation method produced a skill estimate after each observation. Each experiment
consisted of 1,000 observations. Table 2 in the appendix presents the total number of
experiments obtained for each domain and type of agent. Note that fewer experiments were
used for the Rational agent because only a single rationality parameter had to be covered.

The action space for all agents was discretized with a resolution of 0.01 (1D-Darts) and 5.0
mm (2D-Darts, 201-Darts). For 201-Darts, the Qσ function for each hypothesis execution
skill level was precomputed using value iteration. Expected action rewards were computed
by convolving the state’s reward (1D-Darts, 2D-Darts) or Qσ (201-Darts) function with the
agent’s execution noise distribution using that same resolution.

For 1D-Darts the execution error of agents was drawn from a single-dimensional Gaussian
distribution with standard deviation σ. For 2D-Darts and 201-Darts a symmetric two-
dimensional Gaussian distribution N (µ,Σ) was used, where µ = [0, 0] and Σ = σI2, leaving
a single execution skill parameter to be estimated. The range of execution skill noise levels
was [0.5, 4.5] (1D-Darts) and [3.0, 150.5] mm (2D-Darts, 201-Darts). The agent rationality
parameter ranges were: λf , λd ∈ [0.0, 1.0] (for all domains), λs ∈ [0.001, 100.0] (1D-Darts)
and λs ∈ [0.001, 32.0] (2D-Darts, 201-Darts). All estimation methods used 17 (1D-Darts)
and 33 (2D-Darts, 201-Darts) hypothesis skill levels for execution skill, whereas 33 were
used for decision-making skill on all domains. The decision-making skill level hypotheses
were logarithmically distributed to capture a more even distribution over possible λ% values
(see Section 8.3.2). All beliefs were initialized to be uniform over the space of possible skill
parameters.

For the AXE method, the set of focal actions in a state consisted of the optimal ac-
tions for the set of execution skill hypotheses. Experiments were conducted with each
β ∈ {0.50, 0.75, 0.85, 0.90, 0.95, 0.99}. The accuracy of the estimates varied depending on
the β value used. The β value which produced the minimum MSE (averaged across all
experiments) after 1000 observations, varied between domains and agents. Results are pre-
sented with three different β values (0.75, 0.85, 0.99), to give a sense of how performance is
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impacted as the agent type and domain are changed. Plots presenting the performance of
AXE with all β values can be found in the appendix.

8.3.1 Evaluating Execution Skill

As all of the estimation methods produce execution skill estimates of σ for the observed
agent on the same scale, these estimates are evaluated by comparing the estimates with the
true σ values for the agents. The results generally report the mean squared error (MSE) of
these estimates for each estimator.

8.3.2 Evaluating Decision-making Skill

One major challenge in evaluating the proposed JEEDS/MEEDS decision-making skill es-
timators is measuring the accuracy of the estimates on all of the types of agents. As just
discussed, this is not an issue for execution skill, since the standard deviation of each agent’s
execution skill distribution can be compared to the estimate straightforwardly. For decision-
making skill the situation is different. The JEEDS/MEEDS methods produce an estimate
of the λs rationality parameter, which only has a well-defined meaning in the context of
the Softmax decision-making distribution. To evaluate the accuracy of this estimate on the
other agents, we need a way to map between the different rationality parameters. To our
knowledge, no previous notion of an inter-model rationality parameter that could address
this issue has been proposed.

To this end, we utilize a novel measure of rationality that can be calculated from an agent’s
selected target actions and their true σ value, both of which are known during the exper-
iments. We define for a given state: rM , the maximum expected reward possible, rU , the
expected reward obtainable by randomizing uniformly over actions, and rA the expected
reward for the agent’s selected target action, where all expectations are with respect to the
execution noise distribution χσ. If an agent’s decision-making distribution over target ac-
tions is known, rA can be the expected reward of that entire distribution, instead of simply
the single target action. The rationality percentage λ% = rA−rU

rM−rU
indicates where an agent

lies between uniform random and maximum expected reward. For a perfectly rational agent,
λ% = 1, while as λ% decreases, the rationality of the agent also decreases. An agent with
λ% = 0 is obtaining the same expected reward they would by selecting actions uniformly at
random. λ% can be negative when selected actions are worse than uniform random.

During the experiments, the average λ% for each agent was computed across all observations.
The estimated λs value from the JEEDS/MEEDS methods was then converted to a λ%

value using a function that was fit to a separate dataset of the Softmax agent acting in each
domain. This conversion function takes a λs value and the estimated σ value and outputs
an approximately equivalent λ% value. For more specific details regarding this conversion
process, please see the appendix. This converted λ% value was then compared to the λ%

value computed for the observed agent and the results generally report the MSE of these
values. The execution skill estimate σ is utilized during the conversion because the λ% for
the Softmax agent depends not only on the difference between rM and rU , but also on how
much the expected reward varies across different actions. λ% can be higher if a single action
is best by a wide margin, and lower if many actions yield similar expected reward. The
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Figure 10: MSE of Execution Skill Estimates in 1D-Darts

agent’s execution skill level influences how much the rewards vary. With little execution
noise, actions can have more varied expected rewards, whereas with a lot of execution noise,
many actions have similar rewards. The exploration of a rationality parameter for which
the λs conversion is independent of execution skill is left as future work.

9. Experimental Results

We now present the results of the experimental evaluation of the proposed methods. Com-
plete tables of final errors and confidence intervals for each figure are included in the ap-
pendix. We begin in Sections 9.1 and 9.2 by analyzing the effectiveness of the estimators
for each type of skill in isolation, followed in Section 9.3 by an exploration of the interaction
between the two types of skill and the performance of the estimators.

9.1 Estimating Execution Skill

We start with an investigation of the accuracy of the execution skill estimators. Figures
10 (1D-Darts), 11 (2D-Darts) and 12 (201-Darts) show the average MSE of the different
execution skill estimation methods as a function of the number of observations for each
of the four agents. This average MSE is computed across all experiments, execution skill
levels, and decision-making skill levels and shows the general performance of each method.

We begin by examining estimator performance on the Rational agent, shown in Subfigure
(a) for each domain. Each estimation method works well on this agent in all domains, having
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Figure 11: MSE of Execution Skill Estimates in 2D-Darts

MSE converge to near 0. For the AXE method, this good performance only occurs when
β = 0.99, while the other β values result in worse MSE values. This is one shortcoming of
the AXE method, that the β value can impact the performance. In the 201-Darts domain,
the two OR methods converge much slower than the other methods, but reach low error
after all 1000 observations. Of the two OR variants, OR-MidGame converges more quickly
in 201-Darts. In all three domains, the AXE-0.99 estimator has the lowest error with fewer
than 100 observations. When the agent is perfectly rational, we are able to more easily
predict the actions that they will take, and thus AXE works very well with the correct β
value. This confirms findings from previous work on the effectiveness of the AXE method
(Archibald & Nieves-Rivera, 2019). When agents are rational, each of the methods can be
used to estimate execution skill, given enough observations.

The situation gets a lot more interesting as we start considering agents who are not perfectly
rational. For the Softmax agent in 1D-Darts (Figure 10b) and 2D-Darts (Figure 11c), the
only method that converges to a MSE near 0 is JEEDS. All of the other methods still have a
significantly higher MSE after all 1000 observations. In 201-Darts (Figure 12c), the JEEDS
and MEEDS methods are both able to successfully converge to very low MSE, while the
OR and AXE methods do not work very well.

The results for the Flip agent (Figures 10c, 11b, and 12b) reveal the same successful esti-
mators in each domain. This shows that the success of the JEEDS estimator at estimating
execution skill for agents of limited rationality is not dependent on the estimator’s ratio-
nality model matching the actual method used by the agent to select actions.

51



Archibald & Nieves-Rivera

100 101 102 103

Number of observations

0

1000

2000

3000

4000

5000

6000

7000
M

ea
n

sq
u

ar
ed

er
ro

r
TN

OR-MidGame

OR-FullGame

AXE-0.75

AXE-0.85

AXE-0.99

JEEDS

MEEDS

(a) Rational Agent

100 101 102 103

Number of observations

0

1000

2000

3000

4000

5000

6000

7000

M
ea

n
sq

u
ar

ed
er

ro
r

TN

OR-MidGame

OR-FullGame

AXE-0.75

AXE-0.85

AXE-0.99

JEEDS

MEEDS

(b) Softmax Agent

100 101 102 103

Number of observations

0

1000

2000

3000

4000

5000

6000

7000

M
ea

n
sq

u
ar

ed
er

ro
r

TN

OR-MidGame

OR-FullGame

AXE-0.75

AXE-0.85

AXE-0.99

JEEDS

MEEDS

(c) Flip Agent

100 101 102 103

Number of observations

0

1000

2000

3000

4000

5000

6000

7000

M
ea

n
sq

u
ar

ed
er

ro
r

TN

OR-MidGame

OR-FullGame

AXE-0.75

AXE-0.85

AXE-0.99

JEEDS

MEEDS

(d) Deceptive Agent

Figure 12: MSE of Execution Skill Estimates in 201-Darts

The final agent is the Deceptive agent. In the 1D-Domain, JEEDS works well (Figure
10d), but in the other two domains (Figures 11d and 12d) it results in a final MSE larger
than it produces for the other agents. In both 2D-Darts and 201-Darts, the best performing
estimator is JEEDS, followed by MEEDS, with the other estimators performing much worse.
Interestingly, the AXE methods with all β values perform the poorest of all the methods
by a large margin in the 2D-Darts domain. The Deceptive agent intentionally takes actions
that are far away from the best actions to take in a state, and this appears to greatly
confuse the AXE approach, since it relies on the distance between the observed action and
the focal actions. The way that the Deceptive agent selects its actions results in an agent
that all of the estimators have trouble estimating. JEEDS does the best at handling this
deceptive behavior, but performs worse than with the other agents. This shows that the
way non-rational behavior is being modeled struggles to handle the deliberate deception of
this agent.

All together, these results show that the methods can produce accurate estimates when
agents are known to be rational, or very close to rational. However, when agents have low
decision-making skill, reasoning about both execution and decision-making skill together,
as JEEDS does, is essential to producing robust and accurate execution skill estimates.

9.2 Estimating Decision-making Skill

Figures 13 (1D-Darts), 14 (2D-Darts) and 15 (201-Darts) show the average MSE of the
JEEDS and MEEDS decision-making estimates across all agents and experiments, where
decision-making error is calculated as described in Section 8.3.2. As these are the first

52



Estimating Agent Skill in Continuous Action Domains

100 101 102 103

Number of observations

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
ea

n
sq

u
ar

ed
er

ro
r

JEEDS-MS

JEEDS-ES

MEEDS-MS

MEEDS-ES

(a) Rational Agent

100 101 102 103

Number of observations

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
ea

n
sq

u
ar

ed
er

ro
r

JEEDS-MS

JEEDS-ES

MEEDS-MS

MEEDS-ES

(b) Softmax Agent

100 101 102 103

Number of observations

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
ea

n
sq

u
ar

ed
er

ro
r

JEEDS-MS

JEEDS-ES

MEEDS-MS

MEEDS-ES

(c) Flip Agent

100 101 102 103

Number of observations

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
ea

n
sq

u
ar

ed
er

ro
r

JEEDS-MS

JEEDS-ES

MEEDS-MS

MEEDS-ES

(d) Deceptive Agent

Figure 13: MSE of Decision-making Skill Estimates in 1D-Darts

methods for this task, there are no previous methods to compare against. As discussed
earlier, in these results we report both the ES and MS estimates.

All estimators are able to achieve low MSE in all domains for rational agents. For all of
the non-rational agents agents in 1D-Darts and 2D-Darts, the JEEDS methods work better
than the MEEDS methods. The MEEDS estimates do not seem to get more accurate with
more observations, while the JEEDS methods do improve over time. In 201-Darts, all of
the decision-making skill estimates reach near zero MSE after 1000 observations for the
Softmax and Flip agents, while for the Deceptive agent, none of the estimates achieve near
zero MSE in 1000 observations. For JEEDS, the ES estimate outperforms the MS estimate
with all the agents in 1D-Darts and 2D-Darts and for the Rational and Deceptive agents
in 2D-Darts. For the Softmax and Flip agents in 2D-Darts the MS estimate is better. In
201-Darts both estimates converge to the same MSE after all 1000 observations.

Across all of the experiments, it appears that JEEDS generally achieves less error than
MEEDS, coverging to low error in cases where MEEDS doesn’t. One case where the methods
seem to work well is when the agents are highly rational. The 201-Darts domain also appears
to be an easier domain for estimating decision-making skill for all but the Deceptive agent.
Producing accurate decision-making skill estimates across a range of agent types and skill
levels is a challenging problem, and the JEEDS method is not quite as accurate at this task
as it is at estimating execution skill across a wide range of decision-making skills.

While reasoning about decision-making and execution skill jointly is essential for estimating
execution skill accurately for agents with limited rationality, our experimental results indi-
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Figure 14: MSE of Decision-making Skill Estimates in 2D-Darts

cate that the decision-making skill estimates produced by these methods are, on average,
not quite as reliable as the execution skill estimates. In particular, as we explore in the
next section, it seems that decision-making skill estimates are more negatively impacted
by limited execution skill than execution skill estimates are negatively impacted by limited
decision-making skill.

9.3 Interaction Between Skills

Having investigated the accuracy of the different skill estimators, averaged across all differ-
ent values for the other skill, we now explore the interactions between these two skill types
and how they influence the accuracy of the JEEDS estimator. JEEDS was selected because
it performed the best overall for estimating both skill types across all agents and rationality
levels. For consistency, JEEDS will utilize the ES estimate for both execution skill and
decision-making skill estimates. The analysis in this section focuses on the Softmax agents.
Results for the Flip and Deceptive agents yield similar conclusions and can be found in the
appendix.

We first explore the estimation of skill over time, but now the Softmax agents are bucketed
by skill level. Figure 16 shows the average MSE of the JEEDS skill estimates, averaged
across all Softmax agents in each bucket. Each row shows the results for a different domain.
Each graph indicates the skill ranges for the buckets.

For the JEEDS execution skill estimates, shown in the left column, the MSE curves do not
display huge variations between the different buckets, especially once enough observations
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Figure 15: MSE of Decision-making Skill Estimates in 201-Darts

have been made. This was expected, as the figures showing average performance across
all buckets demonstrated good convergence, as was discussed in Section 9.1. The buckets
do exhibit minor differences, especially with fewer than 100 observations. These minor
differences vary from domain to domain. Interestingly, the two groups with the slowest
convergence in 1D-Darts and 2D-Darts are the agents on the extremes of the rationality
spectrum. For 201-Darts, the slowest convergence is for the two highest decision-making
skill buckets. The reasons why the MSE converges exactly as it does probably depend on
the agent, the domain, and the bucket sizes and ranges. More lower-level insights will be
explored shortly through different figures, but for the present we conclude that the execution
skill estimates of the JEEDS estimator are accurate on agents of all skill levels, given enough
observations. The decision-making skill level of an agent does have a minor impact on the
exact convergence speed of the JEEDS estimator, but this impact is not enough to result
in major differences in final estimation accuracy.

We now turn to the JEEDS decision-making skill estimates, shown in the right column
of Figure 16. The agent buckets now correspond to execution skill ranges, with smaller
numbers corresponding to less execution error and thus more skilled agents. It can be
immediately seen that there is far more variation among bucket curves than there was in
the execution skill MSE curves in the left column. Thus, an immediate conclusion is that the
execution skill level of an agent has a huge impact on the ability of the JEEDS estimator to
accurately estimate decision-making skill. In all domains, these estimates are more accurate
when the agents are the most skilled at execution, in the smaller σ buckets. In 1D-Darts and
2D-Darts, the estimates get less and less accurate as the agents’ execution error increases.
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(f) 201-Darts Decision-making Skill MSE

Figure 16: JEEDS Skill Estimation Bucketed MSE on Softmax Agents

201-Darts provides a slightly different perspective, as the estimates are similarly accurate
for all the buckets after 1000 observations. However, with fewer than 100 observations the
same finding from the other domains holds: the more execution error an agent has, the less
accurate the estimate of their decision-making skill estimate is.

Next, we investigate the impact of the interaction between the skills on estimation accuracy
in a more qualitative way. Figure 17 shows a visualization of the average final skill esti-
mates produced by the JEEDS estimator on Softmax agents across the entire joint space
of skill combinations. Similar figures for other agents and estimators are included in the
appendix. These visualizations are linear interpolations of the estimates, computed using
the scipy.interpolate.griddata function with the rescale option enabled, from all ex-
periments with the JEEDS estimator and Softmax agents. There are two subfigures for each
experimental domain, showing the interpolated average final execution skill estimates and
average final decision-making skill estimates respectively. The skill estimates are shown as
colors, and each subfigure has a colorbar that shows the color scale used. Perfect estimation
of skill would show up as an entire subfigure looking like a stretched copy of the colorbar.

Focusing first on the execution skill plots in the left column, we see clear vertical bands of
different colors that line up nicely with the colorbar. This shows again that the execution
skill estimates are generally accurate across all decision-making skill levels, with a few small
pockets of noise and error. In the 1D-Darts and 2D-Darts domains, the vertical color bands
make a slight shift to the right as the decision-making skill is increased. This shows that as
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Figure 17: Interpolated JEEDS Estimates on Softmax Agents

57



Archibald & Nieves-Rivera

an agent’s decision-making skill increases, the estimate of their execution skill can sometimes
be a bit lower than it would have been if they had less decision-making skill. Overall, the left
column of Figure 17 visually demonstrates the ability of the JEEDS estimator to provide
accurate execution skill estimates across the entire spectrum of skill level combinations.

The interpolated decision-making skill estimates in the right column of Figure 17 show a
more nuanced view of the performance of the JEEDS estimator. At a high level, there are
vast regions of the joint parameter space where the estimates are very inaccurate. However,
in each domain, there are regions where the estimates at least exhibit the correct progression
from bad to good decision-making skill. In 1D-Darts (Figure 17b) we can see that for low
execution noise levels (roughly 0.0-5.0) the decision-making skill estimates could be used at
a high level to distinguish between agents at different decision-making skill levels, since the
estimates change in the correct direction as skill increases. When agents have more noise in
their actions, and thus have less execution skill, the decision-making skill estimates produced
by JEEDS look closer and closer to random. A similar phenomenon can be observed in 2D-
Darts (Figure 17d), where at execution noise levels above 100 mm the decision-making skill
estimates are very inaccurate, while at execution noise levels lower than that the estimates
show a reasonable progression. In both 1D-Darts and 2D-Darts when the execution noise
is very close to zero, the decision-making skill estimates are quite close to matching what
they should be. Interestingly, in the 201-Darts domain, the execution skill of the agent does
not appear to have a big impact on the decision-making skill estimates produced, as they
look fairly consistent across all execution noise levels.

To summarize, in all three experimental domains JEEDS can accurately estimate execution
skill across the entire range of decision-making skill levels that were included in our experi-
ments. However, decision-making skill is much harder to estimate accurately. The estimates
are most accurate across all domains when execution noise is very close to 0. With slightly
more execution noise the estimates produced by JEEDS can correctly, but crudely, group
or order agents by decision-making skill. In 1D-Darts and 2D-Darts even this rough agent
ordering is not possible when agents have a significant amount of execution noise. We
conclude that in these domains high execution noise overwhelms and masks any decision-
making skill information contained in the agents’ executed actions.

10. An Application: Pitcher Execution Skill Estimation in Baseball

The previous experimental domains allowed us to evaluate the accuracy of the proposed
skill estimation methods since the true skill of the experimental agents was known. We now
apply the proposed methods to the task of estimating agent skill on data from a real-world
domain, where the true skill level of agents is not known. This is done in the domain of
Major League Baseball (MLB). In the sport of baseball, pitchers throw a baseball towards
a batter who is standing at home plate, with the goal of getting them out. Batters, on
the other hand, are trying to hit the ball into play with a bat, allowing them time to run
around the bases. Batters receive a strike if they swing and hit the ball out of play, swing
and miss, or if they decide not to swing but the pitch crosses through the strike zone. They
receive a ball if they do not swing and the pitch misses the strike zone. The strike zone is
shown as the rectangle in Figures 18 and 19. It extends vertically roughly from a batter’s
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knees to their armpits and is horizontally limited by the width of home plate. After four
balls the batter is allowed to advance to first base, while if they receive three strikes, then
they are out3. It is perhaps obvious that the execution skill of a pitcher has a huge impact
on their success and the target locations and pitching strategy they should employ. For
present purposes we consider a pitcher’s execution skill to be their accuracy at having their
pitch pass through an intended location in or near the strike zone.

10.1 Baseball Pitching Data

Rich baseball data has been collected for many years. Data about baseball pitches is
especially detailed, including pitch velocity, movement, spin rate, location where the pitch
left the pitcher’s hand, and location where the pitch crossed home plate. We accessed this
data using pybaseball (LeDoux, 2017), a Python package that provides access to baseball
data collected from different public sources. Matching the assumptions made in this paper,
the pitch data does not include the intended pitch location, as this is not observed. Each
pitch has a specific type which is chosen from a discrete set of types by the pitcher. Example
pitch types are fastball, change-up, and breaking ball. These types differ in how the pitcher
holds and throws the ball and have different characteristics. The main differences are in
how fast the pitch goes and how much the ball curves. Each pitcher typically has a small
number of pitch types that they have honed and can utilize in games. The type for each
pitch is included in the data. Our goal is to use the proposed methods to estimate the
execution skill of MLB pitchers on specific pitch types.

10.2 Evaluating Skill Estimation in Baseball

As previously noted, with baseball data the true skill level of each pitcher is not known.
This means that we cannot exactly measure the accuracy of the skill estimates the methods
produce. In order to give some evaluation of the reasonableness of the estimates, a high-
level comparison will be performed with another statistic that is generally used to describe
a pitcher’s command, or ability to hit their intended target. This statistic is the number
of walks (BB) a pitcher issues per inning that they pitch (IP ), which is called BB/IP .
Pitchers with good control generally do not issue a lot of walks, as these are typically
undesirable outcomes resulting from not being able to consistently hit the strike zone.

The proposed methods will be evaluated by their ability to generate pitcher rankings that
are consistent with the rankings of pitchers by BB/IP . Of course, the rankings will not
be identical, as there will not be a perfect correlation between a pitcher’s execution skill
level and their BB/IP . But this will give us some idea that the methods are producing
reasonable estimates.

To make this analysis the most clear, we first ranked all of the pitchers in MLB by BB/IP
during the 2021 season. We then included in our experiment the top ten and bottom ten
pitchers according to this metric. We will consider the estimates produced by our methods
to be reasonable if they can frequently distinguish between these two groups in the rankings
that they produce. This inclusion of the pitchers who appear to be at the extreme ends

3. For more complete rules of baseball, see: https://www.rulesofsport.com/sports/baseball.html
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of the control spectrum will give the execution skill estimation methods the best chance of
showing reasonable differentiation consistent with the BB/IP statistic.

Since different pitchers have different pitch types in their repertoires, we cannot use a single
type across all pitchers. In fact, for the chosen 20 pitchers, there was not a single pitch
type that all of the pitchers had a significant number of in the data. Additionally, some
pitch types differ wildly in how much they move and how hard they might be to control.
However, the different pitch types can be categorized into three broad classes: fastballs,
breaking balls, and off-speed pitches. To have the best chance of comparing pitchers as
fairly as possible, in these results we focus on the class of fastballs, which is composed of
three types: four-seam fastball, two-seam fastball, and cutter. All of the pitchers we chose
have data on at least one of the three types of fastball pitches. We will report each pitcher’s
fastball skill levels, which will be their skill level averaged across whichever of the three
fastball pitch types they have enough of in the data.

10.3 Application Details

We now describe the additional details which were necessary to apply the proposed methods
to MLB data.

10.3.1 Expected Utility Function

The OR and JEEDS methods both explicitly utilize reward information. For the baseball
setting, this means we require a reward function defined over pitch locations for a pitcher
facing a given batter. To this end we utilize the OptimusPitch (OP) model proposed in
(Melville et al., 2023). OP is trained to produce the expected utility for a completely
described pitch against a specific batter, given the game context of the at-bat. To generate
a raw expected utility for each different location a pitch could cross home plate, OP is
queried once for each possible pitch location. The location information about the pitch is
modified, but the other data (velocity, spin-rate, etc.), is left unchanged. This gives us a
grid of expected utility for the pitcher, much like a dartboard. An example raw expected
utility grid is shown in Figure 18a. The remainder of Figure 18 shows this utility convolved
with different execution noise levels, demonstrating how the optimal aiming point depends
on execution skill.

10.3.2 Focal points for AXE

The set of focal actions required by AXE is shown in Figure 19 and was hand-designed for
the baseball domain. The 21 points include 5 in the strike zone, 8 on the edge of the strike
zone, and 8 just outside the strike zone. Additionally, for each pitch, the location yielding
the maximum expected utility for each execution skill level hypothesis was included, as long
as it was at least 2 inches from any focal point already in the set.

10.4 Experimental Procedure

The experiments were conducted as follows. For a given pitcher and fastball pitch type, the
most recent 1000 pitches from the 2021 season were obtained from the data. When fewer
were available, all available pitches were used. If any pitcher had fewer than 80 pitches of a

60



Estimating Agent Skill in Continuous Action Domains

(a) Raw Expected Utility (i.e. σ = 0.0) (b) σ = 0.50

(c) σ = 0.63 (d) σ = 0.75

(e) σ = 0.88 (f) σ = 1.0

Figure 18: Expected utility maps for different execution skill levels on a sample change-up
pitch from Joe Mantiply facing Joey Bart. Colors indicate the expected utility of each

target location with the given σ. The black X indicates the optimal target location for the
pitch, which varies as σ changes.
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given type, that pitch type for that pitcher was not included in the experimental results, so
as not to include high variance estimates. For each pitch, the raw expected utility grid was
generated using the OP model. This utility grid and the observed location of the actual
pitch were passed into all of the estimation methods. The results are composed from the
final skill estimates, determined after processing all relevant data.

Figure 19: AXE focal points for MLB data. The black box indicates the strike zone.

10.4.1 Experiment Details

All methods modeled a player’s execution error as noise added to the intended action, where
this noise is drawn from a symmetric two-dimensional Gaussian distributionN (µ,Σ), where
µ = [0, 0] and Σ = σI2. Thus, the methods estimate a separate σ for each pitcher-pitch
type combination, which we consider to be the player’s execution skill.

66 hypothesis skill levels were used by the methods for both execution and decision-making
skills. The execution skill hypotheses were distributed between 0.17 ft (∼ 2 inches) and
2.81 ft (∼ 33.7 inches). An execution skill of 2.81 ft was selected as the upper limit since a
pitcher is able to hit the strike zone only 20% of the time with this execution skill level when
aiming in the middle. Out of the 66 execution skill level hypotheses, 60 were distributed
between 0.17 ft and 1.0 ft, and the remaining 6 were distributed between 1.0 ft and 2.81
ft. This was done because the best pitch location can vary for execution skill hypotheses
smaller than 1 ft, whereas they generally stay the same, near the middle of the strike zone,
for those greater than 1 ft. The decision-making skill levels hypotheses were distributed as
described in Section 8.3.

The set of possible pitch locations ranges from -2.13 ft to 2.13 ft horizontally and from -2.5
ft to 6.6 ft vertically4. The pitch locations were discretized with a resolution of 0.5 inches in
both dimensions. These ranges were selected as they include at least 95% of all the observed
pitch locations available in the data from the 2021 MLB season. Any pitch location outside
this region was assigned the minimum value from the corresponding utility grid.

4. A negative vertical pitch location corresponds with the ball hitting the ground before reaching home
plate
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All β values in the set {0.5, 0.75, 0.85, 0.9, 0.95, 0.99} were used for the AXE method in
the experiments. The different β values all produced very similar estimates. The results
presented in the next section are with β = 0.95, which was a good β value in the darts
experiments for agents with good decision-making skill. This choice was made under the
assumption that professional baseball pitchers are highly incentivized to make good decisions
about where to aim, and we expect most pitchers to be fairly competent at that task.

10.5 Results

Table 1 shows the average fastball execution skill estimates produced by the OR, AXE, and
JEEDS methods for the pitchers in the experiment. In addition, the table also shows the
decision-making skill estimate produced by JEEDS for all of the pitchers. The cells in each
column are shaded corresponding to their rank from best (lowest σ̃ or highest λ̃) to worst.
The ranking of each pitcher within each column is shown to the left of their estimate.

The OR and JEEDS execution skill estimation methods are able to perfectly differentiate
between the top-10 and bottom-10 groups. Each of these estimators ranks the top-10
pitchers by BP/IP as more skilled at execution than the bottom-10. The AXE method
has two pitchers from each group that are ranked in the other group, but overall still
seems to concur with most of the top-10/bottom-10 categorizations. The fact that the
skill estimation methods are so consistent with the BP/IP rankings is evidence that the
execution skill estimates are reasonable. It should be noted that the estimators came to
these conclusions without knowing about walks and/or innings. The methods’ inputs are
simply the expected utility map for each pitch along with the pitch’s actual location. Thus,
we conclude that the execution skill estimates are reasonable for MLB pitchers.

The right column shows the decision-making skill estimate λ̃ produced by the JEEDS esti-
mator. While there is no existing baseball statistic that we believe correlates with this skill
estimate, it is notable that the ranking derived from these estimates is quite different from
the BP/IP rankings (higher λ̃ indicates more rational decision-making). In fact, six of the
top-10 pitchers according to decision-making skill (shown in order in the λ̃ column on the
right) are found in the bottom-10 of the BP/IP rankings. To get a sense of how these λ̃
values correlate with our λ% rationality measure, the rightmost column shows an estimate
of the λ% value corresponding to each of the estimated λ̃ values.

Each pitcher’s λ̃% value estimate was computed as follows. For each pitcher and pitch type
from the experiment, fifty random pitches were chosen. The corresponding raw expected
utility map, as a function of pitch location, was generated for each pitch. Each raw expected
utility map was then convolved with the execution noise corresponding to the final JEEDS
estimate for that pitcher and pitch type, resulting in a map showing the expected utility
for the pitcher to aim the pitch in each possible location, assuming the estimate of their
execution noise was accurate. From this map, the expected utility of the best possible target
location (rM ) and a target location selected uniformly at random (rU ) were computed. This
was compared to the expected utility the pitcher would get, assuming they selected a target
pitch location according to Equation 2 with their estimated λ parameter, denoted as rλ. The
estimated rationality percentage for the pitch was then computed as rλ−rU

rM−rU
, as described

in Section 8.3.2. The values computed in this way from each of the sampled pitches were
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Pitcher BP/IP
σ̃ (ft) λ̃

OR AXE JEEDS JEEDS λ̃%

Joe Mantiply 1 0.084 5 0.73 1 0.52 2 0.64 19 216.1 15 91.3

Chris Martin 2 0.091 3 0.70 5 0.55 4 0.66 8 487.1 14 91.3

Jacob deGrom 3 0.124 7 0.75 4 0.55 5 0.67 12 398.9 7 95.0

Corey Kluber 4 0.128 10 0.78 14 0.64 10 0.73 14 340.1 18 90.5

Emmanuel Clase 5 0.139 9 0.78 6 0.56 7 0.71 18 222.6 19 90.1

Aaron Nola 6 0.146 2 0.70 3 0.54 1 0.64 10 437.3 10 93.2

Ross Stripling 7 0.149 4 0.72 8 0.61 6 0.70 9 467.9 11 92.7

Austin Pruitt 8 0.149 8 0.77 9 0.61 9 0.73 11 426.2 9 93.6

George Kirby 9 0.151 1 0.67 2 0.53 3 0.65 7 542.9 6 95.3

Lance Lynn 10 0.156 6 0.74 15 0.64 8 0.72 13 342.2 17 91.0

Trevor Richards 11 0.556 18 0.86 19 0.71 12 0.75 20 191.7 20 86.1

Caleb Smith 12 0.556 17 0.86 17 0.67 16 0.78 15 278.2 16 91.2

Ryne Stanek 13 0.577 14 0.82 13 0.64 14 0.78 1 1213.8 1 98.5

Jordan Hicks 14 0.580 13 0.82 12 0.63 13 0.77 17 267.9 13 91.4

Yusei Kikuchi 15 0.586 15 0.84 16 0.64 18 0.81 4 803.2 8 94.7

Austin Davis 16 0.589 12 0.80 7 0.61 11 0.75 16 275.0 12 91.7

Joan Adon 17 0.603 11 0.80 10 0.61 15 0.78 6 590.8 5 95.8

Tucker Davidson 18 0.673 16 0.85 11 0.62 17 0.80 5 677.6 4 96.6

Jake Diekman 19 0.736 19 0.86 18 0.67 19 0.84 2 1203.0 2 98.3

Tanner Scott 20 0.741 20 0.99 20 0.76 20 0.97 3 1181.9 3 97.4

Table 1: Skill estimates for top-10 and bottom-10 MLB pitchers according to BP/IP

averaged for each pitch type. The λ̃% value shown in the rightmost column was then
computed as the average across the pitch types included in the experiment for each pitcher.

All of the pitchers have rationality percentages between 86.1 and 98.5% and so the dif-
ferences in their decision-making skill (λ) estimates do not correspond to gross differences
in their effectiveness. In the other experimental domains, these rationality percentages all
correspond with highly rational agents. Our general conclusion is that none of the pitchers
appear to especially struggle with this portion of their game, although we hypothesize that
this information might still be helpful for coaches. This is because the coaching techniques
to help pitchers improve decision-making might be very different than those used to improve
other aspects of pitching. Even these small differences in decision-making ability might be
impactful over the course of an entire MLB season or player’s career.

64



Estimating Agent Skill in Continuous Action Domains

These skill estimates have the potential to impact baseball in several ways. First, accurate
execution skill estimates can be embedded in larger decision-making aids for pitchers, to
help them make informed decisions about where to aim their pitches. An example of this
was the game-theoretic model of the interaction between batter and pitcher which computed
an equilibrium target location and pitch type for a pitcher facing a batter (Melville et al.,
2023). This model crucially required an accurate idea of how precisely each pitcher could hit
their intended target. Other possible uses include being able to identify pitchers who have
the execution skill to succeed, but might need to make better decisions. This information
could also be useful for batters in helping them understand the accuracy of the pitchers they
face and what types of strategies they might employ as a result. Baseball is one example
of a real-world setting where the proposed execution and decision-making skill estimation
methods can be used to improve our understanding of agent performance and our ability
to help people make better decisions and experience more success in their activities.

11. Conclusion and Future Work

Execution and decision-making skill constitute two important characteristics of agents in
many continuous domains. In this article, we presented several skill estimation methods,
each of which utilizes different information which can be observed in the environment to pro-
duce an estimate. These methods were experimentally evaluated in several computational
domains with a variety of agents, as well as on Major League Baseball pitching data. The
OR method relies only on the reward obtained by the agent, while AXE focuses on executed
actions. The best-performing method across the experiments was JEEDS, which uses infor-
mation about actions and rewards to jointly reason about execution and decision-making
together. This joint reasoning allowed it to accurately estimate execution skill even when
agents made decisions that were far from perfectly rational, cases where the other methods
perform poorly. This novel method also does not require the specification of a β parameter
and a set of focal points, as are needed for AXE. Reasoning about decision-making skill
significantly improves the robustness and accuracy of execution skill estimation across a
wide range of agent rationality levels and types. This unique combination of robustness
and accuracy mean JEEDS is clearly the best method to apply to new settings, especially
when there is uncertainty about the rationality of the observed agents.

In the future, there are several possible extensions of this work that could be explored.
First, it would be interesting to relax the assumption of the decision-making component
having correct beliefs about the execution distribution χ. It is not obvious that humans,
for example, always know their own execution error. The baseball results could be used
and explored more deeply by baseball teams to improve their evaluation and coaching
of pitchers. The estimation methods could be used to evaluate human or robotic agent
skill in real-world tasks of interest in addition to baseball. Some of these novel domains
might necessitate the use of different error distributions than were used in this work, or the
estimation of execution skill in higher dimensions. In many domains, it is expected that
agents’ skill levels might change over time. We plan to adapt the JEEDS method to produce
time-varying skill estimates which can be used to track agent skill levels in settings where
this applies. Finally, it would be interesting to explore if other components of an MDP,
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like the reward or transition functions, can be estimated given knowledge of an agent’s
execution and decision-making skill levels.

Appendix A

A. Rationality Percentage

In this section, we detail the process of converting from a λs estimate to a λ% estimate.
As mentioned in the text, this conversion relies on a separate dataset of the Softmax agent
acting in the domain. We first describe how this dataset was created, and then how it is
used in the conversion function.

A.1 Conversion Dataset Generation

The following process was followed to create a dataset for the rationality parameter con-
version. First, a Softmax agent was created for each combination of execution skill and
decision-making skill from the following sets:

• 1D-Darts: 6 different execution noises [0.5, 1.0, 2.0, 3.0, 4.0, 5.0] and 100 λ values,
distributed logarithmically between 0.00001 and 100.

• 2D-Darts & 201-Darts: 33 different execution noises distributed evenly between 2.5
and 150.5 and 100 λ values, distributed logarithmically between 0.00001 and 32.

Each of these agents played the same 1000 states (1D-Darts) or 50 states (2D-Darts), or
the 201 possible states (201-Darts), and the average λ% for each agent was computed. The
dataset then stores all of this information, which says for each execution noise and decision-
making skill parameter combination that was tried, what the corresponding average λ%

obtained was.

A.2 Conversion Process

While estimating the skill of an agent, the JEEDS method produces a λs estimate of that
agent’s rationality parameter, as well as an estimate of that agent’s execution noise param-
eter, σs. To convert this λs value to a λ% value, we interpolate from the conversion dataset
as follows:

• Find the execution noise levels present in the dataset that are just below (σb) and just
above (σa) σs. If σs is greater than all (or less than all) we only use the one that it is
closest to.

• For each of those σ values, interpolate using the λs estimate on the dataset to get a
λ% estimate.

• Then interpolate on those estimates using the σs estimate. If using only one σ from
the dataset, then simply return the corresponding interpolated λ% estimate from the
previous step.
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Figure 20 displays the data in the 1D-Darts dataset, where each line corresponds to a
different execution noise level, which is shown in the legend. The x-axis shows the rationality
parameter used by the Softmax agent (λs), while the y-axis shows the rationality percentage
obtained by that agent (λ%). Figures 21 and 22 show the same thing for the 2D-Darts
and 201-Darts datasets respectively. These figures help visualize the rationality parameter
conversion that is necessary for evaluating the decision-making skill estimates.

Figure 20: 1D-Darts Conversion Dataset for Softmax Agents

Figure 21: 2D-Darts Conversion Dataset for Softmax Agents
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Figure 22: 201-Darts Conversion Dataset for Softmax Agents

B. Experiments Performed (For Each Domain and Agent Type)

Domain Agents

Rational Softmax Flip Deceptive

1D-Darts 3,892 14,681 15,136 14,914
2D-Darts 1,860 7,368 5,556 5,494
201-Darts 1,216 13,803 3,603 3,507

Table 2: Experiments performed

C. Results: Confidence Intervals

In this section, we include tables that give the exact final MSE and 95% confidence interval
upper and lower bounds for the data used to generate the figures presented in the paper.
This information can be used to determine which differences between methods, after all
observations, are significant at a confidence level of 95%.

C.1 Data Tables Corresponding to Figure 2

Methods MSE ±

OR 0.0992 0.0059

Table 3: Rational Agents in 1D-Darts
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C.2 Data Tables Corresponding to Figure 4

Methods MSE ±

AXE-Beta0.75 7.5056 0.2447
AXE-Beta0.85 4.3800 0.1446
AXE-Beta0.99 0.3207 0.0114
OR 0.0992 0.0059

Table 4: Rational Agents in 1D-Darts

C.3 Data Tables Corresponding to Figure 5

Methods MSE ±

AXE-Beta0.75 6.77 0.13
AXE-Beta0.85 4.08 0.08
AXE-Beta0.99 1.56 0.09
OR 1.19 0.03

Table 5: Softmax Agents with
λ% ∈ [25%, 75%] in 1D-Darts

Methods MSE ±

AXE-Beta0.75 6.61 0.22
OR 5.22 0.14
AXE-Beta0.99 5.03 0.15
AXE-Beta0.85 4.82 0.14

Table 6: Softmax Agents with
λ% ∈ [0%, 25%] in 1D-Darts

C.4 Data Tables Corresponding to Figure 7

Methods MSE ±

AXE-Beta0.75 7.51 0.24
AXE-Beta0.85 4.38 0.14
JEEDS 0.56 0.02
MEEDS 0.48 0.02
AXE-Beta0.99 0.32 0.01
OR 0.0992 0.0059

Table 7: Rational Agents in 1D-Darts

Methods MSE ±

AXE-Beta0.75 6.61 0.22
OR 5.22 0.14
AXE-Beta0.99 5.03 0.15
AXE-Beta0.85 4.82 0.14
MEEDS 2.97 0.15
JEEDS 0.15 0.01

Table 8: Softmax Agents with
λ% ∈ [0%, 25%] in 1D-Darts
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C.5 Data Tables Corresponding to Figure 10

Methods MSE ±

AXE-Beta0.75 7.5056 0.2447
AXE-Beta0.85 4.3800 0.1446
JEEDS 0.5559 0.0235
MEEDS 0.4808 0.0224
AXE-Beta0.99 0.3207 0.0114
OR 0.0992 0.0059

Table 9: Rational Agents in 1D-Darts

Methods MSE ±

AXE-Beta0.75 6.7271 0.1094
AXE-Beta0.85 4.2689 0.0729
AXE-Beta0.99 2.4524 0.0742
OR 2.1784 2.2788
MEEDS 1.7590 0.0541
JEEDS 0.2608 0.0069

Table 10: Softmax Agents in 1D-Darts

Methods MSE ±

AXE-Beta0.75 6.6423 0.1072
AXE-Beta0.85 4.2142 0.0704
AXE-Beta0.99 2.5907 0.0733
OR 2.2252 0.0484
MEEDS 1.4185 0.0440
JEEDS 0.2880 0.0072

Table 11: Flip Agents in 1D-Darts

Methods MSE ±

AXE-Beta0.75 7.6259 0.1268
AXE-Beta0.85 5.1526 0.1048
AXE-Beta0.99 3.1355 0.1096
OR 2.2255 0.0485
MEEDS 0.6789 0.0189
JEEDS 0.3398 0.0079

Table 12: Deceptive Agents in 1D-Darts

C.6 Data Tables Corresponding to Figure 11

Methods MSE ±

AXE-Beta0.75 731.9400 36.6308
AXE-Beta0.85 460.2289 23.5640
MEEDS 53.7908 5.5968
AXE-Beta0.99 37.5875 1.8285
JEEDS 26.2581 3.6996
OR 17.5040 1.3548

Table 13: Rational Agents in 2D-Darts

Methods MSE ±

AXE-Beta0.99 955.7333 35.3907
AXE-Beta0.75 838.5062 22.9607
AXE-Beta0.85 734.1883 24.8714
OR 700.8745 25.4861
MEEDS 674.2374 28.1585
JEEDS 32.98170 1.7022

Table 14: Softmax Agents in 2D-Darts

Methods MSE ±

AXE-Beta0.99 693.8648 30.5871
MEEDS 681.4206 31.6763
AXE-Beta0.75 669.0564 21.1769
AXE-Beta0.85 537.5876 20.7917
OR 383.4875 14.2179
JEEDS 52.3452 2.2400

Table 15: Flip Agents in 2D-Darts

Methods MSE ±

AXE-Beta0.99 2335.4008 97.6855
AXE-Beta0.75 2048.2245 88.5945
AXE-Beta0.85 2014.2396 91.9437
OR 671.7718 26.2501
MEEDS 366.3712 20.7320
JEEDS 222.2695 6.4422

Table 16: Deceptive Agents in 2D-Darts
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C.7 Data Tables Corresponding to Figure 12

Methods MSE ±

AXE-Beta0.75 620.7358 41.3294
OR-FullGame 442.7862 102.2378
AXE-Beta0.85 382.9585 26.2363
OR-MidGame 225.0919 26.7429
AXE-Beta0.99 22.4947 1.7685
MEEDS 15.7327 1.2648
JEEDS 11.4587 1.1036

Table 17: Rational Agents in 201-Darts

Methods MSE ±

AXE-Beta0.99 2364.9953 67.8775
OR-FullGame 1647.3625 56.7145
OR-MidGame 1248.4901 40.6826
AXE-Beta0.85 1104.4084 35.9062
AXE-Beta0.75 954.1515 26.8332
MEEDS 27.2867 1.2093
JEEDS 5.1639 0.1448

Table 18: Softmax Agents in 201-Darts

Methods MSE ±

AXE-Beta0.99 1929.5418 95.2748
AXE-Beta0.99 1929.5418 95.2748
OR-FullGame 1318.4880 102.4277
OR-MidGame 777.411400 49.7180
AXE-Beta0.85 713.8930 48.0338
AXE-Beta0.75 638.2259 35.7792
MEEDS 46.8949 2.9871
JEEDS 34.4753 1.2912

Table 19: Flip Agents in 201-Darts

Methods MSE ±

AXE-Beta0.99 2096.7184 159.4918
OR-MidGame 1817.1322 132.2493
OR-FullGame 1464.9147 111.359
AXE-Beta0.85 1305.8166 132.6981
AXE-Beta0.75 1277.4170 126.5356
MEEDS 460.7001 36.6836
JEEDS 334.1817 30.0620

Table 20: Deceptive Agents in 201-Darts

C.8 Data Tables Corresponding to Figure 13

Methods MSE ±

JEEDS-MS 0.1587 0.0084
MEEDS-ES 0.1513 0.0092
MEEDS-MS 0.1188 0.0075
JEEDS-ES 0.0962 0.0056

Table 21: Rational Agents in 1D-Darts

Methods MSE ±

MEEDS-ES 0.1928 0.0037
MEEDS-MS 0.1840 0.0036
JEEDS-MS 0.0742 0.0023
JEEDS-ES 0.0598 0.0017

Table 22: Softmax Agents in 1D-Darts

Methods MSE ±

MEEDS-ES 0.1851 0.0037
MEEDS-MS 0.1769 0.0036
JEEDS-MS 0.0786 0.0023
JEEDS-ES 0.0615 0.0017

Table 23: Flip Agents in 1D-Darts

Methods MSE ±

MEEDS-ES 0.1653 0.0035
MEEDS-MS 0.1554 0.0033
JEEDS-MS 0.1125 0.0029
JEEDS-ES 0.1023 0.0025

Table 24: Deceptive Agents in 1D-Darts
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C.9 Data Tables Corresponding to Figure 14

Methods MSE ±

MEEDS-MS 0.0362 0.0033
JEEDS-MS 0.0354 0.0048
MEEDS-ES 0.0350 0.0033
JEEDS-ES 0.0024 0.0010

Table 25: Rational Agents in 2D-Darts

Methods MSE ±

MEEDS-MS 0.2939 0.0076
MEEDS-ES 0.2900 0.0076
JEEDS-ES 0.1207 0.0040
JEEDS-MS 0.0897 0.0029

Table 26: Softmax Agents in 2D-Darts

Methods MSE ±

MEEDS-ES 0.1883 0.0062
MEEDS-MS 0.1846 0.0061
JEEDS-ES 0.0462 0.0021
JEEDS-MS 0.0339 0.0017

Table 27: Flip Agents in 2D-Darts

Methods MSE ±

MEEDS-ES 0.0906 0.0040
MEEDS-MS 0.0883 0.0039
JEEDS-MS 0.0505 0.0019
JEEDS-ES 0.0375 0.0014

Table 28: Deceptive Agents in 2D-Darts

C.10 Data Tables Corresponding to Figure 15

Methods MSE ±

MEEDS-MS 0.0376 0.0024
MEEDS-ES 0.0369 0.0023
JEEDS-MS 0.0183 0.0016
JEEDS-ES 0.0176 0.0014

Table 29: Rational Agents in 201-Darts

Methods MSE ±

JEEDS-MS 0.0087 0.0002
MEEDS-MS 0.0085 0.0003
MEEDS-ES 0.0081 0.0003
JEEDS-ES 0.0077 0.0002

Table 30: Softmax Agents in 201-Darts

Methods MSE ±

JEEDS-MS 0.0316 0.0012
JEEDS-ES 0.0307 0.0012
MEEDS-MS 0.0218 0.0010
MEEDS-ES 0.0215 0.0010

Table 31: Flip Agents in 201-Darts

Methods MSE ±

MEEDS-MS 0.0566 0.0025
MEEDS-ES 0.0565 0.0025
JEEDS-MS 0.0417 0.0026
JEEDS-ES 0.0416 0.0026

Table 32: Deceptive Agents in 201-Darts
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C.11 Data Tables Corresponding to Figure 16 (Subfigures a,c, & e)

Bucket MSE ±

1.00 0.1050 0.0099
0.50 0.0593 0.0057
0.75 0.0575 0.0059
0.25 0.0390 0.0041

Table 33: Softmax Agents in 1D-Darts

Bucket MSE ±

0.50 66.1640 4.7134
0.25 43.7318 2.6902
1.00 39.4370 3.4167
0.75 29.2267 2.7780

Table 34: Softmax Agents in 2D-Darts

Bucket MSE ±

0.50 6.4254 0.4105
0.75 6.2464 0.3831
0.25 5.2013 0.2705
1.00 3.9918 0.1944

Table 35: Softmax Agent in 201-Darts

D. Average MSE of all Execution Skill Estimation Methods

The following figures present the average MSE for all the execution skill estimation methods,
including the AXE-MS and JEEDS-MS/MEEDS-MS, for the different domains.
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Figure 23: MSE of Execution Skill Estimates 1D-Darts
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Figure 24: MSE of Execution Skill Estimates in 2D-Darts
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Figure 25: MSE of Execution Skill Estimates in 201-Darts
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E. Comparison of the Performance of Different β values for AXE
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Figure 26: MSE of Execution Skill Estimates 1D-Darts
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Figure 27: MSE of Execution Skill Estimates in 2D-Darts
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Figure 28: MSE of Execution Skill Estimates in 201-Darts

F. JEEDS Execution Skill Estimates Grouped By Decision-making Skill
Buckets - Other Non-Rational Agents

F.1 Flip Agents
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F.2 Deceptive Agents
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G. JEEDS Decision-making Skill Estimates Grouped By Execution Skill
Buckets - Other Non-Rational Agents

G.1 Flip Agents
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G.2 Deceptive Agents
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H. AXE Execution Skill Estimates Grouped By Decision-making Skill
Buckets - All Agents

H.1 Softmax Agents
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H.3 Deceptive Agents
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I. JEEDS Estimates - Other Non-Rational Agents

I.1 Flip Agents
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(d) Dec-making Skill Estimates - 2D
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(e) Execution Skill Estimates - 201 Darts
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Figure 38: JEEDS Estimates on Flip Agents
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I.2 Deceptive Agents
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25 50 75 100 125 150
Execution Skill Noise Levels

0.0

0.2

0.4

0.6

0.8

1.0

R
a

ti
o

n
a

lit
y

P
er

ce
n

ta
g

e

0.0

0.2

0.4

0.6

0.8

1.0

(d) Dec-making Skill Estimates - 2D

20 40 60 80 100 120 140
Execution Skill Noise Levels

0.0

0.2

0.4

0.6

0.8

1.0

R
a

ti
o

n
a

lit
y

P
er

ce
n

ta
g

e

20 40 60 80 100 120 140

(e) Execution Skill Estimates - 201 Darts
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Figure 39: JEEDS Estimates on Deceptive Agents
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J. JEEDS Estimates: Decision-Making Skill vs. Rationality Percentage

The following figures present the final JEEDS execution skill estimates (left column) and
JEEDS decision-making skill (right column) across the different parameter combinations
used for the experiments for a Softmax agent in each domain. For each figure, the top row
presents the decision-making skill parameters (λs in this case), whereas the bottom row
presents the rationality percentage (λ%). The black line on the top row represents where
the 50% rationality percentage falls.

(a) Execution Skill Estimates (b) Dec-Making Skill Estimates

(c) Execution Skill Estimates (d) Rationality Percentage Estimates

Figure 40: JEEDS Estimates for the Softmax Agent in 1D-Darts
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(a) Execution Skill Estimates (b) Dec-Making Skill Estimates

(c) Execution Skill Estimates (d) Rationality Percentage Estimates

Figure 41: JEEDS Estimates for the Softmax Agent in 2D-Darts

(a) Execution Skill Estimates (b) Dec-Making Skill Estimates

(c) Execution Skill Estimates (d) Rationality Percentage Estimates

Figure 42: JEEDS Estimates for the Softmax Agent in 201-Darts
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