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Abstract

Reinforcement learning (RL) is widely used in applications where one needs to per-
form sequential decision-making while interacting with the environment. The standard
RL problem with safety constraints is generally mathematically modeled by constrained
Markov Decision Processes (CMDP), which is linear in objective and rules in occupancy
measure space, where the problem becomes challenging in the case where the model is
unknown apriori. The problem further becomes challenging when the decision requirement
includes optimizing a concave utility while satisfying some nonlinear safety constraints. To
solve such a nonlinear problem, we propose a conservative stochastic primal-dual algorithm
(CSPDA) via a randomized primal-dual approach. By leveraging a generative model, we
prove that CSPDA not only exhibits Õ

(
1/ε2

)
sample complexity, but also achieves zero

constraint violations for the concave utility CMDP. Compared with the previous works,
the best available sample complexity for CMDP with zero constraint violation is Õ

(
1/ε5

)
.

Hence, the proposed algorithm provides a significant improvement as compared to the
state-of-the-art

1. Introduction

Reinforcement learning (RL) is a machine learning framework that learns to perform a task
by repeatedly interacting with the environment. This framework is widely utilized in a
wide range of applications such as robotics, communications, computer vision, autonomous
driving, etc. (Arulkumaran et al., 2017; Kiran et al., 2021; Al-Abbasi et al., 2019; Geng
et al., 2020; Chen et al., 2021a). The problem is mathematically formulated as a Markov
Decision Process (MDP) which constitutes a state, action, and transition probabilities of
going from one state to the other after taking a particular action. On taking an action, a
reward is achieved and the overall objective is to maximize the sum of discounted rewards.
However, in various realistic environments, the agent needs to decide action where certain
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constraints need to be satisfied (e.g., average power constraint in wireless sensor networks
(Buratti et al., 2009), queue stability constraints (Xiang et al., 2015), and safe exploration
(Moldovan & Abbeel, 2012), etc.). The standard MDP equipped with the cost function
for the constraints is called constrained Markov Decision process (CMDP) (Altman, 1999).
It is well-known that the CMDP problem can be equivalently written as a linear program
(LP) in occupancy measure space (Altman, 1999), where objective and constraints are
linear with respect to occupancy measure. But in many applications demand more general
non-linear objectives and constraints in terms of occupancy measure, e.g., risk-sensitive
constraints/objectives (Mihatsch & Neuneier, 2002), maximizing the entropy of state-action
distribution (Hazan et al., 2019), imitation learning (Ho & Ermon, 2016), and fairness in
multi-agent resource allocation (Margolies et al., 2014) etc. In this work, we consider a novel
MDP with concave objective and convex constraints and call it CCMDP (concave CMDP).
We remark here that CCMDP is still a constrained convex optimization problem. it can
be efficiently solved by using any existing solution from constrained optimization literature.
But the main issue here is that to do so, one would need to access the transition probabilities
of the environment, which is not available in realistic model-free environment settings.
Hence, efficient approaches to develop model-free algorithms for CCMDP are required.
Before, moving forward, we provide a motivating example here. For more examples, one
may refer to (Zhang et al., 2020).

Example 1. (Maximaing Entropy)(Hazan et al., 2019) A fundamental problem in rein-
forcement learning is that of exploring the state space. How do we understand what is even
possible in the context of a given environment in the absence of a reward signal? Such
a problem is useful in a realistic setting since reward functions may be poorly specified or
sparse. A possible quantity of interest is the entropy of the induced distribution since such
an objective will encourage the agent to explore uniformly in the MDP. The maximizing
entropy environment is formally defined as

max
π
−
∑
s

λ̄πs log[λ̄πs ] (1)

where λ̄πs (s) = (1−γ)
∑

a

(∑∞
t=0 γ

tP(st = s, at = a)
)

is the normalized occupancy measure.

Remark 1. It is well known that the entropy is a concave function, which satisfies the
Assumption 1. However, to make the example also satisfy the Assumption 2, one may
define a shifted function as f(λ) = −

∑
s(λs + c) log(λs + c), where c > 0 is a positive shift

parameter. Thus, the Lipschitz property can be guaranteed.

To solve the CMDP problem without apriori knowledge (in a model free manner) of
the transition probability, various algorithms are proposed in the literature (See Table 1
for comparisons). The performance of these algorithms is measured by the number of
samples (number of state-action-state transitions) required to achieve ε-optimal (objective
sub-optimality) ε-feasible (constraint violations) policies. An ε-feasible policy means that
the constraints are not completely satisfied by the obtained policy. However, in many
applications, such as in power systems (Vu et al., 2021) or autonomous vehicle control (Wen
et al., 2020), violations of constraint could be catastrophic in practice. Hence, achieving
optimal objective guarantees without constraint violation is an important problem and is
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the focus of the paper. More precisely, we ask the question, “Is it possible to achieve the
optimal sublinear convergence rate for the objective while achieving zero constraint violations
for CCMDP problem without apriori knowledge of the transition probabilities?”

We answer the above question in the affirmative in this work. We remark that the sample
complexity result in this work exhibits tight dependencies on the cardinality of state and
action spaces (cf. Table 1). The key contributions can be summarized as follows:

• To best of our knowledge, this work is the first attempt to provide model-free algorithm
for CCMDPs that achieves optimal sample complexity with zero constraint violation.
There exist one exceptions (for the special case of CMDP) in the literature which
achieves the zero constraint violation but at the cost of Õ

(
1/ε5

)
sample complexity

to achieve ε optimal policy (Wei, Liu, & Ying, 2021). In contrast, we are able to
achieve zero constraint violation with Õ

(
1/ε2

)
sample complexity.

• This is the first attempt that provides a model-free algorithm for CCMDPs. The key
challenge for solving CCMDP is the formulation of the unbiased estimator for the
Lagrangian function. A trivial estimator following from previous work (Bai, Bedi,
Agarwal, Koppel, & Aggarwal, 2022b) will lead to a biased estimator and make the
analysis challenging (see Remark 3 for details).

• We utilized the idea of conservative constraints to derive the zero constraint viola-
tions. Such an idea was used recently for showing zero constraint violations in online
constrained convex optimization in (Akhtar et al., 2021). However, the problem of
CCMDP is more challenging than online constrained optimization because (1) How to
achieve an unbiased estimator is unknown and (2) Following the same idea can only
derive zero violation in the occupancy measure domain (see Theorem 2), while zero
violation in the policy domain is required. Theorem 5.3 is then used to derive such
results utilizing the novel analysis unique to this work.

• The adaptive state-action pair sampling in the proposed approach would lead to the
high dependence of the number of state and action space if the standard stochastic
optimization analysis is directly applied (See Remark 4 for details). To match the
lower bound, we use KL divergence as the regularizer for the dual update, which is
similar to (Zhang et al., 2021).

• To provide empirical evidence, we solve a problem of queuing systems in Sec. 6 and
show the efficacy of the proposed algorithm.

2. Related Works

In this section, we list the related works in model-free constraint RL and Concave Utility
RL fields. For the other works, please refer to Table 1.
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Algorithm Sample Complexity Constraint violation Generative Model

Model-Based OptDual-CMDP (Efroni et al., 2020) 1 Õ

(
|S|2|A|

ϕ2(1−γ)3ε2

)
Õ(ε) No

OptPrimalDual-CMDP (Efroni et al., 2020) 1 Õ

(
|S|2|A|

ϕ2(1−γ)3ε2

)
Õ(ε) No

UC-CFH (Kalagarla et al., 2021) 2 Õ

(
|S|3|A|

(1−γ)3ε2

)
Õ(ε) No

CONRL(Brantley et al., 2020) Õ

(
|S|2|A|

(1−γ)6ε2

)
Õ(ε) No

OptPess-PrimalDual (Liu et al., 2021a) Õ

(
|S|3|A|

ϕ2(1−γ)4ε2

)
Õ(ε2) No

OPDOP (Ding et al., 2021)[Theorem 2] Õ

(
|S|2|A|

ϕ2(1−γ)6ε2

)
Õ(ε) No

UCBVI-γ (He et al., 2021)[Theorem 4.3] Õ

(
|S||A|

(1−γ)3ε2

)
N/A No

Model-Free NPG-PD (Ding et al., 2020)[Theorem 4] 3 Õ

(
|S||A|

ϕ2(1−γ)5ε2

)
Õ(ε) Yes

CRPO (Xu et al., 2021) 4 Õ

(
|S||A|

(1−γ)7ε4

)
Õ(ε) Yes

PDSC (Chen et al., 2021b) 5 Õ

(
1

ϕ2(1−γ)6ε2

)
Õ(ε) Yes

Triple-Q (Wei et al., 2021) Õ

(
|S|2.5|A|2.5

ϕ2(1−γ)18.5ε5

)
Zero No

Randomized Primal–Dual (Wang, 2020) Õ

(
|S||A|

(1−γ)4ε2

)
N/A Yes

CSPDA (This work, Theorem 3) 6 Õ

(
|S||A|

ϕ2(1−γ)6ε2

)
Zero Yes

Lower bound (Lattimore & Hutter, 2012) and (Azar et al., 2013) Ω̃

(
|S||A|

(1−γ)3ε2

)
N/A N/A

(Vaswani et al., 2022) Ω̃

(
|S||A|

ϕ2(1−γ)5ε2

)
Zero N/A

Table 1: This table summarizes the different model-based and mode-free state of the art
algorithms available in the literature for CMDPs, where ϕ is the Slater variable
in Assumption 3. It is worthy to notice that the lower bound for zero constraint
violation and unconstrained problem are different. We note that the proposed
algorithm achieves the best sample complexity compared with all other model-free
approaches which requires generative model and achieves zero constraint violation
at the same time. For the works considering different setting such as episodic
setting, we provide a detailed method to convert the result to the form of sample
complexity in infinite horizon setup in Appendix A.1.

Model-free CRL. As compared to the model-based algorithms, existing results for the
model-free algorithms are fewer. The constrained policy optimization (CPO) algorithm is
proposed in (Achiam et al., 2017) and reward constrained policy optimization (RCPO) al-

1. (Efroni et al., 2020) used N , which is the maximum number of non-zero transition probabilities across
the entire state-action pairs. We bound it by S. Moreover, a factor of

√
|A| is missed in their result,

which we believe is a typo in their work.
2. (Kalagarla et al., 2021) used C, which is the upper bound on the number of possible successor states for

a state-action pair. We bound it by S.
3. We use the result in Theorem 4 in (Ding et al., 2020). Notice that in the Algorithm 2 of their paper,
|S||A|
1−γ samples are necessary for each outer loop.

4. Notice that in line 4 of Algorithm 1 in (Xu et al., 2021), a inner loop with Kin iteration is needed for
policy evaluation and Kin = Õ( T

(1−γ)|S||A| )

5. The dependence on S,A is not clear in (Chen et al., 2021b). An estimation for the Q-function is needed
in the algorithm. However, the authors didn’t include analysis for the estimation.

6. Notice that the value function defined in this paper is a normalized version. Thus, an extra 1
(1−γ)2 is

needed for a fair comparison.
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gorithm is proposed in (Tessler et al., 2018). Moreover, in (Gattami et al., 2021), it related
CMDP to zero-sum Markov-Bandit games and provided efficient solutions for CMDP. How-
ever, these works did not provide any convergence rates for their algorithms. Furthermore,
the authors in (Ding et al., 2020) proposed a primal-dual natural policy gradient algorithm
both in tabular and general settings and have provided a regret and constraint violation
analysis. A primal-only constraint rectified policy optimization (CRPO) algorithm is pro-
posed in (Xu et al., 2021) to achieve a sublinear convergence rate to the global optimal
policy and a sublinear convergence rate for the constraint violations as well. Most of the
existing approaches with specific sample complexity and constraint violation error bound
are summarized in Table 1. Recently, (Chen et al., 2021b) translated the constrained RL
problem into a saddle point problem and proposed a primal-dual algorithm which achieved
Õ(1/ε2) sample complexity to obtain ε-optimal ε- feasible solution. However, the policy
is considered as the primal variable in the algorithm and an estimation of Q-table is re-
quired in the primal update, which introduces extra sample complexity and computation
complexity.

Concave Utility RL. Another major research area related to constrained RL is concave
utility RL. A special case of maximizing the entropy is considered in (Hazan et al., 2019).
(Kostrikov et al., 2019) considered a KL-divergence minimization for imitation learning.
(Bai et al., 2022a; Brantley et al., 2020; Agarwal et al., 2022a; Agarwal & Aggarwal, 2023)
considered a concave function of possibly vector rewards. Among these works, (Brantley
et al., 2020; Agarwal et al., 2022a; Agarwal & Aggarwal, 2023) proposed a model-based
approach and (Bai et al., 2022a) proposed a model-free policy gradient algorithm. (Zhang
et al., 2020, 2021; Ying et al., 2023) and this work considered a more general setting, where
the objective function is a concave function of the occupancy measure. However, all of the
other works did not target zero-constraint violations. Recently, (Agarwal et al., 2022b) pro-
posed model-based algorithms based on optimism and posterior sampling approaches that
achieves zero constraint violations. In contrast, our work considers a model-free approach.

3. Problem Formulation

An infinite horizon discounted reward constrained Markov Decision Process (CMDP) is
defined by tuple (S,A,P, r,gi, I, γ,ρ). In this model, S denotes the finite state space
(with |S| number of states), A is the finite action space (with |A| number of actions), and
P : S × A → ∆|S| gives the transition dynamics of the CMDP (where ∆d denotes the
probability simplex in d dimension). More specifically, P(·|s, a) describes the probability
distribution of next state conditioned on the current state s and action a. We denote
P(s′|s, a) as Pa(s, s

′) for simplicity. In the CMDP tuple, r : S × A → [0, 1] is the reward
function, gi : S ×A → [−1, 1] is the ith constraint cost function, and I denotes the number
of constraints. Further, γ is the discounted factor and ρ is the initial distribution of the
states.

Let us define the stationary stochastic policy as π : S → ∆|A|, which maps a state to a
distribution in the action space. The value functions for both reward and constraint’s cost
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following such policy π are given by (Chen et al., 2021b)

V π
r (s) = (1− γ)E

[∑∞

t=0
γtr(st, at)

]
,

V π
gi(s) = (1− γ)E

[∑∞

t=0
γtgi(st, at)

]
, (2)

for all s ∈ S. At each instant t, for given state st and action at ∼ π(·|st), the next state st+1

is distributed as st+1 ∼ P(·|st, at). The expectation in (2) is with respect to the transition
dynamics of the environment and the stochastic policy π. The standard CMDP problem
considers the problem maximizing value function for reward and satisfying some constraints
on value function for cost function, given by

max
π

V π
r (s)

s. t. V π
gi(s) ≥ 0 ∀i ∈ [I],

(3)

Next, let us define λπ : S×A → [0, 1] is known as cumulative discounted occupancy measure
under policy π given by

λπ(s, a) = (1− γ)
(∑∞

t=0
γtP(st = s, at = a)

)
, (4)

where s0 ∼ ρ, at ∼ π(·|st), P(st = s, at = a) is the probability of visiting state s and
taking action a in step t. Then, the problem in (3) which optimizes over policy space,
can be equivalently written in the occupancy measure space (Zhang et al., 2021) (Altman,
1999)[Theorem 3.3] as

max
λ≥0

λT r

s.t. λTgi ≥ 0 ∀i ∈ [I],∑
a∈A

(I− γPT
a )λa = (1− γ)ρ.

(5)

We note that in (5), the objective and constraints are linear with respect to λ. In this work,
we are interested in non-linear objective (concave) and non-linear constraints (convex) which
arises frequently in the literature, for instance in maximizing the entropy of state-action
distribution (Hazan et al., 2019), imitation learning (Ho & Ermon, 2016), and fairness in
multi-agent resource allocation (Margolies et al., 2014). The concave utility constrained
optimization problem can be formulated as

max
λ≥0

f(λ)

s.t. hi(λ) ≥ 0 ∀i ∈ [I],∑
a∈A

(I− γPT
a )λa = (1− γ)ρ,

(6)

where f is a known concave objective, hi, i ∈ [I] are constraint functions.
In (6), we define λa = [λ(1, a), · · · ,λ(|S|, a)] ∈ R|S| as the ath column of λ. Notice that

the equality constant in Eq. (6) sums up to 1, which means λ is a valid probability measure
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and we define Λ := {λ|
∑

s,a λ(s, a) = 1} as a probability simplex. For a given occupancy
measure λ, we can recover the policy πλ as

πλ(a|s) =
λ(s, a)∑
a′ λ(s, a′)

. (7)

Using Theorem 3.3(c) in (Altman, 1999), we have that if λ∗ is the optimal solution for the
problem in Eq. (6), then πλ∗ will be the corresponding optimal policy.

4. Algorithm Development

Before developing the algorithm, we first describe some assumptions and demonstrate some
properties of the objective function and constraint functions in (6).

Assumption 1. (Concavity) The objective function f and constraint functions hi, i ∈ [I]
are concave functions with respect to the occupancy measure λ on the set Λ.

Assumption 2. (Lipschitz) The objective function f and constraint function hi, i ∈ [I] are
Lipschitz functions with Lipschitz constant Lf and Lh with respect to the occupancy measure
λ on the set Λ. For simplicity, we assume Lf ≥ 1 and Lh ≥ 1 (i.e. use L′f = max{Lf , 1})
Formally, for any λ,λ′ ∈ Λ

‖f(λ)− f(λ̄)‖2 ≤ Lf‖λ− λ̄‖2 (8)

‖h(λ)− h(λ̄)‖2 ≤ Lh‖λ− λ̄‖2 (9)

Under Assumption 1 and 2, we derive the following Lemmas.

Lemma 1. (Shalev-Shwartz et al., 2011)[Lemma 2.6] The gradient of objective function
and constraint function are bounded by their Lipschitz constants on the set Λ. Formally,

‖∇λf(λ)‖2 ≤ Lf , ∀λ ∈ Λ

‖∇λh
i(λ)‖2 ≤ Lh,∀λ ∈ Λ, ∀i ∈ [I].

Lemma 2. The objective function and constraint functions are bounded by a constant on
the set Λ, respectively. Without loss of generality, we assume they are bounded by 1.

Proof. Define λ̄ = 1
|S||A|e, where e is one vector. By Assumption 2, we have for any λ ∈ Λ

‖f(λ)− f(λ̄)‖2 ≤ Lf‖λ− λ̄‖2 ≤ Lf
√
|A||S|.

Thus, we can write ‖f(λ)‖2 ≤ Lf
√
|A||S|+ f(λ̄).

Assumption 3. (Strict feasibility) There exists a strictly feasible occupancy measure λ̂ ≥ 0
to problem in (11) such that

hi(λ̂)− ϕ ≥ 0 ∀i ∈ [I]∑
a

(I− γPT
a )λ̂a = (1− γ)ρ (10)

for some 0 < ϕ < 1.
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Remark 2. Assumption 3 is the stronger version of the popular Slater’s condition which
is often required in the analysis of convex optimization problems. A similar assumption is
considered in the literature as well (Mahdavi et al., 2012; Akhtar et al., 2021) and also helps
to ensure the boundedness of dual variables (see Lemma 3).

The problem in (6) is well studied in the literature for the linear objectives and con-
straints. In this work, we consider concave utilities and the aim is to develop an algorithm
to achieve zero constraint violation without suffering for the objective optimality gap. To
do so, we consider the conservative stochastic optimization framework presented in (Mah-
davi et al., 2012; Akhtar et al., 2021) and utilize it to propose a conservative version of the
constrained problem with general utility function in (6) as

max
λ≥0

f(λ) (11a)

s.t. hi(λ) ≥ κ ∀i ∈ [I], (11b)∑
a∈A

(I− γPT
a )λa = (1− γ)ρ, (11c)

where κ is the tuning parameter that controls the conservative nature for the constraints.
The idea is to consider a tighter version (controlled by κ) of the original inequality constraint
in (6) which allows us to achieve zero constraint violation for CMDPs which does not hold
for any existing algorithm. It should be noticed that κ and ϕ are two different concepts. κ
is an artificially added parameter, while ϕ is the intrinsic property of the original problem.
Moreover, By the assumption 3, it is natural to see that 0 < κ < ϕ < 1 and we will specify
the specific value of the parameter κ later in the convergence analysis section (cf. Sec. 5).

With Assumption 1, note that the conservative version of the problem in Eq. (11) is
still a convex programming and hence the strong duality holds under Slater condition in
Assumption 3, which motivates us to develop the primal-dual based algorithms to solve
the problem in (11). By the KKT theorem, the problem in Eq. (11) is equivalent to the
following a saddle point problem which we obtain by writing the Lagrangian of (11) as

L(λ,u,v) =f(λ) +
∑

i∈[I]
ui
(
hi(λ)− κ

)
+ (1− γ) 〈ρ,v〉+

∑
a∈A

λTa (γPa − I)v

=f(λ) +
〈
u,hT (λ)− κ1

〉
+ (1− γ) 〈ρ,v〉+

∑
a∈A

λTa (γPa − I)v, (12)

where u := [u1, u2, · · · , ui]T is a column vector of the dual variable corresponding to con-
straints in (11b), v is the dual variable corresponding to equality constraint in (11c) and
h := [h1, · · · ,hI ] collects all the hi’s corresponding to I constraints in (11b), and 1 is the
all one column vector. From the Lagrangian in (12), the equivalent saddle point problem is
given by

max
λ∈Λ

min
u≥0,v

L(λ,u,v). (13)
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Since the Lagrange function is concave w.r.t. primal and convex w.r.t dual variables, it is
known that the saddle point can be solved by the primal-dual gradient descent (Nedić &
Ozdaglar, 2009). However, since we assume that the transition dynamics Pa is unknown,
then directly evaluating gradients of Lagrangian in (13) with respect to primal and dual
variables is not possible. To circumvent this issue, we resort to a randomized primal dual
approach proposed in (Wang, 2020) to solve the problem in a model-free stochastic manner.
We assume the presence of a generative model which is a common assumption in control/RL
applications. The generative model results the next state s′ for a given state s and action
a in the model and provides a reward r(s, a) to train the policy. To this end, we consider a
distribution ζ over S ×A to write a stochastic approximation for the Lagrangian L(λ,u,v)
in (13) as

Lζ(s,a,s′),s0(λ,u,v) = (1− γ)v(s0) + 1ζ(s,a)>0 ·
λ(s, a)[γv(s′)− v(s)−M1]

ζ(s, a)
(14)

+ f(λ) + 〈u,h(λ)− κ1〉 −M2λ,

and s0 ∼ ρ, the current state action pair (s, a) ∼ ζ, and the next state s′ ∼ P(·|s, a). We

remark that the stochastic approximation Lζ(s,a,s′),s0(λ,u,v) in (18) is an unbiased estimator

for the Lagrangian function in Eq. (12) if we omit the constant M1 and M2, which implies

that Eζ×P(·|s,a),ρ[Lζ(s,a,s′),s0 ] = L(λ,u,v) + M1 + M2 with supp(ζ) ⊂ supp(λ). We could
see ζ as a adaptive state-action pair distribution which helps to control the variance of the
stochastic gradient estimator. The stochastic gradients of the Lagrangian with respect to
primal and dual variables are given by

∇̂λL(λ,u,v) = 1ζ(s,a)>0 ·
γv(s′)− v(s)−M1

ζ(s, a)
·Esa

+∇λf(λ) +
∑
i∈[I]

ui∇λh
i(λ)−M21, (15)

∇̂uL(λ,u,v) = h(λ)− κ1, (16)

∇̂vL(λ,u,v)=e(s0
′)+1ζ(s,a)>0 ·

λ(s, a)(γe(s′)− e(s))

ζ(s, a)
, (17)

where we define e(s0
′) = (1 − γ)e(s0) with e(s0) ∈ R|S| being a column vector with all

entries equal to 0 except only the sth0 entry equal to 1, Esa ∈ R|S|×|A| is a matrix with only
the (s, a) entry equaling to 1 and all other entries being 0. We remark that M1 and M2 in
(15) is a shift parameter that is used in the convergence analysis.

Remark 3. We note that the special case presented in (Bai et al., 2022a) for CMDP uses
a similar primal-dual method as follow.

Lζ(s,a,s′),s0(λ,u,v) (18)

= (1− γ)v(s0) + 1ζ(s,a)>0 ·
λ(s, a)(Zsa −M)

ζ(s, a)
−
∑

i∈[I]
κui,

where

Zsa := r(s, a) + γv(s′)− v(s) +
∑
i∈[I]

uig
i(s, a), (19)
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However, the approximated Lagrange function defined in (18) is different from the above
equations. It can be noticed that the above approach extended to general functions leads to
a biased estimator of the gradient of approximated Lagrange due to the nonlinear function
f and g. This biased estimation will make the analysis much more challenging due to the
analysis in Appendix C.8 and C.11 requiring unbiasedness. Thus, in this paper, we redefine
the approximated Lagrange function, where we only sample for transition function but not
together with objectives or constraints. The estimator in (15) is an unbiased estimator for
the gradient with respect to λ.

Remark 4. It should be noticed that despite the proposed estimator having a bounded
second-order moment, the standard analysis of the stochastic optimization will lead to an

extra factor of O(

√
|S||A|
δ ). This is because for a given state and action pair (s, a) with

ζ(s, a) ≥ 0

E

[
∇̂λL(λ,u,v)(s, a)

]2

=Es,a,s′

[
1ζ(s,a)>0 ·

γv(s′)− v(s)−M1

ζ(s, a)
+∇λf(λ)(s, a) +

∑
i∈[I]

ui∇λh
i(λ)(s, a)−M2

]2

As for the first item,

Es,a,s′

[
1ζ(s,a)>0 ·

γv(s′)− v(s)−M1

ζ(s, a)

]2

(20)

=Es′

[
ζ(s, a) ·

(
γv(s′)− v(s)−M1

ζ(s, a)

)2]
(21)

=Es′

[
[γv(s′)− v(s)−M1]2

(1− δ)λ(s, a) + δ 1
|S||A|

]
≤4

δ
|S||A|M2

1 =: σ2

where we can find the bound of the second moment has a dependence on |S||A|δ . By the result
of standard stochastic optimization analysis (Juditsky, Nemirovski, & Tauvel, 2011)[Corol-
lary 1], the convergence rate has a dependence on σ, which finally leads to an extra or-

der of O(

√
|S||A|
δ ). To solve this problem, we use the KL divergence to regularize the oc-

cupancy measure updates. By using KL divergence, we do not require to bound the sec-

ond moment, but need to bound E

[∑
sa λ(s, a)∆2

s,a

]
where ∆s,a is the (s, a)th element of

∇̂λL(λ,u,v)(s, a) (Lemma 6). Hence, unsampled (or less sampled) state-action pairs do
not contribute to the update. However, one still needs to ensure that the initial distribution
over state action pairs support all state action pairs (Lemma 7 and Appendix C.6).

With all the stochastic gradient definitions in place, we are now ready to present the
proposed novel algorithm called Conservative Stochastic Primal-Dual Algorithm (CSPDA)
summarized in Algorithm 1. First, we initialize the primal and dual variables in step 1. In
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Algorithm 1 Conservative Stochastic Primal-Dual Algorithm (CSPDA) for constrained
RL
Input: Sample size T. Initial distribution ρ. Discounted factor γ.
Parameter: Step-size α, β. Slater variable ϕ, Shift-parameter M , Conservative variable κ
and Constant δ ∈ (0, 1

2)

Output: λ̄ = 1
T

∑T
t=1 λ

t, ū = 1
T

∑T
t=1 u

t and v̄ = 1
T

∑T
t=1 v

t

1: Initialize u1 ∈ U , v1 ∈ V and λ1 = 1
|S||A| · 1

2: for t = 1, 2, ..., T do
3: ζt := (1− δ)λt + δ

|S||A|1

4: Sample (st, at) ∼ ζt and s0 ∼ ρ
5: Sample s′t ∼ P(·|at, st) from the generative model and observe reward rsa
6: Update value functions as u and v as

ut+1 =ΠU (ut − α∇̂uL(λt,ut,vt)) (22)

vt+1 =ΠV(vt − α∇̂vL(λt,ut,vt)) (23)

7: Update occupancy measure as

λt+
1
2 = arg max

λ

〈
∇̂λL(λt,ut,vt),λ− λt

〉
− 1

β
KL(λ‖λt) (24)

λt+1 =λt+
1
2 /‖λt+

1
2 ‖1 (25)

8: end for

step 4 and 5, we sample (st, at, s0) and then obtain s′t from the generative model. In step
6, we update the dual variables by the gradient descent step and a projection opration (See
Lemma 3 for the definition of U and V). In step 7, we utilize the mirror ascent update
and utilize the KL divergence as the Bregman divergence to obtain tight dependencies on
the convergence rate analysis similar to (Wang, 2020). Then, the occupancy measure is
normalized so that it remains a valid distribution.

5. Convergence Analysis

In this section, we study the convergence rate of the proposed Algorithm 1 in detail. We
start by analyzing the duality gap for the saddle point problem in (13). Then we show that
the output of Algorithm 1 given by λ̄ is ε-optimal for the conservative version of the dual
domain optimization problem in (11) of CMDPs. Finally, we perform the analysis in the
policy space and present the main results of this work. We prove that the induced policy π̄
by the optimal occupancy measure λ̄ is also ε-optimal and achieves zero constraint violation
at the same time.

5.1 Convergence Analysis for Duality Gap

In order to bound the duality gap, we note that the standard analysis of saddle point
algorithms (Nedić & Ozdaglar, 2009; Akhtar et al., 2021) is not applicable because of the
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unbounded noise introduced into the updates due to the use of adaptive sampling of the
state-action pairs (Wang, 2020; Zhang et al., 2021). Therefore, it becomes necessary to
obtain explicit bounds on the gradient as well as the variance of the stochastic estimates
of the gradients. Define (λ∗κ,u

∗
κ,v

∗
κ) as the solution of saddle-point problem in Eq. (13).

Notice that the optimal primal and dual variables are the function of conservative variable
κ. When κ = 0 which means we are considering the original problem in Eq. (6), we omit
the subscript κ and denote optimal primal and dual variables as (λ∗,u∗,v∗). We start the
analysis by consider the form of Slater’s condition in Assumption 3, and show that the dual
variables u and v are bounded.

Lemma 3 (Bounded dual variable u and v). Under the Assumption 3, the optimal dual

variables u∗κ and v∗κ are bounded. Formally, it holds that ‖u∗κ‖1 ≤
4Lf
ϕ and ‖v∗κ‖∞ ≤

Lf
1−γ +

4LfLh
(1−γ)ϕ .

The proof of Lemma 3 is provided in Appendix C.1. As a result, we define U :={
u | ‖u‖1 ≤

8Lf
ϕ

}
and V :=

{
v | ‖v‖∞ ≤ 2[

Lf
1−γ +

4LfLh
(1−γ)ϕ ]

}
.

Since we have mathematically defined the set U and V, now we rewrite the saddle point
formulation in (13) as

max
λ∈Λ

min
(u∈U ,v∈V)

L(λ,u,v). (26)

In the analysis presented next, we will work with the problem in (26). First, we decompose
the duality gap in Lemma 4 as follows.

Lemma 4 (Duality gap). For any dual variables u,v, let us define w = [uT ,vT ]T , and
consider ū, v̄, λ̄ as defined in Algorithm 1, the duality gap can be bounded as

L(ū, v̄,λ∗κ)− L(u,v, λ̄) ≤ 1

T

T∑
t=1

[ 〈
∇λL(wt,λt),λ∗κ − λt

〉︸ ︷︷ ︸
(I)

+
〈
∇wL(wt,λt),wt −w

〉︸ ︷︷ ︸
(II)

]
.

(27)

The bound on terms (I) and (II) in the statement of Lemma 4 are provided in Lemma
6 and 7 in the Appendix C.3 (see proofs in Appendix C.4 and C.5, respectively). This helps
to prove the main result in Theorem 1, which establishes the final bound on the duality gap
as follows.

Theorem 1. Define (u†,v†) := arg minu,v L(u,v, λ̄). Recall λ∗κ is the best solution for the
conservative Lagrange problem. The duality gap of the Algorithm 1 is bounded as

E[L(ū, v̄,λ∗κ)− L(u†,v†, λ̄)] ≤ O
(√

I|S||A| log(|S||A|)
T

·
LfLh

(1− γ)ϕ

)
. (28)

The proof of Theorem 1 is provided in Appendix C.3. The result in Theorem 1 describes
a sub-linear dependence of the duality gap onto the state-action space cardinality upto a
logarithmic factor. In the next subsection we utilize the duality gap upper bound to derive
a bound on the objective suboptimality and the constraint violation separately.
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5.2 Dual Objective and Constraint Violation

Recall that the saddle point problem in Eq. (26) is an equivalent problem to Eq. (6) where
the main difference arises due to the newly introduced conservativeness parameter κ. Thus,
a convergence analysis for duality gap should imply the convergence in occupancy measure
in Eq. (11). But before that, we need to characterize the gap between the original problem
(6) and its conservative version in (11). The following Lemma 5 shows that the gap is of
the order of parameter κ.

Lemma 5. Under Assumption 3, and condition κ ≤ min{ϕ2 , 1}, it holds that the difference
of optimal values between original problem and conservative problem is O(κ). Mathemati-
cally, it holds that 〈λ∗, r〉 − 〈λ∗κ, r〉 ≤ κ

ϕ .

The proof of Lemma 5 is provided in Appendix D.1. Using the statement of Lemma 5
and Theorem 1, we obtain the convergence result in terms of output occupancy measure in
following Theorem 2.

Theorem 2. For any 0 < ε < 1, there exists a constant c̃1 such that if

T ≥ max

{
16, 4ϕ2,

1

ε2

}
· c̃2

1

L2
fL

2
hI|S||A| log(|S||A|)

(1− γ)2ϕ2
, (29)

and we set

κ =
2LfLhc̃1

1− γ

√
I|S||A| log(|S||A|)

T
,M1 = 4

[
Lf

1− γ
+

4LfLh
(1− γ)ϕ

]
,M2 = Lf +

8LfLh
ϕ

,

then the constraints of the original problem in (6) satisfy:

E[hi(λ̄)] ≥ εϕ ∀i ∈ [I], (30a)

E
∥∥∥∑

a

(γPT
a − I)λ̄a + (1− γ)ρ

∥∥∥
1
≤ (1− γ)εϕ

LfLh
. (30b)

Additionally, the objective sub-optimality of (6) is given by

E[f(λ∗)− f(λ̄)] ≤ 3ε. (31)

The proof of Theorem 2 is provided in Appendix D.2. Next, we present the special case
of Theorem 2 in the form of Corollary 1 (see proof in Appendix D.3), which shows the
equivalent results for the case without conservation parameter, κ = 0.

Corollary 1 (Non Zero-Violation Case). Set κ = 0. For any ε > 0, there exists a constant

c̃1 such that if T ≥ c̃2
1 ·

L2
fL

2
hI|S||A| log(|S||A|)

(1−γ)2ϕ2ε2
then λ̄ satisfies the constraint violation as

E[hi(λ̄)] ≥ −ε ∀i ∈ [I] (32a)

E
∥∥∥∑

a

(γPT
a − I)λ̄a + (1− γ)ρ

∥∥∥
1
≤ (1− γ)εϕ

LfLh
, (32b)

and the sub-optimality is given by E[f(λ∗)− f(λ̄)] ≤ ε.
The positive lower bound of εϕ in (30a) hints that λ̄ is feasible (hence zero constraint

violation). On the other hand, the lower bound in (32a) is negative −ε which states that
the constraints in the dual space may not be satisfied for λ̄. Next, we show that how the
result in Theorem 2 helps to achieve the zero constraint violation in the policy space.
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5.3 Convergence Analysis in Policy Space

We have established the convergence in the occupancy measure space in Sec. 5.2 and shown
that λ̄ achieves an ε-optimal ε-feasible solution but the claim of zero constraint violation
is still not clear. But a small violation in Eq. (30b) makes λ̄ to loose its physical meaning
as discussed in Proposition 1 in (Zhang et al., 2021). Thus, to make the idea clearer and
explicitly show the benefit of the conservative idea utilized in this work, we further present
the results in the policy space. The bound in Eq. (30b) provides an intuition that the
output occupancy measure is close to the optimal one and therefore, the induced policy
should also be close to the optimal policy. Such a result is mathematically presented next
in Theorem 3.

Theorem 3 (Zero-Violation). Under the condition in Theorem 2 the induced policy π̄ by
the output occupancy measure λ̄ is an ε-optimal policy and achieves 0 constraint violation.
Mathematically, this implies that

f(λ∗)− E[f(λπ̄)] ≤ ε (33a)

E[hi(λπ̄)] ≥ 0 ∀i ∈ [I]. (33b)

The proof of Theorem 3 is provided in Appendix E.1. To get better idea about the
importance of result in Theorem 3, we next present a Corollary 2 (see proof in E.2) which
is a special case of Theorem 3 for κ = 0.

Corollary 2 (Non Zero-Violation Case). Under the condition in Corollary 1, the induced
policy π̄ by the output occupancy measure λ̄ is an ε-optimal policy w.r.t both objective and
constraints. More formally,

f(λ∗)− E[f(λπ̄)] ≤ ε (34a)

E[hi(λπ̄)] ≥ −ε ∀i ∈ [I]. (34b)

The benefit of utilizing the conservation parameter κ becomes clear after comparing the
results in (33b) and (34b).

6. Empirical Evaluations

In this section, we evaluate the proposed CSPDA algorithm, on three different environments.
For the first environment, as considered by (Liu et al., 2021b), we construct a random MDP.
The second environment is a grid world environment where the agent needs to cross a border
to reach a goal state and the fastest route is unsafe and there exists another route which is
safe but longer (Paternain et al., 2019). The third environment is a queuing system with a
single server in discrete time (Altman, 1999, Chapter 5) as considered in (Agarwal et al.,
2022c; Gattami et al., 2021). We now provide the experimental details and simulation
results separately for each of the environments.

6.1 Random MDPs

The random MDP has 100 states with transition probabilities sampled from a Dirichlet
distribution. The rewards r(s, a) are sampled from a uniform distribution over [0, 1) and
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Figure 1: Learning Process of the proposed algorithm for linear objective and constraint
value with κ = 0 and κ > 0. The total reward is the objective in (37) with c = 0
and the constraint value is the L.H.S. of the constraint in (37).

the costs c(s, a) are sampled from a uniform distribution over [−0.5, 0.5). The goal of the
agent is to maximize the average reward λT r while ensuring the average cost parameter λT c
is at least 0.

We sample a single MDP and run 100 independent runs of the CSPDA algorithm on
the sampled MDP. For this example, we choose the value of T = 10000 and the step sizes
α and β are set in accordance to Section C.3 as:

α =
LfLh

√
|S|

(1− γ)φ
√
TI

(35)

β =
(1− γ)φ

LfLh

√
log(|S|A|)
T |S|A|

(36)

with value |S| = 100, |A| = 4, with Lf = Lh = 1 as we consider a linear setup of maximum
reward and cost bounded by 1. Further, since we have only one cost function, we have
I = 1. Finally, we set the value of φ = 0.48 and the value of δ = 0.01.

We present the simulation results for the proposed CSPDA algorithm on the random
MDP in Figure 2. We note that the choice of κ plays a significant role in the performance
of the algorithm. The objective value of the average rewards is higher, but not significantly,
for κ = 0. However, when comparing the average cost values, the implementation with
κ > 0 performs significantly better showing the role tuning κ can play in obtaining the
performance of the learnt policy.

6.2 Gridworld Environment

We next evaluate the proposed algorithm on a 15 × 15 gridworld environment. The agent
starts from a fixed position on the map and can move in 4 directions if permitted. The
agent aims to cross the room and reach the goal state as soon as possible to obtain some
reward. The map of the gridworld is presented in Figure 3. The agent does not receive any
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Figure 2: Learning Process of the proposed algorithm for objective and constraint value
with κ = 0 and κ > 0 evaluated on random MDP with 100 states and 4 actions.

Figure 3: Map of the gridworld environment. The agent has to reach the goal state to
obtain a reward of 1 unit. If the agent crosses the red cell, it incurs a cost of −1
unit whereas the agent can cross the green cell without incurring any cost.

reward till it reaches the goal state. After the agent reaches the goal state, the agent does
not change the state and receives a reward of unit 1 till eternity. The room has a wall in
the middle which separates the starting cell and the goal state. The wall has two openings,
one of which is restricted. If the agent used the restricted cell, it can reach the goal faster.
However, it received a penalty in terms of a cost of −1. We aim to not allow the agent pass
through the restricted cell, and thus, the average cost should be non-negative.
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Figure 4: Learning Process of the proposed algorithm for objective and constraint value
with κ = 0 and κ > 0 evaluated on random MDP with 225 states and 4 actions.

We again run 100 independent runs of the CSPDA algorithm on the sampled MDP. We
present present the simulation results for the proposed CSPDA algorithm on the gridworld
in Figure 4. We set the value of β = 0.0001 and α = 10. We again note that the choice of
κ plays a significant role in the performance of the algorithm. The objective value of the
average rewards is higher, but not significantly, for κ = 0. However, when comparing the
average cost values, the implementation with κ > 0 performs significantly better showing
the role tuning κ can play in obtaining the performance of the learnt policy.

6.3 Evaluations on a Queuing System

In this section, we evaluate the proposed Algorithm 1 on a queuing system with a single
queue. In this model, we assume a buffer of finite size L. A possible arrival is assumed
to occur at the beginning of the time slot. The state of the system is the number of
customers waiting in the queue at the beginning of time slot such that the size of state
space is |S| = L + 1. We assume that there are two kinds of actions: service action and
flow action. The service action is selected from a finite finite subset A of [amin, amax] such
that 0 < amin ≤ amax < 1. With a service action a, we assume that a service of a customer
is successfully completed with probability a. If the service succeeds, the length of the queue
will reduce by one, otherwise queue length remains the same. The flow action is a finite
subset B of [bmin, bmax] such that 0 ≤ bmin ≤ bmax < 1. Given a flow action b, a customer
arrives with probability b. Let the state at time t be xt, and we assume that no customer
arrives when state xt = L. Finally, the overall action space is the product of service action
space and flow action space, i.e., A × B. Given an action pair (a, b) and current state xt,
the transition of this system P (xt+1|xt, at = a, bt = b) is shown in Table 2.

Assuming γ = 0.5, we define the objective function f as total discounted cumulative
reward plus entropy regularization. And define two constraints function h1, h2 as stan-
dard total discounted constraint value with respect to service and flow. Thus, the overall
optimization problem is given as
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Current State P (xt+1 = xt − 1) P (xt+1 = xt) P (xt+1 = xt + 1)

1 ≤ xt ≤ L− 1 a(1− b) ab+ (1− a)(1− b) (1− a)b

xt = L a 1− a 0

xt = 0 0 1− b(1− a) b(1− a)

Table 2: Transition probability of the queue system

Figure 5: Learning Process of the proposed algorithm for concave objective and constraint
value with κ = 0 and κ > 0. The total reward is the objective in (37) with c = 1
and the constraint value is the L.H.S. of the constraint in (37).

max
π

〈λπ, r〉 − c
∑
s,a

λπs,a log(λπs,a) (37)

s.t.
〈
λπ,gi

〉
≥ 0 i = 1, 2

where s0 ∼ ρ, πa and πb are the policies for the service and flow, respectively. It is not
hard to find that the above objective function is concave and Lipschitz. For simulations,
we choose L = 5, A = [0.2, 0.4, 0.6, 0.8], and B = [0.4, 0.5, 0.6, 0.7] for all states besides the
state s = L, Further, we select Slater variable ϕ = 0.2, number of iteration T = 100000,
c̃1 = 0.02, and conservative variable κ is selected as the statement of Theorem 2. The
initial distribution ρ is set as uniform distribution. Moreover, the cost function is set to be
r(s, a, b) = −s+5, the constraint function for the service is defined as g1(s, a, b) = −10a+4,
and the constraint function for the flow is g2(s, a, b) = −8(1 − b)2 + 1.28. We run 100
independent simulations and collect the mean value and standard variance. In Fig. 1 and
Fig. 5, we set c = 0 and c = 1, which means they are the standard CMDP problem
and concave utility problem, respectively. In each figure, we show the learning process of
objective value and constraint value for κ = 0 and κ > 0 respectively (in the case of κ > 0,
the value is chosen based on the value in Theorem 2.). Note that the y-axis in Figs. 1 and
5 is the objective function (on left) and the constraint function (on right) defined in Eq.
(37). In both the cases, it can be seen that when κ = 0, the constraint values converge
to a small negative number when T goes larger, while for κ > 0, the constraint values will
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converge to a positive value, which matches the result in theory. Further, the objective
value are similar for both κ = 0 and κ > 0, while the case where κ > 0 helps to achieve
zero constraint violation. Having κ as a hyperparameter in practice can lead to optimal
objectives where the constraint violations converge to zero.

7. Conclusion

In this work, we considered the problem of learning optimal policies for infinite-horizon
concave constrained Markov Decision Processes (CCMDP) under finite state S and action
A spaces with I number of constraints. Such constrained reinforcement learning (CRL)
with concave utility hasn’t been studied in the literature. To solve the problem in a model-
free manner, we proposed a novel Conservative Stochastic Primal-Dual Algorithm (CSDPA)
based upon the randomized primal-dual saddle point approach proposed in (Wang, 2020).
We show that to achieve an ε-optimal policy, it is sufficient to run the proposed Algorithm

1 for Ω(
LfLhI|S||A| log(|S||A|)

(1−γ)2ϕ2ε2
) steps. Additionally, we proved that the proposed Algorithm 1

does not violate any of the I constraints which is unique to this work in the CRL literature.
The idea is to consider a conservative version (controlled by parameter κ) of the original
constraints and then a suitable choice of κ enables us to make the constraint violation zero
while still achieving the best sample complexity for the objective suboptimality.

We note that while the results in parametrized setup have been studied for concave
utility without constraints (Bai et al., 2022a) for linear utility without constraints (Mondal
& Aggarwal, 2023), and for linear utility with constraints (Bai, Bedi, & Aggarwal, 2023),
corresponding results with concave utility and constraints remain open.
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Appendix A. Preliminaries

A.1 Explanation of Comparison among References in Table 1

Step 1: From Regret to PAC result

Many references listed in the Table 1 are in the episodic setting and give the result in the
form of regret, which is defined as

K∑
k=1

V ∗r,1(s1)− V πk
r,1 (s1) ≤ f(H, |S|, |A|, T, δ) with probability at least 1− δ (38)
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where T = KH. The following method provides a probably approximately correct (PAC)
result from the regret. At the end of learning horizon K, a policy π̄ can be defined as follow

π̄(s) =



π1(s) with probability 1/K

· · · · · ·
πk(s) with probability 1/K

· · · · · ·
πK(s) with probability 1/K

(39)

Note that π̄ chooses the different policies πk for k ∈ [K] uniformly at random. Thus, we
know 1

K

∑K
k=1 V

πk
r,1 (s1) = V π̄

r,1(s1). Divide Eq. (38) by K on both side, we have

V ∗r,1(s1)− V π̄
r,1(s1) ≤ f(H, |S|, |A|, T, δ)

K
(40)

If the function f is sub-linear w.r.t. T , then for large enough K, we have V ∗r,1(s1)−V π̄
r,1(s1) ≤

ε with probability at least 1− δ, which means that π̄ is an ε-optimal policy.

Step 2: From episodic setting to infinite horizon discounted setting

As mentioned above, many references consider the problem in episodic setting. In order to
make a comparison, it is necessary to have a fair conversion. Here, we use the method from
(Jin et al., 2018)[footnote 3 in page 3]. Firstly, we check whether the MDP model in the
given result assume a horizon dependent transition dynamics, i.e, whether P is a function
of h. If so, then define S ′ = SH. If not, then define S ′ = S. This conversion is easy to
understand and reasonable because an extra H times state space is needed if transition
dynamics is different for each h. After this step, we change H to 1

1−γ . This is because the
infinite horizon discounted value function can be simulated by the following algorithm.

Algorithm 2 Unbiased estimator for Value Function

Input: Initial distribution ρ. Discounted factor γ. Policy π
Output: Value function V π

r,1

1: Sample s1 ∼ ρ, H ∼ Geo(1− γ)
2: for Each state s1 in S do
3: for h = 1, 2, ...,H do
4: Take action ah ∼ π(·|sh), observe next state sh+1 and reward r(sh, ah)
5: end for
6: V π

r,1(s1) =
∑H

h=1 r(sh, ah)
7: end for

The sample horizon is taken from the geometry distribution with parameter (1−γ) and
thus the expected length of horizon is 1

1−γ , which explains why it is fair to change H to
1

1−γ . Following these two steps, we convert the result in episodic setting into infinite horizon
discounted setting.
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Step3: From High Probability result to Expectation result

After converting the result from episodic setting to infinite horizon discounted setting, we
get an ε-optimal result with probability at least 1 − δ. However, the result in this paper
is in the form of expectation. Thus, we can convert the result with the following method.
Notice that the value function Vr is bounded by 1

1−γ , we have

E[V ∗r (s1)− V π
r (s1)] ≤ ε ∗ (1− δ) + δ ∗ 1

1− γ
(41)

If δ < ε(1− γ), then, we have E[V ∗r (s1)− V π
r (s1)] ≤ 2ε.

An example for UC-CFH in (Kalagarla et al., 2021)

In the UC-CFH algorithm, the author proposed an ε-optimal result with at most Õ( |S||A|C
2H2

ε2
log(1

δ ))
episodes, where C is the upper bound on the number of possible successor states for a state-

action pair. Thus, C < |S| and the above equation can be bounded by Õ( |S|
3|A|H2

ε2
log(1

δ )).
Notice that this is already a PAC result and we begin converting it into infinite horizon
discounted setting.

• Firstly, we know K = Õ( |S|
3|A|H2

ε2
log(1

δ )) and thus the total sample complexity is

KH = Õ( |S|
3|A|H3

ε2
log(1

δ )). Notice that UC-CFH algorithm doesn’t assume horizon
dependent transition dynamics (They assume in the model, however, not in the al-
gorithm and theorem). Thus, by changing H to 1

1−γ , we have sample complexity

Õ( |S|
3|A|

(1−γ)3ε2
log(1

δ )).

• Secondly, change δ to ε(1−γ), we get the sample complexity in the form of expectation,

which means with Õ( |S|
3|A|

(1−γ)3ε2
) sample, we have

E[V ∗1 (s1)− V πk
1 (s1)] ≤ ε (42)

Appendix B. Notations

For the purpose of analysis in the appendix, we have used the shorthand notation λsa for
λ(s, a).

Appendix C. Proofs for Section 5.1

C.1 Proof of Lemma 3

Proof. Bound on ‖u∗κ‖1: Let us denote the optimal value of optimization problem in (11)
as p∗κ and write the corresponding dual problem as

Dκ(u,v) := max
λ≥0
L(λ,u,v) = max

λ≥0
f(λ)+

∑
i∈[I]

ui
(
hi(λ)− κ

)
+(1−γ) 〈ρ,v〉+

∑
a∈A

λTa (γPa−I)v

(43)
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The optimal dual variables are given by

(u∗κ,v
∗
κ) := arg min

u≥0,v
Dκ(u,v), (44)

and let us denote the optimal dual value by d∗κ = Dκ(u∗κ,v
∗
κ). We note that the problem in

(11) is a convex programming problem. By the Slater condition in the Assumption 3, we
know strong duality holds, i.e p∗κ = d∗κ. To proceed, let us consider a constant C and define
a set C := {(u,v) ≥ 0|Dκ(u,v) ≤ C}. For any (u,v) ∈ C and a feasible λ̂ which satisfies
Assumption 3, we could write

C ≥ Dκ(u,v)
(a)

≥L(λ̂,u,v)

=f(λ̂) +
∑
i∈[I]

ui
(
hi(λ̂)− κ

)
+ (1− γ) 〈ρ,v〉+

∑
a∈A

λ̂
T

a (γPa − I)v

(b)

≥f(λ̂) +

〈
u,
ϕ1

2

〉
=f(λ̂) +

ϕ

2
‖u‖1, (45)

where step (a) holds by the definition of dual function and step (b) is true by Assumption
3 and κ ≤ ϕ

2 . From weak duality, we have

Dκ(u,v) ≥ d∗κ ≥ p∗κ = 〈λ∗κ, r〉 (46)

Now let C = 〈λ∗, r〉, all inequalities in Eq. (46) become equality for (u,v) ∈ {(u,v) ≥
0|Dκ(u,v) ≤ 〈λ∗, r〉}. Thus, this set is the optimal dual variable set. We set C = 〈λ∗, r〉
and rearrange the Eq. (45) to obtain

‖u∗κ‖1 ≤
2[f(λ∗κ)− f(λ̂)]

ϕ

(a)

≤
2Lf‖λ∗κ − λ̂‖2

ϕ

(b)

≤
2Lf [‖λ∗κ‖1 + ‖λ̂‖1]

ϕ

(c)

≤
4Lf
ϕ

(47)

where the step (a) holds by the Lipschitz Assumption 2. The second step holds by triangle
inequality and last step holds because occupancy measure sum up to 1.

Bound on ‖v∗κ‖∞: To solve the convex programming in (11), the KKT conditions
should be sufficient and necessary, which can be written as

∇λL(λ∗κ,u
∗
κ,v

∗
κ) = 0 (48a)

hi(λ∗κ) ≥ κ ∀i ∈ [I] (48b)∑
a

(I− γPT
a )λ∗κ,a = (1− γ)ρ (48c)∑

i∈[I]

u∗κ,i[h
i(λ∗κ)− κ] = 0 (48d)

u∗κ ≥ 0 (48e)

By Eq. (48a), we have for any state-action pair (s, a)

∇λf(λ∗κ)s,a +
∑
i∈[I]

u∗κ,i∇λh
i(λ∗κ)s,a − (es − γPas)

Tv∗κ = 0, (49)
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where ∇λf(λ∗κ)s,a is the (s, a) element of ∇λf(λ∗κ) and u∗κ,i is the ith elemnt of vector u∗κ.
Pas is a column vector and Pas(s

′) = P (s′|a, s). Given a fixed action ā, denote ∇λf(λ∗κ)ā :=
[∇λf(λ∗κ)1,ā,∇λf(λ∗κ)2,ā, · · · ,∇λf(λ∗κ)S,ā]

T ,∇λh
i(λ∗κ)ā := [∇λh

i(λ∗κ)1,ā,∇λh
i(λ∗κ)2,ā, · · · ,∇λh

i(λ∗κ)S,ā]
T

and P̃ := [Pā,1, · · · , Pā,|S|] ∈ R|S|×|S|. By Eq. (49), we have

(I− γP̃T )v∗κ = ∇λf(λ∗κ)ā +
∑
i∈[I]

u∗κ,i∇λh
i(λ∗κ)ā (50)

As a result, we have

Lf +
4LfLh
ϕ

(a)

≥ Lf + Lh‖u∗κ‖1
(b)

≥ ‖∇λf(λ∗κ)ā +
∑
i∈[I]

u∗κ,i∇λh
i(λ∗κ)ā‖∞ = ‖(I− γP̃T )v∗κ‖∞

(c)

≥ ‖v∗κ‖∞ − ‖γP̃Tv∗κ‖∞
(d)

≥ (1− γ)‖v∗κ‖∞,
(51)

where the step (a) holds by the Lemma 3, step (b) holds by the definition of r, gi, step (c)
comes from the triangle inequality, and step (d) is true because each row in P̃T adds up to

1. Finally, we have the bound ‖v∗κ‖∞ ≤
Lf

1−γ +
4LfLh
(1−γ)ϕ .

C.2 Proof of Lemma 4

Proof. Consider the Lagrangian in (12) and note that it is convex w.r.t u as well as v. w.r.t
The gradient of the Lagrange function u and v are given by

∇uL(λ,u,v) = h(λ)− κ1,

∇vL(λ,u,v) = (1− γ)ρ+
∑
a

(γPT
a − I)λa.

(52)

It is obvious that ∇2
uL(λ,u,v) = ∇u,vL(λ,u,v) = ∇v,uL(λ,u,v) = ∇2

vL(λ,u,v) = 0,
which means that the Hessian matrix ∇wL(λ,u,v) is a zero matrix. Thus, Lagrange
function is convex w.r.t w. Then, let us define w = [uT ,vT ]T , w̄ = 1

T

∑T
t=1 w̄t, and

decompose the duality gap as

L(λ∗κ, ū, v̄)− L(λ̄,u,v) = L(λ∗κ, w̄)− L(λ̄,w)

(a)

≤ 1

T

T∑
t=1

[
L(λ∗κ,w

t)− L(λt,w)
]

=
1

T

T∑
t=1

[
L(λ∗κ,w

t)− L(λt,wt) + L(λt,wt)− L(λt,w)
]

(b)

≤ 1

T

T∑
t=1

[ 〈
∇wL(λt,wt),λ∗κ − λt

〉
+
〈
∇λL(λt,wt),wt −w

〉 ]
,

(53)
where step (a) holds by Jensen inequality and the step (b) utilizes the convexity of L(λ, ·)
and concavity of L(·,w).
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C.3 Proof of Theorem 1

Proof. We collect the dual variables u and v in one variable w as defined in Lemma 4 for
the ease of analysis. The next two Lemmas provide the bound on the terms I and II in Eq.
(27).

Lemma 6. Let the iterate sequence {λt} be updated as mentioned in the updates (24) and
(25) of Algorithm 1, then for any t it holds that

〈
∇λL(λt,wt),λ− λt

〉
≤ 1

β

[
KL(λ||λt)−KL(λ||λt+1)

]
+
β

2

∑
s,a

λtsa(∆
t
sa)

2

+
〈
∇̂λL(λt,wt)−∇λL(λt,wt),λt − λ

〉
. (54)

Lemma 7. Define W = U × V and consider the iterate sequence {wt} updated according
to the rule Eq. (22) and (23) in Algorithm 1. For any t, it holds that

〈
∇wL(λt,wt),wt −w

〉
≤ 1

2α

[
‖wt−w‖2−‖wt+1−w‖2+α2‖∇̂wL(λt,wt)‖2

+ 2α
〈
∇wL(λ,w)− ∇̂wL(λ,w),wt −w

〉]
. (55)

Next, utilizing the results of Lemma 6 and 7 (see proofs in Appendix C.4 and C.5) into
Lemma 4, we prove the main result in Theorem 1, which establishes the final bound on the
duality gap as follows. Let λ = λ∗κ in Eq. (54) and (u†,v†) := arg minu,v L(u,v, λ̄) in Eq.
(55). Then, sum up Eq. (54) and (55) from t = 1 to T , we have

1

T

T∑
t=1

[ 〈
∇λL(λt,wt),λ∗κ − λt

〉
+
〈
∇wL(λt,wt),wt −w†

〉]

≤ KL(λ∗κ||λ1)

Tβ︸ ︷︷ ︸
T1

+
β

2T

T∑
t=1

∑
s,a

λtsa(∆
t
sa)

2

︸ ︷︷ ︸
T2

+
1

T

T∑
t=1

〈
∇̂λL(λt,wt)−∇λL(λt,wt),λt − λ∗κ

〉
︸ ︷︷ ︸

T3

+
1

2Tα
‖w1 −w†‖2︸ ︷︷ ︸

T4

+
α

2T

T∑
t=1

‖∇̂wL(λt,wt)‖2︸ ︷︷ ︸
T5

+
T∑
t=1

〈
∇wL(λt,wt)− ∇̂wL(λt,wt),wt −w†

〉
︸ ︷︷ ︸

T6

(56)
Combine the above result with the statement of Lemma. 4 to write

E[L(λ∗κ, ū, v̄)− L(λ̄,u†,v†)] ≤
6∑
j=1

E[Tj ]. (57)

998



Achieving Zero Constraint Violation for CURL via Primal-Dual Approach

We derive an upper bound on the right hand side of (57) in Appendix C.6-C.11. Following
the results in Appendix C.6-C.11, we have

E[T1] ≤ log(|S||A|)
Tβ

, E[T2] ≤
4000βL2

fL
2
h|S||A|

(1− γ)2ϕ2
E[T3] = 0,

E[T4] ≤
400|S|L2

fL
2
h

(1− γ)2Tαϕ2
, E[T5] ≤ 16αI, E[T6] ≤

200LfLh
√
I|S|√

T (1− γ)ϕ
.

(58)

Let β = (1−γ)ϕ
LfLh

√
log(|S||A|)
T |S||A| and α =

LfLh
√
|S|

(1−γ)ϕ
√
TI

, the final bound for duality gap could be

written as

E[L(λ∗κ, ū, v̄)− L(λ̄,u†,v†)] ≤
LfLh

√
|S||A| log(|S||A|)√
T (1− γ)ϕ

+
4000LfLh

√
|S||A| log(|S||A|)√

T (1− γ)ϕ

+
400
√
|S|I√

T (1− γ)ϕ
+

16LfLh
√
|S|I√

T (1− γ)ϕ
+

200LfLh
√
|S|I√

T (1− γ)ϕ

≤ O
(√

I|S||A| log(|S||A|)
T

·
LfLh

(1− γ)ϕ

)
,

(59)
which is as stated in the statement of Theorem 1.

C.4 Proof of Lemma 6

The Proof of Lemma 6 in this work follows similar logic to (Zhang et al., 2021)[Lemma
C.2]. The main difference lies in the selection of shift parameters M and we provide the
proof here for completeness.

Proof. Let us defined ∆sa as the (s, a)-th component of ∇̂λL(λt,ut,vt). Consider the
update in Eq. (24) and note that the problem is separable for each component of λ and
could be solved in closed form as follows.

max
λ

〈
∇̂λL(λt,ut,vt),λ− λt

〉
− 1

β
KL(λ‖λt)

=
〈
∇̂λL(λt,ut,vt),−λt

〉
+ max

λ

{∑
s,a

∆t
saλsa −

1

β

∑
s,a

λsa log

(
λsa
λtsa

)}

=
∑
s,a

max
λsa

{
λsa

[
∆t
sa −

1

β
log

(
λsa
λtsa

)]}
, (60)

where we drop the terms which does not depend upon the variable λ and Λ denotes the
set of probability distributions. Next, we solve the unconstrained maximization in (60) by
differentiating and equating it to zero as follows

d

dλsa

(
λsa

[
∆t
sa −

1

β
log

(
λsa
λtsa

)])∣∣∣∣∣
λsa=λ

t+1
2

sa

= ∆t
sa −

1

β
log

λt+ 1
2

sa

λtsa

− 1

β
= 0. (61)
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After rearranging the terms, we obtain

λ
t+ 1

2
sa = λtsa exp(β∆t

sa − 1). (62)

Now, we project back the solution on to the set of valid probability distribution and obtain
the update as

λt+1
sa =

λtsa · exp(β∆t
sa)∑

s′,a′ λ
t
s′a′ · exp(β∆t

s′a′)
, (63)

where we note that λt+1
sa ∈ Λ. Next, we analyze the one step KL divergence of λt+1 to any

λ as

KL(λ||λt)−KL(λ||λt+1) =
∑
s,a

λsa log

(
λsa
λtsa

)
−
∑
s,a

λsa log

(
λsa

λt+1
sa

)

=
∑
s,a

λsa log

(
λt+1
sa

λtsa

)
. (64)

Next, we substitute the definition of λt+1
sa to obtain

KL(λ||λt)−KL(λ||λt+1) =
∑
s,a

λsa

[
β∆t

sa − log

∑
s′,a′

λts′a′ · exp(β∆t
s′a′)

]

=β
〈
λ, ∇̂λL(λt,ut,vt)

〉
− log

∑
s′,a′

λts′a′ · exp(β∆t
s′a′)

 , (65)

where we utilize the fact that
∑

s,a λsa = 1. To proceed next, recall that we have

∆sa =
γvs′ − vs −M1

ζsa
+∇λf(λ)s,a +

∑
i∈[I]

ui∇λh
i(λ)s,a −M2 (66)

where ∇f (λ)(s, a) and ∇λh
i(λ)(s, a) are the (s, a) element of ∇f (λ) and ∇λh

i(λ), respec-
tively. We note that

|γvs′ − vs| ≤ |γvs′ |+ |vs| ≤ 4

[
Lf

1− γ
+

4LfLh
(1− γ)ϕ

]
. (67)

Moreover, by Lemma 1

|∇λf(λ)s,a| ≤ Lf , and

∣∣∣∣∑
i∈[I]

ui∇λh
i(λ)s,a

∣∣∣∣ ≤ 8LfLh
ϕ

. (68)

Hence, with the selection M1 = 4
[
Lf

1−γ +
4LfLh
(1−γ)ϕ

]
and M2 = Lf +

8LfLh
ϕ , we can conclude

that ∆sa ≤ 0. Since exp(x) ≤ (1 +x+ 1
2x

2) for x ≤ 0, we can upper bound the second term
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on the right hand side of (65) as

log

∑
s′,a′

λts′a′ · exp(β∆t
s′a′)

 ≤ log

(∑
s′,a′

λts′a′ · (1 + β∆t
s′a′ +

1

2
β2(∆t

s′a′)
2)

)

= log

(
1 + β

∑
s′,a′

λts′a′∆
t
s′a′ +

β2

2

∑
s′,a′

λts′a′(∆
t
s′a′)

2

)

= log

(
1 + β

〈
∇̂λL(λt,ut,vt),λt

〉
+
β2

2

∑
s′,a′

λts′a′(∆
t
s′a′)

2

)

≤ β
〈
∇̂λL(λt,ut,vt),λt

〉
+
β2

2

∑
s′,a′

λts′a′(∆
t
s′a′)

2,

(69)
where the last inequality holds by log(1 + x) ≤ x for all x > −1. By combining Eq. (65)
and (69), we obtain

KL(λ||λt)−KL(λ||λt+1) ≥β
〈
λ, ∇̂λL(λt,ut,vt)

〉
− β

〈
∇̂λL(λt,ut,vt),λt

〉
− β2

2

∑
s′,a′

λts′a′(∆
t
s′a′)

2. (70)

Rearrange the items and divide both sides by β, to obtain

0 ≤ 1

β
[KL(λ||λt)−KL(λ||λt+1)] +

〈
∇̂λL(λt,ut,vt),λt − λ

〉
+
β

2

∑
s′,a′

λts′a′(∆
t
s′a′)

2. (71)

Add
〈
∇λL(λt,ut,vt),λ− λt

〉
on both side to get the desired result.

C.5 Proof of Lemma 7

Proof. We can combine the update rule in Eq. (22)-(23) to obtain an update for w ∈ W :=
U × V. For any w ∈ W, it holds that

‖wt+1 −w‖2 = ‖ΠW(wt − α∇̂wL(λt,wt))−w‖2

≤ ‖wt − α∇̂wL(λt,wt)−w‖2

= ‖wt −w‖2 + α2‖∇̂wL(λt,wt)‖2 − 2α
〈
∇̂wL(λ,w),wt −w

〉
= ‖wt −w‖2 + α2‖∇̂wL(λt,wt)‖2

− 2α
〈
∇̂wL(λ,w)−∇wL(λ,w) +∇wL(λ,w),wt −w

〉
,

where the first inequality holds by the non-expansiveness of the Projection operator. The
following equalities holds by expanding the squares and by adding subtracting the term
2α
〈
∇wL(λ,w),wt −w

〉
. After rearranging the terms in the above expression, we obtain

2α
〈
∇wL(λ,w),wt −w

〉
≤‖wt −w‖2 − ‖wt+1 −w‖2 + α2‖∇̂wL(λt,wt)‖2

− 2α
〈
∇̂wL(λt,wt)−∇wL(λt,wt),wt −w

〉
. (72)

Next, divide the both sides by 2α > 0 to obtain the statement of Lemma 7.
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C.6 Upper Bound for E[T1]

E[T1] =
KL(λ∗κ||λ1)

Tβ
=

1

Tβ

∑
s,a

λ∗κ,sa log

(
λ∗κ,sa
λ1
sa

)
=

1

Tβ

∑
s,a

λ∗κ,sa[log λ∗κ,sa − log λ1
sa]

≤ 1

Tβ

∑
s,a

λ∗κ,sa log(|S||A|) =
log(|S||A|)

Tβ
.

(73)

C.7 Upper Bound for E[T2]

For any fixed ut,vt,λt, we have

E[
∑
s,a

λtsa(∆
t
sa)

2|ut,vt,λt]

= Est,at
[∑
s,a

λtsa

(
γvs′ − vs −M1

ζsa
· 1(s,a)=(st,at) +∇λf(λ)(s, a) +

∑
i∈[I]

ui∇λh
i(λ)(s, a)−M2

)2]
(a)

≤ Est,at
{∑

s,a

λtsa

[
2

(
γvs′ − vs −M1

ζsa
· 1(s,a)=(st,at)

)2

+ 2

(
∇λf(λ)(s, a) +

∑
i∈[I]

ui∇λh
i(λ)(s, a)−M2

)2]}
,

(74)
where in step (a), we use the inequality (a + b)2 ≤ 2a2 + 2b2. Next, we perform further
simplifications as

E[
∑
s,a

λtsa(∆
t
sa)

2|ut,vt,λt]

≤ 2Est,at
[
λtstat

(
γvs′t − vst −M1

ζstat

)2]
+ 2

∑
s,a

λtsa

(
∇λf(λ)(s, a) +

∑
i∈[I]

ui∇λh
i(λ)(s, a)−M2

)2

= 2
∑
st,at

[
λtstatζ

t
stat

(
γvs′t − vst −M1

ζtstat

)2]
+ 2

∑
s,a

λtsa

(
∇λf(λ)(s, a) +

∑
i∈[I]

ui∇λh
i(λ)(s, a)−M2

)2

= 2
∑
st,at

λtstat

(
γvs′t − vst −M1

)2

(1− δ)λtstat + δ
|S||A|

+ 2
∑
s,a

λtsa

(
∇λf(λ)(s, a) +

∑
i∈[I]

ui∇λh
i(λ)(s, a)−M2

)2

(75)
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Next, after omitting the positive term in the denominator, we get

E[
∑
s,a

λtsa(∆
t
sa)

2|ut,vt,λt]

≤ 2
∑
st,at

λtstat

(
γvs′t − vst −M1

)2

(1− δ)λtstat
+ 2

∑
s,a

λtsa

(
∇λf(λ)(s, a) +

∑
i∈[I]

ui∇λh
i(λ)(s, a)−M2

)2

(c)

≤ 2
∑
st,at

4M2
1

1− δ
+ 2

∑
s,a

4λtsaM
2
2 = 8

(
|S||A|M2

1

1− δ
+M2

2

)

=
128|S||A|[ Lf1−γ +

4LfLh
(1−γ)ϕ ]2

1− δ
+ 8

[
Lf +

8LfLh
ϕ

]2

(d)

≤
128L2

f |S||A|(1 + 4Lh)2

(1− δ)(1− γ)2ϕ2
+

8L2
f (1 + 8Lh)2

(1− δ)(1− γ)2ϕ2

≤
4000L2

fL
2
h|S||A|

(1− δ)(1− γ)2ϕ2
.

(76)
Step (c) holds because we use the boundness of dual variable and Lemma 1. Step (d) holds
since 0 < ϕ < 1. Next, we write down the term E[T2] as

E[T2] = E[
β

2T

T∑
t=1

∑
s,a

λtsa(∆
t
sa)

2]
(a)
=

β

2T

T∑
t=1

E[
∑
s,a

λtsa(∆
t
sa)

2]

(b)
=
β

2T

T∑
t=1

E[E[
∑
s,a

λtsa(∆
t
sa)

2|ut,vt,λt]]

≤
4000βL2

fL
2
h|S||A|

(1− γ)2ϕ2
,

(77)

where step (a) holds by the linear of expectation and step (b) holds due to law of total
expectation. The last inequality holds by δ ∈ (0, 1

2).

C.8 Expression for E[T3]

For any fixed ut,vt,λt, we have

E[∇̂λL(λt,ut,vt)|ut,vt,λt] = ∇λL(λt,ut,vt)−M1 · 1−M2 · 1. (78)

Thus,

E[T3] =
1

T

T∑
t=1

E[
〈
∇̂λL(λt,wt)−∇λL(λt,wt),λt − λ

〉
] =

1

T

T∑
t=1

E[
〈
−(M1 +M2) · 1,λt − λ

〉
] = 0

(79)
where the last step is true because

〈
λt · 1

〉
= 〈λ∗ · 1〉 = 1
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C.9 Upper Bound for E[T4]

For any u ∈ U

‖u1 − u‖2 ≤ ‖u1‖2 + ‖u‖2 + 2|
〈
u1,u

〉
| ≤ ‖u1‖2 + ‖u‖2 + 2‖u1‖‖u‖ ≤

256L2
f

ϕ2
(80)

where the last inequality holds by ‖x‖2 ≤ ‖x‖1 for any x and the definition of U . Similarly,
for any v ∈ V

‖v1 − v‖2 ≤ ‖v1‖2 + ‖v‖2 + 2‖v1‖‖vt‖ ≤ |S|(‖v1‖2∞ + ‖v‖2∞ + 2‖v1‖∞‖vt‖∞)

≤ 16|S|[
Lf

1− γ
+

4LfLh
(1− γ)ϕ

]2 ≤
400|S|L2

fL
2
h

(1− γ)2ϕ2

(81)

Finally, combine above two inequalities,

E[T4] =
1

2Tα
‖w1 −w†‖2 =

1

2Tα
[‖u1 − u†‖2 + ‖v1 − v†‖2] ≤

400|S|L2
fL

2
h

(1− γ)2Tαϕ2
(82)

C.10 Upper Bound for E[T5]

For any fixed ut,vt,λt, we have

E
[
‖∇̂uL(λt,ut,vt)‖2

∣∣∣∣ut,vt,λt] = ‖h(λt)− κ1‖2 ≤ 2‖h(λt)‖2 + 2κ2I ≤ 4I (83)

where the last step holds because |hi(λ)| ≤ 1, ∀i ∈ [I] by the Lemma 2 and the fact
0 < κ ≤ 1.

E
[
‖∇̂vL(λt,ut,vt)‖2

∣∣∣∣ut,vt,λt] = Est,at,s′t,s0

[
‖(1− γ)es0 +

λstat(γes′t − est)

ζstat
‖2
∣∣∣∣ut,vt,λt]

(a)
= Est,at,s′t,s0

[
‖(1− γ)es0 +

λstat(γes′t − est)

(1− δ)λtstat + δ
|S||A|

‖2
∣∣∣∣ut,vt,λt]

(b)

≤ Est,at,s′t,s0

[
3‖(1− γ)es0‖2 + 3‖

λstat(γes′t)

(1− δ)λtstat
‖2 + 3‖ λstat(est)

(1− δ)λtstat
‖2
∣∣∣∣ut,vt,λt]

≤ Est,at,s′t,s0

[
3(1− γ)2 +

3γ2 + 3

(1− δ)2

]
≤ 3 +

6

(1− δ)2

(84)
where step (a) holds by using the definition of ζstat in the algorithm. Step (b) comes from
the Cauchy-Schwartz inequality. Combined Eq. (83), (84) with the definition of w,

E[T5] =
α

2T

T∑
t=1

E‖∇̂wL(λt,wt)‖2 =
α

2T

T∑
t=1

[
E‖∇̂uL(λt,ut,vt)‖2 + E‖∇̂uL(λt,ut,vt)‖2

]
≤ α

2

[
3 +

6

(1− δ)2
+ 4I

]
≤ 16αI

(85)
where the last step holds by δ ∈ (0, 1

2)
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C.11 Upper Bound for E[T6]

Firstly, notice that T6 is different from T3 because w† depends on λ̄, which is a random
variable. However λ∗κ depends only on κ, which is a constant. Thus, in order to bound T6,
we need following Lemma.

Lemma 8 ((Beck, 2017)). Let Z ⊂ Rd be a convex set and ω : Z → R be a 1-strongly convex
function with respect to norm ‖ · ‖ over Z. With the assumption that for all x ∈ Z we have
ω(x)−minx∈Z ω(x) ≤ 1

2D
2, then for any martingale difference sequence {Zk}Kk=1 ∈ Rd and

any random vector x ∈ Z, it holds that

E
[ K∑
k=1

〈Zk,x〉
]
≤ D

2

√√√√ K∑
k=1

E[‖Zk‖2∗] (86)

where ‖ · ‖∗ denotes the dual norm of ‖ · ‖
For any fixed ut,vt,λt, the gradient estimation is unbiased.

E[∇̂φL(λt,ut,vt)] = ∇φL(λt,ut,vt) (87)

where φ = u orv. Thus,

E[T6] =
1

T

T∑
t=1

E
[〈
∇wL(λt,wt)− ∇̂wL(λt,wt),wt −w†

〉]

=
1

T

T∑
t=1

E
[〈
∇̂wL(λt,wt)−∇wL(λt,wt),w†

〉]
. (88)

To apply Lemma 8, let Z = W, ω(x) = 1
2‖x‖

2, x = w† and Zk = ∇̂wL(wk,λk) −
∇wL(wk,λk), which is a martingale difference. Then, ω(x) − minx∈Z ω(x) = ω(w) =
1
2‖w‖

2 ≤ 1
2D

2 and thus D ≥ ‖w‖. The norm of w can be bounded as

‖w‖2 = ‖u‖2 + ‖v‖2 ≤ ‖u‖21 + |S|‖v‖2∞ = (
8Lf
ϕ

)2 + 2|S|
[
Lf

1− γ
+

4LfLh
(1− γ)ϕ

]2

≤
256L2

f

ϕ2
+

2|S|L2
f

(1− γ)2
+

16|S|L2
fLh

(1− γ)2ϕ
+

32|S|L2
fL

2
h

(1− γ)2ϕ2
≤

324|S|L2
fL

2
h

(1− γ)2ϕ2
.

(89)

Thus, ‖w‖ ≤ 18LfLh
√
|S|

(1−γ)ϕ =: D. Apply Lemma 8 to Eq. (88),

E[T6] ≤
18LfLh

√
|S|

T (1− γ)ϕ

√√√√ T∑
t=1

E[‖∇̂wL̂(wt,λt)−∇wL̂(wt,λt)‖2]

≤
18LfLh

√
|S|

T (1− γ)ϕ

√√√√ T∑
t=1

E[‖∇̂wL̂(wt,λt)‖2]

=
18LfLh

√
|S|

T (1− γ)ϕ

√
2T

α
E[T ′5]

≤
18LfLh

√
|S|√

T (1− γ)ϕ

√
32I =

200LfLh
√
I|S|√

T (1− γ)ϕ
.

(90)
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Appendix D. Proofs for Section 5.2

D.1 Proof of Lemma 5

Proof. Recall λ∗ is the optimal occupancy measure to the original problem, which gives

hi(λ∗) ≥ 0 (91)

Further, under the Slater Condition Assumption 3, there exists at least one occupancy
measure λ̃ such that

hi(λ̃) ≥ ϕ (92)

Define a new occupancy measure λ̂ = (1− κ
ϕ)λ∗+ κ

ϕ λ̃. By the concavity of the cost function,
it can be shown a feasible occupancy measure to the conservative problem.

hi(λ̂) = hi
(

(1− κ

ϕ
)λ∗ +

κ

ϕ
λ̃

)
≥ (1− κ

ϕ
)hi
(
λ∗
)

+
κ

ϕ
hi
(
λ̃

)
≥ κ

ϕ
ϕ = κ (93)

∑
a

(I− γPT
a )λ̂a = (1− κ

ϕ
)
∑
a

(I− γPT
a )λ∗a +

κ

ϕ

∑
a

(I− γPT
a )λ̃a = (1− γ)ρ̃ (94)

Then, we can bound the difference

f(λ∗)− f(λ∗κ)
(a)

≤ f(λ∗)− f(λ̂) = f(λ∗)− f
(

(1− κ

ϕ
)λ∗ +

κ

ϕ
λ̃

)
≤ κ

ϕ
f(λ∗)− κ

ϕ
f(λ̃)

(b)

≤ κ

ϕ
f(λ∗)

(c)

≤ κ

ϕ

(95)

The first step (a) holds because λ∗κ is the optimal solution of the conservative problem,
which gives larger value function than any other feasible occupancy measure. We drop the
negative term in the step (b) and the last step (c) is true because f(λ∗) ≤ 1 by the Lemma
2.

D.2 Proof of Theorem 2

Proof. In order to construct the relation between duality gap and result in occupancy
measure space, let us consider the expression for the Lagrangian function. By the feasibility
of λ∗κ, we can write

L(λ∗κ,u
t,vt) =f(λ∗κ) +

〈
ut,h(λ∗κ)− κ

〉
+

[∑
a

(λ∗κ,a)
T (γPa − I)− (1− γ)ρ

]
vt

≥f(λ∗κ).

(96)

Define the set I = {i|hi(λ̄) < 0}. Denote u′ = [u′1, u
′
2, · · · , u′I ]T , where u′i = ui if i ∈ I

and u′i = 0 otherwise. Define C1 :=
4Lf
ϕ and C2 =

Lf
1−γ +

4LfLh
(1−γ)ϕ for simplicity, which is the
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bound for ‖u∗κ‖1 and ‖v∗κ‖∞, respectively. By the definition of u†,v†

L(λ̄,u†,v†) = min
u∈U ,v∈V

f(λ̄) +
〈
u,h(λ̄)− κ

〉
+

[∑
a

(λ̄a)
T (γPa − I)− (1− γ)ρ

]
v

(a)
= min

u′∈U ,v∈V
f(λ̄) +

〈
u′, [h(λ̄)− κ]−

〉
+

[∑
a

(λ̄a)
T (γPa − I)− (1− γ)ρ

]
v,

(97)
where the notation x− := min{x, 0} and the equality holds because ui = 0, i ∈ Ic for those
constraints which are satisfied. Let us consider the second term on the right hand side of
the above expression as follows〈

u′, [h(λ̄)− κ]−
〉
≤‖u′‖1‖[h(λ̄)− κ1]−‖∞
≤2C1‖[h(λ̄)− κ1]−‖∞. (98)

Notice that equality in the above inequality is achievable by selecting u†j = 2C1 for j =

argmaxi |hi(λ̄)−κ| and u†k = 0 for k 6= j. Such u† gives the minimum of
〈
u′, [h(λ̄)− κ]−

〉
=

2C1‖[h(λ̄) − κ1]−‖∞. Similarly, v† = 2C21 gives the minimum of

[∑
a(λ̄a)

T (γPa − I) −

(1− γ)ρ

]
v = 2C2‖

∑
a(λ̄a)

T (γPa − I)− (1− γ)ρ‖1 by Holder inequality. Hence, we could

write the expression in (97) as

L(λ̄,u†,v†) =
〈
λ̄, r

〉
− ‖[h(λ̄)− κ1]−‖∞ − 2C2‖

∑
a

(λ̄a)
T (γPa − I)− (1− γ)ρ‖1. (99)

Combining Eq. (99) with (96) and then taking expectation, we obtain

E[L(λ∗κ,u
t,vt)−L(λ̄,u†,v†)] ≥ E

[
f(λ∗κ)−f(λ̄)+‖[h(λ̄)−κ1]−‖∞+2C2‖

∑
a

(λta)
T (γPa−I)+(1−γ)ρ‖1

]
.

(100)
Combining with the result in Theorem 1, there exists a constant c̃1 such that

E
[
f(λ∗κ)− f(λ̄) + ‖[h(λ̄)− κ1]−‖∞ + 2C2‖

∑
a

(λta)
T (γPa − I) + (1− γ)ρ‖1

]

≤ c̃1

(√
I|S||A| log(|S||A|)

T
·
LfLh

(1− γ)ϕ

)
. (101)

Denote L := c̃1

(√
I|S||A| log(|S||A|)

T · LfLh
(1−γ)ϕ

)
. By the Theorem 4 (see Appendix F for refer-

ence), we directly get

E[f(λ∗κ)− f(λ̄)] ≤ L, (102a)

E‖[h(λ̄)− κ1]−‖∞ ≤
2L

C1
=

Lϕ

2Lf
≤ Lϕ, (102b)

E
∥∥∥∑

a

(γPT
a − I)λ̄a + (1− γ)ρ

∥∥∥
1
≤ 2L

C2
=

2L
Lf

1−γ +
4LfLh
(1−γ)ϕ

≤ (1− γ)Lϕ

LfLh
. (102c)
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Note that the result in (102a) is at λ∗κ and in order to obtain the result for λ∗, let us
consider and by the statement of Lemma 5, we could write

E[f(λ∗)− f(λ̄)] = E[f(λ∗)− f(λ∗κ)] + E[f(λ∗κ)− f(λ̄)] ≤ κ

ϕ
+ L, (103)

where we have utilized the upper bound developed in Lemma 5. Next, recall that

κ = 2c̃1

(√
I|S||A| log(|S||A|)

T
·
LfLh
1− γ

)
,

and from the definition of L, we can write

E[f(λ∗)− f(λ̄)] ≤ 3c̃1

(√
I|S||A| log(|S||A|)

T
·
LfLh

(1− γ)ϕ

)
, (104)

which establishes the upper bound for the optimally gap for the original optimization prob-
lem. Further, from the result in (102b), we have for all i ∈ [I]

E|[hi(λ̄)− κ]−| ≤ Lϕ. (105)

Note that by the definition of [x]− := min{x, 0}, it holds that |[x]−| = −min{x, 0} which
holds due to the fact that min{x, 0} is either zero or negative. Therefore, it holds that
|hi(λ̄)− κ| = −[hi(λ̄)− κ]− and thus

E
(
[hi(λ̄)− κ]−

)
≥ −Lϕ. (106)

Further, since [x]− is a concave function with respect to x, via Jensen’s inequality, we can
write

[E[hi(λ̄)− κ]]− ≥ E
(
[hi(λ̄)− κ]−

)
≥ −Lϕ. (107)

Again, by the definition of [x]−, we simplifies (107) to

min{E[hi(λ̄)]− κ, 0} ≥ −Lϕ. (108)

Thus, we obtain either E[hi(λ̄)] ≥ κ > 0 or E[hi(λ̄)] ≥ κ− Lϕ. The first case is trivial and

for the second case, recall κ = 2c̃1

(√
I|S||A| log(|S||A|)

T · LfLh1−γ

)

E[hi(λ̄)] ≥ κ− Lϕ = c̃1

(√
I|S||A| log(|S||A|)

T
·
LfLh
1− γ

)
(109)

Let T = c̃2
1

L2
fL

2
hI|S||A| log(|S||A|)

(1−γ)2ϕ2ε2
. By Eq. (102), we have the final result

E[f(λ∗)− f(λ̄)] ≤ 3ε (110a)

E[hi(λ̄)] ≥ εϕ ∀i ∈ [I] (110b)

E‖
∑
a

(γPT
a − I)λ̄a + (1− γ)ρ‖1 ≤

(1− γ)εϕ

Lf
(110c)

Recall that it is required κ ≤ min{ϕ2 , 1}, which gives

T ≥ 4c̃2
1

L2
fL

2
hI|S||A| log(|S||A|)

(1− γ)2ϕ2
max{4, ϕ2} (111)
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D.3 Proof of Corollary 1

Proof. Under the condition that κ = 0, it is obvious that λ∗ = λ∗κ. Thus, we have

E[f(λ∗)− f(λ̄)] ≤ L = c̃1

(√
I|S||A| log(|S||A|)

T
·
LfLh

(1− γ)ϕ

)
(112)

Furthermore, similar to Eq. (109)

E[hi(λ̄)] ≥ κ− Lϕ = −c̃1

(√
I|S||A| log(|S||A|)

T
·
LfLh
1− γ

)
(113)

Let T = c̃2
1

L2
fL

2
hI|S||A| log(|S||A|)

(1−γ)2ϕ2ε2
, we derive the following result

E[f(λ∗)− f(λ̄)] ≤ ε (114a)

E[hi(λ̄)] ≥ −ε ∀i ∈ [I] (114b)

E‖
∑
a

(γPT
a − I)λ̄a + (1− γ)ρ‖1 ≤

(1− γ)εϕ

LfLh
(114c)

Appendix E. Proofs for Section 5.3

E.1 Proof of Theorem 3

Proof. By the result in Eq. (30b) and the definition of ‖ · ‖1, we have

E
[∑

s

∣∣∣∑
a′

λ̄sa′ − γ
∑
a′

∑
s′

Pa′(s
′, s)λ̄s′a′ − (1− γ)ρs

∣∣∣] ≤ (1− γ)εϕ.

LfLh
(115)

For each s ∈ S, let us define∣∣∣∑
a′

λ̄sa′ − γ
∑
a′

∑
s′

Pa′(s
′, s)λ̄s′a′ − (1− γ)ρs

∣∣∣ = (1− γ)εs. (116)

We notice that the left hand side of Eq. (116) gives the physical meaning of occupancy
measure, which can be seen in the following Eq. (117)-(121). Furthermore, Notice that εs
is a random variable. It is obvious that εs ≥ 0 and E[

∑
s εs] ≤

εϕ
Lf lH

by Eq. (115). Then,

define the policy induced by λ̄ as π̄(a|s) = λ̄sa∑
a′ λ̄sa′

≥ 0. Multiply the both sides of Eq.

(116) by π̄(a|s) to obtain∣∣∣λ̄sa − γ∑
a′

∑
s′

Pa′(s
′, s)π̄(a|s)λ̄s′a′ − (1− γ)ρsπ̄(a|s)

∣∣∣ = (1− γ)εsπ̄(a|s), ∀a ∈ A, s ∈ S.

(117)
Now define ρsa = ρsπ̄(a|s) which can be considered as the initial distribution for state and
action following policy π̄. Define Pπ̄(s, a, s′, a′) = Pa(s, s

′) · π̄(a′|s′), which can be considered
as the transition matrix from current state and action pair (s, a) to next state and action
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pair (s′, a′). Furthermore, define εsa = εsπ̄(a|s) and it is obvious that
∑

a εsa = εs. Then,
Eq. (117) can be simplified as∣∣∣λ̄sa − γ∑

a′

∑
s′

Pπ̄(s′, a′, s, a)λ̄s′a′ − (1− γ)ρsa

∣∣∣ = (1− γ)εsa, ∀a ∈ A, s ∈ S. (118)

With a little abuse of notation ±, we can write

λ̄sa − γ
∑
a′

∑
s′

Pπ̄(s′, a′, s, a)λ̄s′a′ = (1− γ)(ρsa ± εsa), ∀a ∈ A, s ∈ S, (119)

where ± means the left hand side can be equal to (1 − γ)(ρsa + εsa) or (1 − γ)(ρsa − εsa).
Next, define ρ̃ ∈ R|S||A| = [ρs1a1 , ρs1a2 , · · · , ρs|S|a1 , ρs2a1 , · · · , ρs|S|a|A| ]T as a vector, define

ε̃ ∈ R|S||A| = [εs1a1 , εs1a2 , · · · , εs2a1 , · · · , εs|S|a|A| ]T as a vector, and define Pπ̄ ∈ R|S||A|×|S||A|
as a matrix. Then, we could write the expression in Eq. (119) in the following compact
form as

λ̄− γPT
π̄ λ̄ = (1− γ)(ρ̃± ε̃) (120)

Notice that ‖PT
π̄ ‖1 = maxj

∑|S||A|
i=1 |PT

π̄ (i, j)| = 1 and thus ‖γPT
π̄ ‖ ≤ γ. This means (I −

γPT
π̄ ) is invertable and (I − γPT

π̄ )−1 =
∑∞

i=0 γ
i(PT

π̄ )i. Thus, we have

λ̄ = (1− γ)(I− γPT
π̄ )−1(ρ̃± ε̃). (121)

Rearrange items, take inner-product with r and take absolute value, we have

λ̄− (1− γ)(I− γPT
π̄ )−1ρ̃ = (1− γ)(I− γPT

π̄ )−1ε̃. (122)

Notice that

(1− γ)(I− γPT
π̄ )−1ρ̃ = (1− γ)

[
ρ̃T + γρ̃TPπ̄ + γ2ρ̃T (Pπ̄)2 + · · ·

]
= λπ̄ (123)

The above equation can be bounded by

E|f(λ̄)− f(λπ̄)|
(a)

≤ LfE‖λ̄− λπ̄‖
= Lf (1− γ)E‖(I− γPT

π̄ )−1ε̃‖2
(b)

≤ Lf (1− γ)E‖(I− γPT
π̄ )−1ε̃‖1

(c)

≤ Lf (1− γ)‖(I− γPT
π̄ )−1‖1E‖ε̃‖1

(d)

≤ 1− γ
Lh

∞∑
i=0

‖γi(PT
π̄ )i‖1εϕ

(e)

≤ (1− γ)
∞∑
i=0

γiεϕ = εϕ,

(124)

where step (a) holds by the Lipschitz assumption 2, step (b) holds by norm inequality, step
(c) holds by definition of matrix norm, step (d) holds by triangle inequality and E‖ε̃‖1 =
E[
∑

s εs] ≤
εϕ

LfLh
. The last step (e) is true because ‖PT

π̄ ‖1 = 1. Finally, we get the result

E|f(λ̄)− f(λπ̄)|
(a)

≤ εϕ. (125)
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Recall E[f(λ∗)− f(λ̄)] ≤ 3ε in Eq. (31), hence we can write

f(λ∗)− E[f(λπ̄)] =
(
f(λ∗)− E[f(λ̄)]

)
+ E

[
f(λ̄)− f(λπ̄)

]
≤4ε, (126)

which is for the objective suboptimality gap in the primal domain. Rescaling ε to ε
4 finishes

the proof. Similarly, for the constraints in the primal domain, we could write

E[hi(λπ̄)− hi(λ̄)] ≥ −εϕ. (127)

From the result in Eq. (30a), note that we have E[hi(λ̄)] ≥ εϕ. Hence, after rearranging
the terms in (127), we obtain

E[hi(λπ̄)] ≥− εϕ+ E[hi(λ̄)]

=− εϕ+ εϕ

=0. (128)

Hence proved.

E.2 Proof of Corollary 2

Proof. Recall the result in Eq. (31) and (125), we directly have

f(λ∗)− E[f(λπ̄)] ≤ 2ε (129)

Similarly, combine Eq. (30a) and (127), we have

E[hi(λπ̄)] ≥ −2ε (130)

Re-scaling ε to ε
2 finishes the proof.

Appendix F. Optimization Theory

Consider the standard optimization problem

fopt = min
x∈X
{f(x) : g(x) ≤ 0,Ax + b = 0} (131)

where A ∈ Rd∗n, b ∈ Rd, x ∈ Rn and g : Rn → Rm. Define the value function as

p(u, t) = min
x∈X
{f(x) : g(x) ≤ u,Ax + b = t} (132)

and the dual function as

q(y, z) = min
x∈X
{f(x) + yTg(x) + zT (Ax + b)},y ∈ Rm+ , z ∈ Rd (133)

Then the dual problem can be written as

qopt = max
y∈Rm+ ,z∈Rd

q(y, z) (134)
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Lemma 9. (Theorem 3.59 in (Beck, 2017)) (y,z) is an optimal solution of problem Eq.
(134) if and only if −(y, z) ∈ ∂p(0,0)

Theorem 4. (Theorem 3.60 in (Beck, 2017)) Let f,g be convex functions, X a nonempty
convex set, A ∈ Rd∗n and b ∈ Rd. Let fopt, qopt be the optimal values of the primal and
dual problems Eq. (131) and (134), respectively. Suppose that fopt = qopt and that the
optimal set of the dual problem is nonempty. Let (y∗, z∗) be the optimal solution of the dual
problem, Assume that x̃ ∈ X satisfies

f(x̃)− fopt + C1‖g(x̃)+‖∞ + C2‖Ax̃ + b‖1 ≤ δ (135)

where δ > 0 and C1, C2 are constants satisfying C1 ≥ 2‖y∗‖1, C2 ≥ 2‖z∗‖∞, then

f(x̃)− fopt ≤ δ

‖g(x̃)+‖∞ ≤
2δ

C1

‖Ax̃ + b‖1 ≤
2δ

C2

(136)

Proof. It is trivial that f(x̃)− fopt ≤ δ due to the fact that C1‖g(x̃)+‖∞ and C2‖Ax̃+b‖1
are both non-negative. Since (y∗, z∗) is the optimal solution for the dual problem, it follows
by Lemma 9 that −(y∗, z∗) ∈ (0,0). Therefore, for any (u, t) ∈ dom(p)

p(u, t)− p(0,0) ≥ 〈−y∗,u〉+ 〈−z∗, t〉 (137)

Plugging u = ũ := [g(x̃)]+ and t = t̃ := Ax̃ + b into Eq. (137), while using the inequality
p(ũ, t̃) ≤ f(x̃) and the equality p(0,0) = fopt, we obatin

(C1 − ‖y∗‖1)‖ũ‖∞ + (C2 − ‖z∗‖∞)‖t̃‖1 = −‖y∗‖1‖ũ‖∞ − ‖z∗‖∞‖t̃‖1 + C1‖ũ‖∞ + C2‖t̃‖1
≤ 〈−y∗, ũ〉+

〈
−z∗, t̃

〉
+ C1‖ũ‖∞ + C2‖t̃‖1

≤ p(ũ, t̃)− p(0,0) + C1‖ũ‖∞ + C2‖t̃‖1
≤ f(x̃)− fopt + C1‖ũ‖∞ + C2‖t̃‖1
≤ δ

(138)
It is clear that C1 − ‖y∗‖1 and C2 − ‖z∗‖∞ are both non-negative. Thus,

(C1 − ‖y∗‖1)‖ũ‖∞ ≤ δ
(C2 − ‖z∗‖∞)‖t̃‖1 ≤ δ

(139)

Finally, using the assumption C1 ≥ 2‖y∗‖1, C2 ≥ 2‖z∗‖∞

‖[g(x̃)+]‖∞ = ‖ũ‖∞ ≤
δ

C1 − ‖y‖1
≤ 2δ

C1

‖[Ax̃ + b]‖1 = ‖t̃‖1 ≤
δ

C2 − ‖z‖∞
≤ 2δ

C2

(140)
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