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Abstract

We study the problem of fair and efficient allocation of a set of indivisible goods to
agents with additive valuations using the popular fairness notions of envy-freeness up to one
good (EF1) and equitability up to one good (EQ1) in conjunction with Pareto-optimality
(PO). There exists a pseudo-polynomial time algorithm to compute an EF1+PO allocation
and a non-constructive proof of the existence of allocations that are both EF1 and frac-
tionally Pareto-optimal (fPO), which is a stronger notion than PO. We present a pseudo-
polynomial time algorithm to compute an EF1+fPO allocation, thereby improving the
earlier results. Our techniques also enable us to show that an EQ1+fPO allocation always
exists when the values are positive and that it can be computed in pseudo-polynomial time.

We also consider the class of k-ary instances where k is a constant, i.e., each agent has
at most k different values for the goods. For such instances, we show that an EF1+fPO
allocation can be computed in strongly polynomial time. When all values are positive,
we show that an EQ1+fPO allocation for such instances can be computed in strongly
polynomial time. Next, we consider instances where the number of agents is constant and
show that an EF1+PO (likewise, an EQ1+PO) allocation can be computed in polynomial
time. These results significantly extend the polynomial-time computability beyond the
known cases of binary or identical valuations.

We also design a polynomial-time algorithm that computes a Nash welfare maximizing
allocation when there are constantly many agents with constant many different values for
the goods. Finally, on the complexity side, we show that the problem of computing an
EF1+fPO allocation lies in the complexity class PLS.

1. Introduction

The problem of fair division was formally introduced by Steinhaus (1949) and has since been
extensively studied in various fields, including economics and computer science (Brams
& Taylor, 1996; Moulin, 2004). It concerns allocating resources to agents in a fair and
efficient manner and has various practical applications such as rent division, division of
inheritance, course allocation, and government auctions. Much of earlier work has focused
on divisible goods, which agents can share. In this setting, a prominent fairness notion is
envy-freeness (Foley, 1967; Varian, 1974), which requires that every agent prefer their own
bundle of goods to that of any other. On the other hand, when the goods are indivisible,
envy-free allocations need not even exist, e.g., in the simple case of one good and two
agents. Other classical notions of fairness, like equitability and proportionality, may also
be impossible to satisfy when goods are indivisible. However, fair division of indivisible
goods remains an important problem since goods cannot always be shared and because
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it models several practical scenarios such as a course allocation (Othman, Sandholm, &
Budish, 2010). We refer the reader to the recent surveys (Walsh, 2020; Amanatidis, Aziz,
Birmpas, Filos-Ratsikas, Li, Moulin, Voudouris, & Wu, 2023) for other applications and
recent results.

Since allocations satisfying standard fairness criteria fail to exist in the case of indivisible
goods, several weaker fairness notions have been defined. A relaxation of envy-freeness
called envy-freeness up to one good (EF1) was defined by Budish (2011). An allocation
is said to be EF1 if every agent prefers their own bundle over the bundle of any other
agent after removing at most one good from the other agent’s bundle. When the valuations
of the agents for the goods are monotone, EF1 allocations exist and are polynomial time
computable (Lipton, Markakis, Mossel, & Saberi, 2004).

The standard notion of economic efficiency is Pareto optimality (PO). An allocation is
said to be PO if no other allocation makes an agent better off without making someone
else worse off. A natural question is whether EF1 can be achieved with PO under additive
valuations, which is the valuation class we focus on in this work. The concept of Nash
welfare provides a positive answer to this question. The Nash welfare is the geometric
mean of the agents’ utilities, and the allocation maximizing it achieves a tradeoff between
efficiency and fairness. Caragiannis et al. (2016) showed that any maximum Nash welfare
(MNW) allocation is EF1 and PO. For the special case of binary additive valuations, the
MNW allocation can be computed in polynomial time (Darmann & Schauer, 2014; Barman
et al., 2018b; Halpern et al., 2020). However, in general, the problem of computing the
MNW allocation is APX-hard (Lee, 2015; Garg, Hoefer, & Mehlhorn, 2017). Moreover, it
is not known if approximately Nash-optimal allocations retain the EF1 fairness guarantee,
implying that approximation algorithms for MNW allocation, e.g., (Nguyen & Rothe, 2014;
Cole & Gkatzelis, 2015) may not be useful for computing an EF1+PO allocation.

By passing this barrier, Barman, Krishnamurthy, and Vaish (2018a) devised a pseudo-
polynomial time algorithm that computes an allocation that is both EF1 and PO. They also
showed that allocations that are both EF1 and fractionally Pareto-optimal (fPO) always
exist, where an allocation is said to be fPO if no fractional allocation exists that makes
an agent better off without making anyone else worse off. They showed this result via
a non-constructive convergence argument used in real analysis and did not provide an
algorithm for computing such an allocation. Clearly, fPO is a stronger notion of economic
efficiency, so the problem of computing EF1+fPO allocations is important. Another reason
to prefer fPO allocations over PO allocations in practice is that the former property admits
efficient verification, whereas checking if an allocation is PO is known to be coNP-complete
(de Keijzer, Bouveret, Klos, & Zhang, 2009). When a centralized entity is responsible for
the allocation, all participants can efficiently verify if an allocation is fPO (and thus PO).
However, in general, the same efficient verification is not possible for PO allocations due to
the above coNP-hardness.

In this paper, we present a pseudo-polynomial time algorithm that computes an allo-
cation that is EF1+fPO. Not only does this improve the result of Barman et al. (2018a),
but it also provides other interesting insights. We consider the class of k-ary instances. i.e.,
each agent has at most k different (agent-specific) values for the goods. Our analysis shows
that an EF1+fPO allocation can be found in polynomial time for k-ary instances when k
is a constant. Our result becomes especially interesting because computing the MNW allo-
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cation remains NP-hard for such instances (Lee, 2015), even for k = 3 (Amanatidis et al.,
2020). Further, at present, this is the only class apart from binary or identical valuations
for which EF1+fPO allocations are polynomial time computable.

While k-ary instances are interesting theoretically to understand the limits of tractability
in computing fair and efficient allocations, they are also relevant from a practical perspective.
Eliciting agents’ values for goods is often tricky, as agents may not be able to assert exactly
what values they have for different goods. A simple protocol that the entity in charge of the
allocation can do is to ask each agent to “rate” the goods using a few (constantly many)
values. Based on these responses, the valuations of the agents can be established.

Our results also extend to the fairness notion of Equitability up to one good (EQ1),
which is a generalization of the classical fairness notion of equitability. An allocation is said
to be EQ1 if the utility an agent gets from her bundle is no less than the utility any other
agent gets after removing one specific good from their bundle. Using similar techniques to
that of Barman et al. (2018a), a pseudo-polynomial time algorithm to compute an EQ1+PO
allocation was developed by Freeman, Sikdar, Vaish, and Xia (2019) when all the values are
positive. We show the stronger result that EQ1+fPO allocations always exist for positive-
valued instances and can be computed in pseudo-polynomial time. Our techniques also
show that for k-ary instances with positive values where k is a constant, an allocation that
is EQ1 and fPO can be computed in polynomial time.

We next show that for constant n, an EF1+PO allocation can be computed in time
polynomial in the number of goods. This result is significant since the number of agents
n is constant in many practical applications. In contrast, computing the MNW allocation
remains NP-hard for n = 2. Our techniques also show that for constant n, an EQ1+PO
allocation can also be computed in polynomial time.

Further, for k-ary instances with constant n and k, we show that many fair division
problems, including computing the MNW allocation, have polynomial time complexity.
This improves the result of Bliem, Bredereck, and Niedermeier (2016), showing that the
EF+PO problem is tractable in this case.

We also make progress on the complexity front. We prove that the problem of computing
an EF1+fPO lies in the complexity class Polynomial Local Search (PLS). For this, we
carefully analyze our algorithm computing an EF1+fPO allocation and show that it has
the structure of a local-search problem. Finally, we remark that our techniques also improve
the results of Chakraborty, Igarashi, Suksompong, and Zick (2020) and Freeman, Sikdar,
Vaish, and Xia (2020) for the problems of computing weighted-EF1+fPO allocations of
goods and EQ1+fPO allocations of chores, respectively.

We summarize our results in Table 1. A preliminary version of the present work appeared
at AAAI 2021 (Garg & Murhekar, 2021).

1.1 Related Work

Since the fair division literature is too vast, we refer the reader to surveys (Walsh, 2020;
Amanatidis et al., 2023) for results on other fairness notions like proportionality. Below,
we mention works related to fairness notions considered in this paper.

EF1+PO for goods. Barman et al. (2018a) devised a pseudo-polynomial time algo-
rithm that computes an allocation that is both EF1 and PO. This algorithm runs in time
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Instance type EF1+fPO EQ1+fPO∗

constant n poly(m) (Theorem 12) poly(m) (Theorem 13)

k-ary with constant k poly(m,n) (Theorem 5) poly(m,n) (Theorem 9)

general additive poly(n,m, vmax) (Theorem 4) poly(n,m, vmax) (Theorem 8)

Table 1: Best-known algorithm run-times for the EF1+fPO and EQ1+fPO problems clas-
sified according to instance type. Here n and m denote the number of agents and
goods, respectively, and vmax denotes the maximum utility value. Agents have ad-
ditive valuations. ∗Results for the EQ1+fPO problem apply to positive instances.

poly(n,m, vmax), where n is the number of agents, m is the number of items, and vmax is
the maximum utility value. Their algorithm first perturbs the values to a desirable form
and then computes an EF1 and fPO allocation for the perturbed instance. Their approach
is via integral market-equilibria, which guarantees fPO at every step. The spending of an
agent, which is the sum of prices of the goods she owns in the equilibrium, works as a
proxy for her utility. The returned allocation is approximately-EF1 and approximately-PO
for the original instance, which, for a fine enough approximation, is EF1 and PO. Our al-
gorithm proceeds similarly to their algorithm, with one main difference being that we do
not need to consider any approximate instance and can work directly with the given valu-
ations. Our algorithm returns an allocation that is not only PO but is fPO. Another key
difference is the run-time analysis: while their analysis relies on bounding the number of
steps using arguments about prices, our analysis is more direct and works with the values.
This allows us to prove a general result (Theorem 3), a consequence of which is polynomial
run-time for k-ary instances with constant k. Directly, such a conclusion cannot be drawn
from the analysis of Barman et al. (2018a). Another technical difference is that we raise
the prices of multiple components of least spenders simultaneously, unlike in Barman et al.
(2018a), and our analysis is arguably simpler than theirs. They also showed that there
is a non-deterministic algorithm that computes an EF1+fPO allocation since checking if
an allocation is fPO can be done efficiently. In contrast, we present a deterministic al-
gorithm computing an EF1+fPO allocation, albeit with worst-case pseudopolynomial run
time. Garg and Murhekar (2023) showed that allocations that are EFX (envy-free up to
the removal of any good) and fPO exist and can be computed in polynomial time for a
subclass of 2-ary instances called bivalued instances.

EF1+PO for chores. Recently, the existence of EF1+PO allocations of chores has been
shown for special classes, although the question of existence in its full generality remains
open. The existence and polynomial time computation of an EF1+fPO allocation for chores
is known for (i) Bivalued instances, shown by Garg, Murhekar, and Qin (2022) and Ebadian,
Peters, and Shah (2022) independently, (ii) two types of chores (Aziz, Lindsay, Ritossa, &
Suzuki, 2022), (iii) n = 3 agents (Garg, Murhekar, & Qin, 2023), and (iv) three types of
agents (Garg, Murhekar, & Qin, 2024).

EQ1+PO. Freeman et al. (2019) presented a pseudo-polynomial time algorithm for com-
puting an EQ1+PO allocation for instances with positive values. Since they consider an
approximate instance, too, their algorithm does not achieve the guarantee of fPO. They
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also show that the leximin solution, i.e., the allocation that maximizes the minimum utility
and, subject to this, maximizes the second minimum utility, and so on, is EQX (a stronger
requirement than EQ1) and PO for positive utilities. However, a simple reduction from
the partition problem shows that computing a leximin solution is intractable. For positive
bivalued instances, Garg and Murhekar (2023) showed that an EQX+fPO allocation can
be computed in polynomial time. For chores, (Freeman et al., 2020) showed that EQ1+PO
allocations can be computed in pseudo-polynomial time.

Other results. Bredereck et al. (2019) presented a framework for fixed-parameter algo-
rithms for many fairness concepts, including EF1+PO, parameterized by n + vmax. Our
results improve their findings and show that the problem has polynomial time complexity
for the cases of (i) constant n, (ii) constant number of utility values, (iii) vmax bounded by
poly(m,n).

2. Preliminaries

Let N+ denote the set of positive integers. For t ∈ N+, let [t] denote {1, . . . , t}.

Problem setting. A fair division instance is a tuple (N,M, V ), where N = [n] is a set
of n ∈ N+ agents, M = [m] is the set of m ∈ N+ indivisible items, and V = {v1, . . . , vn}
is a set of utility functions, one for each agent i ∈ N . Each utility function vi : M → N+

is additive and is specified by m numbers vij ∈ N, one for each good j ∈ M , denoting the
value agent i has for good j. Additivity of the valuation functions implies that for every
agent i ∈ N , and S ⊆ M , vi(S) =

∑
j∈S vij . Further, we assume that for every good j,

there is some agent i such that vij > 0. Otherwise, the good j for which vij = 0 for all i
can be assigned to any agent arbitrarily. Note that we can in general work with rational
values since they can be scaled to make them integral.

We call a fair division instance (N,M, V ) a:

1. Binary instance if for all i ∈ N and j ∈M , vij ∈ {0, 1}.

2. k-ary instance, if ∀i ∈ N , |{vij : j ∈M}| ≤ k.

3. Positive-valued instance if ∀i ∈ N , ∀j ∈M , vij > 0.

Note that the class of k-ary instances generalizes the class of k-valued instances as defined
by Amanatidis et al. (2020), in which all the values belong to a k-sized set, whereas we
allow each agent to have k different values for the goods.

Allocation. An allocation x of goods to agents is a n-partition of the goods x1, . . . ,xn,
where agent i is allotted xi ⊆ M , and gets a total value of vi(xi). A fractional allocation
x ∈ [0, 1]n×m is a fractional assignment such that for each good j ∈M ,

∑
i∈N xij ≤ 1. Here,

xij ∈ [0, 1] denotes the fraction of good j allotted to agent i.
For an agent i ∈ N , let Ui be the number of different utility values i can get in any

allocation. Let U = maxi∈N Ui.

Fairness notions. An allocation x is said to be:

1. Envy-free up to one good (EF1) if for all i, h ∈ N , there exists a good j ∈ xh s.t.
vi(xi) ≥ vi(xh \ {j}).
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2. Equitable up to one good (EQ1) if for all i, h ∈ N , there exists a good j ∈ xh s.t.
vi(xi) ≥ vh(xh \ {j}).

Pareto-optimality. An allocation y dominates an allocation x if vi(yi) ≥ vi(xi),∀i and
there exists h s.t. vh(yh) > vh(xh). An allocation is said to be Pareto optimal (PO) if no
allocation dominates it. Further, an allocation is said to be fractionally PO (fPO) if no
fractional allocation dominates it. Thus, an fPO allocation is PO, but not vice-versa.

We remark that the EF1 and PO/fPO properties are scale-invariant. That is, if an
allocation x is EF1+fPO for an instance I, then x is also EF1+fPO for an instance I ′

where the valuation function of any agent i is multiplied by a positive constant λi, i.e.,
v′ij = λi · vij for every i ∈ N and j ∈M .

Maximum Nash Welfare. The Nash welfare of an allocation x is given by NW(x) =(
Πi∈Nvi(xi)

)1/n
. An allocation that maximizes the NW is called an MNW allocation.

Fisher markets. A Fisher market or a market instance is a tuple (N,M, V, e), where the
first three terms are interpreted as before, and e = {e1, . . . , en} is the set of agents’ budgets,
where ei ≥ 0, for each i ∈ N . In this model, goods can be allocated fractionally. Given
prices p = (p1, . . . , pm) of goods, each agent aims to obtain the set of goods that maximizes
her total value subject to her budget constraint.

A market outcome is a (fractional) allocation x of the goods to the agents and a set
of prices p. The spending of an agent i under the market outcome (x,p) is given by
p(xi) =

∑
j∈M pjxij . For an agent i, we define the bang-per-buck ratio αij of good j as

vij/pj , and the maximum bang-per-buck (MBB) ratio αi = maxj αij . We define MBBi =
{j ∈ M : vij/pj = αi}, called the MBB-set, to be the set of goods that give MBB to agent
i at prices p. A market outcome (x,p) is said to be ‘on MBB’ if for all agents i and goods
j, xij > 0 implies j ∈ MBBi. For integral x, this means xi ⊆ MBBi for all i ∈ N .

A market outcome (x,p) is said to be a market equilibrium if:

(i) the market clears, i.e., all goods are fully allocated. Thus, for all j,
∑

i∈N xij = 1,

(ii) budget of all agents is exhausted, for all i ∈ N ,
∑

j∈M xijpj = ei, and

(iii) agents only spend money on goods that give them maximum bang-per-buck, i.e., (x,p)
is on MBB.

Given a market outcome (x,p) with x integral, we say it is price envy-free up to one
good (pEF1) if for all i, h ∈ N there is a good j ∈ xh such that p(xi) ≥ p(xh \ {j}). For
integral market outcomes on MBB, the pEF1 condition implies the EF1 condition.

Lemma 1. Let (x,p) be an integral market outcome on MBB. If (x,p) is pEF1 then x is
EF1 and fPO.

Proof. We first show that (x,p) forms a market equilibrium for the Fisher market instance
(N,M, V, e), where for every i ∈ N , ei = p(xi). It is easy to see that the market clears and
the budget of every agent is exhausted. Further, x is on MBB as per our assumption. Now
the fact that x is fPO follows from the First Welfare Theorem (Mas-Colell, Whinston, &
Green, 1995), which shows that for any market equilibrium (x,p), the allocation x is fPO.
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Since (x,p) is pEF1, for all pairs of agents i, h ∈ N , there is some good j ∈ xh s.t.
p(xi) ≥ p(xh \ {j}). Since (x,p) is on MBB, xi ⊆ MBBi. Let αi be the MBB-ratio of i
at the prices p. By definition of MBB, vi(xi) = αip(xi), and vi(xh \ {j}) ≤ αip(xh \ {j}).
Combining these, we get that x is EF1.

Lemma 1 suggests that in order to obtain an EF1+PO allocation, it suffices to compute
an integral market outcome (x,p) that is pEF1. In an outcome (x,p), we call an agent i
with minimum p(xi) a least spender (LS) agent. If an outcome (x,p) is not pEF1, then
there must be an agent h such that any LS i pEF1-envies h. That is, p(xh \ {j}) > p(xi),
for every j ∈ xh and any LS i. We call such an agent h a pEF1-violator in (x,p).

Given a price vector p, we define the MBB graph to be the bipartite graph G =
(N,M,E) where for an agent i and good j, (i, j) ∈ E iff j ∈ MBBi. Such edges are called
MBB edges. Given an accompanying allocation x, we supplement G to include allocation
edges, an edge between i and j if j ∈ xi.

For agents i0, . . . , iℓ and goods j1, . . . , jℓ, a path P = (i0, j1, i1, j2, . . . , jℓ, iℓ) in the MBB
graph, where for all 1 ≤ ℓ′ ≤ ℓ, jℓ′ ∈ xiℓ′ ∩MBBiℓ′−1

, is called a special path. We define the
level λ(h; i0) of an agent h w.r.t. i0 to be half the length of the shortest special path from i0
to h, and to be n if no such path exists. A path P = (i0, j1, i1, j2, . . . , jℓ, iℓ) is an alternating
path if it is special, and if λ(i0; i0) < λ(i1; i0) < · · · < λ(iℓ; i0), i.e., the path visits agents in
increasing order of their level w.r.t. i0. Further, the edges in an alternating path alternate
between allocation and MBB edges. Typically, we consider alternating paths starting from
a least spender (LS) agent. We use alternating paths to reduce the pEF1-envy of agent i
towards agent h by transferring goods along the alternating path (i0, j1, i1, j2, . . . , jℓ, iℓ), i.e.,
by transferring jℓ to iℓ−1, etc. The structure of an alternating path ensures that transfers
are done along MBB edges, implying that resulting allocations remain on MBB and hence
preserve the fPO property of the allocation. Figure 1 provides an example of an alternating
path from agent i0 to agent i3 involving agents i1 and i2 and goods j1, j2, and j3.

Figure 1: Example of an alternating path

Definition 1 (Component Ci of a least spender i). For a least spender i, define Cℓ
i as the

set of all goods and agents that lie on alternating paths of length ℓ. Call Ci =
⋃

ℓC
ℓ
i the

component of i, the set of all goods and agents reachable from the least spender i through
alternating paths.

We now illustrate the terms introduced in the above definitions through an example.

Example 1. Consider a fair division instance (N,M, V ) with three agents {a1, a2, a3} and
five goods {g1, . . . , g5}. The values are given by:

Consider the allocation x given by x1 = {g1, g2},x2 = {g3, g4},x3 = {g5} with associated
price vector p = (6, 4, 2, 5, 2) defining the prices of the goods. The agents spending are given
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g1 g2 g3 g4 g5
a1 6 4 0 0 0
a2 0 4 2 5 0
a3 4 3 1 4 2

Table 2: A fair division instance

by p(x1) = 10, p(x2) = 7, and p(x3) = 2. It can be checked that the MBB ratios of all
agents are one and that the allocation is on MBB. Figure 2 describes the MBB graph
associated with the allocation (x,p). In the graph, (a2, g2, a1) is an alternating path. The
least spender (LS) is a3. The component of the LS is the agent a3 and the good g5.

Figure 2: An allocation (x,p) and the associated MBB graph

3. Finding EF1+fPO Allocations of Goods

We now present the main algorithm of our paper. We show that given a fair division instance
(N,M, V ), Algorithm 1 returns an allocation x that is EF1 and fPO and terminates in time
poly(n,m,U). Recall that U denotes the maximum number of distinct utility values an
agent can achieve in any allocation.

Algorithm 1 starts with a welfare maximizing integral allocation (x,p), where pj = vij
for j ∈ xi. If the allocation x is not EF1, then the outcome (x,p) cannot be pEF1.
Thus, there must exist a pEF1-violator agent. Our algorithm aims to reduce pEF1-envy
by transferring goods away from such pEF1-violator agents. Let L denote the set of least
spenders. We first explore if a pEF1-violator is reachable via alternating paths starting from
some least spender (LS), i.e., belongs to the component Ci of some LS i. If not, then we
raise the prices of all goods in CL, the union of components of all least spenders, until either
(i) a new MBB edge gets added from an agent h ∈ CL to a good j /∈ CL (corresponding to
a price-rise of γ1), or (ii) the spending of an agent h /∈ CL becomes equal to the spending
of the agents in L, i.e., a new agent becomes an LS (corresponding to a price-rise of γ2).

Otherwise, we choose the minimum-index least spender i whose component Ci contains
a pEF1-violator. We find an alternating path P = (i, j1, i1, . . . , jℓ, iℓ = h), from i to a
pEF1-violator h, and it must be the case that p(xh \ {jℓ}) > p(xi). We then transfer the
good jℓ from h to iℓ−1. The choice of the minimum-index LS is to break ties among all LSs
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Algorithm 1 Computing an EF1+fPO allocation of goods

Input: Fair division instance (N,M, V )
Output: An integral EF1+PO allocation x

1: (x,p)← Initial welfare maximizing integral market allocation, where pj = vij for j ∈ xi.
2: while (x,p) is not pEF1 do
3: L← {k ∈ N : k ∈ argminh∈N p(xh)} ▷ set of LS
4: if for all i ∈ L, there is no pEF1-violator in Ci then ▷ Perform price-rise step
5: γ1 = minh∈CL∩N,j∈M\CL

αh
vhj/pj

▷ Factor by which prices of goods in CL are

raised until a new MBB edge appears from an agent in CL to a good outside CL

6: γ2 = mini∈L,h∈N\CL

p(xh)
p(xi)

▷ Factor by which prices of goods in CL are raised
until a new agent outside CL becomes a new LS

7: β = min(γ1, γ2) ▷ Prise rise factor
8: for j ∈ CL ∩M do ▷ Raise prices of goods in CL

9: pj ← βpj

10: else ▷ Perform transfer step
11: i← min{k ∈ L : there is a pEF1-violator in Ck} ▷ LS with smallest index
12: Let (i, j1, i1, . . . , iℓ−1, jℓ, iℓ) be an alternating path from i to pEF1-violator iℓ
13: Transfer jℓ from iℓ to iℓ−1

return x

whose component contains a pEF1-violator. This ensures that there are no back-to-back
transfers, where good j transferred from agent h to h′ via an alternating path starting from
LS i and immediately in the next step from h′ to h via an alternating path starting from
another LS i′, as our algorithm will only choose one LS min{i, i′}. Moreover, this ensures
that while the component Ci contains pEF1-violators for the minimum-index LS i, we only
perform transfers from the pEF1-violators in Ci.

Our algorithm repeatedly performs either price-rise steps or transfer steps until the
outcome (x,p) becomes pEF1. Before showing that the algorithm always terminates and
analyzing its run-time, we illustrate its execution through an example.

Example 2. (Algorithm execution) We revisit the instance in Example 1, and begin with
welfare maximizing allocation described in Example 1, i.e., (x,p) where x1 = {g1, g2},x2 =
{g3, g4},x3 = {g5} and p = (6, 4, 2, 5, 2). Allocation x is not EF1 since v3(x3) = 2 <
3 = v3(x1 \ g1). Indeed, (x,p) is not pEF1 either, with a3 pEF1-envying a1, i.e., a1 is a
pEF1-violator. Since there is no alternating path from a3 (the least spender) to a1 (pEF1-
violator), Algorithm 1 increases the price of g5. A new MBB edge appears from a3 to g4
on a price-rise factor of γ1 = v35/p5

v34/p4
= 1.25, and a new LS appears on a price-rise factor of

γ2 = p(x2)/p(x3) = 3.5. Thus, the price of g5 will be raised by γ = min(γ1, γ2) = 1.25, i.e.,
the new price is p5 = 2.5, and there an MBB edge from a3 to g4 is now present.

Since the allocation is not yet pEF1, Algorithm 1 checks if a pEF1-violator (a3) belongs
to the component of an LS (a1). Since this is the case, Algorithm 1 identifies the shortest
alternating path (a3, g4, a2, g2, a1) and makes the transfer of g2 from a1 to a2. The new
allocation is now x′ given by x′

1 = {g1},x′
2 = {g2, g3, g4},x′

3 = {g5}. Since the allocation
is still not pEF1 as a3 pEF1-envies a2, the algorithm transfers g4 from the pEF1-violator

9
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a2 to a3. This results in the allocation x′′ given by x′′
1 = {g1},x′′

2 = {g2, g3},x′′
3 = {g4, g5},

which is pEF1, and thus Algorithm 1 terminates with an EF1+PO allocation.

We now proceed to analyze the run-time of the Algorithm 1. We will use the terms
time-step or iteration interchangeably to denote either a transfer or a price-rise step. We
say ‘at time-step t’ to refer to the state of the algorithm just before the event at t happens.
We denote by (xt,pt) the allocation and price vector at time-step t. First, we note that:

Lemma 2. At any time-step t, (xt,pt) is on MBB.

Proof. We want to show that at every iteration of the algorithm, every agent owns goods
from their MBB set. To see this, notice that this is the case in the algorithm’s initial
allocation in Line 1. Suppose we assume inductively that at iteration t, in the corresponding
allocation x, every agent buys MBB goods. We ensure that the goods are transferred along
MBB edges, and thus, no transfer step causes the MBB condition of any agent to be violated.
Consider a price-rise step, in which the prices of all goods in CL, the component of the least
spenders L, are increased by a factor of β. Since prices of these goods are raised, no agent
h /∈ CL prefers these goods over their own goods, and hence, they continue to own goods
from their MBB set. For any agent h ∈ CL and a good j /∈ CL, the bang-per-buck that
j gets from h before the price-rise is strictly less than her MBB ratio since j is not in the
MBB set of h. Further, we never raise these prices beyond the creation of a new MBB edge
from any agent h ∈ CL to some agent j ∈ CL. Thus, the MBB condition is not violated for
any agent h ∈ CL.

In conclusion, the MBB condition is never violated for any agent throughout the algo-
rithm, so the allocation is always on MBB.

If Algorithm 1 terminates, then the final outcome (x,p) is pEF1. Since it is also on
MBB, by Lemma 1, x is EF1+fPO. We now proceed towards the run-time analysis of
Algorithm 1. First, we observe that prices are raised only until the spending of a new agent
becomes equal to the spending of the least spenders.

Lemma 3. The spending of the least spender(s) does not decrease as the algorithm pro-
gresses. Further, at any price-rise event t with price-rise factor β, the spending of the least
spender(s) increases by a factor of β.

Proof. The spending of a least spender can decrease if the least spender loses a good. This
cannot happen since the only agents who lose goods are pEF1-violators, whose spending
after removing one good exceeds that of the least spender. Moreover, if a good j is trans-
ferred from a pEF1-violator h directly to a LS i, then we have p(xh \ {j}) > p(xi). Thus,
even if h becomes a new LS after the transfer, the spending of the LS has only increased.
Finally, note that in a price-rise step with price-rise factor β, the prices of all goods in CL

are increased by a factor of β. Thus, the spending of every agent in CL, including the least
spenders, increases by a factor of β.

Next, we argue:

Lemma 4. The number of iterations with the same set of least spenders is poly(m,n).
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Proof. Let us fix a set L of least spenders. We first argue that there can be at most n price-
rise steps without any change in L. This is because of the following. Since L is unchanged,
every price-rise step can only create a new MBB edge since a new LS will change L. Thus,
each price-rise step causes a new agent to be added to CL. Since there are at most n agents
outside CL at any given iteration, there can only be n price-rise steps.

We now argue that the number of transfer steps with the same set of LS between any two
price steps is at most poly(m,n). Recall that our algorithm always uses the minimum-index
least spender whose component contains a pEF1-violator. Because of this, all transfers are
performed in a component Ci before moving to another component Cℓ, for agents i, ℓ ∈ L
with i < ℓ. Thus, if a transfer from a pEF1-violator agent h to LS ℓ is performed, then h
can not be in Ci at the time of transfer. (Barman et al., 2018a) used a potential function
argument to show that the number of consecutive transfer steps with a fixed LS agent is
at most m · n2. Thus, with our observation above, we can conclude that the number of
consecutive transfers with the same set of LS is at most m · n3 = poly(m,n).

The next lemma is key. We argue that between the time steps at which an agent i ceases
to be an LS and subsequently becomes an LS again, her utility strictly increases.

Lemma 5. Let t0 be a time-step where agent i ceases to be an LS, and let tℓ be the first
subsequent time step just after which i becomes the LS again. Then:

vi(x
tℓ+1
i ) > vi(x

t0
i )

Note here that vi(x
t0
i ) is the utility of agent i just before time-step t0, and vi(x

tℓ+1
i ) her

utility just after time-step tℓ.

Proof. From Lemma 3, since i ceases to be an LS after time-step t0, i must have received
some good j at time step t0. Since j ∈ MBBi at t0, vij > 0. Suppose i does not lose any
good in any subsequent iterations until tℓ, then xtℓ+1

i ⊇ xt0
i ∪ {j}, and hence vi(x

tℓ+1
i ) ≥

vi(x
t0
i ∪ {j}) = vi(x

t0
i ) + vij > vi(x

t0
i ), using additivity of valuations.

On the other hand, suppose i does lose some goods between t0 and tℓ. Let tk ∈ (t0, tℓ]
be the last time-step when i loses a good, say j′. Let t1, . . . , tk−1 be time-steps (in order)
between t0 and tk when i experiences price-rise, and tk+1, . . . , tℓ−1 be time-steps (in order)
between tk and tℓ when i experiences price-rise, until finally after the iteration tℓ agent i
becomes the LS again. Let us define βt to be the price-rise factor at the time-step t. If t is a
price-rise step, βt > 1, else we set βt = 1. Hence βt1 , . . . , βtk−1

, βtk+1
, . . . , βtℓ−1

are price-rise
factors at the corresponding events t1, . . . , tk−1, tk+1, . . . , tℓ−1 and are all greater than 1. If
tℓ is a price-rise event, let the price-rise factor be βtℓ > 1; and if not let βtℓ = 1. Note that
tk is not a price-rise event; hence, βtk = 1.

Using Lemma 3, together with the fact that i does not lose any good after tk, we have:

ptℓ+1(xtℓ+1
i ) ≥ (βtℓβtℓ−1

· · ·βtk+1
)ptk(xtk

i \ {j
′}). (1)

The above may not be equality because in addition to experiencing price-rises during
tk+1, . . . , tℓ, agent i may also gain some new good. If ik is a LS at tk, then for agent i
to lose the good j′ it must be the case that:

ptk(xtk
i \ {j

′}) > ptk(xtk
ik
). (2)

11
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Let it be a LS at time-step t. Then by repeatedly applying Lemma 3, we get:

ptk(xtk
ik
) ≥ βtk−1p

tk−1(xtk−1
itk−1

)

≥ · · · ≥ (βtk−1βtk−2 · · ·β1)pt0(xt0
it0
)

≥ (βtk−1
βtk−2

· · ·βt1)pt0(xt0
i ) ,

(3)

where the last transition follows from the facts that (i) each βt ≥ 1, (ii) {t1, . . . , tk−1} ⊆
{1, . . . , tk − 1}, and (iii) it0 = i since i is a least spender at t0. Putting (1), (2) and (3)
together, we get:

ptℓ+1(xtℓ+1
i ) > (Πℓ

r=1βtr)p
t0(xt0

i ) . (4)

Let αt
i denote the MBB-ratio of i at the time step t. Observe that in every price-rise event

with price-rise factor β, the MBB ratio of any agent experiencing the price-rise decreases by
β. Further, the MBB ratio of any agent does not change unless she experiences a price-rise
step. Thus:

αtℓ+1
i =

αt0
i

(βtℓβtℓ−1
· · ·βtk+1

)(βtk−1
βtk−2

· · ·βt1)
. (5)

Therefore, using the fact that the allocation is on MBB edges, and with (4) and (5), we
have:

vi(x
tℓ+1
i ) = αtℓ+1

i ptℓ+1(xtℓ+1
i ) (xtℓ+1 is on MBB)

>
αt0
i

(Πℓ
r=1βtr)

(Πℓ
r=1βtr)p

t0(xt0
i )(From (4) and (5))

= αt0
i p

t0(xt0
i ) = vi(x

t0
i ), (xt0 is on MBB)

as claimed.

Using the above lemmas, we show:

Lemma 6. Algorithm 1 terminates in time poly(n,m,U).

Proof. Consider any agent i. From Lemma 5, it is clear that every time i becomes the LS
again her utility has strictly increased compared to her utility the last time she was an LS.
The number of utility values that i can have is Ui; hence, we conclude that the number
of times she stops being an LS and becomes LS again is at most Ui. Since there are n
agents, and each agent i can become the LS again at most Ui times, we have that after
poly(n,maxi∈N Ui) changes in the set of least spenders, there will be no changes further in
the set of least spenders. After this, in at most n more price-rise steps, either the allocation
becomes pEF1, or all agents get added to CL since no new agent becomes an LS on raising
prices. Further, the number of transfers with the same set of least spenders is at most
poly(m,n) (Lemma 4). This shows that Algorithm 1 terminates in time poly(n,m,U).

Putting it all together, we conclude:

Theorem 3. Let I = (N,M, V ) be a fair division instance. Then, an allocation that is
both EF1 and fPO can be computed in time poly(n,m,U).
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Observe that in any allocation and for any agent, the minimum utility is 0, and the
maximum utility is mvmax, where vmax = maxi,j vij . Since the utility values are integral,
we have U ≤ mvmax + 1. Thus, Algorithm 1 computes an EF1+fPO allocation in pseudo-
polynomial time.

Theorem 4. Given a fair division instance I = (N,M, V ), an allocation that is both EF1
and fPO can be computed in time poly(n,m, vmax), where vmax = maxi,j vij. In particular,
when vmax ≤ poly(m,n), an EF1+fPO allocation can be computed in poly(m,n) time.

The guarantee of EF1+fPO offered by our algorithm is stronger than the guarantee of
EF1+PO provided by the algorithm of Barman et al. (2018a). We next turn our attention
to k-ary instances where k is a constant. First, we observe that for such instances, the
maximum number of different utility values any agent can get is at most poly(m).

Lemma 7. In a k-ary fair division instance (N,M, V ) with constant k, U ≤ poly(m).

Proof. For any agent i, let {vℓi}ℓ∈[k] be the different utility values i has for the goods. In

an allocation x, let mℓ
i ∈ Z≥0 be the number of goods in xi with value vℓi . Then, agent

i’s utility is simply: vi(xi) = m1
i v

1
i + · · · +mk

i v
k
i . Since each 0 ≤ mℓ

i ≤ m, the number of
possible utility values that i can get in any allocation is at most (m+1)k, which is poly(m)
since k is constant. Thus U ≤ poly(m).

Therefore, using Lemma 7, Theorem 3 gives:

Theorem 5. Given a k-ary fair division instance I = (N,M, V ) where k is a constant, an
allocation that is both EF1 and fPO can be computed in time poly(m,n).

Remark 6. We note that our techniques can also be used to show that an allocation that
is weighted-EF1 (wEF1) and fPO exists and can be computed in pseudo-polynomial time.

Here, an allocation x is wEF1 if for all agents i, h we have vi(xi)
wi
≥ vi(xh\j)

wh
for some j ∈ xh,

where wk denotes the weight of agent k. We can modify Algorithm 1 for the weighted setting
by considering weighted-LS instead of LS, as the agents with minimum p(xi)

wi
, and performing

transfer from agent h if it violates weighted-pEF1, i.e., if p(xh\j)
wh

> p(xi)
wi

for every j ∈ xh

and a weighted-LS i. Lemmas 2 and 4 still hold as before. Lemma 3 holds with weighted-
spending instead of spending. With these modifications, the key Lemma 5 can be shown as
before, thus implying pseudo-polynomial run time for computing an EF1+fPO allocation in
the weighted case as well.

4. Finding EQ1+fPO Allocations of Goods

We now show that Algorithm 2 finds an EQ1+fPO allocation given a fair division instance
with positive values. We require the values to be positive because instances with zero values
might not even admit an allocation that is EQ1+PO (Freeman et al., 2019). Algorithm 2
is similar to Algorithm 1, except that it works with values instead of spendings of agents
since we desire EQ1 allocations instead of EF1.

Algorithm 2 starts with a welfare maximizing integral allocation (x,p), where pj = vij
for j ∈ xi. We refer to an agent with the least utility as an LU agent and let L be the
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Algorithm 2 Computing an EQ1+fPO allocation of goods

Input: Positive-valued fair division instance (N,M, V )
Output: An integral EQ1+PO allocation x

1: (x,p)← Initial welfare maximizing integral market allocation, where pj = vij for j ∈ xi.
2: while x is not EQ1 do
3: L← {i ∈ N : i ∈ argminh∈Nvh(xh)} ▷ set of LU agents
4: if for all i ∈ L, there is no EQ1-violator in Ci then ▷ Perform price-rise step
5: β = minh∈CL∩N,j∈M\CL

αh
vhj/pj

▷ Factor by which prices of goods in CL are

raised until a new MBB edge appears from an agent in CL to a good outside CL

6: for j ∈ CL ∩M do
7: pj ← βpj

8: else ▷ Perform transfer step
9: i← min{k ∈ L : there is an EQ1-violator in Ck} ▷ LU with smallest index

10: Let (i, j1, i1, . . . , iℓ−1, jℓ, iℓ) be an alternating path from i to EQ1-violator iℓ
11: Transfer jℓ from iℓ to iℓ−1

return x

set of LU agents. If the allocation x is not EQ1, then exist an EQ1-violator agent h, i.e.,
vh(xh \ {j}) > vi(xi), for any j ∈ xh and any LU agent i. Similar to Algorithm 1, we first
explore if such an EQ1-violator belongs to the component Ci of some LU agent i. If not, we
raise the prices of all goods in CL until a new MBB edge gets added from an agent h ∈ CL

to a good j /∈ CL.
Otherwise, we choose a minimum-index LU agent i whose component Ci contains an

EQ1-violator. We find an alternating path P = (i, j1, i1, . . . , jℓ, iℓ = h), from i to a EQ1-
violator h, and it must be the case that v(xh \ {jℓ}) > v(xi). We then transfer the good jℓ
from h to iℓ−1.

Thus, the algorithm performs price-rise or transfer steps while the allocation is not EQ1.
If the algorithm terminates, the allocation must be EQ1 (Line 2). By arguments similar
to Lemma 2, we can show that the outcome throughout the execution of the algorithm is
always on MBB and hence is fPO.

We now prove that the algorithm terminates. Similar to Lemma 3, we can argue that
the utility of the LU agents(s) does not decrease in the algorithm’s run. Further, similar to
Lemma 5, we can show the following key lemma:

Lemma 8. Let t0 be a time-step where agent i ceases to be an LU agent, and let tℓ be the
first subsequent time step just after which i becomes the LU agent again. Then:

vi(x
tℓ+1
i ) > vi(x

t0
i ).

Proof. From Lemma 3, i must have received some good j at time step t0. Since j ∈ MBBi

at t0, vij > 0. Suppose i does not lose any good in any subsequent iterations, then xtℓ+1
i ⊇

xt0
i ∪{j}, and hence vi(x

tℓ+1
i ) > vi(x

t0
i ). On the other hand, suppose i does lose some goods.

Let tk ∈ (t0, tℓ] be a subsequent time step where i loses a good j′ for the last time. Since i
does not lose any good after tk, we have:

vi(x
tℓ+1
i ) ≥ vi(x

tk
i \ {j

′}). (6)
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If ik is a LU at tk, then for i to lose j′ it must be that:

vi(x
tk
i \ {j

′}) > vitk (x
tk
ik
). (7)

Finally, since the utility of an LU agent does not decrease:

vitk (x
tk
ik
) ≥ vi(x

t0
i ). (8)

Putting (6), (7) and (8) together, we get:

vi(x
tℓ+1
i ) > vi(x

t0
i )

as required.

Using the above, as argued in Lemma 6, we can show:

Lemma 9. Algorithm 2 terminates in time poly(n,m,U).

Proof. Consider any agent i. From Lemma 8, it is clear that every time an agent i becomes
a LU agent again, her utility has strictly increased compared to her utility the last time she
was a LU agent. The number of utility values that i can have is Ui, and hence we conclude
that the number of times she stops being an LU agent and becomes an LU agent again is
at most Ui. Since there are n agents, and each agent i can become the LU agent again at
most Ui times, we have that after poly(n,maxi∈N Ui) changes in the set of LU agents, there
will be no changes further in the set of LU agents. Further, using an analysis similar to
Lemma 4, we can show that the number of transfers with the same set of LU agents is at
most poly(m,n). This shows that Algorithm 1 terminates in time poly(n,m,U).

We conclude:

Theorem 7. Let I = (N,M, V ) be a positive-valued fair division instance. Then, an
allocation that is both EQ1 and fPO can be computed in time poly(n,m,U).

As argued before, we have U ≤ mvmax + 1. This gives:

Theorem 8. Given a fair division instance I = (N,M, V ), an allocation that is EQ1 and
fPO can be computed in time poly(n,m, vmax), where vmax = maxi,j vij. In particular, when
vmax ≤ poly(m,n), an EQ1+fPO allocation can be computed in poly(m,n) time.

Finally using Lemma 7, Theorem 7 becomes:

Theorem 9. Given a k-ary fair division instance I = (N,M, V ) where k is a constant, an
allocation that is EQ1 and fPO can be computed in time poly(m,n).

Remark 10. We remark that our techniques can be used to show that EQ1+fPO allocations
of chores can be computed in pseudo-polynomial time and in polynomial-time for k-ary
instances with constant k. In the chores model, agent i incur a cost or disutility cij ≥ 0 on
being assigned the chore j. For chores, an allocation x is said to be EQ1 if for all agents i, h,
there exists a chore j ∈ xi s.t. ci(xi \{j}) ≤ ch(xh). Note that while comparing bundles, an
agent removes a chore from her own bundle in the case of chores, while an agent removes a
good from other’s bundle in the case of goods. To obtain an EQ1+fPO allocation of chores,
Algorithm 2 can be modified to perform transfers from an EQ1-violator agent h, where
ch(xh \ j) > ci(xi) for every j ∈ xh and a least disutility agent i. The convergence analysis
for this modification of the algorithm for chores is similar to that of Algorithm 2. We also
note that in general, the existence of EF1+PO allocations of chores is open.
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5. Finding EF1+PO Allocations for Constant n

In this section, we show how to compute an EF1+PO allocation in polynomial time when
n, the number of agents, is a constant. Our algorithm relies on the fact that there exists an
EF1+fPO allocation for every instance and thus aims to find such an allocation by effectively
enumerating over all fPO allocations. For constant n, we argue that this enumeration
takes time poly(m). We borrow some terminology from (Brânzei & Sandomirskiy, 2019) to
describe this enumeration technique.

Given a fractional allocation z, the consumption graph Gz is defined to be a bipartite
graph (N,M,E), where (i, j) ∈ E iff zij > 0. Let P = (i1, j1, i2, j2, . . . , iK , jK , iK+1), be
a path in a consumption graph (N,M), where K ≥ 1, and vij > 0 for any (i, j) ∈ P . We
define the product of utilities along P as:

π(P ) =

K∏
k=1

vikjk
vik+1jk

. (9)

When iK+1 = i1, P is a cycle. We now characterize fPO allocations based on the properties
of their associated consumption graphs.

Lemma 10 (Brânzei and Sandomirskiy (2019)). An allocation z is fPO iff for every cycle
C in its consumption graph, π(C) = 1.

Proof. (sketch) See Corollary 16 of (Brânzei & Sandomirskiy, 2019) for the full proof. In-
tuitively, if π(C) > 1, then transferring small amounts of goods along the cycle will result
in an allocation z′, which is a Pareto-improvement over z, contradicting the fact that z is
fPO. Likewise, if π(C) < 1, performing the transfer in the opposite order results in a Pareto
improvement.

Thus, the existence of cycles C in a consumption graph of an allocation with π(C)
depends on algebraic properties of the (non-zero) values vij of the instance. This moti-
vates the definition of non-degenerate instance as an instance where the values vij share no
multiplicative relationship. Formally:

Definition 2 (Non-degenerate instance). A fair division instance I = (N,M, V ) is said
to be non-degenerate if for every path P = (i1, j1, i2, j2, . . . , iK , jK , iK+1), in the complete
bipartite graph (N,M), where K ≥ 1, and vij > 0 for any (i, j) ∈ P , it holds that π(P ) ̸= 1.

For an allocation z, let u(z) ∈ Rn be the corresponding utility vector, where u(z)i =
vi(zi) for each i ∈ N . Brânzei and Sandomirskiy (2019) showed that for each fPO utility
vector u of a non-degenerate instance, there is a unique feasible (fractional) allocation z such
that u(z) = u. Brânzei and Sandomirskiy (2019) showed how to enumerate fPO allocations
using the following definition.

Definition 3 (Rich family of graphs). A collection of bipartite graphs G is said to be rich
for a given instance (N,M, V ) if for any fPO utility vector u, there is a feasible allocation
z with u(z) = u such that the consumption graph Gz is in the collection G.

Thus, a rich family of graphs contains the consumption graphs of every fPO utility
vector for the instance. Brânzei and Sandomirskiy (2019) show how to construct a rich
family of graphs G for every instance.
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Theorem 11 (Proposition 23 of (Brânzei & Sandomirskiy, 2019)). For constant number

of agents n, a rich family of graphs G can be constructed in time O(m
n(n−1)

2
+1) and has at

most (2m+ 1)
n(n−1)

2
+1 elements.

Our algorithm for finding an EF1+fPO allocation in a non-degenerate instance I with a
constant number of agents is as follows. We generate a rich family of graphs in poly(m) time
since n is constant. We know there exists an integral EF1+fPO allocation x, for instance I,
with corresponding utility profile u(x). Since I is non-degenerate, x is the only allocation
corresponding to the utility profile u(x). Now since the collection G is rich, for the utility
profile u(x), the consumption graph Gx of x is present in G. Since x is integral, the degree
of every good in Gx is one. Thus, we can find x by iterating over every graph G in G,
checking if the degree of every good in G is one, i.e., corresponds to an integral allocation,
and then checking if the integral allocation is EF1. This algorithm runs in polynomial time
since G has poly(m) graphs as n is constant, and checking if an allocation is EF1 can also
be done in poly(m) time.

We now show how to adapt our algorithm for all instances, not just non-degenerate
instances. Given a fair division instance I = (N,M, V ), we use the perturbation technique
of Duan, Garg, and Mehlhorn (2016) to construct a non-degenerate instance I ′ = (N,M, V ′)
as follows. For each i ∈ N and j ∈ M , we choose a distinct prime number qij . The prime

number theorem implies that for every integer Q, there are at least Q
2 lnQ primes less than or

equal to Q. Thus for Q = 8nm ln(nm), there are at least nm primes at most Q, which can
be computed in O(Q lnQ) time. The values in the perturbed instance I ′ are then defined
as v′ij = vij · qεij , for a small constant ε given by ε := logQ(1 +

1
2mvmax

) ∈ (0, 1).
We now run our algorithm on the non-degenerate instance I ′ and compute an EF1+fPO

allocation x. We argue that x is EF1+PO for the original instance I as well.

Lemma 11. If x is EF1 for I ′, then x is EF1 for I.

Proof. Consider any agent i ∈ N and two sets S, T ⊆ M such that vi(S) > vi(T ). First
note:

v′i(S)− vi(S) =
∑
j∈S

vij · (qεij − 1) ≥ 0.

Next, observe that:

v′i(T )− vi(T ) =
∑
j∈T

vij · (qεij − 1) ≤ m · vmax · (Qε − 1) =
1

2
,

where the last equality used the definition of ε. Putting the above two inequalities together,
we have:

v′i(S)− v′i(T ) ≥ vi(S)− vi(T )−
1

2
> 0,

where the last inequality holds because vi(S)− vi(T ) ≥ 1, since the original valuations are
integral.

Suppose that x is EF1 for the instance I ′ and not EF1 for the instance I. Then there
are two agents i, h s.t. for all j ∈ xh: vi(xh \ {j}) > vi(xi). Then the argument above
implies that v′i(xh \ {j}) > v′i(xi) for every j ∈ xh. This contradicts our assumption that x
is EF1 for I ′.
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Lemma 12. If x is fPO for I ′, then x is PO for I.

Proof. The Second Welfare Theorem (Mas-Colell et al., 1995) states that for any fPO
allocation x of an instance ([n], [m], V ), there exists a set of non-negative budgets {ei}i∈[n]
and a set of prices of the good p ≥ 0, such that (x,p) is a market equilibrium for the Fisher
market instance ([n], [m], V, {ei}i∈[n]).

Therefore, since x is fPO for I ′, by the Second Welfare Theorem, there exists a set
of prices p s.t. (x,p) is a market equilibrium for an associated Fisher market instance.
In particular, (x,p) is on MBB. For an agent i, let α′

i = maxj∈M v′ij/pj , and let αi =
maxj∈M vij/pj . Since the prices can be scaled, we can assume that for all j ∈M , 1 ≤ pj ≤ 2.

For any agent i and good j, by the definition of v′ij and ε := logQ(1 +
1

2mvmax
), we have

that:
vij ≤ v′ij ≤ vij · (1 + δ),

where δ = 1
2mvmax

. This means that α′
i ≥ αi for every i ∈ N . Further, since (x,p) is on

MBB for I ′, for any i ∈ N :

p(xi) =
v′i(xi)

α′
i

≤ (1 + δ)vi(xi)

αi
,

which gives: ∑
i∈N

vi(xi)

αi
≥

∑
i∈N

p(xi)

1 + δ
≥ p(M)

1 + δ
(10)

Suppose x is not PO for the instance I. Then there is some allocation y that Pareto-
dominates x, i.e., for every i ∈ N , vi(yi) ≥ vi(xi), and for some h ∈ N , vh(yh) ≥ vh(xh)+1,
since the valuations vij are integral. Further since αi is the maximum bang-per-buck ratio

for an agent i at prices p, we have for every i ̸= h: p(yi) ≥ vi(yi)
αi
≥ vi(xi)

αi
and p(yh) ≥

vh(yh)
αh

≥ vh(xh)+1
αh

. This gives:∑
i∈N

vi(xi)

αi
=

∑
i∈N\{h}

vi(xi)

αi
+

vh(xh)

αh

≤
∑

i∈N\{h}

p(yi) + p(yh)−
1

αh

= p(M)− 1/αh.

(11)

Putting (10) and (11) together, we get:

p(M)− 1/αh ≥
p(M)

1 + δ
,

which simplifies to:
δαhp(M) ≥ 1 + δ.

Notice however that αh ≤ vmax, and p(M) ≤ 2m, and hence:

δαhp(M) ≤ δ · vmax · 2m = 1,

which is a contradiction. Hence x must be PO.
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Thus, we have shown:

Theorem 12. Given a fair division instance I = (N,M, V ), where n is constant, an
EF1+PO allocation can be computed in poly(m) time.

Finally, we note that the techniques in Lemma 11 also extend easily to EQ1. Since we
showed that an EQ1+fPO allocation is guaranteed to exist for positive instances:

Theorem 13. Given a positive fair division instance I = (N,M, V ), where n is constant,
an EQ1+PO allocation can be computed in poly(m) time.

6. k-ary Instances with Constant n and k

We now consider k-ary fair division instances (N,M, V ) where both k and n (number of
agents) are constant.

Let X be the set of all allocations for the instance I. For each agent i ∈ N , let
Ti = {vi(xi) : x ∈ X}, the set of different utility values i can get from any allocation. Let
U = maxi∈N |Ti|. From Lemma 7, we know U is at most poly(m). Define T = T1×· · ·×Tn.
We note that |T | ≤ (poly(m))n = poly(m), since n is constant, and can be computed in
poly(m)-time.

To solve certain fair division problems for such instances, we enumerate over each entry
(u1, . . . , un) of T and check if there is a feasible allocation x in which each agent i gets
utility exactly ui. The next lemma shows that the latter can be done efficiently.

Lemma 13. Given a vector (u1, . . . , un) ∈ T , it can be checked in poly(m)-time whether
there is a feasible allocation x s.t. for all agents i, vi(xi) = ui.

Proof. For each agent i ∈ N , let Si = {vij : j ∈M} be the set of values i has for the goods.
For each good j ∈M , define label(j) to be the position of the vector (v1j , . . . , vnj) when the
elements of S1 × · · · × Sn are ordered lexicographically. Let L be the set of labels. Clearly
|L| ≤ |S1| · · · |Sn| = O(1) since each |Si| ≤ k, and k and n are constants. Essentially, this
means that there are |L| = O(1) different types of goods. For a label 1 ≤ ℓ ≤ |L|, and for
any agent i, let viℓ equal vij for any good j with label(j) = ℓ. Further, let mℓ be the number
of goods with label ℓ. All goods can be labeled in poly(m) time.

For each agent i ∈ N , let Ti = {vi(xi) : x ∈ X}, the set of different utility values i
can get from any allocation. Let U = maxi∈N |Ti|. From Lemma 7, we know U is at most
poly(m). Define T = T1 × · · · × Tn. We note that |T | ≤ (poly(m))n = poly(m), since n is
constant.

To solve certain fair division problems for such instances, we simply enumerate over
each entry (u1, . . . , un) of the set T and check if there is a feasible allocation x in which
each agent i gets utility exactly ui.

For the latter, we define integer variables miℓ for each i ∈ N and 1 ≤ ℓ ≤ |L|, which
represents the number of goods with label ℓ assigned to agent i. Now consider the following
linear system:

∀i ∈ N :

|L|∑
ℓ=1

miℓviℓ = ui
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∀ℓ ∈ [|L|] :
∑
i∈N

miℓ = mℓ

∀i ∈ N, ∀ℓ ∈ [|L|] : 0 ≤ miℓ ≤ mℓ

This system has n|L| variables, and each variable miℓ can take at most m + 1 values.
Therefore, this system has a constant dimension, and each variable is in a bounded range.
Thus, by simple enumeration, we can check in poly(m) time whether this system has a
solution or not. If it does, then an allocation x exists, which gives every agent i a utility of
ui.

Therefore, given a vector (u1, . . . , un) ∈ T , checking if there is a feasible allocation x in
which each agent i gets utility exactly ui can be done in poly(m)-time.

By iterating through T , we can prepare a list of feasible utility vectors (and correspond-
ing allocations) that satisfy our fairness and efficiency criteria in poly(m)-time.

Theorem 14. For k-ary instance I = (N,M, V ) where both k and the number of agents
n are constants, we can compute in poly(m) time (i) an MNW allocation, (ii) a leximin
optimal allocation, (iii) a F+fPO allocation (when it exists) where F is any polynomial-time
checkable property.

7. PLS Membership of Finding an EF1+fPO Allocation

In this section, we show that the problem of computing an EF1+fPO allocation lies in
the complexity class PLS (Johnson, Papadimitriou, & Yannakakis, 1988). Essentially, PLS
captures local search problems whose local optimality can be verified in polynomial time.
We, therefore, phrase the problem of computing an EF1+fPO allocation in a fair division
instance I = (N,M, V ) as a local search problem Φ. We closely follow our Algorithm 1,
which computes an EF1+fPO allocation and shows that it has the structure of a local search
problem. We now describe the solution space, cost function, and neighborhood structure of
Φ, following which we show that the local maxima of Φ correspond to EF1+fPO allocations
for the instance I.

Solution space. We first define a configuration space as follows. Let x0 be a specific initial
integral fPO allocation. Each element of the configuration space is of the form (x, L, φ),
where x is an integral fPO allocation, L ⊆ N is a set of agents, and φ ∈ {0, 1, . . . , U}n,
where U is the maximum utility an agent can get in any allocation. Clearly, the solution
space is finite and can be represented in size polynomial in the representation of the instance
I. Moreover, since it can be checked in polynomial time via a linear program whether a
given allocation is fPO (Barman et al., 2018a), we can efficiently check if a given tuple
(x, L, φ) is a member of the configuration space or not.

Given a configuration (x, L, φ), we use the convex program (12) below to find a set of
unique prices p s.t. p s.t.

∑
j pj = n, (x,p) is on MBB and L is the set of least spenders

in (x,p). The vector φ intuitively captures the potential at the allocation (x,p) during
the run of our EF1+fPO Algorithm 1 starting with x0 as the initial allocation. That is, φi

stores the utility of agent i the last time i was the LS in the run of Algorithm 1 starting
from (x0,p0), where q0 is the solution to the program (12) for the allocation x0.

20



Computing Pareto-optimal and Almost Envy-free Allocations of Indivisible Goods

We now describe the convex program (12), which for a given configuration (x, L, φ) finds
a set of unique prices p s.t.

∑
j pj = n, (x,p) is on MBB, and L is the set of least spenders

in (x,p).

maximize
∏
j

pj

∀i ∈ N, ∀j ∈M : pj ≥ λi · vij
∀i ∈ N, ∀j ∈M,xij > 0 : pj = λi · vij

∀i ∈ N : p(xi) ≥ µ

∀i ∈ L : p(xi) = µ∑
j

pj = n

(12)

The first two constraints capture the MBB condition; here, λi is a variable that rep-
resents the reciprocal of the MBB ratio of agent i. The variable µ captures the spending
of the least spenders. Finally, the constraint

∑
j pj = n and the convexity of the objec-

tive
∏

j pj ensure that the set of prices respecting the MBB and LS constraints are unique
and positive. The convex program can be solved in polynomial time since the number of
constraints is polynomial in n and m.

Cost function. The cost of a configuration (x, L, φ) is a lexicographic cost function
⟨δ(x), φ⟩, where δ(x) ∈ {−1, 0, 1}. If x is EF1, then δ(x) = 1. If x is not EF1, then δ(x)
is either −1 or 0, depending on whether the configuration is valid or not. Let p be the set
of prices obtained by solving the program (12) for the allocation x. If L does not equal the
set of LS in (x,p), then δ(x) = −1. Otherwise if vi(xi) < φi for a LS i in (x,p), then also
δ(x) = −1. These cases correspond to the configuration (x, L, φ) being invalid, i.e., L is not
the correct set of LS, or φi cannot be the spending of i the last time i was an LS in a run
of Algorithm 1 from (x0,p0). In the other case, (x, L, φ) is valid and if x is not EF1, then
δ(x) = 0. We note that the cost of configuration can be computed in polynomial time.

Neighborhood structure. A configuration (x, L, φ) with δ(x) = 1 has no neighbor. When
δ(x) = −1, its neighbor is the allocation (x0, L0, 0n), where x0 is the initial allocation
and the set L0 is the set of LS in (x0,p0) for the prices p0 corresponding to x0. When
δ(x) = 0, the configuration is valid and x is not EF1. We then compute p using (12) for the
allocation x, and run our Algorithm 1 with (x,p) as the initial configuration until the set of
LS changes and we reach an allocation (x′,p′), where the set of LS is L′. We then update
the potential function to φ′ whose ith entry records the spending of agent i the last time i
was an LS. The configuration (x′, L′, φ′) is the neighbor of the (x, L, φ). From Lemma 4,
we know the set of LS changes in poly(n,m) iterations, so the neighbor of a configuration
can be computed in polynomial time.

Membership in PLS. Having defined the solution space, cost function, and the neigh-
borhood structure of the local search problem Φ, we show that it is in PLS. PLS mem-
bership follows from demonstrating the following three polynomial time algorithms, which
are implicit in the preceding paragraphs explaining the cost function and the neighborhood
structure.

1. Algorithm A: Which outputs the initial allocation (x0,p0).
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2. Algorithm B: Which outputs the cost of a configuration.

3. Algorithm C: Which outputs a neighbor with strictly higher cost or is locally optimal.

Therefore, Φ is in PLS. Lastly, we argue that all the local optima of Φ correspond
to EF1+fPO allocations. This is straightforward, since the local optima of Φ comprise of
configurations (x, L, φ) where δ(x) = 1, which holds iff x is EF1. Since x is fPO from the
definition of a configuration, x is EF1+fPO. We can, therefore, conclude:

Theorem 15. The problem of computing an EF1+fPO allocation lies in PLS.

The standard algorithm for PLS problems uses Algorithm A to find an initial solution
and repeatedly uses Algorithms B and C to find neighbors with higher cost until a local
optimum is reached. This standard algorithm when applied to Φ results in a sequence of
allocations (x0,x1, . . . ,xT ), where xT is EF1+fPO, T ≤ poly(n,m,U) and this sequence of
allocations is a subsequence of allocations encountered in the run of Algorithm 1 starting
from (x0,p0).

Lastly, we remark that the above result does not show that the problem of computing
an EF1+PO allocation is in PLS. In fact, since it is coNP-complete to check if a given
allocation is PO, the problem of computing an EF1+PO allocation is not even in TFNP
(unless P = NP).

8. Discussion

In this paper, we showed that an EF1+fPO allocation can be computed in pseudo-polynomial
time, thus improving upon the result of Barman et al. (2018a). Our work establishes the
polynomial time computability of EF1+PO allocations for two large non-trivial subclasses
of instances: (i) k-ary valuations with constant k, and (ii) constant n (number of agents).
These results are especially significant because polynomial-time computability was previ-
ously known only for the simple classes of binary or identical valuations. Moreover, com-
puting the MNW allocation remains NP-hard for these classes, thus eliminating its use
for efficient computation of an EF1+PO allocation. Further, these classes could be useful
practically when the number of agents is small or the valuations are derived from asking
the agents to rate items on a small scale. Our results also extend to the fairness notions of
EQ1 and weighted EF1.

On the complexity front, we showed that computing an EF1+fPO lies in PLS. Settling
the complexity of the EF1+fPO problem by designing a polynomial time algorithm or
showing PLS-hardness remains a challenging open question. Finally, showing the existence
of EF1+PO allocations for general additive instances of chores is another interesting research
direction.
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